
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Python Cookbook ™

www.allitebooks.com

http://www.allitebooks.org

Other resources from O’Reilly

Related titles Python in a Nutshell

Python Pocket Reference

Learning Python

Programming Python

Python Standard Library

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

www.allitebooks.com

http://www.allitebooks.org

Python Cookbook
™

SECOND EDITION

Edited by Alex Martelli,
Anna Martelli Ravenscroft, and David Ascher

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Python Cookbook™, Second Edition
Edited by Alex Martelli, Anna Martelli Ravenscroft, and David Ascher

Compilation copyright © 2005, 2002 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Copyright of original recipes is retained by the individual authors.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick

Production Editor: Darren Kelly

Cover Designer: Emma Colby

Interior Designer: David Futato

Production Services: Nancy Crumpton

Printing History:

July 2002: First Edition.

March 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Python Cookbook, the image of a springhaas,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00797-3

ISBN-13: 978-0-596-00797-3

[M] [11/07]

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Preface . xvii

1. Text . 1
1.1 Processing a String One Character at a Time 7

1.2 Converting Between Characters and Numeric Codes 8

1.3 Testing Whether an Object Is String-like 9

1.4 Aligning Strings 11

1.5 Trimming Space from the Ends of a String 12

1.6 Combining Strings 12

1.7 Reversing a String by Words or Characters 15

1.8 Checking Whether a String Contains a Set of Characters 16

1.9 Simplifying Usage of Strings’ translate Method 20

1.10 Filtering a String for a Set of Characters 22

1.11 Checking Whether a String Is Text or Binary 25

1.12 Controlling Case 26

1.13 Accessing Substrings 28

1.14 Changing the Indentation of a Multiline String 31

1.15 Expanding and Compressing Tabs 32

1.16 Interpolating Variables in a String 35

1.17 Interpolating Variables in a String in Python 2.4 36

1.18 Replacing Multiple Patterns in a Single Pass 38

1.19 Checking a String for Any of Multiple Endings 41

1.20 Handling International Text with Unicode 43

1.21 Converting Between Unicode and Plain Strings 45

1.22 Printing Unicode Characters to Standard Output 48

1.23 Encoding Unicode Data for XML and HTML 49

1.24 Making Some Strings Case-Insensitive 52

1.25 Converting HTML Documents to Text on a Unix Terminal 55

www.allitebooks.com

http://www.allitebooks.org

vi | Table of Contents

2. Files . 58
2.1 Reading from a File 62

2.2 Writing to a File 66

2.3 Searching and Replacing Text in a File 67

2.4 Reading a Specific Line from a File 68

2.5 Counting Lines in a File 69

2.6 Processing Every Word in a File 72

2.7 Using Random-Access Input/Output 74

2.8 Updating a Random-Access File 75

2.9 Reading Data from zip Files 77

2.10 Handling a zip File Inside a String 79

2.11 Archiving a Tree of Files into a Compressed tar File 80

2.12 Sending Binary Data to Standard Output Under Windows 82

2.13 Using a C++-like iostream Syntax 83

2.14 Rewinding an Input File to the Beginning 84

2.15 Adapting a File-like Object to a True File Object 87

2.16 Walking Directory Trees 88

2.17 Swapping One File Extension for Another
Throughout a Directory Tree 90

2.18 Finding a File Given a Search Path 91

2.19 Finding Files Given a Search Path and a Pattern 92

2.20 Finding a File on the Python Search Path 93

2.21 Dynamically Changing the Python Search Path 94

2.22 Computing the Relative Path from One Directory to Another 96

2.23 Reading an Unbuffered Character in a Cross-Platform Way 98

2.24 Counting Pages of PDF Documents on Mac OS X 99

2.25 Changing File Attributes on Windows 100

2.26 Extracting Text from OpenOffice.org Documents 101

2.27 Extracting Text from Microsoft Word Documents 102

2.28 File Locking Using a Cross-Platform API 103

2.29 Versioning Filenames 105

2.30 Calculating CRC-64 Cyclic Redundancy Checks 107

3. Time and Money . 110
3.1 Calculating Yesterday and Tomorrow 116

3.2 Finding Last Friday 118

3.3 Calculating Time Periods in a Date Range 120

3.4 Summing Durations of Songs 121

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | vii

3.5 Calculating the Number of Weekdays Between Two Dates 122

3.6 Looking up Holidays Automatically 124

3.7 Fuzzy Parsing of Dates 127

3.8 Checking Whether Daylight Saving Time Is Currently in Effect 129

3.9 Converting Time Zones 130

3.10 Running a Command Repeatedly 131

3.11 Scheduling Commands 133

3.12 Doing Decimal Arithmetic 135

3.13 Formatting Decimals as Currency 137

3.14 Using Python as a Simple Adding Machine 140

3.15 Checking a Credit Card Checksum 143

3.16 Watching Foreign Exchange Rates 144

4. Python Shortcuts . 146
4.1 Copying an Object 148

4.2 Constructing Lists with List Comprehensions 151

4.3 Returning an Element of a List If It Exists 153

4.4 Looping over Items and Their Indices in a Sequence 154

4.5 Creating Lists of Lists Without Sharing References 155

4.6 Flattening a Nested Sequence 157

4.7 Removing or Reordering Columns in a List of Rows 160

4.8 Transposing Two-Dimensional Arrays 161

4.9 Getting a Value from a Dictionary 163

4.10 Adding an Entry to a Dictionary 165

4.11 Building a Dictionary Without Excessive Quoting 166

4.12 Building a Dict from a List of Alternating Keys and Values 168

4.13 Extracting a Subset of a Dictionary 170

4.14 Inverting a Dictionary 171

4.15 Associating Multiple Values with Each Key in a Dictionary 173

4.16 Using a Dictionary to Dispatch Methods or Functions 175

4.17 Finding Unions and Intersections of Dictionaries 176

4.18 Collecting a Bunch of Named Items 178

4.19 Assigning and Testing with One Statement 180

4.20 Using printf in Python 183

4.21 Randomly Picking Items with Given Probabilities 184

4.22 Handling Exceptions Within an Expression 185

4.23 Ensuring a Name Is Defined in a Given Module 187

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

5. Searching and Sorting . 190
5.1 Sorting a Dictionary 195

5.2 Sorting a List of Strings Case-Insensitively 196

5.3 Sorting a List of Objects by an Attribute of the Objects 198

5.4 Sorting Keys or Indices Based on the Corresponding Values 200

5.5 Sorting Strings with Embedded Numbers 203

5.6 Processing All of a List’s Items in Random Order 204

5.7 Keeping a Sequence Ordered as Items Are Added 206

5.8 Getting the First Few Smallest Items of a Sequence 208

5.9 Looking for Items in a Sorted Sequence 210

5.10 Selecting the nth Smallest Element of a Sequence 212

5.11 Showing off quicksort in Three Lines 215

5.12 Performing Frequent Membership Tests on a Sequence 217

5.13 Finding Subsequences 220

5.14 Enriching the Dictionary Type with Ratings Functionality 222

5.15 Sorting Names and Separating Them by Initials 226

6. Object-Oriented Programming . 229
6.1 Converting Among Temperature Scales 235

6.2 Defining Constants 238

6.3 Restricting Attribute Setting 240

6.4 Chaining Dictionary Lookups 242

6.5 Delegating Automatically as an Alternative to Inheritance 244

6.6 Delegating Special Methods in Proxies 247

6.7 Implementing Tuples with Named Items 250

6.8 Avoiding Boilerplate Accessors for Properties 252

6.9 Making a Fast Copy of an Object 254

6.10 Keeping References to Bound Methods
Without Inhibiting Garbage Collection 256

6.11 Implementing a Ring Buffer 259

6.12 Checking an Instance for Any State Changes 262

6.13 Checking Whether an Object Has Necessary Attributes 266

6.14 Implementing the State Design Pattern 269

6.15 Implementing the “Singleton” Design Pattern 271

6.16 Avoiding the “Singleton” Design Pattern with the Borg Idiom 273

6.17 Implementing the Null Object Design Pattern 277

6.18 Automatically Initializing Instance Variables
from __init__ Arguments 280

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

6.19 Calling a Superclass __init__ Method If It Exists 282

6.20 Using Cooperative Supercalls Concisely and Safely 285

7. Persistence and Databases . 288
7.1 Serializing Data Using the marshal Module 291

7.2 Serializing Data Using the pickle and cPickle Modules 293

7.3 Using Compression with Pickling 296

7.4 Using the cPickle Module on Classes and Instances 297

7.5 Holding Bound Methods in a Picklable Way 300

7.6 Pickling Code Objects 302

7.7 Mutating Objects with shelve 305

7.8 Using the Berkeley DB Database 307

7.9 Accesssing a MySQL Database 310

7.10 Storing a BLOB in a MySQL Database 312

7.11 Storing a BLOB in a PostgreSQL Database 313

7.12 Storing a BLOB in a SQLite Database 315

7.13 Generating a Dictionary Mapping Field Names to Column Numbers 316

7.14 Using dtuple for Flexible Access
to Query Results 318

7.15 Pretty-Printing the Contents of Database Cursors 320

7.16 Using a Single Parameter-Passing Style
Across Various DB API Modules 323

7.17 Using Microsoft Jet via ADO 325

7.18 Accessing a JDBC Database from a Jython Servlet 327

7.19 Using ODBC to Get Excel Data with Jython 330

8. Debugging and Testing . 332
8.1 Disabling Execution of Some Conditionals and Loops 333

8.2 Measuring Memory Usage on Linux 334

8.3 Debugging the Garbage-Collection Process 336

8.4 Trapping and Recording Exceptions 337

8.5 Tracing Expressions and Comments in Debug Mode 339

8.6 Getting More Information from Tracebacks 342

8.7 Starting the Debugger Automatically After an Uncaught Exception 345

8.8 Running Unit Tests Most Simply 346

8.9 Running Unit Tests Automatically 348

8.10 Using doctest with unittest in Python 2.4 350

8.11 Checking Values Against Intervals in Unit Testing 352

x | Table of Contents

9. Processes, Threads, and Synchronization . 355
9.1 Synchronizing All Methods in an Object 359

9.2 Terminating a Thread 362

9.3 Using a Queue.Queue as a Priority Queue 364

9.4 Working with a Thread Pool 366

9.5 Executing a Function in Parallel on Multiple Argument Sets 369

9.6 Coordinating Threads by Simple Message Passing 372

9.7 Storing Per-Thread Information 374

9.8 Multitasking Cooperatively Without Threads 378

9.9 Determining Whether Another Instance of a Script
Is Already Running in Windows 380

9.10 Processing Windows Messages Using MsgWaitForMultipleObjects 381

9.11 Driving an External Process with popen 384

9.12 Capturing the Output and Error Streams
from a Unix Shell Command 386

9.13 Forking a Daemon Process on Unix 388

10. System Administration . 391
10.1 Generating Random Passwords 393

10.2 Generating Easily Remembered Somewhat-Random Passwords 394

10.3 Authenticating Users by Means of a POP Server 397

10.4 Calculating Apache Hits per IP Address 398

10.5 Calculating the Rate of Client Cache Hits on Apache 400

10.6 Spawning an Editor from a Script 401

10.7 Backing Up Files 403

10.8 Selectively Copying a Mailbox File 405

10.9 Building a Whitelist of Email Addresses From a Mailbox 406

10.10 Blocking Duplicate Mails 408

10.11 Checking Your Windows Sound System 410

10.12 Registering or Unregistering a DLL on Windows 411

10.13 Checking and Modifying the Set of Tasks Windows
Automatically Runs at Login 412

10.14 Creating a Share on Windows 414

10.15 Connecting to an Already Running Instance of Internet Explorer 415

10.16 Reading Microsoft Outlook Contacts 416

10.17 Gathering Detailed System Information on Mac OS X 418

Table of Contents | xi

11. User Interfaces . 422
11.1 Showing a Progress Indicator on a Text Console 424

11.2 Avoiding lambda in Writing Callback Functions 426

11.3 Using Default Values and Bounds with tkSimpleDialog Functions 427

11.4 Adding Drag and Drop Reordering to a Tkinter Listbox 428

11.5 Entering Accented Characters in Tkinter Widgets 430

11.6 Embedding Inline GIFs Using Tkinter 432

11.7 Converting Among Image Formats 434

11.8 Implementing a Stopwatch in Tkinter 437

11.9 Combining GUIs and Asynchronous I/O with Threads 439

11.10 Using IDLE’s Tree Widget in Tkinter 443

11.11 Supporting Multiple Values per Row in a Tkinter Listbox 445

11.12 Copying Geometry Methods and Options Between Tkinter Widgets 448

11.13 Implementing a Tabbed Notebook for Tkinter 451

11.14 Using a wxPython Notebook with Panels 453

11.15 Implementing an ImageJ Plug-in in Jython 455

11.16 Viewing an Image from a URL with Swing and Jython 456

11.17 Getting User Input on Mac OS 456

11.18 Building a Python Cocoa GUI Programmatically 459

11.19 Implementing Fade-in Windows with IronPython 461

12. Processing XML . 463
12.1 Checking XML Well-Formedness 465

12.2 Counting Tags in a Document 467

12.3 Extracting Text from an XML Document 468

12.4 Autodetecting XML Encoding 469

12.5 Converting an XML Document into a Tree of Python Objects 471

12.6 Removing Whitespace-only Text Nodes
from an XML DOM Node’s Subtree 474

12.7 Parsing Microsoft Excel’s XML 475

12.8 Validating XML Documents 477

12.9 Filtering Elements and Attributes Belonging to a Given Namespace 478

12.10 Merging Continuous Text Events with a SAX Filter 480

12.11 Using MSHTML to Parse XML or HTML 483

13. Network Programming . 485
13.1 Passing Messages with Socket Datagrams 487

13.2 Grabbing a Document from the Web 489

13.3 Filtering a List of FTP Sites 490

xii | Table of Contents

13.4 Getting Time from a Server via the SNTP Protocol 491

13.5 Sending HTML Mail 492

13.6 Bundling Files in a MIME Message 495

13.7 Unpacking a Multipart MIME Message 497

13.8 Removing Attachments from an Email Message 499

13.9 Fixing Messages Parsed by Python 2.4 email.FeedParser 501

13.10 Inspecting a POP3 Mailbox Interactively 503

13.11 Detecting Inactive Computers 506

13.12 Monitoring a Network with HTTP 511

13.13 Forwarding and Redirecting Network Ports 513

13.14 Tunneling SSL Through a Proxy 516

13.15 Implementing the Dynamic IP Protocol 519

13.16 Connecting to IRC and Logging Messages to Disk 522

13.17 Accessing LDAP Servers 524

14. Web Programming . 526
14.1 Testing Whether CGI Is Working 527

14.2 Handling URLs Within a CGI Script 530

14.3 Uploading Files with CGI 532

14.4 Checking for a Web Page’s Existence 533

14.5 Checking Content Type via HTTP 535

14.6 Resuming the HTTP Download of a File 536

14.7 Handling Cookies While Fetching Web Pages 538

14.8 Authenticating with a Proxy for HTTPS Navigation 541

14.9 Running a Servlet with Jython 542

14.10 Finding an Internet Explorer Cookie 543

14.11 Generating OPML Files 545

14.12 Aggregating RSS Feeds 548

14.13 Turning Data into Web Pages Through Templates 552

14.14 Rendering Arbitrary Objects with Nevow 554

15. Distributed Programming . 558
15.1 Making an XML-RPC Method Call 561

15.2 Serving XML-RPC Requests 562

15.3 Using XML-RPC with Medusa 564

15.4 Enabling an XML-RPC Server to Be Terminated Remotely 566

15.5 Implementing SimpleXMLRPCServer Niceties 567

15.6 Giving an XML-RPC Server a wxPython GUI 569

15.7 Using Twisted Perspective Broker 571

Table of Contents | xiii

15.8 Implementing a CORBA Server and Client 574

15.9 Performing Remote Logins Using telnetlib 576

15.10 Performing Remote Logins with SSH 579

15.11 Authenticating an SSL Client over HTTPS 582

16. Programs About Programs . 584
16.1 Verifying Whether a String Represents a Valid Number 590

16.2 Importing a Dynamically Generated Module 591

16.3 Importing from a Module Whose Name Is Determined at Runtime 592

16.4 Associating Parameters with a Function (Currying) 594

16.5 Composing Functions 597

16.6 Colorizing Python Source Using the Built-in Tokenizer 598

16.7 Merging and Splitting Tokens 602

16.8 Checking Whether a String Has Balanced Parentheses 604

16.9 Simulating Enumerations in Python 606

16.10 Referring to a List Comprehension While Building It 609

16.11 Automating the py2exe Compilation
of Scripts into Windows Executables 611

16.12 Binding Main Script and Modules into One Executable on Unix 613

17. Extending and Embedding . 616
17.1 Implementing a Simple Extension Type 619

17.2 Implementing a Simple Extension Type with Pyrex 623

17.3 Exposing a C++ Library to Python 625

17.4 Calling Functions from a Windows DLL 627

17.5 Using SWIG-Generated Modules in a Multithreaded Environment 630

17.6 Translating a Python Sequence into a C Array
with the PySequence_Fast Protocol 631

17.7 Accessing a Python Sequence Item-by-Item with the Iterator Protocol 635

17.8 Returning None from a Python-Callable C Function 638

17.9 Debugging Dynamically Loaded C Extensions with gdb 639

17.10 Debugging Memory Problems 641

18. Algorithms . 643
18.1 Removing Duplicates from a Sequence 647

18.2 Removing Duplicates from a Sequence
While Maintaining Sequence Order 649

18.3 Generating Random Samples with Replacement 653

18.4 Generating Random Samples Without Replacement 654

xiv | Table of Contents

18.5 Memoizing (Caching) the Return Values of Functions 656

18.6 Implementing a FIFO Container 658

18.7 Caching Objects with a FIFO Pruning Strategy 660

18.8 Implementing a Bag (Multiset) Collection Type 662

18.9 Simulating the Ternary Operator in Python 666

18.10 Computing Prime Numbers 669

18.11 Formatting Integers as Binary Strings 671

18.12 Formatting Integers as Strings in Arbitrary Bases 673

18.13 Converting Numbers to Rationals via Farey Fractions 675

18.14 Doing Arithmetic with Error Propagation 677

18.15 Summing Numbers with Maximal Accuracy 680

18.16 Simulating Floating Point 682

18.17 Computing the Convex Hulls and Diameters of 2D Point Sets 685

19. Iterators and Generators . 689
19.1 Writing a range-like Function with Float Increments 693

19.2 Building a List from Any Iterable 695

19.3 Generating the Fibonacci Sequence 697

19.4 Unpacking a Few Items in a Multiple Assignment 698

19.5 Automatically Unpacking the Needed Number of Items 700

19.6 Dividing an Iterable into n Slices of Stride n 702

19.7 Looping on a Sequence by Overlapping Windows 704

19.8 Looping Through Multiple Iterables in Parallel 708

19.9 Looping Through the Cross-Product of Multiple Iterables 710

19.10 Reading a Text File by Paragraphs 713

19.11 Reading Lines with Continuation Characters 715

19.12 Iterating on a Stream of Data Blocks as a Stream of Lines 717

19.13 Fetching Large Record Sets from a Database with a Generator 719

19.14 Merging Sorted Sequences 721

19.15 Generating Permutations, Combinations, and Selections 724

19.16 Generating the Partitions of an Integer 726

19.17 Duplicating an Iterator 728

19.18 Looking Ahead into an Iterator 731

19.19 Simplifying Queue-Consumer Threads 734

19.20 Running an Iterator in Another Thread 735

19.21 Computing a Summary Report with itertools.groupby 737

Table of Contents | xv

20. Descriptors, Decorators, and Metaclasses . 740
20.1 Getting Fresh Default Values at Each Function Call 742

20.2 Coding Properties as Nested Functions 744

20.3 Aliasing Attribute Values 747

20.4 Caching Attribute Values 750

20.5 Using One Method as Accessor for Multiple Attributes 752

20.6 Adding Functionality to a Class by Wrapping a Method 754

20.7 Adding Functionality to a Class by Enriching All Methods 757

20.8 Adding a Method to a Class Instance at Runtime 759

20.9 Checking Whether Interfaces Are Implemented 761

20.10 Using __new__ and __init__ Appropriately in Custom Metaclasses 763

20.11 Allowing Chaining of Mutating List Methods 765

20.12 Using Cooperative Supercalls with Terser Syntax 767

20.13 Initializing Instance Attributes Without Using __init__ 769

20.14 Automatic Initialization of Instance Attributes 771

20.15 Upgrading Class Instances Automatically on reload 774

20.16 Binding Constants at Compile Time 778

20.17 Solving Metaclass Conflicts 783

Index . 789

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvii

Preface

This book is not a typical O’Reilly book, written as a cohesive manuscript by one or
two authors. Instead, it is a new kind of book—a bold attempt at applying some
principles of open source development to book authoring. Over 300 members of the
Python community contributed materials to this book. In this Preface, we, the edi-
tors, want to give you, the reader, some background regarding how this book came
about and the processes and people involved, and some thoughts about the implica-
tions of this new form.

The Design of the Book
In early 2000, Frank Willison, then Editor-in-Chief of O’Reilly & Associates, con-
tacted me (David Ascher) to find out if I wanted to write a book. Frank had been the
editor for Learning Python, which I cowrote with Mark Lutz. Since I had just taken a
job at what was then considered a Perl shop (ActiveState), I didn’t have the band-
width necessary to write another book, and plans for the project were gently shelved.
Periodically, however, Frank would send me an email or chat with me at a confer-
ence regarding some of the book topics we had discussed. One of Frank’s ideas was
to create a Python Cookbook, based on the concept first used by Tom Christiansen
and Nathan Torkington with the Perl Cookbook. Frank wanted to replicate the suc-
cess of the Perl Cookbook, but he wanted a broader set of people to provide input.
He thought that, much as in a real cookbook, a larger set of authors would provide
for a greater range of tastes. The quality, in his vision, would be ensured by the over-
sight of a technical editor, combined with O’Reilly’s editorial review process.

Frank and Dick Hardt, ActiveState’s CEO, realized that Frank’s goal could be com-
bined with ActiveState’s goal of creating a community site for open source program-
mers, called the ActiveState Programmer’s Network (ASPN). ActiveState had a
popular web site, with the infrastructure required to host a wide variety of content,
but it wasn’t in the business of creating original content. ActiveState always felt that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

the open source communities were the best sources of accurate and up-to-date con-
tent, even if sometimes that content was hard to find.

The O’Reilly and ActiveState teams quickly realized that the two goals were aligned
and that a joint venture would be the best way to achieve the following key objec-
tives:

• Creating an online repository of Python recipes by Python programmers for
Python programmers

• Publishing a book containing the best of those recipes, accompanied by over-
views and background material written by key Python figures

• Learning what it would take to create a book with a different authoring model

At the same time, two other activities were happening. First, those of us at
ActiveState, including Paul Prescod, were actively looking for “stars” to join
ActiveState’s development team. One of the candidates being recruited was the
famous (but unknown to us, at the time) Alex Martelli. Alex was famous because of
his numerous and exhaustive postings on the Python mailing list, where he exhib-
ited an unending patience for explaining Python’s subtleties and joys to the increas-
ing audience of Python programmers. He was unknown because he lived in Italy
and, since he was a relative newcomer to the Python community, none of the old
Python hands had ever met him—their paths had not happened to cross back in the
1980s when Alex lived in the United States, working for IBM Research and enthusi-
astically using and promoting other high-level languages (at the time, mostly IBM’s
Rexx).

ActiveState wooed Alex, trying to convince him to move to Vancouver. We came
quite close, but his employer put some golden handcuffs on him, and somehow Van-
couver’s weather couldn’t compete with Italy’s. Alex stayed in Italy, much to my dis-
appointment. As it happened, Alex was also at that time negotiating with O’Reilly
about writing a book. Alex wanted to write a cookbook, but O’Reilly explained that
the cookbook was already signed. Later, Alex and O’Reilly signed a contract for
Python in Nutshell.

The second ongoing activity was the creation of the Python Software Foundation.
For a variety of reasons, best left to discussion over beers at a conference, everyone in
the Python community wanted to create a non-profit organization that would be the
holder of Python’s intellectual property, to ensure that Python would be on a legally
strong footing. However, such an organization needed both financial support and
buy-in from the Python community to be successful.

Given all these parameters, the various parties agreed to the following plan:

• ActiveState would build an online cookbook, a mechanism by which anyone
could submit a recipe (i.e., a snippet of Python code addressing a particular
problem, accompanied by a discussion of the recipe, much like a description of
why one should use cream of tartar when whipping egg whites). To foster a

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

community of authors and encourage peer review, the web site would also let
readers of the recipes suggest changes, ask questions, and so on.

• As part of my ActiveState job, I would edit and ensure the quality of the recipes.
Alex Martelli joined the project as a co-editor when the material was being pre-
pared for publication, and, with Anna Martelli Ravenscroft, took over as pri-
mary editor for the second edition.

• O’Reilly would publish the best recipes as the Python Cookbook.

• In lieu of author royalties for the recipes, a portion of the proceeds from the
book sales would be donated to the Python Software Foundation.

The Implementation of the Book
The online cookbook (at http://aspn.activestate.com/ASPN/Cookbook/Python/) was
the entry point for the recipes. Users got free accounts, filled in a form, and presto,
their recipes became part of the cookbook. Thousands of people read the recipes,
and some added comments, and so, in the publishing equivalent of peer review, the
recipes matured and grew. While it was predictable that the chance of getting your
name in print would get people attracted to the online cookbook, the ongoing suc-
cess of the cookbook, with dozens of recipes added monthly and more and more ref-
erences to it on the newsgroups, is a testament to the value it brings to the readers—
value which is provided by the recipe authors.

Starting from the materials available on the site, the implementation of the book was
mostly a question of selecting, merging, ordering, and editing the materials. A few
more details about this part of the work are in the “Organization” section of this
Preface.

Using the Code from This Book
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of code taken from O’Reilly books
does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Python Cookbook, 2d ed., by Alex
Martelli, Anna Martelli Ravenscroft, and David Ascher (O’Reilly Media, 2005) 0-
596-00797-3.” If you feel your use of code from this book falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

Audience
We expect that you know at least some Python. This book does not attempt to teach
Python as a whole; rather, it presents some specific techniques and concepts (and
occasionally tricks) for dealing with particular tasks. If you are looking for an intro-
duction to Python, consider some of the books described in the “Further Reading”
section of this Preface. However, you don’t need to know a lot of Python to find this
book helpful. Chapters include recipes demonstrating the best techniques for accom-
plishing some elementary and general tasks, as well as more complex or specialized
ones. We have also added sidebars, here and there, to clarify certain concepts which
are used in the book and which you may have heard of, but which might still be
unclear to you. However, this is definitely not a book just for beginners. The main
target audience is the whole Python community, mostly made up of pretty good pro-
grammers, neither newbies nor wizards. And if you do already know a lot about
Python, you may be in for a pleasant surprise! We’ve included recipes that explore
some the newest and least well-known areas of Python. You might very well learn a
few things—we did! Regardless of where you fall along the spectrum of Python
expertise, and more generally of programming skill, we believe you will get some-
thing valuable from this book.

If you already own the first edition, you may be wondering whether you need this
second edition, too. We think the answer is “yes.” The first edition had 245 recipes;
we kept 146 of those (with lots of editing in almost all cases), and added 192 new
ones, for a total of 338 recipes in this second edition. So, over half of the recipes in
this edition are completely new, and all the recipes are updated to apply to today’s
Python—releases 2.3 and 2.4. Indeed, this update is the main factor which lets us
have almost 100 more recipes in a book of about the same size. The first edition cov-
ered all versions from 1.5.2 (and sometimes earlier) to 2.2; this one focuses firmly on
2.3 and 2.4. Thanks to the greater power of today’s Python, and, even more, thanks
to the fact that this edition avoids the “historical” treatises about how you had to do
things in Python versions released 5 or more years ago, we were able to provide sub-
stantially more currently relevant recipes and information in roughly the same
amount of space.

Organization
This book has 20 chapters. Each chapter is devoted to a particular kind of recipe,
such as algorithms, text processing, databases, and so on. The 1st edition had 17
chapters. There have been improvements to Python, both language and library, and
to the corpus of recipes the Python community has posted to the cookbook site, that
convinced us to add three entirely new chapters: on the iterators and generators
introduced in Python 2.3; on Python’s support for time and money operations, both
old and new; and on new, advanced tools introduced in Python 2.2 and following

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

releases (custom descriptors, decorators, metaclasses). Each chapter contains an
introduction, written by an expert in the field, followed by recipes selected from the
online cookbook (in some cases—about 5% of this book’s recipes—a few new reci-
pes were specially written for this volume) and edited to fit the book’s formatting
and style requirements. Alex (with some help from Anna) did the vast majority of the
selection—determining which recipes from the first edition to keep and update, and
selecting new recipes to add, or merge with others, from the nearly 1,000 available
on the site (so, if a recipe you posted to the cookbook site didn’t get into this printed
edition, it’s his fault!). He also decided which subjects just had to be covered and
thus might need specially written recipes—although he couldn’t manage to get quite
all of the specially written recipes he wanted, so anything that’s missing, and wasn’t
on the cookbook site, might not be entirely his fault.

Once the selection was complete, the work turned to editing the recipes, and to
merging multiple recipes, as well as incorporating important contents from many sig-
nificant comments posted about the recipes. This proved to be quite a challenge, just
as it had been for the first edition, but even more so. The recipes varied widely in
their organization, level of completeness, and sophistication. With over 300 authors
involved, over 300 different “voices” were included in the text. We have striven to
maintain a variety of styles to reflect the true nature of this book, the book written by
the entire Python community. However, we edited each recipe, sometimes quite con-
siderably, to make it as accessible and useful as possible, ensuring enough unifor-
mity in structure and presentation to maximize the usability of the book as a whole.
Most recipes, both from the first edition and from the online site, had to be updated,
sometimes heavily, to take advantage of new tools and better approaches developed
since those recipes were originally posted. We also carefully reconsidered (and
slightly altered) the ordering of chapters, and the placement and ordering of recipes
within chapters; our goal in this reordering was to maximize the book’s usefulness
for both newcomers to Python and seasoned veterans, and, also, for both readers
tackling the book sequentially, cover to cover, and ones just dipping in, in “random
access” fashion, to look for help on some specific area.

While the book should thus definitely be accessible “by hops and jumps,” we never-
theless believe a first sequential skim will amply repay the modest time you, the
reader, invest in it. On such a skim, skip every recipe that you have trouble follow-
ing or that is of no current interest to you. Despite the skipping, you’ll still get a
sense of how the whole book hangs together and of where certain subjects are cov-
ered, which will stand you in good stead both for later in-depth sequential reading, if
that’s your choice, and for “random access” reading. To further help you get a sense
of what’s where in the book, here’s a capsule summary of each chapter’s contents,
and equally capsule bios of the Python experts who were so kind as to take on the
task of writing the chapters’ “Introduction” sections.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Chapter 1, Text, introduction by Fred L. Drake, Jr.
This chapter contains recipes for manipulating text in a variety of ways, includ-
ing combining, filtering, and formatting strings, substituting variables through-
out a text document, and dealing with Unicode.

Fred Drake is a member of the PythonLabs group, working on Python develop-
ment. A father of three, Fred is best known in the Python community for single-
handedly maintaining the official documentation. Fred is a co-author of Python
& XML (O’Reilly).

Chapter 2, Files, introduction by Mark Lutz
This chapter presents techniques for working with data in files and for manipu-
lating files and directories within the filesystem, including specific file formats
and archive formats such as tar and zip.

Mark Lutz is well known to most Python users as the most prolific author of
Python books, including Programming Python, Python Pocket Reference, and
Learning Python (all from O’Reilly), which he co-authored with David Ascher.
Mark is also a leading Python trainer, spreading the Python gospel throughout
the world.

Chapter 3, Time and Money, introduction by Gustavo Niemeyer and Facundo Batista
This chapter (new in this edition) presents tools and techniques for working
with dates, times, decimal numbers, and some other money-related issues.

Gustavo Niemeyer is the author of the third-party dateutil module, as well as a
variety of other Python extensions and projects. Gustavo lives in Brazil. Facundo
Batista is the author of the Decimal PEP 327, and of the standard library module
decimal, which brought floating-point decimal support to Python 2.4. He lives in
Argentina. The editors were delighted to bring them together for this introduc-
tion.

Chapter 4, Python Shortcuts, introduction by David Ascher
This chapter includes recipes for many common techniques that can be used
anywhere, or that don’t really fit into any of the other, more specific recipe cate-
gories.

David Ascher is a co-editor of this volume. David’s background spans physics,
vision research, scientific visualization, computer graphics, a variety of program-
ming languages, co-authoring Learning Python (O’Reilly), teaching Python, and
these days, a slew of technical and nontechnical tasks such as managing the
ActiveState team. David also gets roped into organizing Python conferences on a
regular basis.

Chapter 5, Searching and Sorting, introduction by Tim Peters
This chapter covers techniques for searching and sorting in Python. Many of the
recipes explore creative uses of the stable and fast list.sort in conjunction with
the decorate-sort-undecorate (DSU) idiom (newly built in with Python 2.4),

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

while others demonstrate the power of heapq, bisect, and other Python search-
ing and sorting tools.

Tim Peters, also known as the tim-bot, is one of the mythological figures of the
Python world. He is the oracle, channeling Guido van Rossum when Guido is
busy, channeling the IEEE-754 floating-point committee when anyone asks any-
thing remotely relevant, and appearing conservative while pushing for a con-
stant evolution in the language. Tim is a member of the PythonLabs team.

Chapter 6, Object-Oriented Programming, introduction by Alex Martelli
This chapter offers a wide range of recipes that demonstrate the power of object-
oriented programming with Python, including fundamental techniques such as
delegating and controlling attribute access via special methods, intermediate
ones such as the implementation of various design patterns, and some simple
but useful applications of advanced concepts, such as custom metaclasses, which
are covered in greater depth in Chapter 20.

Alex Martelli, also known as the martelli-bot, is a co-editor of this volume. After
almost a decade with IBM Research, then a bit more than that with think3, inc.,
Alex now works as a freelance consultant, most recently for AB Strakt, a Swed-
ish Python-centered firm. He also edits and writes Python articles and books,
including Python in a Nutshell (O’Reilly) and, occasionally, research works on
the game of contract bridge.

Chapter 7, Persistence and Databases, introduction by Aaron Watters
This chapter presents Python techniques for persistence, including serialization
approaches and interaction with various databases.

Aaron Watters was one of the earliest advocates of Python and is an expert in
databases. He’s known for having been the lead author on the first book on
Python (Internet Programming with Python, M&T Books, now out of print), and
he has authored many widely used Python extensions, such as kjBuckets and
kwParsing. Aaron currently works as a freelance consultant.

Chapter 8, Debugging and Testing, introduction by Mark Hammond
This chapter includes a collection of recipes that assist with the debugging and
testing process, from customizing error logging and traceback information, to
unit testing with custom modules, unittest and doctest.

Mark Hammond is best known for his work supporting Python on the Win-
dows platform. With Greg Stein, he built an incredible library of modules inter-
facing Python to a wide variety of APIs, libraries, and component models such as
COM. He is also an expert designer and builder of developer tools, most nota-
bly Pythonwin and Komodo. Finally, Mark is an expert at debugging even the
most messy systems—during Komodo development, for example, Mark was
often called upon to debug problems that spanned three languages (Python,
C++, JavaScript), multiple threads, and multiple processes. Mark is also co-
author, with Andy Robinson, of Python Programming on Win32 (O’Reilly).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

Chapter 9, Processes, Threads, and Synchronization, introduction by Greg Wilson
This chapter covers a variety of techniques for concurrent programming, includ-
ing threads, queues, and multiple processes.

Greg Wilson writes children’s books, as well as books on parallel programming
and data crunching. When he’s not doing that, he’s a contributing editor with
Doctor Dobb’s Journal, an adjunct professor in Computer Science at the Univer-
sity of Toronto, and a freelance software developer. Greg was the original driv-
ing force behind the Software Carpentry project, and he recently received a grant
from the Python Software Foundation to develop Pythonic course material for
computational scientists and engineers.

Chapter 10, System Administration, introduction by Donn Cave
This chapter includes recipes for a number of common system administration
tasks, from generating passwords and interacting with the Windows registry, to
handling mailbox and web server issues.

Donn Cave is a software engineer at the University of Washington’s central com-
puter site. Over the years, Donn has proven to be a fount of information on
comp.lang.python on all matters related to system calls, Unix, system administra-
tion, files, signals, and the like.

Chapter 11, User Interfaces, introduction by Fredrik Lundh
This chapter contains recipes for common GUI tasks, mostly with Tkinter, but
also a smattering of wxPython, Qt, image processing, and GUI recipes specific to
Jython (for JVM—Java Virtual Machine), Mac OS X, and IronPython (for dot-
NET).

Fredrik Lundh, also known as the eff-bot, is the CTO of Secret Labs AB, a Swed-
ish Python-focused company providing a variety of products and technologies.
Fredrik is the world’s leading expert on Tkinter (the most popular GUI toolkit
for Python), as well as the main author of the Python Imaging Library (PIL). He
is also the author of Python Standard Library (O’Reilly), which is a good comple-
ment to this volume and focuses on the modules in the standard Python library.
Finally, he is a prolific contributor to comp.lang.python, helping novices and
experts alike.

Chapter 12, Processing XML, introduction by Paul Prescod
This chapter offers techniques for parsing, processing, and generating XML
using a variety of Python tools.

Paul Prescod is an expert in three technologies: Python, which he need not jus-
tify; XML, which makes sense in a pragmatic world (Paul is co-author of the
XML Handbook, with Charles Goldfarb, published by Prentice Hall); and Uni-
code, which somehow must address some deep-seated desire for pain and confu-
sion that neither of the other two technologies satisfies. Paul is currently a
product manager at Blast Radius.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxv

Chapter 13, Network Programming, introduction by Guido van Rossum
This chapter covers a variety of network programming techniques, from writing
basic TCP clients and servers to manipulating MIME messages.

Guido created Python, nurtured it throughout its infancy, and is shepherding its
growth. Need we say more?

Chapter 14, Web Programming, introduction by Andy McKay
This chapter presents a variety of web-related recipes, including ones for CGI
scripting, running a Java servlet with Jython, and accessing the content of web
pages.

Andy McKay is the co-founder and vice president of Enfold Systems. In the last
few years, Andy went from being a happy Perl user to a fanatical Python, Zope,
and Plone expert. He wrote the Definitive Guide to Plone (Apress) and runs the
popular Zope discussion site, http://www.zopezen.org.

Chapter 15, Distributed Programming, introduction by Jeremy Hylton
This chapter provides recipes for using Python in simple distributed systems,
including XML-RPC, CORBA, and Twisted’s Perspective Broker.

Jeremy Hylton works for Google. In addition to young twins, Jeremy’s interests
including programming language theory, parsers, and the like. As part of his
work for CNRI, Jeremy worked on a variety of distributed systems.

Chapter 16, Programs About Programs, introduction by Paul F. Dubois
This chapter contains Python techniques that involve program introspection,
currying, dynamic importing, distributing programs, lexing and parsing.

Paul Dubois has been working at the Lawrence Livermore National Laboratory
for many years, building software systems for scientists working on everything
from nuclear simulations to climate modeling. He has considerable experience
with a wide range of scientific computing problems, as well as experience with
language design and advanced object-oriented programming techniques.

Chapter 17, Extending and Embedding, introduction by David Beazley
This chapter offers techniques for extending Python and recipes that assist in the
development of extensions.

David Beazley’s chief claim to fame is SWIG, an amazingly powerful hack that
lets one quickly wrap C and other libraries and use them from Python, Tcl, Perl,
and myriad other languages. Behind this seemingly language-neutral tool lies a
Python supporter of the first order, as evidenced by his book, Python Essential
Reference (New Riders). David Beazley is a fairly sick man (in a good way), lead-
ing us to believe that more scarily useful tools are likely to emerge from his
brain. He’s currently inflicting his sense of humor on computer science students
at the University of Chicago.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxvi | Preface

Chapter 18, Algorithms, introduction by Tim Peters
This chapter provides a collection of fascinating and useful algorithms and data
structures implemented in Python.

See the discussion of Chapter 5 for information about Tim Peters.

Chapter 19, Iterators and Generators, introduction by Raymond Hettinger
This chapter (new in this edition) contains recipes demonstrating the variety and
power of iterators and generators—how Python makes your loops’ structures
simpler, faster, and reusable.

Raymond Hettinger is the creator of the itertools package, original proposer of
generator expressions, and has become a major contributor to the development
of Python—if you don’t know who originated and implemented some major
novelty or important optimization in the 2.3 and 2.4 releases of Python, our
advice is to bet it was Raymond!

Chapter 20, Descriptors, Decorators, and Metaclasses, introduction by Raymond Het-
tinger

This chapter (new in this edition) provides an in-depth look into the infrastruc-
tural elements which make Python’s OOP so powerful and smooth, and how
you can exploit and customize them for fun and profit. From handy idioms for
building properties, to aliasing and caching attributes, all the way to decorators
which optimize your functions by hacking their bytecode and to a factory of cus-
tom metaclasses to solve metatype conflicts, this chapter shows how, while
surely “there be dragons here,” they’re the wise, powerful and beneficent Chi-
nese variety thereof...!

See the discussion of Chapter 19 for information about Raymond Hettinger.

Further Reading
There are many texts available to help you learn Python or refine your Python knowl-
edge, from introductory texts all the way to quite formal language descriptions.

We recommend the following books for general information about Python (all these
books cover at least Python 2.2, unless otherwise noted):

• Python Programming for the Absolute Beginner, by Michael Dawson (Thomson
Course Technology), is a hands-on, highly accessible introduction to Python for
people who have never programmed.

• Learning Python, by Mark Lutz and David Ascher (O’Reilly), is a thorough intro-
duction to the fundamentals of Python.

• Practical Python, by Magnus Lie Hetland (APress), is an introduction to Python
which also develops, in detail, ten fully worked out, substantial programs in
many different areas.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxvii

• Dive into Python, by Mark Pilgrim (APress), is a fast-paced introduction to
Python for experienced programmers, and it is also freely available for online
reading and downloading (http://diveintopython.org/).

• Python Standard Library, by Fredrik Lundh (O’Reilly), provides a use case for
each module in the rich library that comes with every standard Python distribu-
tion (in the current first edition, the book only covers Python up to 2.0).

• Programming Python, by Mark Lutz (O’Reilly), is a thorough rundown of Python
programming techniques (in the current second edition, the book only covers
Python up to 2.0).

• Python Essential Reference, by David Beazley (New Riders), is a quick reference
that focuses on the Python language and the core Python libraries (in the cur-
rent second edition, the book only covers Python up to 2.1).

• Python in a Nutshell, by Alex Martelli (O’Reilly), is a comprehensive quick refer-
ence to the Python language and the key libraries used by most Python program-
mers.

In addition, several more special-purpose books can help you explore particular
aspects of Python programming. Which books you will like best depends a lot on
your areas of interest. From personal experience, the editors can recommend at least
the following:

• Python and XML, by Christopher A. Jones and Fred L. Drake, Jr. (O’Reilly),
offers thorough coverage of using Python to read, process, and transform XML.

• Jython Essentials, by Samuele Pedroni and Noel Rappin (O’Reilly), is the author-
itative book on Jython, the port of Python to the JVM. Particularly useful if you
already know some (or a lot of) Java.

• Game Programming with Python, by Sean Riley (Charles River Media), covers
programming computer games with Python, all the way from advanced graphics
to moderate amounts of “artificial intelligence.”

• Python Web Programming, by Steve Holden (New Riders), covers building net-
worked systems using Python, with introductions to many other related technol-
ogies (databases, HTTP, HTML, etc.). Very suitable for readers with none to
medium experience with these fields, but has something to teach everyone.

In addition to these books, other important sources of information can help explain
some of the code in the recipes in this book. We’ve pointed out the information that
seemed particularly relevant in the “See Also” sections of each recipe. In these sec-
tions, we often refer to the standard Python documentation: most often the Library
Reference, sometimes the Reference Manual, and occasionally the Tutorial. This doc-
umentation is freely available in a variety of forms:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxviii | Preface

• On the python.org web site (at http://www.python.org/doc/), which always con-
tains the most up-to-date documentation about Python.

• On the pydoc.org web site (at http://pydoc.org/), accompanied by module-by-
module documentation of the standard library automatically generated by the
very useful pydoc tool.

• In Python itself. Recent versions of Python boast a nice online help system,
which is worth exploring if you’ve never used it. Just type help() at the interac-
tive Python interpreter prompt to start exploring.

• As part of the online help in your Python installation. ActivePython’s installer,
for example, includes a searchable Windows help file. The standard Python dis-
tribution currently includes HTML pages, but there are plans to include a simi-
lar Windows Help file in future releases.

We have not included specific section numbers in our references to the standard
Python documentation, since the organization of these manuals can change from
release to release. You should be able to use the table of contents and indexes to find
the relevant material. For the Library Reference, in particular, the Module Index (an
alphabetical list of all standard library modules, each module name being a hyper-
link to the Library Reference documentation for that module) is invaluable. Simi-
larly, we have not given specific pointers in our references to Python in a Nutshell:
that book is still in its first edition (covering Python up to 2.2) at the time of this
writing, but by the time you’re reading, a second edition (covering Python 2.3 and
2.4) is likely to be forthcoming, if not already published.

Conventions Used in This Book
Pronouns: the first person singular is meant to convey that the recipe’s or chapter
introduction’s author is speaking (when multiple credits are given for a recipe, the
author is the first person credited); however, even such remarks have at times had to
be edited enough that they may not reflect the original author’s intended meaning
(we, the editors, tried hard to avoid that, but we know we must have failed in some
cases, since there were so many remarks, and authorial intent was often not entirely
clear). The second person is meant to refer to you, the reader. The first person plural
collectively indicates you, the reader, plus the recipe’s author and co-authors, the
editors, and my friend Joe (hi Joe!)—in other words, it’s a very inclusive “we” or “us.”

Code: each block of code may indicate a complete module or script (or, often, a
Python source file that is usable both as a script and as a module), an isolated snip-
pet from some hypothetical module or script, or part of a Python interactive inter-
preter session (indicated by the prompt >>>).

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxix

The following typographical conventions are used throughout this book:

Italic for commands, filenames, for emphasis, and for first use of a term.

Constant width for general code fragments and keywords (mostly Python ones, but
also other languages, such as C or HTML, where they occur). Constant width is also
used for all names defined in Python’s library and third-party modules.

Constant width bold is used to emphasize particular lines within code listings and
show output that is produced.

How to Contact Us
We have tested and verified all the information in this book to the best of our abili-
ties, but you may find that some features have changed, or that we have let errors slip
through the production of the book. Please let us know of any errors that you find,
as well as any suggestions for future editions, by writing to:

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web site for the book, where we’ll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/pythoncook2

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com/

The online cookbook from which most of the recipes for this book were taken is
available at:

http://aspn.activestate.com/ASPN/Cookbook/Python

Safari® Enabled
When you see a Safari Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxx | Preface

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Most publications, from mysteries to scientific papers to computer books, claim that
the work being published would not have been possible without the collaboration of
many others, typically including local forensic scientists, colleagues, and children,
respectively. This book makes this claim to an extreme degree. Most of the words,
code, and ideas in this volume were contributed by people not listed on the front
cover. The original recipe authors, readers who submitted useful and insightful com-
ments to the cookbook web site, and the authors of the chapter introductions, are
the true authors of the book, and they deserve the credit.

David Ascher
The software that runs the online cookbook was the product of Andy McKay’s con-
stant and diligent effort. Andy was ActiveState’s key Zope developer during the
online data-collection phase of this project, and one of the key developers behind
ASPN (http://aspn.activestate.com), ActiveState’s content site, which serves a wide
variety of information for and by programmers of open source languages such as
Python, Perl, PHP, Tcl, and XSLT. Andy McKay used to be a Perl developer, by the
way. At about the same time that I started at ActiveState, the company decided to
use Zope to build what would become ASPN. In the years that followed, Andy has
become a Zope master and somewhat of a Python fanatic (without any advocacy
from me!), and is currently a Zope and Plone author, consultant and entrepreneur.
Based on an original design that I put together with Diane Mueller, also of
ActiveState, Andy single-handedly implemented ASPN in record time, then pro-
ceeded to adjust it to ever-changing requirements for new features that we hadn’t
anticipated in the early design phase, staying cheerful and professional throughout.
It’s a pleasure to have him as the author of the introduction to the chapter on web
recipes. Since Andy’s departure, James McGill has taken over as caretaker of the
online cookbook—he makes sure that the cookbook is live at all hours of the day or
night, ready to serve Pythonistas worldwide.

Paul Prescod, then also of ActiveState, was a kindred spirit throughout the project,
helping with the online editorial process, suggesting changes, and encouraging read-
ers of comp.lang.python to visit the web site and submit recipes. Paul also helped
with some of his considerable XML knowledge when it came to figuring out how to
take the data out of Zope and get it ready for the publication process.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxxi

The last activator I’d like to thank, for two different reasons, is Dick Hardt, founder
and CEO of ActiveState. The first is that Dick agreed to let me work on the cook-
book as part of my job. Had he not, I wouldn’t have been able to participate in it.
The second reason I’d like to thank Dick is for suggesting at the outset that a share of
the book royalties go to the Python Software Foundation. This decision not only
made it easier to enlist Python users into becoming contributors but has also resulted
in some long-term revenue to an organization that I believe needs and deserves finan-
cial support. All Python users will benefit.

Writing a software system a second time is dangerous; the “second-system” syn-
drome is a well-known engineering scenario in which teams that are allowed to
rebuild systems “right” often end up with interminable, over-engineered projects. I’m
pleased to say that this didn’t happen in the case of this second edition, for two pri-
mary reasons. The first was the decision to trim the scope of the cookbook to cover
only truly modern Python—that made the content more manageable and the book
much more interesting to contemporary audiences. The second factor was that every-
one realized with hindsight that I would have no time to contribute to the day-to-day
editing of this second edition. I’m as glad as ever to have been associated with this
book, and pleased that I have no guilt regarding the amount of work I didn’t contrib-
ute. When people like Alex and Anna are willing to take on the work, it’s much bet-
ter for everyone else to get out of the way.

Finally, I’d like to thank the O’Reilly editors who have had a big hand in shaping the
cookbook. Laura Lewin was the original editor for the first edition, and she helped
make sure that the project moved along, securing and coordinating the contribu-
tions of the introduction authors. Paula Ferguson then took the baton, provided a
huge amount of precious feedback, and copyedited the final manuscript, ensuring
that the prose was as readable as possible given the multiplicity of voices in the book.
Jonathan Gennick was the editor for the second edition, and as far as I can tell, he
basically let Alex and Anna drive, which was the right thing to do. Another editor I
forgot to mention last time was Tim O’Reilly, who got more involved in this book
than in most, in its early (rough) phases, and provided very useful input.

Each time I review this acknowledgments section, I can’t help but remember
O’Reilly’s Editor-in-Chief at the inception of the project, Frank Willison. Frank died
suddenly on a black day, July 30, 2001. He was the person who most wanted to see
this book happen, for the simple reason that he believed the Python community
deserved it. Frank was always willing to explore new ideas, and he was generous to a
fault. The idea of a book with over a hundred authors would have terrified most edi-
tors. Frank saw it as a challenge and an experiment. I still miss Frank.

Alex Martelli
I first met Python thanks to the gentle insistence of a former colleague, Alessandro
Bottoni. He kept courteously repeating that I really should give Python a try, in spite

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxxii | Preface

of my claims that I already knew more programming languages than I knew what to
do with. If I hadn’t trusted his technical and aesthetic judgment enough to invest the
needed time and energy on the basis of his suggestion, I most definitely wouldn’t be
writing and editing Python books today. Thanks for your well-placed stubbornness,
Alessandro!

Of course, once I tasted Python, I was irretrievably hooked—my lifelong taste for
very high-level (often mis-named “scripting”) languages at last congealed into one
superb synthesis. Here, at long last, was a language with the syntactic ease of Rexx
(and then some), the semantic simplicity of Tcl (and then some), the intellectual
rigor of Scheme (and other Lisp variants), and the awesome power of Perl (and then
some). How could I resist? Still, I do owe a debt to Mike Cowlishaw (inventor of
Rexx), who I had the pleasure of having as a colleague when I worked for IBM
Research, for first getting me hooked on scripting. I must also thank John Ouster-
hout and Larry Wall, the inventors of Tcl and Perl, respectively, for later reinforcing
my addiction through their brainchildren.

Greg Wilson first introduced me to O’Reilly, so he must get his share of thanks,
too—and I’m overjoyed at having him as one of the introduction authors. I am also
grateful to David Ascher, and several people at O’Reilly, for signing me up as co-edi-
tor of the first edition of this book and supporting so immediately and enthusiasti-
cally my idea that, hmmm, the time had sure come for a second edition (in dazed
retrospect, I suspect what I meant was mostly that I had forgotten how deuced much
work it had been to do the first one...and failed to realize that, with all the new
materials heaped on ActiveState’s site, as well as Python’s wonderful progress over
three years, the second edition would take more work than the first one...!).

I couldn’t possibly have done the job without an impressive array of technology to
help me. I don’t know the names of all the people I should thank for the Internet,
ADSL, and Google’s search engines, which, together, let me look things up so eas-
ily—or for many of the other hardware and software technologies cooperating to
amplify my productivity. But, I do know I couldn’t have made it without Theo de
Raadt’s OpenBSD operating system, Steve Jobs’ inspiration behind Mac OS X and
the iBook G4 on which I did most of the work, Bram Moolenaar’s VIM editor, and,
of course, Guido van Rossum’s Python language. So, I’ll single out Theo, Steve,
Bram, and Guido for special thanks!

Nor, as any book author will surely confirm, could I have done it without patience
and moral support from friends and family—chiefly my children Lucio and Flavia,
my sister Elisabetta, my father Lanfranco. But the one person who was truly indis-
pensable to this second edition was my wife and co-editor Anna. Having recon-
nected (after many years apart) thanks to Python, taken our honeymoon at the Open
Source Convention, given a joint Lightning Talk about our “Pythonic Marriage,”
maybe I should have surmised how wonderful it would be to work so closely with
her, day in and day out, on such a large and complex joint project. It was truly

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxxiii

incredible, all the way through, fully including the heated debates about this or that
technical or organizational point or exact choice of wording in delicate cases.
Throughout the effort and the stress, her skill, her love, her joy, always shined
through, sustained me, and constantly renewed my energies and my determination.
Thanks, Anna!

Anna Martelli Ravenscroft
I discovered Python about two years ago. I fell in love, both with Python and (con-
currently) with the martelli-bot. Python is a language that is near to my heart, prima-
rily because it is so quickly usable. It doesn’t require you to become a hermit for the
next four years in order to do anything with the language. Thank you to Guido. And
thanks to the amazing Python community for providing such a welcoming atmo-
sphere to newcomers.

Working on this book was quite the learning experience for me. Besides all the
Python code, I also learned both XML and VI, as well as reacquainting myself with
Subversion. Thanks go to Holger Krekel and codespeak, for hosting our subversion
repository while we travelled. Which brings us to a group of people who deserve spe-
cial thanks: our reviewers. Holger Krekel, again, was exceptionally thorough, and
ensured, among other things, that we had solid Unicode support. Raymond Het-
tinger gave us a huge amount of valuable, detailed insight throughout, particularly
where iterators and generators were concerned. Both Raymond and Holger often
offered alternatives to the presented “solutions” when warranted. Valentino
Volonghi pointed out programming style issues as well as formatting issues and
brought an incredible amount of enthusiasm to his reviews. Ryan Alexander, a new-
comer to Python with a background in Java, provided extremely detailed recommen-
dations on ordering and presenting materials (recipes and chapters), as well as
pointing out explanations that were weak or missing altogether. His perspective was
invaluable in making this book more accessible and useful to new Pythonistas. Sev-
eral other individuals provided feedback on specific chapters or recipes, too numer-
ous to list here. Your work, however, is greatly appreciated.

Of course, thanks go to my husband. I am amazed at Alex’s patience with questions
(and I questioned a lot). His dedication to excellence is a co-author’s dream. When
presented with feedback, he consistently responded with appreciation and focus on
making the book better. He’s one of the least ego-istical writers I’ve ever met.

Thank you to Dan, for encouraging my geekiness by starting me on Linux, teaching
me proper terminology for the stuff I was doing, and for getting me hooked on the
Internet. And finally, an extra special thanks to my children, Inanna and Graeme, for
their hugs, understanding, and support when I was in geekmode, particularly during the
final push to complete the book. You guys are the best kids a mother could wish for.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Text

1.0 Introduction
Credit: Fred L. Drake, Jr., PythonLabs

Text-processing applications form a substantial part of the application space for any
scripting language, if only because everyone can agree that text processing is useful.
Everyone has bits of text that need to be reformatted or transformed in various ways.
The catch, of course, is that every application is just a little bit different from every
other application, so it can be difficult to find just the right reusable code to work
with different file formats, no matter how similar they are.

What Is Text?
Sounds like an easy question, doesn’t it? After all, we know it when we see it, don’t
we? Text is a sequence of characters, and it is distinguished from binary data by that
very fact. Binary data, after all, is a sequence of bytes.

Unfortunately, all data enters our applications as a sequence of bytes. There’s no
library function we can call that will tell us whether a particular sequence of bytes
represents text, although we can create some useful heuristics that tell us whether
data can safely (not necessarily correctly) be handled as text. Recipe 1.11 “Checking
Whether a String Is Text or Binary” shows just such a heuristic.

Python strings are immutable sequences of bytes or characters. Most of the ways we
create and process strings treat them as sequences of characters, but many are just as
applicable to sequences of bytes. Unicode strings are immutable sequences of Uni-
code characters: transformations of Unicode strings into and from plain strings use
codecs (coder-decoders) objects that embody knowledge about the many standard
ways in which sequences of characters can be represented by sequences of bytes (also
known as encodings and character sets). Note that Unicode strings do not serve
double duty as sequences of bytes. Recipe 1.20 “Handling International Text
with Unicode,“ recipe 1.21 “Converting Between Unicode and Plain Strings,” and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Text

recipe 1.22 “Printing Unicode Characters to Standard Output” illustrate the funda-
mentals of Unicode in Python.

Okay, let’s assume that our application knows from the context that it’s looking at
text. That’s usually the best approach because that’s where external input comes into
play. We’re looking at a file either because it has a well-known name and defined for-
mat (common in the “Unix” world) or because it has a well-known filename exten-
sion that indicates the format of the contents (common on Windows). But now we
have a problem: we had to use the word format to make the previous paragraph
meaningful. Wasn’t text supposed to be simple?

Let’s face it: there’s no such thing as “pure” text, and if there were, we probably
wouldn’t care about it (with the possible exception of applications in the field of
computational linguistics, where pure text may indeed sometimes be studied for its
own sake). What we want to deal with in our applications is information contained
in text. The text we care about may contain configuration data, commands to con-
trol or define processes, documents for human consumption, or even tabular data.
Text that contains configuration data or a series of commands usually can be
expected to conform to a fairly strict syntax that can be checked before relying on the
information in the text. Informing the user of an error in the input text is typically
sufficient to deal with things that aren’t what we were expecting.

Documents intended for humans tend to be simple, but they vary widely in detail.
Since they are usually written in a natural language, their syntax and grammar can be
difficult to check, at best. Different texts may use different character sets or encod-
ings, and it can be difficult or even impossible to tell which character set or encoding
was used to create a text if that information is not available in addition to the text
itself. It is, however, necessary to support proper representation of natural-language
documents. Natural-language text has structure as well, but the structures are often
less explicit in the text and require at least some understanding of the language in
which the text was written. Characters make up words, which make up sentences,
which make up paragraphs, and still larger structures may be present as well. Para-
graphs alone can be particularly difficult to locate unless you know what typographi-
cal conventions were used for a document: is each line a paragraph, or can multiple
lines make up a paragraph? If the latter, how do we tell which lines are grouped
together to make a paragraph? Paragraphs may be separated by blank lines, indenta-
tion, or some other special mark. See recipe 19.10 “Reading a Text File by Para-
graphs” for an example of reading a text file as a sequence of paragraphs separated
by blank lines.

Tabular data has many issues that are similar to the problems associated with natu-
ral-language text, but it adds a second dimension to the input format: the text is no
longer linear—it is no longer a sequence of characters, but rather a matrix of charac-
ters from which individual blocks of text must be identified and organized.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 3

Basic Textual Operations
As with any other data format, we need to do different things with text at different
times. However, there are still three basic operations:

• Parsing the data into a structure internal to our application

• Transforming the input into something similar in some way, but with changes of
some kind

• Generating completely new data

Parsing can be performed in a variety of ways, and many formats can be suitably
handled by ad hoc parsers that deal effectively with a very constrained format. Exam-
ples of this approach include parsers for RFC 2822-style email headers (see the
rfc822 module in Python’s standard library) and the configuration files handled by
the ConfigParser module. The netrc module offers another example of a parser for
an application-specific file format, this one based on the shlex module. shlex offers a
fairly typical tokenizer for basic languages, useful in creating readable configuration
files or allowing users to enter commands to an interactive prompt. These sorts of ad
hoc parsers are abundant in Python’s standard library, and recipes using them can be
found in Chapter 2 and Chapter 13. More formal parsing tools are also available for
Python; they depend on larger add-on packages and are surveyed in the introduction
to Chapter 16.

Transforming text from one format to another is more interesting when viewed as
text processing, which is what we usually think of first when we talk about text. In
this chapter, we’ll take a look at some ways to approach transformations that can be
applied for different purposes. Sometimes we’ll work with text stored in external
files, and other times we’ll simply work with it as strings in memory.

The generation of textual data from application-specific data structures is most eas-
ily performed using Python’s print statement or the write method of a file or file-like
object. This is often done using a method of the application object or a function,
which takes the output file as a parameter. The function can then use statements
such as these:

print >>thefile, sometext
thefile.write(sometext)

which generate output to the appropriate file. However, this isn’t generally thought
of as text processing, as here there is no input text to be processed. Examples of
using both print and write can of course be found throughout this book.

Sources of Text
Working with text stored as a string in memory can be easy when the text is not too
large. Operations that search the text can operate over multiple lines very easily and
quickly, and there’s no need to worry about searching for something that might cross

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Text

a buffer boundary. Being able to keep the text in memory as a simple string makes it
very easy to take advantage of the built-in string operations available as methods of
the string object.

File-based transformations deserve special treatment, because there can be substan-
tial overhead related to I/O performance and the amount of data that must actually
be stored in memory. When working with data stored on disk, we often want to
avoid loading entire files into memory, due to the size of the data: loading an 80 MB
file into memory should not be done too casually! When our application needs only
part of the data at a time, working on smaller segments of the data can yield substan-
tial performance improvements, simply because we’ve allowed enough space for our
program to run. If we are careful about buffer management, we can still maintain the
performance advantage of using a small number of relatively large disk read and
write operations by working on large chunks of data at a time. File-related recipes are
found in Chapter 2.

Another interesting source for textual data comes to light when we consider the net-
work. Text is often retrieved from the network using a socket. While we can always
view a socket as a file (using the makefile method of the socket object), the data that
is retrieved over a socket may come in chunks, or we may have to wait for more data
to arrive. The textual data may not consist of all data until the end of the data
stream, so a file object created with makefile may not be entirely appropriate to pass
to text-processing code. When working with text from a network connection, we
often need to read the data from the connection before passing it along for further
processing. If the data is large, it can be handled by saving it to a file as it arrives and
then using that file when performing text-processing operations. More elaborate
solutions can be built when the text processing needs to be started before all the data
is available. Examples of parsers that are useful in such situations may be found in
the htmllib and HTMLParser modules in the standard library.

String Basics
The main tool Python gives us to process text is strings—immutable sequences of
characters. There are actually two kinds of strings: plain strings, which contain 8-bit
(ASCII) characters; and Unicode strings, which contain Unicode characters. We
won’t deal much with Unicode strings here: their functionality is similar to that of
plain strings, except each character takes up 2 (or 4) bytes, so that the number of dif-
ferent characters is in the tens of thousands (or even billions), as opposed to the 256
different characters that make up plain strings. Unicode strings are important if you
must deal with text in many different alphabets, particularly Asian ideographs. Plain
strings are sufficient to deal with English or any of a limited set of non-Asian lan-
guages. For example, all western European alphabets can be encoded in plain strings,
typically using the international standard encoding known as ISO-8859-1 (or ISO-
8859-15, if you need the Euro currency symbol as well).

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 5

In Python, you express a literal string (curiously more often known as a string literal)
as:

'this is a literal string'
"this is another string"

String values can be enclosed in either single or double quotes. The two different
kinds of quotes work the same way, but having both allows you to include one kind
of quotes inside of a string specified with the other kind of quotes, without needing
to escape them with the backslash character:

'isn\'t that grand'
"isn't that grand"

To have a string literal span multiple lines, you can use a backslash as the last charac-
ter on the line, which indicates that the next line is a continuation:

big = "This is a long string\
that spans two lines."

You must embed newlines in the string if you want the string to output on two lines:

big = "This is a long string\n\
that prints on two lines."

Another approach is to enclose the string in a pair of matching triple quotes (either
single or double):

bigger = """
This is an even
bigger string that
spans three lines.
"""

Using triple quotes, you don’t need to use the continuation character, and line
breaks in the string literal are preserved as newline characters in the resulting Python
string object. You can also make a string literal “raw” string by preceding it with an r

or R:

big = r"This is a long string\
with a backslash and a newline in it"

With a raw string, backslash escape sequences are left alone, rather than being inter-
preted. Finally, you can precede a string literal with a u or U to make it a Unicode
string:

hello = u'Hello\u0020World'

Strings are immutable, which means that no matter what operation you do on a
string, you will always produce a new string object, rather than mutating the exist-
ing string. A string is a sequence of characters, which means that you can access a
single character by indexing:

mystr = "my string"
mystr[0] # 'm'
mystr[-2] # 'n'

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Text

You can also access a portion of the string with a slice:

mystr[1:4] # 'y s'
mystr[3:] # 'string'
mystr[-3:] # 'ing'

Slices can be extended, that is, include a third parameter that is known as the stride
or step of the slice:

mystr[:3:-1] # 'gnirt'
mystr[1::2] # 'ysrn'

You can loop on a string’s characters:

for c in mystr:

This binds c to each of the characters in mystr in turn. You can form another
sequence:

list(mystr) # returns ['m','y',' ','s','t','r','i','n','g']

You can concatenate strings by addition:

mystr+'oid' # 'my stringoid'

You can also repeat strings by multiplication:

'xo'*3 # 'xoxoxo'

In general, you can do anything to a string that you can do to any other sequence, as
long as it doesn’t require changing the sequence, since strings are immutable.

String objects have many useful methods. For example, you can test a string’s con-
tents with s.isdigit(), which returns True if s is not empty and all of the characters
in s are digits (otherwise, it returns False). You can produce a new modified string
with a method call such as s.upper(), which returns a new string that is like s, but
with every letter changed into its uppercase equivalent. You can search for a string
inside another with haystack.count('needle'), which returns the number of times
the substring 'needle' appears in the string haystack. When you have a large string
that spans multiple lines, you can split it into a list of single-line strings with
splitlines:

list_of_lines = one_large_string.splitlines()

You can produce the single large string again with join:

one_large_string = '\n'.join(list_of_lines)

The recipes in this chapter show off many methods of the string object. You can find
complete documentation in Python’s Library Reference and Python in a Nutshell.

Strings in Python can also be manipulated with regular expressions, via the re mod-
ule. Regular expressions are a powerful (but complicated) set of tools that you may
already be familiar with from another language (such as Perl), or from the use of
tools such as the vi editor and text-mode commands such as grep. You’ll find a
number of uses of regular expressions in recipes in the second half of this chapter.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.1 Processing a String One Character at a Time | 7

For complete documentation, see the Library Reference and Python in a Nutshell.
J.E.F. Friedl, Mastering Regular Expressions (O’Reilly) is also recommended if you
need to master this subject—Python’s regular expressions are basically the same as
Perl’s, which Friedl covers thoroughly.

Python’s standard module string offers much of the same functionality that is avail-
able from string methods, packaged up as functions instead of methods. The string

module also offers a few additional functions, such as the useful string.maketrans

function that is demonstrated in a few recipes in this chapter; several helpful string
constants (string.digits, for example, is '0123456789') and, in Python 2.4, the new
class Template, for simple yet flexible formatting of strings with embedded variables,
which as you’ll see features in one of this chapter’s recipes. The string-formatting
operator, %, provides a handy way to put strings together and to obtain precisely for-
matted strings from such objects as floating-point numbers. Again, you’ll find reci-
pes in this chapter that show how to use % for your purposes. Python also has lots of
standard and extension modules that perform special processing on strings of many
kinds. This chapter doesn’t cover such specialized resources, but Chapter 12 is, for
example, entirely devoted to the important specialized subject of processing XML.

1.1 Processing a String One Character at a Time
Credit: Luther Blissett

Problem
You want to process a string one character at a time.

Solution
You can build a list whose items are the string’s characters (meaning that the items
are strings, each of length of one—Python doesn’t have a special type for “charac-
ters” as distinct from strings). Just call the built-in list, with the string as its argu-
ment:

thelist = list(thestring)

You may not even need to build the list, since you can loop directly on the string
with a for statement:

for c in thestring:
 do_something_with(c)

or in the for clause of a list comprehension:

results = [do_something_with(c) for c in thestring]

or, with exactly the same effects as this list comprehension, you can call a function
on each character with the map built-in function:

results = map(do_something, thestring)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Text

Discussion
In Python, characters are just strings of length one. You can loop over a string to
access each of its characters, one by one. You can use map for much the same pur-
pose, as long as what you need to do with each character is call a function on it.
Finally, you can call the built-in type list to obtain a list of the length-one sub-
strings of the string (i.e., the string’s characters). If what you want is a set whose ele-
ments are the string’s characters, you can call sets.Set with the string as the
argument (in Python 2.4, you can also call the built-in set in just the same way):

import sets
magic_chars = sets.Set('abracadabra')
poppins_chars = sets.Set('supercalifragilisticexpialidocious')
print ''.join(magic_chars & poppins_chars) # set intersection
acrd

See Also
The Library Reference section on sequences; Perl Cookbook Recipe 1.5.

1.2 Converting Between Characters and
Numeric Codes

Credit: Luther Blissett

Problem
You need to turn a character into its numeric ASCII (ISO) or Unicode code, and vice
versa.

Solution
That’s what the built-in functions ord and chr are for:

>>> print ord('a')
97
>>> print chr(97)
a

The built-in function ord also accepts as its argument a Unicode string of length one,
in which case it returns a Unicode code value, up to 65536. To make a Unicode
string of length one from a numeric Unicode code value, use the built-in function
unichr:

>>> print ord(u'\u2020')
8224
>>> print repr(unichr(8224))
u'\u2020'

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.3 Testing Whether an Object Is String-like | 9

Discussion
It’s a mundane task, to be sure, but it is sometimes useful to turn a character (which
in Python just means a string of length one) into its ASCII or Unicode code, and vice
versa. The built-in functions ord, chr, and unichr cover all the related needs. Note, in
particular, the huge difference between chr(n) and str(n), which beginners some-
times confuse...:

>>> print repr(chr(97))
'a'
>>> print repr(str(97))
'97'

chr takes as its argument a small integer and returns the corresponding single-
character string according to ASCII, while str, called with any integer, returns the
string that is the decimal representation of that integer.

To turn a string into a list of character value codes, use the built-in functions map and
ord together, as follows:

>>> print map(ord, 'ciao')
[99, 105, 97, 111]

To build a string from a list of character codes, use ''.join, map and chr; for example:

>>> print ''.join(map(chr, range(97, 100)))
abc

See Also
Documentation for the built-in functions chr, ord, and unichr in the Library Refer-
ence and Python in a Nutshell.

1.3 Testing Whether an Object Is String-like
Credit: Luther Blissett

Problem
You need to test if an object, typically an argument to a function or method you’re
writing, is a string (or more precisely, whether the object is string-like).

Solution
A simple and fast way to check whether something is a string or Unicode object is to
use the built-ins isinstance and basestring, as follows:

def isAString(anobj):
 return isinstance(anobj, basestring)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Text

Discussion
The first approach to solving this recipe’s problem that comes to many program-
mers’ minds is type-testing:

def isExactlyAString(anobj):
 return type(anobj) is type('')

However, this approach is pretty bad, as it willfully destroys one of Python’s greatest
strengths—smooth, signature-based polymorphism. This kind of test would reject
Unicode objects, instances of user-coded subclasses of str, and instances of any user-
coded type that is meant to be “string-like”.

Using the isinstance built-in function, as recommended in this recipe’s Solution, is
much better. The built-in type basestring exists exactly to enable this approach.
basestring is a common base class for the str and unicode types, and any string-like
type that user code might define should also subclass basestring, just to make sure
that such isinstance testing works as intended. basestring is essentially an “empty”
type, just like object, so no cost is involved in subclassing it.

Unfortunately, the canonical isinstance checking fails to accept such clearly string-
like objects as instances of the UserString class from Python Standard Library mod-
ule UserString, since that class, alas, does not inherit from basestring. If you need to
support such types, you can check directly whether an object behaves like a string—
for example:

def isStringLike(anobj):
 try: anobj + ''
 except: return False
 else: return True

This isStringLike function is slower and more complicated than the isAString func-
tion presented in the “Solution”, but it does accept instances of UserString (and
other string-like types) as well as instances of str and unicode.

The general Python approach to type-checking is known as duck typing: if it walks
like a duck and quacks like a duck, it’s duck-like enough for our purposes. The
isStringLike function in this recipe goes only as far as the quacks-like part, but that
may be enough. If and when you need to check for more string-like features of the
object anobj, it’s easy to test a few more properties by using a richer expression in
the try clause—for example, changing the clause to:

 try: anobj.lower() + anobj + ''

In my experience, however, the simple test shown in the isStringLike function usu-
ally does what I need.

The most Pythonic approach to type validation (or any validation task, really) is just
to try to perform whatever task you need to do, detecting and handling any errors or
exceptions that might result if the situation is somehow invalid—an approach
known as “it’s easier to ask forgiveness than permission” (EAFP). try/except is the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.4 Aligning Strings | 11

key tool in enabling the EAFP style. Sometimes, as in this recipe, you may choose
some simple task, such as concatenation to the empty string, as a stand-in for a much
richer set of properties (such as, all the wealth of operations and methods that string
objects make available).

See Also
Documentation for the built-ins isinstance and basestring in the Library Reference
and Python in a Nutshell.

1.4 Aligning Strings
Credit: Luther Blissett

Problem
You want to align strings: left, right, or center.

Solution
That’s what the ljust, rjust, and center methods of string objects are for. Each
takes a single argument, the width of the string you want as a result, and returns a
copy of the starting string with spaces added on either or both sides:

>>> print '|', 'hej'.ljust(20), '|', 'hej'.rjust(20), '|', 'hej'.center(20), '|'
| hej | hej | hej |

Discussion
Centering, left-justifying, or right-justifying text comes up surprisingly often—for
example, when you want to print a simple report with centered page numbers in a
monospaced font. Because of this, Python string objects supply this functionality
through three of their many methods. In Python 2.3, the padding character is always
a space. In Python 2.4, however, while space-padding is still the default, you may
optionally call any of these methods with a second argument, a single character to be
used for the padding:

>>> print 'hej'.center(20, '+')
++++++++hej+++++++++

See Also
The Library Reference section on string methods; Java Cookbook recipe 3.5.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Text

1.5 Trimming Space from the Ends of a String
Credit: Luther Blissett

Problem
You need to work on a string without regard for any extra leading or trailing spaces a
user may have typed.

Solution
That’s what the lstrip, rstrip, and strip methods of string objects are for. Each
takes no argument and returns a copy of the starting string, shorn of whitespace on
either or both sides:

>>> x = ' hej '
>>> print '|', x.lstrip(), '|', x.rstrip(), '|', x.strip(), '|'
| hej | hej | hej |

Discussion
Just as you may need to add space to either end of a string to align that string left,
right, or center in a field of fixed width (as covered previously in recipe 1.4 “Aligning
Strings”), so may you need to remove all whitespace (blanks, tabs, newlines, etc.)
from either or both ends. Because this need is frequent, Python string objects supply
this functionality through three of their many methods. Optionally, you may call
each of these methods with an argument, a string composed of all the characters you
want to trim from either or both ends instead of trimming whitespace characters:

>>> x = 'xyxxyy hejyx yyx'
>>> print '|'+x.strip('xy')+'|'
| hejyx |

Note that in these cases the leading and trailing spaces have been left in the resulting
string, as have the 'yx' that are followed by spaces: only all the occurrences of 'x'

and 'y' at either end of the string have been removed from the resulting string.

See Also
The Library Reference section on string methods; Recipe 1.4 “Aligning Strings”; Java
Cookbook recipe 3.12.

1.6 Combining Strings
Credit: Luther Blissett

Problem
You have several small strings that you need to combine into one larger string.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.6 Combining Strings | 13

Solution
To join a sequence of small strings into one large string, use the string operator join.
Say that pieces is a list whose items are strings, and you want one big string with all
the items concatenated in order; then, you should code:

largeString = ''.join(pieces)

To put together pieces stored in a few variables, the string-formatting operator % can
often be even handier:

largeString = '%s%s something %s yet more' % (small1, small2, small3)

Discussion
In Python, the + operator concatenates strings and therefore offers seemingly obvi-
ous solutions for putting small strings together into a larger one. For example, when
you have pieces stored in a few variables, it seems quite natural to code something
like:

largeString = small1 + small2 + ' something ' + small3 + ' yet more'

And similarly, when you have a sequence of small strings named pieces, it seems
quite natural to code something like:

largeString = ''
for piece in pieces:
 largeString += piece

Or, equivalently, but more fancifully and compactly:

import operator
largeString = reduce(operator.add, pieces, '')

However, it’s very important to realize that none of these seemingly obvious solu-
tion is good—the approaches shown in the “Solution” are vastly superior.

In Python, string objects are immutable. Therefore, any operation on a string, includ-
ing string concatenation, produces a new string object, rather than modifying an
existing one. Concatenating N strings thus involves building and then immediately
throwing away each of N-1 intermediate results. Performance is therefore vastly bet-
ter for operations that build no intermediate results, but rather produce the desired
end result at once.

Python’s string-formatting operator % is one such operation, particularly suitable
when you have a few pieces (e.g., each bound to a different variable) that you want
to put together, perhaps with some constant text in addition. Performance is not a
major issue for this specific kind of task. However, the % operator also has other
potential advantages, when compared to an expression that uses multiple + opera-
tions on strings. % is more readable, once you get used to it. Also, you don’t have to
call str on pieces that aren’t already strings (e.g., numbers), because the format spec-
ifier %s does so implicitly. Another advantage is that you can use format specifiers

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Text

other than %s, so that, for example, you can control how many significant digits the
string form of a floating-point number should display.

When you have many small string pieces in a sequence, performance can become a
truly important issue. The time needed to execute a loop using + or += (or a fancier
but equivalent approach using the built-in function reduce) grows with the square of
the number of characters you are accumulating, since the time to allocate and fill a
large string is roughly proportional to the length of that string. Fortunately, Python
offers an excellent alternative. The join method of a string object s takes as its only
argument a sequence of strings and produces a string result obtained by concatenat-
ing all items in the sequence, with a copy of s joining each item to its neighbors. For
example, ''.join(pieces) concatenates all the items of pieces in a single gulp, with-
out interposing anything between them, and ', '.join(pieces) concatenates the

What Is ”a Sequence?“
Python does not have a specific type called sequence, but sequence is still an often-used
term in Python. sequence, strictly speaking, means: a container that can be iterated on,
to get a finite number of items, one at a time, and that also supports indexing, slicing,
and being passed to the built-in function len (which gives the number of items in a con-
tainer). Python lists are the “sequences” you’ll meet most often, but there are many
others (strings, unicode objects, tuples, array.arrays,etc.).

Often, one does not need indexing, slicing, and len—the ability to iterate, one item at
a time, suffices. In that case, one should speak of an iterable (or, to focus on the finite
number of items issue, a bounded iterable). Iterables that are not sequences include dic-
tionaries (iteration gives the keys of the dictionary, one at a time in arbitrary order), file
objects (iteration gives the lines of the text file, one at a time), and many more, includ-
ing iterators and generators. Any iterable can be used in a for loop statement and in
many equivalent contexts (the for clause of a list comprehension or Python 2.4 gener-
ator expression, and also many built-ins such as min, max, zip, sum, str.join, etc.).

At http://www.python.org/moin/PythonGlossary, you can find a Python Glossary that
can help you with these and several other terms. However, while the editors of this
cookbook have tried to adhere to the word usage that the glossary describes, you will
still find many places where this book says a sequence or an iterable or even a list,
where, by strict terminology, one should always say a bounded iterable. For example,
at the start of this recipe’s Solution, we say “a sequence of small strings” where, in fact,
any bounded iterable of strings suffices. The problem with using “bounded iterable”
all over the place is that it would make this book read more like a mathematics text-
book than a practical programming book! So, we have deviated from terminological
rigor where readability, and maintaining in the book a variety of “voices”, were better
served by slightly imprecise terminology that is nevertheless entirely clear in context.

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Reversing a String by Words or Characters | 15

items putting a comma and a space between each pair of them. It’s the fastest, neat-
est, and most elegant and readable way to put a large string together.

When the pieces are not all available at the same time, but rather come in sequen-
tially from input or computation, use a list as an intermediate data structure to hold
the pieces (to add items at the end of a list, you can call the append or extend meth-
ods of the list). At the end, when the list of pieces is complete, call ''.join(thelist)
to obtain the big string that’s the concatenation of all pieces. Of all the many handy
tips and tricks I could give you about Python strings, I consider this one by far the
most significant: the most frequent reason some Python programs are too slow is
that they build up big strings with + or +=. So, train yourself never to do that. Use,
instead, the ''.join approach recommented in this recipe.

Python 2.4 makes a heroic attempt to ameliorate the issue, reducing a little the per-
formance penalty due to such erroneous use of +=. While ''.join is still way faster
and in all ways preferable, at least some newbie or careless programmer gets to waste
somewhat fewer machine cycles. Similarly, psyco (a specializing just-in-time [JIT]
Python compiler found at http://psyco.sourceforge.net/), can reduce the += penalty
even further. Nevertheless, ''.join remains the best approach in all cases.

See Also
The Library Reference and Python in a Nutshell sections on string methods, string-
formatting operations, and the operator module.

1.7 Reversing a String by Words or Characters
Credit: Alex Martelli

Problem
You want to reverse the characters or words in a string.

Solution
Strings are immutable, so, to reverse one, we need to make a copy. The simplest
approach for reversing is to take an extended slice with a “step” of -1, so that the slic-
ing proceeds backwards:

revchars = astring[::-1]

To flip words, we need to make a list of words, reverse it, and join it back into a
string with a space as the joiner:

revwords = astring.split() # string -> list of words
revwords.reverse() # reverse the list in place
revwords = ' '.join(revwords) # list of strings -> string

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Text

or, if you prefer terse and compact “one-liners”:

revwords = ' '.join(astring.split()[::-1])

If you need to reverse by words while preserving untouched the intermediate
whitespace, you can split by a regular expression:

import re
revwords = re.split(r'(\s+)', astring) # separators too, since '(...)'
revwords.reverse() # reverse the list in place
revwords = ''.join(revwords) # list of strings -> string

Note that the joiner must be the empty string in this case, because the whitespace
separators are kept in the revwords list (by using re.split with a regular expression
that includes a parenthesized group). Again, you could make a one-liner, if you
wished:

revwords = ''.join(re.split(r'(\s+)', astring)[::-1])

but this is getting too dense and unreadable to be good Python code!

Discussion
In Python 2.4, you may make the by-word one-liners more readable by using the new
built-in function reversed instead of the less readable extended-slicing indicator
[::-1]:

revwords = ' '.join(reversed(astring.split()))
revwords = ''.join(reversed(re.split(r'(\s+)', astring)))

For the by-character case, though, astring[::-1] remains best, even in 2.4, because
to use reversed, you’d have to introduce a call to ''.join as well:

revchars = ''.join(reversed(astring))

The new reversed built-in returns an iterator, suitable for looping on or for passing
to some “accumulator” callable such as ''.join—it does not return a ready-made
string!

See Also
Library Reference and Python in a Nutshell docs on sequence types and slicing, and
(2.4 only) the reversed built-in; Perl Cookbook recipe 1.6.

1.8 Checking Whether a String Contains a Set
of Characters

Credit: Jürgen Hermann, Horst Hansen

Problem
You need to check for the occurrence of any of a set of characters in a string.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 Checking Whether a String Contains a Set of Characters | 17

Solution
The simplest approach is clear, fast, and general (it works for any sequence, not just
strings, and for any container on which you can test for membership, not just sets):

def containsAny(seq, aset):
 """ Check whether sequence seq contains ANY of the items in aset. """
 for c in seq:
 if c in aset: return True
 return False

You can gain a little speed by moving to a higher-level, more sophisticated approach,
based on the itertools standard library module, essentially expressing the same
approach in a different way:

import itertools
def containsAny(seq, aset):
 for item in itertools.ifilter(aset.__contains__, seq):
 return True
 return False

Discussion
Most problems related to sets are best handled by using the set built-in type intro-
duced in Python 2.4 (if you’re using Python 2.3, you can use the equivalent sets.Set
type from the Python Standard Library). However, there are exceptions. Here, for
example, a pure set-based approach would be something like:

def containsAny(seq, aset):
 return bool(set(aset).intersection(seq))

However, with this approach, every item in seq inevitably has to be examined. The
functions in this recipe’s Solution, on the other hand, “short-circuit”: they return as
soon as they know the answer. They must still check every item in seq when the
answer is False—we could never affirm that no item in seq is a member of aset with-
out examining all the items, of course. But when the answer is True, we often learn
about that very soon, namely as soon as we examine one item that is a member of
aset. Whether this matters at all is very data-dependent, of course. It will make no
practical difference when seq is short, or when the answer is typically False, but it
may be extremely important for a very long seq (when the answer can typically be
soon determined to be True).

The first version of containsAny presented in the recipe has the advantage of simplic-
ity and clarity: it expresses the fundamental idea with total transparency. The sec-
ond version may appear to be “clever”, and that is not a complimentary adjective in
the Python world, where simplicity and clarity are core values. However, the second
version is well worth considering, because it shows a higher-level approach, based on
the itertools module of the standard library. Higher-level approaches are most often
preferable to lower-level ones (although the issue is moot in this particular case).
itertools.ifilter takes a predicate and an iterable, and yields the items in that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Text

iterable that satisfy the “predicate”. Here, as the “predicate”, we use aset.__contains_

_, the bound method that is internally called when we code in aset for membership
testing. So, if ifilter yields anything at all, it yields an item of seq that is also a
member of aset, so we can return True as soon as this happens. If we get to the
statement following the for, it must mean the return True never executed, because
no items of seq are members of aset, so we can return False.

If your application needs some function such as containsAny to check whether a
string (or other sequence) contains any members of a set, you may also need such
variants as:

def containsOnly(seq, aset):
 """ Check whether sequence seq contains ONLY items in aset. """
 for c in seq:
 if c not in aset: return False
 return True

containsOnly is the same function as containsAny, but with the logic turned upside-
down. Other apparently similar tasks don’t lend themselves to short-circuiting (they
intrinsically need to examine all items) and so are best tackled by using the built-in
type set (in Python 2.4; in 2.3, you can use sets.Set in the same way):

def containsAll(seq, aset):
 """ Check whether sequence seq contains ALL the items in aset. """
 return not set(aset).difference(seq)

If you’re not accustomed to using the set (or sets.Set) method difference, be aware
of its semantics: for any set a, a.difference(b) (just like a-set(b)) returns the set of
all elements of a that are not in b. For example:

>>> L1 = [1, 2, 3, 3]
>>> L2 = [1, 2, 3, 4]
>>> set(L1).difference(L2)
set([])
>>> set(L2).difference(L1)
set([4])

which hopefully helps explain why:

>>> containsAll(L1, L2)
False
>>> containsAll(L2, L1)
True

What Is “a Predicate?”
A term you can see often in discussions about programming is predicate: it just means
a function (or other callable object) that returns True or False as its result. A predicate
is said to be satisfied when it returns True.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 Checking Whether a String Contains a Set of Characters | 19

(In other words, don’t confuse difference with another method of set, symmetric_
difference, which returns the set of all items that are in either argument and not in
the other.)

When you’re dealing specifically with (plain, not Unicode) strings for both seq and
aset, you may not need the full generality of the functions presented in this recipe,
and may want to try the more specialized approach explained in recipe 1.10 “Filter-
ing a String for a Set of Characters” based on strings’ method translate and the
string.maketrans function from the Python Standard Library. For example:

import string
notrans = string.maketrans('', '') # identity "translation"
def containsAny(astr, strset):
 return len(strset) != len(strset.translate(notrans, astr))
def containsAll(astr, strset):
 return not strset.translate(notrans, astr)

This somewhat tricky approach relies on strset.translate(notrans, astr) being the
subsequence of strset that is made of characters not in astr. When that subse-
quence has the same length as strset, no characters have been removed by
strset.translate, therefore no characters of strset are in astr. Conversely, when
the subsequence is empty, all characters have been removed, so all characters of
strset are in astr. The translate method keeps coming up naturally when one
wants to treat strings as sets of characters, because it’s speedy as well as handy and
flexible; see recipe 1.10 “Filtering a String for a Set of Characters” for more details.

These two sets of approaches to the recipe’s tasks have very different levels of gener-
ality. The earlier approaches are very general: not at all limited to string processing,
they make rather minimal demands on the objects you apply them to. The approach
based on the translate method, on the other hand, works only when both astr and
strset are strings, or very closely mimic plain strings’ functionality. Not even Uni-
code strings suffice, because the translate method of Unicode strings has a signa-
ture that is different from that of plain strings—a single argument (a dict mapping
code numbers to Unicode strings or None) instead of two (both strings).

See Also
Recipe 1.10 “Filtering a String for a Set of Characters”; documentation for the
translate method of strings and Unicode objects, and maketrans function in the
string module, in the Library Reference and Python in a Nutshell; ditto for documen-
tation of built-in set (Python 2.4 only), modules sets and itertools, and the
special method __contains__.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Text

1.9 Simplifying Usage of Strings’ translate
Method

Credit: Chris Perkins, Raymond Hettinger

Problem
You often want to use the fast code in strings’ translate method, but find it hard to
remember in detail how that method and the function string.maketrans work, so
you want a handy facade to simplify their use in typical cases.

Solution
The translate method of strings is quite powerful and flexible, as detailed in recipe
1.10 “Filtering a String for a Set of Characters.” However, exactly because of that
power and flexibility, it may be a nice idea to front it with a “facade” that simplifies
its typical use. A little factory function, returning a closure, can do wonders for this
kind of task:

import string
def translator(frm='', to='', delete='', keep=None):
 if len(to) == 1:
 to = to * len(frm)
 trans = string.maketrans(frm, to)
 if keep is not None:
 allchars = string.maketrans('', '')
 delete = allchars.translate(allchars, keep.translate(allchars, delete))
 def translate(s):
 return s.translate(trans, delete)
 return translate

Discussion
I often find myself wanting to use strings’ translate method for any one of a few
purposes, but each time I have to stop and think about the details (see recipe 1.10
“Filtering a String for a Set of Characters” for more information about those details).
So, I wrote myself a class (later remade into the factory closure presented in this rec-
ipe’s Solution) to encapsulate various possibilities behind a simpler-to-use facade.
Now, when I want a function that keeps only characters from a given set, I can easily
build and use that function:

>>> digits_only = translator(keep=string.digits)
>>> digits_only('Chris Perkins : 224-7992')
'2247992'

It’s similarly simple when I want to remove a set of characters:

>>> no_digits = translator(delete=string.digits)
>>> no_digits('Chris Perkins : 224-7992')
'Chris Perkins : -'

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.9 Simplifying Usage of Strings’ translate Method | 21

and when I want to replace a set of characters with a single character:

>>> digits_to_hash = translator(from=string.digits, to='#')
>>> digits_to_hash('Chris Perkins : 224-7992')
'Chris Perkins : ###-####'

While the latter may appear to be a bit of a special case, it is a task that keeps com-
ing up for me every once in a while.

I had to make one arbitrary design decision in this recipe—namely, I decided that the
delete parameter “trumps” the keep parameter if they overlap:

>>> trans = translator(delete='abcd', keep='cdef')
>>> trans('abcdefg')
'ef'

For your applications it might be preferable to ignore delete if keep is specified, or,
perhaps better, to raise an exception if they are both specified, since it may not make
much sense to let them both be given in the same call to translator, anyway. Also:
as noted in recipe 1.8 “Checking Whether a String Contains a Set of Characters” and
recipe 1.10 “Filtering a String for a Set of Characters,” the code in this recipe works
only for normal strings, not for Unicode strings. See recipe 1.10 “Filtering a String for
a Set of Characters” to learn how to code this kind of functionality for Unicode
strings, whose translate method is different from that of plain (i.e., byte) strings.

Closures
A closure is nothing terribly complicated: just an “inner” function that refers to names
(variables) that are local to an “outer” function containing it. Canonical toy-level
example:

def make_adder(addend):
 def adder(augend): return augend+addend
 return adder

Executing p = make_adder(23) makes a closure of inner function adder internally refer-
ring to a name addend that is bound to the value 23. Then, q = make_adder(42) makes
another closure, for which, internally, name addend is instead bound to the value 42.
Making q in no way interferes with p, they can happily and independently coexist. So
we can now execute, say, print p(100), q(100) and enjoy the output 123 142.

In practice, you may often see make_adder referred to as a closure rather than by the
pedantic, ponderous periphrasis “a function that returns a closure”—fortunately, con-
text often clarifies the situation. Calling make_adder a factory (or factory function) is
both accurate and concise; you may also say it’s a closure factory to specify it builds
and returns closures, rather than, say, classes or class instances.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Text

See Also
Recipe 1.10 “Filtering a String for a Set of Characters” for a direct equivalent of this
recipe’s translator(keep=...), more information on the translate method, and an
equivalent approach for Unicode strings; documentation for strings’ translate

method, and for the maketrans function in the string module, in the Library Refer-
ence and Python in a Nutshell.

1.10 Filtering a String for a Set of Characters
Credit: Jürgen Hermann, Nick Perkins, Peter Cogolo

Problem
Given a set of characters to keep, you need to build a filtering function that, applied
to any string s, returns a copy of s that contains only characters in the set.

Solution
The translate method of string objects is fast and handy for all tasks of this ilk.
However, to call translate effectively to solve this recipe’s task, we must do some
advance preparation. The first argument to translate is a translation table: in this
recipe, we do not want to do any translation, so we must prepare a first argument
that specifies “no translation”. The second argument to translate specifies which
characters we want to delete: since the task here says that we’re given, instead, a set
of characters to keep (i.e., to not delete), we must prepare a second argument that
gives the set complement—deleting all characters we must not keep. A closure is the
best way to do this advance preparation just once, obtaining a fast filtering function
tailored to our exact needs:

import string
Make a reusable string of all characters, which does double duty
as a translation table specifying "no translation whatsoever"
allchars = string.maketrans('', '')
def makefilter(keep):
 """ Return a function that takes a string and returns a partial copy
 of that string consisting of only the characters in 'keep'.
 Note that `keep' must be a plain string.
 """
 # Make a string of all characters that are not in 'keep': the "set
 # complement" of keep, meaning the string of characters we must delete

delchars = allchars.translate(allchars, keep)
 # Make and return the desired filtering function (as a closure)
 def thefilter(s):
 return s.translate(allchars, delchars)
 return thefilter
if __name__ == '__main__':
 just_vowels = makefilter('aeiouy')
 print just_vowels('four score and seven years ago')

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.10 Filtering a String for a Set of Characters | 23

emits: ouoeaeeyeaao
 print just_vowels('tiger, tiger burning bright')
emits: ieieuii

Discussion
The key to understanding this recipe lies in the definitions of the maketrans function
in the string module of the Python Standard Library and in the translate method of
string objects. translate returns a copy of the string you call it on, replacing each
character in it with the corresponding character in the translation table passed in as
the first argument and deleting the characters specified in the second argument.
maketrans is a utility function to create translation tables. (A translation table is a
string t of exactly 256 characters: when you pass t as the first argument of a
translate method, each character c of the string on which you call the method is
translated in the resulting string into the character t[ord(c)].)

In this recipe, efficiency is maximized by splitting the filtering task into preparation
and execution phases. The string of all characters is clearly reusable, so we build it
once and for all as a global variable when this module is imported. That way, we
ensure that each filtering function uses the same string-of-all-characters object, not
wasting any memory. The string of characters to delete, which we need to pass as the
second argument to the translate method, depends on the set of characters to keep,
because it must be built as the “set complement” of the latter: we must tell translate
to delete every character that we do not want to keep. So, we build the delete-these-
characters string in the makefilter factory function. This building is done quite rap-
idly by using the translate method to delete the “characters to keep” from the string
of all characters. The translate method is very fast, as are the construction and exe-
cution of these useful little resulting functions. The test code that executes when this
recipe runs as a main script shows how to build a filtering function by calling
makefilter, bind a name to the filtering function (by simply assigning the result of
calling makefilter to a name), then call the filtering function on some strings and
print the results.

Incidentally, calling a filtering function with allchars as the argument puts the set of
characters being kept into a canonic string form, alphabetically sorted and without
duplicates. You can use this idea to code a very simple function to return the canonic
form of any set of characters presented as an arbitrary string:

def canonicform(s):
 """ Given a string s, return s's characters as a canonic-form string:
 alphabetized and without duplicates. """
 return makefilter(s)(allchars)

The Solution uses a def statement to make the nested function (closure) it returns,
because def is the most normal, general, and clear way to make functions. If you
prefer, you could use lambda instead, changing the def and return statements in func-
tion makefilter into just one return lambda statement:

 return lambda s: s.translate(allchars, delchars)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Text

Most Pythonistas, but not all, consider using def clearer and more readable than
using lambda.

Since this recipe deals with strings seen as sets of characters, you could alternatively
use the sets.Set type (or, in Python 2.4, the new built-in set type) to perform the
same tasks. Thanks to the translate method’s power and speed, it’s often faster to
work directly on strings, rather than go through sets, for tasks of this ilk. However,
just as noted in recipe 1.8 “Checking Whether a String Contains a Set of Charac-
ters,” the functions in this recipe only work for normal strings, not for Unicode
strings.

To solve this recipe’s task for Unicode strings, we must do some very different prepa-
ration. A Unicode string’s translate method takes only one argument: a mapping or
sequence, which is indexed with the code number of each character in the string.
Characters whose codes are not keys in the mapping (or indices in the sequence) are
just copied over to the output string. Otherwise, the value corresponding to each
character’s code must be either a Unicode string (which is substituted for the charac-
ter) or None (in which case the character is deleted). A very nice and powerful
arrangement, but unfortunately not one that’s identical to the way plain strings
work, so we must recode.

Normally, we use either a dict or a list as the argument to a Unicode string’s
translate method to translate some characters and/or delete some. But for the spe-
cific task of this recipe (i.e., keep just some characters, delete all others), we might
need an inordinately large dict or string, just mapping all other characters to None.
It’s better to code, instead, a little class that appropriately implements a __getitem__

method (the special method that gets called in indexing operations). Once we’re
going to the (slight) trouble of coding a little class, we might as well make its
instances callable and have makefilter be just a synonym for the class itself:

import sets
class Keeper(object):
 def __init__(self, keep):
 self.keep = sets.Set(map(ord, keep))
 def __getitem__(self, n):
 if n not in self.keep:
 return None
 return unichr(n)
 def __call__(self, s):
 return unicode(s).translate(self)
makefilter = Keeper
if __name__ == '__main__':
 just_vowels = makefilter('aeiouy')
 print just_vowels(u'four score and seven years ago')
emits: ouoeaeeyeaao
 print just_vowels(u'tiger, tiger burning bright')
emits: ieieuii

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.11 Checking Whether a String Is Text or Binary | 25

We might name the class itself makefilter, but, by convention, one normally names
classes with an uppercase initial; there is essentially no cost in following that conven-
tion here, too, so we did.

See Also
Recipe 1.8 “Checking Whether a String Contains a Set of Characters”; documenta-
tion for the translate method of strings and Unicode objects, and maketrans func-
tion in the string module, in the Library Reference and Python in a Nutshell.

1.11 Checking Whether a String Is Text or Binary
Credit: Andrew Dalke

Problem
Python can use a plain string to hold either text or arbitrary bytes, and you need to
determine (heuristically, of course: there can be no precise algorithm for this) which
of the two cases holds for a certain string.

Solution
We can use the same heuristic criteria as Perl does, deeming a string binary if it con-
tains any nulls or if more than 30% of its characters have the high bit set (i.e., codes
greater than 126) or are strange control codes. We have to code this ourselves, but
this also means we easily get to tweak the heuristics for special application needs:

from __future__ import division # ensure / does NOT truncate
import string
text_characters = "".join(map(chr, range(32, 127))) + "\n\r\t\b"
_null_trans = string.maketrans("", "")
def istext(s, text_characters=text_characters, threshold=0.30):
 # if s contains any null, it's not text:
 if "\0" in s:
 return False
 # an “empty” string is "text" (arbitrary but reasonable choice):
 if not s:
 return True
 # Get the substring of s made up of non-text characters
 t = s.translate(_null_trans, text_characters)
 # s is 'text' if less than 30% of its characters are non-text ones:
 return len(t)/len(s) <= threshold

Discussion
You can easily do minor customizations to the heuristics used by function istext by
passing in specific values for the threshold, which defaults to 0.30 (30%), or for the
string of those characters that are to be deemed “text” (which defaults to normal
ASCII characters plus the four “normal” control characters, meaning ones that are
often found in text). For example, if you expected Italian text encoded as ISO-8859-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Text

1, you could add the accented letters used in Italian, "àèéìòù", to the text_

characters argument.

Often, what you need to check as being either binary or text is not a string, but a file.
Again, we can use the same heuristics as Perl, checking just the first block of the file
with the istext function shown in this recipe’s Solution:

def istextfile(filename, blocksize=512, **kwds):
 return istext(open(filename).read(blocksize), **kwds)

Note that, by default, the expression len(t)/len(s) used in the body of function
istext would truncate the result to 0, since it is a division between integer numbers.
In some future version (probably Python 3.0, a few years away), Python will change
the meaning of the / operator so that it performs division without truncation—if you
really do want truncation, you should use the truncating-division operator, //.

However, Python has not yet changed the semantics of division, keeping the old one
by default in order to ensure backwards compatibility. It’s important that the mil-
lions of lines of code of Python programs and modules that already exist keep run-
ning smoothly under all new 2.x versions of Python—only upon a change of major
language version number, no more often than every decade or so, is Python allowed
to change in ways that aren’t backwards-compatible.

Since, in the small module containing this recipe’s Solution, it’s handy for us to get
the division behavior that is scheduled for introduction in some future release, we
start our module with the statement:

from __future__ import division

This statement doesn’t affect the rest of the program, only the specific module that
starts with this statement; throughout this module, / performs “true division” (with-
out truncation). As of Python 2.3 and 2.4, division is the only thing you may want
to import from __future__. Other features that used to be scheduled for the future,
nested_scopes and generators, are now part of the language and cannot be turned
off—it’s innocuous to import them, but it makes sense to do so only if your pro-
gram also needs to run under some older version of Python.

See Also
Recipe 1.10 “Filtering a String for a Set of Characters” for more details about func-
tion maketrans and string method translate; Language Reference for details about
true versus truncating division.

1.12 Controlling Case
Credit: Luther Blissett

Problem
You need to convert a string from uppercase to lowercase, or vice versa.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.12 Controlling Case | 27

Solution
That’s what the upper and lower methods of string objects are for. Each takes no
arguments and returns a copy of the string in which each letter has been changed to
upper- or lowercase, respectively.

big = little.upper()
little = big.lower()

Characters that are not letters are copied unchanged.

s.capitalize is similar to s[:1].upper()+s[1:].lower(): the first character is
changed to uppercase, and all others are changed to lowercase. s.title is again simi-
lar, but it capitalizes the first letter of each word (where a “word” is a sequence of let-
ters) and uses lowercase for all other letters:

>>> print 'one tWo thrEe'.capitalize()
One two three
>>> print 'one tWo thrEe'.title()
One Two Three

Discussion
Case manipulation of strings is a very frequent need. Because of this, several string
methods let you produce case-altered copies of strings. Moreover, you can also check
whether a string object is already in a given case form, with the methods isupper,
islower, and istitle, which all return True if the string is not empty, contains at
least one letter, and already meets the uppercase, lowercase, or titlecase constraints.
There is no analogous iscapitalized method, and coding it is not trivial, if we want
behavior that’s strictly similar to strings’ is... methods. Those methods all return
False for an “empty” string, and the three case-checking ones also return False for
strings that, while not empty, contain no letters at all.

The simplest and clearest way to code iscapitalized is clearly:

def iscapitalized(s):
 return s == s.capitalize()

However, this version deviates from the boundary-case semantics of the analogous
is... methods, since it also returns True for strings that are empty or contain no let-
ters. Here’s a stricter one:

import string
notrans = string.maketrans('', '') # identity "translation"
def containsAny(str, strset):
 return len(strset) != len(strset.translate(notrans, str))
def iscapitalized(s):
 return s == s.capitalize() and containsAny(s, string.letters)

Here, we use the function shown in recipe 1.8 “Checking Whether a String Contains
a Set of Characters” to ensure we return False if s is empty or contains no letters. As
noted in recipe 1.8 “Checking Whether a String Contains a Set of Characters,” this
means that this specific version works only for plain strings, not for Unicode ones.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Text

See Also
Library Reference and Python in a Nutshell docs on string methods; Perl Cookbook
recipe 1.9; recipe 1.8 “Checking Whether a String Contains a Set of Characters.”

1.13 Accessing Substrings
Credit: Alex Martelli

Problem
You want to access portions of a string. For example, you’ve read a fixed-width
record and want to extract the record’s fields.

Solution
Slicing is great, but it only does one field at a time:

afield = theline[3:8]

If you need to think in terms of field lengths, struct.unpack may be appropriate. For
example:

import struct
Get a 5-byte string, skip 3, get two 8-byte strings, then all the rest:
baseformat = "5s 3x 8s 8s"
by how many bytes does theline exceed the length implied by this
base-format (24 bytes in this case, but struct.calcsize is general)
numremain = len(theline) - struct.calcsize(baseformat)
complete the format with the appropriate 's' field, then unpack
format = "%s %ds" % (baseformat, numremain)
l, s1, s2, t = struct.unpack(format, theline)

If you want to skip rather than get "all the rest", then just unpack the initial part
of theline with the right length:

l, s1, s2 = struct.unpack(baseformat, theline[:struct.calcsize(baseformat)])

If you need to split at five-byte boundaries, you can easily code a list comprehension
(LC) of slices:

fivers = [theline[k:k+5] for k in xrange(0, len(theline), 5)]

Chopping a string into individual characters is of course easier:

chars = list(theline)

If you prefer to think of your data as being cut up at specific columns, slicing with
LCs is generally handier:

cuts = [8, 14, 20, 26, 30]
pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts+[None])]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.13 Accessing Substrings | 29

The call to zip in this LC returns a list of pairs of the form (cuts[k], cuts[k+1]),
except that the first pair is (0, cuts[0]), and the last one is (cuts[len(cuts)-1],

None). In other words, each pair gives the right (i, j) for slicing between each cut
and the next, except that the first one is for the slice before the first cut, and the last
one is for the slice from the last cut to the end of the string. The rest of the LC just
uses these pairs to cut up the appropriate slices of theline.

Discussion
This recipe was inspired by recipe 1.1 in the Perl Cookbook. Python’s slicing takes
the place of Perl’s substr. Perl’s built-in unpack and Python’s struct.unpack are simi-
lar. Perl’s is slightly richer, since it accepts a field length of * for the last field to mean
all the rest. In Python, we have to compute and insert the exact length for either
extraction or skipping. This isn’t a major issue because such extraction tasks will
usually be encapsulated into small functions. Memoizing, also known as automatic
caching, may help with performance if the function is called repeatedly, since it
allows you to avoid redoing the preparation of the format for the struct unpacking.
See recipe 18.5 “Memoizing (Caching) the Return Values of Functions” for details
about memoizing.

In a purely Python context, the point of this recipe is to remind you that
struct.unpack is often viable, and sometimes preferable, as an alternative to string
slicing (not quite as often as unpack versus substr in Perl, given the lack of a *-valued
field length, but often enough to be worth keeping in mind).

Each of these snippets is, of course, best encapsulated in a function. Among other
advantages, encapsulation ensures we don’t have to work out the computation of the
last field’s length on each and every use. This function is the equivalent of the first
snippet using struct.unpack in the “Solution”:

def fields(baseformat, theline, lastfield=False):
 # by how many bytes does theline exceed the length implied by
 # base-format (struct.calcsize computes exactly that length)
 numremain = len(theline)-struct.calcsize(baseformat)
 # complete the format with the appropriate 's' or 'x' field, then unpack
 format = "%s %d%s" % (baseformat, numremain, lastfield and "s" or "x")
 return struct.unpack(format, theline)

A design decision worth noticing (and, perhaps, worth criticizing) is that of having a
lastfield=False optional parameter. This reflects the observation that, while we
often want to skip the last, unknown-length subfield, sometimes we want to retain it
instead. The use of lastfield in the expression lastfield and s or x (equivalent to
C’s ternary operator lastfield?"s":"c") saves an if/else, but it’s unclear whether
the saving is worth the obscurity. See recipe 18.9 “Simulating the Ternary Operator
in Python” for more about simulating ternary operators in Python.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Text

If function fields is called in a loop, memoizing (caching) with a key that is the tuple
(baseformat, len(theline), lastfield) may offer faster performance. Here’s a ver-
sion of fields with memoizing:

def fields(baseformat, theline, lastfield=False, _cache={ }):
 # build the key and try getting the cached format string
 key = baseformat, len(theline), lastfield
 format = _cache.get(key)
 if format is None:
 # no format string was cached, build and cache it
 numremain = len(theline)-struct.calcsize(baseformat)
 _cache[key] = format = "%s %d%s" % (
 baseformat, numremain, lastfield and "s" or "x")
 return struct.unpack(format, theline)

The idea behind this memoizing is to perform the somewhat costly preparation of
format only once for each set of arguments requiring that preparation, thereafter
storing it in the _cache dictionary. Of course, like all optimizations, memoizing needs
to be validated by measuring performance to check that each given optimization
does actually speed things up. In this case, I measure an increase in speed of approxi-
mately 30% to 40% for the memoized version, meaning that the optimization is
probably not worth the bother unless the function is part of a performance bottle-
neck for your program.

The function equivalent of the next LC snippet in the solution is:

def split_by(theline, n, lastfield=False):
 # cut up all the needed pieces
 pieces = [theline[k:k+n] for k in xrange(0, len(theline), n)]
 # drop the last piece if too short and not required
 if not lastfield and len(pieces[-1]) < n:
 pieces.pop()
 return pieces

And for the last snippet:

def split_at(theline, cuts, lastfield=False):
 # cut up all the needed pieces
 pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts+[None])]
 # drop the last piece if not required
 if not lastfield:
 pieces.pop()
 return pieces

In both of these cases, a list comprehension doing slicing turns out to be slightly
preferable to the use of struct.unpack.

A completely different approach is to use generators, such as:

def split_at(the_line, cuts, lastfield=False):
 last = 0
 for cut in cuts:
 yield the_line[last:cut]
 last = cut
 if lastfield:
 yield the_line[last:]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.14 Changing the Indentation of a Multiline String | 31

def split_by(the_line, n, lastfield=False):
 return split_at(the_line, xrange(n, len(the_line), n), lastfield)

Generator-based approaches are particularly appropriate when all you need to do on
the sequence of resulting fields is loop over it, either explicitly, or implicitly by call-
ing on it some “accumulator” callable such as ''.join. If you do need to materialize
a list of the fields, and what you have available is a generator instead, you only need
to call the built-in list on the generator, as in:

list_of_fields = list(split_by(the_line, 5))

See Also
Recipe 18.9 “Simulating the Ternary Operator in Python” and recipe 18.5 “Memoiz-
ing (Caching) the Return Values of Functions”; Perl Cookbook recipe 1.1.

1.14 Changing the Indentation
of a Multiline String

Credit: Tom Good

Problem
You have a string made up of multiple lines, and you need to build another string
from it, adding or removing leading spaces on each line so that the indentation of
each line is some absolute number of spaces.

Solution
The methods of string objects are quite handy, and let us write a simple function to
perform this task:

def reindent(s, numSpaces):
 leading_space = numSpaces * ' '
 lines = [leading_space + line.strip()
 for line in s.splitlines()]
 return '\n'.join(lines)

Discussion
When working with text, it may be necessary to change the indentation level of a
block. This recipe’s code adds leading spaces to or removes them from each line of a
multiline string so that the indentation level of each line matches some absolute
number of spaces. For example:

>>> x = """ line one
... line two
... and line three
... """
>>> print x
 line one

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Text

 line two
 and line three
>>> print reindent(x, 4)
 line one
 line two
 and line three

Even if the lines in s are initially indented differently, this recipe makes their indenta-
tion homogeneous, which is sometimes what we want, and sometimes not. A fre-
quent need is to adjust the amount of leading spaces in each line, so that the relative
indentation of each line in the block is preserved. This is not difficult for either posi-
tive or negative values of the adjustment. However, negative values need a check to
ensure that no nonspace characters are snipped from the start of the lines. Thus, we
may as well split the functionality into two functions to perform the transforma-
tions, plus one to measure the number of leading spaces of each line and return the
result as a list:

def addSpaces(s, numAdd):
 white = " "*numAdd
 return white + white.join(s.splitlines(True))
def numSpaces(s):
 return [len(line)-len(line.lstrip()) for line in s.splitlines()]
def delSpaces(s, numDel):
 if numDel > min(numSpaces(s)):
 raise ValueError, "removing more spaces than there are!"
 return '\n'.join([line[numDel:] for line in s.splitlines()])

All of these functions rely on the string method splitlines, which is similar to a
split on '\n'. splitlines has the extra ability to leave the trailing newline on each
line (when you call it with True as its argument). Sometimes this turns out to be
handy: addSpaces could not be quite as short and sweet without this ability of the
splitlines string method.

Here’s how we can combine these functions to build another function to delete just
enough leading spaces from each line to ensure that the least-indented line of the
block becomes flush left, while preserving the relative indentation of the lines:

def unIndentBlock(s):
 return delSpaces(s, min(numSpaces(s)))

See Also
Library Reference and Python in a Nutshell docs on sequence types.

1.15 Expanding and Compressing Tabs
Credit: Alex Martelli, David Ascher

Problem
You want to convert tabs in a string to the appropriate number of spaces, or vice
versa.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.15 Expanding and Compressing Tabs | 33

Solution
Changing tabs to the appropriate number of spaces is a reasonably frequent task,
easily accomplished with Python strings’ expandtabs method. Because strings are
immutable, the method returns a new string object, a modified copy of the original
one. However, it’s easy to rebind a string variable name from the original to the mod-
ified-copy value:

mystring = mystring.expandtabs()

This doesn’t change the string object to which mystring originally referred, but it
does rebind the name mystring to a newly created string object, a modified copy of
mystring in which tabs are expanded into runs of spaces. expandtabs, by default, uses
a tab length of 8; you can pass expandtabs an integer argument to use as the tab
length.

Changing spaces into tabs is a rare and peculiar need. Compression, if that’s what
you’re after, is far better performed in other ways, so Python doesn’t offer a built-in
way to “unexpand” spaces into tabs. We can, of course, write our own function for
the purpose. String processing tends to be fastest in a split/process/rejoin approach,
rather than with repeated overall string transformations:

def unexpand(astring, tablen=8):
 import re
 # split into alternating space and non-space sequences
 pieces = re.split(r'(+)', astring.expandtabs(tablen))
 # keep track of the total length of the string so far
 lensofar = 0
 for i, piece in enumerate(pieces):
 thislen = len(piece)
 lensofar += thislen
 if piece.isspace():
 # change each space sequences into tabs+spaces
 numblanks = lensofar % tablen
 numtabs = (thislen-numblanks+tablen-1)/tablen
 pieces[i] = '\t'*numtabs + ' '*numblanks
 return ''.join(pieces)

Function unexpand, as written in this example, works only for a single-line
string; to deal with a multi-line string, use ''.join([unexpand(s) for s in

astring.splitlines(True)]).

Discussion
While regular expressions are never indispensable for the purpose of manipulating
strings in Python, they are occasionally quite handy. Function unexpand, as pre-
sented in the recipe, for example, takes advantage of one extra feature of re.split

with respect to string’s split method: when the regular expression contains a
(parenthesized) group, re.split returns a list where the split pieces are interleaved
with the “splitter” pieces. So, here, we get alternate runs of nonblanks and blanks as

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Text

items of list pieces; the for loop keeps track of the length of string it has seen so far,
and changes pieces that are made of blanks to as many tabs as possible, plus as many
blanks are needed to maintain the overall length.

Some programming tasks that could still be described as expanding tabs are unfortu-
nately not quite as easy as just calling the expandtabs method. A category that does
happen with some regularity is to fix Python source files, which use a mix of tabs and
spaces for indentation (a very bad idea), so that they instead use spaces only (which
is the best approach). This could entail extra complications, for example, when you
need to guess the tab length (and want to end up with the standard four spaces per
indentation level, which is strongly advisable). It can also happen when you need to
preserve tabs that are inside strings, rather than tabs being used for indentation
(because somebody erroneously used actual tabs, rather than '\t', to indicate tabs in
strings), or even because you’re asked to treat docstrings differently from other
strings. Some cases are not too bad—for example, when you want to expand tabs
that occur only within runs of whitespace at the start of each line, leaving any other
tab alone. A little function using a regular expression suffices:

def expand_at_linestart(P, tablen=8):
 import re
 def exp(mo):
 return mo.group().expandtabs(tablen)
 return ''.join([re.sub(r'^\s+', exp, s) for s in P.splitlines(True)])

This function expand_at_linestart exploits the re.sub function, which looks for a
regular expression in a string and, each time it gets a match, calls a function, passing
the match object as the argument, to obtain the string to substitute in place of the
match. For convenience, expand_at_linestart is coded to deal with a multiline string
argument P, performing the list comprehension over the results of the splitlines

call, and the '\n'.join of the whole. Of course, this convenience does not stop the
function from being able to deal with a single-line P.

If your specifications regarding which tabs are to be expanded are even more com-
plex, such as needing to deal differently with tabs depending on whether they’re
inside or outside of strings, and on whether or not strings are docstrings, at the very
least, you need to perform a tokenization. In addition, you may also have to perform
a full parse of the source code you’re dealing with, rather than using simple string or
regular-expression operations. If this is the case, you can expect a substantial amount
of work. Some beginning pointers to help you get started may be found in
Chapter 16.

If you ever find yourself sweating out this kind of task, you will no doubt get excel-
lent motivation in the future for following the normal and recommended Python
style in the source code you write or edit: only spaces, four per indentation level, no
tabs, and always '\t', never an actual tab character, to include a tab in a string lit-
eral. Your favorite editor can no doubt be told to enforce all of these conventions
whenever a Python source file is saved; the editor that comes with IDLE (the free

www.allitebooks.com

http://www.allitebooks.org

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.16 Interpolating Variables in a String | 35

integrated development environment that comes with Python), for example, sup-
ports these conventions. It is much easier to arrange your editor so that the problem
never arises, rather than striving to fix it after the fact!

See Also
Documentation for the expandtabs method of strings in the “Sequence Types” sec-
tion of the Library Reference; Perl Cookbook recipe 1.7; Library Reference and
Python in a Nutshell documentation of module re.

1.16 Interpolating Variables in a String
Credit: Scott David Daniels

Problem
You need a simple way to get a copy of a string where specially marked substrings
are replaced with the results of looking up the substrings in a dictionary.

Solution
Here is a solution that works in Python 2.3 as well as in 2.4:

def expand(format, d, marker='"', safe=False):
 if safe:
 def lookup(w): return d.get(w, w.join(marker*2))
 else:
 def lookup(w): return d[w]
 parts = format.split(marker)
 parts[1::2] = map(lookup, parts[1::2])
 return ''.join(parts)
if __name__ == '__main__':
 print expand('just "a" test', {'a': 'one'})
emits: just one test

When the parameter safe is False, the default, every marked substring must be
found in dictionary d, otherwise expand terminates with a KeyError exception. When
parameter safe is explicitly passed as True, marked substrings that are not found in
the dictionary are just left intact in the output string.

Discussion
The code in the body of the expand function has some points of interest. It defines
one of two different nested functions (with the name of lookup either way), depend-
ing on whether the expansion is required to be safe. Safe means no KeyError excep-
tion gets raised for marked strings not found in the dictionary. If not required to be
safe (the default), lookup just indexes into dictionary d and raises an error if the sub-
string is not found. But, if lookup is required to be “safe”, it uses d’s method get and
supplies as the default the substring being looked up, with a marker on either side. In

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 1: Text

this way, by passing safe as True, you may choose to have unknown formatting
markers come right through to the output rather than raising exceptions.
marker+w+marker would be an obvious alternative to the chosen w.join(marker*2),
but I’ve chosen the latter exactly to display a non-obvious but interesting way to con-
struct such a quoted string.

With either version of lookup, expand operates according to the split/modify/join
idiom that is so important for Python string processing. The modify part, in expand’s
case, makes use of the possibility of accessing and modifying a list’s slice with a
“step” or “stride”. Specifically, expand accesses and rebinds all of those items of parts
that lie at an odd index, because those items are exactly the ones that were enclosed
between a pair of markers in the original format string. Therefore, they are the
marked substrings that may be looked up in the dictionary.

The syntax of format strings accepted by this recipe’s function expand is more flexi-
ble than the $-based syntax of string.Template. You can specify a different marker

when you want your format string to contain double quotes, for example. There is no
constraint for each specially marked substring to be an identifier, so you can easily
interpolate Python expressions (with a d whose __getitem__ performs an eval) or
any other kind of placeholder. Moreover, you can easily get slightly different, useful
effects. For example:

print expand('just "a" ""little"" test', {'a' : 'one', '' : '"'})

emits just one "little" test. Advanced users can customize Python 2.4’s
string.Template class, by inheritance, to match all of these capabilities, and more,
but this recipe’s little expand function is still simpler to use in some flexible ways.

See Also
Library Reference docs for string.Template (Python 2.4, only), the section on
sequence types (for string methods split and join, and for slicing operations), and
the section on dictionaries (for indexing and the get method). For more information
on Python 2.4’s string.Template class, see recipe 1.17 “Interpolating Variables in a
String in Python 2.4.”

1.17 Interpolating Variables in a String
in Python 2.4

Credit: John Nielsen, Lawrence Oluyede, Nick Coghlan

Problem
Using Python 2.4, you need a simple way to get a copy of a string where specially
marked identifiers are replaced with the results of looking up the identifiers in a
dictionary.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.17 Interpolating Variables in a String in Python 2.4 | 37

Solution
Python 2.4 offers the new string.Template class for this purpose. Here is a snippet of
code showing how to use that class:

import string
make a template from a string where some identifiers are marked with $
new_style = string.Template('this is $thing')
use the substitute method of the template with a dictionary argument:
print new_style.substitute({'thing':5}) # emits: this is 5
print new_style.substitute({'thing':'test'}) # emits: this is test
alternatively, you can pass keyword-arguments to 'substitute':
print new_style.substitute(thing=5) # emits: this is 5
print new_style.substitute(thing='test') # emits: this is test

Discussion
In Python 2.3, a format string for identifier-substitution has to be expressed in a less
simple format:

old_style = 'this is %(thing)s'

with the identifier in parentheses after a %, and an s right after the closed parenthe-
sis. Then, you use the % operator, with the format string on the left of the operator,
and a dictionary on the right:

print old_style % {'thing':5} # emits: this is 5
print old_style % {'thing':'test'} # emits: this is test

Of course, this code keeps working in Python 2.4, too. However, the new
string.Template class offers a simpler alternative.

When you build a string.Template instance, you may include a dollar sign ($) by
doubling it, and you may have the interpolated identifier immediately followed by
letters or digits by enclosing it in curly braces ({ }). Here is an example that requires
both of these refinements:

form_letter = '''Dear $customer,
I hope you are having a great time.
If you do not find Room $room to your satisfaction,
let us know. Please accept this $$5 coupon.
 Sincerely,
 $manager
 ${name}Inn'''
letter_template = string.Template(form_letter)
print letter_template.substitute({'name':'Sleepy', 'customer':'Fred Smith',
 'manager':'Barney Mills', 'room':307,
 })

This snippet emits the following output:

Dear Fred Smith,

I hope you are having a great time.
If you do not find Room 307 to your satisfaction,
let us know. Please accept this $5 coupon.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 1: Text

 Sincerely,
 Barney Mills
 SleepyInn

Sometimes, the handiest way to prepare a dictionary to be used as the argument to
the substitute method is to set local variables, and then pass as the argument
locals() (the artificial dictionary whose keys are the local variables, each with its
value associated):

msg = string.Template('the square of $number is $square')
for number in range(10):
 square = number * number
 print msg.substitute(locals())

Another handy alternative is to pass the values to substitute using keyword argument
syntax rather than a dictionary:

msg = string.Template('the square of $number is $square')
for i in range(10):
 print msg.substitute(number=i, square=i*i)

You can even pass both a dictionary and keyword arguments:

msg = string.Template('the square of $number is $square')
for number in range(10):
 print msg.substitute(locals(), square=number*number)

In case of any conflict between entries in the dictionary and the values explicitly
passed as keyword arguments, the keyword arguments take precedence. For example:

msg = string.Template('an $adj $msg')
adj = 'interesting'
print msg.substitute(locals(), msg='message')
emits an interesting message

See Also
Library Reference docs for string.Template (2.4 only) and the locals built-in func-
tion.

1.18 Replacing Multiple Patterns in a Single Pass
Credit: Xavier Defrang, Alex Martelli

Problem
You need to perform several string substitutions on a string.

Solution
Sometimes regular expressions afford the fastest solution even in cases where their
applicability is not obvious. The powerful sub method of re objects (from the re

module in the standard library) makes regular expressions particularly good at

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.18 Replacing Multiple Patterns in a Single Pass | 39

performing string substitutions. Here is a function returning a modified copy of an
input string, where each occurrence of any string that’s a key in a given dictionary is
replaced by the corresponding value in the dictionary:

import re
def multiple_replace(text, adict):
 rx = re.compile('|'.join(map(re.escape, adict)))
 def one_xlat(match):
 return adict[match.group(0)]
 return rx.sub(one_xlat, text)

Discussion
This recipe shows how to use the Python standard re module to perform single-pass
multiple-string substitution using a dictionary. Let’s say you have a dictionary-based
mapping between strings. The keys are the set of strings you want to replace, and the
corresponding values are the strings with which to replace them. You could perform
the substitution by calling the string method replace for each key/value pair in the
dictionary, thus processing and creating a new copy of the entire text several times,
but it is clearly better and faster to do all the changes in a single pass, processing and
creating a copy of the text only once. re.sub’s callback facility makes this better
approach quite easy.

First, we have to build a regular expression from the set of keys we want to match.
Such a regular expression has a pattern of the form a1|a2|...|aN, made up of the N

strings to be substituted, joined by vertical bars, and it can easily be generated using
a one-liner, as shown in the recipe. Then, instead of giving re.sub a replacement
string, we pass it a callback argument. re.sub then calls this object for each match,
with a re.MatchObject instance as its only argument, and it expects the replacement
string for that match as the call’s result. In our case, the callback just has to look up
the matched text in the dictionary and return the corresponding value.

The function multiple_replace presented in the recipe recomputes the regular
expression and redefines the one_xlat auxiliary function each time you call it. Often,
you must perform substitutions on multiple strings based on the same, unchanging
translation dictionary and would prefer to pay these setup prices only once. For such
needs, you may prefer the following closure-based approach:

import re
def make_xlat(*args, **kwds):
 adict = dict(*args, **kwds)
 rx = re.compile('|'.join(map(re.escape, adict)))
 def one_xlat(match):
 return adict[match.group(0)]
 def xlat(text):
 return rx.sub(one_xlat, text)
 return xlat

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 1: Text

You can call make_xlat, passing as its argument a dictionary, or any other combina-
tion of arguments you could pass to built-in dict in order to construct a dictionary;
make_xlat returns a xlat closure that takes as its only argument text the string on
which the substitutions are desired and returns a copy of text with all the substitu-
tions performed.

Here’s a usage example for each half of this recipe. We would normally have such an
example as a part of the same .py source file as the functions in the recipe, so it is
guarded by the traditional Python idiom that runs it if and only if the module is
called as a main script:

if __name__ == "__main__":
 text = "Larry Wall is the creator of Perl"
 adict = {
 "Larry Wall" : "Guido van Rossum",
 "creator" : "Benevolent Dictator for Life",
 "Perl" : "Python",
 }
 print multiple_replace(text, adict)
 translate = make_xlat(adict)
 print translate(text)

Substitutions such as those performed by this recipe are often intended to operate
on entire words, rather than on arbitrary substrings. Regular expressions are good
at picking up the beginnings and endings of words, thanks to the special sequence
r'\b'. We can easily make customized versions of either multiple_replace or make_

xlat by simply changing the one line in which each of them builds and assigns the
regular expression object rx into a slightly different form:

 rx = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, adict)))

The rest of the code is just the same as shown earlier in this recipe. However, this
sameness is not necessarily good news: it suggests that if we need many similarly cus-
tomized versions, each building the regular expression in slightly different ways,
we’ll end up doing a lot of copy-and-paste coding, which is the worst form of code
reuse, likely to lead to high maintenance costs in the future.

A key rule of good coding is: “once, and only once!” When we notice that we are
duplicating code, we should notice this symptom as a “code smell,” and refactor our
code for better reuse. In this case, for ease of customization, we need a class rather
than a function or closure. For example, here’s how to write a class that works very
similarly to make_xlat but can be customized by subclassing and overriding:

class make_xlat:
 def __init__(self, *args, **kwds):
 self.adict = dict(*args, **kwds)
 self.rx = self.make_rx()
 def make_rx(self):
 return re.compile('|'.join(map(re.escape, self.adict)))
 def one_xlat(self, match):
 return self.adict[match.group(0)]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.19 Checking a String for Any of Multiple Endings | 41

 def __call__(self, text):
 return self.rx.sub(self.one_xlat, text)

This is a “drop-in replacement” for the function of the same name: in other words, a
snippet such as the one we showed, with the if __name__ == '__main__' guard,
works identically when make_xlat is this class rather than the previously shown func-
tion. The function is simpler and faster, but the class’ important advantage is that it
can easily be customized in the usual object-oriented way—subclassing it, and
overriding some method. To translate by whole words, for example, all we need to
code is:

class make_xlat_by_whole_words(make_xlat):
 def make_rx(self):
 return re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, self.adict)))

Ease of customization by subclassing and overriding helps you avoid copy-and-paste
coding, and this is sometimes an excellent reason to prefer object-oriented structures
over simpler functional structures, such as closures. Of course, just because some
functionality is packaged as a class doesn’t magically make it customizable in just the
way you want. Customizability also requires some foresight in dividing the function-
ality into separately overridable methods that correspond to the right pieces of over-
all functionality. Fortunately, you don’t have to get it right the first time; when code
does not have the optimal internal structure for the task at hand (in this specific
example, for reuse by subclassing and selective overriding), you can and should
refactor the code so that its internal structure serves your needs. Just make sure you
have a suitable battery of tests ready to run to ensure that your refactoring hasn’t
broken anything, and then you can refactor to your heart’s content. See http://
www.refactoring.com for more information on the important art and practice of
refactoring.

See Also
Documentation for the re module in the Library Reference and Python in a Nutshell;
the Refactoring home page (http://www.refactoring.com).

1.19 Checking a String
for Any of Multiple Endings

Credit: Michele Simionato

Problem
For a certain string s, you must check whether s has any of several endings; in other
words, you need a handy, elegant equivalent of s.endswith(end1) or

s.endswith(end2) or s.endswith(end3) and so on.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 1: Text

Solution
The itertools.imap function is just as handy for this task as for many of a similar
nature:

import itertools
def anyTrue(predicate, sequence):
 return True in itertools.imap(predicate, sequence)
def endsWith(s, *endings):
 return anyTrue(s.endswith, endings)

Discussion
A typical use for endsWith might be to print all names of image files in the current
directory:

import os
for filename in os.listdir('.'):
 if endsWith(filename, '.jpg', '.jpeg', '.gif'):
 print filename

The same general idea shown in this recipe’s Solution is easily applied to other tasks
related to checking a string for any of several possibilities. The auxiliary function
anyTrue is general and fast, and you can pass it as its first argument (the predicate)
other bound methods, such as s.startswith or s.__contains__. Indeed, perhaps it
would be better to do without the helper function endsWith—after all, directly coding

 if anyTrue(filename.endswith, (".jpg", ".gif", ".png")):

seems to be already readable enough.

Bound Methods
Whenever a Python object supplies a method, you can get the method, already bound
to the object, by just accessing the method on the object. (For example, you can assign
it, pass it as an argument, return it as a function’s result, etc.) For example:

L = ['fee', 'fie', 'foo']
x = L.append

Now, name x refers to a bound method of list object L. Calling, say, x('fum') is the same
as calling L.append('fum'): either call mutates object L into ['fee', 'fie', 'foo',

'fum'].

If you access a method on a type or class, rather than an instance of the type or class,
you get an unbound method, not “attached” to any particular instance of the type or
class: when you call it, you need to pass as its first argument an instance of that type or
class. For example, if you set y = list.append, you cannot just call y('I')—Python
couldn’t possibly guess which list you want to append I to! You can, however, call y(L,
'I'), and that is just the same as calling L.append('I') (as long as isinstance(L,

list)).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.20 Handling International Text with Unicode | 43

This recipe originates from a discussion on news:comp.lang.python. and summarizes
inputs from many people, including Raymond Hettinger, Chris Perkins, Bengt Rich-
ter and others.

See Also
Library Reference and Python in a Nutshell docs for itertools and string methods.

1.20 Handling International Text with Unicode
Credit: Holger Krekel

Problem
You need to deal with text strings that include non-ASCII characters.

Solution
Python has a first class unicode type that you can use in place of the plain bytestring
str type. It’s easy, once you accept the need to explicitly convert between a
bytestring and a Unicode string:

>>> german_ae = unicode('\xc3\xa4', 'utf8')

Here german_ae is a unicode string representing the German lowercase a with umlaut
(i.e., diaeresis) character “ä”. It has been constructed from interpreting the bytestring
'\xc3\xa4' according to the specified UTF-8 encoding. There are many encodings,
but UTF-8 is often used because it is universal (UTF-8 can encode any Unicode
string) and yet fully compatible with the 7-bit ASCII set (any ASCII bytestring is a
correct UTF-8–encoded string).

Once you cross this barrier, life is easy! You can manipulate this Unicode string in
practically the same way as a plain str string:

>>> sentence = "This is a " + german_ae
>>> sentence2 = "Easy!"
>>> para = ". ".join([sentence, sentence2])

Note that para is a Unicode string, because operations between a unicode string and a
bytestring always result in a unicode string—unless they fail and raise an exception:

>>> bytestring = '\xc3\xa4' # Uuh, some non-ASCII bytestring!
>>> german_ae += bytestring
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in
position 0: ordinal not in range(128)

The byte '0xc3' is not a valid character in the 7-bit ASCII encoding, and Python
refuses to guess an encoding. So, being explicit about encodings is the crucial point
for successfully using Unicode strings with Python.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 1: Text

Discussion
Unicode is easy to handle in Python, if you respect a few guidelines and learn to deal
with common problems. This is not to say that an efficient implementation of Uni-
code is an easy task. Luckily, as with other hard problems, you don’t have to care
much: you can just use the efficient implementation of Unicode that Python pro-
vides.

The most important issue is to fully accept the distinction between a bytestring and a
unicode string. As exemplified in this recipe’s solution, you often need to explicitly
construct a unicode string by providing a bytestring and an encoding. Without an
encoding, a bytestring is basically meaningless, unless you happen to be lucky and
can just assume that the bytestring is text in ASCII.

The most common problem with using Unicode in Python arises when you are doing
some text manipulation where only some of your strings are unicode objects and oth-
ers are bytestrings. Python makes a shallow attempt to implicitly convert your
bytestrings to Unicode. It usually assumes an ASCII encoding, though, which gives
you UnicodeDecodeError exceptions if you actually have non-ASCII bytes some-
where. UnicodeDecodeError tells you that you mixed Unicode and bytestrings in such
a way that Python cannot (doesn’t even try to) guess the text your bytestring might
represent.

Developers from many big Python projects have come up with simple rules of thumb
to prevent such runtime UnicodeDecodeErrors, and the rules may be summarized into
one sentence: always do the conversion at IO barriers. To express this same concept
a bit more extensively:

• Whenever your program receives text data “from the outside” (from the net-
work, from a file, from user input, etc.), construct unicode objects immediately.
Find out the appropriate encoding, for example, from an HTTP header, or look
for an appropriate convention to determine the encoding to use.

• Whenever your program sends text data “to the outside” (to the network, to
some file, to the user, etc.), determine the correct encoding, and convert your
text to a bytestring with that encoding. (Otherwise, Python attempts to convert
Unicode to an ASCII bytestring, likely producing UnicodeEncodeErrors, which are
just the converse of the UnicodeDecodeErrors previously mentioned).

With these two rules, you will solve most Unicode problems. If you still get
UnicodeErrors of either kind, look for where you forgot to properly construct a
unicode object, forgot to properly convert back to an encoded bytestring, or ended
up using an inappropriate encoding due to some mistake. (It is quite possible that
such encoding mistakes are due to the user, or some other program that is interact-
ing with yours, not following the proper encoding rules or conventions.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.21 Converting Between Unicode and Plain Strings | 45

In order to convert a Unicode string back to an encoded bytestring, you usually do
something like:

>>> bytestring = german_ae.decode('latin1')
>>> bytestring
'\xe4'

Now bytestring is a German ae character in the 'latin1' encoding. Note how '\

xe4' (in Latin1) and the previously shown '\xc3\xa4' (in UTF-8) represent the same
German character, but in different encodings.

By now, you can probably imagine why Python refuses to guess among the hun-
dreds of possible encodings. It’s a crucial design choice, based on one of the Zen of
Python principles: “In the face of ambiguity, resist the temptation to guess.” At any
interactive Python shell prompt, enter the statement import this to read all of the
important principles that make up the Zen of Python.

See Also
Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony
Graham (Hungry Minds, Inc.)—details are available at http://www.menteith.com/
unicode/primer/; and a short but complete article from Joel Spolsky, “The Absolute
Minimum Every Software Developer Absolutely, Positively Must Know About Uni-
code and Character Sets (No Excuses)!,” located at http://www.joelonsoftware.com/
articles/Unicode.html. See also the Library Reference and Python in a Nutshell docu-
mentation about the built-in str and unicode types and modules unidata and codecs;
also, recipe 1.21 “Converting Between Unicode and Plain Strings” and recipe 1.22
“Printing Unicode Characters to Standard Output.”

1.21 Converting Between Unicode and Plain
Strings

Credit: David Ascher, Paul Prescod

Problem
You need to deal with textual data that doesn’t necessarily fit in the ASCII character
set.

Solution
Unicode strings can be encoded in plain strings in a variety of ways, according to
whichever encoding you choose:

unicodestring = u"Hello world"
Convert Unicode to plain Python string: "encode"
utf8string = unicodestring.encode("utf-8")
asciistring = unicodestring.encode("ascii")

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 1: Text

isostring = unicodestring.encode("ISO-8859-1")
utf16string = unicodestring.encode("utf-16")
Convert plain Python string to Unicode: "decode"
plainstring1 = unicode(utf8string, "utf-8")
plainstring2 = unicode(asciistring, "ascii")
plainstring3 = unicode(isostring, "ISO-8859-1")
plainstring4 = unicode(utf16string, "utf-16")
assert plainstring1 == plainstring2 == plainstring3 == plainstring4

Discussion
If you find yourself dealing with text that contains non-ASCII characters, you have to
learn about Unicode—what it is, how it works, and how Python uses it. The preced-
ing recipe 1.20 “Handling International Text with Unicode” offers minimal but cru-
cial practical tips, and this recipe tries to offer more perspective.

You don’t need to know everything about Unicode to be able to solve real-world
problems with it, but a few basic tidbits of knowledge are indispensable. First, you
must understand the difference between bytes and characters. In older, ASCII-centric
languages and environments, bytes and characters are treated as if they were the
same thing. A byte can hold up to 256 different values, so these environments are
limited to dealing with no more than 256 distinct characters. Unicode, on the other
hand, has tens of thousands of characters, which means that each Unicode character
takes more than one byte; thus you need to make the distinction between characters
and bytes.

Standard Python strings are really bytestrings, and a Python character, being such a
string of length 1, is really a byte. Other terms for an instance of the standard Python
string type are 8-bit string and plain string. In this recipe we call such instances
bytestrings, to remind you of their byte orientation.

A Python Unicode character is an abstract object big enough to hold any character,
analogous to Python’s long integers. You don’t have to worry about the internal rep-
resentation; the representation of Unicode characters becomes an issue only when
you are trying to send them to some byte-oriented function, such as the write

method of files or the send method of network sockets. At that point, you must
choose how to represent the characters as bytes. Converting from Unicode to a
bytestring is called encoding the string. Similarly, when you load Unicode strings
from a file, socket, or other byte-oriented object, you need to decode the strings from
bytes to characters.

Converting Unicode objects to bytestrings can be achieved in many ways, each of
which is called an encoding. For a variety of historical, political, and technical rea-
sons, there is no one “right” encoding. Every encoding has a case-insensitive name,
and that name is passed to the encode and decode methods as a parameter. Here are a
few encodings you should know about:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.21 Converting Between Unicode and Plain Strings | 47

• The UTF-8 encoding can handle any Unicode character. It is also backwards
compatible with ASCII, so that a pure ASCII file can also be considered a UTF-8
file, and a UTF-8 file that happens to use only ASCII characters is identical to an
ASCII file with the same characters. This property makes UTF-8 very back-
wards-compatible, especially with older Unix tools. UTF-8 is by far the domi-
nant encoding on Unix, as well as the default encoding for XML documents.
UTF-8’s primary weakness is that it is fairly inefficient for eastern-language texts.

• The UTF-16 encoding is favored by Microsoft operating systems and the Java
environment. It is less efficient for western languages but more efficient for east-
ern ones. A variant of UTF-16 is sometimes known as UCS-2.

• The ISO-8859 series of encodings are supersets of ASCII, each able to deal with
256 distinct characters. These encodings cannot support all of the Unicode char-
acters; they support only some particular language or family of languages. ISO-
8859-1, also known as “Latin-1”, covers most western European and African
languages, but not Arabic. ISO-8859-2, also known as “Latin-2”, covers many
eastern European languages such as Hungarian and Polish. ISO-8859-15, very
popular in Europe these days, is basically the same as ISO-8859-1 with the addi-
tion of the Euro currency symbol as a character.

If you want to be able to encode all Unicode characters, you’ll probably want to use
UTF-8. You will need to deal with the other encodings only when you are handed
data in those encodings created by some other application or input device, or vice
versa, when you need to prepare data in a specified encoding to accommodate
another application downstream of yours, or an output device. In particular, recipe
1.22 “Printing Unicode Characters to Standard Output“ shows how to handle the
case in which the downstream application or device is driven from your program’s
standard output stream.

See Also
Unicode is a huge topic, but a recommended book is Tony Graham, Unicode: A
Primer (Hungry Minds)—details are available at http://www.menteith.com/unicode/
primer/; and a short, but complete article from Joel Spolsky, “The Absolute Mini-
mum Every Software Developer Absolutely, Positively Must Know About Unicode
and Character Sets (No Excuses)!” is located at http://www.joelonsoftware.com/
articles/Unicode.html. See also the Library Reference and Python in a Nutshell docu-
mentation about the built-in str and unicode types, and modules unidata and codecs;
also, recipe 1.20 “Handling International Text with Unicode” and recipe 1.22 “Print-
ing Unicode Characters to Standard Output.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 1: Text

1.22 Printing Unicode Characters
to Standard Output

Credit: David Ascher

Problem
You want to print Unicode strings to standard output (e.g., for debugging), but they
don’t fit in the default encoding.

Solution
Wrap the sys.stdout stream with a converter, using the codecs module of Python’s
standard library. For example, if you know your output is going to a terminal that
displays characters according to the ISO-8859-1 encoding, you can code:

import codecs, sys
sys.stdout = codecs.lookup('iso8859-1')[-1](sys.stdout)

Discussion
Unicode strings live in a large space, big enough for all of the characters in every lan-
guage worldwide, but thankfully the internal representation of Unicode strings is
irrelevant for users of Unicode. Alas, a file stream, such as sys.stdout, deals with
bytes and has an encoding associated with it. You can change the default encoding
that is used for new files by modifying the site module. That, however, requires
changing your entire Python installation, which is likely to confuse other applica-
tions that may expect the encoding you originally configured Python to use (typi-
cally the Python standard encoding, which is ASCII). Therefore, this kind of
modification is not to be recommended.

This recipe takes a sounder approach: it rebinds sys.stdout as a stream that expects
Unicode input and outputs it in ISO-8859-1 (also known as “Latin-1”). This
approach doesn’t change the encoding of any previous references to sys.stdout, as
illustrated here. First, we keep a reference to the original, ASCII-encoded sys.stdout:

>>> old = sys.stdout

Then, we create a Unicode string that wouldn’t normally be able to go through
sys.stdout:

>>> char = u"\N{LATIN SMALL LETTER A WITH DIAERESIS}"
>>> print char
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

If you don’t get an error from this operation, it’s because Python thinks it knows
which encoding your “terminal” is using (in particular, Python is likely to use the
right encoding if your “terminal” is IDLE, the free development environment that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.23 Encoding Unicode Data for XML and HTML | 49

comes with Python). But, suppose you do get this error, or get no error but the out-
put is not the character you expected, because your “terminal” uses UTF-8 encoding
and Python does not know about it. When that is the case, we can just wrap
sys.stdout in the codecs stream writer for UTF-8, which is a much richer encoding,
then rebind sys.stdout to it and try again:

>>> sys.stdout = codecs.lookup('utf-8')[-1](sys.stdout)
>>> print char
ä

This approach works only if your “terminal”, terminal emulator, or other window in
which you’re running the interactive Python interpreter supports the UTF-8 encod-
ing, with a font rich enough to display all the characters you need to output. If you
don’t have such a program or device available, you may be able to find a suitable one
for your platform in the form of a free program downloadable from the Internet.

Python tries to determine which encoding your “terminal” is using and sets that
encoding’s name as attribute sys.stdout.encoding. Sometimes (alas, not always) it
even manages to get it right. IDLE already wraps your sys.stdout, as suggested in
this recipe, so, within the environment’s interactive Python shell, you can directly
print Unicode strings.

See Also
Documentation for the codecs and site modules, and setdefaultencoding in module
sys, in the Library Reference and Python in a Nutshell; recipe 1.20 “Handling Inter-
national Text with Unicode” and recipe 1.21 “Converting Between Unicode and
Plain Strings.”

1.23 Encoding Unicode Data for XML and HTML
Credit: David Goodger, Peter Cogolo

Problem
You want to encode Unicode text for output in HTML, or some other XML applica-
tion, using a limited but popular encoding such as ASCII or Latin-1.

Solution
Python provides an encoding error handler named xmlcharrefreplace, which
replaces all characters outside of the chosen encoding with XML numeric character
references:

def encode_for_xml(unicode_data, encoding='ascii'):
 return unicode_data.encode(encoding, 'xmlcharrefreplace')

You could use this approach for HTML output, too, but you might prefer to use
HTML’s symbolic entity references instead. For this purpose, you need to define and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 1: Text

register a customized encoding error handler. Implementing that handler is made
easier by the fact that the Python Standard Library includes a module named
htmlentitydefs that holds HTML entity definitions:

import codecs
from htmlentitydefs import codepoint2name
def html_replace(exc):
 if isinstance(exc, (UnicodeEncodeError, UnicodeTranslateError)):
 s = [u'&%s;' % codepoint2name[ord(c)]
 for c in exc.object[exc.start:exc.end]]
 return ''.join(s), exc.end
 else:
 raise TypeError("can't handle %s" % exc.__name__)
codecs.register_error('html_replace', html_replace)

After registering this error handler, you can optionally write a function to wrap its
use:

def encode_for_html(unicode_data, encoding='ascii'):
 return unicode_data.encode(encoding, 'html_replace')

Discussion

As with any good Python module, this module would normally proceed with an
example of its use, guarded by an if __name__ == '__main__' test:

if __name__ == '__main__':
 # demo
 data = u'''\
<html>
<head>
<title>Encoding Test</title>
</head>
<body>
<p>accented characters:

\xe0 (a + grave)
\xe7 (c + cedilla)
\xe9 (e + acute)

<p>symbols:

\xa3 (British pound)
\u20ac (Euro)
\u221e (infinity)

</body></html>
'''
 print encode_for_xml(data)
 print encode_for_html(data)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.23 Encoding Unicode Data for XML and HTML | 51

If you run this module as a main script, you will then see such output as (from func-
tion encode_for_xml):

à (a + grave)
ç (c + cedilla)
é (e + acute)

...

£ (British pound)
€ (Euro)
∞ (infinity)

as well as (from function encode_for_html):

à (a + grave)
ç (c + cedilla)
é (e + acute)

...

£ (British pound)
€ (Euro)
∞ (infinity)

There is clearly a niche for each case, since encode_for_xml is more general (you can
use it for any XML application, not just HTML), but encode_for_html may produce
output that’s easier to read—should you ever need to look at it directly, edit it fur-
ther, and so on. If you feed either form to a browser, you should view it in exactly the
same way. To visualize both forms of encoding in a browser, run this recipe’s mod-
ule as a main script, redirect the output to a disk file, and use a text editor to sepa-
rate the two halves before you view them with a browser. (Alternatively, run the
script twice, once commenting out the call to encode_for_xml, and once commenting
out the call to encode_for_html.)

Remember that Unicode data must always be encoded before being printed or writ-
ten out to a file. UTF-8 is an ideal encoding, since it can handle any Unicode charac-
ter. But for many users and applications, ASCII or Latin-1 encodings are often
preferred over UTF-8. When the Unicode data contains characters that are outside of
the given encoding (e.g., accented characters and most symbols are not encodable in
ASCII, and the “infinity” symbol is not encodable in Latin-1), these encodings can-
not handle the data on their own. Python supports a built-in encoding error handler
called xmlcharrefreplace, which replaces unencodable characters with XML numeric
character references, such as ∞ for the “infinity” symbol. This recipe shows
how to write and register another similar error handler, html_replace, specifically for
producing HTML output. html_replace replaces unencodable characters with more
readable HTML symbolic entity references, such as ∞ for the “infinity” sym-
bol. html_replace is less general than xmlcharrefreplace, since it does not support all
Unicode characters and cannot be used with non-HTML applications; however, it
can still be useful if you want HTML output that is as readable as possible in a “view
page source” context.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 1: Text

Neither of these error handlers makes sense for output that is neither HTML nor
some other form of XML. For example, TeX and other markup languages do not rec-
ognize XML numeric character references. However, if you know how to build an
arbitrary character reference for such a markup language, you may modify the exam-
ple error handler html_replace shown in this recipe’s Solution to code and register
your own encoding error handler.

An alternative (and very effective!) way to perform encoding of Unicode data into a
file, with a given encoding and error handler of your choice, is offered by the codecs

module in Python’s standard library:

outfile = codecs.open('out.html', mode='w', encoding='ascii',
 errors='html_replace')

You can now use outfile.write(unicode_data) for any arbitrary Unicode string
unicode_data, and all the encoding and error handling will be taken care of transpar-
ently. When your output is finished, of course, you should call outfile.close().

See Also
Library Reference and Python in a Nutshell docs for modules codecs and
htmlentitydefs.

1.24 Making Some Strings Case-Insensitive
Credit: Dale Strickland-Clark, Peter Cogolo, Mark McMahon

Problem
You want to treat some strings so that all comparisons and lookups are case-insensi-
tive, while all other uses of the strings preserve the original case.

Solution
The best solution is to wrap the specific strings in question into a suitable subclass of
str:

class iStr(str):
 """
 Case insensitive string class.
 Behaves just like str, except that all comparisons and lookups
 are case insensitive.
 """
 def __init__(self, *args):
 self._lowered = str.lower(self)
 def __repr__(self):
 return '%s(%s)' % (type(self).__name__, str.__repr__(self))
 def __hash__(self):
 return hash(self._lowered)
 def lower(self):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.24 Making Some Strings Case-Insensitive | 53

 return self._lowered
def _make_case_insensitive(name):
 ''' wrap one method of str into an iStr one, case-insensitive '''
 str_meth = getattr(str, name)
 def x(self, other, *args):
 ''' try lowercasing 'other', which is typically a string, but
 be prepared to use it as-is if lowering gives problems,
 since strings CAN be correctly compared with non-strings.
 '''
 try: other = other.lower()
 except (TypeError, AttributeError, ValueError): pass
 return str_meth(self._lowered, other, *args)
 # in Python 2.4, only, add the statement: x.func_name = name
 setattr(iStr, name, x)
apply the _make_case_insensitive function to specified methods
for name in 'eq lt le gt gt ne cmp contains'.split():
 _make_case_insensitive('__%s__' % name)
for name in 'count endswith find index rfind rindex startswith'.split():
 _make_case_insensitive(name)
note that we don't modify methods 'replace', 'split', 'strip', ...
of course, you can add modifications to them, too, if you prefer that.
del _make_case_insensitive # remove helper function, not needed any more

Discussion
Some implementation choices in class iStr are worthy of notice. First, we choose to
generate the lowercase version once and for all, in method __init__, since we envi-
sion that in typical uses of iStr instances, this version will be required repeatedly.
We hold that version in an attribute that is private, but not overly so (i.e., has a name
that begins with one underscore, not two), because if iStr gets subclassed (e.g., to
make a more extensive version that also offers case-insensitive splitting, replacing,
etc., as the comment in the “Solution” suggests), iStr’s subclasses are quite likely to
want to access this crucial “implementation detail” of superclass iStr!

We do not offer “case-insensitive” versions of such methods as replace, because it’s
anything but clear what kind of input-output relation we might want to establish in
the general case. Application-specific subclasses may therefore be the way to provide
this functionality in ways appropriate to a given application. For example, since the
replace method is not wrapped, calling replace on an instance of iStr returns an
instance of str, not of iStr. If that is a problem in your application, you may want to
wrap all iStr methods that return strings, simply to ensure that the results are made
into instances of iStr. For that purpose, you need another, separate helper function,
similar but not identical to the _make_case_insensitive one shown in the “Solution”:

def _make_return_iStr(name):
 str_meth = getattr(str, name)
 def x(*args):
 return iStr(str_meth(*args))
 setattr(iStr, name, x)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 1: Text

and you need to call this helper function _make_return_iStr on all the names of rele-
vant string methods returning strings such as:

for name in 'center ljust rjust strip lstrip rstrip'.split():
 _make_return_iStr(name)

Strings have about 20 methods (including special methods such as __add__ and
__mul__) that you should consider wrapping in this way. You can also wrap in this
way some additional methods, such as split and join, which may require special
handling, and others, such as encode and decode, that you cannot deal with unless
you also define a case-insensitive unicode subtype. In practice, one can hope that not
every single one of these methods will prove problematic in a typical application.
However, as you can see, the very functional richness of Python strings makes it a bit
of work to customize string subtypes fully, in a general way without depending on
the needs of a specific application.

The implementation of iStr is careful to avoid the boilerplate code (meaning repeti-
tious and therefore bug-prone code) that we’d need if we just overrode each needed
method of str in the normal way, with def statements in the class body. A custom
metaclass or other such advanced technique would offer no special advantage in this
case, so the boilerplate avoidance is simply obtained with one helper function that
generates and installs wrapper closures, and two loops using that function, one for
normal methods and one for special ones. The loops need to be placed after the
class statement, as we do in this recipe’s Solution, because they need to modify the
class object iStr, and the class object doesn’t exist yet (and thus cannot be modi-
fied) until the class statement has completed.

In Python 2.4, you can reassign the func_name attribute of a function object, and in
this case, you should do so to get clearer and more readable results when introspec-
tion (e.g., the help function in an interactive interpreter session) is applied to an iStr

instance. However, Python 2.3 considers attribute func_name of function objects to
be read-only; therefore, in this recipe’s Solution, we have indicated this possibility
only in a comment, to avoid losing Python 2.3 compatibility over such a minor issue.

Case-insensitive (but case-preserving) strings have many uses, from more tolerant
parsing of user input, to filename matching on filesystems that share this characteris-
tic, such as all of Windows filesystems and the Macintosh default filesystem. You
might easily find yourself creating a variety of “case-insensitive” container types,
such as dictionaries, lists, sets, and so on—meaning containers that go out of their
way to treat string-valued keys or items as if they were case-insensitive. Clearly a bet-
ter architecture is to factor out the functionality of “case-insensitive” comparisons
and lookups once and for all; with this recipe in your toolbox, you can just add the
required wrapping of strings into iStr instances wherever you may need it, including
those times when you’re making case-insensitive container types.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.25 Converting HTML Documents to Text on a Unix Terminal | 55

For example, a list whose items are basically strings, but are to be treated case-
insensitively (for sorting purposes and in such methods as count and index), is rea-
sonably easy to build on top of iStr:

class iList(list):
 def __init__(self, *args):
 list.__init__(self, *args)
 # rely on __setitem__ to wrap each item into iStr...
 self[:] = self
 wrap_each_item = iStr
 def __setitem__(self, i, v):
 if isinstance(i, slice): v = map(self.wrap_each_item, v)
 else: v = self.wrap_each_item(v)
 list.__setitem__(self, i, v)
 def append(self, item):
 list.append(self, self.wrap_each_item(item))
 def extend(self, seq):
 list.extend(self, map(self.wrap_each_item, seq))

Essentially, all we’re doing is ensuring that every item that gets into an instance of
iList gets wrapped by a call to iStr, and everything else takes care of itself.

Incidentally, this example class iList is accurately coded so that you can easily make
customized subclasses of iList to accommodate application-specific subclasses of
iStr: all such a customized subclass of iList needs to do is override the single class-
level member named wrap_each_item.

See Also
Library Reference and Python in a Nutshell sections on str, string methods, and spe-
cial methods used in comparisons and hashing.

1.25 Converting HTML Documents to Text
on a Unix Terminal

Credit: Brent Burley, Mark Moraes

Problem
You need to visualize HTML documents as text, with support for bold and under-
lined display on your Unix terminal.

Solution
The simplest approach is to code a filter script, taking HTML on standard input and
emitting text and terminal control sequences on standard output. Since this recipe
only targets Unix, we can get the needed terminal control sequences from the “Unix”
command tput, via the function popen of the Python Standard Library module os:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 1: Text

#!/usr/bin/env python
import sys, os, htmllib, formatter
use Unix tput to get the escape sequences for bold, underline, reset
set_bold = os.popen('tput bold').read()
set_underline = os.popen('tput smul').read()
perform_reset = os.popen('tput sgr0').read()
class TtyFormatter(formatter.AbstractFormatter):
 ''' a formatter that keeps track of bold and italic font states, and
 emits terminal control sequences accordingly.
 '''
 def __init__(self, writer):
 # first, as usual, initialize the superclass
 formatter.AbstractFormatter.__init__(self, writer)
 # start with neither bold nor italic, and no saved font state
 self.fontState = False, False
 self.fontStack = []
 def push_font(self, font):
 # the `font' tuple has four items, we only track the two flags
 # about whether italic and bold are active or not
 size, is_italic, is_bold, is_tt = font
 self.fontStack.append((is_italic, is_bold))
 self._updateFontState()
 def pop_font(self, *args):
 # go back to previous font state
 try:
 self.fontStack.pop()
 except IndexError:
 pass
 self._updateFontState()
 def updateFontState(self):
 # emit appropriate terminal control sequences if the state of
 # bold and/or italic(==underline) has just changed
 try:
 newState = self.fontStack[-1]
 except IndexError:
 newState = False, False
 if self.fontState != newState:
 # relevant state change: reset terminal
 print perform_reset,
 # set underine and/or bold if needed
 if newState[0]:
 print set_underline,
 if newState[1]:
 print set_bold,
 # remember the two flags as our current font-state
 self.fontState = newState
make writer, formatter and parser objects, connecting them as needed
myWriter = formatter.DumbWriter()
if sys.stdout.isatty():
 myFormatter = TtyFormatter(myWriter)
else:
 myFormatter = formatter.AbstractFormatter(myWriter)
myParser = htmllib.HTMLParser(myFormatter)
feed all of standard input to the parser, then terminate operations

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.25 Converting HTML Documents to Text on a Unix Terminal | 57

myParser.feed(sys.stdin.read())
myParser.close()

Discussion
The basic formatter.AbstractFormatter class, offered by the Python Standard
Library, should work just about anywhere. On the other hand, the refinements in the
TtyFormatter subclass that’s the focus of this recipe depend on using a Unix-like ter-
minal, and more specifically on the availability of the tput Unix command to obtain
information on the escape sequences used to get bold or underlined output and to
reset the terminal to its base state.

Many systems that do not have Unix certification, such as Linux and Mac OS X, do
have a perfectly workable tput command and therefore can use this recipe’s
TtyFormatter subclass just fine. In other words, you can take the use of the word
“Unix” in this recipe just as loosely as you can take it in just about every normal dis-
cussion: take it as meaning “*ix,” if you will.

If your “terminal” emulator supports other escape sequences for controlling output
appearance, you should be able to adapt this TtyFormatter class accordingly. For
example, on Windows, a cmd.exe command window should, I’m told, support stan-
dard ANSI escape sequences, so you could choose to hard-code those sequences if
Windows is the platform on which you want to run your version of this script.

In many cases, you may prefer to use other existing Unix commands, such as lynx -

dump -, to get richer formatting than this recipe provides. However, this recipe comes
in quite handy when you find yourself on a system that has a Python installation but
lacks such other helpful commands as lynx.

See Also
Library Reference and Python in a Nutshell docs on the formatter and htmllib mod-
ules; man tput on a Unix or Unix-like system for more information about the tput

command.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58

Chapter 2CHAPTER 2

Files

2.0 Introduction
Credit: Mark Lutz, author of Programming Python and Python Quick Reference, co-
author of Learning Python

Behold the file—one of the first things that any reasonably pragmatic programmer
reaches for in a programming language’s toolbox. Because processing external files is
a very real, tangible task, the quality of file-processing interfaces is a good way to
assess the practicality of a programming tool.

As the recipes in this chapter attest, Python shines in this task. Files in Python are
supported in a variety of layers: from the built-in open function (a synonym for the
standard file object type), to specialized tools in standard library modules such as
os, to third-party utilities available on the Web. All told, Python’s arsenal of file tools
provides several powerful ways to access files in your scripts.

File Basics
In Python, a file object is an instance of built-in type file. The built-in function open

creates and returns a file object. The first argument, a string, specifies the file’s path
(i.e., the filename preceded by an optional directory path). The second argument to
open, also a string, specifies the mode in which to open the file. For example:

input = open('data', 'r')
output = open('/tmp/spam', 'w')

open accepts a file path in which directories and files are separated by slash charac-
ters (/), regardless of the proclivities of the underlying operating system. On systems
that don’t use slashes, you can use a backslash character (\) instead, but there’s no
real reason to do so. Backslashes are harder to fit nicely in string literals, since you
have to double them up or use “raw” strings. If the file path argument does not
include the file’s directory name, the file is assumed to reside in the current working
directory (which is a disjoint concept from the Python module search path).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 59

For the mode argument, use 'r' to read the file in text mode; this is the default value
and is commonly omitted, so that open is called with just one argument. Other com-
mon modes are 'rb' to read the file in binary mode, 'w' to create and write to the file
in text mode, and 'wb' to create and write to the file in binary mode. A variant of 'r'
that is sometimes precious is 'rU', which tells Python to read the file in text mode
with “universal newlines”: mode 'rU' can read text files independently of the line-
termination convention the files are using, be it the Unix way, the Windows way, or
even the (old) Mac way. (Mac OS X today is a Unix for all intents and purposes, but
releases of Mac OS 9 and earlier, just a few years ago, were quite different.)

The distinction between text mode and binary mode is important on non-Unix-like
platforms because of the line-termination characters used on these systems. When
you open a file in binary mode, Python knows that it doesn’t need to worry about
line-termination characters; it just moves bytes between the file and in-memory
strings without any kind of translation. When you open a file in text mode on a non-
Unix-like system, however, Python knows it must translate between the '\n' line-
termination characters used in strings and whatever the current platform uses in the
file itself. All of your Python code can always rely on '\n' as the line-termination
character, as long as you properly indicate text or binary mode when you open the
file.

Once you have a file object, you perform all file I/O by calling methods of this object,
as we’ll discuss in a moment. When you’re done with the file, you should finish by
calling the close method on the object, to close the connection to the file:

input.close()

In short scripts, people often omit this step, as Python automatically closes the file
when a file object is reclaimed during garbage collection (which in mainstream
Python means the file is closed just about at once, although other important Python
implementations, such as Jython and IronPython, have other, more relaxed garbage-
collection strategies). Nevertheless, it is good programming practice to close your
files as soon as possible, and it is especially a good idea in larger programs, which
otherwise may be at more risk of having excessive numbers of uselessly open files
lying about. Note that try/finally is particularly well suited to ensuring that a file
gets closed, even when a function terminates due to an uncaught exception.

To write to a file, use the write method:

output.write(s)

where s is a string. Think of s as a string of characters if output is open for text-mode
writing, and as a string of bytes if output is open for binary-mode writing. Files have
other writing-related methods, such as flush, to send any data being buffered, and
writelines, to write a sequence of strings in a single call. However, write is by far the
most commonly used method.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Files

Reading from a file is more common than writing to a file, and more issues are
involved, so file objects have more reading methods than writing ones. The readline

method reads and returns the next line from a text file. Consider the following loop:

while True:
 line = input.readline()
 if not line: break
 process(line)

This was once idiomatic Python but it is no longer the best way to read and process
all of the lines from a file. Another dated alternative is to use the readlines method,
which reads the whole file and returns a list of lines:

for line in input.readlines():
 process(line)

readlines is useful only for files that fit comfortably in physical memory. If the file is
truly huge, readlines can fail or at least slow things down quite drastically (virtual
memory fills up and the operating system has to start copying parts of physical mem-
ory to disk). In today’s Python, just loop on the file object itself to get a line at a time
with excellent memory and performance characteristics:

for line in input:
 process(line)

Of course, you don’t always want to read a file line by line. You may instead want to
read some or all of the bytes in the file, particularly if you’ve opened the file for
binary-mode reading, where lines are unlikely to be an applicable concept. In this
case, you can use the read method. When called without arguments, read reads and
returns all the remaining bytes from the file. When read is called with an integer
argument N, it reads and returns the next N bytes (or all the remaining bytes, if less
than N bytes remain). Other methods worth mentioning are seek and tell, which
support random access to files. These methods are normally used with binary files
made up of fixed-length records.

Portability and Flexibility
On the surface, Python’s file support is straightforward. However, before you peruse
the code in this chapter, I want to underscore two aspects of Python’s file support:
code portability and interface flexibility.

Keep in mind that most file interfaces in Python are fully portable across platform
boundaries. It would be difficult to overstate the importance of this feature. A
Python script that searches all files in a “directory” tree for a bit of text, for example,
can be freely moved from platform to platform without source-code changes: just
copy the script’s source file to the new target machine. I do it all the time—so much
so that I can happily stay out of operating system wars. With Python’s portability,
the underlying platform is almost irrelevant.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 61

Also, it has always struck me that Python’s file-processing interfaces are not
restricted to real, physical files. In fact, most file tools work with any kind of object
that exposes the same interface as a real file object. Thus, a file reader cares only
about read methods, and a file writer cares only about write methods. As long as the
target object implements the expected protocol, all goes well.

For example, suppose you have written a general file-processing function such as the
following, meant to apply a passed-in function to each line of an input file:

def scanner(fileobject, linehandler):
 for line in fileobject:
 linehandler(line)

If you code this function in a module file and drop that file into a “directory” that’s
on your Python search path (sys.path), you can use it any time you need to scan a
text file line by line, now or in the future. To illustrate, here is a client script that sim-
ply prints the first word of each line:

from myutils import scanner
def firstword(line):
 print line.split()[0]
file = open('data')
scanner(file, firstword)

So far, so good; we’ve just coded a small, reusable software component. But notice
that there are no type declarations in the scanner function, only an interface con-
straint—any object that is iterable line by line will do. For instance, suppose you
later want to provide canned test input from a string object, instead of using a real,
physical file. The standard StringIO module, and the equivalent but faster cStringIO,
provide the appropriate wrapping and interface forgery:

from cStringIO import StringIO
from myutils import scanner
def firstword(line): print line.split()[0]
string = StringIO('one\ntwo xxx\nthree\n')
scanner(string, firstword)

StringIO objects are plug-and-play compatible with file objects, so scanner takes its
three lines of text from an in-memory string object, rather than a true external file.
You don’t need to change the scanner to make this work—just pass it the right kind
of object. For more generality, you can even use a class to implement the expected
interface instead:

class MyStream(object):
 def __iter__(self):
 # grab and return text from wherever
 return iter(['a\n', 'b c d\n'])
from myutils import scanner
def firstword(line):
 print line.split()[0]
object = MyStream()
scanner(object, firstword)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Files

This time, as scanner attempts to read the file, it really calls out to the __iter__

method you’ve coded in your class. In practice, such a method might use other
Python standard tools to grab text from a variety of sources: an interactive user, a
popup GUI input box, a shelve object, an SQL database, an XML or HTML page, a
network socket, and so on. The point is that scanner doesn’t know or care what type
of object is implementing the interface it expects, or what that interface actually
does.

Object-oriented programmers know this deliberate naiveté as polymorphism. The
type of the object being processed determines what an operation, such as the for-
loop iteration in scanner, actually does. Everywhere in Python, object interfaces,
rather than specific data types, are the unit of coupling. The practical effect is that
functions are often applicable to a much broader range of problems than you might
expect. This is especially true if you have a background in statically typed languages
such as C or C++. It is almost as if we get C++ templates for free in Python. Code
has an innate flexibility that is a by-product of Python’s strong but dynamic typing.

Of course, code portability and flexibility run rampant in Python development and
are not really confined to file interfaces. Both are features of the language that are
simply inherited by file-processing scripts. Other Python benefits, such as its easy
scriptability and code readability, are also key assets when it comes time to change
file-processing programs. But rather than extolling all of Python’s virtues here, I’ll
simply defer to the wonderful recipes in this chapter and this book at large for more
details. Enjoy!

2.1 Reading from a File
Credit: Luther Blissett

Problem
You want to read text or data from a file.

Solution
Here’s the most convenient way to read all of the file’s contents at once into one long
string:

all_the_text = open('thefile.txt').read() # all text from a text file
all_the_data = open('abinfile', 'rb').read() # all data from a binary file

However, it is safer to bind the file object to a name, so that you can call close on it
as soon as you’re done, to avoid ending up with open files hanging around. For
example, for a text file:

file_object = open('thefile.txt')
try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.1 Reading from a File | 63

 all_the_text = file_object.read()
finally:
 file_object.close()

You don’t necessarily have to use the try/finally statement here, but it’s a good idea
to use it, because it ensures the file gets closed even when an error occurs during
reading.

The simplest, fastest, and most Pythonic way to read a text file’s contents at once as
a list of strings, one per line, is:

list_of_all_the_lines = file_object.readlines()

This leaves a '\n' at the end of each line; if you don’t want that, you have alterna-
tives, such as:

list_of_all_the_lines = file_object.read().splitlines()
list_of_all_the_lines = file_object.read().split('\n')
list_of_all_the_lines = [L.rstrip('\n') for L in file_object]

The simplest and fastest way to process a text file one line at a time is simply to loop
on the file object with a for statement:

for line in file_object:
process line

This approach also leaves a '\n' at the end of each line; you may remove it by start-
ing the for loop’s body with:

 line = line.rstrip('\n')

or even, when you’re OK with getting rid of trailing whitespace from each line (not
just a trailing '\n'), the generally handier:

 line = line.rstrip()

Discussion
Unless the file you’re reading is truly huge, slurping it all into memory in one gulp is
often fastest and most convenient for any further processing. The built-in function
open creates a Python file object (alternatively, you can equivalently call the built-in
type file). You call the read method on that object to get all of the contents
(whether text or binary) as a single long string. If the contents are text, you may
choose to immediately split that string into a list of lines with the split method or
the specialized splitlines method. Since splitting into lines is frequently needed,
you may also call readlines directly on the file object for faster, more convenient
operation.

You can also loop directly on the file object, or pass it to callables that require an
iterable, such as list or max—when thus treated as an iterable, a file object open for
reading has the file’s text lines as the iteration items (therefore, this should be done
for text files only). This kind of line-by-line iteration is cheap in terms of memory
consumption and fairly speedy too.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: Files

On Unix and Unix-like systems, such as Linux, Mac OS X, and other BSD variants,
there is no real distinction between text files and binary data files. On Windows and
very old Macintosh systems, however, line terminators in text files are encoded, not
with the standard '\n' separator, but with '\r\n' and '\r', respectively. Python
translates these line-termination characters into '\n' on your behalf. This means that
you need to tell Python when you open a binary file, so that it won’t perform such
translation. To do so, use 'rb' as the second argument to open. This is innocuous
even on Unix-like platforms, and it’s a good habit to distinguish binary files from
text files even there, although it’s not mandatory in that case. Such good habits will
make your programs more immediately understandable, as well as more compatible
with different platforms.

If you’re unsure about which line-termination convention a certain text file might be
using, use 'rU' as the second argument to open, requesting universal endline transla-
tion. This lets you freely interchange text files among Windows, Unix (including
Mac OS X), and old Macintosh systems, without worries: all kinds of line-ending
conventions get mapped to '\n', whatever platform your code is running on.

You can call methods such as read directly on the file object produced by the open

function, as shown in the first snippet of the solution. When you do so, you no
longer have a reference to the file object as soon as the reading operation finishes. In
practice, Python notices the lack of a reference at once, and immediately closes the
file. However, it is better to bind a name to the result of open, so that you can call
close yourself explicitly when you are done with the file. This ensures that the file
stays open for as short a time as possible, even on platforms such as Jython, Iron-
Python, and other hypothetical future versions of Python, on which more advanced
garbage-collection mechanisms might delay the automatic closing that the current
version of C-based Python performs at once. To ensure that a file object is closed
even if errors happen during its processing, the most solid and prudent approach is
to use the try/finally statement:

file_object = open('thefile.txt')
try:
 for line in file_object:

process line

finally:
 file_object.close()

Be careful not to place the call to open inside the try clause of this try/finally state-
ment (a rather common error among beginners). If an error occurs during the open-
ing, there is nothing to close, and besides, nothing gets bound to name file_object,
so you definitely don’t want to call file_object.close()!

If you choose to read the file a little at a time, rather than all at once, the idioms are
different. Here’s one way to read a binary file 100 bytes at a time, until you reach the
end of the file:

file_object = open('abinfile', 'rb')
try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.1 Reading from a File | 65

 while True:
 chunk = file_object.read(100)
 if not chunk:
 break
 do_something_with(chunk)
finally:
 file_object.close()

Passing an argument N to the read method ensures that read will read only the next N
bytes (or fewer, if the file is closer to the end). read returns the empty string when it
reaches the end of the file. Complicated loops are best encapsulated as reusable gen-
erators. In this case, we can encapsulate the logic only partially, because a genera-
tor’s yield keyword is not allowed in the try clause of a try/finally statement.
Giving up on the assurance of file closing afforded by try/finally, we can therefore
settle for:

def read_file_by_chunks(filename, chunksize=100):
 file_object = open(filename, 'rb')
 while True:
 chunk = file_object.read(chunksize)
 if not chunk:
 break
 yield chunk
 file_object.close()

Once this read_file_by_chunks generator is available, your application code to read
and process a binary file by fixed-size chunks becomes extremely simple:

for chunk in read_file_by_chunks('abinfile'):
 do_something_with(chunk)

Reading a text file one line at a time is a frequent task. Just loop on the file object, as
in:

for line in open('thefile.txt', 'rU'):
 do_something_with(line)

Here, too, in order to be 100% certain that no uselessly open file object will ever be
left just hanging around, you may want to code this snippet in a more rigorously cor-
rect and prudent way:

file_object = open('thefile.txt', 'rU'):
try:
 for line in file_object:
 do_something_with(line)
finally:
 file_object.close()

See Also
Recipe 2.2 “Writing to a File”; documentation for the open built-in function and file

objects in the Library Reference and Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: Files

2.2 Writing to a File
Credit: Luther Blissett

Problem
You want to write text or data to a file.

Solution
Here is the most convenient way to write one long string to a file:

open('thefile.txt', 'w').write(all_the_text) # text to a text file
open('abinfile', 'wb').write(all_the_data) # data to a binary file

However, it is safer to bind the file object to a name, so that you can call close on the
file object as soon as you’re done. For example, for a text file:

file_object = open('thefile.txt', 'w')
file_object.write(all_the_text)
file_object.close()

Often, the data you want to write is not in one big string, but in a list (or other
sequence) of strings. In this case, you should use the writelines method (which,
despite its name, is not limited to lines and works just as well with binary data as
with text files!):

file_object.writelines(list_of_text_strings)
open('abinfile', 'wb').writelines(list_of_data_strings)

Calling writelines is much faster than the alternatives of joining the strings into one
big string (e.g., with ''.join) and then calling write, or calling write repeatedly in a
loop.

Discussion
To create a file object for writing, you must always pass a second argument to open

(or file)—either 'w' to write textual data or 'wb' to write binary data. The same
considerations detailed previously in recipe 2.1 “Reading from a File” apply here,
except that calling close explicitly is even more advisable when you’re writing to a
file rather than reading from it. Only by closing the file can you be reasonably sure
that the data is actually on the disk and not still residing in some temporary buffer in
memory.

Writing a file a little at a time is even more common than reading a file a little at a
time. You can just call write and/or writelines repeatedly, as each string or
sequence of strings to write becomes ready. Each write operation appends data at the
end of the file, after all the previously written data. When you’re done, call the close

method on the file object. If all the data is available at once, a single writelines call is
faster and simpler. However, if the data becomes available a little at a time, it’s bet-
ter to call write as the data comes, than to build up a temporary list of pieces (e.g.,
with append) just in order to be able to write it all at once in the end with

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.3 Searching and Replacing Text in a File | 67

writelines. Reading and writing are quite different, with respect to the performance
and convenience implications of operating “in bulk” versus operating a little at a
time.

When you open a file for writing with option 'w' (or 'wb'), any data that might
already have been in the file is immediately destroyed; even if you close the file object
immediately after opening it, you still end up with an empty file on the disk. If you
want the data you’re writing to be appended to the previous contents of the file,
open the file with option 'a' (or 'ab') instead. More advanced options allow both
reading and writing on the same open file object—in particular, see recipe 2.8
“Updating a Random-Access File” for option 'r+b', which, in practice, is the only
frequently used one out of all the advanced option strings.

See Also
Recipe 2.1 “Reading from a File”; recipe 2.8 “Updating a Random-Access File”; doc-
umentation for the open built-in function and file objects in the Library Reference and
Python in a Nutshell.

2.3 Searching and Replacing Text in a File
Credit: Jeff Bauer, Adam Krieg

Problem
You need to change one string into another throughout a file.

Solution
String substitution is most simply performed by the replace method of string objects.
The work here is to support reading from a specified file (or standard input) and
writing to a specified file (or standard output):

#!/usr/bin/env python
import os, sys
nargs = len(sys.argv)
if not 3 <= nargs <= 5:
 print "usage: %s search_text replace_text [infile [outfile]]" % \
 os.path.basename(sys.argv[0])
else:
 stext = sys.argv[1]
 rtext = sys.argv[2]
 input_file = sys.stdin
 output_file = sys.stdout
 if nargs > 3:
 input_file = open(sys.argv[3])
 if nargs > 4:
 output_file = open(sys.argv[4], 'w')

for s in input_file:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: Files

output_file.write(s.replace(stext, rtext))
 output.close()
 input.close()

Discussion
This recipe is really simple, but that’s what beautiful about it—why do complicated
stuff when simple stuff suffices? As indicated by the leading “shebang” line, the rec-
ipe is a simple main script, meaning a script meant to be run directly at a shell com-
mand prompt, as opposed to a module meant to be imported from elsewhere. The
script looks at its arguments to determine the search text, the replacement text, the
input file (defaulting to standard input), and the output file (defaulting to standard
output). Then, it loops over each line of the input file, writing to the output file a
copy of the line with the substitution performed on it. That’s all! For accuracy, the
script closes both files at the end.

As long as an input file fits comfortably in memory in two copies (one before and one
after the replacement, since strings are immutable), we could, with an increase in
speed, operate on the entire input file’s contents at once instead of looping. With
today’s low-end PCs typically containing at least 256 MB of memory, handling files
of up to about 100 MB should not be a problem, and few text files are bigger than
that. It suffices to replace the for loop with one single statement:

output_file.write(input_file.read().replace(stext, rtext))

As you can see, that’s even simpler than the loop used in the recipe.

See Also
Documentation for the open built-in function, file objects, and strings’ replace

method in the Library Reference and Python in a Nutshell.

2.4 Reading a Specific Line from a File
Credit: Luther Blissett

Problem
You want to read from a text file a single line, given the line number.

Solution
The standard Python library linecache module makes this task a snap:

import linecache
theline = linecache.getline(thefilepath, desired_line_number)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Counting Lines in a File | 69

Discussion
The standard linecache module is usually the optimal Python solution for this task.
linecache is particularly useful when you have to perform this task repeatedly for
several lines in a file, since linecache caches information to avoid uselessly repeating
work. When you know that you won’t be needing any more lines from the cache for
a while, call the module’s clearcache function to free the memory used for the cache.
You can also use checkcache if the file may have changed on disk and you must make
sure you are getting the updated version.

linecache reads and caches all of the text file whose name you pass to it, so, if it’s a
very large file and you need only one of its lines, linecache may be doing more work
than is strictly necessary. Should this happen to be a bottleneck for your program,
you may get an increase in speed by coding an explicit loop, encapsulated within a
function, such as:

def getline(thefilepath, desired_line_number):
 if desired_line_number < 1: return ''
 for current_line_number, line in enumerate(open(thefilepath, 'rU')):
 if current_line_number == desired_line_number-1: return line
 return ''

The only detail requiring attention is that enumerate counts from 0, so, since we
assume the desired_line_number argument counts from 1, we need the -1 in the ==

comparison.

See Also
Documentation for the linecache module in the Library Reference and Python in a
Nutshell; Perl Cookbook recipe 8.8.

2.5 Counting Lines in a File
Credit: Luther Blissett

Problem
You need to compute the number of lines in a file.

Solution
The simplest approach for reasonably sized files is to read the file as a list of lines, so
that the count of lines is the length of the list. If the file’s path is in a string bound to
a variable named thefilepath, all the code you need to implement this approach is:

count = len(open(thefilepath, 'rU').readlines())

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: Files

For a truly huge file, however, this simple approach may be very slow or even fail to
work. If you have to worry about humongous files, a loop on the file always works:

count = -1
for count, line in enumerate(open(thefilepath, 'rU')):
 pass
count += 1

A tricky alternative, potentially faster for truly humongous files, for when the line
terminator is '\n' (or has '\n' as a substring, as happens on Windows):

count = 0
thefile = open(thefilepath, 'rb')
while True:
 buffer = thefile.read(8192*1024)
 if not buffer:
 break
 count += buffer.count('\n')
thefile.close()

The 'rb' argument to open is necessary if you’re after speed—without that argu-
ment, this snippet might be very slow on Windows.

Discussion
When an external program counts a file’s lines, such as wc -l on Unix-like plat-
forms, you can of course choose to use that (e.g., via os.popen). However, it’s gener-
ally simpler, faster, and more portable to do the line-counting in your own program.
You can rely on almost all text files having a reasonable size, so that reading the
whole file into memory at once is feasible. For all such normal files, the len of the
result of readlines gives you the count of lines in the simplest way.

If the file is larger than available memory (say, a few hundred megabytes on a typical
PC today), the simplest solution can become unacceptably slow, as the operating sys-
tem struggles to fit the file’s contents into virtual memory. It may even fail, when
swap space is exhausted and virtual memory can’t help any more. On a typical PC,
with 256MB RAM and virtually unlimited disk space, you should still expect serious
problems when you try to read into memory files above, say, 1 or 2 GB, depending
on your operating system. (Some operating systems are much more fragile than oth-
ers in handling virtual-memory issues under such overly stressed load conditions.) In
this case, looping on the file object, as shown in this recipe’s Solution, is better. The
enumerate built-in keeps the line count without your code having to do it explicitly.

Counting line-termination characters while reading the file by bytes in reasonably
sized chunks is the key idea in the third approach. It’s probably the least immedi-
ately intuitive, and it’s not perfectly cross-platform, but you might hope that it’s fast-
est (e.g., when compared with recipe 8.2 in the Perl Cookbook).

However, in most cases, performance doesn’t really matter all that much. When it
does matter, the time-sink part of your program might not be what your intuition

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Counting Lines in a File | 71

tells you it is, so you should never trust your intuition in this matter—instead,
always benchmark and measure. For example, consider a typical Unix syslog file of
middling size, a bit over 18 MB of text in 230,000 lines:

[situ@tioni nuc]$ wc nuc
 231581 2312730 18508908 nuc

And consider the following testing-and-benchmark framework script, bench.py:

import time
def timeo(fun, n=10):
 start = time.clock()
 for i in xrange(n): fun()
 stend = time.clock()
 thetime = stend-start
 return fun.__name__, thetime
import os
def linecount_w():
 return int(os.popen('wc -l nuc').read().split()[0])
def linecount_1():
 return len(open('nuc').readlines())
def linecount_2():
 count = -1
 for count, line in enumerate(open('nuc')): pass
 return count+1
def linecount_3():
 count = 0
 thefile = open('nuc', 'rb')
 while True:
 buffer = thefile.read(65536)
 if not buffer: break
 count += buffer.count('\n')
 return count
for f in linecount_w, linecount_1, linecount_2, linecount_3:
 print f.__name__, f()
for f in linecount_1, linecount_2, linecount_3:
 print "%s: %.2f"%timeo(f)

First, I print the line-counts obtained by all methods, thus ensuring that no anomaly
or error has occurred (counting tasks are notoriously prone to off-by-one errors).
Then, I run each alternative 10 times, under the control of the timing function timeo,
and look at the results. Here they are, on the old but reliable machine I measured
them on:

[situ@tioni nuc]$ python -O bench.py
linecount_w 231581
linecount_1 231581
linecount_2 231581
linecount_3 231581
linecount_1: 4.84
linecount_2: 4.54
linecount_3: 5.02

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 2: Files

As you can see, the performance differences hardly matter: your users will never even
notice a difference of 10% or so in one auxiliary task. However, the fastest approach
(for my particular circumstances, on an old but reliable PC running a popular Linux
distribution, and for this specific benchmark) is the humble loop-on-every-line
technique, while the slowest one is the fancy, ambitious technique that counts line
terminators by chunks. In practice, unless I had to worry about files of many hun-
dreds of megabytes, I’d always use the simplest approach (i.e., the first one pre-
sented in this recipe).

Measuring the exact performance of code snippets (rather than blindly using compli-
cated approaches in the hope that they’ll be faster) is very important—so important,
indeed, that the Python Standard Library includes a module, timeit, specifically
designed for such measurement tasks. I suggest you use timeit, rather than coding
your own little benchmarks as I have done here. The benchmark I just showed you is
one I’ve had around for years, since well before timeit appeared in the standard
Python library, so I think I can be forgiven for not using timeit in this specific case!

See Also
The Library Reference and Python in a Nutshell sections on file objects, the
enumerate built-in, os.popen, and the time and timeit modules; Perl Cookbook recipe
8.2.

2.6 Processing Every Word in a File
Credit: Luther Blissett

Problem
You need to do something with each and every word in a file.

Solution
This task is best handled by two nested loops, one on lines and another on the words
in each line:

for line in open(thefilepath):
 for word in line.split():
 dosomethingwith(word)

The nested for statement’s header implicitly defines words as sequences of non-
spaces separated by sequences of spaces (just as the Unix program wc does). For
other definitions of words, you can use regular expressions. For example:

import re
re_word = re.compile(r"[\w'-]+")
for line in open(thefilepath):
 for word in re_word.finditer(line):
 dosomethingwith(word.group(0))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.6 Processing Every Word in a File | 73

In this case, a word is defined as a maximal sequence of alphanumerics, hyphens,
and apostrophes.

Discussion
If you want to use other definitions of words, you will obviously need different regu-
lar expressions. The outer loop, on all lines in the file, won’t change.

It’s often a good idea to wrap iterations as iterator objects, and this kind of wrap-
ping is most commonly and conveniently obtained by coding simple generators:

def words_of_file(thefilepath, line_to_words=str.split):
 the_file = open(thefilepath):
 for line in the_file:
 for word in line_to_words(line):
 yield word
 the_file.close()
for word in words_of_file(thefilepath):
 dosomethingwith(word)

This approach lets you separate, cleanly and effectively, two different concerns: how
to iterate over all items (in this case, words in a file) and what to do with each item in
the iteration. Once you have cleanly encapsulated iteration concerns in an iterator
object (often, as here, a generator), most of your uses of iteration become simple for

statements. You can often reuse the iterator in many spots in your program, and if
maintenance is ever needed, you can perform that maintenance in just one place—
the definition of the iterator—rather than having to hunt for all uses. The advan-
tages are thus very similar to those you obtain in any programming language by
appropriately defining and using functions, rather than copying and pasting pieces of
code all over the place. With Python’s iterators, you can get these reuse advantages
for all of your looping-control structures, too.

We’ve taken the opportunity afforded by the refactoring of the loop into a generator
to perform two minor enhancements—ensuring the file is explicitly closed, which is
always a good idea, and generalizing the way each line is split into words (defaulting
to the split method of string objects, but leaving a door open to more generality).
For example, when we need words as defined by a regular expression, we can code
another wrapper on top of words_of_file thanks to this “hook”:

import re
def words_by_re(thefilepath, repattern=r"[\w'-]+"):
 wre = re.compile(repattern)
 def line_to_words(line):
 for mo in wre.finditer(line):
 yield mo.group(0)
 return words_of_file(thefilepath, line_to_words)

Here, too, we supply a reasonable default for the regular expression pattern defining
a word but still make it easy to pass a different value in those cases in which differ-
ent definitions are necessary. Excessive generalization is a pernicious temptation, but

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 2: Files

a little tasteful generalization suggested by experience will most often amply repay
the modest effort it requires. Having a function accept an optional argument, while
providing the most likely value for the argument as the default value, is among the
simplest and handiest ways to implement this modest and often worthwhile kind of
generalization.

See Also
Chapter 19 for more on iterators and generators; Library Reference and Python in a
Nutshell on file objects and the re module; Perl Cookbook recipe 8.3.

2.7 Using Random-Access Input/Output
Credit: Luther Blissett

Problem
You want to read a binary record from somewhere inside a large file of fixed-length
records, without reading a record at a time to get there.

Solution
The byte offset of the start of a record in the file is the size of a record, in bytes, mul-
tiplied by the progressive number of the record (counting from 0). So, you can just
seek right to the proper spot, then read the data. For example, to read the seventh
record from a binary file where each record is 48 bytes long:

thefile = open('somebinfile', 'rb')
record_size = 48
record_number = 6
thefile.seek(record_size * record_number)
buffer = thefile.read(record_size)

Note that the record_number of the seventh record is 6: record numbers count from
zero!

Discussion
This approach works only on files (generally binary ones) defined in terms of records
that are all the same fixed size in bytes; it doesn’t work on normal text files. For clar-
ity, the recipe shows the file being opened for reading as a binary file by passing 'rb'

as the second argument to open, just before the seek. As long as the file object is open
for reading as a binary file, you can perform as many seek and read operations as you
need, before eventually closing the file again—you don’t necessarily open the file just
before performing a seek on it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.8 Updating a Random-Access File | 75

See Also
The section of the Library Reference and Python in a Nutshell on file objects; Perl
Cookbook recipe 8.12.

2.8 Updating a Random-Access File
Credit: Luther Blissett

Problem
You want to read a binary record from somewhere inside a large file of fixed-length
records, change some or all of the values of the record’s fields, and write the record
back.

Solution
Read the record, unpack it, perform whatever computations you need for the update,
pack the fields back into the record, seek to the start of the record again, write it
back. Phew. Faster to code than to say:

import struct
format_string = '8l' # e.g., say a record is 8 4-byte integers
thefile = open('somebinfile', 'r+b')
record_size = struct.calcsize(format_string)
record_number = 6
thefile.seek(record_size * record_number)
buffer = thefile.read(record_size)
fields = list(struct.unpack(format_string, buffer))
Perform computations, suitably modifying fields, then:
buffer = struct.pack(format_string, *fields)
thefile.seek(record_size * record_number)
thefile.write(buffer)
thefile.close()

Discussion
This approach works only on files (generally binary ones) defined in terms of records
that are all the same, fixed size; it doesn’t work on normal text files. Furthermore,
the size of each record must be that defined by a struct format string, as shown in
the recipe’s code. A typical format string, for example, might be '8l', to specify that
each record is made up of eight four-byte integers, each to be interpreted as a signed
value and unpacked into a Python int. In this case, the fields variable in the recipe
would be bound to a list of eight ints. Note that struct.unpack returns a tuple.
Because tuples are immutable, the computation would have to rebind the entire
fields variable. A list is mutable, so each field can be rebound as needed. Thus, for
convenience, we explicitly ask for a list when we bind fields. Make sure, however,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 2: Files

not to alter the length of the list. In this case, it needs to remain composed of exactly
eight integers, or the struct.pack call will raise an exception when we call it with a
format_string of '8l'. Also, this recipe is not suitable when working with records
that are not all of the same, unchanging length.

To seek back to the start of the record, instead of using the record_size*record_

number offset again, you may choose to do a relative seek:

thefile.seek(-record_size, 1)

The second argument to the seek method (1) tells the file object to seek relative to
the current position (here, so many bytes back, because we used a negative number
as the first argument). seek’s default is to seek to an absolute offset within the file
(i.e., from the start of the file). You can also explicitly request this default behavior
by calling seek with a second argument of 0.

You don’t need to open the file just before you do the first seek, nor do you need to
close it right after the write. Once you have a file object that is correctly opened (i.e.,
for updating and as a binary rather than a text file), you can perform as many
updates on the file as you want before closing the file again. These calls are shown
here to emphasize the proper technique for opening a file for random-access updates
and the importance of closing a file when you are done with it.

The file needs to be opened for updating (i.e., to allow both reading and writing).
That’s what the 'r+b' argument to open means: open for reading and writing, but do
not implicitly perform any transformations on the file’s contents because the file is a
binary one. (The 'b' part is unnecessary but still recommended for clarity on Unix
and Unix-like systems. However, it’s absolutely crucial on other platforms, such as
Windows.) If you’re creating the binary file from scratch, but you still want to be
able to go back, reread, and update some records without closing and reopening the
file, you can use a second argument of 'w+b' instead. However, I have never wit-
nessed this strange combination of requirements; binary files are normally first cre-
ated (by opening them with 'wb', writing data, and closing the file) and later
reopened for updating with 'r+b'.

While this approach is normally useful only on a file whose records are all the same
size, another, more advanced possibility exists: a separate “index file” that provides
the offset and length of each record inside the “data file”. Such indexed sequential
access approaches aren’t much in fashion any more, but they used to be very impor-
tant. Nowadays, one meets just about only text files (of many kinds, more and more
often XML ones), databases, and occasional binary files with fixed-length records.
Still, if you do need to access an indexed sequential binary file, the code is quite simi-
lar to that shown in this recipe, except that you must obtain the record_size and the
offset argument to pass to thefile.seek by reading them from the index file, rather
than computing them yourself as shown in this recipe’s Solution.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.9 Reading Data from zip Files | 77

See Also
The sections of the Library Reference and Python in a Nutshell on file objects and the
struct module; Perl Cookbook recipe 8.13.

2.9 Reading Data from zip Files
Credit: Paul Prescod, Alex Martelli

Problem
You want to directly examine some or all of the files contained in an archive in zip
format, without expanding them on disk.

Solution
zip files are a popular, cross-platform way of archiving files. The Python Standard
Library comes with a zipfile module to access such files easily:

import zipfile
z = zipfile.ZipFile("zipfile.zip", "r")
for filename in z.namelist():
 print 'File:', filename,
 bytes = z.read(filename)
 print 'has', len(bytes), 'bytes'

Discussion
Python can work directly with data in zip files. You can look at the list of items in the
archive’s directory and work with the “data file”s themselves. This recipe is a snip-
pet that lists all of the names and content lengths of the files included in the zip
archive zipfile.zip.

The zipfile module does not currently handle multidisk zip files nor zip files with
appended comments. Take care to use r as the flag argument, not rb, which might
seem more natural (e.g., on Windows). With ZipFile, the flag is not used the same
way when opening a file, and rb is not recognized. The r flag handles the inherently
binary nature of all zip files on all platforms.

When a zip file contains some Python modules (meaning .py or preferably .pyc files),
possibly in addition to other (data) files, you can add the file’s path to Python’s
sys.path and then use the import statement to import modules from the zip file.
Here’s a toy, self-contained, purely demonstrative example that creates such a zip file
on the fly, imports a module from it, then removes it—all just to show you how it’s
done:

import zipfile, tempfile, os, sys
handle, filename = tempfile.mkstemp('.zip')
os.close(handle)
z = zipfile.ZipFile(filename, 'w')

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 2: Files

z.writestr('hello.py', 'def f(): return "hello world from "+__file__\n')
z.close()
sys.path.insert(0, filename)
import hello
print hello.f()
os.unlink(filename)

Running this script emits something like:

hello world from /tmp/tmpESVzeY.zip/hello.py

Besides illustrating Python’s ability to import from a zip file, this snippet also shows
how to make (and later remove) a temporary file, and how to use the writestr

method to add a member to a zip file without placing that member into a disk file
first.

Note that the path to the zip file from which you import is treated somewhat like a
directory. (In this specific example run, that path is /tmp/tmpESVzeY.zip, but of
course, since we’re dealing with a temporary file, the exact value of the path can
change at each run, depending also on your platform.) In particular, the __file__

global variable, within the module hello, which is imported from the zip file, has a
value of /tmp/tmpESVzeY.zip/hello.py—a pseudo-path, made up of the zip file’s path
seen as a “directory” followed by the relative path of hello.py within the zip file. If
you import from a zip file a module that computes paths relative to itself in order to
get to data files, you need to adapt the module to this effect, because you cannot just
open such a “pseudo-path” to get a file object: rather, to read or write files inside a
zip file, you must use functions from standard library module zipfile, as shown in
the solution.

For more information about importing modules from a zip file, see recipe 16.12
“Binding Main Script and Modules into One Executable on Unix.” While that recipe
is Unix-specific, the information in the recipe’s Discussion about importing from zip
files is also valid for Windows.

See Also
Documentation for the zipfile module in the Library Reference and Python in a Nut-
shell; modules tempfile, os, sys; for archiving a tree of files, see recipe 2.11
“Archiving a Tree of Files into a Compressed tar File”; for more information about
importing modules from a zip file, recipe 16.12 “Binding Main Script and Modules
into One Executable on Unix.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.10 Handling a zip File Inside a String | 79

2.10 Handling a zip File Inside a String
Credit: Indyana Jones

Problem
Your program receives a zip file as a string of bytes in memory, and you need to read
the information in this zip file.

Solution
Solving this kind of problem is exactly what standard library module cStringIO is for:

import cStringIO, zipfile
class ZipString(ZipFile):
 def __init__(self, datastring):
 ZipFile.__init__(self, cStringIO.StringIO(datastring))

Discussion
I often find myself faced with this task—for example, zip files coming from BLOB
fields in a database or ones received from a network connection. I used to save such
binary data to a temporary file, then open the file with the standard library module
zipfile. Of course, I had to ensure I deleted the temporary file when I was done.
Then I thought of using the standard library module cStringIO for the purpose...
and never looked back.

Module cStringIO lets you wrap a string of bytes so it can be accessed as a file object.
You can also do things the other way around, writing into a cStringIO.StringIO

instance as if it were a file object, and eventually recovering its contents as a string of
bytes. Most Python modules that take file objects don’t check whether you’re pass-
ing an actual file—rather, any file-like object will do; the module’s code just calls on
the object whatever file methods it needs. As long as the object supplies those meth-
ods and responds correctly when they’re called, everything just works. This demon-
strates the awesome power of signature-based polymorphism and hopefully teaches
why you should almost never type-test (utter such horrors as if type(x) is y, or
even just the lesser horror if isinstance(x, y)) in your own code! A few low-level
modules, such as marshal, are unfortunately adamant about using “true” files, but
zipfile isn’t, and this recipe shows how simple it makes your life!

If you are using a version of Python that is different from the mainstream C-coded
one, known as “CPython”, you may not find module cStringIO in the standard
library. The leading c in the name of the module indicates that it’s a C-specific mod-
ule, optimized for speed but not guaranteed to be in the standard library for other
compliant Python implementations. Several such alternative implementations
include both production-quality ones (such as Jython, which is coded in Java and
runs on a JVM) and experimental ones (such as pypy, which is coded in Python and
generates machine code, and IronPython, which is coded in C# and runs on

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 2: Files

Microsoft’s .NET CLR). Not to worry: the Python Standard Library always includes
module StringIO, which is coded in pure Python (and thus is usable from any com-
pliant implementation of Python), and implements the same functionality as module
cStringIO (albeit not quite as fast, at least on the mainstream CPython implementa-
tion). You just need to alter your import statement a bit to make sure you get
cStringIO when available and StringIO otherwise. For example, this recipe might
become:

import zipfile
try:
 from cStringIO import StringIO
except ImportError:
 from StringIO import StringIO
class ZipString(ZipFile):
 def __init__(self, datastring):
 ZipFile.__init__(self, StringIO(datastring))

With this modification, the recipe becomes useful in Jython, and other, alternative
implementations.

See Also
Modules zipfile and cStringIO in the Library Reference and Python in a Nutshell;
Jython is at http://www.jython.org/; pypy is at http://codespeak.net/pypy/; IronPython
is at http://ironpython.com/.

2.11 Archiving a Tree of Files into a Compressed
tar File

Credit: Ed Gordon, Ravi Teja Bhupatiraju

Problem
You need to archive all of the files and folders in a subtree into a tar archive file,
compressing the data with either the popular gzip approach or the higher-compress-
ing bzip2 approach.

Solution
The Python Standard Library’s tarfile module directly supports either kind of com-
pression: you just need to specify the kind of compression you require, as part of the
option string that you pass when you call tarfile.TarFile.open to create the archive
file. For example:

import tarfile, os
def make_tar(folder_to_backup, dest_folder, compression='bz2'):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.11 Archiving a Tree of Files into a Compressed tar File | 81

 if compression:
 dest_ext = '.' + compression
 else:
 dest_ext = ''
 arcname = os.path.basename(folder_to_backup)
 dest_name = '%s.tar%s' % (arcname, dest_ext)
 dest_path = os.path.join(dest_folder, dest_name)
 if compression:
 dest_cmp = ':' + compression
 else:
 dest_cmp = ''
 out = tarfile.TarFile.open(dest_path, 'w'+dest_cmp)
 out.add(folder_to_backup, arcname)
 out.close()
 return dest_path

Discussion
You can pass, as argument compression to function make_tar, the string 'gz' to get
gzip compression instead of the default bzip2, or you can pass the empty string '' to
get no compression at all. Besides making the file extension of the result either .tar,
.tar.gz, or .tar.bz2, as appropriate, your choice for the compression argument deter-
mines which string is passed as the second argument to tarfile.TarFile.open: 'w',
when you want no compression, or 'w:gz' or 'w:bz2' to get two kinds of compres-
sion.

Class tarfile.TarFile offers several other classmethods, besides open, which you
could use to generate a suitable instance. I find open handier and more flexible
because it takes the compression information as part of the mode string argument.
However, if you want to ensure bzip2 compression is used unconditionally, for
example, you could choose to call classmethod bz2open instead.

Once we have an instance of class tarfile.TarFile that is set to use the kind of com-
pression we desire, the instance’s method add does all we require. In particular, when
string folder_to_backup names a “directory” (or folder), rather than an ordinary file,
add recursively adds all of the subtree rooted in that directory. If on some other occa-
sion, we wanted to change this behavior to get precise control on what is archived,
we could pass to add an additional named argument recursive=False to switch off
this implicit recursion. After calling add, all that’s left for function make_tar to do is
to close the TarFile instance and return the path on which the tar file has been writ-
ten, just in case the caller needs this information.

See Also
Library Reference docs on module tarfile.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 2: Files

2.12 Sending Binary Data to Standard Output
Under Windows

Credit: Hamish Lawson

Problem
You want to send binary data (e.g., an image) to stdout under Windows.

Solution
That’s what the setmode function, in the platform-dependent (Windows-only) msvcrt
module in the Python Standard Library, is for:

import sys
if sys.platform == "win32":
 import os, msvcrt

msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

You can now call sys.stdout.write with any bytestring as the argument, and the
bytestring will go unmodified to standard output.

Discussion
While Unix doesn’t make (or need) a distinction between text and binary modes, if
you are reading or writing binary data, such as an image, under Windows, the file
must be opened in binary mode. This is a problem for programs that write binary
data to standard output (as a CGI script, for example, could be expected to do),
because Python opens the sys.stdout file object on your behalf, normally in text
mode.

You can have stdout opened in binary mode instead by supplying the -u command-
line option to the Python interpreter. For example, if you know your CGI script will
be running under the Apache web server, as the first line of your script, you can use
something like:

#! c:/python23/python.exe -u

assuming you’re running under Python 2.3 with a standard installation. Unfortu-
nately, you may not always be able to control the command line under which your
script will be started. The approach taken in this recipe’s “Solution” offers a work-
able alternative. The setmode function provided by the Windows-specific msvcrt

module lets you change the mode of stdout’s underlying file descriptor. By using this
function, you can ensure from within your program that sys.stdout gets set to binary
mode.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.13 Using a C++-like iostream Syntax | 83

See Also
Documentation for the msvcrt module in the Library Reference and Python in a Nut-
shell.

2.13 Using a C++-like iostream Syntax
Credit: Erik Max Francis

Problem
You like the C++ approach to I/O, based on ostreams and manipulators (special
objects that cause special effects on a stream when inserted in it) and want to use it
in your Python programs.

Solution
Python lets you overload operators by having your classes define special methods
(i.e., methods whose names start and end with two underscores). To use << for out-
put, as you do in C++, you just need to code an output stream class that defines the
special method __lshift__:

class IOManipulator(object):
 def __init__(self, function=None):
 self.function = function
 def do(self, output):
 self.function(output)
def do_endl(stream):
 stream.output.write('\n')
 stream.output.flush()
endl = IOManipulator(do_endl)
class OStream(object):
 def __init__(self, output=None):
 if output is None:
 import sys
 output = sys.stdout
 self.output = output
 self.format = '%s'
 def __lshift__(self, thing):
 ''' the special method which Python calls when you use the <<
 operator and the left-hand operand is an OStream '''
 if isinstance(thing, IOManipulator):
 thing.do(self)
 else:
 self.output.write(self.format % thing)
 self.format = '%s'
 return self
def example_main():
 cout = OStream()
 cout<< "The average of " << 1 << " and " << 3 << " is " << (1+3)/2 <<endl
emits The average of 1 and 3 is 2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 2: Files

if __name__ == '__main__':
 example_main()

Discussion
Wrapping Python file-like objects to emulate C++ ostreams syntax is quite easy. This
recipe shows how to code the insertion operator << for this purpose. The recipe also
implements an IOManipulator class (as in C++) to call arbitrary functions on a stream
upon insertion, and a predefined manipulator endl (guess where that name comes
from) to write a newline and flush the stream.

The reason class OStream’s instances hold a format attribute and reset it to the default
value '%s' after each self.output.write is so that you can build devious manipula-
tors that temporarily save formatting state on the stream object, such as:

def do_hex(stream):
 stream.format = '%x'
hex = IOManipulator(do_hex)
cout << 23 << ' in hex is ' << hex << 23 << ', and in decimal ' << 23 << endl
emits 23 in hex is 17, and in decimal 23

Some people detest C++'s cout << something syntax, some love it. In cases such as
the example given in the recipe, this syntax ends up simpler and more readable than:

print>>somewhere, "The average of %d and %d is %f\n" % (1, 3, (1+3)/2)

which is the “Python-native” alternative (looking a lot like C in this case). It depends
in part on whether you’re more used to C++ or to C. In any case, this recipe gives
you a choice! Even if you don’t end up using this particular approach, it’s still inter-
esting to see how simple operator overloading is in Python.

See Also
Library Reference and Python in a Nutshell docs on file objects and special methods
such as __lshift__; recipe 4.20 “Using printf in Python” implements a Python ver-
sion of C’s printf function.

2.14 Rewinding an Input File to the Beginning
Credit: Andrew Dalke

Problem
You need to make an input file object (with data coming from a socket or other input
file handle) rewindable back to the beginning so you can read it over.

Solution
Wrap the file object into a suitable class:

from cStringIO import StringIO

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.14 Rewinding an Input File to the Beginning | 85

class RewindableFile(object):
 """ Wrap a file handle to allow seeks back to the beginning. """
 def __init__(self, input_file):
 """ Wraps input_file into a file-like object with rewind. """
 self.file = input_file
 self.buffer_file = StringIO()
 self.at_start = True
 try:
 self.start = input_file.tell()
 except (IOError, AttributeError):
 self.start = 0
 self._use_buffer = True
 def seek(self, offset, whence=0):
 """ Seek to a given byte position.
 Must be: whence == 0 and offset == self.start
 """
 if whence != 0:
 raise ValueError("whence=%r; expecting 0" % (whence,))
 if offset != self.start:
 raise ValueError("offset=%r; expecting %s" % (offset, self.start))
 self.rewind()
 def rewind(self):
 """ Simplified way to seek back to the beginning. """
 self.buffer_file.seek(0)
 self.at_start = True
 def tell(self):
 """ Return the current position of the file (must be at start). """
 if not self.at_start:
 raise TypeError("RewindableFile can't tell except at start of file")
 return self.start
 def _read(self, size):
 if size < 0: # read all the way to the end of the file
 y = self.file.read()
 if self._use_buffer:
 self.buffer_file.write(y)
 return self.buffer_file.read() + y
 elif size == 0: # no need to actually read the empty string
 return ""
 x = self.buffer_file.read(size)
 if len(x) < size:
 y = self.file.read(size - len(x))
 if self._use_buffer:
 self.buffer_file.write(y)
 return x + y
 return x
 def read(self, size=-1):
 """ Read up to 'size' bytes from the file.
 Default is -1, which means to read to end of file.
 """
 x = self._read(size)
 if self.at_start and x:
 self.at_start = False
 self._check_no_buffer()
 return x

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 2: Files

 def readline(self):
 """ Read a line from the file. """
 # Can we get it out of the buffer_file?
 s = self.buffer_file.readline()
 if s[-1:] == "\n":
 return s
 # No, so read a line from the input file
 t = self.file.readline()
 if self._use_buffer:
 self.buffer_file.write(t)
 self._check_no_buffer()
 return s + t
 def readlines(self):
 """read all remaining lines from the file"""
 return self.read().splitlines(True)
 def _check_no_buffer(self):
 # If 'nobuffer' has been called and we're finished with the buffer file,
 # get rid of the buffer, redirect everything to the original input file.
 if not self._use_buffer and \
 self.buffer_file.tell() == len(self.buffer_file.getvalue()):
 # for top performance, we rebind all relevant methods in self
 for n in 'seek tell read readline readlines'.split():
 setattr(self, n, getattr(self.file, n, None))
 del self.buffer_file
 def nobuffer(self):
 """tell RewindableFile to stop using the buffer once it's exhausted"""
 self._use_buffer = False

Discussion
Sometimes, data coming from a socket or other input file handle isn’t what it was
supposed to be. For example, suppose you are reading from a buggy server, which is
supposed to return an XML stream, but sometimes returns an unformatted error
message instead. (This scenario often occurs because many servers don’t handle
incorrect input very well.)

This recipe’s RewindableFile class helps you solve this problem. r =

RewindableFile(f) wraps the original input stream f into a “rewindable file” instance
r which essentially mimics f’s behavior but also provides a buffer. Read requests to r

are forwarded to f, and the data thus read gets appended to a buffer, then returned
to the caller. The buffer contains all the data read so far.

r can be told to rewind, meaning to seek back to the start position. The next read
request will come from the buffer, until the buffer has been read, in which case it gets
the data from the input stream again. The newly read data is also appended to the
buffer.

When buffering is no longer needed, call the nobuffer method of r. This tells r that,
once it’s done reading the buffer’s current contents, it can throw the buffer away.
After nobuffer is called, the behavior of seek is no longer defined.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.15 Adapting a File-like Object to a True File Object | 87

For example, suppose you have a server that gives either an error message of the
form ERROR: cannot do that, or an XML data stream, starting with '<?xml'...:

 import RewindableFile
 infile = urllib2.urlopen("http://somewhere/")
 infile = RewindableFile.RewindableFile(infile)
 s = infile.readline()
 if s.startswith("ERROR:"):
 raise Exception(s[:-1])
 infile.seek(0)
 infile.nobuffer() # Don't buffer the data any more

... process the XML from infile ...

One sometimes-useful Python idiom is not supported by the class in this recipe: you
can’t reliably stash away the bound methods of a RewindableFile instance. (If you
don’t know what bound methods are, no problem, of course, since in that case you
surely won’t want to stash them anywhere!). The reason for this limitation is that,
when the buffer is empty, the RewindableFile code reassigns the input file’s read,
readlines, etc., methods, as instance variables of self. This gives slightly better per-
formance, at the cost of not supporting the infrequently-used idiom of saving bound
methods. See recipe 6.11 “Implementing a Ring Buffer” for another example of a
similar technique, where an instance irreversibly changes its own methods.

The tell method, which gives the current location of a file, can be called on an
instance of RewindableFile only right after wrapping, and before any reading, to get
the beginning byte location. The RewindableFile implementation of tell tries to get
the real position from the wrapped file, and use that as the beginning location. If the
wrapped file does not support tell, then the RewindableFile implementation of tell
just returns 0.

See Also
Site http://www.dalkescientific.com/Python/ for the latest version of this recipe’s code;
Library Reference and Python in a Nutshell docs on file objects and module
cStringIO; recipe 6.11 “Implementing a Ring Buffer” for another example of an
instance affecting an irreversible behavior change on itself by rebinding its methods.

2.15 Adapting a File-like Object to a True File
Object

Credit: Michael Kent

Problem
You need to pass a file-like object (e.g., the results of a call such as urllib.urlopen)
to a function or method that insists on receiving a true file object (e.g., a function
such as marshal.load).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 2: Files

Solution
To cooperate with such type-checking, we need to write all data from the file-like
object into a temporary file on disk. Then, we can use the (true) file object for that
temporary disk file. Here’s a function that implements this idea:

import types, tempfile
CHUNK_SIZE = 16 * 1024
def adapt_file(fileObj):
 if isinstance(fileObj, file): return fileObj
 tmpFileObj = tempfile.TemporaryFile
 while True:
 data = fileObj.read(CHUNK_SIZE)
 if not data: break
 tmpFileObj.write(data)
 fileObj.close()
 tmpFileObj.seek(0)
 return tmpFileObj

Discussion
This recipe demonstrates an unusual Pythonic application of the Adapter Design Pat-
tern (i.e., what to do when you have an X and you need a Y instead). While design
patterns are most normally thought of in an object-oriented way, and therefore
implemented by writing classes, nothing is intrinsically necessary about that. In this
case, for example, we don’t really need to introduce any new class, since the adapt_

file function is obviously sufficient. Therefore, we respect Occam’s Razor and do
not introduce entities without necessity.

One way or another, you should think in terms of adaptation, in preference to type
testing, even when you need to rely on some lower-level utility that insists on precise
types. Instead of raising an exception when you get passed an object that’s perfectly
adequate save for the technicality of type membership, think of the possibility of
adapting what you get passed to what you need. In this way, your code will be more
flexible and more suitable for reuse.

See Also
Documentation on built-in file objects, and modules tempfile and marshal, in the
Library Reference and Python in a Nutshell.

2.16 Walking Directory Trees
Credit: Robin Parmar, Alex Martelli

Problem
You need to examine a “directory”, or an entire directory tree rooted in a certain
directory, and iterate on the files (and optionally folders) that match certain patterns.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.16 Walking Directory Trees | 89

Solution
The generator os.walk from the Python Standard Library module os is sufficient for
this task, but we can dress it up a bit by coding our own function to wrap os.walk:

import os, fnmatch
def all_files(root, patterns='*', single_level=False, yield_folders=False):
 # Expand patterns from semicolon-separated string to list
 patterns = patterns.split(';')
 for path, subdirs, files in os.walk(root):
 if yield_folders:
 files.extend(subdirs)
 files.sort()
 for name in files:
 for pattern in patterns:
 if fnmatch.fnmatch(name, pattern):
 yield os.path.join(path, name)
 break
 if single_level:
 break

Discussion
The standard directory tree traversal generator os.walk is powerful, simple, and flexi-
ble. However, as it stands, os.walk lacks a few niceties that applications may need,
such as selecting files according to some patterns, flat (linear) looping on all files
(and optionally folders) in sorted order, and the ability to examine a single directory
(without entering its subdirectories). This recipe shows how easily these kinds of fea-
tures can be added, by wrapping os.walk into another simple generator and using
standard library module fnmatch to check filenames for matches to patterns.

The file patterns are possibly case-insensitive (that’s platform-dependent) but other-
wise Unix-style, as supplied by the standard fnmatch module, which this recipe uses.
To specify multiple patterns, join them with a semicolon. Note that this means that
semicolons themselves can’t be part of a pattern.

For example, you can easily get a list of all Python and HTML files in directory /tmp

or any subdirectory thereof:

thefiles = list(all_files('/tmp', '*.py;*.htm;*.html'))

Should you just want to process these files’ paths one at a time (e.g., print them, one
per line), you do not need to build a list: you can simply loop on the result of calling
all_files:

for path in all_files('/tmp', '*.py;*.htm;*.html'):
 print path

If your platform is case-sensitive, alnd you want case-sensitive matching, then you
need to specify the patterns more laboriously, e.g., '*.[Hh][Tt][Mm][Ll]' instead of
just '*.html'.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 2: Files

See Also
Documentation for the os.path module and the os.walk generator, as well as the
fnmatch module, in the Library Reference and Python in a Nutshell.

2.17 Swapping One File Extension for Another
Throughout a Directory Tree

Credit: Julius Welby

Problem
You need to rename files throughout a subtree of directories, specifically changing
the names of all files with a given extension so that they have a different extension
instead.

Solution
Operating on all files of a whole subtree of directories is easy enough with the
os.walk function from Python’s standard library:

import os
def swapextensions(dir, before, after):
 if before[:1] != '.':
 before = '.'+before
 thelen = -len(before)
 if after[:1] != '.':
 after = '.'+after
 for path, subdirs, files in os.walk(dir):
 for oldfile in files:
 if oldfile[thelen:] == before:
 oldfile = os.path.join(path, oldfile)
 newfile = oldfile[:thelen] + after
 os.rename(oldfile, newfile)
if __name__=='__main__':
 import sys
 if len(sys.argv) != 4:
 print "Usage: swapext rootdir before after"
 sys.exit(100)
 swapextensions(sys.argv[1], sys.argv[2], sys.argv[3])

Discussion
This recipe shows how to change the file extensions of all files in a specified direc-
tory, all of its subdirectories, all of their subdirectories, and so on. This technique is
useful for changing the extensions of a whole batch of files in a folder structure, such
as a web site. You can also use it to correct errors made when saving a batch of files
programmatically.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.18 Finding a File Given a Search Path | 91

The recipe is usable either as a module to be imported from any other, or as a script
to run from the command line, and it is carefully coded to be platform-independent.
You can pass in the extensions either with or without the leading dot (.), since the
code in this recipe inserts that dot, if necessary. (As a consequence of this
convenience, however, this recipe is unable to deal with files completely lacking any
extension, including the dot; this limitation may be bothersome on Unix systems.)

The implementation of this recipe uses techniques that purists might consider too
low level—specifically by dealing mostly with filenames and extensions by direct
string manipulation, rather than by the functions in module os.path. It’s not a big
deal: using os.path is fine, but using Python’s powerful string facilities to deal with
filenames is fine, too.

See Also
The author’s web page at http://www.outwardlynormal.com/python/
swapextensions.htm.

2.18 Finding a File Given a Search Path
Credit: Chui Tey

Problem
Given a search path (a string of directories with a separator in between), you need to
find the first file along the path with the requested name.

Solution
Basically, you need to loop over the directories in the given search path:

import os
def search_file(filename, search_path, pathsep=os.pathsep):
 """ Given a search path, find file with requested name """
 for path in search_path.split(pathsep):
 candidate = os.path.join(path, filename)
 if os.path.isfile(candidate):
 return os.path.abspath(candidate)
 return None
if __name__ == '__main__':
 search_path = '/bin' + os.pathsep + '/usr/bin' # ; on Windows, : on Unix
 find_file = search_file('ls', search_path)
 if find_file:
 print "File 'ls' found at %s" % find_file
 else:
 print "File 'ls' not found"

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 2: Files

Discussion
This recipe’s “Problem” is a reasonably frequent task, and Python makes resolving
it extremely easy. Other recipes perform similar and related tasks: to find files
specifically on Python’s own search path, see recipe 2.20 “Finding a File on the
Python Search Path”; to find all files matching a pattern along a search path, see rec-
ipe 2.19 “Finding Files Given a Search Path and a Pattern.”

The search loop can be coded in many ways, but returning the path (made into an
absolute path, for uniformity and convenience) as soon as a hit is found is simplest as
well as fast. The explicit return None after the loop is not strictly needed, since None

is returned by Python when a function falls off the end. Having the return statement
explicitly there in this case makes the functionality of search_file much clearer at
first sight.

See Also
Recipe 2.20 “Finding a File on the Python Search Path”; recipe 2.19 “Finding Files
Given a Search Path and a Pattern”; documentation for the module os in the Library
Reference and Python in a Nutshell.

2.19 Finding Files Given a Search Path
and a Pattern

Credit: Bill McNeill, Andrew Kirkpatrick

Problem
Given a search path (i.e., a string of directories with a separator in between), you
need to find all files along the path whose names match a given pattern.

Solution
Basically, you need to loop over the directories in the given search path. The loop is
best encapsulated in a generator:

import glob, os
def all_files(pattern, search_path, pathsep=os.pathsep):
 """ Given a search path, yield all files matching the pattern. """
 for path in search_path.split(pathsep):
 for match in glob.glob(os.path.join(path, pattern)):
 yield match

Discussion
One nice thing about generators is that you can easily use them to obtain just the
first item, all items, or anything in between. For example, to print the first file match-
ing '*.pye' along your environment’s PATH:

print all_files('*.pye', os.environ['PATH']).next()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.20 Finding a File on the Python Search Path | 93

To print all such files, one per line:

for match in all_files('*.pye', os.environ['PATH']):
 print match

To print them all at once, as a list:

print list(all_files('*.pye', os.environ['PATH']))

I have also wrapped around this all_files function a main script to show all of the
files with a given name along my PATH. Thus I can see not only which one will exe-
cute for that name (the first one), but also which ones are “shadowed” by that first
one:

if __name__ == '__main__':
 import sys
 if len(sys.argv) != 2 or sys.argv[1].startswith('-'):
 print 'Use: %s <pattern>' % sys.argv[0]
 sys.exit(1)
 matches = list(all_files(sys.argv[1], os.environ['PATH']))
 print '%d match:' % len(matches)
 for match in matches:
 print match

See Also
Recipe 2.18 “Finding a File Given a Search Path” for a simpler approach to find the
first file with a specified name along the path; Library Reference and Python in a Nut-
shell docs for modules os and glob.

2.20 Finding a File on the Python Search Path
Credit: Mitch Chapman

Problem
A large Python application includes resource files (e.g., Glade project files, SQL tem-
plates, and images) as well as Python packages. You want to store these associated
files together with the Python packages that use them.

Solution
You need to be able to look for either files or directories along Python’s sys.path:

import sys, os
class Error(Exception): pass
def _find(pathname, matchFunc=os.path.isfile):
 for dirname in sys.path:
 candidate = os.path.join(dirname, pathname)
 if matchFunc(candidate):
 return candidate
 raise Error("Can't find file %s" % pathname)
def findFile(pathname):
 return _find(pathname)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 2: Files

def findDir(path):
 return _find(path, matchFunc=os.path.isdir)

Discussion
Larger Python applications consist of sets of Python packages and associated sets of
resource files. It’s convenient to store these associated files together with the Python
packages that use them, and it’s easy to do so if you use this variation on the previ-
ous recipe 2.18 “Finding a File Given a Search Path” to find files or directories with
pathnames relative to the Python search path.

See Also
Recipe 2.18 “Finding a File Given a Search Path”; documentation for the os module
in the Library Reference and Python in a Nutshell.

2.21 Dynamically Changing the Python
Search Path

Credit: Robin Parmar

Problem
Modules must be on the Python search path before they can be imported, but you
don’t want to set a huge permanent path because that slows performance—so, you
want to change the path dynamically.

Solution
We simply conditionally add a “directory” to Python’s sys.path, carefully checking
to avoid duplication:

def AddSysPath(new_path):
 """ AddSysPath(new_path): adds a “directory” to Python's sys.path
 Does not add the directory if it does not exist or if it's already on
 sys.path. Returns 1 if OK, -1 if new_path does not exist, 0 if it was
 already on sys.path.
 """
 import sys, os
 # Avoid adding nonexistent paths
 if not os.path.exists(new_path): return -1
 # Standardize the path. Windows is case-insensitive, so lowercase
 # for definiteness if we are on Windows.
 new_path = os.path.abspath(new_path)
 if sys.platform == 'win32':
 new_path = new_path.lower()
 # Check against all currently available paths
 for x in sys.path:
 x = os.path.abspath(x)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.21 Dynamically Changing the Python Search Path | 95

 if sys.platform == 'win32':
 x = x.lower()
 if new_path in (x, x + os.sep):
 return 0

sys.path.append(new_path)
 # if you want the new_path to take precedence over existing
 # directories already in sys.path, instead of appending, use:
 # sys.path.insert(0, new_path)
 return 1
if __name__ == '__main__':
 # Test and show usage
 import sys
 print 'Before:'
 for x in sys.path: print x
 if sys.platform == 'win32':
 print AddSysPath('c:\\Temp')
 print AddSysPath('c:\\temp')
 else:
 print AddSysPath('/usr/lib/my_modules')
 print 'After:'
 for x in sys.path: print x

Discussion
Modules must be in directories that are on the Python search path before they can be
imported, but we don’t want to have a huge permanent path because doing so slows
down every import performed by every Python script and application. This simple
recipe dynamically adds a “directory” to the path, but only if that directory exists
and was not already on sys.path.

sys.path is a list, so it’s easy to add directories to its end, using sys.path.append.
Every import performed after such an append will automatically look in the newly
added directory if it cannot be satisfied from earlier ones. As indicated in the Solu-
tion, you can alternatively use sys.path.insert(0,...so that the newly added direc-
tory is searched before ones that were already in sys.path.

It’s no big deal if sys.path ends up with some duplicates or if a nonexistent directory
is accidentally appended to it; Python’s import statement is clever enough to shield
itself against such issues. However, each time such a problem occurs at import time
(e.g., from duplicate unsuccessful searches, errors from the operating system that
need to be handled gracefully, etc.), a small price is paid in terms of performance. To
avoid uselessly paying such a price, this recipe does a conditional addition to
sys.path, never appending any directory that doesn’t exist or is already in sys.path.
Directories appended by this recipe stay in sys.path only for the duration of this pro-
gram’s run, just like any other dynamic alteration you might do to sys.path.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 2: Files

See Also
Documentation for the sys and os.path modules in the Library Reference and Python
in a Nutshell.

2.22 Computing the Relative Path from One
Directory to Another

Credit: Cimarron Taylor, Alan Ezust

Problem
You need to know the relative path from one directory to another—for example, to
create a symbolic link or a relative reference in a URL.

Solution
The simplest approach is to split paths into lists of directories, then work on the lists.
Using a couple of auxiliary and somewhat generic helper functions, we could code:

import os, itertools
def all_equal(elements):
 ''' return True if all the elements are equal, otherwise False. '''
 first_element = elements[0]
 for other_element in elements[1:]:
 if other_element != first_element: return False
 return True
def common_prefix(*sequences):
 ''' return a list of common elements at the start of all sequences,
 then a list of lists that are the unique tails of each sequence. '''
 # if there are no sequences at all, we're done
 if not sequences: return [], []
 # loop in parallel on the sequences
 common = []
 for elements in itertools.izip(*sequences):
 # unless all elements are equal, bail out of the loop
 if not all_equal(elements): break
 # got one more common element, append it and keep looping
 common.append(elements[0])
 # return the common prefix and unique tails
 return common, [sequence[len(common):] for sequence in sequences]
def relpath(p1, p2, sep=os.path.sep, pardir=os.path.pardir):
 ''' return a relative path from p1 equivalent to path p2.
 In particular: the empty string, if p1 == p2;
 p2, if p1 and p2 have no common prefix.
 '''
 common, (u1, u2) = common_prefix(p1.split(sep), p2.split(sep))
 if not common:
 return p2 # leave path absolute if nothing at all in common
 return sep.join([pardir]*len(u1) + u2)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.22 Computing the Relative Path from One Directory to Another | 97

def test(p1, p2, sep=os.path.sep):
 ''' call function relpath and display arguments and results. '''
 print "from", p1, "to", p2, " -> ", relpath(p1, p2, sep)
if __name__ == '__main__':
 test('/a/b/c/d', '/a/b/c1/d1', '/')
 test('/a/b/c/d', '/a/b/c/d', '/')
 test('c:/x/y/z', 'd:/x/y/z', '/')

Discussion
The workhorse in this recipe is the simple but very general function common_prefix,
which, given any N sequences, returns their common prefix and a list of their respec-
tive unique tails. To compute the relative path between two given paths, we can
ignore their common prefix. We need only the appropriate number of move-up
markers (normally, os.path.pardir—e.g., ../ on Unix-like systems; we need as
many of them as the length of the unique tail of the starting path) followed by the
unique tail of the destination path. So, function relpath splits the paths into lists of
directories, calls common_prefix, and then performs exactly the construction just
described.

common_prefix centers on the loop for elements in itertools.izip(*sequences),
relying on the fact that izip ends with the shortest of the iterables it’s zipping. The
body of the loop only needs to prematurely terminate the loop as soon as it meets a
tuple of elements (coming one from each sequence, per izip’s specifications) that
aren’t all equal, and to keep track of the elements that are equal by appending one of
them to list common. Once the loop is done, all that’s left to prepare the lists to return
is to slice off the elements that are already in common from the front of each of the
sequences.

Function all_equal could alternatively be implemented in a completely different
way, less simple and obvious, but interesting:

def all_equal(elements):
 return len(dict.fromkeys(elements)) == 1

or, equivalently and more concisely, in Python 2.4 only,

def all_equal(elements):
 return len(set(elements)) == 1

Saying that all elements are equal is exactly the same as saying that the set of the ele-
ments has cardinality (length) one. In the variation using dict.fromkeys, we use a
dict to represent the set, so that variation works in Python 2.3 as well as in 2.4. The
variation using set is clearer, but it only works in Python 2.4. (You could also make
it work in version 2.3, as well as Python 2.4, by using the standard Python library
module sets).

See Also
Library Reference and Python in a Nutshell docs for modules os and itertools.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 2: Files

2.23 Reading an Unbuffered Character
in a Cross-Platform Way

Credit: Danny Yoo

Problem
Your application needs to read single characters, unbuffered, from standard input,
and it needs to work on both Windows and Unix-like systems.

Solution
When we need a cross-platform solution, starting with platform-dependent ones, we
need to wrap the different solutions so that they look the same:

try:
 from msvcrt import getch
except ImportError:
 ''' we're not on Windows, so we try the Unix-like approach '''
 def getch():
 import sys, tty, termios
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(fd)
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

Discussion
On Windows, the standard Python library module msvcrt offers the handy getch

function to read one character, unbuffered, from the keyboard, without echoing it to
the screen. However, this module is not part of the standard Python library on Unix
and Unix-like platforms, such as Linux and Mac OS X. On such platforms, we can
get the same functionality with the tty and termios modules of the standard Python
library (which, in turn, are not present on Windows).

The key point is that in application-level code, we should never have to worry about
such issues; rather, we should write our application code in platform-independent
ways, counting on library functions to paper over the differences between platforms.
The Python Standard Library fulfills that role admirably for most tasks, but not all,
and the problem posed by this recipe is an example of one for which the Python
Standard Library doesn’t directly supply a cross-platform solution.

When we can’t find a ready-packaged cross-platform solution in the standard library,
we should package it anyway as part of our own additional custom library. This rec-
ipe’s Solution, besides solving the specific task of the recipe, also shows one good

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.24 Counting Pages of PDF Documents on Mac OS X | 99

general way to go about such packaging. (Alternatively, you can test sys.platform,
but I prefer the approach shown in this recipe.)

Your own library module should try to import the standard library module it needs
on a certain platform within a try clause and include a corresponding except

ImportError clause that is triggered when the module is running on a different plat-
form. In the body of that except clause, your own library module can apply what-
ever alternate approach will work on the different platform. In some rare cases, you
may need more than two platform-dependent approaches, but most often you’ll need
one approach on Windows and only one other approach to cover all other plat-
forms. This is because most non-Windows platforms today are generally Unix or
Unix-like.

See Also
Library Reference and Python in a Nutshell docs for msvcrt, tty, and termios.

2.24 Counting Pages of PDF Documents
on Mac OS X

Credit: Dinu Gherman, Dan Wolfe

Problem
You’re running on a reasonably recent version of Mac OS X (version 10.3 “Panther”
or later), and you need to know the number of pages in a PDF document.

Solution
The PDF format and Python are both natively integrated with Mac OS X (10.3 or
later), and this allows a rather simple solution:

#!/usr/bin python
import CoreGraphics
def pageCount(pdfPath):
 "Return the number of pages for the PDF document at the given path."
 pdf = CoreGraphics.CGPDFDocumentCreateWithProvider(
 CoreGraphics.CGDataProviderCreateWithFilename(pdfPath)
)
 return pdf.getNumberOfPages()
if __name__ == '__main__':
 import sys
 for path in sys.argv[1:]:
 print pageCount(path)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 2: Files

Discussion
A reasonable alternative to this recipe might be to use the PyObjC Python extension,
which (among other wonders) lets Python code reuse all the power in the Foundation

and AppKit frameworks that come with Mac OS X. Such a choice would let you write
a Python script that is also able to run on older versions of Mac OS X, such as 10.2
Jaguar. However, relying on Mac OS X 10.3 or later ensures we can use the Python
installation that is integrated as a part of the operating system, as well as such good-
ies as the CoreGraphics Python extension module (also part of Mac OS X “Panther”)
that lets your Python code reuse Apple’s excellent Quartz graphics engine directly.

See Also
PyObjC is at http://pyobjc.sourceforge.net/; information on the CoreGraphics module is
at http://www.macdevcenter.com/pub/a/mac/2004/03/19/core_graphics.html.

2.25 Changing File Attributes on Windows
Credit: John Nielsen

Problem
You need to set the attributes of a file on Windows; for example, you may need to
set the file as read-only, archived, and so on.

Solution
PyWin32’s win32api module offers a function SetFileAttributes that makes this task
quite simple:

import win32con, win32api, os
create a file, just to show how to manipulate it
thefile = 'test'
f = open('test', 'w')
f.close()
to make the file hidden...:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_HIDDEN)
to make the file readonly:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_READONLY)
to be able to delete the file we need to set it back to normal:
win32api.SetFileAttributes(thefile, win32con.FILE_ATTRIBUTE_NORMAL)
and finally we remove the file we just made
os.remove(thefile)

Discussion
One interesting use of win32api.SetFileAttributes is to enable a file’s removal.
Removing a file with os.remove can fail on Windows if the file’s attributes are not

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.26 Extracting Text from OpenOffice.org Documents | 101

normal. To get around this problem, you just need to use the Win32 call to
SetFileAttributes to convert it to a normal file, as shown at the end of this recipe’s
Solution. Of course, this should be done with caution, since there may be a good rea-
son the file is not “normal”. The file should be removed only if you know what
you’re doing!

See Also
The documentation on the win32file module at http://ASPN.ActiveState.com/ASPN/
Python/Reference/Products/ActivePython/PythonWin32Extensions/win32file.html.

2.26 Extracting Text from OpenOffice.org
Documents

Credit: Dirk Holtwick

Problem
You need to extract the text content (with or without the attending XML markup)
from an OpenOffice.org document.

Solution
An OpenOffice.org document is just a zip file that aggregates XML documents
according to a well-documented standard. To access our precious data, we don’t
even need to have OpenOffice.org installed:

import zipfile, re
rx_stripxml = re.compile("<[^>]*?>", re.DOTALL|re.MULTILINE)
def convert_OO(filename, want_text=True):
 """ Convert an OpenOffice.org document to XML or text. """
 zf = zipfile.ZipFile(filename, "r")
 data = zf.read("content.xml")
 zf.close()
 if want_text:
 data = " ".join(rx_stripxml.sub(" ", data).split())
 return data
if __name__=="__main__":
 import sys
 if len(sys.argv)>1:
 for docname in sys.argv[1:]:
 print 'Text of', docname, ':'
 print convert_OO(docname)
 print 'XML of', docname, ':'
 print convert_OO(docname, want_text=False)
 else:
 print 'Call with paths to OO.o doc files to see Text and XML forms.'

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 2: Files

Discussion
OpenOffice.org documents are zip files, and in addition to other contents, they
always contain the file content.xml. This recipe’s job, therefore, essentially boils
down to just extracting this file. By default, the recipe then throws away XML tags
with a simple regular expression, splits the result by whitespace, and joins it up again
with a single blank to save space. Of course, we could use an XML parser to get
information in a vastly richer and more structured way, but if all we need is the
rough textual content, this fast, rough-and-ready approach may suffice.

Specifically, the regular expression rx_stripxml matches any XML tag (opening or
closing) from the leading < to the terminating >. Inside function convert_OO, in the
statements guarded by if want_text, we use that regular expression to change every
XML tag into a space, then normalize whitespace by splitting (i.e., calling the string
method split, which splits on any sequence of whitespace), and rejoining (with
" ".join, to use a single blank character as the joiner). Essentially, this split-and-
rejoin process changes any sequence of whitespace into a single blank character.
More advanced ways to extract all text from an XML document are shown in recipe
12.3 “Extracting Text from an XML Document.”

See Also
Library Reference docs on modules zipfile and re; OpenOffice.org’s web site, http://
www.openoffice.org/; recipe 12.3 “Extracting Text from an XML Document.”

2.27 Extracting Text from Microsoft Word
Documents

Credit: Simon Brunning, Pavel Kosina

Problem
You want to extract the text content from each Microsoft Word document in a direc-
tory tree on Windows into a corresponding text file.

Solution
With the PyWin32 extension, we can access Word itself, through COM, to perform
the conversion:

import fnmatch, os, sys, win32com.client
wordapp = win32com.client.gencache.EnsureDispatch("Word.Application")
try:
 for path, dirs, files in os.walk(sys.argv[1]):
 for filename in files:
 if not fnmatch.fnmatch(filename, '*.doc'): continue
 doc = os.path.abspath(os.path.join(path, filename))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.28 File Locking Using a Cross-Platform API | 103

 print "processing %s" % doc
 wordapp.Documents.Open(doc)
 docastxt = doc[:-3] + 'txt'
 wordapp.ActiveDocument.SaveAs(docastxt,
 FileFormat=win32com.client.constants.wdFormatText)
 wordapp.ActiveDocument.Close()
finally:
 # ensure Word is properly shut down even if we get an exception
 wordapp.Quit()

Discussion
A useful aspect of most Windows applications is that you can script them via COM,
and the PyWin32 extension makes it fairly easy to perform COM scripting from
Python. The extension enables you to write Python scripts to perform many kinds of
Window tasks. The script in this recipe’s Solution drives Microsoft Word to extract
the text from every .doc file in a “directory” tree into a corresponding .txt text file.
Using the os.walk function, we can access every subdirectory in a tree with a simple
for statement, without recursion. With the fnmatch.fnmatch function, we can check a
filename to determine whether it matches an appropriate wildcard, here '*.doc'.
Once we have determined the name of a Word document file, we process that name
with functions from os.path to turn it into a complete absolute path, and have Word
open it, save it as text, and close it again.

If you don’t have Word, you may need to take a completely different approach. One
possibility is to use OpenOffice.org, which is able to load Word documents. Another
is to use a program specifically designed to read Word documents, such as Anti-
word, found at http://www.winfield.demon.nl/. However, we have not explored these
alternative options.

See Also
Mark Hammond, Andy Robinson, Python Programming on Win32 (O’Reilly), for
documentation on PyWin32; http://msdn.microsoft.com, for Microsoft’s documenta-
tion of the object model of Microsoft Word; Library Reference and Python in a Nut-
shell sections on modules fnmatch and os.path, and function os.walk.

2.28 File Locking Using a Cross-Platform API
Credit: Jonathan Feinberg, John Nielsen

Problem
You need to lock files in a program that runs on both Windows and Unix-like sys-
tems, but the Python Standard Library offers only platform-specific ways to lock
files.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 2: Files

Solution
When the Python Standard Library itself doesn’t offer a cross-platform solution, it’s
often possible to implement one ourselves:

import os
needs win32all to work on Windows (NT, 2K, XP, _not_ /95 or /98)
if os.name == 'nt':
 import win32con, win32file, pywintypes
 LOCK_EX = win32con.LOCKFILE_EXCLUSIVE_LOCK
 LOCK_SH = 0 # the default
 LOCK_NB = win32con.LOCKFILE_FAIL_IMMEDIATELY
 __overlapped = pywintypes.OVERLAPPED()
 def lock(file, flags):
 hfile = win32file._get_osfhandle(file.fileno())

win32file.LockFileEx(hfile, flags, 0, 0xffff0000, __overlapped)
 def unlock(file):
 hfile = win32file._get_osfhandle(file.fileno())

win32file.UnlockFileEx(hfile, 0, 0xffff0000, __overlapped)
elif os.name == 'posix':
 from fcntl import LOCK_EX, LOCK_SH, LOCK_NB
 def lock(file, flags):

fcntl.flock(file.fileno(), flags)
 def unlock(file):

fcntl.flock(file.fileno(), fcntl.LOCK_UN)
else:
 raise RuntimeError("PortaLocker only defined for nt and posix platforms")

Discussion
When multiple programs or threads have to access a shared file, it’s wise to ensure
that accesses are synchronized so that two processes don’t try to modify the file con-
tents at the same time. Failure to synchronize accesses could even corrupt the entire
file in some cases.

This recipe supplies two functions, lock and unlock, that request and release locks on
a file, respectively. Using the portalocker.py module is a simple matter of calling the
lock function and passing in the file and an argument specifying the kind of lock that
is desired:

Shared lock (default)
This lock denies all processes, including the process that first locks the file, write
access to the file. All processes can read the locked file.

Exclusive lock
This denies all other processes both read and write access to the file.

Nonblocking lock
When this value is specified, the function returns immediately if it is unable to
acquire the requested lock. Otherwise, it waits. LOCK_NB can be ORed with either
LOCK_SH or LOCK_EX by using Python’s bitwise-or operator, the vertical bar (|).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.29 Versioning Filenames | 105

For example:

import portalocker
afile = open("somefile", "r+")
portalocker.lock(afile, portalocker.LOCK_EX)

The implementation of the lock and unlock functions is entirely different on differ-
ent systems. On Unix-like systems (including Linux and Mac OS X), the recipe relies
on functionality made available by the standard fcntl module. On Windows sys-
tems (NT, 2000, XP—it doesn’t work on old Win/95 and Win/98 platforms because
they just don’t have the needed oomph in the operating system!), the recipe uses the
win32file module, part of the very popular PyWin32 package of Windows-specific
extensions to Python, authored by Mark Hammond. But the important point is that,
despite the differences in implementation, the functions (and the flags you can pass
to the lock function) are made to behave in the same way across platforms. Such
cross-platform packaging of differently implemented but equivalent functionality
enables you to easily write cross-platform applications, which is one of Python’s
strengths.

When you write a cross-platform program, it’s nice if the functionality that your pro-
gram uses is, in turn, encapsulated in a cross-platform way. For file locking in partic-
ular, it is especially helpful to Perl users, who are used to an essentially transparent
lock system call across platforms. More generally, if os.name== just does not belong
in application-level code. Such platform testing ideally should always be in the stan-
dard library or an application-independent module, as it is here.

See Also
Documentation on the fcntl module in the Library Reference; documentation on the
win32file module at http://ASPN.ActiveState.com/ASPN/Python/Reference/Products/
ActivePython/PythonWin32Extensions/win32file.html; Jonathan Feinberg’s web site
(http://MrFeinberg.com).

2.29 Versioning Filenames
Credit: Robin Parmar, Martin Miller

Problem
You want to make a backup copy of a file, before you overwrite it, with the standard
convention of appending a three-digit version number to the name of the old file.

Solution
We just need to code a function to perform the backup copy appropriately:

def VersionFile(file_spec, vtype='copy'):
 import os, shutil

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 2: Files

 if os.path.isfile(file_spec):
 # check the 'vtype' parameter
 if vtype not in ('copy', 'rename'):
 raise ValueError, 'Unknown vtype %r' % (vtype,)
 # Determine root filename so the extension doesn't get longer
 n, e = os.path.splitext(file_spec)
 # Is e a three-digits integer preceded by a dot?
 if len(e) == 4 and e[1:].isdigit():
 num = 1 + int(e[1:])
 root = n
 else:
 num = 0
 root = file_spec
 # Find next available file version
 for i in xrange(num, 1000):
 new_file = '%s.%03d' % (root, i)
 if not os.path.exists(new_file):
 if vtype == 'copy':
 shutil.copy(file_spec, new_file)
 else:
 os.rename(file_spec, new_file)
 return True
 raise RuntimeError, "Can't %s %r, all names taken"%(vtype,file_spec)
 return False
if __name__ == '__main__':
 import os
 # create a dummy file 'test.txt'
 tfn = 'test.txt'
 open(tfn, 'w').close()
 # version it 3 times
 print VersionFile(tfn)
 # emits: True
 print VersionFile(tfn)
 # emits: True
 print VersionFile(tfn)
 # emits: True
 # remove all test.txt* files we just made
 for x in ('', '.000', '.001', '.002'):
 os.unlink(tfn + x)
 # show what happens when the file does not exist
 print VersionFile(tfn)
 # emits: False
 print VersionFile(tfn)
 # emits: False

Discussion
The purpose of the VersionFile function is to ensure that an existing file is copied (or
renamed, as indicated by the optional second parameter) before you open it for writ-
ing or updating and therefore modify it. It is polite to make such backups of files
before you mangle them (one functionality some people still pine for from the good
old VMS operating system, which performed it automatically!). The actual copy or

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.30 Calculating CRC-64 Cyclic Redundancy Checks | 107

renaming is performed by shutil.copy and os.rename, respectively, so the only issue
is which name to use as the target.

A popular way to determine backups’ names is versioning (i.e., appending to the file-
name a gradually incrementing number). This recipe determines the new name by
first extracting the filename’s root (just in case you call it with an already-versioned
filename) and then successively appending to that root the further extensions .000,
.001, and so on, until a name built in this manner does not correspond to any exist-
ing file. Then, and only then, is the name used as the target of a copy or renaming.
Note that VersionFile is limited to 1,000 versions, so you should have an archive
plan after that. The file must exist before it is first versioned—you cannot back up
what does not yet exist. However, if the file doesn’t exist, function VersionFile sim-
ply returns False (while it returns True if the file exists and has been successfully ver-
sioned), so you don’t need to check before calling it!

See Also
Documentation for the os and shutil modules in the Library Reference and Python in
a Nutshell.

2.30 Calculating CRC-64 Cyclic Redundancy
Checks

Credit: Gian Paolo Ciceri

Problem
You need to ensure the integrity of some data by computing the data’s cyclic redun-
dancy check (CRC), and you need to do so according to the CRC-64 specifications of
the ISO-3309 standard.

Solution
The Python Standard Library does not include any implementation of CRC-64 (only
one of CRC-32 in function zlib.crc32), so we need to program it ourselves. Fortu-
nately, Python can perform bitwise operations (masking, shifting, bitwise-and, bit-
wise-or, xor, etc.) just as well as, say, C (and, in fact, with just about the same
syntax), so it’s easy to transliterate a typical reference implementation of CRC-64
into a Python function as follows:

prepare two auxiliary tables tables (using a function, for speed),
then remove the function, since it's not needed any more:
CRCTableh = [0] * 256
CRCTablel = [0] * 256
def _inittables(CRCTableh, CRCTablel, POLY64REVh, BIT_TOGGLE):
 for i in xrange(256):
 partl = i

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 2: Files

 parth = 0L
 for j in xrange(8):
 rflag = partl & 1L
 partl >>= 1L
 if parth & 1:
 partl ^= BIT_TOGGLE
 parth >>= 1L
 if rflag:
 parth ^= POLY64REVh
 CRCTableh[i] = parth
 CRCTablel[i] = partl
first 32 bits of generator polynomial for CRC64 (the 32 lower bits are
assumed to be zero) and bit-toggle mask used in _inittables
POLY64REVh = 0xd8000000L
BIT_TOGGLE = 1L << 31L
run the function to prepare the tables
_inittables(CRCTableh, CRCTablel, POLY64REVh, BIT_TOGGLE)
remove all names we don't need any more, including the function
del _inittables, POLY64REVh, BIT_TOGGLE
this module exposes the following two functions: crc64, crc64digest
def crc64(bytes, (crch, crcl)=(0,0)):
 for byte in bytes:
 shr = (crch & 0xFF) << 24
 temp1h = crch >> 8L
 temp1l = (crcl >> 8L) | shr
 tableindex = (crcl ^ ord(byte)) & 0xFF
 crch = temp1h ^ CRCTableh[tableindex]
 crcl = temp1l ^ CRCTablel[tableindex]
 return crch, crcl
def crc64digest(aString):
 return "%08X%08X" % (crc64(bytes))
if __name__ == '__main__':
 # a little test/demo, for when this module runs as main-script
 assert crc64("IHATEMATH") == (3822890454, 2600578513)
 assert crc64digest("IHATEMATH") == "E3DCADD69B01ADD1"
 print 'crc64: dumb test successful'

Discussion
Cyclic redundancy checks (CRCs) are a popular way to ensure that data (in particu-
lar, a file) has not been accidentally damaged. CRCs can readily detect accidental
damage, but they are not intended to withstand inimical assault the way other cryp-
tographically strong checksums are. CRCs can be computed much faster than other
kinds of checksums, making them useful in those cases where the only damage we
need to guard against is accidental damage, rather than deliberate adversarial tam-
pering.

Mathematically speaking, a CRC is computed as a polynomial over the bits of the
data we’re checksumming. In practice, as this recipe shows, most of the computa-
tion can be done once and for all and summarized in tables that, when properly
indexed, give the contribution of each byte of input data to the result. So, after

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.30 Calculating CRC-64 Cyclic Redundancy Checks | 109

initialization (which we do with an auxiliary function because computation in
Python is much faster when using a function’s local variables than when using glo-
bals), actual CRC computation is quite fast. Both the computation of the tables and
their use for CRC computation require a lot of bitwise operations, but, fortunately,
Python’s just as good at such operations as other languages such as C. (In fact,
Python’s syntax for the various bitwise operands is just about the same as C’s.)

The algorithm to compute the standard CRC-64 checksum is described in the ISO-
3309 standard, and this recipe does nothing more than implement that algorithm.
The generator polynomial is x64 + x4 + x3 + x + 1. (The “See Also” section within
this recipe provides a reference for obtaining information about the computation.)

We represent the 64-bit result as a pair of Python ints, holding the low and high 32-
bit halves of the result. To allow the CRC to be computed incrementally, in those
cases where the data comes in a little at a time, we let the caller of function crc64

optionally feed in the “initial value” for the (crch, crcl) pair, presumably obtained
by calling crc64 on previous parts of the data. To compute the CRC in one gulp, the
caller just needs to pass in the data (a string of bytes), since in this case, we initialize
the result to (0, 0) by default.

See Also
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes
in C, 2d ed. (Cambridge University Press), pp. 896ff.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110

Chapter 3—CHAPTER 3

Time and Money

3.0 Introduction
Credit: Gustavo Niemeyer, Facundo Batista

Today, last weekend, next year. These terms sound so common. You have probably
wondered, at least once, about how deeply our lives are involved in the very idea of
time. The concept of time surrounds us, and, as a consequence, it’s also present in
the vast majority of software projects. Even very simple programs may have to deal
with timestamps, delays, timeouts, speed gauges, calendars, and so on. As befits a
general-purpose language that is proud to come with “batteries included,” Python’s
standard library offers solid support for these application needs, and more support
yet comes from third-party modules and packages.

Computing tasks involving money are another interesting topic that catches our
attention because it’s so closely related to our daily lives. Python 2.4 introduced sup-
port for decimal numbers (and you can retrofit that support into 2.3, see http://
www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html), making Python a good
option even for computations where you must avoid using binary floats, as ones
involving money so often are.

This chapter covers exactly these two topics, money and time. According to the old
saying, maybe we should claim the chapter is really about a single topic, since after
all, as everybody knows—time is money!

The time Module
Python Standard Library’s time module lets Python applications access a good por-
tion of the time-related functionality offered by the platform Python is running on.
Your platform’s documentation for the equivalent functions in the C library will
therefore be useful, and some peculiarities of different platforms will affect Python as
well.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 111

One of the most used functions from module time is the one that obtains the current
time—time.time. This function’s return value may be a little cryptic for the uniniti-
ated: it’s a floating-point number that corresponds to the number of seconds passed
since a fixed instant called the epoch, which may change depending on your plat-
form but is usually midnight of January 1, 1970.

To check which epoch your platform uses, try, at any Python interactive interpreter
prompt:

>>> import time
>>> print time.asctime(time.gmtime(0))

Notice we’re passing 0 (meaning 0 seconds after the epoch) to the time.gmtime func-
tion. time.gmtime converts any timestamp (in seconds since the epoch) into a tuple
that represents that precise instant of time in human terms, without applying any
kind of time zone conversion (GMT stands for “Greenwich mean time”, an old but
colorful way to refer to what is now known as UTC, for “Coordinated Universal
Time”). You can also pass a timestamp (in seconds since the epoch) to
time.localtime, which applies the current local notion of time zone.

It’s important to understand the difference, since, if you have a timestamp that is
already offset to represent a local time, passing it to the time.localtime function will
not yield the expected result—unless you’re so lucky that your local time zone hap-
pens to coincide with the UTC time zone, of course!

Here is a way to unpack a tuple representing the current local time:

year, month, mday, hour, minute, second, wday, yday = time.localtime()

While valid, this code is not elegant, and it would certainly not be practical to use it
often. This kind of construct may be completely avoided, since the tuples returned
by the time functions let you access their elements via meaningful attribute names.
Obtaining the current month then becomes a simple and elegant expression:

 time.localtime().tm_mon

Note that we omitted passing any argument to localtime. When we call localtime,
gmtime, or asctime without an argument, each of them conveniently defaults to using
the current time.

Two very useful functions in module time are strftime, which lets you build a string
from a time tuple, and strptime, which goes the other way, parsing a string and pro-
ducing a time tuple. Each of these two functions accepts a format string that lets you
specify exactly what you want in the resulting string (or, respectively, what you
expect from the string you’re parsing) in excruciating detail. For all the formatting
specifications that you can use in the format strings you pass to these functions, see
http://docs.python.org/lib/module-time.html.

One last important function in module time is the time.sleep function, which lets
you introduce delays in Python programs. Even though this function’s POSIX coun-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 3: Time and Money

terpart accepts only an integer parameter, the Python equivalent supports a float and
allows sub-second delays to be achieved. For instance:

for i in range(10):
 time.sleep(0.5)
 print "Tick!"

This snippet will take about 5 seconds to execute, emitting Tick! approximately
twice per second.

Time and Date Objects
While module time is quite useful, the Python Standard Library also includes the
datetime module, which supplies types that provide better abstractions for the con-
cepts of dates and times——namely, the types time, date, and datetime. Construct-
ing instances of those types is quite elegant:

 today = datetime.date.today()
 birthday = datetime.date(1977, 5, 4) #May 4
 currenttime = datetime.datetime.now().time()
 lunchtime = datetime.time(12, 00)
 now = datetime.datetime.now()
 epoch = datetime.datetime(1970, 1, 1)
 meeting = datetime.datetime(2005, 8, 3, 15, 30)

Further, as you’d expect, instances of these types offer comfortable information
access and useful operations through their attributes and methods. The following
statements create an instance of the date type, representing the current day, then
obtain the same date in the next year, and finally print the result in a dotted format:

 today = datetime.date.today()
 next_year = today.replace(year=today.year+1).strftime("%Y.%m.%d")
 print next_year

Notice how the year was incremented, using the replace method. Assigning to the
attributes of date and time instances may sound tempting, but these instances are
immutable (which is a good thing, because it means we can use the instances as
members in a set, or keys in a dictionary!), so new instances must be created instead
of changing existing ones.

Module datetime also provides basic support for time deltas (differences between
instants of time; you can think of them as basically meaning durations in time),
through the timedelta type. This type lets you change a given date by incrementing
or decrementing the date by a given time slice, and it is also the result of taking the
difference between times or dates.

>>> import datetime
>>> NewYearsDay = datetime.date(2005, 01, 01)
>>> NewYearsEve = datetime.date(2004, 12, 31)
>>> oneday = NewYearsDay - NewYearsEve
>>> print oneday

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 113

1 day, 0:00:00
>>>

A timedelta instance is internally represented by days, seconds, and microseconds,
but you can construct timedelta instances by passing any of these arguments and
also other multipliers, like minutes, hours and weeks. Support for other kinds of del-
tas, like months, and years, is not available—on purpose, since their meanings, and
operation results, are debatable. (This feature is, however, offered by the third-party
dateutil package—see https://moin.conectiva.com.br/DateUtil.)

datetime can be described as a prudent or cautious design. The decision of not imple-
menting doubtful tasks, and tasks that may need many different implementations in
different systems, reflects the strategy used to develop all of the module. This way,
the module offers good interfaces for most use cases, and, even more importantly, a
strong and coherent base for third-party modules to build upon.

Another area where this cautious design strategy for datetime shows starkly is the
module’s time zone support. Even though datetime offers nice ways to query and set
time zone information, they’re not really useful without an external source to pro-
vide nonabstract subclasses of the tzinfo type. At least two third-party packages pro-
vide time zone support for datetime: dateutil, mentioned previously, and pyTZ,
available at http://sourceforge.net/projects/pytz/.

Decimal
decimal is a Python Standard Library module, new in Python 2.4, which finally
brings decimal arithmetic to Python. Thanks to decimal, we now have a decimal
numeric data type, with bounded precision and floating point. Let’s look at each of
these three little phrases in more detail:

Decimal numeric data type
The number is not stored in binary, but rather, as a sequence of decimal digits.

With bounded precision
The number of digits each number stores is fixed. (It is a fixed parameter of each
decimal number object, but different decimal number objects can be set to use
different numbers of digits.)

Floating point
The decimal point does not have a fixed place. (To put it another way: while the
number has a fixed amount of digits in total, it does not have a fixed amount of
digits after the decimal point. If it did, it would be a fixed-point, rather than float-
ing-point, numeric data type).

Such a data type has many uses (the big use case is as the basis for money computa-
tions), particularly because decimal.Decimal offers many other advantages over stan-
dard binary float. The main advantage is that all of the decimal numbers that the
user can enter (which is to say, all the decimal numbers with a finite number of digits

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 3: Time and Money

) can be represented exactly (in contrast, some of those numbers do not have an
exact representation in binary floating point):

>>> import decimal
>>> 1.1
1.1000000000000001
>>> 2.3
2.2999999999999998
>>> decimal.Decimal("1.1")
Decimal("1.1")
>>> decimal.Decimal("2.3")
Decimal("2.3")

The exactness of the representation carries over into arithmetic. In binary floating
point, for example:

>>> 0.1 + 0.1 + 0.1 - 0.3
5.5511151231257827e-17

Such differences are very close to zero, and yet they prevent reliable equality testing;
moreover, even tiny differences can accumulate. For this reason, decimal should be
preferred to binary floats in accounting applications that have strict equality require-
ments:

>>> d1 = decimal.Decimal("0.1")
>>> d3 = decimal.Decimal("0.3")
>>> d1 + d1 + d1 - d3
Decimal("0.0")

decimal.Decimal instances can be constructed from integers, strings, or tuples. To
create a decimal.Decimal from a float, first convert the float to a string. This neces-
sary step serves as an explicit reminder of the details of the conversion, including
representation error. Decimal numbers include special values such as NaN (which
stands for “not a number”), positive and negative Infinity, and -0. Once con-
structed, a decimal.Decimal object is immutable, just like any other number in
Python.

The decimal module essentially implements the rules of arithmetic that are taught in
school. Up to a given working precision, exact, unrounded results are given when-
ever possible:

>>> 0.9 / 10
0.089999999999999997
>>> decimal.Decimal("0.9") / decimal.Decimal(10)
Decimal("0.09")

Where the number of digits in a result exceeds the working precision, the number is
rounded according to the current rounding method. Several rounding methods are
available; the default is round-half-even.

The decimal module incorporates the notion of significant digits, so that, for exam-
ple, 1.30+1.20 is 2.50. The trailing zero is kept to indicate significance. This is the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 115

usual representation for monetary applications. For multiplication, the “school-
book” approach uses all the figures in the multiplicands:

>>> decimal.Decimal("1.3") * decimal.Decimal("1.2")
Decimal("1.56")
>>> decimal.Decimal("1.30") * decimal.Decimal("1.20")
Decimal("1.5600")

In addition to the standard numeric properties that decimal objects share with other
built-in number types, such as float and int, decimal objects also have several spe-
cialized methods. Check the docs for all of the methods, with details and examples.

The decimal data type works within a context, where some configuration aspects are
set. Each thread has its own current context (having a separate context per thread
means that each thread may make changes without interfering with other threads);
the current thread’s current context is accessed or changed using functions
getcontext and setcontext from the decimal module.

Unlike hardware-based binary floating point, the precision of the decimal module
can be set by users (defaulting to 28 places). It can be set to be as large as needed for
a given problem:

>>> decimal.getcontext().prec = 6 # set the precision to 6...
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857")
>>> decimal.getcontext().prec = 60 # ...and to 60 digits
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")

Not everything in decimal can be as simple and elementary as shown so far, of
course. Essentially, decimal implements the standards for general decimal arithmetic
which you can study in detail at http://www2.hursley.ibm.com/decimal/. In particu-
lar, this means that decimal supports the concept of signals. Signals represent abnor-
mal conditions arising from computations (e.g., 1/0, 0/0, Infinity/Infinity).
Depending on the needs of each specific application, signals may be ignored, consid-
ered as informational, or treated as exceptions. For each signal, there is a flag and a
trap enabler. When a signal is encountered, its flag is incremented from zero, and
then, if the trap enabler is set to one, an exception is raised. This gives programmers
a great deal of power and flexibility in configuring decimal to meet their exact needs.

Given all of these advantages for decimal, why would someone want to stick with
float? Indeed, is there any reason why Python (like just about every other wide-
spread language, with Cobol and Rexx the two major exceptions that easily come to
mind) originally adopted floating-point binary numbers as its default (or only) non-
integer data type? Of course—many reasons can be provided, and they’re all spelled
speed! Consider:

$ python -mtimeit -s'from decimal import Decimal as D' 'D("1.2")+D("3.4")'
10000 loops, best of 3: 191 usec per loop

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 3: Time and Money

$ python -mtimeit -s'from decimal import Decimal as D' '1.2+3.4'
1000000 loops, best of 3: 0.339 usec per loop

This basically translates to: on this machine (an old Athlon 1.2 GHz PC running
Linux), Python can perform almost 3 million sums per second on floats (using the
PC’s arithmetic hardware), but only a bit more than 5 thousand sums per second on
Decimals (all done in software and with all the niceties shown previously).

Essentially, if your application must sum many tens of millions of noninteger num-
bers, you had better stick with float! When an average machine was a thousand
times slower than it is today (and it wasn’t all that long ago!), such limitations hit
even applications doing relatively small amounts of computation, if the applications
ran on reasonably cheap machines (again, we see time and money both playing a
role!). Rexx and Cobol were born on mainframes that were not quite as fast as
today’s cheapest PCs but thousands of times more expensive. Purchasers of such
mainframes could afford nice and friendly decimal arithmetic, but most other lan-
guages, born on more reasonably priced machines (or meant for computationally
intensive tasks), just couldn’t.

Fortunately, relatively few applications actually need to perform so much arithmetic
on non-integers as to give any observable performance problems on today’s typical
machines. Thus, today, most applications can actually take advantage of decimal’s
many beneficial aspects, including applications that must continue to use Python
2.3, even though decimal is in the Python Standard Library only since version 2.4. To
learn how you can easily integrate decimal into Python 2.3, see http://
www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html.

3.1 Calculating Yesterday and Tomorrow
Credit: Andrea Cavalcanti

Problem
You want to get today’s date, then calculate yesterday’s or tomorrow’s.

Solution
Whenever you have to deal with a “change” or “difference” in time, think timedelta:

import datetime
today = datetime.date.today()
yesterday = today - datetime.timedelta(days=1)
tomorrow = today + datetime.timedelta(days=1)
print yesterday, today, tomorrow
#emits: 2004-11-17 2004-11-18 2004-11-19

Discussion
This recipe’s Problem has been a fairly frequent question on Python mailing lists
since the datetime module arrived. When first confronted with this task, it’s quite

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.1 Calculating Yesterday and Tomorrow | 117

common for people to try to code it as yesterday = today - 1, which gives a
TypeError: unsupported operand type(s) for -: 'datetime.date' and 'int'.

Some people have called this a bug, implying that Python should guess what they
mean. However, one of the guiding principles that gives Python its simplicity and
power is: “in the face of ambiguity, refuse the temptation to guess.” Trying to guess
would clutter datetime with heuristics meant to guess that you “really meant 1 day”,
rather than 1 second (which timedelta also supports), or 1 year.

Rather than trying to guess what you mean, Python, as usual, expects you to make
your meaning explicit. If you want to subtract a time difference of one day, you code
that explicitly. If, instead, you want to add a time difference of one second, you can
use timedelta with a datetime.datetime object, and then you code the operation
using exactly the same syntax. This way, for each task you might want to perform,
there’s only one obvious way of doing it. This approach also allows a fair amount of
flexibility, without added complexity. Consider the following interactive snippet:

>>> anniversary = today + datetime.timedelta(days=365) # add 1 year
>>> print anniversary
2005-11-18
>>> t = datetime.datetime.today() # get right now
>>> t
datetime.datetime(2004, 11, 19, 10, 12, 43, 801000)
>>> t2 = t + datetime.timedelta(seconds=1) # add 1 second
>>> t2
datetime.datetime(2004, 11, 19, 10, 12, 44, 801000)
>>> t3 = t + datetime.timedelta(seconds=3600) # add 1 hour
>>> t3
datetime.datetime(2004, 11, 19, 11, 12, 43, 801000)

Keep in mind that, if you want fancier control over date and time arithmetic, third-
party packages, such as dateutil (which works together with the built-in datetime)
and the classic mx.DateTime, are available. For example:

from dateutil import relativedelta
nextweek = today + relativedelta.relativedelta(weeks=1)
print nextweek
#emits: 2004-11-25

However, “always do the simplest thing that can possibly work.” For simple,
straightforward tasks such as the ones in this recipe, datetime.timedelta works just
fine.

See Also
dateutil documentation at https://moin.conectiva.com.br/DateUtil?action= highlight&value=
DateUtil, and datetime documentation in the Library Reference. mx.DateTime can be
found at http://www.egenix.com/files/python/mxDateTime.html. mx.DateTime can be
found at http://www.egenix.com/files/python/mxDateTime.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 3: Time and Money

3.2 Finding Last Friday
Credit: Kent Johnson, Danny Yoo, Jonathan Gennick, Michael Wener

Problem
You want to find the date of last Friday (or today, if today is Friday) and print it in a
specified format.

Solution
You can use the datetime module from Python’s standard library to easily achieve
this:

import datetime, calendar
lastFriday = datetime.date.today()
oneday = datetime.timedelta(days=1)
while lastFriday.weekday() != calendar.FRIDAY:
 lastFriday -= oneday
print lastFriday.strftime('%A, %d-%b-%Y')
emits, e.g.: Friday, 10-Dec-2004

Discussion
The handy little snippet of code in this recipe lets us find a previous weekday and
print the properly formatted date, regardless of whether that weekday is in the same
month, or even the same year. In this example, we’re looking for the last Friday (or
today, if today is Friday). Friday’s integer representation is 4, but to avoid depend-
ing on this “magical number,” we just import the Python Standard Library calendar

module and rely instead on its calendar.FRIDAY attribute (which, sure enough, is the
number 4). We set a variable called lastFriday to today’s date and work backward
until we have reached a date with the desired weekday value of 4.

Once we have the date we desire, formatting the date in any way we like is easily
achieved with the “string formatting” method strftime of the datetime.date class.

An alternative, slightly more terse solution uses the built-in constant
datetime.date.resolution instead of explicitly building the datetime.timedelta

instance to represent one day’s duration:

import datetime, calendar
lastFriday = datetime.date.today()
while lastFriday.weekday() != calendar.FRIDAY:
 lastFriday -= datetime.date.resolution
print lastFriday.strftime('%d-%b-%Y')

The datetime.date.resolution class attribute has exactly the same value as the oneday

variable in the recipe’s Solution—the time interval of one day. However, resolution
can trip you up. The value of the class attribute resolution varies among various
classes of the datetime module—for the date class it’s timedelta(days=1), but for the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.2 Finding Last Friday | 119

time and datetime classes , it’s timedelta(microseconds=1). You could mix-and-match
(e.g., add datetime.date.resolution to a datetime.datetime instance), but it’s easy to
get confused doing so. The version in this recipe’s Solution, using the explicitly
named and defined oneday variable, is just as general, more explicit, and less confus-
ing. Thus, all in all, that version is more Pythonic (which is why it’s presented as the
“official” one!).

A more important enhancement is that we don’t really need to loop, decrementing a
date by one at each step through the loop: we can, in fact, get to the desired target in
one fell swoop, computing the number of days to subtract thanks to the wonders of
modular arithmetic:

import datetime, calendar
today = datetime.date.today()
targetDay = calendar.FRIDAY
thisDay = today.weekday()
deltaToTarget = (thisDay - targetDay) % 7
lastFriday = today - datetime.timedelta(days=deltaToTarget)
print lastFriday.strftime('%d-%b-%Y')

If you don’t follow why this works, you may want to brush up on modular arith-
metic, for example at http://www.cut-the-knot.org/blue/Modulo.shtml.

Use the approach you find clearest, without worrying about performance. Remem-
ber Hoare’s dictum (often misattributed to Knuth, who was in fact quoting Hoare):
“premature optimization is the root of all evil in programming.” Let’s see why think-
ing of optimization would be premature here.

Net of the common parts (computing today’s date, and formatting and emitting the
result) on a four-year-old PC, with Linux and Python 2.4, the slowest approach (the
one chosen for presentation as the “Solution” because it’s probably the clearest and
most obvious one) takes 18.4 microseconds; the fastest approach (the one avoiding
the loop, with some further tweaks to really get pedal to the metal) takes 10.1 micro-
seconds.

You’re not going to compute last Friday’s date often enough, in your life, to be able
to tell the difference at 8 microseconds a pop (much less if you use recent hardware
rather than a box that’s four years old). If you consider the time needed to compute
today’s date and to format the result, you need to add 37 microseconds to each tim-
ing, even net of the I/O time for the print statement; so, the range of performance is
roughly between 55 microseconds for the slowest and clearest form, and 47 micro-
seconds for the fastest and tersest one—clearly not worth worrying about.

See Also
datetime module and strftime documentation in the Library Reference (currently at
http://www.python.org/doc/lib/module-datetime.html and http://www.python.org/doc/
current/lib/node208.html).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 3: Time and Money

3.3 Calculating Time Periods in a Date Range
Credit: Andrea Cavalcanti

Problem
Given two dates, you want to calculate the number of weeks between them.

Solution
Once again, the standard datetime and third-party dateutil modules (particularly
dateutil’s rrule.count method) come in quite handy. After importing the appropri-
ate modules, it’s a really simple job:

from dateutil import rrule
import datetime
def weeks_between(start_date, end_date):
 weeks = rrule.rrule(rrule.WEEKLY, dtstart=start_date, until=end_date)
 return weeks.count()

Discussion
Function weeks_between takes the starting and ending dates as arguments, instanti-
ates a rule to recur weekly between them, and returns the result of the rule’s count

method—faster to code than to describe. This method will return only an integer (it
won’t return “half” weeks). For example, eight days is considered two weeks. It’s
easy to code a test for this:

if __name__=='__main__':
 starts = [datetime.date(2005, 01, 04), datetime.date(2005, 01, 03)]
 end = datetime.date(2005, 01, 10)
 for s in starts:
 days = rrule.rrule(rrule.DAILY, dtstart=s, until=end).count()
 print "%d days shows as %d weeks "% (days, weeks_between(s, end))

This test emits the following output:

7 days shows as 1 weeks

8 days shows as 2 weeks

It’s not necessary to give a name to a recurrence rule, if you don’t want to—chang-
ing the function’s body, for example, to the single statement:

 return rrule.rrule(rrule.WEEKLY, dtstart=start_date, until=end_date).count()

works just as well. I prefer to name recurrence rules because (frankly) I still find them
a bit weird, even though they’re so incredibly useful I doubt I could do without
them!

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Summing Durations of Songs | 121

See Also
Refer to the dateutil module’s documentation available at https://
moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime docu-
mentation in the Library Reference.

3.4 Summing Durations of Songs
Credit: Anna Martelli Ravenscroft

Problem
You want to find out the total duration of a playlist of songs.

Solution
Use the datetime standard module and the built-in function sum to handle this task:

import datetime
def totaltimer(times):
 td = datetime.timedelta(0) # initial value of sum (must be a timedelta)
 duration = sum([
 datetime.timedelta(minutes=m, seconds=s) for m, s in times],
 td)
 return duration
if __name__== '__main__': # test when module run as main script
 times1 = [(2, 36), # list containing tuples (minutes, seconds)
 (3, 35),
 (3, 45),]
 times2 = [(3, 0),
 (5, 13),
 (4, 12),
 (1, 10),]
 assert totaltimer(times1) == datetime.timedelta(0, 596)
 assert totaltimer(times2) == datetime.timedelta(0, 815)
 print ("Tests passed.\n"
 "First test total: %s\n"
 "Second test total: %s" % (
 totaltimer(times1), totaltimer(times2)))

Discussion
I have a large playlist of songs I listen to during workouts. I wanted to create a select
list but wanted to know the total duration of the selected songs, without having to
create the new playlist first. I wrote this little script to handle the task.

A datetime.timedelta is normally what’s returned when calculating the difference
between two datetime objects. However, you can create your own timedelta instance
to represent any given duration of time (while other classes of the datetime module,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 3: Time and Money

such as class datetime, have instances that represent a point in time). Here, we need
to sum durations, so, clearly, it’s exactly timedelta that we need.

datetime.timedelta takes a variety of optional arguments: days, seconds, microsec-
onds, milliseconds, minutes, hours, weeks. So, to create an instance, you really
should pass named arguments when you call the class to avoid confusion. If you
simply call datetime.timedelta(m, n), without naming the arguments, the class uses
positional notation and treats m and n as days and seconds, which produces really
strange results. (I found this out the hard way . . . a good demonstration of the need
to test!)

To use the built-in function sum on a list of objects such as timedeltas, you have to
pass to sum a second argument to use as the initial value—otherwise, the default ini-
tial value is 0, integer zero, and you get an error as soon as you try to sum a
timedelta with that int. All objects in the iterable that you pass as sum’s first argu-
ment should be able to support numeric addition. (Strings are specifically disallowed,
but, take my earnest advice: don’t use sum for concatenating a lot of lists either!) In
Python 2.4, instead of a list comprehension for sum’s first argument, we could use
a generator expression by replacing the square brackets, [and], with parenthe-
ses, (and)—which might be handy if you’re trying to handle a playlist of several
thousand songs.

For the test case, I manually created a list of tuples with the durations of the songs in
minutes and seconds. The script could be enhanced to parse the times in different
formats (such as mm:ss) or to read the information from a file or directly from your
music library.

See Also
Library Reference on sum and datetime.

3.5 Calculating the Number of Weekdays
Between Two Dates

Credit: Anna Martelli Ravenscroft

Problem
You want to calculate the number of weekdays (working days), as opposed to calen-
dar days, that fall between two dates.

Solution
Since weekends and other “days off” vary by country, by region, even sometimes
within a single company, there is no built-in way to perform this task. However,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.5 Calculating the Number of Weekdays Between Two Dates | 123

using dateutil along with datetime objects, it’s reasonably simple to code a
solution:

from dateutil import rrule
import datetime
def workdays(start, end, holidays=0, days_off=None):
 if days_off is None:
 days_off = 5, 6 # default to: saturdays and sundays
 workdays = [x for x in range(7) if x not in days_off]
 days = rrule.rrule(rrule.DAILY, dtstart=start, until=end,
 byweekday=workdays)
 return days.count() - holidays
if __name__ == '__main__':
test when run as main script
 testdates = [(datetime.date(2004, 9, 1), datetime.date(2004, 11, 14), 2),
 (datetime.date(2003, 2, 28), datetime.date(2003, 3, 3), 1),]
 def test(testdates, days_off=None):
 for s, e, h in testdates:
 print 'total workdays from %s to %s is %s with %s holidays' % (
 s, e, workdays(s, e, h, days_off), h)
 test(testdates)
 test(testdates, days_off=[6])

Discussion
This project was my very first one in Python: I needed to know the number of actual
days in training of our trainees, given a start date and end date (inclusive). This prob-
lem was a bit trickier back in Python 2.2; today, the datetime module and the
dateutil third-party package make the problem much simpler to solve.

Function workdays starts by assigning a reasonable default value to variable days_off

(unless an explicit value was passed for it as an argument), which is a sequence of the
weekday numbers of our normal days off. In my company, weekly days off varied
among individuals but were usually fewer than the workdays, so it was easier to
track and modify the days off rather than the workdays. I made this an argument to
the function so that I can easily pass a different value for days_off if and when I have
different needs. Then, the function uses a list comprehension to create a list of actual
weekly workdays, which are all weekdays not in days_off. Now the function is ready
to do its calculations.

The workhorse in this recipe is an instance, named days, of dateutil's rrule (recur-
rence rule) class. Class rrule may be instantiated with various parameters to pro-
duce a rule object. In this example, I pass a frequency (rrule.DAILY), a beginning
date and an ending date—both of which must be datetime.date objects—and which
weekdays to include (workdays). Then, I simply call method days.count to count the
number of occurrences generated by the rule. (See recipe 3.3 “Calculating Time Peri-
ods in a Date Range” for other uses for the count method of rrule.)

You can easily set your own definition of weekend: just pass as days_off whichever
values you need. In this recipe, the default value is set to the standard U.S. weekend

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 3: Time and Money

of Saturday and Sunday. However, if your company normally works a four-day
week, say, Tuesday through Friday, you would pass days_off=(5, 6, 0). Just be sure
to pass the days_off value as an iterable, such as a list or tuple, even if, as in the
second test, you only have a single day in that container.

A simple but useful enhancement might be to automatically check whether your start
and end dates are weekends (for weekend-shift workers), and use an if/else to han-
dle the weekend shifts, with appropriate changes to days_off. Further enhancements
would be to add the ability to enter sick days, or to perform a call to an automatic
holiday lookup function, rather than passing the number of holidays directly, as I do
in this recipe. See recipe 3.6 “Looking up Holidays Automatically” for a simple
implementation of a holidays list for this purpose.

See Also
Refer to the dateutil documentation, which is available at https://
moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime docu-
mentation in the Library Reference; recipe 3.3 “Calculating Time Periods in a Date
Range” for another use of rrule.count; recipe 3.6 “Looking up Holidays Automati-
cally” for automatic holiday lookup.

3.6 Looking up Holidays Automatically
Credit: Anna Martelli Ravenscroft, Alex Martelli

Problem
Holidays vary by country, by region, even by union within the same company. You
want an automatic way to determine the number of holidays that fall between two
given dates.

Solution
Between two dates, there may be movable holidays, such as Easter and Labor Day
(U.S.); holidays that are based on Easter, such as Boxing Day; holidays with a fixed
date, such as Christmas; holidays that your company has designated (the CEO’s
birthday). You can deal with all of them using datetime and the third-party module
dateutil.

A very flexible architecture is to factor out the various possibilities into separate
functions to be called as appropriate:

import datetime
from dateutil import rrule, easter
try: set
except NameError: from sets import Set as set
def all_easter(start, end):
 # return the list of Easter dates within start..end

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.6 Looking up Holidays Automatically | 125

 easters = [easter.easter(y)
 for y in xrange(start.year, end.year+1)]
 return [d for d in easters if start<=d<=end]
def all_boxing(start, end):
 # return the list of Boxing Day dates within start..end
 one_day = datetime.timedelta(days=1)
 boxings = [easter.easter(y)+one_day
 for y in xrange(start.year, end.year+1)]
 return [d for d in boxings if start<=d<=end]
def all_christmas(start, end):
 # return the list of Christmas Day dates within start..end
 christmases = [datetime.date(y, 12, 25)
 for y in xrange(start.year, end.year+1)]
 return [d for d in christmases if start<=d<=end]
def all_labor(start, end):
 # return the list of Labor Day dates within start..end
 labors = rrule.rrule(rrule.YEARLY, bymonth=9, byweekday=rrule.MO(1),
 dtstart=start, until=end)
 return [d.date() for d in labors] # no need to test for in-between here
def read_holidays(start, end, holidays_file='holidays.txt'):
 # return the list of dates from holidays_file within start..end
 try:
 holidays_file = open(holidays_file)
 except IOError, err:
 print 'cannot read holidays (%r):' % (holidays_file,), err
 return []
 holidays = []
 for line in holidays_file:
 # skip blank lines and comments
 if line.isspace() or line.startswith('#'):
 continue
 # try to parse the format: YYYY, M, D
 try:
 y, m, d = [int(x.strip()) for x in line.split(',')]
 date = datetime.date(y, m, d)
 except ValueError:
 # diagnose invalid line and just go on
 print "Invalid line %r in holidays file %r" % (
 line, holidays_file)
 continue
 if start<=date<=end:
 holidays.append(date)
 holidays_file.close()
 return holidays
holidays_by_country = {
 # map each country code to a sequence of functions
 'US': (all_easter, all_christmas, all_labor),
 'IT': (all_easter, all_boxing, all_christmas),
}
def holidays(cc, start, end, holidays_file='holidays.txt'):
 # read applicable holidays from the file
 all_holidays = read_holidays(start, end, holidays_file)
 # add all holidays computed by applicable functions
 functions = holidays_by_country.get(cc, ())

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 3: Time and Money

 for function in functions:
 all_holidays += function(start, end)
 # eliminate duplicates
 all_holidays = list(set(all_holidays))
 # uncomment the following 2 lines to return a sorted list:
 # all_holidays.sort()
 # return all_holidays
 return len(all_holidays) # comment this out if returning list
if __name__ == '__main__':
 test_file = open('test_holidays.txt', 'w')
 test_file.write('2004, 9, 6\n')
 test_file.close()
 testdates = [(datetime.date(2004, 8, 1), datetime.date(2004, 11, 14)),
 (datetime.date(2003, 2, 28), datetime.date(2003, 5, 30)),
 (datetime.date(2004, 2, 28), datetime.date(2004, 5, 30)),
]
 def test(cc, testdates, expected):
 for (s, e), expect in zip(testdates, expected):
 print 'total holidays in %s from %s to %s is %d (exp %d)' % (
 cc, s, e, holidays(cc, s, e, test_file.name), expect)
 print
 test('US', testdates, (1,1,1))
 test('IT', testdates, (1,2,2))
 import os
 os.remove(test_file.name)

Discussion
In one company I worked for, there were three different unions, and holidays varied
among the unions by contract. In addition, we had to track any snow days or other
release days in the same way as “official” holidays. To deal with all the potential vari-
ations in holidays, it’s easiest to factor out the calculation of standard holidays into
their own functions, as we did in the preceding example for all_easter, all_labor,
and so on. Examples of different types of calculations are provided so it’s easy to roll
your own as needed.

Although half-open intervals (with the lower bound included but the upper one
excluded) are the norm in Python (and for good reasons, since they’re arithmetically
more malleable and tend to induce fewer bugs in your computations!), this recipe
deals with closed intervals instead (both lower and upper bounds included). Unfor-
tunately, that’s how specifications in terms of date intervals tend to be given, and
dateutil also works that way, so the choice was essentially obvious.

Each function is responsible for ensuring that it only returns results that meet our
criteria: lists of datetime.date instances that lie between the dates (inclusive) passed
to the function. For example, in all_labor, we coerce the datetime.datetime results
returned by dateutil’s rrule into datetime.date instances with the date method.

A company may choose to set a specific date as a holiday (such as a snow day) “just
this once,” and a text file may be used to hold such unique instances. In our exam-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.7 Fuzzy Parsing of Dates | 127

ple, the read_holidays function handles the task of reading and processing a text file,
with one date per line, each in the format year, month, day. You could also choose to
refactor this function to use a “fuzzy” date parser, as shown in recipe 3.7 “Fuzzy
Parsing of Dates.”

If you need to look up holidays many times within a single run of your program, you
may apply the optimization of reading and parsing the text file just once, then using
the list of dates parsed from its contents each time that data is needed. However,
“premature optimization is the root of all evil in programming,” as Knuth said, quot-
ing Hoare: by avoiding even this “obvious” optimization, we gain clarity and flexibil-
ity. Imagine these functions being used in an interactive environment, where the text
file containing holidays may be edited between one computation and the next: by
rereading the file each time, there is no need for any special check about whether the
file was changed since you last read it!

Since countries often celebrate different holidays, the recipe provides a rudimentary
holidays_by_country dictionary. You can consult plenty of web sites that list holi-
days by country to flesh out the dictionary for your needs. The important part is that
this dictionary allows a different group of holidays-generating functions to be called,
depending on which country code is passed to the holidays function. If your com-
pany has multiple unions, you could easily create a union-based dictionary, passing
the union-code instead of (or for multinationals, in addition to) a country code to
holidays. The holidays function calls the appropriate functions (including, uncondi-
tionally, read_holidays), concatenates the results, eliminates duplicates, and returns
the length of the list. If you prefer, of course, you can return the list instead, by sim-
ply uncommenting two lines as indicated in the code.

See Also
Recipe 3.7 “Fuzzy Parsing of Dates” for fuzzy parsing; dateutil documentation at
https://moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, datetime

documentation in the Library Reference.

3.7 Fuzzy Parsing of Dates
Credit: Andrea Cavalcanti

Problem
Your program needs to read and accept dates that don’t conform to the datetime

standard format of "yyyy, mm, dd".

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 3: Time and Money

Solution
The third-party dateutil.parser module provides a simple answer:

import datetime
import dateutil.parser
def tryparse(date):
 # dateutil.parser needs a string argument: let's make one from our
 # `date' argument, according to a few reasonable conventions...:
 kwargs = { } # assume no named-args
 if isinstance(date, (tuple, list)):
 date = ' '.join([str(x) for x in date]) # join up sequences
 elif isinstance(date, int):
 date = str(date) # stringify integers
 elif isinstance(date, dict):
 kwargs = date # accept named-args dicts
 date = kwargs.pop('date') # with a 'date' str
 try:
 try:
 parsedate = dateutil.parser.parse(date, **kwargs)
 print 'Sharp %r -> %s' % (date, parsedate)
 except ValueError:
 parsedate = dateutil.parser.parse(date, fuzzy=True, **kwargs)
 print 'Fuzzy %r -> %s' % (date, parsedate)
 except Exception, err:
 print 'Try as I may, I cannot parse %r (%s)' % (date, err)
if __name__ == "__main__":
 tests = (
 "January 3, 2003", # a string
 (5, "Oct", 55), # a tuple
 "Thursday, November 18", # longer string without year
 "7/24/04", # a string with slashes
 "24-7-2004", # European-format string
 {'date':"5-10-1955", "dayfirst":True}, # a dict including the kwarg
 "5-10-1955", # dayfirst, no kwarg
 19950317, # not a string
 "11AM on the 11th day of 11th month, in the year of our Lord 1945",
)
 for test in tests: # testing date formats
 tryparse(test) # try to parse

Discussion
dateutil.parser’s parse function works on a variety of date formats. This recipe
demonstrates a few of them. The parser can handle English-language month-names
and two- or four-digit years (with some constraints). When you call parse without
named arguments, its default is to first try parsing the string argument in the follow-
ing order: mm-dd-yy. If that does not make logical sense, as, for example, it doesn’t
for the '24-7-2004' string in the recipe, parse then tries dd-mm-yy. Lastly, it tries yy-
mm-dd. If a “keyword” such as dayfirst or yearfirst is passed (as we do in one
test), parse attempts to parse based on that keyword.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.8 Checking Whether Daylight Saving Time Is Currently in Effect | 129

The recipe tests define a few edge cases that a date parser might encounter, such as
trying to pass the date as a tuple, an integer (ISO-formatted without spaces), and
even a phrase. To allow testing of the keyword arguments, the tryparse function in
the recipe also accepts a dictionary argument, expecting, in this case, to find in it the
value of the string to be parsed in correspondence to key 'date', and passing the rest
on to dateutil’s parser as keyword arguments.

dateutil’s parser can provide a pretty good level of “fuzzy” parsing, given some hints
to let it know which piece is, for example, the hour (such as the AM in the test
phrase in this recipe). For production code, you should avoid relying on fuzzy pars-
ing, and either do some kind of preprocessing, or at least provide some kind of
mechanism for checking the accuracy of the parsed date.

See Also
For more on date-parsing algorithms, see dateutil documentation at https://
moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil; for date han-
dling, see the datetime documentation in the Library Reference.

3.8 Checking Whether Daylight Saving Time Is
Currently in Effect

Credit: Doug Fort

Problem
You want to know whether daylight saving time is in effect in your local time zone
today.

Solution
It’s a natural temptation to check time.daylight for this purpose, but that doesn’t
work. Instead you need:

import time
def is_dst():
 return bool(time.localtime().tm_isdst)

Discussion
In my location (as in most others nowadays), time.daylight is always 1 because
time.daylight means that this time zone has daylight saving time (DST) at some time
during the year, whether or not DST is in effect today.

The very last item in the pseudo-tuple you get by calling time.localtime, on the
other hand, is 1 only when DST is currently in effect, otherwise it’s 0—which, in my
experience, is exactly the information one usually needs to check. This recipe wraps

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 3: Time and Money

this check into a function, calling built-in type bool to ensure the result is an elegant
True or False rather than a rougher 1 or 0—optional refinements, but nice ones, I
think. You could alternatively access the relevant item as time.localtime()[-1], but
using attribute-access syntax with the tm_isdst attribute name is more readable.

See Also
Library Reference and Python in a Nutshell about module time.

3.9 Converting Time Zones
Credit: Gustavo Niemeyer

Problem
You are in Spain and want to get the correct local (Spanish) time for an event in
China.

Solution
Time zone support for datetime is available in the third-party dateutil package.
Here’s one way to set the local time zone, then print the current time to check that it
worked properly:

from dateutil import tz
import datetime
posixstr = "CET-1CEST-2,M3.5.0/02:00,M10.5.0/03:00"
spaintz = tz.tzstr(posixstr)
print datetime.datetime.now(spaintz).ctime()

Conversion between different time zones is also possible, and often necessary in our
expanding world. For instance, let’s find out when the next Olympic Games will
start, according to a Spanish clock:

chinatz = tz.tzoffset("China", 60*60*8)
olympicgames = datetime.datetime(2008, 8, 8, 20, 0, tzinfo=chinatz)
print olympicgames.astimezone(spaintz)

Discussion
The cryptic string named posixstr is a POSIX-style representation for the time zone
currently being used in Spain. This string provides the standard and daylight saving
time zone names (CST and CEST), their offsets (UTC+1 and UTC+2), and the day
and hour when DST starts and ends (the last Sunday of March at 2 a.m., and the last
Sunday of October at 3 a.m., respectively). We may check the DST zone bounds to
ensure they are correct:

assert spaintz.tzname(datetime.datetime(2004, 03, 28, 1, 59)) == "CET"
assert spaintz.tzname(datetime.datetime(2004, 03, 28, 2, 00)) == "CEST"
assert spaintz.tzname(datetime.datetime(2004, 10, 31, 1, 59)) == "CEST"
assert spaintz.tzname(datetime.datetime(2004, 10, 31, 2, 00)) == "CET"

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.10 Running a Command Repeatedly | 131

All of these asserts should pass silently, confirming that the time zone name
switches between the right strings at the right times.

Observe that even though the return to the standard time zone is scheduled to 3a.m.,
the moment of the change is marked as 2 a.m. This happens because of a one-hour
gap, between 2 a.m. and 3 a.m., that is ambiguous. That hour of time happens twice:
once in the time zone CEST, and then again in the time zone CET. Currently,
expressing this moment in an unambiguous way, using the standard Python date and
time support, is not possible. This is why it is recommended that you store datetime

instances in UTC, which is unambiguous, and only use time zone conversion for dis-
play purposes.

To do the conversion from China to Spain, we’ve used tzoffset to express the fact
that China is eight hours ahead of UTC time (tzoffset is always compared to UTC,
not to a particular time zone). Notice how the datetime instance is created with the
time zone information. This is always necessary for converting between two differ-
ent time zones, even if the given time is in the local time zone. If you don’t create the
instance with the time zone information, you’ll get a ValueError: astimezone()

cannot be applied to a naive datetime. datetime instances are always created
naive—they ignore time zone issues entirely—unless you explicitly create them with
a time zone. For this purpose, dateutil provides the tzlocal type, which creates
instances representing the platform’s idea of the local time zone.

Besides the types we have seen so far, dateutil also provides tzutc, which creates
instances representing UTC; tzfile, which allows using standard binary time zone
files; tzical, which creates instances representing iCalendar time zones; and many
more besides.

See Also
Documentation about the dateutil module can be found at https://
moin.conectiva.com.br/DateUtil?action=highlight&value=DateUtil, and datetime doc-
umentation in the Library Reference.

3.10 Running a Command Repeatedly
Credit: Philip Nunez

Problem
You need to run a command repeatedly, with arbitrary periodicity.

Solution
The time.sleep function offers a simple approach to this task:

import time, os, sys
def main(cmd, inc=60):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 3: Time and Money

 while True:
 os.system(cmd)
 time.sleep(inc)
if __name__ == '__main__' :
 numargs = len(sys.argv) - 1
 if numargs < 1 or numargs > 2:
 print "usage: " + sys.argv[0] + " command [seconds_delay]"
 sys.exit(1)
 cmd = sys.argv[1]
 if numargs < 3:
 main(cmd)
 else:
 inc = int(sys.argv[2])
 main(cmd, inc)

Discussion
You can use this recipe with a command that periodically checks for something (e.g.,
polling), or with one that performs an endlessly repeating action, such as telling a
browser to reload a URL whose contents change often, so as to always have a recent
version of that URL for viewing. The recipe is structured into a function called main

and a body that is preceded by the usual if __name__=='__main__': idiom, to exe-
cute only if the script runs as a main script. The body examines the command-line
arguments you used with the script and calls main appropriately (or gives a usage
message if there are too many or too few arguments). This is the best way to struc-
ture a script, to make its functionality also available to other scripts that may import
it as a module.

The main function accepts a cmd string, which is a command you want to pass period-
ically to the operating system’s shell, and, optionally, a period of time in seconds,
with a default value of 60 (one minute). main loops forever, alternating between exe-
cuting the command with os.system and waiting (without consuming resources)
with time.sleep.

The script’s body looks at the command-line arguments you used with the script,
which it finds in sys.argv. The first argument, sys.argv[0], is the name of the
script, often useful when the script identifies itself as it prints out messages. The
body checks that one or two other arguments, in addition to this name, are included.
The first (and mandatory) is the command to be run. (You may need to enclose this
command in quotes to preserve it from your shell’s parsing: the important thing is
that it must remain a single argument.) The second (and optional) argument is the
delay in seconds between two runs of the command. If the second argument is miss-
ing, the body calls main with just the command argument, accepting the default
delay (60 seconds).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.11 Scheduling Commands | 133

Note that, if there is a second argument, the body transforms it from a string (all
items in sys.argv are always strings) into an integer, which is done most simply by
calling built-in type int:

inc = int(sys.argv[2])

If the second argument is a string that is not acceptable for transformation into an
integer (in other words, if it’s anything except a sequence of digits), this call to int

raises an exception and terminates the script with appropriate error messages. As one
of Python’s design principles states, “errors should not pass silently, unless explicitly
silenced.” It would be bad design to let the script accept an arbitrary string as its
second argument, silently taking a default action if that string was not a correct inte-
ger representation!

For a variant of this recipe that uses the standard Python library module sched, rather
than explicit looping and sleeping, see recipe 3.11 “Scheduling Commands.”

See Also
Documentation of the standard library modules os, time, and sys in the Library Ref-
erence and Python in a Nutshell; recipe 3.11 “Scheduling Commands.”

3.11 Scheduling Commands
Credit: Peter Cogolo

Problem
You need to schedule commands for execution at certain times.

Solution
That’s what the sched module of the standard library is for:

import time, os, sys, sched
schedule = sched.scheduler(time.time, time.sleep)
def perform_command(cmd, inc):
 schedule.enter(inc, 0, perform_command, (cmd, inc)) # re-scheduler
 os.system(cmd)
def main(cmd, inc=60):
 schedule.enter(0, 0, perform_command, (cmd, inc)) # 0==right now
 schedule.run()
if __name__ == '__main__' :
 numargs = len(sys.argv) - 1
 if numargs < 1 or numargs > 2:
 print "usage: " + sys.argv[0] + " command [seconds_delay]"
 sys.exit(1)
 cmd = sys.argv[1]
 if numargs < 3:
 main(cmd)
 else:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 3: Time and Money

 inc = int(sys.argv[2])
 main(cmd, inc)

Discussion
This recipe implements the same functionality as in the previous recipe 3.10 “Run-
ning a Command Repeatedly,” but instead of that recipe’s simpler roll-our-own
approach, this one uses the standard library module sched.

sched is a reasonably simple, yet flexible and powerful, module for scheduling tasks
that must take place at given times in the future. To use sched, you first instantiate a
scheduler object, such as schedule (shown in this recipe’s Solution), with two argu-
ments. The first argument is the function to call in order to find out what time it is—
normally time.time, which returns the current time as a number of seconds from an
arbitrary reference point known as the epoch. The second argument is the function to
call to wait for some time—normally time.sleep. You can also pass functions that
measure time in arbitrary artificial ways. For example, you can use sched for such
tasks as simulation programs. However, measuring time in artificial ways is an
advanced use of sched not covered in this recipe.

Once you have a sched.scheduler instance s, you schedule events by calling either
s.enter, to schedule something at a relative time n seconds from now (you can pass n

as 0 to schedule something for right now), or s.enterabs, to schedule something at a
given absolute time. In either case, you pass the time (relative or absolute), a priority
(if multiple events are scheduled for the same time, they execute in priority order,
lowest-priority first), a function to call, and a tuple of arguments to call that func-
tion with. Each of these two methods return an event identifier, an arbitrary token
that you may store somewhere and later use to cancel a scheduled event by passing
the event’s token as the argument in a call to s.cancel—another advanced use which
this recipe does not cover.

After scheduling some events, you call s.run, which keeps running until the queue of
scheduled events is empty. In this recipe, we show how to schedule a periodic, recur-
ring event: function perform_command reschedules itself for inc seconds later in the
future as the first thing it does, before running the specified system command. In this
way, the queue of scheduled events never empties, and function perform_command

keeps getting called with regular periodicity. This self-rescheduling is an important
idiom, not just in using sched, but any time you have a “one-shot” way to ask for
something to happen in the future, and you need instead to have something happen
in the future “periodically”. (Tkinter’s after method, e.g., also works in exactly this
way, and thus is also often used with just this kind of self-rescheduling idiom.)

Even for a task as simple as the one handled by this recipe, sched still has a small
advantage over the simpler roll-your-own approach used previously in recipe 3.10
“Running a Command Repeatedly.” In recipe 3.10, the specified delay occurs
between the end of one execution of cmd and the beginning of the next execution. If

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.12 Doing Decimal Arithmetic | 135

the execution of cmd takes a highly variable amount of time (as is often the case, e.g.,
for commands that must wait for the network, or some busy server, etc.), then the
command is not really being run periodically. In this recipe, the delay occurs
between beginning successive runs of cmd, so that periodicity is indeed guaranteed. If
a certain run of cmd takes longer than inc seconds, the schedule temporarily falls
behind, but it will eventually catch up again, as long as the average running time of
cmd is less than inc seconds: sched never “skips” events. (If you do want an event to
be skipped because it’s not relevant any more, you have to keep track of the event
identifier token and use the cancel method.)

For a detailed explanation of this script’s structure and body, see recipe 3.10 “Run-
ning a Command Repeatedly.”

See Also
Recipe 3.10 “Running a Command Repeatedly”; documentation of the standard
library modules os, time, sys, and sched in the Library Reference and Python in a
Nutshell.

3.12 Doing Decimal Arithmetic
Credit: Anna Martelli Ravenscroft

Problem
You want to perform some simple arithmetic computations in Python 2.4, but you
want decimal results, not the Python default of float.

Solution
To get the normal, expected results from plain, simple computations, use the decimal

module introduced in Python 2.4:

>>> import decimal
>>> d1 = decimal.Decimal('0.3') # assign a decimal-number object
>>> d1/3 # try some division
Decimal("0.1")
>>> (d1/3)*3 # can we get back where we started?
Decimal("0.3")

Discussion
Newcomers to Python (particularly ones without experience with binary float calcu-
lations in other programming languages) are often surprised by the results of seem-
ingly simple calculations. For example:

>>> f1 = .3 # assign a float
>>> f1/3 # try some division
0.099999999999999992

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 3: Time and Money

>>> (f1/3)*3 # can we get back where we started?
0.29999999999999999

Binary floating-point arithmetic is the default in Python for very good reasons. You
can read all about them in the Python FAQ (Frequently Asked Questions) document
at http://www.python.org/doc/faq/general.html#why-are-floating-point-calculations-
so-inaccurate, and even in the appendix to the Python Tutorial at http://
docs.python.org/tut/node15.html.

Many people, however, were unsatisfied with binary floats being the only option—
they wanted to be able to specify the precision, or wanted to use decimal arithmetic
for monetary calculations with predictable results. Some of us just wanted the pre-
dictable results. (A True Numerical Analyst does, of course, find all results of binary
floating-point computations to be perfectly predictable; if any of you three are read-
ing this chapter, you can skip to the next recipe, thanks.)

The new decimal type affords a great deal of control over the context for your calcula-
tions, allowing you, for example, to set the precision and rounding method to use for
the results. However, when all you want is to run simple arithmetical operations that
return predictable results, decimal’s default context works just fine.

Just keep in mind a few points: you may pass a string, integer, tuple, or other deci-
mal object to create a new decimal object, but if you have a float n that you want to
make into a decimal, pass str(n), not bare n. Also, decimal objects can interact (i.e.,
be subject to arithmetical operations) with integers, longs, and other decimal objects,
but not with floats. These restrictions are anything but arbitrary. Decimal numbers
have been added to Python exactly to provide the precision and predictability that
float lacks: if it was allowed to build a decimal number from a float, or by operat-
ing with one, the whole purpose would be defeated. decimal objects, on the other
hand, can be coerced into other numeric types such as float, long, and int, just as
you would expect.

Keep in mind that decimal is still floating point, not fixed point. If you want fixed
point, take a look at Tim Peter’s FixedPoint at http://fixedpoint.sourceforge.net/. Also,
no money data type is yet available in Python, although you can look at recipe 3.13
“Formatting Decimals as Currency” to learn how to roll-your-own money format-
ting on top of decimal. Last but not least, it is not obvious (at least not to me), when
an intermediate computation produces more digits than the inputs, whether you
should keep the extra digits for further intermediate computations, and round only
when you’re done computing a formula (and are about to display or store a result),
or whether you should instead round at each step. Different textbooks suggest differ-
ent answers. I tend to do the former, simply because it’s more convenient.

If you’re stuck with Python 2.3, you may still take advantage of the decimal module,
by downloading and installing it as a third-party extension—see http://
www.taniquetil.com.ar/facundo/bdvfiles/get_decimal.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.13 Formatting Decimals as Currency | 137

See Also
The explanation of floating-point arithmetic in Appendix B of the Python Tutorial at
http://docs.python.org/tut/node15.html; the Python FAQ at http://www.python.org/
doc/faq/general.html#why-are-floating-point-calculations-so-inaccurate; Tim Peter’s
FixedPoint at http://fixedpoint.sourceforge.net/; using decimal as currency, see recipe
3.13 “Formatting Decimals as Currency”; decimal is documented in the Python 2.4
Library Reference and is available for download to use with 2.3 at http://
cvs.sourceforge.net/viewcvs.py/python/python/dist/src/Lib/decimal.py; the decimal PEP
(Python Enhancement Proposal), PEP 327, is at http://www.python.org/peps/pep-
0327.html.

3.13 Formatting Decimals as Currency
Credit: Anna Martelli Ravenscroft, Alex Martelli, Raymond Hettinger

Problem
You want to do some tax calculations and display the result in a simple report as
Euro currency.

Solution
Use the new decimal module, along with a modified moneyfmt function (the original,
by Raymond Hettinger, is part of the Python library reference section about decimal):

import decimal
""" calculate Italian invoice taxes given a subtotal. """
def italformat(value, places=2, curr='EUR', sep='.', dp=',', pos='', neg='-',
 overall=10):
 """ Convert Decimal ``value'' to a money-formatted string.
 places: required number of places after the decimal point
 curr: optional currency symbol before the sign (may be blank)
 sep: optional grouping separator (comma, period, or blank) every 3
 dp: decimal point indicator (comma or period); only specify as
 blank when places is zero
 pos: optional sign for positive numbers: "+", space or blank
 neg: optional sign for negative numbers: "-", "(", space or blank
 overall: optional overall length of result, adds padding on the
 left, between the currency symbol and digits
 """
 q = decimal.Decimal((0, (1,), -places)) # 2 places --> '0.01'
 sign, digits, exp = value.quantize(q).as_tuple()
 result = []
 digits = map(str, digits)
 append, next = result.append, digits.pop
 for i in range(places):
 if digits:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 3: Time and Money

 append(next())
 else:
 append('0')
 append(dp)
 i = 0
 while digits:
 append(next())
 i += 1
 if i == 3 and digits:
 i = 0
 append(sep)
 while len(result) < overall:
 append(' ')
 append(curr)
 if sign: append(neg)
 else: append(pos)
 result.reverse()
 return ''.join(result)
get the subtotal for use in calculations
def getsubtotal(subtin=None):
 if subtin == None:
 subtin = input("Enter the subtotal: ")
 subtotal = decimal.Decimal(str(subtin))
 print "\n subtotal: ", italformat(subtotal)
 return subtotal
specific Italian tax law functions
def cnpcalc(subtotal):
 contrib = subtotal * decimal.Decimal('.02')
 print "+ contributo integrativo 2%: ", italformat(contrib, curr='')
 return contrib
def vatcalc(subtotal, cnp):
 vat = (subtotal+cnp) * decimal.Decimal('.20')
 print "+ IVA 20%: ", italformat(vat, curr='')
 return vat
def ritacalc(subtotal):
 rit = subtotal * decimal.Decimal('.20')
 print "-Ritenuta d'acconto 20%: ", italformat(rit, curr='')
 return rit
def dototal(subtotal, cnp, iva=0, rit=0):
 totl = (subtotal+cnp+iva)-rit
 print " TOTALE: ", italformat(totl)
 return totl
overall calculations report
def invoicer(subtotal=None, context=None):
 if context is None:
 decimal.getcontext().rounding="ROUND_HALF_UP" # Euro rounding rules
 else:
 decimal.setcontext(context) # set to context arg
 subtot = getsubtotal(subtotal)
 contrib = cnpcalc(subtot)
 dototal(subtot, contrib, vatcalc(subtot, contrib), ritacalc(subtot))
if __name__=='__main__':
 print "Welcome to the invoice calculator"
 tests = [100, 1000.00, "10000", 555.55]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.13 Formatting Decimals as Currency | 139

 print "Euro context"
 for test in tests:
 invoicer(test)
 print "default context"
 for test in tests:
 invoicer(test, context=decimal.DefaultContext)

Discussion
Italian tax calculations are somewhat complicated, more so than this recipe demon-
strates. This recipe applies only to invoicing customers within Italy. I soon got tired
of doing them by hand, so I wrote a simple Python script to do the calculations for
me. I’ve currently refactored into the version shown in this recipe, using the new
decimal module, just on the principle that money computations should never, but
never, be done with binary floats.

How to best use the new decimal module for monetary calculations was not immedi-
ately obvious. While the decimal arithmetic is pretty straightforward, the options for
displaying results were less clear. The italformat function in the recipe is based on
Raymond Hettinger’s moneyfmt recipe, found in the decimal module documentation
available in the Python 2.4 Library Reference. Some minor modifications were help-
ful for my reporting purposes. The primary addition was the overall parameter. This
parameter builds a decimal with a specific number of overall digits, with whitespace
padding between the currency symbol (if any) and the digits. This eases alignment
issues when the results are of a standard, predictable length.

Notice that I have coerced the subtotal input subtin to be a string in subtotal

= decimal.Decimal(str(subtin)). This makes it possible to feed floats (as well
as integers or strings) to getsubtotal without worry—without this, a float
would raise an exception. If your program is likely to pass tuples, refactor
the code to handle that. In my case, a float was a rather likely input to
getsubtotal, but I didn’t have to worry about tuples.

Of course, if you need to display using U.S. $, or need to use other rounding rules,
it’s easy enough to modify things to suit your needs. For example, to display U.S.
currency, you could change the curr, sep, and dp arguments’ default values as fol-
lows:

def USformat(value, places=2, curr='$', sep=',', dp='.', pos='', neg='-',
 overall=10):
...

If you regularly have to use multiple currency formats, you may choose to refactor
the function so that it looks up the appropriate arguments in a dictionary, or you
may want to find other ways to pass the appropriate arguments. In theory, the
locale module in the Python Standard Library should be the standard way to let
your code access locale-related preferences such as those connected to money

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 3: Time and Money

formatting, but in practice I’ve never had much luck using locale (for this or any
other purpose), so that’s one task that I’ll gladly leave as an exercise to the reader.

Countries often have specific rules on rounding; decimal uses ROUND_HALF_EVEN as the
default. However, the Euro rules specify ROUND_HALF_UP. To use different rounding
rules, change the context, as shown in the recipe. The result of this change may or
may not be obvious, but one should be aware that it can make a (small, but legally
not negligible) difference.

You can also change the context more extensively, by creating and setting your own
context class instance. A change in context, whether set by a simple getcontext attri-
bution change, or with a custom context class instance passed to
setcontext(mycontext), continues to apply throughout the active thread, until you
change it. If you are considering using decimal in production code (or even for your
own home bookkeeping use), be sure to use the right context (in particular, the cor-
rect rounding rules) for your country’s accounting practices.

See Also
Python 2.4’s Library Reference on decimal, particularly the section on
decimal.context and the “recipes” at the end of that section.

3.14 Using Python as a Simple Adding Machine
Credit: Brett Cannon

Problem
You want to use Python as a simple adding machine, with accurate decimal (not
binary floating-point!) computations and a “tape” that shows the numbers in an
uncluttered columnar view.

Solution
To perform the computations, we can rely on the decimal module. We accept input
lines, each made up of a number followed by an arithmetic operator, an empty line
to request the current total, and q to terminate the program:

import decimal, re, operator
parse_input = re.compile(r'''(?x) # allow comments and whitespace in the RE
 (\d+\.?\d*) # number with optional decimal part
 \s* # optional whitespace
 ([-+/*]) # operator
 $''') # end-of-string
oper = { '+': operator.add, '-': operator.sub,
 '*': operator.mul, '/': operator.truediv,
 }
total = decimal.Decimal('0')
def print_total():

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.14 Using Python as a Simple Adding Machine | 141

 print '== == =\n', total
print """Welcome to Adding Machine:
Enter a number and operator,
an empty line to see the current subtotal,
or q to quit: """
while True:
 try:
 tape_line = raw_input().strip()
 except EOFError:
 tape_line = 'q'
 if not tape_line:
 print_total()
 continue
 elif tape_line == 'q':
 print_total()
 break
 try:
 num_text, op = parse_input.match(tape_line).groups()
 except AttributeError:
 print 'Invalid entry: %r' % tape_line
 print 'Enter number and operator, empty line for total, q to quit'
 continue
 total = oper[op](total, decimal.Decimal(num_text))

Discussion
Python’s interactive interpreter is often a useful calculator, but a simpler “adding
machine” also has its uses. For example, an expression such as 2345634+2894756-
2345823 is not easy to read, so checking that you’re entering the right numbers for a
computation is not all that simple. An adding machine’s tape shows numbers in a
simple, uncluttered columnar view, making it easier to double check what you have
entered. Moreover, the decimal module performs computations in the normal, deci-
mal-based way we need in real life, rather than in the floating-point arithmetic pre-
ferred by scientists, engineers, and today’s computers.

When you run the script in this recipe from a normal command shell (this script is
not meant to be run from within a Python interactive interpreter!), the script prompts
you once, and then just sits there, waiting for input. Type a number (one or more
digits, then optionally a decimal point, then optionally more digits), followed by an
operator (/, *, -, or +—the four operator characters you find on the numeric keypad
on your keyboard), and then press return. The script applies the number to the run-
ning total using the operator. To output the current total, just enter a blank line. To
quit, enter the letter q and press return. This simple interface matches the input/out-
put conventions of a typical simple adding machine, removing the need to have some
other form of output.

The decimal package is part of Python’s standard library since version 2.4. If you’re
still using Python 2.3, visit http://www.taniquetil.com.ar/facundo/bdvfiles/get_
decimal.html and download and install the package in whatever form is most conve-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 3: Time and Money

nient for you. decimal allows high-precision decimal arithmetic, which is more con-
venient for many uses (such as any computation involving money) than the binary
floating-point computations that are faster on today’s computers and which Python
uses by default. No more lost pennies due to hard-to-understand issues with binary
floating point! As demonstrated in recipe 3.13 “Formatting Decimals as Currency,”
you can even change the rounding rules from the default of ROUND_HALF_EVEN, if you
really need to.

This recipe’s script is meant to be very simple, so many improvements are possible. A
useful enhancement would be to keep the “tape” on disk for later checking. You can
do that easily, by adding, just before the loop, a statement to open some appropriate
text file for append:

tapefile = open('tapefile.txt', 'a')

and, just after the try/except statement that obtains a value for tape_line, a state-
ment to write that value to the file:

tapefile.write(tape_line+'\n')

If you do want to make these additions, you will probably also want to enrich func-
tion print_total so that it writes to the “tape” file as well as to the command win-
dow, therefore, change the function to:

def print_total():
 print '== == =\n', total
 tapefile.write('== == =\n' + str(total) + '\n')

The write method of a file object accepts a string as its argument and does not
implicitly terminate the line as the print statement does, so we need to explicitly call
the str built-in function and explicitly add '\n' as needed. Alternatively, the second
statement in this version of print_total could be coded in a way closer to the first
one:

 print >>tapefile, '== == =\n', total

Some people really dislike this print >>somefile, syntax, but it can come in handy in
cases such as this one.

More ambitious improvements would be to remove the need to press Return after
each operator (that would require performing unbuffered input and dealing with one
character at a time, rather than using the handy but line-oriented built-in function
raw_input as the recipe does—see recipe 2.23 “Reading an Unbuffered Character
in a Cross-Platform Way” for a cross-platform way to get unbuffered input), to add a
clear function (or clarify to users that inputting 0* will zero out the “tape”), and
even to add a GUI that looks like an adding machine. However, I’m leaving any such
improvements as exercises for the reader.

One important point about the recipe’s implementation is the oper dictionary, which
uses operator characters (/, *, -, +) as keys and the appropriate arithmetic functions

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.15 Checking a Credit Card Checksum | 143

from the built-in module operator, as corresponding values. The same effect could
be obtained, more verbosely, by a “tree” of if/elif, such as:

if op == '+':
 total = total + decimal.Decimal(num_text)
elif op == '-':
 total = total - decimal.Decimal(num_text)
elif op == '*':
 <line_annotation>... and so on ...</line_annotation>

However, Python dictionaries are very idiomatic and handy for such uses, and they
lead to less repetitious and thus more maintainable code.

See Also
decimal is documented in the Python 2.4 Library Reference, and is available for
download to use with 2.3 at http://www.taniquetil.com.ar/facundo/bdvfiles/get_
decimal.html; you can read the decimal PEP 327 at http://www.python.org/peps/pep-
0327.html.

3.15 Checking a Credit Card Checksum
Credit: David Shaw, Miika Keskinen

Problem
You need to check whether a credit card number respects the industry standard
Luhn checksum algorithm.

Solution
Luhn mod 10 is the credit card industry’s standard for credit card checksums. It’s not
built into Python, but it’s easy to roll our own computation for it:

def cardLuhnChecksumIsValid(card_number):
 """ checks to make sure that the card passes a luhn mod-10 checksum """
 sum = 0
 num_digits = len(card_number)
 oddeven = num_digits & 1
 for count in range(num_digits):
 digit = int(card_number[count])
 if not ((count & 1) ^ oddeven):
 digit = digit * 2
 if digit > 9:
 digit = digit - 9
 sum = sum + digit
 return (sum % 10) == 0

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 3: Time and Money

Discussion
This recipe was originally written for a now-defunct e-commerce application to be
used within Zope.

It can save you time and money to apply this simple validation before trying to pro-
cess a bad or miskeyed card with your credit card vendor, because you won’t waste
money trying to authorize a bad card number. The recipe has wider applicability
because many government identification numbers also use the Luhn (i.e., modulus
10) algorithm.

A full suite of credit card validation methods is available at http://
david.theresistance.net/files/creditValidation.py

If you’re into cool one-liners rather than simplicity and clarity, (a) you’re reading the
wrong book (the Perl Cookbook is a great book that will make you much happier),
(b) meanwhile, to keep you smiling while you go purchase a more appropriate oeu-
vre, try:

checksum = lambda a: (
 10 - sum([int(y)*[7,3,1][x%3] for x, y in enumerate(str(a)[::-1])])%10)%10

See Also
A good therapist, if you do prefer the one-line checksum version.

3.16 Watching Foreign Exchange Rates
Credit: Victor Yongwei Yang

Problem
You want to monitor periodically (with a Python script to be run by crontab or as a
Windows scheduled task) an exchange rate between two currencies, obtained from
the Web, and receive email alerts when the rate crosses a certain threshold.

Solution
This task is similar to other monitoring tasks that you could perform on numbers
easily obtained from the Web, be they exchange rates, stock quotes, wind-chill fac-
tors, or whatever. Let’s see specifically how to monitor the exchange rate between
U.S. and Canadian dollars, as reported by the Bank of Canada web site (as a simple
CSV (comma-separated values) feed that is easy to parse):

import httplib
import smtplib
configure script's parameters here
thresholdRate = 1.30
smtpServer = 'smtp.freebie.com'
fromaddr = 'foo@bar.com'

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.16 Watching Foreign Exchange Rates | 145

toaddrs = 'your@corp.com'
end of configuration
url = '/en/financial_markets/csv/exchange_eng.csv'
conn = httplib.HTTPConnection('www.bankofcanada.ca')
conn.request('GET', url)
response = conn.getresponse()
data = response.read()
start = data.index('United States Dollar')
line = data[start:data.index('\n', start)] # get the relevant line
rate = line.split(',')[-1] # last field on the line
if float(rate) < thresholdRate:
 # send email
 msg = 'Subject: Bank of Canada exchange rate alert %s' % rate
 server = smtplib.SMTP(smtpServer)
 server.sendmail(fromaddr, toaddrs, msg)
 server.quit()
conn.close()

Discussion
When working with foreign currencies, it is particularly useful to have an automated
way of getting the conversions you need. This recipe provides this functionality in a
quite simple, straightforward manner. When cron runs this script, the script goes to
the site, and gets the CSV feed, which provides the daily noon exchange rates for the
previous seven days:

Date (m/d/year),11/12/2004,11/15/2004, ... ,11/19/2004,11/22/2004
$Can/US closing rate,1.1927,1.2005,1.1956,1.1934,1.2058,1.1930,
United States Dollar,1.1925,1.2031,1.1934,1.1924,1.2074,1.1916,1.1844
...

The script then continues to find the specific currency ('United States Dollar') and
reads the last field to find today’s rate. If you’re having trouble understanding how
that works, it may be helpful to break it down:

US = data.find('United States Dollar') # find the index of the currency
endofUSline = data.index('\n', US) # find index for that line end
USline = data[US:endofUSline] # slice to make one string
rate = USline.split(',')[-1] # split on ',' and return last field

The recipe provides an email alert when the rate falls below a particular threshold,
which can be configured to whatever rate you prefer (e.g., you could change that
statement to send you an alert whenever the rate changes outside a threshold range).

See Also
httplib, smtplib, and string function are documented in the Library Reference and
Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146

Chapter 4—CHAPTER 4

Python Shortcuts

4.0 Introduction
Credit: David Ascher, ActiveState, co-author of Learning Python

Programming languages are like natural languages. Each has a set of qualities that
polyglots generally agree on as characteristics of the language. Russian and French
are often admired for their lyricism, while English is more often cited for its preci-
sion and dynamism: unlike the Académie-defined French language, the English lan-
guage routinely grows words to suit its speakers’ needs, such as “carjacking,”
“earwitness,” “snailmail,” “email,” “googlewhacking,” and “blogging.” In the world
of computer languages, Perl is well known for its many degrees of freedom:
TMTOWTDI (There’s More Than One Way To Do It) is one of the mantras of the
Perl programmer. Conciseness is also seen as a strong virtue in the Perl and APL
communities. As you’ll see in many of the discussions of recipes throughout this vol-
ume, in contrast, Python programmers often express their belief in the value of clar-
ity and elegance. As a well-known Perl hacker once told me, Python’s prettier, but
Perl is more fun. I agree with him that Python does have a strong (as in well-defined)
aesthetic, while Perl has more of a sense of humor.

The reason I mention these seemingly irrelevant characteristics at the beginning of
this chapter is that the recipes you see in this chapter are directly related to Python’s
aesthetic and social dynamics. If this book had been about Perl, the recipes in a
shortcuts chapter would probably elicit head scratching, contemplation, an “a-ha”!
moment, and then a burst of laughter, as the reader grokked the genius behind a par-
ticular trick. In contrast, in most of the recipes in this chapter, the author presents a
single elegant language feature, but one that he feels is underappreciated. Much like
I, a proud resident of Vancouver, will go out of my way to show tourists the really
neat things about the city, from the parks to the beaches to the mountains, a Python
user will seek out friends and colleagues and say, “You gotta see this!” For me and
most of the programmers I know, programming in Python is a shared social plea-
sure, not a competitive pursuit. There is great pleasure in learning a new feature and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 147

appreciating its design, elegance, and judicious use, and there’s a twin pleasure in
teaching another or another thousand about that feature.

A word about the history of the chapter: back when we identified the recipe catego-
ries for the first edition of this collection, our driving notion was that there would be
recipes of various kinds, each with a specific goal—a soufflé, a tart, an osso buco.
Those recipes would naturally fall into fairly typical categories, such as desserts,
appetizers, and meat dishes, or their perhaps less appetizing, nonmetaphorical equiv-
alents, such as files, algorithms, and so on. So we picked a list of categories, added
the categories to the Zope site used to collect recipes, and opened the floodgates.

Soon, it became clear that some submissions were hard to fit into the predetermined
categories. There’s a reason for that, and cooking helps explain why. The recipes in
this chapter are the Pythonic equivalent of making a roux (a cooked mixture of fat
and flour, used in making sauces, for those of you without a classic French cooking
background), kneading dough, flouring, separating eggs, flipping a pan’s contents,
blanching, and the myriad other tricks that any accomplished cook knows, but that
you won’t find in a typical cookbook. Many of these tricks and techniques are used
in preparing meals, but it’s hard to pigeonhole them as relevant for a given type of
dish. And if you’re a novice cook looking up a fancy recipe, you’re likely to get frus-
trated quickly because serious cookbook authors assume you know these tech-
niques, and they explain them (with illustrations!) only in books with titles such as
Cooking for Divorced Middle-Aged Men. We didn’t want to exclude this precious cat-
egory of tricks from this book, so a new category was born (sorry, no illustrations).

In the introduction to this chapter in the first edition, I presciently said:

I believe that the recipes in this chapter are among the most time-sensitive of the reci-
pes in this volume. That’s because the aspects of the language that people consider
shortcuts or noteworthy techniques seem to be relatively straightforward, idiomatic
applications of recent language features.

I can proudly say that I was right. This new edition, significantly focused on the
present definition of the language, makes many of the original recipes irrelevant. In
the two Python releases since the book’s first edition, Python 2.3 and 2.4, the lan-
guage has evolved to incorporate the ideas of those recipes into new syntactic fea-
tures or library functions, just as it had done with every previous major release,
making a cleaner, more compact, and yet more powerful language that’s as much fun
to use today as it was over ten years ago.

All in all, about half the recipes in this chapter (roughly the same proportion as in the
rest of the book) are entirely new ones, while the other half are vastly revised (mostly
simplified) versions of recipes that were in the first edition. Thanks to the simplifica-
tions, and to the focus on just two language versions (2.3 and 2.4) rather than the
whole panoply of older versions that was covered by the first edition, this chapter, as
well as the book as a whole, has over one-third more recipes than the first edition
did.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 4: Python Shortcuts

It’s worth noting in closing that many of the recipes that are in this newly revised
chapter touch on some of the most fundamental, unchanging aspects of the lan-
guage: the semantics of assignment, binding, copy, and references; sequences; dictio-
naries. These ideas are all keys to the Pythonic approach to programming, and seeing
these recipes live for several years makes me wonder whether Python will evolve in
the next few years in related directions.

4.1 Copying an Object
Credit: Anna Martelli Ravenscroft, Peter Cogolo

Problem
You want to copy an object. However, when you assign an object, pass it as an argu-
ment, or return it as a result, Python uses a reference to the original object, without
making a copy.

Solution
Module copy in the standard Python library offers two functions to create copies. The
one you should generally use is the function named copy, which returns a new object
containing exactly the same items and attributes as the object you’re copying:

import copy
new_list = copy.copy(existing_list)

On the rare occasions when you also want every item and attribute in the object to
be separately copied, recursively, use deepcopy:

import copy
new_list_of_dicts = copy.deepcopy(existing_list_of_dicts)

Discussion
When you assign an object (or pass it as an argument, or return it as a result), Python
(like Java) uses a reference to the original object, not a copy. Some other program-
ming languages make copies every time you assign something. Python never makes
copies “implicitly” just because you’re assigning: to get a copy, you must specifically
request a copy.

Python’s behavior is simple, fast, and uniform. However, if you do need a copy and
do not ask for one, you may have problems. For example:

>>> a = [1, 2, 3]
>>> b = a
>>> b.append(5)
>>> print a, b
[1, 2, 3, 5] [1, 2, 3, 5]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.1 Copying an Object | 149

Here, the names a and b both refer to the same object (a list), so once we alter the
object through one of these names, we later see the altered object no matter which
name we use for it. No original, unaltered copy is left lying about anywhere.

To become an effective Python programmer, it is crucial that you learn
to draw the distinction between altering an object and assigning to a
name, which previously happened to refer to the object. These two
kinds of operations have nothing to do with each other. A statement
such as a=[] rebinds name a but performs no alteration at all on the
object that was previously bound to name a. Therefore, the issue of
references versus copies just doesn’t arise in this case: the issue is
meaningful only when you alter some object.

If you are about to alter an object, but you want to keep the original object unal-
tered, you must make a copy. As this recipe’s solution explains, the module copy

from the Python Standard Library offers two functions to make copies. Normally,
you use copy.copy, which makes a shallow copy—it copies an object, but for each
attribute or item of the object, it continues to share references, which is faster and
saves memory.

Shallow copying, alas, isn’t sufficient to entirely “decouple” a copied object from the
original one, if you propose to alter the items or attributes of either object, not just
the object itself:

>>> list_of_lists = [['a'], [1, 2], ['z', 23]]
>>> copy_lol = copy.copy(lists_of_lists)
>>> copy_lol[1].append('boo')
>>> print list_of_lists, copy_lol
[['a'], [1, 2, 'boo'], ['z', 23]] [['a'], [1, 2, 'boo'], ['z', 23]]

Here, the names list_of_lists and copy_lol refer to distinct objects (two lists), so
we could alter either of them without affecting the other. However, each item of
list_of_lists is the same object as the corresponding item of copy_lol, so once we
alter an item reached by indexing either of these names, we later see the altered item
no matter which object we’re indexing to reach it.

If you do need to copy some container object and also recursively copy all objects it
refers to (meaning all items, all attributes, and also items of items, items of attributes,
etc.), use copy.deepcopy—such deep copying may cost you substantial amounts of
time and memory, but if you gotta, you gotta. For deep copies, copy.deepcopy is the
only way to go.

For normal shallow copies, you may have good alternatives to copy.copy, if you
know the type of the object you want to copy. To copy a list L, call list(L); to copy a
dict d, call dict(d); to copy a set s (in Python 2.4, which introduces the built-in type
set), call set(s). (Since list, dict, and, in 2.4, set, are built-in names, you do not
need to perform any “preparation” before you use any of them.) You get the general
pattern: to copy a copyable object o, which belongs to some built-in Python type t,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 4: Python Shortcuts

you may generally just call t(o). dicts also offer a dedicated method to perform a
shallow copy: d.copy() and dict(d) do the same thing. Of the two, I suggest you use
dict(d): it’s more uniform with respect to other types, and it’s even shorter by one
character!

To copy instances of arbitrary types or classes, whether you coded them or got them
from a library, just use copy.copy. If you code your own classes, it’s generally not
worth the bother to define your own copy or clone method. If you want to customize
the way instances of your class get (shallowly) copied, your class can supply a spe-
cial method __copy__ (see recipe 6.9 “Making a Fast Copy of an Object” for a spe-
cial technique relating to the implementation of such a method), or special
methods __getstate__ and __setstate__. (See recipe 7.4 “Using the cPickle Mod-
ule on Classes and Instances” for notes on these special methods, which also help
with deep copying and serialization—i.e., pickling—of instances of your class.) If you
want to customize the way instances of your class get deeply copied, your class can
supply a special method __deepcopy__ (see recipe 6.9 “Making a Fast Copy of an
Object.”)

Note that you do not need to copy immutable objects (strings, numbers, tuples, etc.)
because you don’t have to worry about altering them. If you do try to perform such a
copy, you’ll just get the original right back; no harm done, but it’s a waste of time
and code. For example:

>>> s = 'cat'
>>> t = copy.copy(s)
>>> s is t
True

The is operator checks whether two objects are not merely equal, but in fact the
same object (is checks for identity; for checking mere equality, you use the == opera-
tor). Checking object identity is not particularly useful for immutable objects (we’re
using it here just to show that the call to copy.copy was useless, although innocu-
ous). However, checking object identity can sometimes be quite important for muta-
ble objects. For example, if you’re not sure whether two names a and b refer to
separate objects, or whether both refer to the same object, a simple and very fast
check a is b lets you know how things stand. That way you know whether you need
to copy the object before altering it, in case you want to keep the original object
unaltered.

You can use other, inferior ways exist to create copies, namely build-
ing your own. Given a list L, both a “whole-object slice” L[:] and a list
comprehension [x for x in L] do happen to make a (shallow) copy of
L, as do adding an empty list, L+[], and multiplying the list by 1, L*1
. . . but each of these constructs is just wasted effort and obfusca-
tion—calling list(L) is clearer and faster. You should, however, be
familiar with the L[:] construct because for historical reasons it’s
widely used. So, even though you’re best advised not to use it your-
self, you’ll see it in Python code written by others.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.2 Constructing Lists with List Comprehensions | 151

Similarly, given a dictionary d, you could create a shallow copy named
d1 by coding out a loop:

>>> d1 = { }

>>> for somekey in d:

... d1[somekey] = d[somekey]

or more concisely by d1 = { }; d1.update(d). However, again, such
coding is a waste of time and effort and produces nothing but obfus-
cated, fatter, and slower code. Use d1=dict(d), be happy!

See Also
Module copy in the Library Reference and Python in a Nutshell.

4.2 Constructing Lists with List
Comprehensions

Credit: Luther Blissett

Problem
You want to construct a new list by operating on elements of an existing sequence
(or other kind of iterable).

Solution
Say you want to create a new list by adding 23 to each item of some other list. A list
comprehension expresses this idea directly:

thenewlist = [x + 23 for x in theoldlist]

Similarly, say you want the new list to comprise all items in the other list that are
larger than 5. A list comprehension says exactly that:

thenewlist = [x for x in theoldlist if x > 5]

When you want to combine both ideas, you can perform selection with an if clause,
and also use some expression, such as adding 23, on the selected items, in a single
pass:

thenewlist = [x + 23 for x in theoldlist if x > 5]

Discussion
Elegance, clarity, and pragmatism, are Python’s core values. List comprehensions
show how pragmatism can enhance both clarity and elegance. Indeed, list compre-
hensions are often the best approach even when, instinctively, you’re thinking not of
constructing a new list but rather of “altering an existing list”. For example, if your

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 4: Python Shortcuts

task is to set all items greater than 100 to 100, in an existing list object L, the best
solution is:

L[:] = [min(x,100) for x in L]

Assigning to the “whole-list slice” L[:] alters the existing list object in place, rather
than just rebinding the name L, as would be the case if you coded L = . . . instead.

You should not use a list comprehension when you simply want to perform a loop.
When you want a loop, code a loop. For an example of looping over a list, see recipe
4.4 “Looping over Items and Their Indices in a Sequence.” See Chapter 19 for more
information about iteration in Python.

It’s also best not to use a list comprehension when another built-in does what you
want even more directly and immediately. For example, to copy a list, use L1 =

list(L), not:

L1 = [x for x in L]

Similarly, when the operation you want to perform on each item is to call a function
on the item and use the function’s result, use L1 = map(f, L) rather than L1 = [f(x)

for x in L]. But in most cases, a list comprehension is just right.

In Python 2.4, you should consider using a generator expression, rather than a list
comprehension, when the sequence may be long and you only need one item at a
time. The syntax of generator expressions is just the same as for list comprehen-
sions, except that generator expressions are surrounded by parentheses, (and), not
brackets, [and]. For example, say that we only need the summation of the list com-
puted in this recipe’s Solution, not each item of the list. In Python 2.3, we would
code:

total = sum([x + 23 for x in theoldlist if x > 5])

In Python 2.4, we can code more naturally, omitting the brackets (no need to add
additional parentheses—the parentheses already needed to call the built-in sum suf-
fice):

total = sum(x + 23 for x in theoldlist if x > 5)

Besides being a little bit cleaner, this method avoids materializing the list as a whole
in memory and thus may be slightly faster when the list is extremely long.

See Also
The Reference Manual section on list displays (another name for list comprehen-
sions) and Python 2.4 generator expressions; Chapter 19; the Library Reference and
Python in a Nutshell docs on the itertools module and on the built-in functions map,
filter, and sum; Haskell is at http://www.haskell.org.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.3 Returning an Element of a List If It Exists | 153

Python borrowed list comprehensions from the functional language
Haskell (http://www.haskell.org), changing the syntax to use keywords
rather than punctuation. If you do know Haskell, though, take care!
Haskell’s list comprehensions, like the rest of Haskell, use lazy evalua-
tion (also known as normal order or call by need). Each item is com-
puted only when it’s needed. Python, like most other languages, uses
(for list comprehensions as well as elsewhere) eager evaluation (also
known as applicative order, call by value, or strict evaluation). That is,
the entire list is computed when the list comprehension executes, and
kept in memory afterwards as long as necessary. If you are translating
into Python a Haskell program that uses list comprehensions to repre-
sent infinite sequences, or even just long sequences of which only one
item at a time must be kept around, Python list comprehensions may
not be suitable. Rather, look into Python 2.4’s new generator expres-
sions, whose semantics are closer to the spirit of Haskell’s lazy evalua-
tion—each item gets computed only when needed.

4.3 Returning an Element of a List If It Exists
Credit: Nestor Nissen, A. Bass

Problem
You have a list L and an index i, and you want to get L[i] when i is a valid index
into L; otherwise, you want to get a default value v. If L were a dictionary, you’d use
L.get(i, v), but lists don’t have a get method.

Solution
Clearly, we need to code a function, and, in this case, the simplest and most direct
approach is the best one:

def list_get(L, i, v=None):
 if -len(L) <= i < len(L): return L[i]
 else: return v

Discussion
The function in this recipe just checks whether i is a valid index by applying
Python’s indexing rule: valid indices are negative ones down to -len(L) inclusive,
and non-negative ones up to len(L) exclusive. If almost all calls to list_get pass a
valid index value for i, you might prefer an alternative approach:

def list_get_egfp(L, i, v=None):
 try: return L[i]
 except IndexError: return v

However, unless a vast majority of the calls pass a valid index, this alternative (as
some time-measurements show) can be up to four times slower than the list_get

function shown in the solution. Therefore, this “easier to get forgiveness than per-
mission” (EGFP) approach, although it is often preferable in Python, cannot be rec-
ommended for this specific case.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 4: Python Shortcuts

I’ve also tried quite a few fancy, intricate and obscure approaches, but, besides being
hard to explain and to understand, they all end up slower than the plain, simple
function list_get. General principle: when you write Python code, prefer clarity and
readability to compactness and terseness—choose simplicity over subtlety. You often
will be rewarded with code that runs faster, and invariably, you will end up with
code that is less prone to bugs and is easier to maintain, which is far more important
than minor speed differences in 99.9% of the cases you encounter in the real world.

See Also
Language Reference and Python in a Nutshell documentation on list indexing.

4.4 Looping over Items and Their Indices
in a Sequence

Credit: Alex Martelli, Sami Hangaslammi

Problem
You need to loop on a sequence, but at each step you also need to know which index
into the sequence you have reached (e.g., because you need to rebind some entries in
the sequence), and Python’s preferred approach to looping doesn’t use the indices.

Solution
That’s what built-in function enumerate is for. For example:

for index, item in enumerate(sequence):
 if item > 23:
 sequence[index] = transform(item)

This is cleaner, more readable, and faster than the alternative of looping over indices
and accessing items by indexing:

for index in range(len(sequence)):
 if sequence[index] > 23:
 sequence[index] = transform(sequence[index])

Discussion
Looping on a sequence is a very frequent need, and Python strongly encourages you
to do just that, looping on the sequence directly. In other words, the Pythonic way to
get each item in a sequence is to use:

for item in sequence:
 process(item)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.5 Creating Lists of Lists Without Sharing References | 155

rather than the indirect approach, typical of lower-level languages, of looping over
the sequence’s indices and using each index to fetch the corresponding item:

for index in range(len(sequence)):
 process(sequence[index])

Looping directly is cleaner, more readable, faster, and more general (since you can
loop on any iterable, by definition, while indexing works only on sequences, such as
lists).

However, sometimes you do need to know the index, as well as the corresponding
item, within the loop. The most frequent reason for this need is that, in order to
rebind an entry in a list, you must assign the new item to thelist[index]. To sup-
port this need, Python offers the built-in function enumerate, which takes any iter-
able argument and returns an iterator yielding all the pairs (two-item tuples) of the
form (index, item), one pair at a time. By writing your for loop’s header clause in the
form:

for index, item in enumerate(sequence):

both the index and the item are available within the loop’s body.

For help remembering the order of the items in each pair enumerate yields, think of
the idiom d=dict(enumerate(L)). This gives a dictionary d that’s equivalent to list L, in
the sense that d[i] is L[i] for any valid non-negative index i.

See Also
Library Reference and Python in a Nutshell section about enumerate; Chapter 19.

4.5 Creating Lists of Lists Without Sharing
References

Credit: David Ascher

Problem
You want to create a multidimensional list but want to avoid implicit reference
sharing.

Solution
To build a list and avoid implicit reference sharing, use a list comprehension. For
example, to build a 5 x 10 array of zeros:

multilist = [[0 for col in range(5)] for row in range(10)]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 4: Python Shortcuts

Discussion
When a newcomer to Python is first shown that multiplying a list by an integer
repeats that list that many times, the newcomer often gets quite excited about it,
since it is such an elegant notation. For example:

>>> alist = [0] * 5

is clearly an excellent way to get an array of 5 zeros.

The problem is that one-dimensional tasks often grow a second dimension, so there
is a natural progression to:

>>> multi = [[0] * 5] * 3
>>> print multi
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

This appears to work, but the same newcomer is then often puzzled by bugs, which
typically can be boiled down to a snippet such as:

>>> multi[0][0] = 'oops!'
>>> print multi
[['oops!', 0, 0, 0, 0], ['oops!', 0, 0, 0, 0], ['oops!', 0, 0, 0, 0]]

This issue confuses most programmers at least once, if not a few times (see the FAQ
entry at http://www.python.org/doc/FAQ.html#4.50). To understand the issue, it
helps to decompose the creation of the multidimensional list into two steps:

>>> row = [0] * 5 # a list with five references to 0
>>> multi = [row] * 3 # a list with three references to the row object

This decomposed snippet produces a multi that’s identical to that given by the more
concise snippet [[0]*5]*3 shown earlier, and it has exactly the same problem: if you
now assign a value to multi[0][0], you have also changed the value of multi[1][0]

and that of multi[2][0] . . . , and, indeed, you have changed the value of row[0], too!

The comments are key to understanding the source of the confusion. Multiplying a
sequence by a number creates a new sequence with the specified number of new ref-
erences to the original contents. In the case of the creation of row, it doesn’t matter
whether or not references are being duplicated, since the referent (the object being
referred to) is a number, and therefore immutable. In other words, there is no practi-
cal difference between an object and a reference to an object if that object is immuta-
ble. In the second line, however, we create a new list containing three references to
the contents of the [row] list, which holds a single reference to a list. Thus, multi

contains three references to a single list object. So, when the first element of the first
element of multi is changed, you are actually modifying the first element of the
shared list. Hence the surprise.

List comprehensions, as shown in the “Solution”, avoid the problem. With list com-
prehensions, no sharing of references occurs—you have a truly nested computation.
If you have followed the discussion thoroughly, it may have occurred to you that we

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.6 Flattening a Nested Sequence | 157

don’t really need the inner list comprehension, only the outer one. In other words,
couldn’t we get just the same effect with:

multilist = [[0]*5 for row in range(10)]

The answer is that, yes, we could, and in fact using list multiplication for the inner-
most axis and list comprehension for all outer ones is faster—over twice as fast in
this example. So why don’t I recommend this latest solution? Answer: the speed
improvement for this example is from 57 down to 24 microseconds in Python 2.3,
from 49 to 21 in Python 2.4, on a typical PC of several years ago (AMD Athlon 1.2
GHz CPU, running Linux). Shaving a few tens of microseconds from a list-creation
operation makes no real difference to your application’s performance: and you
should optimize your code, if at all, only where it matters, where it makes a substan-
tial and important difference to the performance of your application as a whole.
Therefore, I prefer the code shown in the recipe’s Solution, simply because using the
same construct for both the inner and the outer list creations makes it more concep-
tually symmetrical and easier to read!

See Also
Documentation for the range built-in function in the Library Reference and Python in
a Nutshell.

4.6 Flattening a Nested Sequence
Credit: Luther Blissett, Holger Krekel, Hemanth Sethuram, ParzAspen Aspen

Problem
Some of the items in a sequence may in turn be sub-sequences, and so on, to arbi-
trary depth of “nesting”. You need to loop over a “flattened” sequence, “expanding”
each sub-sequence into a single, flat sequence of scalar items. (A scalar, or atom, is
anything that is not a sequence—i.e., a leaf, if you think of the nested sequence as a
tree.)

Solution
We need to be able to tell which of the elements we’re handling are “subsequences”
to be “expanded” and which are “scalars” to be yielded as is. For generality, we can
take an argument that’s a predicate to tell us what items we are to expand. (A predi-
cate is a function that we can call on any element and that returns a truth value: in
this case, True if the element is a subsequence we are to expand, False otherwise.) By
default, we can arbitrarily say that every list or tuple is to be “expanded”, and noth-
ing else. Then, a recursive generator offers the simplest solution:

def list_or_tuple(x):
 return isinstance(x, (list, tuple))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 4: Python Shortcuts

def flatten(sequence, to_expand=list_or_tuple):
 for item in sequence:
 if to_expand(item):
 for subitem in flatten(item, to_expand):
 yield subitem
 else:
 yield item

Discussion
Flattening a nested sequence, or, equivalently, “walking” sequentially over all the
leaves of a “tree”, is a common task in many kinds of applications. You start with a
nested structure, with items grouped into sequences and subsequences, and, for
some purposes, you don’t care about the structure at all. You just want to deal with
the items, one after the other. For example,

for x in flatten([1, 2, [3, [], 4, [5, 6], 7, [8,],], 9]):
 print x,

emits 1 2 3 4 5 6 7 8 9.

The only problem with this common task is that, in the general case, determining
what is to be “expanded”, and what is to be yielded as a scalar, is not as obvious as it
might seem. So, I ducked that decision, delegating it to a callable predicate argu-
ment that the caller can pass to flatten, unless the caller accepts flatten’s some-
what simplistic default behavior of expanding just tuples and lists.

In the same module as flatten, we should also supply another predicate that a caller
might well want to use—a predicate that will expand just about any iterable except
strings (plain and Unicode). Strings are iterable, but almost invariably applications
want to treat them as scalars, not as subsequences.

To identify whether an object is iterable, we just need to try calling the built-in iter

on that object: the call raises TypeError if the object is not iterable. To identify
whether an object is string-like, we simply check whether the object is an instance of
basestring, since isinstance(obj, basestring) is True when obj is an instance of any
subclass of basestring—that is, any string-like type. So, the alternative predicate is
not hard to code:

def nonstring_iterable(obj):
 try: iter(obj)
 except TypeError: return False
 else: return not isinstance(obj, basestring)

Now the caller may choose to call flatten(seq, nonstring_iterable) when the need
is to expand any iterable that is not a string. It is surely better not to make the
nonstring_iterable predicate the default for flatten, though: in a simple case, such
as the example snippet we showed previously, flatten can be up to three times
slower when the predicate is nonstring_iterable rather than list_or_tuple.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.6 Flattening a Nested Sequence | 159

We can also write a nonrecursive version of generator flatten. Such a version lets
you flatten nested sequences with nesting levels higher than Python’s recursion limit,
which normally allows no more than a few thousand levels of recursion depth. The
main technique for recursion removal is to keep an explicit last-in, first-out (LIFO)
stack, which, in this case, we can implement with a list of iterators:

def flatten(sequence, to_expand=list_or_tuple):
 iterators = [iter(sequence)]
 while iterators:
 # loop on the currently most-nested (last) iterator
 for item in iterators[-1]:
 if to_expand(item):
 # subsequence found, go loop on iterator on subsequence
 iterators.append(iter(item))
 break
 else:
 yield item
 else:
 # most-nested iterator exhausted, go back, loop on its parent
 iterators.pop()

The if clause of the if statement executes for any item we are to expand—that is,
any subsequence on which we must loop; so in that clause, we push an iterator for
the subsequence to the end of the stack, then execute a break to terminate the for,

and go back to the outer while, which will in turn execute a new for statement on
the iterator we just appended to the stack. The else clause of the if statement exe-
cutes for any item we don’t expand, and it just yields the item.

The else clause of the for statement executes if no break statement interrupts the for

loop—in other words, when the for loop runs to completion, exhausting the cur-
rently most-nested iterator. So, in that else clause, we remove the now-exhausted
most-nested (last) iterator, and the outer while loop proceeds, either terminating if
no iterators are left on the stack, or executing a new for statement that continues the
loop on the iterator that’s back at the top of the stack—from wherever that iterator
had last left off, intrinsically, because an iterator’s job is exactly to remember itera-
tion state.

The results of this nonrecursive implementation of flatten are identical to those of
the simpler recursive version given in this recipe’s Solution. If you think non-recur-
sive implementations are faster than recursive ones, though, you may be disap-
pointed: according to my measurements, the nonrecursive version is about 10%
slower than the recursive one, across a range of cases.

See Also
Library Reference and Python in a Nutshell sections on sequence types and built-ins
iter, isinstance, and basestring.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 4: Python Shortcuts

4.7 Removing or Reordering Columns
in a List of Rows

Credit: Jason Whitlark

Problem
You have a list of lists (rows) and need to get another list of the same rows but with
some columns removed and/or reordered.

Solution
A list comprehension works well for this task. Say you have:

listOfRows = [[1,2,3,4], [5,6,7,8], [9,10,11,12]]

You want a list with the same rows but with the second of the four columns removed
and the third and fourth ones interchanged. A simple list comprehension that per-
forms this job is:

newList = [[row[0], row[3], row[2]] for row in listOfRows]

An alternative way of coding, that is at least as practical and arguably a bit more ele-
gant, is to use an auxiliary sequence (meaning a list or tuple) that has the column
indices you desire in their proper order. Then, you can nest an inner list comprehen-
sion that loops on the auxiliary sequence inside the outer list comprehension that
loops on listOfRows:

newList = [[row[ci] for ci in (0, 3, 2)] for row in listofRows]

Discussion
I often use lists of lists to represent two-dimensional arrays. I think of such lists as
having the “rows” of a “two-dimensional array” as their items. I often perform
manipulation on the “columns” of such a “two-dimensional array”, typically reorder-
ing some columns, sometimes omitting some of the original columns. It is not obvi-
ous (at least, it was not immediately obvious to me) that list comprehensions are just
as useful for this purpose as they are for other kinds of sequence-manipulation tasks.

A list comprehension builds a new list, rather than altering an existing one. But even
when you do need to alter the existing list in place, the best approach is to write a list
comprehension and assign it to the existing list’s contents. For example, if you
needed to alter listOfRows in place, for the example given in this recipe’s Solution,
you would code:

listOfRows[:] = [[row[0], row[3], row[2]] for row in listOfRows]

Do consider, as suggested in the second example in this recipe’s Solution, the possi-
bility of using an auxiliary sequence to hold the column indices you desire, in the
order in which you desire them, rather than explicitly hard-coding the list display as

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.8 Transposing Two-Dimensional Arrays | 161

we did in the first example. You might feel a little queasy about nesting two list com-
prehensions into each other in this fashion, but it’s simpler and safer than you might
fear. If you adopt this approach, you gain some potential generality, because you can
choose to give a name to the auxiliary sequence of indices, use it to reorder several
lists of rows in the same fashion, pass it as an argument to a function, whatever:

def pick_and_reorder_columns(listofRows, column_indexes):
 return [[row[ci] for ci in column_indexes] for row in listofRows]
columns = 0, 3, 2
newListOfPandas = pick_and_reorder_columns(oldListOfPandas, columns)
newListOfCats = pick_and_reorder_columns(oldListOfCats, columns)

This example performs just the same column reordering and selection as all the other
snippets in this recipe, but it performs the operation on two separate “old” lists,
obtaining from each the corresponding “new” list. Reaching for excessive generaliza-
tion is a pernicious temptation, but here, with this pick_and_reorder_columns func-
tion, it seems that we are probably getting just the right amount of generality.

One last note: some people prefer a fancier way to express the kinds of list compre-
hensions that are used as “inner” ones in some of the functions used previously.
Instead of coding them straightforwardly, as in:

 [row[ci] for ci in column_indexes]

they prefer to use the built-in function map, and the special method __getitem__ of
row used as a bound-method, to perform the indexing subtask, so they code instead:

 map(row.__getitem__, column_indexes)

Depending on the exact version of Python, perhaps this fancy and somewhat obscure
way may be slightly faster. Nevertheless, I think the greater simplicity of the list com-
prehension form means the list comprehension is still the best way.

See Also
List comprehension docs in Language Reference and Python in a Nutshell.

4.8 Transposing Two-Dimensional Arrays
Credit: Steve Holden, Raymond Hettinger, Attila Vàsàrhelyi, Chris Perkins

Problem
You need to transpose a list of lists, turning rows into columns and vice versa.

Solution
You must start with a list whose items are lists all of the same length, such as:

arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 4: Python Shortcuts

A list comprehension offers a simple, handy way to transpose such a two-dimen-
sional array:

print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

A faster though more obscure alternative (with exactly the same output) can be
obtained by exploiting built-in function zip in a slightly strange way:

print map(list, zip(*arr))

Discussion
This recipe shows a concise yet clear way to turn rows into columns, and also a faster
though more obscure way. List comprehensions work well when you want to be
clear yet concise, while the alternative solution exploits the built-in function zip in a
way that is definitely not obvious.

Sometimes data just comes at you the wrong way. For instance, if you use
Microsoft’s ActiveX Data Ojbects (ADO) database interface, due to array element-
ordering differences between Python and Microsoft’s preferred implementation lan-
guage (Visual Basic), the GetRows method actually appears to return database col-
umns in Python, despite the method’s name. This recipe’s two solutions to this
common kind of problem let you choose between clarity and speed.

In the list comprehension solution, the inner comprehension varies what is selected
from (the row), while the outer comprehension varies the selector (the column). This
process achieves the required transposition.

In the zip-based solution, we use the *a syntax to pass each item (row) of arr to zip,
in order, as a separate positional argument. zip returns a list of tuples, which directly
achieves the required transposition; we then apply list to each tuple, via the single
call to map, to obtain a list of lists, as required. Since we don’t use zip’s result as a list
directly, we could get a further slight improvement in performance by using
itertools.izip instead (because izip does not materialize its result as a list in mem-
ory, but rather yields it one item at a time):

import itertools
print map(list, itertools.izip(*arr))

but, in this specific case, the slight speed increase is probably not worth the added
complexity.

If you’re transposing large arrays of numbers, consider Numeric Python and other
third-party packages. Numeric Python defines transposition and other axis-swinging
routines that will make your head spin.

See Also
The Reference Manual and Python in a Nutshell sections on list displays (the other
name for list comprehensions) and on the *a and *k notation for positional and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.9 Getting a Value from a Dictionary | 163

named argument passing; built-in functions zip and map; Numeric Python (http://
www.pfdubois.com/numpy/).

4.9 Getting a Value from a Dictionary
Credit: Andy McKay

Problem
You need to obtain a value from a dictionary, without having to handle an exception
if the key you seek is not in the dictionary.

Solution
That’s what the get method of dictionaries is for. Say you have a dictionary such as d

= {'key':'value',}. To get the value corresponding to key in d in an exception-safe
way, code:

print d.get('key', 'not found')

The *args and **kwds Syntax
*args (actually, * followed by any identifier—most usually, you’ll see args or a as the
identifier that’s used) is Python syntax for accepting or passing arbitrary positional
arguments. When you receive arguments with this syntax (i.e., when you place the star
syntax within a function’s signature, in the def statement for that function), Python
binds the identifier to a tuple that holds all positional arguments not “explicitly”
received. When you pass arguments with this syntax, the identifier can be bound to
any iterable (in fact, it could be any expression, not necessarily an identifier, as long as
the expression’s result is an iterable).

**kwds (again, the identifier is arbitrary, most often kwds or k) is Python syntax for
accepting or passing arbitrary named arguments. (Python sometimes calls named argu-
ments keyword arguments, which they most definitely are not—just try to use as argu-
ment name a keyword, such as pass, for, or yield, and you’ll see. Unfortunately, this
confusing terminology is, by now, ingrained in the language and its culture.) When
you receive arguments with this syntax (i.e., when you place the starstar syntax within
a function’s signature, in the def statement for that function), Python binds the identi-
fier to a dict, which holds all named arguments not “explicitly” received. When you
pass arguments with this syntax, the identifier must be bound to a dict (in fact, it could
be any expression, not necessarily an identifier, as long as the expression’s result is a
dict).

Whether in defining a function or in calling it, make sure that both *a and **k come
after any other parameters or arguments. If both forms appear, then place the **k after
the *a.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 4: Python Shortcuts

If you need to remove the entry after you have obtained the value, call d.pop (which
does a get-and-remove) instead of d.get (which just reads d and never changes it).

Discussion
Want to get a value for a key from a dictionary, without getting an exception if the
key does not exist in the dictionary? Use the simple and useful get method of the dic-
tionary.

If you try to get a value with the indexing syntax d[x], and the value of x is not a key
in dictionary d, your attempt raises a KeyError exception. This is often okay. If you
expected the value of x to be a key in d, an exception is just the right way to inform
you that you’re mistaken (i.e., that you need to debug your program).

However, you often need to be more tentative about it: as far as you know, the value
of x may or may not be a key in d. In this case, don’t start messing with in tests, such
as:

if 'key' in d:
 print d['key']
else:
 print 'not found'

or try/except statements, such as:

try:
 print d['key']
except KeyError:
 print 'not found'

Instead, use the get method, as shown in the “Solution”. If you call d.get(x), no
exception is thrown: you get d[x] if x is a key in d, and if it’s not, you get None (which
you can check for or propagate). If None is not what you want to get when x is not a
key of d, call d.get(x, somethingelse) instead. In this case, if x is not a key, you will
get the value of somethingelse.

get is a simple, useful mechanism that is well explained in the Python documenta-
tion, but a surprising number of people don’t know about it. Another similar method
is pop, which is mostly like get, except that, if the key was in the dictionary, pop also
removes it. Just one caveat: get and pop are not exactly parallel. d.pop(x) does raise
KeyError if x is not a key in d; to get exactly the same effect as d.get(x), plus the
entry removal, call d.pop(x,None) instead.

See Also
Recipe 4.10 “Adding an Entry to a Dictionary”; the Library Reference and Python in
a Nutshell sections on mapping types.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.10 Adding an Entry to a Dictionary | 165

4.10 Adding an Entry to a Dictionary
Credit: Alex Martelli, Martin Miller, Matthew Shomphe

Problem
Working with a dictionary d, you need to use the entry d[k] when it’s already
present, or add a new value as d[k] when k isn’t yet a key in d.

Solution
This is what the setdefault method of dictionaries is for. Say we’re building a word-
to-page-numbers index, a dictionary that maps each word to the list of page num-
bers where it appears. A key piece of code in that application might be:

def addword(theIndex, word, pagenumber):
 theIndex.setdefault(word, []).append(pagenumber)

This code is equivalent to more verbose approaches such as:

def addword(theIndex, word, pagenumber):
 if word in theIndex:
 theIndex[word].append(pagenumber)
 else:
 theIndex[word] = [pagenumber]

and:

def addword(theIndex, word, pagenumber):
 try:
 theIndex[word].append(pagenumber)
 except KeyError:
 theIndex[word] = [pagenumber]

Using method setdefault simplifies this task considerably.

Discussion
For any dictionary d, d.setdefault(k, v) is very similar to d.get(k, v), which was
covered previously in recipe 4.9 “Getting a Value from a Dictionary.” The essential
difference is that, if k is not a key in the dictionary, the setdefault method assigns
d[k]=v as a side effect, in addition to returning v. (get would just return v, without
affecting d in any way.) Therefore, consider using setdefault any time you have get-
like needs, but also want to produce this side effect on the dictionary.

setdefault is particularly useful in a dictionary with values that are lists, as detailed
in recipe 4.15 “Associating Multiple Values with Each Key in a Dictionary.” The
most typical usage for setdefault is something like:

somedict.setdefault(somekey, []).append(somevalue)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 4: Python Shortcuts

setdefault is not all that useful for immutable values, such as numbers. If you just
want to count words, for example, the right way to code is to use, not setdefault,
but rather get:

theIndex[word] = theIndex.get(word, 0) + 1

since you must rebind the dictionary entry at theIndex[word] anyway (because num-
bers are immutable). But for our word-to page-numbers example, you definitely do
not want to fall into the performance trap that’s hidden in the following approach:

def addword(theIndex, word, pagenumber):
 theIndex[word] = theIndex.get(word, []) + [pagenumber]

This latest version of addword builds three new lists each time you call it: an empty
list that’s passed as the second argument to theIndex.get, a one-item list containing
just pagenumber, and a list with N+1 items obtained by concatenating these two (where
N is the number of times that word was previously found). Building such a huge num-
ber of lists is sure to take its toll, in performance terms. For example, on my
machine, I timed the task of indexing the same four words occurring once each on
each of 1,000 pages. Taking the first version of addword in the recipe as a reference
point, the second one (using try/except) is about 10% faster, the third one (using
setdefault) is about 20% slower—the kind of performance differences that you
should blissfully ignore in just about all cases. This fourth version (using get) is four
times slower—the kind of performance difference you just can’t afford to ignore.

See Also
Recipe 4.9 “Getting a Value from a Dictionary”; recipe 4.15 “Associating Multiple
Values with Each Key in a Dictionary”; Library Reference and Python in a Nutshell
documentation about dict.

4.11 Building a Dictionary Without Excessive
Quoting

Credit: Brent Burley, Peter Cogolo

Problem
You want to construct a dictionary whose keys are literal strings, without having to
quote each key.

Solution
Once you get into the swing of Python, you’ll find yourself constructing a lot of dic-
tionaries. When the keys are identifiers, you can avoid quoting them by calling dict

with named-argument syntax:

data = dict(red=1, green=2, blue=3)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.11 Building a Dictionary Without Excessive Quoting | 167

This is neater than the equivalent use of dictionary-display syntax:

data = {'red': 1, 'green': 2, 'blue': 3}

Discussion
One powerful way to build a dictionary is to call the built-in type dict. It’s often a
good alternative to the dictionary-display syntax with braces and colons. This recipe
shows that, by calling dict, you can avoid having to quote keys, when the keys are
literal strings that happen to be syntactically valid for use as Python identifiers. You
cannot use this approach for keys such as the literal strings '12ba' or 'for', because
'12ba' starts with a digit, and for happens to be a Python keyword, not an identifier.

Also, dictionary-display syntax is the only case in Python where you need to use
braces: if you dislike braces, or happen to work on a keyboard that makes braces
hard to reach (as all Italian layout keyboards do!), you may be happier, for example,
using dict() rather than { } to build an empty dictionary.

Calling dict also gives you other possibilities. dict(d) returns a new dictionary that
is an independent copy of existing dictionary d, just like d.copy()—but dict(d)

works even when d is a sequence of pairs (key, value) instead of being a dictionary
(when a key occurs more than once in the sequence, the last appearance of the key

applies). A common dictionary-building idiom is:

d = dict(zip(the_keys, the_values))

where the_keys is a sequence of keys and the_values a “parallel” sequence of corre-
sponding values. Built-in function zip builds and returns a list of (key, value) pairs,
and built-in type dict accepts that list as its argument and constructs a dictionary
accordingly. If the sequences are long, it’s faster to use module itertools from the
standard Python library:

import itertools
d = dict(itertools.izip(the_keys, the_values))

Built-in function zip constructs the whole list of pairs in memory, while
itertools.izip yields only one pair at a time. On my machine, with sequences of
10,000 numbers, the latter idiom is about twice as fast as the one using zip—18 ver-
sus 45 milliseconds with Python 2.3, 17 versus 32 with Python 2.4.

You can use both a positional argument and named arguments in the same call to
dict (if the named argument clashes with a key specified in the positional argument,
the named argument applies). For example, here is a workaround for the previously
mentioned issue that Python keywords, and other nonidentifiers, cannot be used as
argument names:

d = dict({'12ba':49, 'for': 23}, rof=41, fro=97, orf=42)

If you need to build a dictionary where the same value corresponds to each key, call
dict.fromkeys(keys_sequence, value) (if you omit the value, it defaults to None). For

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 4: Python Shortcuts

example, here is a neat way to initialize a dictionary to be used for counting occur-
rences of various lowercase ASCII letters:

import string
count_by_letter = dict.fromkeys(string.ascii_lowercase, 0)

See Also
Library Reference and Python in a Nutshell sections on built-ins dict and zip, and on
modules itertools and string.

4.12 Building a Dict from a List of Alternating
Keys and Values

Credit: Richard Philips, Raymond Hettinger

Problem
You want to build a dict from a list of alternating keys and values.

Solution
The built-in type dict offers many ways to build dictionaries, but not this one, so we
need to code a function for the purpose. One way is to use the built-in function zip

on extended slices:

def dictFromList(keysAndValues):
 return dict(zip(keysAndValues[::2], keysAndValues[1::2]))

A more general approach, which works for any sequence or other iterable argument
and not just for lists, is to “factor out” the task of getting a sequence of pairs from a
flat sequence into a separate generator. This approach is not quite as concise as
dictFromList, but it’s faster as well as more general:

def pairwise(iterable):
 itnext = iter(iterable).next
 while True:
 yield itnext(), itnext()
def dictFromSequence(seq):
 return dict(pairwise(seq))

Defining pairwise also allows updating an existing dictionary with any sequence of
alternating keys and values—just code, for example, mydict.update(pairwise(seq)).

Discussion
Both of the “factory functions” in this recipe use the same underlying way to con-
struct a dictionary: each calls dict with an argument that is a sequence of (key,

value) pairs. All the difference is in how the functions build the sequence of pairs to
pass to dict.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.12 Building a Dict from a List of Alternating Keys and Values | 169

dictFromList builds a list of such pairs by calling built-in function zip with two
extended-form slices of the function’s keysAndValues argument—one that gathers all
items with even indices (meaning the items at index 0, 2, 4, . . .), the other that gath-
ers all items with odd indices (starting at 1 and counting by 2 . . .). This approach is
fine, but it works only when the argument named keysAndValues is an instance of a
type or class that supports extended slicing, such as list, tuple or str. Also, this
approach results in constructing several temporary lists in memory: if keysAndValues
is a long sequence, all of this list construction activity can cost some performance.

dictFromSequence, on the other hand, delegates the task of building the sequence of
pairs to the generator named pairwise. In turn, pairwise is coded to ensure that it
can use any iterable at all—not just lists (or other sequences, such as tuples or
strings), but also, for example, results of other generators, files, dictionaries, and so
on. Moreover, pairwise yields pairs one at a time. It never constructs any long list in
memory, an aspect that may improve performance if the input sequence is very long.

The implementation of pairwise is interesting. As its very first statement, pairwise

binds local name itnext to the bound-method next of the iterator that it obtains by
calling the built-in function iter on the iterable argument. This may seem a bit
strange, but it’s a good general technique in Python: if you start with an object, and
all you need to do with that object is call one of its methods in a loop, you can
extract the bound-method, assign it to a local name, and afterwards just call the local
name as if it were a function. pairwise would work just as well if the next method
was instead called in a way that may look more normal to programmers who are
used to other languages:

def pairwise_slow(iterable):
 it = iter(iterable)
 while True:
 yield it.next(), it.next()

However, this pairwise_slow variant isn’t really any simpler than the pairwise gener-
ator shown in the Solution (“more familiar to people who don’t know Python” is not
a synonym of “simpler”!), and it is about 60% slower. Focusing on simplicity and
clarity is one thing, and a very good one—indeed, a core principle of Python. Throw-
ing performance to the winds, without getting any real advantage to compensate, is a
completely different proposition and definitely not a practice that can be recom-
mended in any language. So, while it is an excellent idea to focus on writing correct,
clear, and simple code, it’s also very advisable to learn and use Python’s idioms that
are most appropriate to your needs.

See Also
Recipe 19.7 “Looping on a Sequence by Overlapping Windows” for more general
approaches to looping by sliding windows over an iterable. See the Python Reference
Manual for more on extended slicing.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 4: Python Shortcuts

4.13 Extracting a Subset of a Dictionary
Credit: David Benjamin

Problem
You want to extract from a larger dictionary only that subset of it that corresponds to
a certain set of keys.

Solution
If you want to leave the original dictionary intact:

def sub_dict(somedict, somekeys, default=None):
 return dict([(k, somedict.get(k, default)) for k in somekeys])

If you want to remove from the original the items you’re extracting:

def sub_dict_remove(somedict, somekeys, default=None):
 return dict([(k, somedict.pop(k, default)) for k in somekeys])

Two examples of these functions’ use and effects:

>>> d = {'a': 5, 'b': 6, 'c': 7}
>>> print sub_dict(d, 'ab'), d
{'a': 5, 'b': 6} {'a': 5, 'b': 6, 'c': 7}
>>> print sub_dict_remove(d, 'ab'), d
{'a': 5, 'b': 6} {'c': 7}

Discussion
In Python, I use dictionaries for many purposes—database rows, primary and com-
pound keys, variable namespaces for template parsing, and so on. So, I often need to
create a dictionary that is based on another, larger dictionary, but only contains the
subset of the larger dictionary corresponding to some set of keys. In most use cases,
the larger dictionary must remain intact after the extraction; sometimes, however, I
need to remove from the larger dictionary the subset that I’m extracting. This rec-
ipe’s solution shows both possibilities. The only difference is that you use method
get when you want to avoid affecting the dictionary that you are getting data from,
method pop when you want to remove the items you’re getting.

If some item k of somekeys is not in fact a key in somedict, this recipe’s functions put
k as a key in the result anyway, with a default value (which I pass as an optional
argument to either function, with a default value of None). So, the result is not neces-
sarily a subset of somedict. This behavior is the one I’ve found most useful in my
applications.

You might prefer to get an exception for “missing keys”—that would help alert you
to a bug in your program, in cases in which you know all ks in somekeys should defi-
nitely also be keys in somedict. Remember, “errors should never pass silently. Unless
explicitly silenced,” to quote The Zen of Python, by Tim Peters (enter the statement

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.14 Inverting a Dictionary | 171

import this at an interactive Python prompt to read or re-read this delightful sum-
mary of Python’s design principles). So, if a missing key is an error, from the point of
view of your application, then you do want to get an exception that alerts you to that
error at once, if it ever occurs. If this is what you want, you can get it with minor
modifications to this recipe’s functions:

def sub_dict_strict(somedict, somekeys):
 return dict([(k, somedict[k]) for k in somekeys])
def sub_dict_remove_strict(somedict, somekeys):
 return dict([(k, somedict.pop(k)) for k in somekeys])

As you can see, these strict variants are even simpler than the originals—a good indi-
cation that Python likes to raise exceptions when unexpected behavior occurs!

Alternatively, you might prefer missing keys to be simply omitted from the result.
This, too, requires just minor modifications:

def sub_dict_select(somedict, somekeys):
 return dict([(k, somedict[k]) for k in somekeys if k in somedict])
def sub_dict_remove_select(somedict, somekeys):
 return dict([(k, somedict.pop(k)) for k in somekeys if k in somedict])

The if clause in each list comprehension does all we need to distinguish these
_select variants from the _strict ones.

In Python 2.4, you can use generator expressions, instead of list comprehensions, as
the arguments to dict in each of the functions shown in this recipe. Just change the
syntax of the calls to dict, from dict([. . .]) to dict(. . .) (removing the brackets
adjacent to the parentheses) and enjoy the resulting slight simplification and acceler-
ation. However, these variants would not work in Python 2.3, which has list compre-
hensions but not generator expressions.

See Also
Library Reference and Python in a Nutshell documentation on dict.

4.14 Inverting a Dictionary
Credit: Joel Lawhead, Ian Bollinger, Raymond Hettinger

Problem
An existing dict maps keys to unique values, and you want to build the inverse dict,
mapping each value to its key.

Solution
You can write a function that passes a list comprehension as dict’s argument to
build the new requested dictionary:

def invert_dict(d):
 return dict([(v, k) for k, v in d.iteritems()])

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 4: Python Shortcuts

For large dictionaries, though, it’s faster to use the generator izip from the itertools

module in the Python Standard Library:

from itertools import izip
def invert_dict_fast(d):
 return dict(izip(d.itervalues(), d.iterkeys()))

Discussion
If the values in dict d are not unique, then d cannot truly be inverted, meaning that
there exists no dict id such that for any valid key k, id[d[k]]==k. However, the func-
tions shown in this recipe still construct, even in such cases, a “pseudo-inverse” dict
pd such that, for any v that is a value in d, d[pd[v]]==v. Given the original dict d and
the dict x returned by either of the functions shown in this recipe, you can easily
check whether x is the true inverse of d or just d’s pseudo-inverse: x is the true inverse
of d if and only if len(x)==len(d). That’s because, if two different keys have the same
value, then, in the result of either of the functions in this recipe, one of the two keys
will simply go “poof” into the ether, thus leaving the resulting pseudo-inverse dict
shorter than the dict you started with. In any case, quite obviously, the functions
shown in this recipe can work only if all values in d are hashable (meaning that they
are all usable as keys into a dict): otherwise, the functions raise a TypeError

exception.

When we program in Python, we normally “disregard minor optimizations,” as
Donald Knuth suggested over thirty years ago: we place a premium on clarity and
correctness and care relatively little about speed. However, it can’t hurt to know
about faster possibilities: when we decide to code in a certain way because it’s sim-
pler or clearer than another, it’s best if we are taking the decision deliberately, not
out of ignorance.

Here, function invert_dict in this recipe’s Solution might perhaps be considered
clearer because it shows exactly what it’s doing. Take the pairs k, v of key and value
that method iteritems yields, swap them into (value, key) order, and feed the
resulting list as the argument of dict, so that dict builds a dictionary where each
value v is a key and the corresponding key k becomes that key’s value—just the
inverse dict that our problem requires.

However, function invert_dict_fast, also in this recipe’s Solution, isn’t really any
more complicated: it just operates more abstractly, by getting all keys and all values
as two separate iterators and zipping them up (into an iterator whose items are the
needed, swapped (value, key) pairs) via a call to generator izip, supplied by the
itertools module of the Python Standard Library. If you get used to such higher
abstraction levels, they will soon come to feel simpler than lower-level code!

Thanks to the higher level of abstraction, and to never materializing the whole list of
pairs (but rather operating via generators and iterators that yield only one item at a
time), function invert_dict_fast can be substantially faster than function invert_

dict. For example, on my machine, to invert a 10,000-item dictionary, invert_dict

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.15 Associating Multiple Values with Each Key in a Dictionary | 173

takes about 63 milliseconds, but invert_dict_fast manages the same task in just 20
milliseconds. A speed increase by a factor of three, in general, is not to be sneered at.
Such performance gains, when you work on large amounts of data, are the norm,
rather than the exception, for coding at higher abstraction levels. This is particularly
true when you can use itertools rather than loops or list comprehensions, because
you don’t need to materialize some large list in memory at one time. Performance
gain is an extra incentive for getting familiar with working at higher abstraction lev-
els, a familiarity that has conceptual and productivity pluses, too.

See Also
Documentation on mapping types and itertools in the Library Reference and
Python in a Nutshell; Chapter 19.

4.15 Associating Multiple Values with Each Key
in a Dictionary

Credit: Michael Chermside

Problem
You need a dictionary that maps each key to multiple values.

Solution
By nature, a dictionary is a one-to-one mapping, but it’s not hard to make it one-to-
many—in other words, to make one key map to multiple values. Your choice of one
of two possible approaches depends on how you want to treat duplications in the set
of values for a key. The following approach, based on using lists as the dict’s val-
ues, allows such duplications:

d1 = { }
d1 .setdefault(key, []).append(value)

while an alternative approach, based on using sub-dicts as the dict’s values, auto-
matically eliminates duplications of values:

d2 = { }
d2.setdefault(key, { })[value] = 1

In Python 2.4, the no-duplication approach can equivalently be coded:

d3 = { }
d3.setdefault(key, set()).add(value)

Discussion
A normal dictionary performs a simple mapping of each key to one value. This rec-
ipe shows three easy, efficient ways to achieve a mapping of each key to multiple

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 4: Python Shortcuts

values, by holding as the dictionary’s values lists, sub-dicts, or, in Python 2.4, sets.
The semantics of the list-based approach differ slightly but importantly from those of
the other two in terms of how they deal with duplication. Each approach relies on
the setdefault method of a dictionary, covered earlier in recipe “Adding an Entry to
a Dictionary,” to initialize the entry for a key in the dictionary, if needed, and in any
case to return said entry.

You need to be able to do more than just add values for a key. With the first
approach, which uses lists and allows duplications, here’s how to retrieve the list of
values for a key:

list_of_values = d1[key]

Here’s how to remove one value for a key, if you don’t mind leaving empty lists as
items of d1 when the last value for a key is removed:

d1[key].remove(value)

Despite the empty lists, it’s still easy to test for the existence of a key with at least one
value—just use a function that always returns a list (maybe an empty one), such as:

def get_values_if_any(d, key):
 return d.get(key, [])

For example, to check whether 'freep' is among the values (if any) for key 'somekey'

in dictionary d1, you can code: if 'freep' in get_values_if_any(d1, 'somekey').

The second approach, which uses sub-dicts and eliminates duplications, can use
rather similar idioms. To retrieve the list of values for a key:

list_of_values = list(d2[key])

To remove one value for a key, leaving empty dictionaries as items of d2 when the
last value for a key is removed:

del d2[key][value]

In the third approach, showing the Python 2.4-only version d3, which uses sets, this
would be:

d3[key].remove(value)

One possibility for the get_values_if_any function in either the second or third
(duplication-removing) approaches would be:

def get_values_if_any(d, key):
 return list(d.get(key, ()))

This recipe focuses on how to code the raw functionality, but, to use this functional-
ity in a systematic way, you’ll probably want to wrap up this code into a class. For
that purpose, you need to make some of the design decisions that this recipe high-
lights. Do you want a value to be in the entry for a key multiple times? (Is the entry
for each key a bag rather than a set, in mathematical terms?) If so, should remove just
reduce the number of occurrences by 1, or should it wipe out all of them? This is just

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.16 Using a Dictionary to Dispatch Methods or Functions | 175

the beginning of the choices you have to make, and the right choices depend on the
specifics of your application.

See Also
Recipe 4.10 “Adding an Entry to a Dictionary”; the Library Reference and Python in
a Nutshell sections on mapping types; recipe 18.8 “Implementing a Bag (Multiset)
Collection Type” for an implementation of the bag type.

4.16 Using a Dictionary to Dispatch Methods
or Functions

Credit: Dick Wall

Problem
You need to execute different pieces of code depending on the value of some control
variable—the kind of problem that in some other languages you might approach
with a case statement.

Solution
Object-oriented programming, thanks to its elegant concept of dispatching, does
away with many (but not all) needs for case statements. In Python, dictionaries, and
the fact that functions are first-class objects (in particular, functions can be values in
a dictionary), conspire to make the full problem of “case statements” easier to solve.
For example, consider the following snippet of code:

animals = []
number_of_felines = 0
def deal_with_a_cat():
 global number_of_felines
 print "meow"
 animals.append('feline')
 number_of_felines += 1
def deal_with_a_dog():
 print "bark"
 animals.append('canine')
def deal_with_a_bear():
 print "watch out for the *HUG*!"
 animals.append('ursine')
tokenDict = {
 "cat": deal_with_a_cat,
 "dog": deal_with_a_dog,
 "bear": deal_with_a_bear,
 }
Simulate, say, some words read from a file
words = ["cat", "bear", "cat", "dog"]
for word in words:
 # Look up the function to call for each word, and call it

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 4: Python Shortcuts

 return tokenDict[word]()
nf = number_of_felines
print 'we met %d feline%s' % (nf, 's'[nf==1:])
print 'the animals we met were:', ' '.join(animals)

Discussion
The key idea in this recipe is to construct a dictionary with string (or other) values as
keys, and bound-methods, functions, or other callables as values. At each step of
execution, we use the string keys to select which callable to execute and then call it.
This approach can be used as a kind of generalized case statement.

It’s embarrassingly simple (really!), but I use this technique often. You can also use
bound-methods or other callables instead of functions. If you use unbound meth-
ods, you need to pass an appropriate object as the first actual argument when you do
call them. More generally, you can store, as the dictionary’s values, tuples including
both a callable and arguments to pass to the callable.

I primarily use this technique in places where in other languages, I might want a
case, switch, or select statement. For example, I use it to implement a poor man’s
way to parse command files (e.g., an X10 macro control file).

See Also
The Library Reference section on mapping types; the Reference Manual section on
bound and unbound methods; Python in a Nutshell about both dictionaries and call-
ables.

4.17 Finding Unions and Intersections
of Dictionaries

Credit: Tom Good, Andy McKay, Sami Hangaslammi, Robin Siebler

Problem
Given two dictionaries, you need to find the set of keys that are in both dictionaries
(the intersection) or the set of keys that are in either dictionary (the union).

Solution
Sometimes, particularly in Python 2.3, you find yourself using dictionaries as con-
crete representations of sets. In such cases, you only care about the keys, not the cor-
responding values, and often you build the dictionaries by calls to dict.fromkeys,
such as

a = dict.fromkeys(xrange(1000))
b = dict.fromkeys(xrange(500, 1500))

The fastest way to compute the dict that is the set-union is:

union = dict(a, **b)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.17 Finding Unions and Intersections of Dictionaries | 177

The fastest concise way to compute the dict that is the set-intersection is:

inter = dict.fromkeys([x for x in a if x in b])

If the number of items in dictionaries a and b can be very different, then it can be
important for speed considerations to have the shorter one in the for clause, and the
longer one in the if clause, of this list comprehension. In such cases, it may be worth
sacrificing some conciseness in favor of speed, by coding the intersection computa-
tion as follows:

if len(a) < len(b):
 inter = dict.fromkeys([x for x in a if x not in b])
else:
 inter = dict.fromkeys([x for x in b if x not in a])

Python also gives you types to represent sets directly (in standard library module
sets, and, in Python 2.4, also as built-ins). Here is a snippet that you can use at the
start of a module: the snippet ensures that name set is bound to the best available set
type, so that throughout the module, you can then use the same code whether you’re
using Python 2.3 or 2.4:

try:
 set
except NameError:
 from sets import Set as set

Having done this, you can now use type set to best effect, gaining clarity and con-
ciseness, and (in Python 2.4) gaining a little speed, too:

a = set(xrange(1000))
b = set(xrange(500, 1500))
union = a | b
inter = a & b

Discussion
In Python 2.3, even though the Python Standard Library module sets offers an ele-
gant data type Set that directly represents a set (with hashable elements), it is still
common to use a dict to represent a set, partly for historical reasons. Just in case you
want to keep doing it, this recipe shows you how to compute unions and intersec-
tions of such sets in the fastest ways, which are not obvious. The code in this recipe,
on my machine, takes about 260 microseconds for the union, about 690 for the inter-
section (with Python 2.3; with Python 2.4, 260 and 600,respectively), while alterna-
tives based on loops or generator expressions are substantially slower.

However, it’s best to use type set instead of representing sets by dictionaries. As the
recipe shows, using set makes your code more direct and readable. If you dislike the
or-operator (|) and the “and-operator” (&), you can equivalently use a.union(b) and
a.intersection(b), respectively. Besides clarity, you also gain speed, particularly in
Python 2.4: computing the union still takes about 260 microseconds, but computing
the intersection takes only about 210. Even in Python 2.3, this approach is accept-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 4: Python Shortcuts

ably fast: computing the union takes about 270 microseconds, computing the inter-
section takes about 650—not quite as fast as Python 2.4 but still quite comparable to
what you can get if you represent sets by dictionaries. Last but not least, once you
use type set (whether it is the Python 2.4 built-in, or class Set from the Python Stan-
dard Library module sets, the interface is the same), you gain a wealth of useful set
operations. For example, the set of elements that are in either a or b but not both is
a^b or, equivalently, a.symmetric_difference(b).

Even if you start with dicts for other reasons, consider using sets anyway if you need
to perform set operations. Say, for example, that you have in phones a dictionary that
maps names to phone numbers and in addresses one that maps names to addresses.
The clearest and simplest way to print all names for which you know both address
and phone number, and their associated data, is:

for name in set(phones) & set(addresses):
 print name, phones[name], addresses[name]

This is much terser, and arguably clearer, than something like:

for name in phones:
 if name in addresses:
 print name, phones[name], addresses[name]

Another excellent alternative is:

for name in set(phones).intersection(addresses):
 print name, phones[name], addresses[name]

If you use the named intersection method, rather than the & intersection operator,
you don’t need to turn both dicts into sets: just one of them. Then call intersection
on the resulting set, and pass the other dict as the argument to the intersection

method.

See Also
The Library Reference and Python in a Nutshell sections on mapping types, module
sets, and Python 2.4’s built-in set type.

4.18 Collecting a Bunch of Named Items
Credit: Alex Martelli, Doug Hudgeon

Problem
You want to collect a bunch of items together, naming each item of the bunch, and
you find dictionary syntax a bit heavyweight for the purpose.

Solution
Any normal class instance inherently wraps a dictionary, which it uses to hold its
state. We can easily take advantage of this handily wrapped dictionary by coding a
nearly empty class:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.18 Collecting a Bunch of Named Items | 179

class Bunch(object):
 def __init__(self, **kwds):
 self.__dict__.update(kwds)

Now, to group a few variables, create a Bunch instance:

point = Bunch(datum=y, squared=y*y, coord=x)

You can now access and rebind the named attributes just created, add others,
remove some, and so on. For example:

if point.squared > threshold:
 point.isok = True

Discussion
We often just want to collect a bunch of stuff together, naming each item of the
bunch. A dictionary is OK for this purpose, but a small do-nothing class is even
handier and prettier to use.

It takes minimal effort to build a little class, as in this recipe, to provide elegant
attribute-access syntax. While a dictionary is fine for collecting a few items in which
each item has a name (the item’s key in the dictionary can be thought of as the item’s
name, in this context), it’s not the best solution when all names are identifiers, to be
used just like variables. In class Bunch’s __init__ method, we accept arbitrary named
arguments with the **kwds syntax, and we use the kwds dictionary to update the ini-
tially empty instance dictionary, so that each named argument gets turned into an
attribute of the instance.

Compared to attribute-access syntax, dictionary-indexing syntax is not quite as terse
and readable. For example, if point was a dictionary, the little snippet at the end of
the “Solution” would have to be coded like:

if point['squared'] > threshold:
 point['isok'] = True

An alternative implementation that’s just as attractive as the one used in this recipe
is:

class EvenSimplerBunch(object):
 def __init__(self, **kwds):
 self.__dict__ = kwds

Rebinding an instance’s dictionary may feel risqué, but it’s not actually any pushier
than calling that dictionary’s update method. So you might prefer the marginal speed
advantage of this alternative implementation of Bunch. Unfortunately, I cannot find
anywhere in Python’s documentation an assurance that usage like:

d = {'foo': 'bar'}
x = EvenSimplerBunch(**d)

will forever keep making x.__dict__ an independent copy of d rather than just shar-
ing a reference. It does currently, and in every version, but unless it’s a documented

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 4: Python Shortcuts

semantic constraint, we cannot be entirely sure that it will keep working forever. So,
if you do choose the implementation in EvenSimplerBunch, you might choose to
assign a copy (dict(kwds) or kwds.copy()) rather than kwds itself. And, if you do,
then the marginal speed advantage disappears. All in all, the Bunch presented in this
recipe’s Solution is probably preferable.

A further tempting but not fully sound alternative is to have the Bunch class inherit
from dict, and set attribute access special methods equal to the item access special
methods, as follows:

class DictBunch(dict):
 __getattr__ = dict.__getitem__
 __setattr__ = dict.__setitem__
 __delattr__ = dict.__delitem__

One problem with this approach is that, with this definition, an instance x of
DictBunch has many attributes it doesn’t really have, because it inherits all the
attributes (methods, actually, but there’s no significant difference in this context) of
dict. So, you can’t meaningfully check hasattr(x, someattr), as you could with the
classes Bunch and EvenSimplerBunch previously shown, unless you can somehow rule
out the value of someattr being any of several common words such as 'keys', 'pop',
and 'get'.

Python’s distinction between attributes and items is really a wellspring of clarity and
simplicity. Unfortunately, many newcomers to Python wrongly believe that it would
be better to confuse items with attributes, generally because of previous experience
with JavaScript and other such languages, in which attributes and items are regularly
confused. But educating newcomers is a much better idea than promoting item/
attribute confusion.

See Also
The Python Tutorial section on classes; the Language Reference and Python in a Nut-
shell coverage of classes; Chapter 6 for more information about object-oriented pro-
gramming in Python; recipe 4.18 “Collecting a Bunch of Named Items” for more on
the **kwds syntax.

4.19 Assigning and Testing with One Statement
Credit: Alex Martelli, Martin Miller

Problem
You are transliterating C or Perl code to Python, and to keep close to the original’s
structure, you’d like an expression’s result to be both assigned and tested (as in
if((x=foo()) or while((x=foo()) in such other languages).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.19 Assigning and Testing with One Statement | 181

Solution
In Python, you can’t code if x=foo(): Assignment is a statement, so it cannot
fit into an expression, and you can only use expressions as conditions of if and while

statements. This isn’t a problem, it just means you have to structure your code
Pythonically! For example, to process a file object f line by line, instead of the fol-
lowing C-like (and syntactically incorrect, in Python) approach:

while (line=f.readline()) != '':
 process(line)

you can code a highly Pythonic (readable, clean, fast) approach:

for line in f:
 process(line)

But sometimes, you’re transliterating from C, Perl, or another language, and you’d
like your transliteration to be structurally close to the original. One simple utility
class makes it easy:

class DataHolder(object):
 def __init__(self, value=None):
 self.value = value
 def set(self, value):
 self.value = value
 return value
 def get(self):
 return self.value
optional and strongly discouraged, but nevertheless handy at times:
import __builtin__
__builtin__.DataHolder = DataHolder
__builtin__.data = data = DataHolder()

With the help of the DataHolder class and its instance data, you can keep your C-like
code structure intact in transliteration:

while data.set(file.readline()) != '':
 process(data.get())

Discussion
In Python, assignment is a statement, not an expression. Thus, you cannot assign the
result that you are also testing, for example, in the condition of an if, elif, or while

statement. This is usually fine: just structure your code to avoid the need to assign
while testing (in fact, your code will often become clearer as a result). In particular,
whenever you feel the need to assign-and-test within the condition of a while loop,
that’s a good hint that your loop’s structure probably wants to be refactored into a
generator (or other iterator). Once you have refactored in this way, your loops
become plain and simple for statements. The example given in the recipe, looping
over each line read from a text file, is one where the refactoring has already been
done on your behalf by Python itself, since a file object is an iterator whose items
are the file’s lines.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 4: Python Shortcuts

However, sometimes you may be writing Python code that is the transliteration of
code originally written in C, Perl, or some other language that supports assignment-
as-expression. Such transliterations often occur in the first Python version of an algo-
rithm for which a reference implementation is supplied, an algorithm taken from a
book, and so on. In such cases, it’s often preferable to have the structure of your ini-
tial transliteration be close to that of the code you’re transcribing. You can refactor
later and make your code more Pythonic—clearer, faster, and so on. But first, you
want to get working code as soon as possible, and specifically you want code that is
easy to check for compliance to the original it has been transliterated from. Fortu-
nately, Python offers enough power to make it quite easy for you to satisfy this
requirement.

Python doesn’t let us redefine the meaning of assignment, but we can have a method
(or function) that saves its argument somewhere and also returns that argument so it
can be tested. That somewhere is most naturally an attribute of an object, so a
method is a more natural choice than a function. Of course, we could just retrieve
the attribute directly (i.e., the get method is redundant), but it looks nicer to me to
have symmetry between data.set and data.get.

data.set(whatever) can be seen as little more than syntactic sugar around
data.value=whatever, with the added value of being acceptable as an expression.
Therefore, it’s the one obviously right way to satisfy the requirement for a reason-
ably faithful transliteration. The only difference between the resulting Python code
and the original (say) C or Perl code, is at the syntactic sugar level—the overall struc-
ture is the same, and that’s the key issue.

Importing __builtin__ and assigning to its attributes is a trick that basically defines a
new built-in object at runtime. You can use that trick in your application’s start-up
code, and then all other modules will automatically be able to access your new built-
ins without having to do an import. It’s not good Python practice, though; on the
contrary, it’s pushing the boundaries of Pythonic good taste, since the readers of all
those other modules should not have to know about the strange side effects per-
formed in your application’s startup code. But since this recipe is meant to offer a
quick-and-dirty approach for a first transliteration that will soon be refactored to
make it better, it may be acceptable in this specific context to cut more corners than
one would in production-level code.

On the other hand, one trick you should definitely not use is the following abuse of a
currently existing wart in list comprehensions:

while [line for line in [f.readline()] if line!='']:
 process(line)

This trick currently works, since both Python 2.3 and 2.4 still “leak” the list compre-
hension control variable (here, line) into the surrounding scope. However, besides
being obscure and unreadable, this trick is specifically deprecated: list comprehen-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.20 Using printf in Python | 183

sion control variable leakage will be fixed in some future version of Python, and this
trick will then stop working at all.

See Also
The Tutorial section on classes; the documentation for the __builtin__ module in
the Library Reference and Python in a Nutshell; Language Reference and Python in a
Nutshell documentation on list comprehensions.

4.20 Using printf in Python
Credit: Tobias Klausmann, Andrea Cavalcanti

Problem
You’d like to output something to your program’s standard output with C’s func-
tion printf, but Python doesn’t have that function.

Solution
It’s easy to code a printf function in Python:

import sys
def printf(format, *args):
 sys.stdout.write(format % args)

Discussion
Python separates the concepts of output (the print statement) and formatting (the %

operator), but if you prefer to have these concepts together, they’re easy to join, as
this recipe shows. No more worries about automatic insertion of spaces or newlines,
either. Now you need worry only about correctly matching format and arguments!

For example, instead of something like:

print 'Result tuple is: %r' % (result_tuple,),

with its finicky need for commas in unobvious places (i.e., one to make a singleton
tuple around result_tuple, one to avoid the newline that print would otherwise
insert by default), once you have defined this recipe’s printf function, you can just
write:

printf('Result tuple is: %r', result_tuple)

See Also
Library Reference and Python in a Nutshell documentation for module sys and for
the string formatting operator %; recipe 2.13 “Using a C++-like iostream Syntax” for
a way to implement C++’s <<-style output in Python.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 4: Python Shortcuts

4.21 Randomly Picking Items with Given
Probabilities

Credit: Kevin Parks, Peter Cogolo

Problem
You want to pick an item at random from a list, just about as random.choice does,
but you need to pick the various items with different probabilities given in another
list, rather than picking any item with equal probability as random.choice does.

Solution
Module random in the standard Python library offers a wealth of possibilities for gen-
erating and using pseudo-random numbers, but it does not offer this specific func-
tionality, so we must code it as a function of our own:

import random
def random_pick(some_list, probabilities):
 x = random.uniform(0, 1)
 cumulative_probability = 0.0
 for item, item_probability in zip(some_list, probabilities):
 cumulative_probability += item_probability
 if x < cumulative_probability: break
 return item

Discussion
Module random in the standard Python library does not have the weighted choice
functionality that is sometimes needed in games, simulations, and random tests, so I
wrote this recipe to supply this functionality. The recipe uses module random’s func-
tion uniform to get a uniformly distributed pseudo-random number between 0.0 and
1.0, then loops in parallel on items and their probabilities, computing the increasing
cumulative probability, until the latter becomes greater than the pseudo-random
number.

The recipe assumes, but does not check, that probabilities is a sequence with just as
many items as some_list, which are probabilities—that is, numbers between 0.0 and
1.0, summing up to 1.0; if these assumptions are violated, you may still get some
random picks, but they will not follow the (inconsistent) specifications encoded in
the function’s arguments. You may want to add some assert statements at the start
of the function to check that the arguments make sense, such as:

 assert len(some_list) == len(probabilities)
 assert 0 <= min(probabilities) and max(probabilities) <= 1
 assert abs(sum(probabilities)-1.0) < 1.0e-5

However, these checks can be quite time consuming, so I don’t normally use them
and have not included them in the official Solution.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.22 Handling Exceptions Within an Expression | 185

As I already mentioned, the problem solved in this recipe requires items to be associ-
ated with probabilities—numbers between 0 and 1, summing up to 1. A related but
slightly different task is to get random picks with weighted relative probabilities
given by small non-negative integers—odds, rather than probabilities. For this related
problem, the best solution is a generator, with an internal structure that is rather dif-
ferent from the function random_pick given in this recipe’s Solution:

import random
def random_picks(sequence, relative_odds):
 table = [z for x, y in zip(sequence, relative_odds) for z in [x]*y]
 while True:
 yield random.choice(table)

This generator works by first preparing a table whose total number of items is
sum(relative_odds), each item of seq appearing in the table as many times as the
small non-negative integer that is its corresponding item in relative_odds. Once the
table is prepared, the generator’s body is tiny and fast, as it simply delegates to
random.choice the picking of each random item it yields. Typical uses of this random_

picks generator might be:

>>> x = random_picks('ciao', [1, 1, 3, 2])
>>> for two_chars in zip('boo', x): print ''.join(two_chars),
bc oa oa
>>> import itertools
>>> print ''.join(itertools.islice(x, 8))
icacaoco

See Also
Module random in the Library Reference and Python in a Nutshell.

4.22 Handling Exceptions Within an Expression
Credit: Chris Perkins, Gregor Rayman, Scott David Daniels

Problem
You want to code an expression, so you can’t directly use the statement try/except,
but you still need to handle exceptions that the expression may throw.

Solution
To catch exceptions, try/except is indispensable, and, since try/except is a state-
ment, the only way to use it inside an expression is to code an auxiliary function:

def throws(t, f, *a, **k):
 '''Return True iff f(*a, **k) raises an exception whose type is t
 (or, one of the items of _tuple_ t, if t is a tuple).'''
 try:
 f(*a, **k)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 4: Python Shortcuts

 except t:
 return True
 else:
 return False

For example, suppose you have a text file, which has one number per line, but also
extra lines which may be whitespace, comments, or what-have-you. Here is how you
can make a list of all the numbers in the file, skipping the lines that aren’t numbers:

data = [float(line) for line in open(some_file)
 if not throws(ValueError, float, line)]

Discussion
You might prefer to name such a function raises, but I personally prefer throws,
which is probably a throwback to C++. By whatever name, the auxiliary function
shown in this recipe takes as its arguments, first an exception type (or tuple of excep-
tion types) t, then a callable f, and then arbitrary positional and named arguments a

and k, which are to be passed on to f. Do not code, for example, if not

throws(ValueError, float(line))! When you call a function, Python evaluates the
arguments before passing control to the function; if an argument’s evaluation raises
an exception, the function never even gets started. I’ve seen this erroneous usage
attempted more than once by people who are just starting to use the assertRaises

method from the standard Python library’s unittest.TestCase class, for example.

When throws executes, it just calls f within the try clause of a try/except statement,
passing on the arbitrary positional and named arguments. If the call to f in the try

clause raises an exception whose type is t (or one of the items of t, if t is a tuple of
exception types), then control passes to the corresponding except clause, which, in
this case, returns True as throws’ result. If no exception is raised in the try clause,
then control passes to the corresponding else clause (if any), which, in this case,
returns False as throws’ result.

Note that, if some unexpected exception (one whose type is not in t) gets raised, then
function throws does not catch that exception, so that throws terminates and propa-
gates the exception to its caller. This choice is quite a deliberate one. Catching excep-
tions with a too-wide except clause is a bug-diagnosing headache waiting to happen.
If the caller really wants throws to catch just about everything, it can always call
throws(Exception, . . .—and live with the resulting headaches.

One problem with the throws function is that you end up doing the key operation
twice—once just to see if it throws, tossing the result away, then, a second time, to
get the result. It would be nicer to get the result, if any, together with an indication of
whether an exception has been caught. I first tried something along the lines of:

def throws(t, f, *a, **k):
 " Return a pair (True, None) if f(*a, **k) raises an exception whose
 type is in t, else a pair (False, x) where x is the result of f(*a, **k). "
 try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.23 Ensuring a Name Is Defined in a Given Module | 187

 return False, f(*a, **k)
 except t:
 return True, None

Unfortunately, this version doesn’t fit in well in a list comprehension: there is no ele-
gant way to get and use both the flag and the result. So, I chose a different approach:
a function that returns a list in any case—empty if an exception was caught, other-
wise with the result as the only item. This approach works fine in a list comprehen-
sion, but for clarity, the name of the function needs to be changed:

def returns(t, f, *a, **k):
 " Return [f(*a, **k)] normally, [] if that raises an exception in t. "
 try:
 return [f(*a, **k)]
 except t:
 return []

The resulting list comprehension is even more elegant, in my opinion, than the origi-
nal one in this recipe’s Solution:

data = [x for line in open(some_file)
 for x in returns(ValueError, float, line)]

See Also
Python in a Nutshell’s section on catching and handling exceptions; the sidebar “The
*args and **kwds Syntax” for an explanation of *args and **kwds syntax.

4.23 Ensuring a Name Is Defined
 in a Given Module

Credit: Steven Cummings

Problem
You want to ensure that a certain name is defined in a given module (e.g., you want
to ensure that there is a built-in name set), and, if not, you want to execute some
code that sets the definition.

Solution
The solution to this problem is the only good use I’ve yet seen for statement exec.
exec lets us execute arbitrary Python code from a string, and thus lets us write a very
simple function to deal with this task:

import __builtin__
def ensureDefined(name, defining_code, target=__builtin__):
 if not hasattr(target, name):
 d = { }
 exec defining_code in d

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 4: Python Shortcuts

 assert name in d, 'Code %r did not set name %r' % (
 defining_code, name)
 setattr(target, name, d[name])

Discussion
If your code supports several versions of Python (or of some third-party package),
then many of your modules must start with code such as the following snippet
(which ensures name set is properly set in either Python 2.4, where it’s a built-in, or
2.3, where it must be obtained from the standard library):

try:
 set
except NameError:
 from sets import Set as set

This recipe encapsulates this kind of logic directly, and by default works on module
__builtin__, since that’s the typical module for which you need to work around
missing names in older Python versions. With this recipe, you could ensure name set

is properly defined among the built-ins by running just once, during your program’s
initialization, the single call:

ensureDefined('set', 'from sets import Set as set')

The key advantage of this recipe is that you can group all needed calls to
ensureDefined in just one place of your application, at initialization time, rather than
having several ad hoc try/except statements at the start of various modules. More-
over, ensureDefined may allow more readable code because it does only one specific
job, so the purpose of calling it is obvious, while try/except statements could have
several purposes, so that more study and reflection might be needed to understand
them. Last but not least, using this recipe lets you avoid the warnings that the try/
except approach can trigger from such useful checking tools as pychecker, http://
pychecker.sourceforge.net/. (If you aren’t using pychecker or something like that, you
should!)

The recipe takes care to avoid unintended accidental side effects on target, by using
an auxiliary dictionary d as the target for the exec statement and then transferring
only the requested name. This way, for example, you can use as target an object that
is not a module (a class, say, or even a class instance), without necessarily adding to
your target an attribute named __builtins__ that references the dictionary of
Python’s built-ins. If you used less care, so that the body of the if statement was
only:

 exec defining_code in vars(target)

you would inevitably get such side effects, as documented at http://www.python.org/
doc/current/ref/exec.html.

It’s important to be aware that exec can and does execute any valid string of Python
code that you give it. Therefore, make sure that the argument defining_code that you

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.23 Ensuring a Name Is Defined in a Given Module | 189

pass to any call of function ensureDefined does not come from an untrusted source,
such as a text file that might have been maliciously tampered with.

See Also
The online documentation of the exec statement in the Python Language Reference
Manual at http://www.python.org/doc/current/ref/exec.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190

Chapter 5CHAPTER 5

Searching and Sorting

5.0 Introduction
Credit: Tim Peters, PythonLabs

Computer manufacturers of the 1960s estimated that more than 25 percent of the run-
ning time on their computers was spent on sorting, when all their customers were
taken into account. In fact, there were many installations in which the task of sorting
was responsible for more than half of the computing time. From these statistics we
may conclude that either (i) there are many important applications of sorting, or (ii)
many people sort when they shouldn’t, or (iii) inefficient sorting algorithms have been
in common use.

—Donald Knuth
The Art of Computer Programming,
vol. 3, Sorting and Searching, page 3

Professor Knuth’s masterful work on the topics of sorting and searching spans nearly
800 pages of sophisticated technical text. In Python practice, we reduce it to two
imperatives (we read Knuth so you don’t have to):

• When you need to sort, find a way to use the built-in sort method of Python
lists.

• When you need to search, find a way to use built-in dictionaries.

Many recipes in this chapter illustrate these principles. The most common theme is
using the decorate-sort-undecorate (DSU) pattern, a general approach to transform-
ing a sorting problem by creating an auxiliary list that we can then sort with the
default, speedy sort method. This technique is the single most useful one to take
from this chapter. In fact, DSU is so useful that Python 2.4 introduced new features
to make it easier to apply. Many recipes can be made simpler in 2.4 as a result, and
the discussion of older recipes have been updated to show how.

DSU relies on an unusual feature of Python’s built-in comparisons: sequences are
compared lexicographically. Lexicographical order is a generalization to tuples and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 191

lists of the everyday rules used to compare strings (e.g., alphabetical order). The
built-in cmp(s1, s2), when s1 and s2 are sequences, is equivalent to this Python
code:

def lexcmp(s1, s2):
 # Find leftmost nonequal pair.
 i = 0
 while i < len(s1) and i < len(s2):
 outcome = cmp(s1[i], s2[i])
 if outcome:
 return outcome
 i += 1
 # All equal, until at least one sequence was exhausted.
 return cmp(len(s1), len(s2))

This code looks for the first unequal corresponding elements. If such an unequal pair
is found, that pair determines the outcome. Otherwise, if one sequence is a proper
prefix of the other, the prefix is considered to be the smaller sequence. Finally, if
these cases don’t apply, the sequences are identical and are considered equal. Here
are some examples:

>>> cmp((1, 2, 3), (1, 2, 3)) # identical
0
>>> cmp((1, 2, 3), (1, 2)) # first larger because second is a prefix
1
>>> cmp((1, 100), (2, 1)) # first smaller because 1<2
-1
>>> cmp((1, 2), (1, 3)) # first smaller because 1==1, then 2<3
-1

An immediate consequence of lexicographical comparison is that if you want to sort
a list of objects by a primary key, breaking ties by comparing a secondary key, you
can simply build a list of tuples, in which each tuple contains the primary key, sec-
ondary key, and original object, in that order. Because tuples are compared lexico-
graphically, this automatically does the right thing. When comparing tuples, the
primary keys are compared first, and if (and only if) the primary keys are equal, the
secondary keys are compared.

The examples of the DSU pattern in this chapter show many applications of this
idea. The DSU technique applies to any number of keys. You can add to the tuples as
many keys as you like, in the order in which you want the keys compared. In Python
2.4, you can get the same effect with the new key= optional argument to sort, as
several recipes point out. Using the sort method’s key= argument is easier, more
memory-efficient, and runs faster than building an auxiliary list of tuples by hand.

The other 2.4-introduced innovation in sorting is a convenient shortcut: a sorted

built-in function that sorts any iterable, not in-place, but by first copying it into a
new list. In Python 2.3 (apart from the new optional keyword arguments, which

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: Searching and Sorting

apply to the sorted built-in function as well as to list.sort), you can code the same
functionality quite easily:

def sorted_2_3(iterable):
 alist = list(iterable)
 alist.sort()
 return alist

Because copying a list and sorting it are both nontrivial operations, and the built-in
sorted needs to perform those operations too, no speed advantage is gained in mak-
ing sorted a built-in. Its advantage is just the convenience. Having something always
around and available, rather than having to code even just four simple lines over and
over, does make a difference in practice. On the other hand, few tiny functions are
used commonly enough to justify expanding the set of built-ins. Python 2.4 added
sorted and reversed because those two functions were requested very frequently over
the years.

The biggest change in Python sorting since the first edition of this book is that
Python 2.3 moved to a new implementation of sorting. The primary visible conse-
quences are increased speed in many common cases, and the fact that the new sort is
stable (meaning that when two elements compare equal in the original list, they
retain their relative order in the sorted list). The new implementation was so success-
ful, and the chances of improving on it appeared so slim, that Guido was persuaded
to proclaim that Python’s list.sort method will always be stable. This guarantee
started with Python 2.4 but was actually realized in Python 2.3. Still, the history of
sorting cautions us that better methods may yet be discovered. A brief account of
Python’s sorting history may be instructive in this regard.

A Short History of Python Sorting
In early releases of Python, list.sort used the qsort routine from the underlying
platform’s C library. This didn’t work out for several reasons, primarily because the
quality of qsort varied widely across machines. Some versions were extremely slow
when given a list with many equal values or in reverse-sorted order. Some versions
even dumped core because they weren’t reentrant. A user-defined __cmp__ function
can also invoke list.sort, so that one list.sort can invoke others as a side effect
of comparing. Some platform qsort routines couldn’t handle that. A user-defined
__cmp__ function can also (if it’s insane or malicious) mutate the list while it’s being
sorted, and many platform qsort routines dumped core when that happened.

Python then grew its own implementation of the quicksort algorithm. This was
rewritten with every release, as real-life cases of unacceptable slowness were discov-
ered. Quicksort is a delicate algorithm indeed!

In Python 1.5.2 the quicksort algorithm was replaced by a hybrid of samplesort and
binary insertion sort, and that implementation remained unchanged for more than
four years, until Python 2.3. Samplesort can be viewed as a variant of quicksort that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 193

uses a very large sample size to pick the partitioning element, also known as the pivot
(it recursively samplesorts a large random subset of the elements and picks the
median of those). This variant makes quadratic-time behavior almost impossible and
brings the number of comparisons in the average case much closer to the theoretical
minimum.

However, because samplesort is a complicated algorithm, it has too much adminis-
trative overhead for small lists. Therefore, small lists (and small slices resulting from
samplesort partitioning) were handled by a separate binary insertion sort, which is
an ordinary insertion sort, except that it uses binary search to determine where each
new element belongs. Most sorting texts say this isn’t worth the bother, but that’s
because most texts assume that comparing two elements is as cheap as or cheaper
than swapping them in memory, which isn’t true for Python’s sort! Moving an object
is very cheap, since what is copied is just a reference to the object. Comparing two
objects is expensive, though, because all of the object-oriented machinery for finding
the appropriate code to compare two objects and for coercion gets reinvoked each
time. This made binary search a major win for Python’s sort.

On top of this hybrid approach, a few common special cases were exploited for
speed. First, already-sorted or reverse-sorted lists were detected and handled in lin-
ear time. For some applications, these kinds of lists are very common. Second, if an
array was mostly sorted, with just a few out-of-place elements at the end, the binary
insertion sort handled the whole job. This was much faster than letting samplesort
have at it and occurred often in applications that repeatedly sort a list, append a few
new elements, then sort it again. Finally, special code in the samplesort looked for
stretches of equal elements, so that the slice they occupy could be marked as done
early.

In the end, all of this yielded an in-place sort with excellent performance in all
known real cases and supernaturally good performance in some common special
cases. It spanned about 500 lines of complicated C code, which gives special poig-
nancy to recipe 5.11 “Showing off quicksort in Three Lines.”

Over the years samplesort was in use, I made a standing offer to buy dinner for any-
one who could code a faster Python sort. Alas, I ate alone. Still, I kept my eye on the
literature because several aspects of the samplesort hybrid were irritating:

• While no case of quadratic-time behavior appeared in real life, I knew such cases
could be contrived, and it was easy to contrive cases two or three times slower
than average ones.

• The special cases to speed sorting in the presence of extreme partial order were
valuable in practice, but my real data often had many other kinds of partial order
that should be exploitable. In fact, I came to believe that random ordering in
input lists almost never exists in real life (i.e., not outside of timing harnesses for
testing sorting algorithms!).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: Searching and Sorting

• There is no practical way to make samplesort stable without grossly increasing
memory use.

• The code was very complex and complicated in ugly ways by the special cases.

Current Sorting
It was always clear that a mergesort would be better on several counts, including
guaranteed worst-case n log n time, and that mergesort is easy to make stable. The
problem was that half a dozen attempts to code a mergesort for Python yielded a sort
that ran slower (mergesort does much more data movement than samplesort) and
consumed more memory.

A large and growing literature concerns adaptive sorting algorithms, which attempt
to detect order of various kinds in the input. I coded a dozen of them, but they were
all much slower than Python’s samplesort except on the cases they were designed to
exploit. The theoretical bases for these algorithms were simply too complex to yield
effective practical algorithms. Then I read an article pointing out that list merging
naturally reveals many kinds of partial order, simply by paying attention to how
often each input list “wins” in a row. This information was simple and general.
When I realized how it could be applied to a natural mergesort, which would obvi-
ously exploit all the kinds of partial order I knew and cared about, I got obsessed
enough to solve the speed problem for random data and to minimize the memory
burden.

The resulting “adaptive, natural, stable” mergesort implemented for Python 2.3 was
a major success, but also a major engineering effort—the devil is in the details. There
are about 1,200 lines of C code, but unlike the code in the samplesort hybrid, none
of these lines are coding for special cases, and about half implement a technical trick
allowing the worst-case memory burden to be cut in half. I’m quite proud of it, but
the margins of this introduction lack the space for me to explain the details. If you’re
curious, I wrote a long technical description that you can find in a Python source dis-
tribution: Objects/listsort.txt under the main directory (say, Python-2.3.5 or Python-
2.4) where you unpacked Python’s source distribution archive. In the following list, I
provide examples of the partial order Python 2.3’s mergesort naturally exploits,
where “sorted” means in either forward-sorted or reverse-sorted order:

• The input is already sorted.

• The input is mostly sorted but has random elements appended at either end, or
both, or inserted in the middle.

• The input is the concatenation of two or more sorted lists. In fact, the fastest
way to merge multiple sorted lists in Python now is to join them into one long
list and run list.sort on that.

• The input is mostly sorted but has some scattered elements that are out of order.
This is common, for example, when people manually add new records to a data-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Sorting a Dictionary | 195

base sorted by name: people aren’t good at maintaining strict alphabetic order
but are good at getting close.

• The input has many keys with the same value. For example, when sorting a data-
base of American companies by the stock exchange they’re listed on, most will
be associated with the NYSE or NASDAQ exchanges. This is exploitable for a
curious reason: records with equal keys are already in sorted order, by the defini-
tion of “stable”! The algorithm detects that naturally, without code especially
looking for equal keys.

• The input was in sorted order but got dropped on the floor in chunks; the
chunks were reassembled in random order, and to fight boredom, some of the
chunks were riffle-shuffled together. While that’s a silly example, it still results
in exploitable partial order and suggests how general the method is.

In short, Python 2.3’s timsort (well, it has to have some brief name) is stable, robust,
and preternaturally fast in many real-life cases: use it any time you can!

5.1 Sorting a Dictionary
Credit: Alex Martelli

Problem
You want to sort a dictionary. This probably means that you want to sort the keys
and then get the values in that same sorted order.

Solution
The simplest approach is exactly the one expressed by the problem statement: sort
the keys, then pick the corresponding values:

def sortedDictValues(adict):
 keys = adict.keys()
 keys.sort()
 return [adict[key] for key in keys]

Discussion
The concept of sorting applies only to a collection that has an order—in other
words, a sequence. A mapping, such as a dictionary, has no order, so it cannot be
sorted. And yet, “How do I sort a dictionary?” is a frequent, though literally mean-
ingless, question on the Python lists. More often than not, the question is in fact
about sorting some sequence composed of keys and/or values from the dictionary.

As for the implementation, while one could think of more sophisticated approaches,
it turns out (not unusually, for Python) that the one shown in the solution, the sim-
plest one, is also essentially the fastest one. A further slight increase in speed, about

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: Searching and Sorting

20%, can be squeezed out in Python 2.3 by replacing the list comprehension with a
map call in the return statement at the end of the function. For example:

 return map(adict.get, keys)

Python 2.4, however, is already measurably faster than Python 2.3 with the version
in the “Solution” and gains nothing from this further step. Other variants, such as
using adict.__getitem__ instead of adict.get, offer no further increase in speed, or
they even slow performance down a little, in both Python 2.3 and 2.4.

See Also
Recipe 5.4 “Sorting Keys or Indices Based on the Corresponding Values” for sorting
a dictionary based on its values rather than on its keys.

5.2 Sorting a List of Strings Case-Insensitively
Credit: Kevin Altis, Robin Thomas, Guido van Rossum, Martin V. Lewis, Dave Cross

Problem
You want to sort a list of strings, ignoring case differences. For example, you want a,
although it’s lowercase, to sort before B, although the latter is uppercase. By default,
however, string comparison is case-sensitive (e.g., all uppercase letters sort before all
lowercase ones).

Solution
The decorate-sort-undecorate (DSU) idiom is simple and fast:

def case_insensitive_sort(string_list):
 auxiliary_list = [(x.lower(), x) for x in string_list] # decorate
 auxiliary_list.sort() # sort
 return [x[1] for x in auxiliary_list] # undecorate

In Python 2.4, DSU is natively supported, so (assuming the items of string_list are
indeed strings, and not, e.g., Unicode objects), you can use the following even
shorter and faster approach:

def case_insensitive_sort(string_list):
 return sorted(string_list, key=str.lower)

Discussion
An obvious alternative to this recipe’s Solution is to code a comparison function and
pass it to the sort method:

def case_insensitive_sort_1(string_list):
 def compare(a, b): return cmp(a.lower(), b.lower())
 string_list.sort(compare)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.2 Sorting a List of Strings Case-Insensitively | 197

However, in this way the lower method gets called twice for every comparison, and
the number of comparisons needed to sort a list of n items is typically proportional to
n log(n).

The DSU idiom builds an auxiliary list, whose items are tuples where each item of
the original list is preceded by a “key”. The sort then takes place on the key, because
Python compares tuples lexicographically (i.e., it compares the tuples’ first items
first). With DSU, the lower method gets called only n times to sort a list of n strings,
which saves enough time to cover the small costs of the first, decorate step and the
final, undecorate step, with a big net increase in speed.

DSU is also sometimes known, not quite correctly, as the Schwartzian Transform, by
somewhat imprecise analogy with a well-known idiom of the Perl language. (If any-
thing, DSU is closer to the Guttman-Rosler Transform, see http://www.sysarch.com/
perl/sort_paper.html.)

DSU is so important that Python 2.4 supports it directly: you can optionally pass to
the sort method of a list an argument named key, which is the callable to use on each
item of the list to obtain the key for the sort. If you pass such an argument, the sort-
ing internally uses DSU. So, in Python 2.4, string_list.sort(key=str.lower is essen-
tially equivalent to function case_insensitive_sort, except the sort method sorts the
list in-place (and returns None) instead of returning a sorted copy and leaving the
original list alone. If you want function case_insensitive_sort to sort in-place, by
the way, just change its return statement into an assignment to the list’s body:

string_list[:] = [x[1] for x in auxiliary_list]

Vice versa, if, in Python 2.4, you want to get a sorted copy and leave the original list
alone, you can use the new built-in function sorted. For example, in Python 2.4:

for s in sorted(string_list, key=str.lower): print s

prints each string in the list, sorted case-insensitively, without affecting string_list

itself.

The use of str.lower as the key argument in the Python 2.4 Solution restricts you to
specifically sorting strings (not, e.g., Unicode objects). If you know you’re sorting a
list of Unicode objects, use key=unicode.lower instead. If you need a function that
applies just as well to strings and Unicode objects, you can import string and then
use key=string.lower; alternatively, you could use key=lambda s: s.lower().

If you need case-insensitive sorting of lists of strings, you might also need dictionar-
ies and sets using case-insensitive strings as keys, lists behaving case-insensitively
regarding such methods as index and count, case-insensitive results from needle in
haystack, and so on. If that is the case, then your real underlying need is a subtype of
str that behaves case-insensitively in comparison and hashing—a clearly better fac-
toring of the issue, compared to implementing many container types and functions
to get all of this functionality. To see how to implement such a type, see recipe 1.24
“Making Some Strings Case-Insensitive.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: Searching and Sorting

See Also
The Python Frequently Asked Questions http://www.python.org/cgi-bin/
faqw.py?req=show&file=faq04.051.htp; recipe 5.3 “Sorting a List of Objects by an
Attribute of the Objects”; Python 2.4 Library Reference about the sorted built-in
function and the key argument to sort and sorted; recipe 1.24 “Making Some Strings
Case-Insensitive.”

5.3 Sorting a List of Objects by an Attribute
of the Objects

Credit: Yakov Markovitch, Nick Perkins

Problem
You need to sort a list of objects according to one attribute of each object.

Solution
The DSU idiom shines, as usual:

def sort_by_attr(seq, attr):
 intermed = [(getattr(x, attr), i, x) for i, x in enumerate(seq)]
 intermed.sort()
 return [x[-1] for x in intermed]
def sort_by_attr_inplace(lst, attr):
 lst[:] = sort_by_attr(lst, attr)

In Python 2.4, DSU is natively supported, so your code can be even shorter and
faster:

import operator
def sort_by_attr(seq, attr):
 return sorted(seq, key=operator.attrgetter(attr))
def sort_by_attr_inplace(lst, attr):
 lst.sort(key=operator.attrgetter(attr))

Discussion
Sorting a list of objects by an attribute of each object is best done using the DSU
idiom introduced previously in recipe 5.2 “Sorting a List of Strings Case-Insensi-
tively.” In Python 2.3 and 2.4, DSU is no longer needed, as it used to be, to ensure
that a sort is stable (sorting is always stable in Python 2.3 and later), but DSU’s speed
advantages still shine.

Sorting, in the general case and with the best algorithms, is O(n log n) (as is often
the case in mathematical formulas, the juxtaposition of terms, here n and log n, indi-
cates that the terms are multiplied). DSU’s speed comes from maximally accelerat-
ing the O(n log n) part, which dominates sorting time for sequences of substantial

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 Sorting a List of Objects by an Attribute of the Objects | 199

length n, by using only Python’s native (and maximally fast) comparison. The prelim-
inary decoration step, which prepares an intermediate auxiliary list of tuples, and the
successive undecoration step, which extracts the important item from each tuple after
the intermediate list is sorted, are only O(n). Therefore any minor inefficiencies in
these steps contribute negligible overhead if n is large enough, and reasonably little
even for many practical values of n.

This recipe puts index i, in each tuple that is an item of list intermed, ahead of the
corresponding x (where x is the i-th item in seq). This placement ensures that two
items of seq will never be compared directly, even if they have the same value for the
attribute named attr. Even in that case, their indices will still differ, and thus
Python’s lexicographic comparison of the tuples will never get all the way to compar-
ing the tuples’ last items (the original items from seq). Avoiding object comparisons
may save us from performing extremely slow operations, or even from attempting
forbidden ones. For example, we could sort a list of complex numbers by their real

attribute: we would get an exception if we ever tried to compare two complex num-
bers directly, because no ordering is defined on complex numbers. But thanks to the
precaution described in this paragraph, such an event can never occur, and the sort-
ing will therefore proceed correctly.

The O()-Notation
The most useful way to reason about many performance issues is in terms of what is
popularly known as big-O analysis and notation (the O stands for “order”). You can find
detailed explanations, for example, at http://en.wikipedia.org/wiki/Big_O_notation, but
here’s a summary.

If we consider an algorithm applied to input data of some size N, running time can be
described, for large enough values of N (and big inputs are often those for which per-
formance is most critical), as being proportional to some function of N. This is indi-
cated with notations such as O(N) (running time proportional to N: processing twice as
much data takes about twice as much time, 10 times as much data, 10 times as much
time, and so on; also known as linear time), O(N squared) (running time proportional
to the square of N: processing twice as much data takes about four times as much time,
10 times as much data, 100 times as much time; also known as quadratic time), and so
on. Another case you will see often is O(N log N), which is faster than O(N squared) but
not as fast as O(N).

The constant of proportionality is often ignored (at least in theoretical analysis)
because it depends on such issues as the clock rate of your computer, not just on the
algorithm. If you buy a machine that’s twice as fast as your old one, everything will run
in half the time, but that will not change any of the comparisons between alternative
algorithms.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Searching and Sorting

As mentioned earlier in recipe 5.2 “Sorting a List of Strings Case-Insensitively,”
Python 2.4 supports DSU directly. You can pass an optional keyword-argument key,
to sort, which is the callable to use on each item to get the sort key. Standard library
module operator has two new functions, attrgetter and itemgetter, that exist spe-
cifically to return callables suitable for this purpose. In Python 2.4, the ideal solution
to this problem therefore becomes:

import operator
seq.sort(key=operator.attrgetter(attr))

This snippet performs the sort in-place, which helps make it blazingly fast—on my
machine, three times faster than the Python 2.3 function shown first in this recipe. If
you need a sorted copy, without disturbing seq, you can get it using Python 2.4’s
new built-in function sorted:

sorted_copy = sorted(seq, key=operator.attrgetter(attr))

While not quite as fast as an in-place sort, this latest snippet is still over 2.5 times
faster than the function shown first in this recipe. Python 2.4 also guarantees that,
when you pass the optional key named argument, list items will never be acciden-
tally compared directly, so you need not take any special safeguards. Moreover, sta-
bility is also guaranteed.

See Also
Recipe 5.2 “Sorting a List of Strings Case-Insensitively”; Python 2.4’s Library Refer-
ence docs about the sorted built-in function, operator module’s attrgetter and
itemgetter functions, and the key argument to .sort and sorted.

5.4 Sorting Keys or Indices Based
on the Corresponding Values

Credit: John Jensen, Fred Bremmer, Nick Coghlan

Problem
You need to count the occurrences of various items and present the items in order of
their number of occurrences—for example, to produce a histogram.

Solution
A histogram, apart from graphical issues, is based on counting the occurrences of
items (easy to do with a Python list or dictionary) and then sorting the keys or indi-
ces in an order based on corresponding values. Here is a subclass of dict that adds
two methods for the purpose:

class hist(dict):
 def add(self, item, increment=1):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.4 Sorting Keys or Indices Based on the Corresponding Values | 201

 ''' add 'increment' to the entry for 'item' '''
 self[item] = increment + self.get(item, 0)
 def counts(self, reverse=False):
 ''' return list of keys sorted by corresponding values '''
 aux = [(self[k], k) for k in self]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

If the items you’re counting are best modeled by small integers in a compact range,
so that you want to keep item counts in a list, the solution is quite similar:

class hist1(list):
 def __init__(self, n):
 ''' initialize this list to count occurrences of n distinct items '''
 list.__init__(self, n*[0])
 def add(self, item, increment=1):
 ''' add 'increment' to the entry for 'item' '''
 self[item] += increment
 def counts(self, reverse=False):
 ''' return list of indices sorted by corresponding values '''
 aux = [(v, k) for k, v in enumerate(self)]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

Discussion
The add method of hist embodies the normal Python idiom for counting occurrences
of arbitrary (but hashable) items, using a dict to hold the counts. In class hist1, based
on a list, we take a different approach, initializing all counts to 0 in __init__, so the
add method is even simpler.

The counts methods produce the lists of keys, or indices, sorted in the order given by
the corresponding values. The problem is very similar in both classes, hist and
hist1; therefore, the solutions are also almost identical, using in each case the DSU
approach already shown in recipe 5.2 “Sorting a List of Strings Case-Insensitively”
and recipe “Sorting a List of Objects by an Attribute of the Objects.” If we need both
classes in our program, the similarity is so close that we should surely factor out the
commonalities into a single auxiliary function _sorted_keys:

def _sorted_keys(container, keys, reverse):
 ''' return list of 'keys' sorted by corresponding values in 'container' '''
 aux = [(container[k], k) for k in keys]
 aux.sort()
 if reverse: aux.reverse()
 return [k for v, k in aux]

and then implement the counts methods of each class as thin wrappers over this
_sorted_keys function:

class hist(dict):
...

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Searching and Sorting

 def counts(self, reverse=False):
 return _sorted_keys(self, self, reverse)
class hist1(list):

...

 def counts(self, reverse=False):
 return _sorted_keys(self, xrange(len(self)), reverse)

DSU is so important that in Python 2.4, as shown previously in recipe 5.2 “Sorting a
List of Strings Case-Insensitively” and recipe 5.3 “Sorting a List of Objects by an
Attribute of the Objects,” the sort method of lists and the new built-in function
sorted offer a fast, intrinsic implementation of it. Therefore, in Python 2.4, function
_sorted_keys can become much simpler and faster:

def _sorted_keys(container, keys, reverse):
 return sorted(keys, key=container.__getitem__, reverse=reverse)`

The bound-method container.__getitem__ performs exactly the same operation as
the indexing container[k] in the Python 2.3 implementation, but it’s a callable to
call on each k of the sequence that we’re sorting, namely keys—exactly the right kind
of value to pass as the key keyword argument to the sorted built-in function. Python
2.4 also affords an easy, direct way to get a list of a dictionary’s items sorted by
value:

from operator import itemgetter
def dict_items_sorted_by_value(d, reverse=False):
 return sorted(d.iteritems(), key=itemgetter(1), reverse=reverse)

The operator.itemgetter higher-order function, also new in Python 2.4, is a handy
way to supply the key argument when you want to sort a container whose items are
subcontainers, keying on a certain item of each subcontainer. This is exactly the case
here, since a dictionary’s items are a sequence of pairs (two-item tuples), and we
want to sort the sequence keying on the second item of each tuple.

Getting back to this recipe’s main theme, here is a usage example for the class hist

shown in this recipe’s Solution:

sentence = ''' Hello there this is a test. Hello there this was a test,
 but now it is not. '''
words = sentence.split()
c = hist()
for word in words: c.add(word)
print "Ascending count:"
print c.counts()
print "Descending count:"
print c.counts(reverse=True)

This code snippet produces the following output:

Ascending count:

[(1, 'but'), (1, 'it'), (1, 'not.'), (1, 'now'), (1, 'test,'), (1, 'test.'),
(1, 'was'), (2, 'Hello'), (2, 'a'), (2, 'is'), (2, 'there'), (2, 'this')]
Descending count:
[(2, 'this'), (2, 'there'), (2, 'is'), (2, 'a'), (2, 'Hello'), (1, 'was'),
(1, 'test.'), (1, 'test,'), (1, 'now'), (1, 'not.'), (1, 'it'), (1, 'but')]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.5 Sorting Strings with Embedded Numbers | 203

See Also
Recipe “Special Method Names” in the Language Reference and the OOP chapter in
Python in a Nutshell, about special method __getitem__; Library Reference docs for
Python 2.4 sorted built-in and the key= argument to sort and sorted.

5.5 Sorting Strings with Embedded Numbers
Credit: Sébastien Keim, Chui Tey, Alex Martelli

Problem
You need to sort a list of strings that contain substrings of digits (e.g., a list of postal
addresses) in an order that looks good. For example, 'foo2.txt' should come before
'foo10.txt'. However, Python’s default string comparison is alphabetical, so, by
default, 'foo10.txt' instead comes before 'foo2.txt'.

Solution
You need to split each string into sequences of digits and nondigits, and transform
each sequence of digits into a number. This gives you a list that is just the right com-
parison key for the sort you want, and you can then use DSU for the sort itself—that
is, code two functions, shorter than this description:

import re
re_digits = re.compile(r'(\d+)')
def embedded_numbers(s):
 pieces = re_digits.split(s) # split into digits/nondigits
 pieces[1::2] = map(int, pieces[1::2]) # turn digits into numbers
 return pieces
def sort_strings_with_embedded_numbers(alist):
 aux = [(embedded_numbers(s), s) for s in alist]
 aux.sort()
 return [s for __, s in aux] # convention: __ means "ignore"

In Python 2.4, use the native support for DSU, with the same function embedded_

numbers to get the sort key:

def sort_strings_with_embedded_numbers(alist):
 return sorted(alist, key=embedded_numbers)

Discussion
Say you have an unsorted list of filenames, such as:

files = 'file3.txt file11.txt file7.txt file4.txt file15.txt'.split()

If you just sort and print this list, for example in Python 2.4 with print

' '.join(sorted(files)), your output looks like file11.txt file15.txt file3.txt

file4.txt file7.txt, since, by default, strings are sorted alphabetically (to use a fan-
cier word, the sort order is described as lexicographical). Python cannot just guess

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Searching and Sorting

that you mean to treat in a different way those substrings that happen to be made of
digits; you have to tell Python precisely what you want, and this recipe shows how.

Using this recipe, you can get a nicer-looking result:

print ' '.join(sort_strings_with_embedded_numbers(files))

The output is now file3.txt file4.txt file7.txt file11.txt file15.txt, which is
probably just what you want in this case.

The implementation relies on the DSU idiom. We need to code DSU explicitly if we
want to support Python 2.3, while if our code is Python 2.4-only, we just rely on the
native implementation of DSU. We do so by passing an argument named key (a func-
tion to be called on each item to get the right comparison key for the sort) to the new
built-in function sorted.

Function embedded_numbers in the recipe is how we get the right comparison key for
each item: a list alternating substrings of nondigits, and the int obtained from each
substring of digits. re_digits.split(s) gives us a list of alternating substrings of non-
digits and digits (with the substrings of digits at odd-numbered indices); then, we use
built-in functions map and int (and extended-form slices that get and set all items at
odd-numbered indices) to turn sequences of digits into integers. Lexicographical
comparison on this list of mixed types now produces just the right result.

See Also
Library Reference and Python in a Nutshell docs about extended slicing and about
module re; Python 2.4 Library Reference about the sorted built-in function and the
key argument to sort and sorted; recipe 5.3 “Sorting a List of Objects by an Attribute
of the Objects”; recipe 5.2 “Sorting a List of Strings Case-Insensitively.”

5.6 Processing All of a List’s Items
in Random Order

Credit: Iuri Wickert, Duncan Grisby, T. Warner, Steve Holden, Alex Martelli

Problem
You need to process, in random order, all of the items of a long list.

Solution
As usual in Python, the best approach is the simplest one. If we are allowed to
change the order of items in the input list, then the following function is simplest
and fastest:

def process_all_in_random_order(data, process):
 # first, put the whole list into random order

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.6 Processing All of a List’s Items in Random Order | 205

 random.shuffle(data)
 # next, just walk over the list linearly
 for elem in data: process(elem)

If we must preserve the input list intact, or if the input data may be some iterable
that is not a list, just insert as the first statement of the function the assignment data
= list(data).

Discussion
While it’s a common mistake to be overly concerned with speed, don’t make the
opposite mistake of ignoring the different performances of various algorithms. Sup-
pose we must process all of the items in a long list in random order, without repeti-
tion (assume that we’re allowed to mangle or destroy the input list). The first idea to
suggest itself might be to repeatedly pick an item at random (with function
random.choice), removing each picked item from the list to avoid future repetitions:

import random
def process_random_removing(data, process):
 while data:
 elem = random.choice(data)
 data.remove(elem)
 process(elem)

However, this function is painfully slow, even for input lists of just a few hundred
elements. Each call to data.remove must linearly search through the list to find the
element to delete. Since the cost of each of n steps is O(n), the whole process is
O(n2)—time proportional to the square of the length of the list (and with a large mul-
tiplicative constant, too).

Minor improvements to this first idea could focus on obtaining random indices,
using the pop method of the list to get and remove an item at the same time, low-level
fiddling with indices to avoid the costly removal in favor of swapping the picked item
with the last yet-unpicked one towards the end, or using dictionaries or sets instead
of lists. This latest idea might be based on a hope of using a dict’s popitem method
(or the equivalent method pop of class sets.Set and Python 2.4’s built-in type set),
which may look like it’s designed exactly to pick and remove a random item, but,
beware! dict.popitem is documented to return and remove an arbitrary item of the
dictionary, and that’s a far cry from a random item. Check it out:

>>> d=dict(enumerate('ciao'))
>>> while d: print d.popitem()

It may surprise you, but in most Python implementations this snippet will print d’s
items in a far from random order, typically (0,'c') then (1,'i') and so forth. In
short, if you need pseudo-random behavior in Python, you need standard library
module random—popitem is not an alternative.

If you thought about using a dictionary rather than a list, you are definitely on your
way to “thinking Pythonically”, even though it turns out that dictionaries wouldn’t

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Searching and Sorting

provide a substantial performance boost for this specific problem. However, an
approach that is even more Pythonic than choosing the right data structure is best
summarized as: let the standard library do it!. The Python Standard Library is large,
rich, and chock full of useful, robust, fast functions and classes for a wide variety of
tasks. In this case, the key intuition is realizing that, to walk over a sequence in a ran-
dom order, the simplest approach is to first put that sequence into random order
(known as shuffling the sequence, an analogy with shuffling a deck of cards) and then
walk over the shuffled sequence linearly. Function random.shuffle performs the shuf-
fling, and the function shown in this recipe’s Solution just uses it.

Performance should always be measured, never guessed at, and that’s what standard
library module timeit is for. Using a null process function and a list of length 1,000
as data, process_all_in_random_order is almost 10 times faster than process_random_

removing; with a list of length 2,000, the performance ratio grows to almost 20.
While an improvement of, say, 25%, or even a constant factor of 2, usually can be
neglected without really affecting the performance of your program as a whole, the
same does not apply to an algorithm that is 10 or 20 times as slow as it could be.
Such terrible performance is likely to make that program fragment a bottleneck, all
by itself. Moreover, this risk increases when we’re talking about O(n2) versus O(n)

behavior: with such differences in big-O behavior, the performance ratio between
bad and good algorithms keeps increasing without bounds as the size of the input
data grows.

See Also
The documentation for the random and timeit modules in the Library Reference and
Python in a Nutshell.

5.7 Keeping a Sequence Ordered as Items
Are Added

Credit: John Nielsen

Problem
You want to maintain a sequence, to which items are added, in a sorted state, so that
at any time, you can easily examine or remove the smallest item currently present in
the sequence.

Solution
Say you start with an unordered list, such as:

the_list = [903, 10, 35, 69, 933, 485, 519, 379, 102, 402, 883, 1]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.7 Keeping a Sequence Ordered as Items Are Added | 207

You could call the_list.sort() to make the list sorted and then result=the_

list.pop(0) to get and remove the smallest item. But then, every time you add an
item (say with the_list.append(0)), you need to call the_list.sort() again to keep
the list sorted.

Alternatively, you can use the heapq module of the Python Standard Library:

import heapq
heapq.heapify(the_list)

Now the list is not necessarily fully sorted, but it does satisfy the heap property
(meaning if all indices involved are valid, the_list[i]<=the_list[2*i+1] and the_

list[i]<=the_list[2*i+2])—so, in particular, the_list[0] is the smallest item. To
keep the heap property valid, use result=heapq.heappop(the_list) to get and remove
the smallest item and heapq.heappush(the_list, newitem) to add a new item. When
you need to do both—add a new item while getting and removing the previously
smallest item—you can use result=heapq.heapreplace(the_list, newitem).

Discussion
When you need to retrieve data in an ordered way (at each retrieval getting the small-
est item among those you currently have at hand), you can pay the runtime cost for
the sorting when you retrieve the data, or you can pay for it when you add the data.
One approach is to collect your data into a list and sort the list. Now it’s easy to get
your data in order, smallest to largest. However, you have to keep calling sort each
time you add new data during the retrieval, to make sure you can later keep retriev-
ing from the smallest current item after each addition. The method sort of Python
lists is implemented with a little-known algorithm called Natural Mergesort, which
minimizes the runtime cost of this approach. Yet the approach can still be burden-
some: each addition (and sorting) and each retrieval (and removal, via pop) takes
time proportional to the number of current items in the list (O(N), in common par-
lance).

An alternative approach is to use a data organization known as a heap, a type of
binary tree implemented compactly, yet ensuring that each “parent” is always less
than its “children”. The best way to maintain a heap in Python is to use a list and
have it managed by the heapq library module, as shown in this recipe’s Solution. The
list does not get fully sorted, yet you can be sure that, whenever you heappop an item
from the list, you always get the lowest item currently present, and all others will be
adjusted to ensure the heap property is still valid. Each addition with heappush, and
each removal with heappop, takes a short time proportional to the logarithm of the
current length of the list (O(log N), in common parlance). You pay as you go, a little
at a time (and not too much in total, either.)

A good occasion to use this heap approach, for example, is when you have a long-
running queue with new data periodically arriving, and you always want to be able
to get the most important item off the queue without having to constantly re-sort

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Searching and Sorting

your data or perform full searches. This concept is known as a priority queue, and a
heap is an excellent way to implement it. Note that, intrinsically, the heapq module
supplies you with the smallest item at each heappop, so make sure to arrange the way
you encode your items’ priority values to reflect this. For example, say that you
receive incoming items each accompanied by a cost, and the most important item at
any time is the one with the highest cost that is currently on the queue; moreover,
among items of equal cost, the most important one is the one that arrived earliest.
Here’s a way to build a “priority queue” class respecting these specs and based on
functions of module heapq:

class prioq(object):
 def __init__(self):
 self.q = []
 self.i = 0
 def push(self, item, cost):
 heapq.heappush(self.q, (-cost, self.i, item))
 self.i += 1
 def pop(self):
 return heapq.heappop(self.q)[-1]

The main idea in this snippet is to push on the heap tuples whose first item is the
cost with changed sign, so that higher costs result in smaller tuples (by Python’s natu-
ral comparison); right after the cost, we put a progressive index, so that, among
items with equal cost, the one arriving earliest will be in a smaller tuple.

In Python 2.4, module heapq has been reimplemented and optimized; see recipe 5.8
“Getting the First Few Smallest Items of a Sequence” for more information about
heapq.

See Also
Docs for module heapq in the Library Reference and Python in a Nutshell; heapq.py in
the Python sources contains a very interesting discussion of heaps; recipe 5.8 “Get-
ting the First Few Smallest Items of a Sequence” for more information about heapq;
recipe 19.14 “Merging Sorted Sequences” for merging sorted sequences using heapq.

5.8 Getting the First Few Smallest Items
of a Sequence

Credit: Matteo Dell’Amico, Raymond Hettinger, George Yoshida, Daniel Harding

Problem
You need to get just a few of the smallest items from a sequence. You could sort the
sequence and just use seq[:n], but is there any way you can do better?

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.8 Getting the First Few Smallest Items of a Sequence | 209

Solution
Perhaps you can do better, if n, the number of items you need, is small compared to
L, the sequence’s length. sort is very fast, but it still takes O(L log L) time, while we
can get the first n smallest elements in time O(n) if n is small. Here is a simple and
practical generator for this purpose, which works equally well in Python 2.3 and 2.4:

import heapq
def isorted(data):
 data = list(data)
 heapq.heapify(data)
 while data:
 yield heapq.heappop(data)

In Python 2.4 only, you can use an even simpler and faster way to get the smallest n
items of data when you know n in advance:

import heapq
def smallest(n, data):
 return heapq.nsmallest(n, data)

Discussion
data can be any bounded iterable; the recipe’s function isorted starts by calling list

on it to ensure that. You can remove the statement data = list(data) if all the fol-
lowing conditions hold: you know that data is a list to start with, you don’t mind the
fact that the generator reorders data’s items, and you want to remove items from
data as you fetch them.

As shown previously in recipe 5.7 “Keeping a Sequence Ordered as Items
Are Added,” the Python Standard Library contains module heapq, which supports
the data structures known as heaps. Generator isorted in this recipe’s Solution relies
on making a heap at the start (via heap.heapify) and then yielding and removing the
heap’s smallest remaining item at each step (via heap.heappop).

In Python 2.4, module heapq has also grown two new functions. heapq.nlargest(n,
data) returns a list of the n largest items of data; heapq.nsmallest(n, data) returns a
list of the n smallest items. These functions do not require that data satisfy the heap
condition; indeed, they do not even require data to be a list—any bounded iterable
whose items are comparable will do. Function smallest in this recipe’s Solution just
lets heapq.smallest do all the work.

To judge speed, we must always measure it—guessing about relative speeds of differ-
ent pieces of code is a mug’s game. So, how does isorted’s performance compare
with Python 2.4’s built-in function sorted, when we’re only looping on the first few
(smallest) items? To help measure timing, I wrote a top10 function that can use either
approach, and I also made sure I had a sorted function even in Python 2.3, where it’s
not built in:

try:
 sorted

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Searching and Sorting

except:
 def sorted(data):
 data = list(data)
 data.sort()
 return data
import itertools
def top10(data, howtosort):
 return list(itertools.islice(howtosort(data), 10))

On my machine running Python 2.4 on thoroughly shuffled lists of 1,000 integers,
top10 takes about 260 microseconds with isorted, while it takes about 850 microsec-
onds with the built-in sorted. However, Python 2.3 is much slower and gives vastly
different results: about 12 milliseconds with isorted, about 2.7 milliseconds with
sorted. In other words, Python 2.3 is 3 times slower than Python 2.4 for sorted, but
it’s 50 times slower for isorted. Lesson to retain: whenever you optimize, measure.
You shouldn’t choose optimizations based on first principles, since the performance
numbers can vary so widely, even between vastly compatible “point releases”. A sec-
ondary point can be made: if you care about performance, move to Python 2.4 as
soon as you can. Python 2.4 has been vastly optimized and accelerated over Python
2.3, particularly in areas related to searching and sorting.

If you know that your code need only support Python 2.4, then, as this recipe’s Solu-
tion indicates, using heapq’s new function nsmallest is faster, as well as simpler, than
doing your own coding. To implement top10 in Python 2.4, for example, you just
need:

import heapq
def top10(data):
 return heapq.nsmallest(10, data)

This version takes about half the time of the previously shown isorted-based top10,
when called on the same thoroughly shuffled lists of 1,000 integers.

See Also
Library Reference and Python in a Nutshell docs about method sort of type list, and
about modules heapq and timeit; Chapter 19 for more about iteration in Python;
Python in a Nutshell’s chapter on optimization; heapq.py in the Python sources con-
tains a very interesting discussion of heaps; recipe 5.7 “Keeping a Sequence Ordered
as Items Are Added” for more information about heapq.

5.9 Looking for Items in a Sorted Sequence
Credit: Noah Spurrier

Problem
You need to look for a lot of items in a sequence.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.9 Looking for Items in a Sorted Sequence | 211

Solution
If list L is sorted, module bisect from the Python Standard Library makes it easy to
check if some item x is present in L:

import bisect
x_insert_point = bisect.bisect_right(L, x)
x_is_present = L[x_insert_point-1:x_insert_point] == [x]

Discussion
Looking for an item x in a list L is very easy in Python: to check whether the item is
there at all, if x in L; to find out where exactly it is, L.index(x). However, if L has
length n, these operations take time proportional to n—essentially, they just loop
over the list’s items, checking each for equality to x. If L is sorted, we can do better.

The classic algorithm to look for an item in a sorted sequence is known as binary
search, because at each step it roughly halves the range it’s still searching on—it gen-
erally takes about log2n steps. It’s worth considering when you’re going to look for
items many times, so you can amortize the cost of sorting over many searches. Once
you’ve decided to use binary search for x in L, after calling L.sort(), module bisect

from the Python Standard Library makes the job easy.

Specifically, we need function bisect.bisect_right, which returns the index where
an item should be inserted, to keep the sorted list sorted, but doesn’t alter the list;
moreover, if the item already appears in the list, bisect_right returns an index that’s
just to the right of any items with the same value. So, after getting this “insert point”
by calling bisect.bisect_right(L, x), we need only to check the list immediately
before the insert point, to see if an item equal to x is already there.

The way we compute x_is_present in the “Solution” may not be immediately obvi-
ous. If we know that L is not empty, we can use a simpler and more obvious
approach:

x_is_present = L[x_insert_point-1] == x

However, the indexing in this simpler approach raises an exception when L is empty.
When the slice boundaries are invalid, slicing is less “strict” than indexing, since it
just produces an empty slice without raising any exception. In general, somelist[i:
i+1] is the same one-item list as [somelist[i]] when i is a valid index in somelist:
it’s an empty list [] when the indexing would raise IndexError. The computation of
x_is_present in the recipe exploits this important property to avoid having to deal
with exceptions and handle empty and nonempty cases for L in one uniform way. An
alternative approach is:

x_is_present = L and L[x_insert_point-1] == x

This alternative approach exploits and’s short-circuiting behavior to guard the index-
ing, instead of using slicing.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Searching and Sorting

An auxiliary dict, as shown in recipe 5.12 “Performing Frequent Membership Tests
on a Sequence,” is also a possibility as long as items are hashable (meaning that
items can be used as keys into a dict). However, the approach in this recipe, based
on a sorted list, may be the only useful one when the items are comparable (other-
wise, the list could not be sorted) but not hashable (so a dict can’t have those items
as its keys).

When the list is already sorted, and the number of items you need to look up in it is
not extremely large, it may in any case be faster to use bisect than to build an auxil-
iary dictionary, since the investment of time in the latter operation might not be fully
amortized. This is particularly likely in Python 2.4, since bisect has been optimized
very effectively and is much faster than it was in Python 2.3. On my machine, for
example, bisect.bisect_right for an item in the middle of a list of 10,000 integers is
about four times faster in Python 2.4 than it was in Python 2.3.

See Also
Documentation for the bisect module in the Library Reference and Python in a Nut-
shell; recipe 5.12 “Performing Frequent Membership Tests on a Sequence.”

5.10 Selecting the nth Smallest Element
of a Sequence

Credit: Raymond Hettinger, David Eppstein, Shane Holloway, Chris Perkins

Problem
You need to get from a sequence the nth item in rank order (e.g., the middle item,
known as the median). If the sequence was sorted, you would just use seq[n]. But the
sequence isn’t sorted, and you wonder if you can do better than just sorting it first.

Solution
Perhaps you can do better, if the sequence is big, has been shuffled enough, and
comparisons between its items are costly. Sort is very fast, but in the end (when
applied to a thoroughly shuffled sequence of length n) it always takes O(n log n)

time, while there exist algorithms that can be used to get the nth smallest element in
time O(n). Here is a function with a solid implementation of such an algorithm:

import random
def select(data, n):
 " Find the nth rank ordered element (the least value has rank 0). "
 # make a new list, deal with <0 indices, check for valid index
 data = list(data)
 if n<0:
 n += len(data)
 if not 0 <= n < len(data):
 raise ValueError, "can't get rank %d out of %d" % (n, len(data))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.10 Selecting the nth Smallest Element of a Sequence | 213

 # main loop, quicksort-like but with no need for recursion
 while True:
 pivot = random.choice(data)
 pcount = 0
 under, over = [], []
 uappend, oappend = under.append, over.append
 for elem in data:
 if elem < pivot:
 uappend(elem)
 elif elem > pivot:
 oappend(elem)
 else:
 pcount += 1
 numunder = len(under)
 if n < numunder:
 data = under
 elif n < numunder + pcount:
 return pivot
 else:
 data = over
 n -= numunder + pcount

Discussion
This recipe is meant for cases in which repetitions count. For example, the median of
the list [1, 1, 1, 2, 3] is 1 because that is the third one of the five items in rank
order. If, for some strange reason, you want to discount duplications, you need to
reduce the list to its unique items first (e.g., by applying the recipe 18.1 “Removing
Duplicates from a Sequence”), after which you may want to come back to this recipe.

Input argument data can be any bounded iterable; the recipe starts by calling list on
it to ensure that. The algorithm then loops, implementing at each leg a few key ideas:
randomly choosing a pivot element; slicing up the list into two parts, made up of the
items that are “under” and “over” the pivot respectively; continuing work for the
next leg on just one of the two parts, since we can tell which one of them the nth ele-
ment will be in, and the other part can safely be ignored. The ideas are very close to
that in the classic algorithm known as quicksort (except that quicksort cannot ignore
either part, and thus must use recursion, or recursion-removal techniques such as
keeping an explicit stack, to make sure it deals with both parts).

The random choice of pivot makes the algorithm robust against unfavorable data
orderings (the kind that wreak havoc with naive quicksort); this implementation
decision costs about log2N calls to random.choice. Another implementation issue
worth pointing out is that the recipe counts the number of occurrences of the pivot:
this precaution ensures good performance even in the anomalous case where data

contains a high number of repetitions of identical values.

Extracting the bound methods .append of lists under and over as local variables
uappend and oappend may look like a pointless, if tiny, complication, but it is, in fact,
a very important optimization technique in Python. To keep the compiler simple,
straightforward, unsurprising, and robust, Python does not hoist constant computa-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: Searching and Sorting

tions out of loops, nor does it “cache” the results of method lookup. If you call
under.append and over.append in the inner loop, you pay the cost of lookup each and
every time. If you want something hoisted, hoist it yourself. When you’re consider-
ing an optimization, you should always measure the code’s performance with and
without that optimization, to check that the optimization does indeed make an
important difference. According to my measurements, removing this single optimiza-
tion slows performance down by about 50% for the typical task of picking the
5000th item of range(10000). Considering the tiny amount of complication involved,
a difference of 50% is well worth it.

A natural idea for optimization, which just didn’t make the grade once carefully mea-
sured, is to call cmp(elem, pivot) in the loop body, rather than making separate tests
for elem < pivot and elem > pivot. Unfortunately, measurement shows that cmp

doesn’t speed things up; in fact, it slows them down, at least when the items of data
are of elementary types such as numbers and strings.

So, how does select’s performance compare with the simpler alternative of:

def selsor(data, n):
 data = list(data)
 data.sort()
 return data[n]

On thoroughly shuffled lists of 3,001 integers on my machine, this recipe’s select

takes about 16 milliseconds to find the median, while selsor takes about 13 millisec-
onds; considering that sort could take advantage of any partial sortedness in the
data, for this kind of length, and on elementary data whose comparisons are fast, it’s
not to your advantage to use select. For a length of 30,001, performance becomes
very close between the two approaches—around 170 milliseconds either way. When
you push the length all the way to 300,001, select provides an advantage, finding
the median in about 2.2 seconds, while selsor takes about 2.5.

The break-even point will be smaller if the items in the sequence have costly compar-
ison methods, since the key difference between the two approaches is in the number
of comparisons performed—select takes O(n), selsor takes O(n log n). For exam-
ple, say we need to compare instances of a class designed for somewhat costly
comparisons (simulating four-dimensional points that will often coincide on the first
few dimensions):

class X(object):
 def __init__(self):
 self.a = self.b = self.c = 23.51
 self.d = random.random()
 def _dats(self):
 return self.a, self.b, self.c, self.d
 def __cmp__(self, oth):
 return cmp(self._dats, oth._dats)

Here, select already becomes faster than selsor when what we’re computing is the
median of vectors of 201 such instances.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.11 Showing off quicksort in Three Lines | 215

In other words, although select has more general overhead, when compared to the
wondrously efficient coding of lists’ sort method, nevertheless, if n is large enough
and each comparison is costly enough, select is still well worth considering.

See Also
Library Reference and Python in a Nutshell docs about method sort of type list, and
about module random.

5.11 Showing off quicksort in Three Lines
Credit: Nathaniel Gray, Raymond Hettinger, Christophe Delord, Jeremy Zucker

Problem
You need to show that Python’s support for the functional programming paradigm is
better than it might seem at first sight.

Solution
Functional programming languages, of which Haskell is a great example, are splen-
did animals, but Python can hold its own in such company:

def qsort(L):
 if len(L) <= 1: return L
 return qsort([lt for lt in L[1:] if lt < L[0]]) + L[0:1] + \
 qsort([ge for ge in L[1:] if ge >= L[0]])

In my humble opinion, this code is almost as pretty as the Haskell version from http://
www.haskell.org:

qsort [] = []
qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_greq_x
 where
 elts_lt_x = [y | y <- xs, y < x]
 elts_greq_x = [y | y <- xs, y >= x]

Here’s a test function for the Python version:

def qs_test(length):
 import random
 joe = range(length)
 random.shuffle(joe)
 qsJoe = qsort(joe)
 for i in range(len(qsJoe)):
 assert qsJoe[i] == i, 'qsort is broken at %d!' %i

Discussion
This rather naive implementation of quicksort illustrates the expressive power of list
comprehensions. Do not use this approach in real code! Python lists have an in-place
sort method that is much faster and should always be preferred; in Python 2.4, the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: Searching and Sorting

new built-in function sorted accepts any finite sequence and returns a new sorted list
with the sequence’s items. The only proper use of this recipe is for impressing
friends, particularly ones who (quite understandably) are enthusiastic about func-
tional programming, and particularly about the Haskell language.

I cooked up this function after finding the wonderful Haskell quicksort (which I’ve
reproduced in the “Solution”) at http://www.haskell.org/aboutHaskell.html. After
marveling at the elegance of this code for a while, I realized that list comprehensions
made the same approach possible in Python. Not for nothing did we steal list com-
prehensions right out of Haskell, just Pythonizing them a bit by using keywords
rather than punctuation!

Both implementations pivot on the first element of the list and thus have worst-case
O(n) performance for the very common case of sorting an already sorted list. You
would never want to do so in production code! Because this recipe is just a propa-
ganda piece, though, it doesn’t really matter.

You can write a less compact version with similar architecture in order to use named
local variables and functions for enhanced clarity:

def qsort(L):
 if not L: return L
 pivot = L[0]
 def lt(x): return x<pivot
 def ge(x): return x>=pivot
 return qsort(filter(lt, L[1:]))+[pivot]+qsort(filter(ge, L[1:]))

Once you start going this route, you can easily move to a slightly less naive version,
using random pivot selection to make worst-case performance less likely and count-
ing pivots to handle degenerate case with many equal elements:

import random
def qsort(L):
 if not L: return L
 pivot = random.choice(L)
 def lt(x): return x<pivot
 def gt(x): return x>pivot
 return qsort(filter(lt, L))+[pivot]*L.count(pivot)+qsort(filter(gt, L))

Despite the enhancements, they are meant essentially for fun and demonstration pur-
poses. Production-quality sorting code is quite another thing: these little jewels, no
matter how much we dwell on them, will never match the performance and solidity
of Python’s own built-in sorting approaches.

Rather than going for clarity and robustness, we can move in the opposite direction
to make this last point most obvious, showing off the obscurity and compactness
that one can get with Python’s lambda:

q=lambda x:(lambda o=lambda s:[i for i in x if cmp(i,x[0])==s]:
 len(x)>1 and q(o(-1))+o(0)+q(o(1)) or x)()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.12 Performing Frequent Membership Tests on a Sequence | 217

At least, with this beauty (a single logical line, although it needs to be split into two
physical lines due to its length), it should be absolutely obvious that this approach is
not meant for real-world use. The equivalent, using more readable def statements
rather than opaque lambdas, would still be pretty obscure:

def q(x):
 def o(s): return [i for i in x if cmp(i,x[0])==s]
 return len(x)>1 and q(o(-1))+o(0)+q(o(1)) or x

but a little more clarity (and sanity) can be recovered by opening up the pithy
len(x)>1 and . . . or x into an if/else statement and introducing sensible local
names again:

def q(x):
 if len(x)>1:
 lt = [i for i in x if cmp(i,x[0]) == -1]
 eq = [i for i in x if cmp(i,x[0]) == 0]
 gt = [i for i in x if cmp(i,x[0]) == 1]
 return q(lt) + eq + q(gt)
 else:
 return x

Fortunately, in the real world, Pythonistas are much too sensible to write convo-
luted, lambda-filled horrors such as this. In fact, many (though admittedly not all) of
us feel enough aversion to lambda itself (partly from having seen it abused this way)
that we go out of our way to use readable def statements instead. As a result, the
ability to decode such “bursts of line noise” is not a necessary survival skill in the
Python world, as it might be for other languages. Any language feature can be abused
by programmers trying to be “clever” . . . as a result, some Pythonistas (though a
minority) feel a similar aversion to features such as list comprehensions (since it’s
possible to cram too many things into a list comprehension, where a plain for loop
would be clearer) or to the short-circuiting behavior of operators and/or (since they
can be abused to write obscure, terse expressions where a plain if statement would
be clearer).

See Also
The Haskell web site, http://www.haskell.org.

5.12 Performing Frequent Membership Tests
on a Sequence

Credit: Alex Martelli

Problem
You need to perform frequent tests for membership in a sequence. The O(n) behav-
ior of repeated in operators hurts performance, but you can’t switch to using just a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: Searching and Sorting

dictionary or set instead of the sequence, because you also need to keep the
sequence’s order.

Solution
Say you need to append items to a list only if they’re not already in the list. One
sound approach to this task is the following function:

def addUnique(baseList, otherList):
 auxDict = dict.fromkeys(baseList)
 for item in otherList:
 if item not in auxDict:
 baseList.append(item)
 auxDict[item] = None

If your code has to run only under Python 2.4, you can get exactly the same effect
with an auxiliary set rather than an auxiliary dictionary.

Discussion
A simple (naive?) approach to this recipe’s task looks good:

def addUnique_simple(baseList, otherList):
 for item in otherList:
 if item not in baseList:
 baseList.append(item)

and it may be sort of OK, if the lists are very small.

However, the simple approach can be quite slow if the lists are not small. When you
check if item not in baseList, Python can implement the in operator in only one
way: an internal loop over the elements of baseList, ending with a result of True as
soon as an element compares equal to item, with a result of False if the loop termi-
nates without having found any equality. On average, executing the in-operator
takes time proportional to len(baseList). addUnique_simple executes the in-operator
len(otherList) times, so, in all, it takes time proportional to the product of the
lengths of the two lists.

In the addUnique function shown in the “Solution”, we first build the auxiliary dictio-
nary auxDict, a step that takes time proportional to len(baseList). Then, the in-
operator inside the loop checks for membership in a dict—a step that makes all the
difference because checking for membership in a dict takes roughly constant time,
independent of the number of items in the dict! So, the for loop takes time propor-
tional to len(otherList), and the entire function takes time proportional to the sum
of the lengths of the two lists.

The analysis of the running times should in fact go quite a bit deeper, because the
length of baseList is not constant in addUnique_simple; baseList grows each time an
item is processed that was not already there. But the gist of the (surprisingly compli-
cated) analysis is not very different from what this simplified version indicates. We
can check this by measuring. When each list holds 10 integers, with an overlap of

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.12 Performing Frequent Membership Tests on a Sequence | 219

50%, the simple version is about 30% slower than the one shown in the “Solution”,
the kind of slowdown that can normally be ignored. But with lists of 100 integers
each, again with 50% overlap, the simple version is twelve times slower than the one
shown in the “Solution”—a level of slowdown that can never be ignored, and it only
gets worse if the lists get really substantial.

Sometimes, you could obtain even better overall performance for your program by
permanently placing the auxiliary dict alongside the sequence, encapsulating both
into one object. However, in this case, you must maintain the dict as the sequence
gets modified, to ensure it stays in sync with the sequence’s current membership.
This maintenance task is not trivial, and it can be architected in many different ways.
Here is one such way, which does the syncing “just in time,” rebuilding the auxiliary
dict when a membership test is required and the dictionary is possibly out of sync
with the list’s contents. Since it costs very little, the following class optimizes the
index method, as well as membership tests:

class list_with_aux_dict(list):
 def __init__(self, iterable=()):
 list.__init__(self, iterable)
 self._dict_ok = False
 def _rebuild_dict(self):
 self._dict = { }
 for i, item in enumerate(self):
 if item not in self._dict:
 self._dict[item] = i
 self._dict_ok = True
 def __contains__(self, item):
 if not self._dict_ok:
 self._rebuild_dict()
 return item in self._dict
 def index(self, item):
 if not self._dict_ok:
 self._rebuild_dict()
 try: return self._dict[item]
 except KeyError: raise ValueError
def _wrapMutatorMethod(methname):
 _method = getattr(list, methname)
 def wrapper(self, *args):
 # Reset 'dictionary OK' flag, then delegate to the real mutator method
 self._dict_ok = False
 return _method(self, *args)
 # in Python 2.4, only: wrapper.__name__ = _method.__name__
 setattr(list_with_aux_dict, methname, wrapper)
for meth in 'setitem delitem setslice delslice iadd'.split():
 _wrapMutatorMethod('__%s__' % meth)
for meth in 'append insert pop remove extend'.split():
 _wrapMutatorMethod(meth)
del _wrapMethod # remove auxiliary function, not needed any more

The list_with_aux_dict class extends list and delegates to it every method, except
__contains__ and index. Every method that can modify list membership is wrapped
in a closure that resets a flag asserting that the auxiliary dictionary is OK. Python’s

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 5: Searching and Sorting

in-operator calls the __contains__ method. list_with_aux_dict’s __contains__

method rebuilds the auxiliary dictionary, unless the flag is set (when the flag is set,
rebuilding is unnecessary); the index method works the same way.

Instead of building and installing wrapping closures for all the mutating methods of
the list into the list_with_aux_dict class with a helper function, as the recipe does,
we could write all the def statements for the wrapper methods in the body of list_
with_aux_dict. However, the code for the class as presented has the important
advantage of minimizing boilerplate (repetitious plumbing code that is boring and
voluminous, and thus a likely home for bugs). Python’s strengths at introspection
and dynamic modification give you a choice: you can build method wrappers, as this
recipe does, in a smart and concise way; or, you can choose to code the boilerplate
anyway, if you prefer to avoid what some would call the black magic of introspec-
tion and dynamic modification of class objects.

The architecture of class list_with_aux_dict caters well to a rather common pattern
of use, where sequence-modifying operations happen in bunches, followed by a
period of time in which the sequence is not modified, but several membership tests
may be performed. However, the addUnique_simple function shown earlier would not
get any performance benefit if argument baseList was an instance of this recipe’s
list_with_aux_dict rather than a plain list: the function interleaves membership
tests and sequence modifications. Therefore, too many rebuilds of the auxiliary dic-
tionary for list_with_aux_dict would impede the function’s performance. (Unless a
typical case was for a vast majority of the items of otherList to be already contained
in baseList, so that very few modifications occurred compared to the number of
membership tests.)

An important requisite for any of these membership-test optimizations is that the
values in the sequence must be hashable (otherwise, of course, they cannot be keys
in a dict, nor items in a set). For example, a list of tuples might be subjected to this
recipe’s treatment, but for a list of lists, the recipe as it stands is just not applicable.

See Also
The Library Reference and Python in a Nutshell sections on sequence types and map-
ping types.

5.13 Finding Subsequences
Credit: David Eppstein, Alexander Semenov

Problem
You need to find occurrences of a subsequence in a larger sequence.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.13 Finding Subsequences | 221

Solution
If the sequences are strings (plain or Unicode), Python strings’ find method and the
standard library’s re module are the best approach. Otherwise, use the Knuth-
Morris-Pratt algorithm (KMP):

def KnuthMorrisPratt(text, pattern):
 ''' Yields all starting positions of copies of subsequence 'pattern'
 in sequence 'text' -- each argument can be any iterable.
 At the time of each yield, 'text' has been read exactly up to and
 including the match with 'pattern' that is causing the yield. '''
 # ensure we can index into pattern, and also make a copy to protect
 # against changes to 'pattern' while we're suspended by `yield'
 pattern = list(pattern)
 length = len(pattern)
 # build the KMP "table of shift amounts" and name it 'shifts'
 shifts = [1] * (length + 1)
 shift = 1
 for pos, pat in enumerate(pattern):
 while shift <= pos and pat != pattern[pos-shift]:
 shift += shifts[pos-shift]
 shifts[pos+1] = shift
 # perform the actual search
 startPos = 0
 matchLen = 0
 for c in text:
 while matchLen == length or matchLen >= 0 and pattern[matchLen] != c:
 startPos += shifts[matchLen]
 matchLen -= shifts[matchLen]
 matchLen += 1
 if matchLen == length: yield startPos

Discussion
This recipe implements the Knuth-Morris-Pratt algorithm for finding copies of a
given pattern as a contiguous subsequence of a larger text. Since KMP accesses the
text sequentially, it is natural to implement it in a way that allows the text to be an
arbitrary iterator. After a preprocessing stage that builds a table of shift amounts and
takes time that’s directly proportional to the length of the pattern, each text symbol
is processed in constant amortized time. Explanations and demonstrations of how
KMP works can be found in all good elementary texts about algorithms. (A recom-
mendation is provided in See Also.)

If text and pattern are both Python strings, you can get a faster solution by suitably
applying Python built-in search methods:

def finditer(text, pattern):
 pos = -1
 while True:
 pos = text.find(pattern, pos+1)
 if pos < 0: break
 yield pos

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 5: Searching and Sorting

For example, using an alphabet of length 4 ('ACGU' . . .), finding all occurrences of a
pattern of length 8 in a text of length 100000, on my machine, takes about 4.3 milli-
seconds with finditer, but the same task takes about 540 milliseconds with
KnuthMorrisPratt (that’s with Python 2.3; KMP is faster with Python 2.4, taking
about 480 milliseconds, but that’s still over 100 times slower than finditer). So
remember: this recipe is useful for searches on generic sequences, including ones that
you cannot keep in memory all at once, but if you’re searching on strings, Python’s
built-in searching methods rule.

See Also
Many excellent books cover the fundamentals of algorithms; among such books, a
widely admired one is Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein, Introduction to Algorithms, 2d ed. (MIT Press).

5.14 Enriching the Dictionary Type with Ratings
Functionality

Credit: Dmitry Vasiliev, Alex Martelli

Problem
You want to use a dictionary to store the mapping between some keys and a current
score value for each key. You frequently need to access the keys and scores in natu-
ral order (meaning, in order of ascending scores) and to check on a “key”’s current
ranking in that order, so that using just a dict isn’t quite enough.

Solution
We can subclass dict and add or override methods as needed. By using multiple
inheritance, placing base UserDict.DictMixin before base dict and carefully arrang-
ing our various delegations and “over”rides, we can achieve a good balance between
getting good performance and avoiding the need to write “boilerplate” code.

By enriching our class with many examples in its docstring, we can use the standard
library’s module doctest to give us unit-testing functionality, as well as ensuring the
accuracy of all the examples we write in the docstring:

#!/usr/bin/env python
''' An enriched dictionary that holds a mapping from keys to scores '''
from bisect import bisect_left, insort_left
import UserDict
class Ratings(UserDict.DictMixin, dict):
 """ class Ratings is mostly like a dictionary, with extra features: the
 value corresponding to each key is the 'score' for that key, and all
 keys are ranked in terms their scores. Values must be comparable; keys,
 as well as being hashable, must be comparable if any two keys may ever

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.14 Enriching the Dictionary Type with Ratings Functionality | 223

 have the same corresponding value (i.e., may be "tied" on score).
 All mapping-like behavior is just as you would expect, such as:
 >>> r = Ratings({"bob": 30, "john": 30})
 >>> len(r)

2
 >>> r.has_key("paul"), "paul" in r
 (False, False)
 >>> r["john"] = 20
 >>> r.update({"paul": 20, "tom": 10})
 >>> len(r)

4
 >>> r.has_key("paul"), "paul" in r
 (True, True)
 >>> [r[key] for key in ["bob", "paul", "john", "tom"]]
 [30, 20, 20, 10]
 >>> r.get("nobody"), r.get("nobody", 0)
 (None, 0)
 In addition to the mapping interface, we offer rating-specific
 methods. r.rating(key) returns the ranking of a “key” in the
 ratings, with a ranking of 0 meaning the lowest score (when two
 keys have equal scores, the keys themselves are compared, to
 "break the tie", and the lesser key gets a lower ranking):
 >>> [r.rating(key) for key in ["bob", "paul", "john", "tom"]]
 [3, 2, 1, 0]
 getValueByRating(ranking) and getKeyByRating(ranking) return the
 score and key, respectively, for a given ranking index:
 >>> [r.getValueByRating(rating) for rating in range(4)]
 [10, 20, 20, 30]
 >>> [r.getKeyByRating(rating) for rating in range(4)]
 ['tom', 'john', 'paul', 'bob']
 An important feature is that the keys() method returns keys in
 ascending order of ranking, and all other related methods return
 lists or iterators fully consistent with this ordering:
 >>> r.keys()
 ['tom', 'john', 'paul', 'bob']

 >>> [key for key in r]
 ['tom', 'john', 'paul', 'bob']
 >>> [key for key in r.iterkeys()]
 ['tom', 'john', 'paul', 'bob']
 >>> r.values()
 [10, 20, 20, 30]
 >>> [value for value in r.itervalues()]
 [10, 20, 20, 30]
 >>> r.items()
 [('tom', 10), ('john', 20), ('paul', 20), ('bob', 30)]
 >>> [item for item in r.iteritems()]
 [('tom', 10), ('john', 20), ('paul', 20), ('bob', 30)]
 An instance can be modified (adding, changing and deleting
 key-score correspondences), and every method of that instance
 reflects the instance's current state at all times:
 >>> r["tom"] = 100
 >>> r.items()
 [('john', 20), ('paul', 20), ('bob', 30), ('tom', 100)]
 >>> del r["paul"]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 5: Searching and Sorting

 >>> r.items()
 [('john', 20), ('bob', 30), ('tom', 100)]
 >>> r["paul"] = 25
 >>> r.items()
 [('john', 20), ('paul', 25), ('bob', 30), ('tom', 100)]
 >>> r.clear()
 >>> r.items()
 []
 """
 ''' the implementation carefully mixes inheritance and delegation
 to achieve reasonable performance while minimizing boilerplate,
 and, of course, to ensure semantic correctness as above. All
 mappings' methods not implemented below get inherited, mostly
 from DictMixin, but, crucially!, __getitem__ from dict. '''
 def __init__(self, *args, **kwds):
 ''' This class gets instantiated just like 'dict' '''
 dict.__init__(self, *args, **kwds)
 # self._rating is the crucial auxiliary data structure: a list
 # of all (value, key) pairs, kept in “natural”ly-sorted order
 self._rating = [(v, k) for k, v in dict.iteritems(self)]
 self._rating.sort()
 def copy(self):
 ''' Provide an identical but independent copy '''
 return Ratings(self)
 def __setitem__(self, k, v):
 ''' besides delegating to dict, we maintain self._rating '''
 if k in self:
 del self._rating[self.rating(k)]
 dict.__setitem__(self, k, v)
 insort_left(self._rating, (v, k))
 def __delitem__(self, k):
 ''' besides delegating to dict, we maintain self._rating '''
 del self._rating[self.rating(k)]
 dict.__delitem__(self, k)
 ''' delegate some methods to dict explicitly to avoid getting
 DictMixin's slower (though correct) implementations instead '''
 __len__ = dict.__len__
 __contains__ = dict.__contains__
 has_key = __contains__
 ''' the key semantic connection between self._rating and the order
 of self.keys() -- DictMixin gives us all other methods 'for
 free', although we could implement them directly for slightly
 better performance. '''
 def __iter__(self):
 for v, k in self._rating:
 yield k
 iterkeys = __iter__
 def keys(self):
 return list(self)
 ''' the three ratings-related methods '''
 def rating(self, key):
 item = self[key], key
 i = bisect_left(self._rating, item)
 if item == self._rating[i]:
 return i

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.14 Enriching the Dictionary Type with Ratings Functionality | 225

 raise LookupError, "item not found in rating"
 def getValueByRating(self, rating):
 return self._rating[rating][0]
 def getKeyByRating(self, rating):
 return self._rating[rating][1]
def _test():
 ''' we use doctest to test this module, which must be named
 rating.py, by validating all the examples in docstrings. '''
 import doctest, rating
 doctest.testmod(rating)
if __name__ == "__main__":
 _test()

Discussion
In many ways, a dictionary is the natural data structure for storing a correspondence
between keys (e.g., names of contestants in a competition) and the current “score” of
each key (e.g., the number of points a contestant has scored so far, or the highest bid
made by each contestant at an auction, etc.). If we use a dictionary for such pur-
poses, we will probably want to access it often in natural order—the order in which
the keys’ scores are ascending—and we’ll also want fast access to the rankings (rat-
ings) implied by the current “score”s (e.g., the contestant currently in third place, the
score of the contestant who is in second place, etc.).

To achieve these purposes, this recipe subclasses dict to add the needed functional-
ity that is completely missing from dict (methods rating, getValueByRating,
getKeyByRating), and, more subtly and crucially, to modify method keys and all other
related methods so that they return lists or iterators with the required order (i.e., the
order in which scores are ascending; if we have to break ties when two keys have the
same score, we implicitly compare the keys themselves). Most of the detailed docu-
mentation is in the docstring of the class itself—a crucial issue because by keeping
the documentation and examples there, we can use module doctest from the Python
Standard Library to provide unit-testing functionality, as well as ensuring that our
examples are correct.

The most interesting aspect of the implementation is that it takes good care to mini-
mize boilerplate (meaning repetitious and boring code, and therefore code where
bugs are most likely to hide) without seriously impairing performance. class Ratings

multiply inherits from dict and DictMixin, with the latter placed first in the list of
bases, so that all methods come from the mixin, if it provides them, unless explicitly
overridden in the class.

Raymond Hettinger’s DictMixin class was originally posted as a recipe to the online
version of the Python Cookbook and later became part of Python 2.3’s standard
library. DictMixin provides all the methods of a mapping except __init__, copy, and
the four fundamental methods: __getitem__, __setitem__, __delitem__, and, last but
not least, keys. If you are coding a mapping class and want to ensure that your class
supports all of the many methods that a full mapping provides to application code,
you should subclass DictMixin and supply at least the fundamental methods
(depending on your class’ semantics—e.g., if your class has immutable instances,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 5: Searching and Sorting

you need not supply the mutator methods __setitem__ and __delitem__). You may
optionally implement other methods for performance purposes, overriding the
implementation that DictMixin provides. The whole DictMixin architecture can be
seen as an excellent example of the classic Template Method Design Pattern, applied
pervasively in a useful mix-in variant.

In this recipe’s class, we inherit __getitem__ from our other base (namely, the built-
in type dict), and we also delegate explicitly to dict everything we can for perfor-
mance reasons. We have to code the elementary mutator methods (__setitem__ and
__delitem__) because, in addition to delegating to our base class dict, we need to
maintain our auxiliary data structure self._rating—a list of (score, key) pairs that
we keep in sorted order with the help of standard library module bisect. We imple-
ment keys ourselves (and while we’re at it, we implement __iter__ —i.e., iterkeys
as well, since clearly keys is easiest to implement by using __iter__) to exploit self._
rating and return the keys in the order we need. Finally, we add the obvious imple-
mentations for __init__ and copy, in addition to the three, ratings-specific methods
that we supply.

The result is quite an interesting example of balancing concision, clarity, and well-
advised reuse of the enormous amount of functionality that the standard Python
library places at our disposal. If you use this module in your applications, profiling
may reveal that a method that this recipe’s class inherits from DictMixin has some-
what unsatisfactory performance—after all, the implementations in DictMixin are, of
necessity, somewhat generic. If this is the case, by all means add a direct implemen-
tation of whatever further methods you need to achieve maximum performance! For
example, if your application performs a lot of looping on the result of calling
r.iteritems() for some instance r of class Ratings, you may get slightly better per-
formance by adding to the body of the class the direct implementation of the
method:

 def iteritems(self):
 for v, k in self._rating:
 yield k, v

See Also
Library Reference and Python in a Nutshell documentation about class DictMixin in
module UserDict, and about module bisect.

5.15 Sorting Names and Separating Them
by Initials

Credit: Brett Cannon, Amos Newcombe

Problem
You want to write a directory for a group of people, and you want that directory to
be grouped by the initials of their last names and sorted alphabetically.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.15 Sorting Names and Separating Them by Initials | 227

Solution
Python 2.4’s new itertools.groupby function makes this task easy:

import itertools
def groupnames(name_iterable):
 sorted_names = sorted(name_iterable, key=_sortkeyfunc)
 name_dict = { }
 for key, group in itertools.groupby(sorted_names, _groupkeyfunc):
 name_dict[key] = tuple(group)
 return name_dict
pieces_order = { 2: (-1, 0), 3: (-1, 0, 1) }
def _sortkeyfunc(name):
 ''' name is a string with first and last names, and an optional middle
 name or initial, separated by spaces; returns a string in order
 last-first-middle, as wanted for sorting purposes. '''
 name_parts = name.split()
 return ' '.join([name_parts[n] for n in pieces_order[len(name_parts)]])
def _groupkeyfunc(name):
 ''' returns the key for grouping, i.e. the last name's initial. '''
 return name.split()[-1][0]

Discussion
In this recipe, name_iterable must be an iterable whose items are strings containing
names in the form first - middle - last, with middle being optional and the parts sepa-
rated by whitespace. The result of calling groupnames on such an iterable is a dictio-
nary whose keys are the last names’ initials, and the corresponding values are the
tuples of all names with that last name’s initial.

Auxiliary function _sortkeyfunc splits a name that’s a single string, either “first last”
or “first middle last,” and reorders the part into a list that starts with the last name,
followed by first name, plus the middle name or initial, if any, at the end. Then, the
function returns this list rejoined into a string. The resulting string is the key we want
to use for sorting, according to the problem statement. Python 2.4’s built-in func-
tion sorted takes just this kind of function (to call on each item to get the sort key) as
the value of its optional parameter named key.

Auxiliary function _groupkeyfunc takes a name in the same form and returns the last
name’s initial—the key on which, again according to the problem statement, we
want to group.

This recipe’s primary function, groupnames, uses the two auxiliary functions and
Python 2.4’s sorted and itertools.groupby to solve our problem, building and
returning the required dictionary.

If you need to code this task in Python 2.3, you can use the same two support func-
tions and recode function groupnames itself. In 2.3, it is more convenient to do the
grouping first and the sorting separately on each group, since no groupby function is
available in Python 2.3’s standard library:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 5: Searching and Sorting

def groupnames(name_iterable):
 name_dict = { }
 for name in name_iterable:
 key = _groupkeyfunc(name)
 name_dict.setdefault(key, []).append(name)
 for k, v in name_dict.iteritems():
 aux = [(_sortkeyfunc(name), name) for name in v]
 aux.sort()
 name_dict[k] = tuple([n for __, n in aux])
 return name_dict

See Also
Recipe 19.21 “Computing a Summary Report with itertools.groupby”; Library Refer-
ence (Python 2.4) docs on module itertools.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

229

Chapter 6 CHAPTER 6

Object-Oriented Programming

6.0 Introduction
Credit: Alex Martelli, author of Python in a Nutshell (O’Reilly)

Object-oriented programming (OOP) is among Python’s greatest strengths. Python’s
OOP features continue to improve steadily and gradually, just like Python in gen-
eral. You could already write better object-oriented programs in Python 1.5.2 (the
ancient, long-stable version that was new when I first began to work with Python)
than in any other popular language (excluding, of course, Lisp and its variants: I
doubt there’s anything you can’t do well in Lisp-like languages, as long as you can
stomach parentheses-heavy concrete syntax). For a few years now, since the release
of Python 2.2, Python OOP has become substantially better than it was with 1.5.2. I
am constantly amazed at the systematic progress Python achieves without sacrificing
solidity, stability, and backwards-compatibility.

To get the most out of Python’s great OOP features, you should use them the Python
way, rather than trying to mimic C++, Java, Smalltalk, or other languages you may
be familiar with. You can do a lot of mimicry, thanks to Python’s power. However,
you’ll get better mileage if you invest time and energy in understanding the Python
way. Most of the investment is in increasing your understanding of OOP itself: what
is OOP, what does it buy you, and which underlying mechanisms can your object-
oriented programs use? The rest of the investment is in understanding the specific
mechanisms that Python itself offers.

One caveat is in order. For such a high-level language, Python is quite explicit about
the OOP mechanisms it uses behind the curtains: they’re exposed and available for
your exploration and tinkering. Exploration and understanding are good, but beware
the temptation to tinker. In other words, don’t use unnecessary black magic just
because you can. Specifically, don’t use black magic in production code. If you can
meet your goals with simplicity (and most often, in Python, you can), then keep your
code simple. Simplicity pays off in readability, maintainability, and, more often than

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: Object-Oriented Programming

not, performance, too. To describe something as clever is not considered a compli-
ment in the Python culture.

So what is OOP all about? First of all, it’s about keeping some state (data) and some
behavior (code) together in handy packets. “Handy packets” is the key here. Every
program has state and behavior—programming paradigms differ only in how you
view, organize, and package them. If the packaging is in terms of objects that typi-
cally comprise state and behavior, you’re using OOP. Some object-oriented lan-
guages force you to use OOP for everything, so you end up with many objects that
lack either state or behavior. Python, however, supports multiple paradigms. While
everything in Python is an object, you package things as OOP objects only when you
want to. Other languages try to force your programming style into a predefined mold
for your own good, while Python empowers you to make and express your own
design choices.

With OOP, once you have specified how an object is composed, you can instantiate
as many objects of that kind as you need. When you don’t want to create multiple
objects, consider using other Python constructs, such as modules. In this chapter,
you’ll find recipes for Singleton, an object-oriented design pattern that eliminates the
multiplicity of instantiation, and Borg, an idiom that makes multiple instances share
state. But if you want only one instance, in Python it’s often best to use a module,
not an OOP object.

To describe how an object is made, use the class statement:

class SomeName(object):
 """ You usually define data and code here (in the class body). """

SomeName is a class object. It’s a first-class object, like every Python object, meaning
that you can put it in lists and dictionaries, pass it as an argument to functions, and
so on. You don’t have to include the (object) part in the class header clause—class

SomeName: by itself is also valid Python syntax—but normally you should include that
part, as we’ll see later.

When you want a new instance of a class, call the class object as if it were a func-
tion. Each call returns a new instance object:

anInstance = SomeName()
another = SomeName()

anInstance and another are two distinct instance objects, instances of the SomeName

class. (See recipe 4.18 “Collecting a Bunch of Named Items” for a class that does lit-
tle more than this and yet is already quite useful.) You can freely bind (i.e., assign or
set) and access (i.e., get) attributes (i.e., state) of an instance object:

anInstance.someNumber = 23 * 45
print anInstance.someNumber # emits: 1035

Instances of an “empty” class like SomeName have no behavior, but they may have state.
Most often, however, you want instances to have behavior. Specify the behavior you

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 231

want by defining methods (with def statements, just like you define functions) inside
the class body:

class Behave(object):
 def __init__(self, name):
 self.name = name
 def once(self):
 print "Hello,", self.name
 def rename(self, newName)
 self.name = newName
 def repeat(self, N):
 for i in range(N): self.once()

You define methods with the same def statement Python uses to define functions,
exactly because methods are essentially functions. However, a method is an attribute
of a class object, and its first formal argument is (by universal convention) named
self. self always refers to the instance on which you call the method.

The method with the special name __init__ is also known as the constructor (or
more properly the initializer) for instances of the class. Python calls this special
method to initialize each newly created instance with the arguments that you passed
when calling the class (except for self, which you do not pass explicitly since Python
supplies it automatically). The body of __init__ typically binds attributes on the
newly created self instance to appropriately initialize the instance’s state.

Other methods implement the behavior of instances of the class. Typically, they do
so by accessing instance attributes. Also, methods often rebind instance attributes,
and they may call other methods. Within a class definition, these actions are always
done with the self.something syntax. Once you instantiate the class, however, you
call methods on the instance, access the instance’s attributes, and even rebind them,
using the theobject.something syntax:

beehive = Behave("Queen Bee")
beehive.repeat(3)
beehive.rename("Stinger")
beehive.once()
print beehive.name
beehive.name = 'See, you can rebind it "from the outside" too, if you want'
beehive.repeat(2)

self
No true difference exists between what I described as the self.something syntax and
the theobject.something syntax: the former is simply a special case of the latter, when
the name of reference theobject happens to be self!

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: Object-Oriented Programming

If you’re new to OOP in Python, you should try, in an interactive Python environ-
ment, the example snippets I have shown so far and those I’m going to show in the
rest of this Introduction. One of the best interactive Python environments for such
exploration is the GUI shell supplied as part of the free IDLE development environ-
ment that comes with Python.

In addition to the constructor (__init__), your class may have other special meth-
ods, meaning methods with names that start and end with two underscores. Python
calls the special methods of a class when instances of the class are used in various
operations and built-in functions. For example, len(x) returns x.__len__(); a+b nor-
mally returns a.__add__(b); a[b] returns a.__getitem__(b). Therefore, by defining
special methods in a class, you can make instances of that class interchangeable with
objects of built-in types, such as numbers, lists, and dictionaries.

Each operation and built-in function can try several special methods in
some specific order. For example, a+b first tries a.__add__(b), but, if
that doesn’t pan out, the operation also gives object b a say in the mat-
ter, by next trying b.__radd__(a). This kind of intrinsic structuring
among special methods, that operations and built-in functions can
provide, is an important added value of such functions and operations
with respect to pure OO notation such as someobject.some-
method(arguments).

The ability to handle different objects in similar ways, known as polymorphism, is a
major advantage of OOP. Thanks to polymorphism, you can call the same method
on various objects, and each object can implement the method appropriately. For
example, in addition to the Behave class, you might have another class that imple-
ments a repeat method with rather different behavior:

class Repeater(object):
 def repeat(self, N): print N*"*-*"

You can mix instances of Behave and Repeater at will, as long as the only method you
call on each such instance is repeat:

aMix = beehive, Behave('John'), Repeater(), Behave('world')
for whatever in aMix: whatever.repeat(3)

Other languages require inheritance, or the formal definition and implementation of
interfaces, in order to enable such polymorphism. In Python, all you need is to have
methods with the same signature (i.e., methods of the same name, callable with the
same arguments). This signature-based polymorphism allows a style of programming
that’s quite similar to generic programming (e.g., as supported by C++’s template

classes and functions), without syntax cruft and without conceptual complications.

Python also uses inheritance, which is mostly a handy, elegant, structured way to
reuse code. You can define a class by inheriting from another (i.e., subclassing the
other class) and then adding or redefining (known as overriding) some methods:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 233

class Subclass(Behave):
 def once(self): print '(%s)' % self.name
subInstance = Subclass("Queen Bee")
subInstance.repeat(3)

The Subclass class overrides only the once method, but you can also call the repeat

method on subInstance, since Subclass inherits that method from the Behave super-
class. The body of the repeat method calls once n times on the specific instance,
using whatever version of the once method the instance has. In this case, each call
uses the method from the Subclass class, which prints the name in parentheses, not
the original version from the Behave class, which prints the name after a greeting. The
idea of a method calling other methods on the same instance and getting the appro-
priately overridden version of each is important in every object-oriented language,
including Python. It is also known as the Template Method Design Pattern.

The method of a subclass often overrides a method from the superclass, but also
needs to call the method of the superclass as part of its own operation. You can do
this in Python by explicitly getting the method as a class attribute and passing the
instance as the first argument:

class OneMore(Behave):
 def repeat(self, N): Behave.repeat(self, N+1)
zealant = OneMore("Worker Bee")
zealant.repeat(3)

The OneMore class implements its own repeat method in terms of the method with
the same name in its superclass, Behave, with a slight change. This approach, known
as delegation, is pervasive in all programming. Delegation involves implementing
some functionality by letting another existing piece of code do most of the work,
often with some slight variation. An overriding method often is best implemented by
delegating some of the work to the same method in the superclass. In Python, the
syntax Classname.method(self, . . .) delegates to Classname’s version of the method.
A vastly preferable way to perform superclass delegation, however, is to use Python’s
built-in super:

class OneMore(Behave):
 def repeat(self, N): super(OneMore, self).repeat(N+1)

This super construct is equivalent to the explicit use of Behave.repeat in this simple
case, but it also allows class OneMore to be used smoothly with multiple inheritance.
Even if you’re not interested in multiple inheritance at first, you should still get into
the habit of using super instead of explicit delegation to your base class by name—
super costs nothing and it may prove very useful to you in the future.

Python does fully support multiple inheritance: one class can inherit from several
other classes. In terms of coding, this feature is sometimes just a minor one that lets
you use the mix-in class idiom, a convenient way to supply functionality across a
broad range of classes. (See recipe 6.20 “Using Cooperative Supercalls Concisely and
Safely” and recipe 6.12 “Checking an Instance for Any State Changes,” for unusual

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: Object-Oriented Programming

but powerful examples of using the mix-in idiom.) However, multiple inheritance is
particularly important because of its implications for object-oriented analysis—the
way you conceptualize your problem and your solution in the first place. Single
inheritance pushes you to frame your problem space via taxonomy (i.e., mutually
exclusive classification). The real world doesn’t work like that. Rather, it resembles
Jorge Luis Borges’ explanation in The Analytical Language of John Wilkins, from a
purported Chinese encyclopedia, The Celestial Emporium of Benevolent Knowledge.
Borges explains that all animals are divided into:

• Those that belong to the Emperor

• Embalmed ones

• Those that are trained

• Suckling pigs

• Mermaids

• Fabulous ones

• Stray dogs

• Those included in the present classification

• Those that tremble as if they were mad

• Innumerable ones

• Those drawn with a very fine camelhair brush

• Others

• Those that have just broken a flower vase

• Those that from a long way off look like flies

You get the point: taxonomy forces you to pigeonhole, fitting everything into catego-
ries that aren’t truly mutually exclusive. Modeling aspects of the real world in your
programs is hard enough without buying into artificial constraints such as taxon-
omy. Multiple inheritance frees you from these constraints.

Ah, yes, that (object) thing—I had promised to come back to it later. Now that
you’ve seen Python’s notation for inheritance, you realize that writing class

X(object) means that class X inherits from class object. If you just write class Y:,
you’re saying that Y doesn’t inherit from anything—Y, so to speak, “stands on its
own”. For backwards compatibility, Python allows you to request such a rootless
class, and, if you do, then Python makes class Y an “old-style” class, also known as a
classic class, meaning a class that works just like all classes used to work in the
Python versions of old. Python is very keen on backwards-compatibility.

For many elementary uses, you won’t notice the difference between classic classes
and the new-style classes that are recommended for all new Python code you write.
However, it’s important to underscore that classic classes are a legacy feature, not
recommended for new code. Even within the limited compass of elementary OOP

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.1 Converting Among Temperature Scales | 235

features that I cover in this Introduction, you will already feel some of the limita-
tions of classic classes: for example, you cannot use super within classic classes, and
in practice, you should not do any serious use of multiple inheritance with them.
Many important features of today’s Python OOP, such as the property built-in, can’t
work completely, if they even work at all, with old-style classes.

In practice, even if you’re maintaining a large body of legacy Python code, the next
time you need to do any substantial maintenance on that code, you should take the
little effort required to ensure all classes are new style: it’s a small job, and it will ease
your future maintenance burden quite a bit. Instead of explicitly having all your
classes inherit from object, an equivalent alternative is to add the following assign-
ment statement close to the start of every module that defines any classes:

__metaclass__ = type

The built-in type is the metaclass of object and of every other new-style class and
built-in type. That’s why inheriting from object or any built-in type makes a class
new style: the class you’re coding gets the same metaclass as its base. A class with-
out bases can get its metaclass from the module-global __metaclass__ variable,
which is why the “state”ment I suggest suffices to ensure that any classes without
explicit bases are made new-style. Even if you never make any other use of explicit
metaclasses (a rather advanced subject that is, nevertheless, mentioned in several of
this chapter’s recipes), this one simple use of them will stand you in good stead.

6.1 Converting Among Temperature Scales
Credit: Artur de Sousa Rocha, Adde Nilsson

Problem
You want to convert easily among Kelvin, Celsius, Fahrenheit, and Rankine scales of
temperature.

Solution
Rather than having a dozen functions to do all possible conversions, we can more
elegantly package this functionality into a class:

class Temperature(object):
 coefficients = {'c': (1.0, 0.0, -273.15), 'f': (1.8, -273.15, 32.0),
 'r': (1.8, 0.0, 0.0)}
 def __init__(self, **kwargs):
 # default to absolute (Kelvin) 0, but allow one named argument,
 # with name being k, c, f or r, to use any of the scales
 try:
 name, value = kwargs.popitem()
 except KeyError:
 # no arguments, so default to k=0
 name, value = 'k', 0

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: Object-Oriented Programming

 # error if there are more arguments, or the arg's name is unknown
 if kwargs or name not in 'kcfr':
 kwargs[name] = value # put it back for diagnosis
 raise TypeError, 'invalid arguments %r' % kwargs
 setattr(self, name, float(value))
 def __getattr__(self, name):
 # maps getting of c, f, r, to computation from k
 try:
 eq = self.coefficients[name]
 except KeyError:
 # unknown name, give error message
 raise AttributeError, name
 return (self.k + eq[1]) * eq[0] + eq[2]
 def __setattr__(self, name, value):

What Is a Metaclass?
Metaclasses do not mean “deep, dark black magic”. When you execute any class state-
ment, Python performs the following steps:

1. Remember the class name as a string, say n, and the class bases as a tuple, say b.

2. Execute the body of the class, recording all names that the body binds as keys in
a new dictionary d, each with its associated value (e.g., each statement such as
def f(self) just sets d['f'] to the function object the def statement builds).

3. Determine the appropriate metaclass, say M, by inheritance or by looking for
name __metaclass__ in d and in the globals:

if '__metaclass__' in d: M = d['__metaclass__']
elif b: M = type(b[0])
elif '__metaclass__' in globals(): M = globals()['__metaclass__']
else: M = types.ClassType

types.ClassType is the metaclass of old-style classes, so this code implies that a
class without bases is old style if the name '__metaclass__' is not set in the class
body nor among the global variables of the current module.

4. Call M(n, b, d) and record the result as a variable with name n in whatever
scope the class statement executed.

So, some metaclass M is always involved in the execution of any class statement. The
metaclass is normally type for new-style classes, types.ClassType for old-style classes.
You can set it up to use your own custom metaclass (normally a subclass of type), and
that is where you may reasonably feel that things are getting a bit too advanced. How-
ever, understanding that a class statement, such as:

class Someclass(Somebase):
 __metaclass__ = type
 x = 23

is exactly equivalent to the assignment statement:

Someclass = type('Someclass', (Somebase,), {'x': 23})

does help a lot in understanding the exact semantics of the class statement.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.1 Converting Among Temperature Scales | 237

 # maps settings of k, c, f, r, to setting of k; forbids others
 if name in self.coefficients:
 # name is c, f or r -- compute and set k
 eq = self.coefficients[name]
 self.k = (value - eq[2]) / eq[0] - eq[1]
 elif name == 'k':
 # name is k, just set it
 object.__setattr__(self, name, value)
 else:
 # unknown name, give error message
 raise AttributeError, name
 def __str__(self):
 # readable, concise representation as string
 return "%s K" % self.k
 def __repr__(self):
 # detailed, precise representation as string
 return "Temperature(k=%r)" % self.k

Discussion
Converting between several different scales or units of measure is a task that’s sub-
ject to a “combinatorial explosion”: if we tackle it in the apparently obvious way, by
providing a function for each conversion, then, to deal with n different units, we will
have to write n * (n-1) functions.

A Python class can intercept attribute setting and getting, and perform computation
on the fly in response. This power enables a much handier and more elegant archi-
tecture, as shown in this recipe for the specific case of temperatures.

Inside the class, we always hold the measurement in one reference unit or scale,
Kelvin (absolute) degrees in the case of this recipe. We allow the setting of the value
to happen through any of four attribute names ('k', 'r', 'c', 'f', abbreviations of
the scales’ names), and compute and set the Kelvin-scale value appropriately. Vice
versa, we also allow the “getting” of the value in any scale, through the same
attribute names, computing the result on the fly. (Assuming you have saved the code
in this recipe as te.py somewhere on your Python sys.path, you can import it as a
module.) For example:

>>> from te import Temperature
>>> t = Temperature(f=70) # 70 F is...
>>> print t.c # ...a bit over 21 C
21.1111111111
>>> t.c = 23 # 23 C is...
>>> print t.f # ...a bit over 73 F
73.4

__getattr__ and __setattr__ work better than named properties would in this case,
since the form of the computation is the same for every attribute (except the refer-
ence 'k' one), and we only need to use different coefficients that we can most hand-
ily keep in a per-class dictionary, the one we name self.coefficients. It’s important
to remember that __setattr__ is called on every setting of any attribute, so it must

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: Object-Oriented Programming

delegate to object the setting of attributes, which need to be recorded in the instance
(the __setattr__ implementation in this recipe does just such a delegation for
attribute k) and must raise an AttributeError exception for attributes that can’t be
set. __getattr__, on the other hand, is called only upon the “getting” of an attri-
bute that can’t be found by other, “normal” means (e.g., in the case of this rec-
ipe’s class, __getattr__ is not called for accesses to attribute k, which is recorded in
the instance and thus gets found by normal means). __getattr__ must also raise an
AttributeError exception for attributes that can’t be accessed.

See Also
Library Reference and Python in a Nutshell documentation on attributes and on spe-
cial methods __getattr__ and __setattr__.

6.2 Defining Constants
Credit: Alex Martelli

Problem
You need to define module-level variables (i.e., named constants) that client code
cannot accidentally rebind.

Solution
You can install any object as if it were a module. Save the following code as module
const.py on some directory on your Python sys.path:

class _const(object):
 class ConstError(TypeError): pass
 def __setattr__(self, name, value):
 if name in self.__dict__:
 raise self.ConstError, "Can't rebind const(%s)" % name
 self.__dict__[name] = value
 def __delattr__(self, name):
 if name in self.__dict__:
 raise self.ConstError, "Can't unbind const(%s)" % name
 raise NameError, name
import sys
sys.modules[__name__] = _const()

Now, any client code can import const, then bind an attribute on the const module
just once, as follows:

const.magic = 23

Once the attribute is bound, the program cannot accidentally rebind or unbind it:

const.magic = 88 # raises const.ConstError
del const.magic # raises const.ConstError

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.2 Defining Constants | 239

Discussion
In Python, variables can be rebound at will, and modules, differently from classes,
don’t let you define special methods such as __setattr__ to stop rebinding. An easy
solution is to install an instance as if it were a module.

Python performs no type-checks to force entries in sys.modules to actually be mod-
ule objects. Therefore, you can install any object there and take advantage of
attribute-access special methods (e.g., to prevent rebinding, to synthesize attributes
on the fly in __getattr__, etc.), while still allowing client code to access the object
with import somename. You may even see it as a more Pythonic Singleton-style idiom
(but see recipe 6.16 “Avoiding the “Singleton” Design Pattern with the Borg Idiom”).

This recipe ensures that a module-level name remains constantly bound to the same
object once it has first been bound to it. This recipe does not deal with a certain
object’s immutability, which is quite a different issue. Altering an object and rebind-
ing a name are different concepts, as explained in recipe 4.1 “Copying an Object.”
Numbers, strings, and tuples are immutable: if you bind a name in const to such an
object, not only will the name always be bound to that object, but the object’s con-
tents also will always be the same since the object is immutable. However, other
objects, such as lists and dictionaries, are mutable: if you bind a name in const to,
say, a list object, the name will always remain bound to that list object, but the con-
tents of the list may change (e.g., items in it may be rebound or unbound, more
items can be added with the object’s append method, etc.).

To make “read-only” wrappers around mutable objects, see recipe 6.5 “Delegat-
ing Automatically as an Alternative to Inheritance.” You might choose to have
class _const’s __setattr__ method perform such wrapping implicitly. Say you have
saved the code from recipe 6.5 “Delegating Automatically as an Alternative to Inher-
itance” as module ro.py somewhere along your Python sys.path. Then, you need to
add, at the start of module const.py:

import ro

and change the assignment self.__dict__[name] = value, used in class _const’s __

setattr__ method to:

 self.__dict__[name] = ro.Readonly(value)

Now, when you set an attribute in const to some value, what gets bound there is a
read-only wrapper to that value. The underlying value might still get changed by call-
ing mutators on some other reference to that same value (object), but it cannot be
accidentally changed through the attribute of “pseudo-module” const. If you want to
avoid such “accidental changes through other references”, you need to take a copy,
as explained in recipe 4.1 “Copying an Object,” so that there exist no other refer-
ences to the value held by the read-only wrapper. Ensure that at the start of module
const.py you have:

import ro, copy

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: Object-Oriented Programming

and change the assignment in class _const’s __setattr__ method to:

 self.__dict__[name] = ro.Readonly(copy.copy(value))

If you’re sufficiently paranoid, you might even use copy.deepcopy rather than plain
copy.copy in this latest snippet. However, you may end up paying substantial
amounts of memory, as well as losing some performance, by these kinds of excessive
precautions. You should evaluate carefully whether so much prudence is really nec-
essary for your specific application. Whatever you end up deciding about this issue,
Python offers all the tools you need to implement exactly the amount of constant-
ness you require.

The _const class presented in this recipe can be seen, in a sense, as the “comple-
ment” of the NoNewAttrs class, which is presented next in recipe 6.3 “Restricting
Attribute Setting.” This one ensures that already bound attributes can never be
rebound but lets you freely bind new attributes; the other one, conversely, lets you
freely rebind attributes that are already bound but blocks the binding of any new
attribute.

See Also
Recipe 6.5 “Delegating Automatically as an Alternative to Inheritance”; recipe 6.13
“Checking Whether an Object Has Necessary Attributes”; recipe 4.1 “Copying an
Object”; Library Reference and Python in a Nutshell docs on module objects, the
import statement, and the modules attribute of the sys built-in module.

6.3 Restricting Attribute Setting
Credit: Michele Simionato

Problem
Python normally lets you freely add attributes to classes and their instances. How-
ever, you want to restrict that freedom for some class.

Solution
Special method __setattr__ intercepts every setting of an attribute, so it lets you
inhibit the addition of new attributes that were not already present. One elegant way
to implement this idea is to code a class, a simple custom metaclass, and a wrapper
function, all cooperating for the purpose, as follows:

def no_new_attributes(wrapped_setattr):
 """ raise an error on attempts to add a new attribute, while
 allowing existing attributes to be set to new values.
 """
 def __setattr__(self, name, value):
 if hasattr(self, name): # not a new attribute, allow setting
 wrapped_setattr(self, name, value)
 else: # a new attribute, forbid adding it

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.3 Restricting Attribute Setting | 241

 raise AttributeError("can't add attribute %r to %s" % (name, self))
 return __setattr__
class NoNewAttrs(object):
 """ subclasses of NoNewAttrs inhibit addition of new attributes, while
 allowing existing attributed to be set to new values.
 """
 # block the addition new attributes to instances of this class
 __setattr__ = no_new_attributes(object.__setattr__)
 class __metaclass__(type):
 " simple custom metaclass to block adding new attributes to this class "
 __setattr__ = no_new_attributes(type.__setattr__)

Discussion
For various reasons, you sometimes want to restrict Python’s dynamism. In particu-
lar, you may want to get an exception when a new attribute is accidentally set on a
certain class or one of its instances. This recipe shows how to go about implement-
ing such a restriction. The key point of the recipe is, don’t use __slots__ for this pur-
pose: __slots__ is intended for a completely different task (i.e., saving memory by
avoiding each instance having a dictionary, as it normally would, when you need to
have vast numbers of instances of a class with just a few fixed attributes). __slots__
performs its intended task well but has various limitations when you try to stretch it
to perform, instead, the task this recipe covers. (See recipe 6.7 “Implementing Tuples
with Named Items” for an example of the appropriate use of __slots__ to save mem-
ory.)

Notice that this recipe inhibits the addition of runtime attributes, not only to class
instances, but also to the class itself, thanks to the simple custom metaclass it
defines. When you want to inhibit accidental addition of attributes, you usually want
to inhibit it on the class as well as on each individual instance. On the other hand,
existing attributes on both the class and its instances may be freely set to new values.

Here is an example of how you could use this recipe:

class Person(NoNewAttrs):
 firstname = ''
 lastname = ''
 def __init__(self, firstname, lastname):
 self.firstname = firstname
 self.lastname = lastname
 def __repr__(self):
 return 'Person(%r, %r)' % (self.firstname, self.lastname)
me = Person("Michere", "Simionato")
print me
emits: Person('Michere', 'Simionato')
oops, wrong value for firstname, can we fix it? Sure, no problem!
me.firstname = "Michele"
print me
emits: Person('Michele', 'Simionato')

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: Object-Oriented Programming

The point of inheriting from NoNewAttrs is forcing yourself to “declare” all allowed
attributes by setting them at class level in the body of the class itself. Any further
attempt to set a new, “undeclared” attribute raises an AttributeError:

try: Person.address = ''
except AttributeError, err: print 'raised %r as expected' % err
try: me.address = ''
except AttributeError, err: print 'raised %r as expected' % err

In some ways, therefore, subclasses of NoNewAttr and their instances behave more like
Java or C++ classes and instances, rather than normal Python ones. Thus, one use
case for this recipe is when you’re coding in Python a prototype that you already
know will eventually have to be recoded in a less dynamic language.

See Also
Library Reference and Python in a Nutshell documentation on the special method
__setattr__ and on custom metaclasses; recipe 6.18 “Automatically Initializing
Instance Variables from __init__ Arguments” for an example of an appropriate
use of __slots__ to save memory; recipe 6.2 “Defining Constants” for a class that is
the complement of this one.

6.4 Chaining Dictionary Lookups
Credit: Raymond Hettinger

Problem
You have several mappings (usually dicts) and want to look things up in them in a
chained way (try the first one; if the key is not there, then try the second one; and so
on). Specifically, you want to make a single mapping object that “virtually merges”
several others, by looking things up in them in a specified priority order, so that you
can conveniently pass that one object around.

Solution
A mapping is a generalized, abstract version of a dictionary: a mapping provides an
interface that’s similar to a dictionary’s, but it may use very different implementa-
tions. All dictionaries are mappings, but not vice versa. Here, you need to imple-
ment a mapping which sequentially tries delegating lookups to other mappings. A
class is the right way to encapsulate this functionality:

class Chainmap(object):
 def __init__(self, *mappings):
 # record the sequence of mappings into which we must look
 self._mappings = mappings
 def __getitem__(self, key):
 # try looking up into each mapping in sequence
 for mapping in self._mappings:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.4 Chaining Dictionary Lookups | 243

 try:
 return mapping[key]
 except KeyError:
 pass
 # `key' not found in any mapping, so raise KeyError exception
 raise KeyError, key
 def get(self, key, default=None):
 # return self[key] if present, otherwise `default'
 try:
 return self[key]
 except KeyError:
 return default
 def __contains__(self, key):
 # return True if `key' is present in self, otherwise False
 try:
 self[key]
 return True
 except KeyError:
 return False

For example, you can now implement the same sequence of lookups that Python
normally uses for any name: look among locals, then (if not found there) among glo-
bals, lastly (if not found yet) among built-ins:

import __builtin__
pylookup = Chainmap(locals(), globals(), vars(__builtin__))

Discussion
Chainmap relies on minimal functionality from the mappings it wraps: each of those
underlying mappings must allow indexing (i.e., supply a special method __getitem__

), and it must raise the standard exception KeyError when indexed with a key that
the mapping does not know about. A Chainmap instance provides the same behavior,
plus the handy get method covered in recipe 4.9 “Getting a Value from a Dictio-
nary” and special method __contains__ (which conveniently lets you check whether
some key k is present in a Chainmap instance c by just coding if k in c).

Besides the obvious and sensible limitation of being “read-only”, this Chainmap class
has others—essentially, it is not a “full mapping” even within the read-only design
choice. You can make any partial mapping into a “full mapping” by inheriting from
class DictMixin (in standard library module UserDict) and supplying a few key meth-
ods (DictMixin implements the others). Here is how you could make a full (read-
only) mapping from ChainMap and UserDict.DictMixin:

import UserDict
from sets import Set
class FullChainmap(Chainmap, UserDict.DictMixin):
 def copy(self):
 return self.__class__(self._mappings)
 def __iter__(self):
 seen = Set()
 for mapping in self._mappings:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: Object-Oriented Programming

 for key in mapping:
 if key not in seen:
 yield key
 seen.add(key)
 iterkeys = __iter__
 def keys(self):
 return list(self)

This class FullChainmap adds one requirement to the mappings it holds, besides the
requirements posed by Chainmap: the mappings must be iterable. Also note that the
implementation in Chainmap of methods get and __contains__ is redundant
(although innocuous) once we subclass DictMixin, since DictMixin also implements
those two methods (as well as many others) in terms of lower-level methods, just like
Chainmap does. See recipe 5.14 “Enriching the Dictionary Type with Ratings Func-
tionality” for more details about DictMixin.

See Also
Recipe 4.9 “Getting a Value from a Dictionary”; recipe 5.14 “Enriching the Dictio-
nary Type with Ratings Functionality”; the Library Reference and Python in a Nut-
shell sections on mapping types.

6.5 Delegating Automatically as an Alternative
to Inheritance

Credit: Alex Martelli, Raymond Hettinger

Problem
You’d like to inherit from a class or type, but you need some tweak that inheritance
does not provide. For example, you want to selectively hide some of the base class’
methods, which inheritance doesn’t allow.

Solution
Inheritance is quite handy, but it’s not all-powerful. For example, it doesn’t let you
hide methods or other attributes supplied by a base class. Containment with auto-
matic delegation is often a good alternative. Say, for example, you need to wrap
some objects to make them read-only; thus preventing accidental alterations. There-
fore, besides stopping attribute-setting, you also need to hide mutating methods.
Here’s a way:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
class ROError(AttributeError): pass
class Readonly: # there IS a reason to NOT subclass object, see Discussion
 mutators = {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.5 Delegating Automatically as an Alternative to Inheritance | 245

 list: set('''__delitem__ __delslice__ __iadd__ __imul__
 __setitem__ __setslice__ append extend insert
 pop remove sort'''.split()),
 dict: set('''__delitem__ __setitem__ clear pop popitem
 setdefault update'''.split()),
 }
 def __init__(self, o):
 object.__setattr__(self, '_o', o)
 object.__setattr__(self, '_no', self.mutators.get(type(o), ()))
 def __setattr__(self, n, v):
 raise ROError, "Can't set attr %r on RO object" % n
 def __delattr__(self, n):
 raise ROError, "Can't del attr %r from RO object" % n
 def __getattr__(self, n):
 if n in self._no:
 raise ROError, "Can't get attr %r from RO object" % n
 return getattr(self._o, n)

Code using this class Readonly can easily add other wrappable types with
Readonly.mutators[sometype] = the_mutators.

Discussion
Automatic delegation, which the special methods __getattr__, __setattr__, and
__delattr__ enable us to perform so smoothly, is a powerful, general technique. In
this recipe, we show how to use it to get an effect that is almost indistinguishable
from subclassing while hiding some names. In particular, we apply this quasi-sub-
classing to the task of wrapping objects to make them read-only. Performance isn’t
quite as good as it might be with real inheritance, but we get better flexibility and
finer-grained control as compensation.

The fundamental idea is that each instance of our class holds an instance of the type
we are wrapping (i.e., extending and/or tweaking). Whenever client code tries to get
an attribute from an instance of our class, unless the attribute is specifically defined
there (e.g., the mutators dictionary in class Readonly), __getattr__ transparently
shunts the request to the wrapped instance after appropriate checks. In Python,
methods are also attributes, accessed in just the same way, so we don’t need to do
anything different to access methods. The __getattr__ approach used to access data
attributes works for methods just as well.

This is where the comment in the recipe about there being a specific reason to avoid
subclassing object comes in. Our __getattr__ based approach does work on special
methods too, but only for instances of old-style classes. In today’s object model,
Python operations access special methods on the class, not on the instance. Solu-
tions to this issue are presented next in recipe 6.6 “Delegating Special Methods in
Proxies” and in recipe 20.8 “Adding a Method to a Class Instance at Runtime.” The
approach adopted in this recipe—making class Readonly old style, so that the issue
can be locally avoided and delegated to other recipes—is definitely not recom-
mended for production code. I use it here only to keep this recipe shorter and to
avoid duplicating coverage that is already amply given elsewhere in this cookbook.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: Object-Oriented Programming

__setattr__ plays a role similar to __getattr__, but it gets called when client code
sets an instance attribute; in this case, since we want to make a read-only wrapper,
we simply forbid the operation. Remember, to avoid triggering __setattr__ from
inside the methods you code, you must never code normal self.n = v statements
within the methods of classes that have __setattr__. The simplest workaround is
to delegate the setting to class object, just like our class Readonly does twice in its
__init__ method. Method __delattr__ completes the picture, dealing with any
attempts to delete attributes from an instance.

Wrapping by automatic delegation does not work well with client or framework
code that, one way or another, does type-testing. In such cases, the client or frame-
work code is breaking polymorphism and should be rewritten. Remember not to use
type-tests in your own client code, as you probably do not need them anyway. See
recipe 6.13 “Checking Whether an Object Has Necessary Attributes” for better alter-
natives.

In old versions of Python, automatic delegation was even more prevalent, since you
could not subclass built-in types. In modern Python, you can inherit from built-in
types, so you’ll use automatic delegation less often. However, delegation still has its
place—it is just a bit farther from the spotlight. Delegation is more flexible than
inheritance, and sometimes such flexibility is invaluable. In addition to the ability to
delegate selectively (thus effectively “hiding” some of the attributes), an object can
delegate to different subobjects over time, or to multiple subobjects at one time, and
inheritance doesn’t offer anything comparable.

Here is an example of delegating to multiple specific subobjects. Say that you have
classes that are chock full of “forwarding methods”, such as:

class Pricing(object):
 def __init__(self, location, event):
 self.location = location
 self.event = event
 def setlocation(self, location):
 self.location = location
 def getprice(self):
 return self.location.getprice()
 def getquantity(self):
 return self.location.getquantity()
 def getdiscount(self):
 return self.event.getdiscount()

and many more such methods

Inheritance is clearly not applicable because an instance of Pricing must delegate to
specific location and event instances, which get passed at initialization time and may
even be changed. Automatic delegation to the rescue:

class AutoDelegator(object):
 delegates = ()
 do_not_delegate = ()
 def __getattr__(self, key):
 if key not in self.do_not_delegate:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.6 Delegating Special Methods in Proxies | 247

 for d in self.delegates:
 try:
 return getattr(d, key)
 except AttributeError:
 pass
 raise AttributeError, key
class Pricing(AutoDelegator):
 def __init__(self, location, event):
 self.delegates = [location, event]
 def setlocation(self, location):
 self.delegates[0] = location

In this case, we do not delegate the setting and deletion of attributes, only the get-
ting of attributes (and nonspecial methods). Of course, this approach is fully applica-
ble only when the methods (and other attributes) of the various objects to which we
want to delegate do not interfere with each other; for example, location must not
have a getdiscount method; otherwise, it would preempt the delegation of that
method, which is intended to go to event.

If a class that does lots of delegation has a few such issues to solve, it can do so by
explicitly defining the few corresponding methods, since __getattr__ enters the pic-
ture only for attributes and methods that cannot be found otherwise. The ability to
hide some attributes and methods that are supplied by a delegate, but the delegator
does not want to expose, is supported through attribute do_not_delegate, which any
subclass may override. For example, if class Pricing wanted to hide a method
setdiscount that is supplied by, say, event, only a tiny change would be required:

class Pricing(AutoDelegator):
 do_not_delegate = ('set_discount',)

while all the rest remains as in the previous snippet.

See Also
Recipe 6.13 “Checking Whether an Object Has Necessary Attributes”; recipe 6.6
“Delegating Special Methods in Proxies”; recipe 20.8 “Adding a Method to a Class
Instance at Runtime”; Python in a Nutshell chapter on OOP; PEP 253 (http://
www.python.org/peps/pep-0253.html) for more details about Python’s current (new-
style) object model.

6.6 Delegating Special Methods in Proxies
Credit: Gonçalo Rodrigues

Problem
In the new-style object model, Python operations perform implicit lookups for spe-
cial methods on the class (rather than on the instance, as they do in the classic object

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 6: Object-Oriented Programming

model). Nevertheless, you need to wrap new-style instances in proxies that can also
delegate a selected set of special methods to the object they’re wrapping.

Solution
You need to generate each proxy’s class on the fly. For example:

class Proxy(object):
 """ base class for all proxies """
 def __init__(self, obj):
 super(Proxy, self).__init__(obj)
 self._obj = obj
 def __getattr__(self, attrib):
 return getattr(self._obj, attrib)
def make_binder(unbound_method):
 def f(self, *a, **k): return unbound_method(self._obj, *a, **k)
 # in 2.4, only: f.__name__ = unbound_method.__name__
 return f
known_proxy_classes = { }
def proxy(obj, *specials):
 ''' factory-function for a proxy able to delegate special methods '''
 # do we already have a suitable customized class around?
 obj_cls = obj.__class__
 key = obj_cls, specials
 cls = known_proxy_classes.get(key)
 if cls is None:
 # we don't have a suitable class around, so let's make it
 cls = type("%sProxy" % obj_cls.__name__, (Proxy,), { })
 for name in specials:
 name = '__%s__' % name
 unbound_method = getattr(obj_cls, name)
 setattr(cls, name, make_binder(unbound_method))
 # also cache it for the future
 known_proxy_classes[key] = cls
 # instantiate and return the needed proxy
 return cls(obj)

Discussion
Proxying and automatic delegation are a joy in Python, thanks to the __getattr__

hook. Python calls it automatically when a lookup for any attribute (including a
method—Python draws no distinction there) has not otherwise succeeded.

In the old-style (classic) object model, __getattr__ also applied to special methods
that were looked up as part of a Python operation. This required some care to avoid
mistakenly supplying a special method one didn’t really want to supply but was oth-
erwise handy. Nowadays, the new-style object model is recommended for all new
code: it is faster, more regular, and richer in features. You get new-style classes when
you subclass object or any other built-in type. One day, some years from now,
Python 3.0 will eliminate the classic object model, as well as other features that are
still around only for backwards-compatibility. (See http://www.python.org/peps/pep-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.6 Delegating Special Methods in Proxies | 249

3000.html for details about plans for Python 3.0—almost all changes will be lan-
guage simplifications, rather than new features.)

In the new-style object model, Python operations don’t look up special methods at
runtime: they rely on “slots” held in class objects. Such slots are updated when a
class object is built or modified. Therefore, a proxy object that wants to delegate
some special methods to an object it’s wrapping needs to belong to a specially made
and tailored class. Fortunately, as this recipe shows, making and instantiating classes
on the fly is quite an easy job in Python.

In this recipe, we don’t use any advanced Python concepts such as custom meta-
classes and custom descriptors. Rather, each proxy is built by a factory function
proxy, which takes as arguments the object to wrap and the names of special meth-
ods to delegate (shorn of leading and trailing double underscores). If you’ve saved
the “Solution”’s code in a file named proxy.py somewhere along your Python
sys.path, here is how you could use it from an interactive Python interpreter session:

>>> import proxy
>>> a = proxy.proxy([], 'len', 'iter') # only delegate __len__ & __iter__
>>> a # __repr__ is not delegated
<proxy.listProxy object at 0x0113C370>
>>> a.__class__
<class 'proxy.listProxy'>
>>> a._obj
[]
>>> a.append # all non-specials are delegated
<built-in method append of list object at 0x010F1A10>

Since __len__ is delegated, len(a) works as expected:

>>> len(a)
0
>>> a.append(23)
>>> len(a)
1

Since __iter__ is delegated, for loops work as expected, as does intrinsic looping
performed by built-ins such as list, sum, max, . . . :

>>> for x in a: print x
...
23
>>> list(a)
[23]
>>> sum(a)
23
>>> max(a)
23

However, since __getitem__ is not delegated, a cannot be indexed nor sliced:

>>> a.__getitem__
<method-wrapper object at 0x010F1AF0>
>>> a[1]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: Object-Oriented Programming

Traceback (most recent call last):
 File "<interactive input>", line 1, in ?
TypeError: unindexable object

Function proxy uses a “cache” of classes it has previously generated, the global dic-
tionary known_proxy_classes, keyed by the class of the object being wrapped and the
tuple of special methods’ names being delegated. To make a new class, proxy calls
the built-in type, passing as arguments the name of the new class (made by append-
ing 'Proxy' to the name of the class being wrapped), class Proxy as the only base, and
an “empty” class dictionary (since it’s adding no class attributes yet). Base class Proxy

deals with initialization and delegation of ordinary attribute lookups. Then, factory
function proxy loops over the names of specials to be delegated: for each of them, it
gets the unbound method from the class of the object being wrapped, and sets it as
an attribute of the new class within a make_binder closure. make_binder deals with
calling the unbound method with the appropriate first argument (i.e., the object
being wrapped, self._obj).

Once it’s done preparing a new class, proxy saves it in known_proxy_classes under
the appropriate key. Finally, whether the class was just built or recovered from
known_proxy_classes, proxy instantiates it, with the object being wrapped as the only
argument, and returns the resulting proxy instance.

See Also
Recipe 6.5 “Delegating Automatically as an Alternative to Inheritance” for more
information about automatic delegation; recipe 6.9 “Making a Fast Copy of an
Object” for another example of generating classes on the fly (using a class statement
rather than a call to type).

6.7 Implementing Tuples with Named Items
Credit: Gonçalo Rodrigues, Raymond Hettinger

Problem
Python tuples are handy ways to group pieces of information, but having to access
each item by numeric index is a bother. You’d like to build tuples whose items are
also accessible as named attributes.

Solution
A factory function is the simplest way to generate the required subclass of tuple:

use operator.itemgetter if we're in 2.4, roll our own if we're in 2.3
try:
 from operator import itemgetter
except ImportError:
 def itemgetter(i):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Implementing Tuples with Named Items | 251

 def getter(self): return self[i]
 return getter
def superTuple(typename, *attribute_names):
 " create and return a subclass of `tuple', with named attributes "
 # make the subclass with appropriate __new__ and __repr__ specials
 nargs = len(attribute_names)
 class supertup(tuple):
 __slots__ = () # save memory, we don't need per-instance dict
 def __new__(cls, *args):
 if len(args) != nargs:
 raise TypeError, '%s takes exactly %d arguments (%d given)' % (
 typename, nargs, len(args))
 return tuple.__new__(cls, args)
 def __repr__(self):
 return '%s(%s)' % (typename, ', '.join(map(repr, self)))
 # add a few key touches to our new subclass of `tuple'
 for index, attr_name in enumerate(attribute_names):
 setattr(supertup, attr_name, property(itemgetter(index)))
 supertup.__name__ = typename
 return supertup

Discussion
You often want to pass data around by means of tuples, which play the role of C’s
structs, or that of simple records in other languages. Having to remember which
numeric index corresponds to which field, and accessing the fields by indexing, is
often bothersome. Some Python Standard Library modules, such as time and os,
which in old Python versions used to return tuples, have fixed the problem by return-
ing, instead, instances of tuple-like types that let you access the fields by name, as
attributes, as well as by index, as items. This recipe shows you how to get the same
effect for your code, essentially by automatically building a custom subclass of tuple.

Orchestrating the building of a new, customized type can be achieved in several
ways; custom metaclasses are often the best approach for such tasks. In this case,
however, a simple factory function is quite sufficient, and you should never use more
power than you need. Here is how you can use this recipe’s superTuple factory func-
tion in your code, assuming you have saved this recipe’s Solution as a module named
supertuple.py somewhere along your Python sys.path:

>>> import supertuple
>>> Point = supertuple.superTuple('Point', 'x', 'y')
>>> Point
<class 'supertuple.Point'>
>>> p = Point(1, 2, 3) # wrong number of fields
Traceback (most recent call last):
 File "", line 1, in ?
 File "C:\Python24\Lib\site-packages\superTuple.py", line 16, in __new__
 raise TypeError, '%s takes exactly %d arguments (%d given)' % (
TypeError: Point takes exactly 2 arguments (3 given)
>>> p = Point(1, 2) # let's do it right this time

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 6: Object-Oriented Programming

>>> p
Point(1, 2)
>>> print p.x, p.y
1 2

Function superTuple’s implementation is quite straightforward. To build the new
subclass, superTuple uses a class statement, and in that statement’s body, it defines
three specials: an “empty” __slots__ (just to save memory, since our supertuple
instances don’t need any per-instance dictionary anyway); a __new__ method that
checks the number of arguments before delegating to tuple.__new__; and an appro-
priate __repr__ method. After the new class object is built, we set into it a property

for each named attribute we want. Each such property has only a “getter”, since our
supertuples, just like tuples themselves, are immutable—no setting of fields. Finally,
we set the new class’ name and return the class object.

Each of the getters is easily built by a simple call to the built-in itemgetter from the
standard library module operator. Since operator.itemgetter was introduced in
Python 2.4, at the very start of our module we ensure we have a suitable itemgetter

at hand anyway, even in Python 2.3, by rolling our own if necessary.

See Also
Library Reference and Python in a Nutshell docs for property, __slots__, tuple, and
special methods __new__ and __repr__; (Python 2.4 only) module operator’s func-
tion itemgetter.

6.8 Avoiding Boilerplate Accessors
for Properties

Credit: Yakov Markovitch

Problem
Your classes use some property instances where either the getter or the setter is just
boilerplate code to fetch or set an instance attribute. You would prefer to just specify
the attribute name, instead of writing boilerplate code.

Solution
You need a factory function that catches the cases in which either the getter or the
setter argument is a string, and wraps the appropriate argument into a function, then
delegates the rest of the work to Python’s built-in property:

def xproperty(fget, fset, fdel=None, doc=None):
 if isinstance(fget, str):
 attr_name = fget
 def fget(obj): return getattr(obj, attr_name)
 elif isinstance(fset, str):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.8 Avoiding Boilerplate Accessors for Properties | 253

 attr_name = fset
 def fset(obj, val): setattr(obj, attr_name, val)
 else:
 raise TypeError, 'either fget or fset must be a str'
 return property(fget, fset, fdel, doc)

Discussion
Python’s built-in property is very useful, but it presents one minor annoyance (it may
be easier to see as an annoyance for programmers with experience in Delphi). It often
happens that you want to have both a setter and a “getter”, but only one of them
actually needs to execute any significant code; the other one simply needs to read or
write an instance attribute. In that case, property still requires two functions as its
arguments. One of the functions will then be just “boilerplate code” (i.e., repetitious
plumbing code that is boring, and often voluminous, and thus a likely home for
bugs).

For example, consider:

class Lower(object):
 def __init__(self, s=''):
 self.s = s
 def _getS(self):
 return self._s
 def _setS(self, s):
 self._s = s.lower()
 s = property(_getS, _setS)

Method _getS is just boilerplate, yet you have to code it because you need to pass it
to property. Using this recipe, you can make your code a little bit simpler, without
changing the code’s meaning:

class Lower(object):
 def __init__(self, s=''):
 self.s = s
 def _setS(self, s):
 self._s = s.lower()
 s = xproperty('_s', _setS)

The simplification doesn’t look like much in one small example, but, applied widely
all over your code, it can in fact help quite a bit.

The implementation of factory function xproperty in this recipe’s Solution is rather
rigidly coded: it requires you to pass both fget and fset, and exactly one of them
must be a string. No use case requires that both be strings; when neither is a string,
or when you want to have just one of the two accessors, you can (and should) use
the built-in property directly. It is better, therefore, to have xproperty check that it is
being used accurately, considering that such checks remove no useful functionality
and impose no substantial performance penalty either.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 6: Object-Oriented Programming

See Also
Library Reference and Python in a Nutshell documentation on the built-in property.

6.9 Making a Fast Copy of an Object
Credit: Alex Martelli

Problem
You need to implement the special method __copy__ so that your class can cooper-
ate with the copy.copy function. Because the __init__ method of your specific class
happens to be slow, you need to bypass it and get an “empty”, uninitialized instance
of the class.

Solution
Here’s a solution that works for both new-style and classic classes:

def empty_copy(obj):
 class Empty(obj.__class__):
 def __init__(self): pass
 newcopy = Empty()
 newcopy.__class__ = obj.__class__
 return newcopy

Your classes can use this function to implement __copy__ as follows:

class YourClass(object):
 def __init__(self):

assume there's a lot of work here

 def __copy__(self):
 newcopy = empty_copy(self)

copy some relevant subset of self's attributes to newcopy

 return newcopy

Here’s a usage example:

if __name__ == '__main__':
 import copy
 y = YourClass() # This, of course, does run __init__
 print y
 z = copy.copy(y) # ...but this doesn't
 print z

Discussion
As covered in recipe 4.1 “Copying an Object,” Python doesn’t implicitly copy your
objects when you assign them, which is a great thing because it gives fast, flexible,
and uniform semantics. When you need a copy, you explicitly ask for it, often with
the copy.copy function, which knows how to copy built-in types, has reasonable
defaults for your own objects, and lets you customize the copying process by defin-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.9 Making a Fast Copy of an Object | 255

ing a special method __copy__ in your own classes. If you want instances of a class to
be noncopyable, you can define __copy__ and raise a TypeError there. In most cases,
you can just let copy.copy’s default mechanisms work, and you get free clonability
for most of your classes. This is quite a bit nicer than languages that force you to
implement a specific clone method for every class whose instances you want to be
clonable.

A __copy__ method often needs to start with an “empty” instance of the class in
question (e.g., self), bypassing __init__ when that is a costly operation. The sim-
plest general way to do this is to use the ability that Python gives you to change an
instance’s class on the fly: create a new object in a local empty class, then set the new
object’s __class__ attribute, as the recipe’s code shows. Inheriting class Empty from
obj.__class__ is redundant (but quite innocuous) for old-style (classic) classes, but
that inheritance makes the recipe compatible with all kinds of objects of classic or
new-style classes (including built-in and extension types). Once you choose to inherit
from obj’s class, you must override __init__ in class Empty, or else the whole pur-
pose of the recipe is defeated. The override means that the __init__ method of obj’s
class won’t execute, since Python, fortunately, does not automatically execute ances-
tor classes’ initializers.

Once you have an “empty” object of the required class, you typically need to copy a
subset of self’s attributes. When you need all of the attributes, you’re better off not
defining __copy__ explicitly, since copying all instance attributes is exactly
copy.copy’s default behavior. Unless, of course, you need to do a little bit more than
just copying instance attributes; in this case, these two alternative techniques to copy
all attributes are both quite acceptable:

newcopy.__dict__.update(self.__dict__)
newcopy.__dict__ = dict(self.__dict__)

An instance of a new-style class doesn’t necessarily keep all of its state in __dict__,
so you may need to do some class-specific state copying in such cases.

Alternatives based on the new standard module can’t be made transparent across clas-
sic and new-style classes, and neither can the __new__ static method that generates an
empty instance—the latter is only defined in new-style classes, not classic ones. For-
tunately, this recipe obviates any such issues.

A good alternative to implementing __copy__ is often to implement the methods
__getstate__ and __setstate__ instead: these special methods define your object’s
state very explicitly and intrinsically bypass __init__. Moreover, they also support
serialization (i.e., pickling) of your class instances: see recipe 7.4 “Using the cPickle
Module on Classes and Instances” for more information about these methods.

So far we have been discussing shallow copies, which is what you want most of the
time. With a shallow copy, your object is copied, but objects it refers to (attributes or
items) are not, so the newly copied object and the original object refer to the same

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 6: Object-Oriented Programming

items or attributes objects—a fast and lightweight operation. A deep copy is a heavy-
weight operation, potentially duplicating a large graph of objects that refer to each
other. You get a deep copy by calling copy.deepcopy on an object. If you need to cus-
tomize the way in which instances of your class are deep-copied, you can define the
special method __deepcopy__:

class YourClass(object):
...

 def __deepcopy__(self, memo):
 newcopy = empty_copy(self)
 # use copy.deepcopy(self.x, memo) to get deep copies of elements
 # in the relevant subset of self's attributes, to set in newcopy
 return newcopy

If you choose to implement __deepcopy__, remember to respect the memoization
protocol that is specified in the Python documentation for standard module copy—
get deep copies of all the attributes or items that are needed by calling copy.deepcopy

with a second argument, the same memo dictionary that is passed to the __deepcopy__

method. Again, implementing __getstate__ and __setstate__ is often a good alter-
native, since these methods can also support deep copying: Python takes care
of deeply copying the “state” object that __getstate__ returns, before passing it
to the __setstate__ method of a new, empty instance. See recipe 7.4 “Using the
cPickle Module on Classes and Instances” for more information about these special
methods.

See Also
Recipe 4.1 “Copying an Object” about shallow and deep copies; recipe 7.4 “Using
the cPickle Module on Classes and Instances” about __getstate__ and __

setstate__; the Library Reference and Python in a Nutshell sections on the copy mod-
ule.

6.10 Keeping References to Bound Methods
Without Inhibiting Garbage Collection

Credit: Joseph A. Knapka, Frédéric Jolliton, Nicodemus

Problem
You want to hold references to bound methods, while still allowing the associated
object to be garbage-collected.

Solution
Weak references (i.e., references that indicate an object as long as that object is alive
but don’t keep that object alive if there are no other, normal references to it) are an
important tool in some advanced programming situations. The weakref module in
the Python Standard Library lets you use weak references.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.10 Keeping References to Bound Methods Without Inhibiting Garbage Collection | 257

However, weakref’s functionality cannot directly be used for bound methods unless
you take some precautions. To allow an object to be garbage-collected despite out-
standing references to its bound methods, you need some wrappers. Put the follow-
ing code in a file named weakmethod.py in some directory on your Python sys.path:

import weakref, new
class ref(object):
 """ Wraps any callable, most importantly a bound method, in
 a way that allows a bound method's object to be GC'ed, while
 providing the same interface as a normal weak reference. """
 def __init__(self, fn):
 try:
 # try getting object, function, and class
 o, f, c = fn.im_self, fn.im_func, fn.im_class
 except AttributeError: # It's not a bound method
 self._obj = None
 self._func = fn
 self._clas = None
 else: # It is a bound method
 if o is None: self._obj = None # ...actually UN-bound
 else: self._obj = weakref.ref(o) # ...really bound
 self._func = f
 self._clas = c
 def __call__(self):
 if self.obj is None: return self._func
 elif self._obj() is None: return None
 return new.instancemethod(self._func, self.obj(), self._clas)

Discussion
A normal bound method holds a strong reference to the bound method’s object.
That means that the object can’t be garbage-collected until the bound method is dis-
posed of:

>>> class C(object):
... def f(self):
... print "Hello"
... def __del__(self):
... print "C dying"
...
>>> c = C()
>>> cf = c.f
>>> del c # c continues to wander about with glazed eyes...
>>> del cf # ...until we stake its bound method, only then it goes away:
C dying

This behavior is most often handy, but sometimes it’s not what you want. For exam-
ple, if you’re implementing an event-dispatch system, it might not be desirable for
the mere presence of an event handler (i.e., a bound method) to prevent the associ-
ated object from being reclaimed. The instinctive idea should then be to use weak
references. However, a normal weakref.ref to a bound method doesn’t quite work
the way one might expect, because bound methods are first-class objects. Weak

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 6: Object-Oriented Programming

references to bound methods are dead-on-arrival—that is, they always return None

when dereferenced, unless another strong reference to the same bound-method
object exists.

For example, the following code, based on the weakref module from the Python
Standard Library, doesn’t print “Hello” but raises an exception instead:

>>> import weakref
>>> c = C()
>>> cf = weakref.ref(c.f)
>>> cf # Oops, better try the lightning again, Igor...
<weakref at 80ce394; dead>
>>> cf()()
Traceback (most recent call last):
File "", line 1, in ?
TypeError: object of type 'None' is not callable

On the other hand, the class ref in the weakmethod module shown in this recipe
allows you to have weak references to bound methods in a useful way:

>>> import weakmethod
>>> cf = weakmethod.ref(c.f)
>>> cf()() # It LIVES! Bwahahahaha!
Hello
>>> del c # ...and it dies
C dying
>>> print cf()
None

Calling the weakmethod.ref instance, which refers to a bound method, has the same
semantics as calling a weakref.ref instance that refers to, say, a function object: if the
referent has died, it returns None; otherwise, it returns the referent. Actually, in this
case, it returns a freshly minted new.instancemethod (holding a strong reference to
the object—so, be sure not to hold on to that, unless you do want to keep the object
alive for a while!).

Note that the recipe is carefully coded so you can wrap into a ref instance any call-
able you want, be it a method (bound or unbound), a function, whatever; the weak
references semantics, however, are provided only when you’re wrapping a bound
method; otherwise, ref acts as a normal (strong) reference, holding the callable alive.
This basically lets you use ref for wrapping arbitrary callables without needing to
check for special cases.

If you want semantics closer to that of a weakref.proxy, they’re easy to implement,
for example by subclassing the ref class given in this recipe. When you call a proxy,
the proxy calls the referent with the same arguments. If the referent’s object no
longer lives, then weakref.ReferenceError gets raised instead. Here’s an implementa-
tion of such a proxy class:

class proxy(ref):
 def __call__(self, *args, **kwargs):
 func = ref.__call__(self)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.11 Implementing a Ring Buffer | 259

 if func is None:
 raise weakref.ReferenceError('referent object is dead')
 else:
 return func(*args, **kwargs)
 def __eq__(self, other):
 if type(other) != type(self):
 return False
 return ref.__call__(self) == ref.__call__(other)

See Also
The Library Reference and Python in a Nutshell sections on the weakref and new mod-
ules and on bound-method objects.

6.11 Implementing a Ring Buffer
Credit: Sébastien Keim, Paul Moore, Steve Alexander, Raymond Hettinger

Problem
You want to define a buffer with a fixed size, so that, when it fills up, adding another
element overwrites the first (oldest) one. This kind of data structure is particularly
useful for storing log and history information.

Solution
This recipe changes the buffer object’s class on the fly, from a nonfull buffer class to
a full buffer class, when the buffer fills up:

class RingBuffer(object):
 """ class that implements a not-yet-full buffer """
 def __init__(self, size_max):
 self.max = size_max
 self.data = []
 class __Full(object):
 """ class that implements a full buffer """
 def append(self, x):
 """ Append an element overwriting the oldest one. """
 self.data[self.cur] = x
 self.cur = (self.cur+1) % self.max
 def tolist(self):
 """ return list of elements in correct order. """
 return self.data[self.cur:] + self.data[:self.cur]
 def append(self, x):
 """ append an element at the end of the buffer. """
 self.data.append(x)
 if len(self.data) == self.max:
 self.cur = 0
 # Permanently change self's class from non-full to full

self.__class__ = self.__Full
 def tolist(self):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 6: Object-Oriented Programming

 """ Return a list of elements from the oldest to the newest. """
 return self.data
sample usage
if __name__ == '__main__':
 x = RingBuffer(5)
 x.append(1); x.append(2); x.append(3); x.append(4)
 print x.__class__, x.tolist()
 x.append(5)
 print x.__class__, x.tolist()
 x.append(6)
 print x.data, x.tolist()
 x.append(7); x.append(8); x.append(9); x.append(10)
 print x.data, x.tolist()

Discussion
A ring buffer is a buffer with a fixed size. When it fills up, adding another element
overwrites the oldest one that was still being kept. It’s particularly useful for the stor-
age of log and history information. Python has no direct support for this kind of
structure, but it’s easy to construct one. The implementation in this recipe is opti-
mized for element insertion.

The notable design choice in the implementation is that, since these objects undergo
a nonreversible state transition at some point in their lifetimes—from nonfull buffer
to full buffer (and behavior changes at that point)—I modeled that by changing
self.__class__. This works just as well for classic classes as for new-style ones, as
long as the old and new classes of the object have the same slots (e.g., it works fine
for two new-style classes that have no slots at all, such as RingBuffer and __Full in
this recipe). Note that, differently from other languages, the fact that class __Full is
implemented inside class RingBuffer does not imply any special relationship between
these classes; that’s a good thing, too, because no such relationship is necessary.

Changing the class of an instance may be strange in many languages, but it is an
excellent Pythonic alternative to other ways of representing occasional, massive, irre-
versible, and discrete changes of state that vastly affect behavior, as in this recipe.
Fortunately, Python supports it for all kinds of classes.

Ring buffers (i.e., bounded queues, and other names) are quite a useful idea, but the
inefficiency of testing whether the ring is full, and if so, doing something different, is
a nuisance. The nuisance is particularly undesirable in a language like Python, where
there’s no difficulty—other than the massive memory cost involved—in allowing the
list to grow without bounds. So, ring buffers end up being underused in spite of their
potential. The idea of assigning to __class__ to switch behaviors when the ring gets
full is the key to this recipe’s efficiency: such class switching is a one-off operation, so
it doesn’t make the steady-state cases any less efficient.

Alternatively, we might switch just two methods, rather than the whole class, of a
ring buffer instance that becomes full:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.11 Implementing a Ring Buffer | 261

class RingBuffer(object):
 def __init__(self,size_max):
 self.max = size_max
 self.data = []
 def _full_append(self, x):
 self.data[self.cur] = x
 self.cur = (self.cur+1) % self.max
 def _full_get(self):
 return self.data[self.cur:]+self.data[:self.cur]
 def append(self, x):
 self.data.append(x)
 if len(self.data) == self.max:
 self.cur = 0
 # Permanently change self's methods from non-full to full

self.append = self._full_append
self.tolist = self._full_get

 def tolist(self):
 return self.data

This method-switching approach is essentially equivalent to the class-switching one
in the recipe’s solution, albeit through rather different mechanisms. The best
approach is probably to use class switching when all methods must be switched in
bulk and method switching only when you need finer granularity of behavior change.
Class switching is the only approach that works if you need to switch any special
methods in a new-style class, since intrinsic lookup of special methods during vari-
ous operations happens on the class, not on the instance (classic classes differ from
new-style ones in this aspect).

You can use many other ways to implement a ring buffer. In Python 2.4, in particu-
lar, you should consider subclassing the new type collections.deque, which sup-
plies a “double-ended queue”, allowing equally effective additions and deletions
from either end:

from collections import deque
class RingBuffer(deque):
 def __init__(self, size_max):
 deque.__init__(self)
 self.size_max = size_max
 def append(self, datum):
 deque.append(self, datum)
 if len(self) > self.size_max:
 self.popleft()
 def tolist(self):
 return list(self)

or, to avoid the if statement when at steady state, you can mix this idea with the
idea of switching a method:

from collections import deque
class RingBuffer(deque):
 def __init__(self, size_max):
 deque.__init__(self)
 self.size_max = size_max

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 6: Object-Oriented Programming

 def _full_append(self, datum):
 deque.append(self, datum)
 self.popleft()
 def append(self, datum):
 deque.append(self, datum)
 if len(self) == self.size_max:
 self.append = self._full_append
 def tolist(self):
 return list(self)

With this latest implementation, we need to switch only the append method (the
tolist method remains the same), so method switching appears to be more appro-
priate than class switching.

See Also
The Reference Manual and Python in a Nutshell sections on the standard type hierar-
chy and classic and new-style object models; Python 2.4 Library Reference on mod-
ule collections.

6.12 Checking an Instance for Any State Changes
Credit: David Hughes

Problem
You need to check whether any changes to an instance’s state have occurred to selec-
tively save instances that have been modified since the last “save” operation.

Solution
An effective solution is a mixin class—a class you can multiply inherit from and that
is able to take snapshots of an instance’s state and compare the instance’s current
state with the last snapshot to determine whether or not the instance has been modi-
fied:

import copy
class ChangeCheckerMixin(object):
 containerItems = {dict: dict.iteritems, list: enumerate}
 immutable = False
 def snapshot(self):
 ''' create a “snapshot” of self's state -- like a shallow copy, but
 recursing over container types (not over general instances:
 instances must keep track of their own changes if needed). '''
 if self.immutable:
 return
 self._snapshot = self._copy_container(self.__dict__)
 def makeImmutable(self):
 ''' the instance state can't change any more, set .immutable '''
 self.immutable = True
 try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.12 Checking an Instance for Any State Changes | 263

 del self._snapshot
 except AttributeError:
 pass
 def _copy_container(self, container):
 ''' semi-shallow copy, recursing on container types only '''
 new_container = copy.copy(container)
 for k, v in self.containerItems[type(new_container)](new_container):
 if type(v) in self.containerItems:
 new_container[k] = self._copy_container(v)
 elif hasattr(v, 'snapshot'):
 v.snapshot()
 return new_container
 def isChanged(self):
 ''' True if self's state is changed since the last snapshot '''
 if self.immutable:
 return False
 # remove snapshot from self.__dict__, put it back at the end
 snap = self.__dict__.pop('_snapshot', None)
 if snap is None:
 return True
 try:
 return self._checkContainer(self.__dict__, snap)
 finally:
 self._snapshot = snap
 def _checkContainer(self, container, snapshot):
 ''' return True if the container and its snapshot differ '''
 if len(container) != len(snapshot):
 return True
 for k, v in self.containerItems[type(container)](container):
 try:
 ov = snapshot[k]
 except LookupError:
 return True
 if self._checkItem(v, ov):
 return True
 return False
 def _checkItem(self, newitem, olditem):
 ''' compare newitem and olditem. If they are containers, call
 self._checkContainer recursively. If they're an instance with
 an 'isChanged' method, delegate to that method. Otherwise,
 return True if the items differ. '''
 if type(newitem) != type(olditem):
 return True
 if type(newitem) in self.containerItems:
 return self._checkContainer(newitem, olditem)
 if newitem is olditem:
 method_isChanged = getattr(newitem, 'isChanged', None)
 if method_isChanged is None:
 return False
 return method_isChanged()
 return newitem != olditem

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 6: Object-Oriented Programming

Discussion
I often need change-checking functionality in my applications. For example, when a
user closes the last GUI window over a certain document, I need to check whether
the document was changed since the last “save” operation; if it was, then I need to
pop up a small window to give the user a choice between saving the document, los-
ing the latest changes, or canceling the window-closing operation.

The class ChangeCheckerMixin, which this recipe describes, satisfies this need. The
idea is to multiply derive all of your data classes, meaning all classes that hold data
the user views and may change, from ChangeCheckerMixin (as well as from any other
bases they need). When the data has just been loaded from or saved to persistent
storage, call method snapshot on the top-level, document data class instance. This
call takes a “snapshot” of the current state, basically a shallow copy of the object but
with recursion over containers, and calls the snapshot methods on any contained
instance that has such a method. Any time afterward, you can call method isChanged

on any data class instance to check whether the instance state was changed since the
time of its last snapshot.

As container types, ChangeCheckerMixin, as presented, considers only list and dict.
If you also use other types as containers, you just need to add them appropriately to
the containerItems dictionary. That dictionary must map each container type to a
function callable on an instance of that type to get an iterator on indices and values
(with indices usable to index the container). Container type instances must also sup-
port being shallowly copied with standard library Python function copy.copy. For
example, to add Python 2.4’s collections.deque as a container to a subclass of
ChangeCheckerMixin, you can code:

import collections
class CCM_with_deque(ChangeCheckerMixin):
 containerItems = dict(ChangeCheckerMixin.containerItems)
 containerItems[collections.deque] = enumerate

since collections.deque can be “walked over” with enumerate, just like list can.

Here is a toy example of use for ChangeChecherMixin:

if __name__ == '__main__':
 class eg(ChangeCheckerMixin):
 def __init__(self, *a, **k):
 self.L = list(*a, **k)
 def __str__(self):
 return 'eg(%s)' % str(self.L)
 def __getattr__(self, a):
 return getattr(self.L, a)
 x = eg('ciao')
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o']) is changed = True
 # now, assume x gets saved, then...:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.12 Checking an Instance for Any State Changes | 265

 x.snapshot()
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o']) is changed = False
 # now we change x...:
 x.append('x')
 print 'x =', x, 'is changed =', x.isChanged()
 # emits: x = eg(['c', 'i', 'a', 'o', 'x']) is changed = True

In class eg we only subclass ChanceCheckerMixin because we need no other bases. In
particular, we cannot usefully subclass list because the change-checking functional-
ity works only on state that is kept in an instance’s dictionary; so, we must hold a list
object in our instance’s dictionary, and delegate to it as needed (in this toy example,
we delegate all nonspecial methods, automatically, via __getattr__). With this pre-
caution, we see that the isChanged method correctly reflects the crucial tidbit—
whether the instance’s state has been changed since the last call to snapshot on the
instance.

An implicit assumption of this recipe is that your application’s data class instances
are organized in a hierarchical fashion. The tired old (but still valid) example is an
invoice containing header data and detail lines. Each instance of the details data class
could contain other instances, such as product details, which may not be modifiable
in the current activity but are probably modifiable elsewhere. This is the reason for
the immutable attribute and the makeImmutable method: when the attribute is set by
calling the method, any outstanding snapshot for the instance is dropped to save
memory, and further calls to either snapshot or isChanged can return very rapidly.

If your data does not lend itself to such hierarchical structuring, you may have to
take full deep copies, or even “snapshot” a document instance by taking a full pickle
of it, and check for changes by comparing the new pickle with the last one previ-
ously taken. That may be all right on very fast machines, or when the amount of data
you’re handling is rather modest. In my tests, however, it shows up as being unac-
ceptably slow for substantial amounts of data on more ordinary machines. This rec-
ipe, when your data organization is suitable for its application, can offer better
performance. If some of your data classes also contain data that is automatically
computed or, for other reasons, does not need to be saved, store such data in
instances of subordinate classes (which do not inherit from ChangeCheckerMixin),
rather than either holding the data as attributes or storing it in ordinary containers
such as lists and dictionaries.

See Also
Library Reference and Python in a Nutshell documentation on multiple inheritance,
the iteritems method of dictionaries, and built-in functions enumerate, isinstance,
and hasattr.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 6: Object-Oriented Programming

6.13 Checking Whether an Object Has Necessary
Attributes

Credit: Alex Martelli

Problem
You need to check whether an object has certain necessary attributes before perform-
ing state-altering operations. However, you want to avoid type-testing because you
know it interferes with polymorphism.

Solution
In Python, you normally just try performing whatever operations you need to per-
form. For example, here’s the simplest, no-checks code for doing a certain sequence
of manipulations on a list argument:

def munge1(alist):
 alist.append(23)
 alist.extend(range(5))
 alist.append(42)
 alist[4] = alist[3]
 alist.extend(range(2))

If alist is missing any of the methods you’re calling (explicitly, such as append and
extend; or implicitly, such as the calls to __getitem__ and __setitem__ implied by the
assignment statement alist[4] = alist[3]), the attempt to access and call a missing
method raises an exception. Function munge1 makes no attempt to catch the excep-
tion, so the execution of munge1 terminates, and the exception propagates to the
caller of munge1. The caller may choose to catch the exception and deal with it, or ter-
minate execution and let the exception propagate further back along the chain of
calls, as appropriate.

This approach is usually just fine, but problems may occasionally occur. Suppose, for
example, that the alist object has an append method but not an extend method. In
this peculiar case, the munge1 function partially alters alist before an exception is
raised. Such partial alterations are generally not cleanly undoable; depending on your
application, they can sometimes be a bother.

To forestall the “partial alterations” problem, the first approach that comes to mind
is to check the type of alist. Such a naive “Look Before You Leap” (LBYL) approach
may look safer than doing no checks at all, but LBYL has a serious defect: it loses
polymorphism! The worst approach of all is checking for equality of types:

def munge2(alist):
 if type(alist) is list: # a very bad idea
 munge1(alist)
 else: raise TypeError, "expected list, got %s" % type(alist)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.13 Checking Whether an Object Has Necessary Attributes | 267

This even fails, without any good reason, when alist is an instance of a subclass of
list. You can at least remove that huge defect by using isinstance instead:

def munge3(alist):
 if isinstance(alist, list):
 munge1(alist)
 else: raise TypeError, "expected list, got %s" % type(alist)

However, munge3 still fails, needlessly, when alist is an instance of a type or class
that mimics list but doesn’t inherit from it. In other words, such type-checking sac-
rifices one of Python’s great strengths: signature-based polymorphism. For example,
you cannot pass to munge3 an instance of Python 2.4’s collections.deque, which is a
real pity because such a deque does supply all needed functionality and indeed can be
passed to the original munge1 and work just fine. Probably a zillion sequence types are
out there that, like deque, are quite acceptable to munge1 but not to munge3. Type-
checking, even with isinstance, exacts an enormous price.

A far better solution is accurate LBYL, which is both safe and fully polymorphic:

def munge4(alist):
 # Extract all bound methods you need (get immediate exception,
 # without partial alteration, if any needed method is missing):
 append = alist.append
 extend = alist.extend
 # Check operations, such as indexing, to get an exception ASAP
 # if signature compatibility is missing:
 try: alist[0] = alist[0]
 except IndexError: pass # An empty alist is okay
 # Operate: no exceptions are expected from this point onwards
 append(23)
 extend(range(5))
 append(42)
 alist[4] = alist[3]
 extend(range(2))

Discussion
Python functions are naturally polymorphic on their arguments because they essen-
tially depend on the methods and behaviors of the arguments, not on the arguments’
types. If you check the types of arguments, you sacrifice this precious polymor-
phism, so, don’t! However, you may perform a few early checks to obtain some extra
safety (particularly against partial alterations) without substantial costs.

The normal Pythonic way of life can be described as the Easier to Ask Forgiveness
than Permission (EAFP) approach: just try to perform whatever operations you need,
and either handle or propagate any exceptions that may result. It usually works
great. The only real problem that occasionally arises is “partial alteration”: when you
need to perform several operations on an object, just trying to do them all in natural
order could result in some of them succeeding, and partially altering the object,
before an exception is raised.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 6: Object-Oriented Programming

For example, suppose that munge1, as shown at the start of this recipe’s Solution, is
called with an actual argument value for alist that has an append method but lacks
extend. In this case, alist is altered by the first call to append; but then, the attempt
to obtain and call extend raises an exception, leaving alist’s state partially altered, a
situation that may be hard to recover from. Sometimes, a sequence of operations
should ideally be atomic: either all of the alterations happen, and everything is fine,
or none of them do, and an exception gets raised.

You can get closer to ideal atomicity by switching to the LBYL approach, but in an
accurate, careful way. Extract all bound methods you’ll need, then noninvasively test
the necessary operations (such as indexing on both sides of the assignment opera-
tor). Move on to actually changing the object state only if all of this succeeds. From
that point onward, it’s far less likely (although not impossible) that exceptions will
occur in midstream, leaving state partially altered. You could not reach 100% safety
even with the strictest type-checking, after all: for example, you might run out of
memory just smack in the middle of your operations. So, with or without type-
checking, you don’t really ever guarantee atomicity—you just approach asymptoti-
cally to that desirable property.

Accurate LBYL generally offers a good trade-off in comparison to EAFP, assuming
we need safeguards against partial alterations. The extra complication is modest, and
the slowdown due to the checks is typically compensated by the extra speed gained
by using bound methods through local names rather than explicit attribute access (at

What Is Polymorphism?
Polymorphism (from Greek roots meaning “many shapes”) is the ability of code to deal
with objects of different types in ways that are appropriate to each applicable type.
Unfortunately, this useful term has been overloaded with all sorts of implications, to
the point that many people think it’s somehow connected with such concepts as over-
loading (specifying different functions depending on call-time signatures) or subtyping
(i.e., subclassing), which it most definitely isn’t.

Subclassing is often a useful implementation technique, but it’s not a necessary condi-
tion for polymorphism. Overloading is right out: Python just doesn’t let multiple
objects with the same name live at the same time in the same scope, so you can’t have
several functions or methods with the same name and scope, distinguished only by
their signatures—a minor annoyance, at worst: just rename those functions or meth-
ods so that their name suffices to distinguish them.

Python’s functions are polymorphic (unless you take specific steps to break this very
useful feature) because they just call methods on their arguments (explicitly or implic-
itly by performing operations such as arithmetic and indexing): as long as the argu-
ments supply the needed methods, callable with the needed signatures, and those calls
perform the appropriate behavior, everything just works.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.14 Implementing the State Design Pattern | 269

least if the operations include loops, which is often the case). It’s important to avoid
overdoing the checks, and the assert statement can help with that. For example, you
can add such checks as assert callable(append) to munge4. In this case, the compiler
removes the assert entirely when you run the program with optimization (i.e., with
flags -O or -OO passed to the python command), while performing the checks when
the program is run for testing and debugging (i.e., without the optimization flags).

See Also
Language Reference and Python in a Nutshell about assert and the meaning of the -O

and -OO command-line arguments; Library Reference and Python in a Nutshell about
sequence types, and lists in particular.

6.14 Implementing the State Design Pattern
Credit: Elmar Bschorer

Problem
An object in your program can switch among several “states”, and the object’s
behavior must change along with the object’s state.

Solution
The key idea of the State Design Pattern is to objectify the “state” (with its several
behaviors) into a class instance (with its several methods). In Python, you don’t have
to build an abstract class to represent the interface that is common to the various
states: just write the classes for the “state”s themselves. For example:

class TraceNormal(object):
 ' state for normal level of verbosity '
 def startMessage(self):
 self.nstr = self.characters = 0
 def emitString(self, s):
 self.nstr += 1
 self.characters += len(s)
 def endMessage(self):
 print '%d characters in %d strings' % (self.characters, self.nstr)
class TraceChatty(object):
 ' state for high level of verbosity '
 def startMessage(self):
 self.msg = []
 def emitString(self, s):
 self.msg.append(repr(s))
 def endMessage(self):
 print 'Message: ', ', '.join(self.msg)
class TraceQuiet(object):
 ' state for zero level of verbosity '
 def startMessage(self): pass
 def emitString(self, s): pass
 def endMessage(self): pass

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 6: Object-Oriented Programming

class Tracer(object):
 def __init__(self, state): self.state = state
 def setState(self, state): self.state = state
 def emitStrings(self, strings):
 self.state.startMessage()
 for s in strings: self.state.emitString(s)
 self.state.endMessage()
if __name__ == '__main__':
 t = Tracer(TraceNormal())
 t.emitStrings('some example strings here'.split())
emits: 21 characters in 4 strings
 t.setState(TraceQuiet())
 t.emitStrings('some example strings here'.split())
emits nothing
 t.setState(TraceChatty())
 t.emitStrings('some example strings here'.split())
emits: Message: 'some', 'example', 'strings', 'here'

Discussion
With the State Design Pattern, you can “factor out” a number of related behaviors of
an object (and possibly some data connected with these behaviors) into an auxiliary
state object, to which the main object delegates these behaviors as needed, through
calls to methods of the “state” object. In Python terms, this design pattern is related
to the idioms of rebinding an object’s whole __class__, as shown in recipe 6.11
“Implementing a Ring Buffer,” and rebinding just certain methods (shown in recipe
2.14 “Rewinding an Input File to the Beginning”). This design pattern, in a sense, lies
in between those Python idioms: you group a set of related behaviors, rather than
switching either all behavior, by changing the object’s whole __class__, or each
method on its own, without grouping. With relation to the classic design pattern ter-
minology, this recipe presents a pattern that falls somewhere between the classic
State Design Pattern and the classic Strategy Design Pattern.

This State Design Pattern has some extra oomph, compared to the related Pythonic
idioms, because an appropriate amount of data can live together with the behaviors
you’re delegating—exactly as much, or as little, as needed to support each specific
behavior. In the examples given in this recipe’s Solution, for example, the different
state objects differ greatly in the kind and amount of data they need: none at all for
class TraceQuiet, just a couple of numbers for TraceNormal, a whole list of strings for
TraceChatty. These responsibilities are usefully delegated from the main object to
each specific “state object”.

In some cases, although not in the specific examples shown in this recipe, state
objects may need to cooperate more closely with the main object, by calling main
object methods or accessing main object attributes in certain circumstances. To
allow this, the main object can pass as an argument either self or some bound
method of self to methods of the “state” objects. For example, suppose that the
functionality in this recipe’s Solution needs to be extended, in that the main object

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.15 Implementing the “Singleton” Design Pattern | 271

must keep track of how many lines have been emitted by messages it has sent.
Tracer.__init__ will have to add one per-instance initialization self.lines = 0, and
the signature of the “state” object’s endMessage methods will have to be extended to
def endMessage(self, tracer):. The implementation of endMessage in class
TraceQuiet will just ignore the tracer argument, since it doesn’t actually emit any
lines; the implementations in the other two classes will each add a statement
tracer.lines += 1, since each of them emits one line per message.

As you see, the kind of closer coupling implied by this kind of extra functionality
need not be particularly problematic. In particular, the key feature of the classic State
Design Pattern, that state objects are the ones that handle state switching (while, in
the Strategy Design Pattern, the switching comes from the outside), is just not
enough of a big deal in Python to warrant considering the two design patterns as
separate.

See Also
See http://exciton.cs.rice.edu/JavaResources/DesignPatterns/ for good coverage of the
classic design patterns, albeit in a Java context.

6.15 Implementing the “Singleton” Design
Pattern

Credit: Jürgen Hermann

Problem
You want to make sure that only one instance of a class is ever created.

Solution
The __new__ staticmethod makes the task very simple:

class Singleton(object):
 """ A Pythonic Singleton """
 def __new__(cls, *args, **kwargs):
 if '_inst' not in vars(cls):
 cls._inst = super(Singleton, cls).__new__(cls, *args, **kwargs)
 return cls._inst

Just have your class inherit from Singleton, and don’t override __new__. Then, all
calls to that class (normally creations of new instances) return the same instance.
(The instance is created once, on the first such call to each given subclass of
Singleton during each run of your program.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 6: Object-Oriented Programming

Discussion
This recipe shows the one obvious way to implement the “Singleton” Design Pattern
in Python (see E. Gamma, et al., Design Patterns: Elements of Reusable Object-Ori-
ented Software, Addison-Wesley). A Singleton is a class that makes sure only one
instance of it is ever created. Typically, such a class is used to manage resources that
by their nature can exist only once. See recipe 6.16 “Avoiding the “Singleton” Design
Pattern with the Borg Idiom” for other considerations about, and alternatives to, the
“Singleton” design pattern in Python.

We can complete the module with the usual self-test idiom and show this behavior:

if __name__ == '__main__':
 class SingleSpam(Singleton):
 def __init__(self, s): self.s = s
 def __str__(self): return self.s
 s1 = SingleSpam('spam')
 print id(s1), s1.spam()
 s2 = SingleSpam('eggs')
 print id(s2), s2.spam()

When we run this module as a script, we get something like the following output
(the exact value of id does vary, of course):

8172684 spam

8172684 spam

The 'spam' parameter originally passed when s1 was instantiated has now been
trampled upon by the re-instantiation—that’s part of the price you pay for having a
Singleton!

One issue with Singleton in general is subclassability. The way class Singleton is
coded in this recipe, each descendant subclass, direct or indirect, will get a separate
instance. Literally speaking, this violates the constraint of only one instance per class,
depending on what one exactly means by it:

class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar()
print f is b, isinstance(f, Foo), isinstance(b, Foo)
emits False True True

f and b are separate instances, yet, according to the built-in function isinstance, they
are both instances of Foo because isinstance applies the IS-A rule of OOP: an
instance of a subclass IS-An instance of the base class too. On the other hand, if we
took pains to return f again when b is being instantiated by calling Bar, we’d be vio-
lating the normal assumption that calling class Bar gives us an instance of class Bar,
not an instance of a random superclass of Bar that just happens to have been instanti-
ated earlier in the course of a run of the program.

In practice, subclassability of “Singleton”s is rather a headache, without any obvious
solution. If this issue is important to you, the alternative Borg idiom, explained next

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.16 Avoiding the “Singleton” Design Pattern with the Borg Idiom | 273

in recipe 6.16 “Avoiding the “Singleton” Design Pattern with the Borg Idiom” may
provide a better approach.

See Also
Recipe 6.16 “Avoiding the “Singleton” Design Pattern with the Borg Idiom”; E.
Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley).

6.16 Avoiding the “Singleton” Design Pattern
with the Borg Idiom

Credit: Alex Martelli, Alex A. Naanou

Problem
You want to make sure that only one instance of a class is ever created: you don’t
care about the id of the resulting instances, just about their state and behavior, and
you need to ensure subclassability.

Solution
Application needs (forces) related to the “Singleton” Design Pattern can be met by
allowing multiple instances to be created while ensuring that all instances share state
and behavior. This is more flexible than fiddling with instance creation. Have your
class inherit from the following Borg class:

class Borg(object):
 _shared_state = { }
 def __new__(cls, *a, **k):
 obj = object.__new__(cls, *a, **k)
 obj.__dict__ = cls._shared_state
 return obj

If you override __new__ in your class (very few classes need to do that), just remem-
ber to use Borg.__new__, rather than object.__new__, within your override. If you
want instances of your class to share state among themselves, but not with instances
of other subclasses of Borg, make sure that your class has, at class scope, the
“state”ment:

 _shared_state = { }

With this “data override”, your class doesn’t inherit the _shared_state attribute from
Borg but rather gets its own. It is to enable this “data override” that Borg’s __new__

uses cls._shared_state instead of Borg._shared_state.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 6: Object-Oriented Programming

Discussion

Borg in action

Here’s a typical example of Borg use:

if __name__ == '__main__':
 class Example(Borg):
 name = None
 def __init__(self, name=None):
 if name is not None: self.name = name
 def __str__(self): return 'name->%s' % self.name
 a = Example('Lara')
 b = Example() # instantiating b shares self.name with a
 print a, b
 c = Example('John Malkovich') # making c changes self.name of a & b too
 print a, b, c
 b.name = 'Seven' # setting b.name changes name of a & c too
 print a, b, c

When running this module as a main script, the output is:

name->Lara name->Lara
name->John Malkovich name->John Malkovich name->John Malkovich
name->Seven name->Seven name->Seven

All instances of Example share state, so any setting of the name attribute of any
instance, either in __init__ or directly, affects all instances equally. However, note
that the instance’s ids differ; therefore, since we have not defined special methods
__eq__ and __hash__, each instance can work as a distinct key in a dictionary. Thus,
if we continue our sample code as follows:

 adict = { }
 j = 0
 for i in a, b, c:
 adict[i] = j
 j = j + 1
 for i in a, b, c:
 print i, adict[i]

the output is:

name->Seven 0
name->Seven 1
name->Seven 2

If this behavior is not what you want, add __eq__ and __hash__ methods to the
Example class or the Borg superclass. Having these methods might better simulate the
existence of a single instance, depending on your exact needs. For example, here’s a
version of Borg with these special methods added:

class Borg(object):
 _shared_state = { }
 def __new__(cls, *a, **k):
 obj = super(Borg, cls).__new__(cls, *a, **k)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.16 Avoiding the “Singleton” Design Pattern with the Borg Idiom | 275

 obj.__dict__ = cls._shared_state
 return obj
 def __hash__(self): return 9 # any arbitrary constant integer
 def __eq__(self, other):
 try: return self.__dict__ is other.__dict__
 except AttributeError: return False

With this enriched version of Borg, the example’s output changes to:

name->Seven 2
name->Seven 2
name->Seven 2

Borg, Singleton, or neither?

The Singleton Design Pattern has a catchy name, but unfortunately it also has the
wrong focus for most purposes: it focuses on object identity, rather than on object
state and behavior. The Borg design nonpattern makes all instances share state
instead, and Python makes implementing this idea a snap.

In most cases in which you might think of using Singleton or Borg, you don’t really
need either of them. Just write a Python module, with functions and module-global
variables, instead of defining a class, with methods and per-instance attributes. You
need to use a class only if you must be able to inherit from it, or if you need to take
advantage of the class’ ability to define special methods. (See recipe 6.2 “Defining
Constants” for a way to combine some of the advantages of classes and modules.)
Even when you do need a class, it’s usually unnecessary to include in the class itself
any code to enforce the idea that one can’t make multiple instances of it; other, sim-
pler idioms are generally preferable. For example:

class froober(object):
 def __init__(self):

etc, etc

froober = froober()

Now froober is by nature the only instance of its own class, since name 'froober'

has been rebound to mean the instance, not the class. Of course, one might call
froober.__class__(), but it’s not sensible to spend much energy taking precautions
against deliberate abuse of your design intentions. Any obstacles you put in the way
of such abuse, somebody else can bypass. Taking precautions against accidental mis-
use is way plenty. If the very simple idiom shown in this latest snippet is sufficient for
your needs, use it, and forget about Singleton and Borg. Remember: do the simplest
thing that could possibly work. On rare occasions, though, an idiom as simple as this
one cannot work, and then you do need more.

The Singleton Design Pattern (described previously in recipe 6.15 “Implementing the
“Singleton” Design Pattern”) is all about ensuring that just one instance of a certain
class is ever created. In my experience, Singleton is generally not the best solution to
the problems it tries to solve, producing different kinds of issues in various object
models. We typically want to let as many instances be created as necessary, but all

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 6: Object-Oriented Programming

with shared state. Who cares about identity? It’s state (and behavior) we care about.
The alternate pattern based on sharing state, in order to solve roughly the same prob-
lems as Singleton does, has also been called Monostate. Incidentally, I like to call Sin-
gleton “Highlander” because there can be only one.

In Python, you can implement the Monostate Design Pattern in many ways, but the
Borg design nonpattern is often best. Simplicity is Borg’s greatest strength. Since the
__dict__ of any instance can be rebound, Borg in its __new__ rebinds the __dict__ of
each of its instances to a class-attribute dictionary. Now, any reference or binding of
an instance attribute will affect all instances equally. I thank David Ascher for sug-
gesting the appropriate name Borg for this nonpattern. Borg is a nonpattern because
it had no known uses at the time of its first publication (although several uses are
now known): two or more known uses are part of the prerequisites for being a design
pattern. See the detailed discussion at http://www.aleax.it/5ep.html.

An excellent article by Robert Martin about Singleton and Monostate can be found
at http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf. Note
that most of the disadvantages that Martin attributes to Monostate are really due to
the limitations of the languages that Martin is considering, such as C++ and Java,
and just disappear when using Borg in Python. For example, Martin indicates, as
Monostate’s first and main disadvantage, that “A non-Monostate class cannot be
converted into a Monostate class through derivation”—but that is obviously not the
case for Borg, which, through multiple inheritance, makes such conversions trivial.

Borg odds and ends

The __getattr__ and __setattr__ special methods are not involved in Borg’s opera-
tions. Therefore, you can define them independently in your subclass, for whatever
other purposes you may require, or you may leave these special methods undefined.
Either way is not a problem because Python does not call __setattr__ in the specific
case of the rebinding of the instance’s __dict__ attribute.

Borg does not work well for classes that choose to keep some or all of their per-
instance state somewhere other than in the instance’s __dict__. So, in subclasses of
Borg, avoid defining __slots__—that’s a memory-footprint optimization that would
make no sense, anyway, since it’s meant for classes that have a large number of
instances, and Borg subclasses will effectively have just one instance! Moreover,
instead of inheriting from built-in types such as list or dict, your Borg subclasses
should use wrapping and automatic delegation, as shown previously recipe 6.5 “Del-
egating Automatically as an Alternative to Inheritance.” (I named this latter twist
“DeleBorg,” in my paper available at http://www.aleax.it/5ep.html.)

Saying that Borg “is a Singleton” would be as silly as saying that a portico is an
umbrella. Both serve similar purposes (letting you walk in the rain without getting
wet)—solve similar forces, in design pattern parlance—but since they do so in
utterly different ways, they’re not instances of the same pattern. If anything, as

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.17 Implementing the Null Object Design Pattern | 277

already mentioned, Borg has similarities to the Monostate alternative design pattern
to Singleton. However, Monostate is a design pattern, while Borg is not; also, a
Python Monostate could perfectly well exist without being a Borg. We can say that
Borg is an idiom that makes it easy and effective to implement Monostate in Python.

For reasons mysterious to me, people often conflate issues germane to Borg and
Highlander with other, independent issues, such as access control and, particularly,
access from multiple threads. If you need to control access to an object, that need is
exactly the same whether there is one instance of that object’s class or twenty of
them, and whether or not those instances share state. A fruitful approach to prob-
lem-solving is known as divide and conquer—making problems easier to solve by
splitting apart their different aspects. Making problems more difficult to solve by
joining together several aspects must be an example of an approach known as unite
and suffer!

See Also
Recipe 6.5 “Delegating Automatically as an Alternative to Inheritance”; recipe 6.15
“Implementing the “Singleton” Design Pattern”; Alex Martelli, “Five Easy Pieces:
Simple Python Non-Patterns” (http://www.aleax.it/5ep.html).

6.17 Implementing the Null Object Design
Pattern

Credit: Dinu C. Gherman, Holger Krekel

Problem
You want to reduce the need for conditional statements in your code, particularly the
need to keep checking for special cases.

Solution
The usual placeholder object for “there’s nothing here” is None, but we may be able
to do better than that by defining a class meant exactly to act as such a placeholder:

class Null(object):
 """ Null objects always and reliably "do nothing." """
 # optional optimization: ensure only one instance per subclass
 # (essentially just to save memory, no functional difference)
 def __new__(cls, *args, **kwargs):
 if '_inst' not in vars(cls):
 cls._inst = type.__new__(cls, *args, **kwargs)
 return cls._inst
 def __init__(self, *args, **kwargs): pass
 def __call__(self, *args, **kwargs): return self
 def __repr__(self): return "Null()"
 def __nonzero__(self): return False

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 6: Object-Oriented Programming

 def __getattr__(self, name): return self
 def __setattr__(self, name, value): return self
 def __delattr__(self, name): return self

Discussion
You can use an instance of the Null class instead of the primitive value None. By using
such an instance as a placeholder, instead of None, you can avoid many conditional
statements in your code and can often express algorithms with little or no checking
for special values. This recipe is a sample implementation of the Null Object Design
Pattern. (See B. Woolf, “The Null Object Pattern” in Pattern Languages of Program-
ming [PLoP 96, September 1996].)

This recipe’s Null class ignores all parameters passed when constructing or calling
instances, as well as any attempt to set or delete attributes. Any call or attempt to
access an attribute (or a method, since Python does not distinguish between the two,
calling __getattr__ either way) returns the same Null instance (i.e., self—no reason
to create a new instance). For example, if you have a computation such as:

def compute(x, y):
 try:

lots of computation here to return some appropriate object

 except SomeError:
 return None

and you use it like this:

for x in xs:
 for y in ys:
 obj = compute(x, y)
 if obj is not None:
 obj.somemethod(y, x)

you can usefully change the computation to:

def compute(x, y):
 try:

lots of computation here to return some appropriate object

 except SomeError:
 return Null()

and thus simplify its use down to:

for x in xs:
 for y in ys:
 compute(x, y).somemethod(y, x)

The point is that you don’t need to check whether compute has returned a real result
or an instance of Null: even in the latter case, you can safely and innocuously call on
it whatever method you want. Here is another, more specific use case:

log = err = Null()
if verbose:
 log = open('/tmp/log', 'w')
 err = open('/tmp/err', 'w')

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.17 Implementing the Null Object Design Pattern | 279

log.write('blabla')
err.write('blabla error')

This obviously avoids the usual kind of “pollution” of your code from guards such as
if verbose: strewn all over the place. You can now call log.write('bla'), instead of
having to express each such call as if log is not None: log.write('bla').

In the new object model, Python does not call __getattr__ on an instance for any
special methods needed to perform an operation on the instance (rather, it looks up
such methods in the instance class’ slots). You may have to take care and customize
Null to your application’s needs regarding operations on null objects, and therefore
special methods of the null objects’ class, either directly in the class’ sources or by
subclassing it appropriately. For example, with this recipe’s Null, you cannot index
Null instances, nor take their length, nor iterate on them. If this is a problem for your
purposes, you can add all the special methods you need (in Null itself or in an appro-
priate subclass) and implement them appropriately—for example:

class SeqNull(Null):
 def __len__(self): return 0
 def __iter__(self): return iter(())
 def __getitem__(self, i): return self
 def __delitem__(self, i): return self
 def __setitem__(self, i, v): return self

Similar considerations apply to several other operations.

The key goal of Null objects is to provide an intelligent replacement for the often-
used primitive value None in Python. (Other languages represent the lack of a value
using either null or a null pointer.) These nobody-lives-here markers/placeholders
are used for many purposes, including the important case in which one member of a
group of otherwise similar elements is special. This usage usually results in condi-
tional statements all over the place to distinguish between ordinary elements and the
primitive null (e.g., None) value, but Null objects help you avoid that.

Among the advantages of using Null objects are the following:

• Superfluous conditional statements can be avoided by providing a first-class
object alternative for the primitive value None, thereby improving code read-
ability.

• Null objects can act as placeholders for objects whose behavior is not yet imple-
mented.

• Null objects can be used polymorphically with instances of just about any other
class (perhaps needing suitable subclassing for special methods, as previously
mentioned).

• Null objects are very predictable.

The one serious disadvantage of Null is that it can hide bugs. If a function returns
None, and the caller did not expect that return value, the caller most likely will soon
thereafter try to call a method or perform an operation that None doesn’t support,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 6: Object-Oriented Programming

leading to a reasonably prompt exception and traceback. If the return value that the
caller didn’t expect is a Null, the problem might stay hidden for a longer time, and
the exception and traceback, when they eventually happen, may therefore be harder
to reconnect to the location of the defect in the code. Is this problem serious enough
to make using Null inadvisable? The answer is a matter of opinion. If your code has
halfway decent unit tests, this problem will not arise; while, if your code lacks decent
unit tests, then using Null is the least of your problems. But, as I said, it boils down
to a matter of opinions. I use Null very widely, and I’m extremely happy with the
effect it has had on my productivity.

The Null class as presented in this recipe uses a simple variant of the “Singleton” pat-
tern (shown earlier in recipe 6.15 “Implementing the “Singleton” Design Pattern”),
strictly for optimization purposes—namely, to avoid the creation of numerous pas-
sive objects that do nothing but take up memory. Given all the previous remarks
about customization by subclassing, it is, of course, crucial that the specific imple-
mentation of “Singleton” ensures a separate instance exists for each subclass of Null
that gets instantiated. The number of subclasses will no doubt never be so high as to
eat up substantial amounts of memory, and anyway this per-subclass distinction can
be semantically crucial.

See Also
B. Woolf, “The Null Object Pattern” in Pattern Languages of Programming (PLoP 96,
September 1996), http://www.cs.wustl.edu/~schmidt/PLoP-96/woolf1.ps.gz; recipe
6.15 “Implementing the “Singleton” Design Pattern.”

6.18 Automatically Initializing Instance
Variables from _ _init_ _ Arguments

Credit: Peter Otten, Gary Robinson, Henry Crutcher, Paul Moore, Peter Schwalm,
Holger Krekel

Problem
You want to avoid writing and maintaining __init__ methods that consist of almost
nothing but a series of self.something = something assignments.

Solution
You can “factor out” the attribute-assignment task to an auxiliary function:

def attributesFromDict(d):
 self = d.pop('self')
 for n, v in d.iteritems():
 setattr(self, n, v)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.18 Automatically Initializing Instance Variables from _ _init_ _ Arguments | 281

Now, the typical boilerplate code for an __init__ method such as:

 def __init__(self, foo, bar, baz, boom=1, bang=2):
 self.foo = foo
 self.bar = bar
 self.baz = baz
 self.boom = boom
 self.bang = bang

can become a short, crystal-clear one-liner:

 def __init__(self, foo, bar, baz, boom=1, bang=2):
 attributesFromDict(locals())

Discussion
As long as no additional logic is in the body of __init__, the dict returned by calling
the built-in function locals contains only the arguments that were passed to __init__

(plus those arguments that were not passed but have default values). Function
attributesFromDict extracts the object, relying on the convention that the object is
always an argument named 'self', and then interprets all other items in the dictio-
nary as names and values of attributes to set. A similar but simpler technique, not
requiring an auxiliary function, is:

 def __init__(self, foo, bar, baz, boom=1, bang=2):
 self.__dict__.update(locals())
 del self.self

However, this latter technique has a serious defect when compared to the one pre-
sented in this recipe’s Solution: by setting attributes directly into self.__dict__

(through the latter’s update method), it does not play well with properties and other
advanced descriptors, while the approach in this recipe’s Solution, using built-in
setattr, is impeccable in this respect.

attributesFromDict is not meant for use in an __init__ method that contains more
code, and specifically one that uses some local variables, because attributesFromDict

cannot easily distinguish, in the dictionary that is passed as its only argument d,
between arguments of _ _init_ _ and other local variables of _ _init__. If you’re
willing to insert a little introspection in the auxiliary function, this limitation may be
overcome:

def attributesFromArguments(d):
 self = d.pop('self')
 codeObject = self.__init__.im_func.func_code
 argumentNames = codeObject.co_varnames[1:codeObject.co_argcount]
 for n in argumentNames:
 setattr(self, n, d[n])

By extracting the code object of the __init__ method, function
attributesFromArguments is able to limit itself to the names of __init__’s arguments.
Your __init__ method can then call attributesFromArguments(locals()), instead of

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 6: Object-Oriented Programming

attributesFromDict(locals()), if and when it needs to continue, after the call, with
more code that may define other local variables.

The key limitation of attributesFromArguments is that it does not support __init__

having a last special argument of the **kw kind. Such support can be added, with yet
more introspection, but it would require more black magic and complication than
the functionality is probably worth. If you nevertheless want to explore this possibil-
ity, you can use the inspect module of the standard library, rather than the roll-your-
own approach used in function attributeFromArguments, for introspection purposes.
inspect.getargspec(self.__init__) gives you both the argument names and the
indication of whether self.__init__ accepts a **kw form. See recipe 6.19 “Calling a
Superclass __init__ Method If It Exists” for more information about function
inspect.getargspec. Remember the golden rule of Python programming: “Let the
standard library do it!”

See Also
Library Reference and Python in a Nutshell docs for the built-in function locals,
methods of type dict, special method __init__, and introspection techniques
(including module inspect).

6.19 Calling a Superclass _ _init_ _ Method
If It Exists

Credit: Alex Martelli

Problem
You want to ensure that __init__ is called for all superclasses that define it, and
Python does not do this automatically.

Solution
As long as your class is new-style, the built-in super makes this task easy (if all super-
classes’ __init__ methods also use super similarly):

class NewStyleOnly(A, B, C):
 def __init__(self):

super(NewStyleOnly, self).__init__()
initialization specific to subclass NewStyleOnly

Discussion
Classic classes are not recommended for new code development: they exist only to
guarantee backwards compatibility with old versions of Python. Use new-style
classes (deriving directly or indirectly from object) for all new code. The only thing
you cannot do with a new-style class is to raise its instances as exception objects;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.19 Calling a Superclass _ _init_ _ Method If It Exists | 283

exception classes must therefore be old style, but then, you do not need the function-
ality of this recipe for such classes. Since the rest of this recipe’s Discussion is there-
fore both advanced and of limited applicability, you may want to skip it.

Still, it may happen that you need to retrofit this functionality into a classic class, or,
more likely, into a new-style class with some superclasses that do not follow the
proper style of cooperative superclass method-calling with the built-in super. In such
cases, you should first try to fix the problematic premises—make all classes new style
and make them use super properly. If you absolutely cannot fix things, the best you
can do is to have your class loop over its base classes—for each base, check whether
it has an __init__, and if so, then call it:

class LookBeforeYouLeap(X, Y, Z):
 def __init__(self):
 for base in self__class__.__bases__:
 if hasattr(base, '__init__'):
 base.__init__(self)

initialization specific to subclass LookBeforeYouLeap

More generally, and not just for method __init__, we often want to call a method on
an instance, or class, if and only if that method exists; if the method does not exist
on that class or instance, we do nothing, or we default to another action. The tech-
nique shown in the “Solution”, based on built-in super, is not applicable in general:
it only works on superclasses of the current object, only if those superclasses also use
super appropriately, and only if the method in question does exist in some super-
class. Note that all new-style classes do have an __init__ method: they all subclass
object, and object defines __init__ (as a do-nothing function that accepts and
ignores any arguments). Therefore, all new-style classes have an __init__ method,
either by inheritance or by override.

The LBYL technique shown in class LookBeforeYouLeap may be of help in more gen-
eral cases, including ones that involve methods other than __init__. Indeed, LBYL
may even be used together with super, for example, as in the following toy example:

class Base1(object):
 def met(self):
 print 'met in Base1'
class Der1(Base1):
 def met(self):
 s = super(Der1, self)
 if hasattr(s, 'met'):
 s.met()
 print 'met in Der1'
class Base2(object):
 pass
class Der2(Base2):
 def met(self):
 s = super(Der2, self)
 if hasattr(s, 'met'):
 s.met()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 6: Object-Oriented Programming

 print 'met in Der2'
Der1().met()
Der2().met()

This snippet emits:

met in Base1

met in Der1
met in Der2

The implementation of met has the same structure in both derived classes, Der1

(whose superclass Base1 does have a method named met) and Der2 (whose superclass
Base1 doesn’t have such a method). By binding a local name s to the result of super,
and checking with hasattr that the superclass does have such a method before call-
ing it, this LBYL structure lets you code in the same way in both cases. Of course,
when coding a subclass, you do normally know which methods the superclasses
have, and whether and how you need to call them. Still, this technique can provide a
little extra flexibility for those occasions in which you need to slightly decouple the
subclass from the superclass.

The LBYL technique is far from perfect, though: a superclass might define an
attribute named met, which is not callable or needs a different number of arguments.
If your need for flexibility is so extreme that you must ward against such occur-
rences, you can extract the superclass’ method object (if any) and check it with the
getargspec function of standard library module inspect.

While pushing this idea towards full generality can lead into rather deep complica-
tions, here is one example of how you might code a class with a method that calls the
superclass’ version of the same method only if the latter is callable without argu-
ments:

import inspect
class Der(A, B, C, D):
 def met(self):
 s = super(Der, self)
 # get the superclass's bound-method object, or else None
 m = getattr(s, 'met', None)
 try:
 args, varargs, varkw, defaults = inspect.getargspec(m)
 except TypeError:
 # m is not a method, just ignore it
 pass
 else:
 # m is a method, do all its arguments have default values?
 if len(defaults) == len(args):
 # yes! so, call it:
 m()
 print 'met in Der'

inspect.getargspec raises a TypeError if its argument is not a method or function, so
we catch that case with a try/except statement, and if the exception occurs, we just
ignore it with a do-nothing pass statement in the except clause. To simplify our code

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.20 Using Cooperative Supercalls Concisely and Safely | 285

a bit, we do not first check separately with hasattr. Rather, we get the 'met' attribute
of the superclass by calling getattr with a third argument of None. Thus, if the super-
class does not have any attribute named 'met', m is set to None, later causing exactly
the same TypeError that we have to catch (and ignore) anyway—two birds with one
stone. If the call to inspect.getargspec in the try clause does not raise a TypeError,
execution continues with the else clause.

If inspect.getargspec doesn’t raise a TypeError, it returns a tuple of four items, and
we bind each item to a local name. In this case, the ones we care about are args, a list
of m’s argument names, and defaults, a tuple of default values that m provides for its
arguments. Clearly, we can call m without arguments if and only if m provides
default values for all of its arguments. So, we check that there are just as many
default values as arguments, by comparing the lengths of list args and tuple
defaults, and call m only if the lengths are equal.

No doubt you don’t need such advanced introspection and such careful checking in
most of the code you write, but, just in case you do, Python does supply all the tools
you need to achieve it.

See Also
Docs for built-in functions super, getattr, and hasattr, and module inspect, in the
Library Reference and Python in a Nutshell.

6.20 Using Cooperative Supercalls Concisely and
Safely

Credit: Paul McNett, Alex Martelli

Problem
You appreciate the cooperative style of multiple-inheritance coding supported by the
super built-in, but you wish you could use that style in a more terse and concise way.

Solution
A good solution is a mixin class—a class you can multiply inherit from, that uses
introspection to allow more terse coding:

import inspect
class SuperMixin(object):
 def super(cls, *args, **kwargs):
 frame = inspect.currentframe(1)
 self = frame.f_locals['self']
 methodName = frame.f_code.co_name
 method = getattr(super(cls, self), methodName, None)
 if inspect.ismethod(method):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 6: Object-Oriented Programming

 return method(*args, **kwargs)
 super = classmethod(super)

Any class cls that inherits from class SuperMixin acquires a magic method named
super: calling cls.super(args) from within a method named somename of class cls is a
concise way to call super(cls, self).somename(args). Moreover, the call is safe even
if no class that follows cls in Method Resolution Order (MRO) defines any method
named somename.

Discussion
Here is a usage example:

if __name__ == '__main__':
 class TestBase(list, SuperMixin):
 # note: no myMethod defined here
 pass
 class MyTest1(TestBase):
 def myMethod(self):
 print "in MyTest1"
 MyTest1.super()
 class MyTest2(TestBase):
 def myMethod(self):
 print "in MyTest2"
 MyTest2.super()
 class MyTest(MyTest1, MyTest2):
 def myMethod(self):
 print "in MyTest"
 MyTest.super()
 MyTest().myMethod()
emits:
in MyTest
in MyTest1
in MyTest2

Python has been offering “new-style” classes for years, as a preferable alternative to
the classic classes that you get by default. Classic classes exist only for backwards-
compatibility with old versions of Python and are not recommended for new code.
Among the advantages of new-style classes is the ease of calling superclass imple-
mentations of a method in a “cooperative” way that fully supports multiple inherit-
ance, thanks to the super built-in.

Suppose you have a method in a new-style class cls, which needs to perform a task
and then delegate the rest of the work to the superclass implementation of the same
method. The code idiom is:

def somename(self, *args):
...some preliminary task...

 return super(cls, self).somename(*args)

This idiom suffers from two minor issues: it’s slightly verbose, and it also depends on
a superclass offering a method somename. If you want to make cls less coupled to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.20 Using Cooperative Supercalls Concisely and Safely | 287

other classes, and therefore more robust, by removing the dependency, the code gets
even more verbose:

def somename(self, *args):
...some preliminary task...

 try:
 super_method = super(cls, self).somename
 except AttributeError:
 return None
 else:
 return super_method(*args)

The mixin class SuperMixin shown in this recipe removes both issues. Just ensure cls

inherits, directly or indirectly, from SuperMixin (alongside any other base classes you
desire), and then you can code, concisely and robustly:

def somename(self, *args):
...some preliminary task...

 return cls.super(*args)

The classmethod SuperMixin.super relies on simple introspection to get the self

object and the name of the method, then internally uses built-ins super and getattr

to get the superclass method, and safely call it only if it exists. The introspection is
performed through the handy inspect module of the standard Python library, mak-
ing the whole task even simpler.

See Also
Library Reference and Python in a Nutshell docs on super, the new object model and
MRO, the built-in getattr, and standard library module inspect; recipe 20.12
“Using Cooperative Supercalls with Terser Syntax” for another recipe taking a very
different approach to simplify the use of built-in super.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288

Chapter 7CHAPTER 7

Persistence and Databases

7.0 Introduction
Credit: Aaron Watters, Software Consultant

There are three kinds of people in this world: those who can count and those who
can’t.

However, there are only two kinds of computer programs: toy programs and pro-
grams that interact with some kind of persistent databases. That is to say, most real
computer programs must retrieve stored information and record information for
future use. These days, this description applies to almost every computer game,
which can typically save and restore the state of the game at any time. So when I refer
to toy programs, I mean programs written as exercises, or for the fun of program-
ming. Nearly all real programs (such as programs that people get paid to write) have
some persistent database storage/retrieval component.

When I was a Fortran programmer in the 1980s, I noticed that although almost every
program had to retrieve and store information, they almost always did it using home-
grown methods. Furthermore, since the storage and retrieval parts of the program
were the least interesting components from the programmer’s point of view, these
parts of the program were frequently implemented very sloppily and were hideous
sources of intractable bugs. This repeated observation convinced me that the study
and implementation of database systems sat at the core of programming pragmatics,
and that the state of the art as I saw it then required much improvement.

Later, in graduate school, I was delighted to find an impressive and sophisticated
body of work relating to the implementation of database systems. The literature of
database systems covered issues of concurrency, fault tolerance, distribution, query
optimization, database design, and transaction semantics, among others. In typical
academic fashion, many of the concepts had been elaborated to the point of absur-
dity (such as the silly notion of conditional multivalued dependencies), but much of
the work was directly related to the practical implementation of reliable and efficient

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 289

storage and retrieval systems. The starting point for much of this work was E.F.
Codd’s seminal paper, “A Relational Model of Data for Large Shared Data Banks.”*

Among my fellow graduate students, and even among most of the faculty, the same
body of knowledge was either disregarded or regarded with some scorn. Everyone
recognized that knowledge of conventional relational technology could be lucrative,
but they generally considered such knowledge to be on the same level as knowing
how to write (or more importantly, maintain) COBOL programs. This situation was
not helped by the fact that the emerging database interface standard, SQL (which is
now very well established), looked like an extension of COBOL and bore little obvi-
ous relationship to any modern programming language.

More than a decade later, there is little indication that anything will soon overtake
SQL-based relational technology for the majority of data-based applications. In fact,
relational-database technology seems more pervasive than ever. The largest software
vendors—IBM, Microsoft, and Oracle—all provide various relational-database
implementations as crucial components of their core offerings. Other large software
firms, such as SAP and PeopleSoft, essentially provide layers of software built on top
of a relational-database core.

Generally, relational databases have been augmented rather than replaced. Enter-
prise software-engineering dogma frequently espouses three-tier systems, in which
the bottom tier is a carefully designed relational database, the middle tier defines a
view of the database as business objects, and the top tier consists of applications or
transactions that manipulate the business objects, with effects that ultimately trans-
late to changes in the underlying relational tables.

Microsoft’s Open Database Connectivity (ODBC) standard provides a common pro-
gramming API for SQL-based relational databases that permits programs to interact
with many different database engines with no or few changes. For example, a Python
program could be first implemented using Microsoft Jet† as a backend database for
testing and debugging purposes. Once the program is stable, it can be put into pro-
duction use, remotely accessing, say, a backend DB2 database on an IBM mainframe
residing on another continent, by changing (at most) one line of code.

Relational databases are not appropriate for all applications. In particular, a com-
puter game or engineering design tool that must save and restore sessions should
probably use a more direct method of persisting the logical objects of the program
than the flat tabular representation encouraged in relational-database design. How-
ever, even in domains such as engineering or scientific information, a hybrid

* E.F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM, 13,
no. 6 (1970), pp. 377–87, http://www.acm.org/classics/nov95/toc.html.

† Microsoft Jet is commonly but erroneously known as the “Microsoft Access database.” Access is a product
that Microsoft sells for designing and implementing database frontends; Jet is a backend that you may down-
load for free from Microsoft’s web site.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 7: Persistence and Databases

approach that uses some relational methods is often advisable. For example, I have
seen a complex relational-database schema for archiving genetic-sequencing informa-
tion—in which the sequences show up as binary large objects (BLOBs)—but a tre-
mendous amount of important ancillary information can fit nicely into relational
tables. But as the reader has probably surmised, I fear, I speak as a relational zealot.

Within the Python world there are many ways of providing persistence and database
functionality. My personal favorite is Gadfly, http://gadfly.sourceforge.net/, a simple
and minimal SQL implementation that works primarily with in-memory databases. It
is my favorite for no other reason than because it is mine, and its biggest advantage is
that, if it becomes unworkable for you, it is easy to switch over to another, industrial-
strength SQL engine. Many Gadfly users have started an application with Gadfly
(because it was easy to use) and switched later (because they needed more).

However, many people may prefer to start by using other SQL implementations such
as MySQL, Microsoft Access, Oracle, Sybase, Microsoft SQL Server, SQLite, or oth-
ers that provide the advantages of an ODBC interface (which Gadfly does not do).

Python provides a standard interface for accessing relational databases: the Python
DB Application Programming Interface (Py-DBAPI), originally designed by Greg
Stein. Each underlying database API requires a wrapper implementation of the Py-
DBAPI, and implementations are available for just about all underlying database
interfaces, notably Oracle and ODBC.

When the relational approach is overkill, Python provides built-in facilities for stor-
ing and retrieving data. At the most basic level, the programmer can manipulate files
directly, as covered in Chapter 2. A step up from files, the marshal module allows
programs to serialize data structures constructed from simple Python types (not
including, e.g., classes or class instances). marshal has the advantage of being able to
retrieve large data structures with blinding speed. The pickle and cPickle modules
allow general storage of objects, including classes, class instances, and circular struc-
tures. cPickle is so named because it is implemented in C and is consequently quite
fast, but it remains slower than marshal. For access to structured data in a somewhat
human-readable form, it is also worth considering storing and retrieving data in
XML format (taking advantage of Python’s several XML parsing and generation
modules), covered in Chapter 12—but this option works best for write once, read
many–type applications. Serialized data or XML representations may be stored in
SQL databases to create a hybrid approach as well.

While marshal and pickle provide basic serialization and deserialization of struc-
tures, the application programmer will frequently desire more functionality, such as
transaction support and concurrency control. When the relational model doesn’t fit
the application, a direct object database implementation such as the Z-Object Data-
base (ZODB) might be appropriate—see http://zope.org/Products/ZODB3.2.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.1 Serializing Data Using the marshal Module | 291

I must conclude with a plea to those who are dismissive of relational-database tech-
nology. Remember that it is successful for good reasons, and it might be worth con-
sidering. To paraphrase Churchill:

text = """ Indeed, it has been said that democracy is the worst form of
 government, except for all those others that have been tried
 from time to time. """
import string
for a, b in [("democracy", "SQL"), ("government", "database")]:
 text = string.replace(text, a, b)
print text

7.1 Serializing Data Using the marshal Module
Credit: Luther Blissett

Problem
You want to serialize and reconstruct a Python data structure whose items are funda-
mental Python objects (e.g., lists, tuples, numbers, and strings but no classes,
instances, etc.) as fast as possible.

Solution
If you know that your data is composed entirely of fundamental Python objects (and
you only need to support one version of Python, though possibly on several different
platforms), the lowest-level, fastest approach to serializing your data (i.e., turning it
into a string of bytes, and later reconstructing it from such a string) is via the marshal

module. Suppose that data has only elementary Python data types as items, for
example:

data = {12:'twelve', 'feep':list('ciao'), 1.23:4+5j, (1,2,3):u'wer'}

You can serialize data to a bytestring at top speed as follows:

import marshal
bytes = marshal.dumps(data)

You can now sling bytes around as you wish (e.g., send it across a network, put it as
a BLOB in a database, etc.), as long as you keep its arbitrary binary bytes intact.
Then you can reconstruct the data structure from the bytestring at any time:

redata = marshal.loads(bytes)

When you specifically want to write the data to a disk file (as long as the latter is
open for binary—not the default text mode—input/output), you can also use the
dump function of the marshal module, which lets you dump several data structures to
the same file one after the other:

ouf = open('datafile.dat', 'wb')
marshal.dump(data, ouf)
marshal.dump('some string', ouf)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 7: Persistence and Databases

marshal.dump(range(19), ouf)
ouf.close()

You can later recover from datafile.dat the same data structures you dumped into it,
in the same sequence:

inf = open('datafile.dat', 'rb')
a = marshal.load(inf)
b = marshal.load(inf)
c = marshal.load(inf)
inf.close()

Discussion
Python offers several ways to serialize data (meaning to turn the data into a string of
bytes that you can save on disk, put in a database, send across the network, etc.) and
corresponding ways to reconstruct the data from such serialized forms. The lowest-
level approach is to use the marshal module, which Python uses to write its bytecode
files. marshal supports only elementary data types (e.g., dictionaries, lists, tuples,
numbers, and strings) and combinations thereof. marshal does not guarantee com-
patibility from one Python release to another, so data serialized with marshal may not
be readable if you upgrade your Python release. However, marshal does guarantee
independence from a specific machine’s architecture, so it is guaranteed to work if
you’re sending serialized data between different machines, as long as they are all run-
ning the same version of Python—similar to how you can share compiled Python
bytecode files in such a distributed setting.

marshal’s dumps function accepts any suitable Python data structure and returns a
bytestring representing it. You can pass that bytestring to the loads function, which
will return another Python data structure that compares equal (==) to the one you
originally dumped. In particular, the order of keys in dictionaries is arbitrary in both
the original and reconstructed data structures, but order in any kind of sequence is
meaningful and is thus preserved. In between the dumps and loads calls, you can sub-
ject the bytestring to any procedure you wish, such as sending it over the network,
storing it into a database and retrieving it, or encrypting and decrypting it. As long as
the string’s binary structure is correctly restored, loads will work fine on it (as stated
previously, this is guaranteed only if you use loads under the same Python release
with which you originally executed dumps).

When you specifically need to save the data to a file, you can also use marshal’s dump

function, which takes two arguments: the data structure you’re dumping and the
open file object. Note that the file must be opened for binary I/O (not the default,
which is text I/O) and can’t be a file-like object, as marshal is quite picky about it
being a true file. The advantage of dump is that you can perform several calls to dump

with various data structures and the same open file object: each data structure is then
dumped together with information about how long the dumped bytestring is. As a
consequence, when you later open the file for binary reading and then call

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.2 Serializing Data Using the pickle and cPickle Modules | 293

marshal.load, passing the file as the argument, you can reload each previously
dumped data structure sequentially, one after the other, at each call to load. The
return value of load, like that of loads, is a new data structure that compares equal to
the one you originally dumped. (Again, dump and load work within one Python
release—no guarantee across releases.)

Those accustomed to other languages and libraries offering “serialization” facilities
may be wondering if marshal imposes substantial practical limits on the size of
objects you can serialize or deserialize. Answer: Nope. Your machine’s memory
might, but as long as everything fits comfortably in memory, marshal imposes practi-
cally no further limit.

See Also
Recipe 7.2 “Serializing Data Using the pickle and cPickle Modules” for cPickle, the
big brother of marshal; documentation on the marshal standard library module in the
Library Reference and in Python in a Nutshell.

7.2 Serializing Data Using the pickle and
cPickle Modules

Credit: Luther Blissett

Problem
You want to serialize and reconstruct, at a reasonable speed, a Python data struc-
ture, which may include both fundamental Python object as well as classes and
instances.

Solution
If you don’t want to assume that your data is composed only of fundamental Python
objects, or you need portability across versions of Python, or you need to transmit
the serialized form as text, the best way of serializing your data is with the cPickle

module. (The pickle module is a pure-Python equivalent and totally interchange-
able, but it’s slower and not worth using except if you’re missing cPickle.) For
example, say you have:

data = {12:'twelve', 'feep':list('ciao'), 1.23:4+5j, (1,2,3):u'wer'}

You can serialize data to a text string:

import cPickle
text = cPickle.dumps(data)

or to a binary string, a choice that is faster and takes up less space:

bytes = cPickle.dumps(data, 2)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 7: Persistence and Databases

You can now sling text or bytes around as you wish (e.g., send across a network,
include as a BLOB in a database—see recipe 7.10 “Storing a BLOB in a MySQL
Database,” recipe 7.11 “Storing a BLOB in a PostgreSQL Database,” and recipe 7.12
“Storing a BLOB in a SQLite Database”) as long as you keep text or bytes intact. In
the case of bytes, it means keeping the arbitrary binary bytes intact. In the case of
text, it means keeping its textual structure intact, including newline characters. Then
you can reconstruct the data at any time, regardless of machine architecture or
Python release:

redata1 = cPickle.loads(text)
redata2 = cPickle.loads(bytes)

Either call reconstructs a data structure that compares equal to data. In particular,
the order of keys in dictionaries is arbitrary in both the original and reconstructed
data structures, but order in any kind of sequence is meaningful, and thus it is pre-
served. You don’t need to tell cPickle.loads whether the original dumps used text
mode (the default, also readable by some very old versions of Python) or binary
(faster and more compact)—loads figures it out by examining its argument’s con-
tents.

When you specifically want to write the data to a file, you can also use the dump func-
tion of the cPickle module, which lets you dump several data structures to the same
file one after the other:

ouf = open('datafile.txt', 'w')
cPickle.dump(data, ouf)
cPickle.dump('some string', ouf)
cPickle.dump(range(19), ouf)
ouf.close()

Once you have done this, you can recover from datafile.txt the same data structures
you dumped into it, one after the other, in the same order:

inf = open('datafile.txt')
a = cPickle.load(inf)
b = cPickle.load(inf)
c = cPickle.load(inf)
inf.close()

You can also pass cPickle.dump a third argument with a value of 2 to tell
cPickle.dump to serialize the data in binary form (faster and more compact), but the
data file must then be opened for binary I/O, not in the default text mode, both
when you originally dump to the file and when you later load from the file.

Discussion
Python offers several ways to serialize data (i.e., make the data into a string of bytes
that you can save on disk, save in a database, send across the network, etc.) and cor-
responding ways to reconstruct the data from such serialized forms. Typically, the
best approach is to use the cPickle module. A pure-Python equivalent, called pickle

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.2 Serializing Data Using the pickle and cPickle Modules | 295

(the cPickle module is coded in C as a Python extension) is substantially slower, and
the only reason to use it is if you don’t have cPickle (e.g., with a Python port onto a
mobile phone with tiny storage space, where you saved every byte you possibly could
by installing only an indispensable subset of Python’s large standard library). How-
ever, in cases where you do need to use pickle, rest assured that it is completely
interchangeable with cPickle: you can pickle with either module and unpickle with
the other one, without any problems whatsoever.

cPickle supports most elementary data types (e.g., dictionaries, lists, tuples, num-
bers, strings) and combinations thereof, as well as classes and instances. Pickling
classes and instances saves only the data involved, not the code. (Code objects are
not even among the types that cPickle knows how to serialize, basically because
there would be no way to guarantee their portability across disparate versions of
Python. See recipe 7.6 “Pickling Code Objects” for a way to serialize code objects, as
long as you don’t need the cross-version guarantee.) See recipe 7.4 “Using the cPickle
Module on Classes and Instances” for more about pickling classes and instances.

cPickle guarantees compatibility from one Python release to another, as well as inde-
pendence from a specific machine’s architecture. Data serialized with cPickle will
still be readable if you upgrade your Python release, and pickling is also guaranteed
to work if you’re sending serialized data between different machines.

The dumps function of cPickle accepts any Python data structure and returns a text
string representing it. If you call dumps with a second argument of 2, dumps returns an
arbitrary bytestring instead: the operation is faster, and the resulting string takes up
less space. You can pass either the text or the bytestring to the loads function, which
will return another Python data structure that compares equal (==) to the one you
originally dumped. In between the dumps and loads calls, you can subject the text or
bytestring to any procedure you wish, such as sending it over the network, storing it
in a database and retrieving it, or encrypting and decrypting it. As long as the string’s
textual or binary structure is correctly restored, loads will work fine on it (even
across platforms and in future releases). If you need to produce data readable by old
(pre-2.3) versions of Python, consider using 1 as the second argument: operation will
be slower, and the resulting strings will not be as compact as those obtained by using
2, but the strings will be unpicklable by old Python versions as well as current and
future ones.

When you specifically need to save the data into a file, you can also use cPickle’s
dump function, which takes two arguments: the data structure you’re dumping and
the open file or file-like object. If the file is opened for binary I/O, rather than the
default (text I/O), then by giving dump a third argument of 2, you can ask for binary
format, which is faster and takes up less space (again, you can also use 1 in this posi-
tion to get a binary format that’s neither as compact nor as fast, but is understood by
old, pre-2.3 Python versions too). The advantage of dump over dumps is that, with
dump, you can perform several calls, one after the other, with various data structures

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 7: Persistence and Databases

and the same open file object. Each data structure is then dumped with information
about how long the dumped string is. Consequently, when you later open the file for
reading (binary reading, if you asked for binary format) and then repeatedly call
cPickle.load, passing the file as the argument, each data structure previously
dumped is reloaded sequentially, one after the other. The return value of load, like
that of loads, is a new data structure that compares equal to the one you originally
dumped.

Those accustomed to other languages and libraries offering “serialization” facilities
may be wondering whether pickle imposes substantial practical limits on the size of
objects you can serialize or deserialize. Answer: Nope. Your machine’s memory
might, but as long as everything fits comfortably in memory, pickle practically
imposes no further limit.

See Also
Recipe 7.2 “Serializing Data Using the pickle and cPickle Modules” and recipe 7.4
“Using the cPickle Module on Classes and Instances”; documentation for the stan-
dard library module cPickle in the Library Reference and Python in a Nutshell.

7.3 Using Compression with Pickling
Credit: Bill McNeill, Andrew Dalke

Problem
You want to pickle generic Python objects to and from disk in a compressed form.

Solution
Standard library modules cPickle and gzip offer the needed functionality; you just
need to glue them together appropriately:

import cPickle, gzip
def save(filename, *objects):
 ''' save objects into a compressed diskfile '''
 fil = gzip.open(filename, 'wb')
 for obj in objects: cPickle.dump(obj, fil, proto=2)
 fil.close()
def load(filename):
 ''' reload objects from a compressed diskfile '''
 fil = gzip.open(filename, 'rb')
 while True:
 try: yield cPickle.load(fil)
 except EOFError: break
 fil.close()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Using the cPickle Module on Classes and Instances | 297

Discussion
Persistence and compression, as a general rule, go well together. cPickle protocol 2
saves Python objects quite compactly, but the resulting files can still compress quite
well. For example, on my Linux box, open('/usr/dict/share/words').readlines()

produces a list of over 45,000 strings. Pickling that list with the default protocol 0
makes a disk file of 972 KB, while protocol 2 takes only 716 KB. However, using
both gzip and protocol 2, as shown in this recipe, requires only 268 KB, saving a sig-
nificant amount of space. As it happens, protocol 0 produces a more compressible
file in this case, so that using gzip and protocol 0 would save even more space, tak-
ing only 252 KB on disk. However, the difference between 268 and 252 isn’t all that
meaningful, and protocol 2 has other advantages, particularly when used on
instances of new-style classes, so I recommend the mix I use in the functions shown
in this recipe.

Whatever protocol you choose to save your data, you don’t need to worry about it
when you’re reloading the data. The protocol is recorded in the file together with the
data, so cPickle.load can figure out by itself all it needs. Just pass it an instance of a
file or pseudo-file object with a read method, and cPickle.load returns each object
that was pickled to the file, one after the other, and raises EOFError when the file’s
done. In this recipe, we wrap a generator around cPickle.load, so you can simply
loop over all recovered objects with a for statement, or, depending on what you
need, you can use some call such as list(load('somefile.gz')) to get a list with all
recovered objects as its items.

See Also
Modules gzip and cPickle in the Library Reference.

7.4 Using the cPickle Module on Classes and
Instances

Credit: Luther Blissett

Problem
You want to save and restore class and instance objects using the cPickle module.

Solution
You often need no special precautions to use cPickle on your classes and their
instances. For example, the following works fine:

import cPickle
class ForExample(object):
 def __init__(self, *stuff):
 self.stuff = stuff

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 7: Persistence and Databases

anInstance = ForExample('one', 2, 3)
saved = cPickle.dumps(anInstance)
reloaded = cPickle.loads(saved)
assert anInstance.stuff == reloaded.stuff

However, sometimes there are problems:

anotherInstance = ForExample(1, 2, open('three', 'w'))
wontWork = cPickle.dumps(anotherInstance)

This snippet causes a TypeError: “can’t pickle file objects” exception, because the
state of anotherInstance includes a file object, and file objects cannot be pickled.
You would get exactly the same exception if you tried to pickle any other container
that includes a file object among its items.

However, in some cases, you may be able to do something about it:

class PrettyClever(object):
 def __init__(self, *stuff):
 self.stuff = stuff
 def __getstate__(self):
 def normalize(x):
 if isinstance(x, file):
 return 1, (x.name, x.mode, x.tell())
 return 0, x
 return [normalize(x) for x in self.stuff]
 def __setstate__(self, stuff):
 def reconstruct(x):
 if x[0] == 0:
 return x[1]
 name, mode, offs = x[1]
 openfile = open(name, mode)
 openfile.seek(offs)
 return openfile
 self.stuff = tuple([reconstruct(x) for x in stuff])

By defining the __getstate__ and __setstate__ special methods in your class, you
gain fine-grained control about what, exactly, your class’ instances consider to be
their state. As long as you can define such state in picklable terms, and reconstruct
your instances from the unpickled state in some way that is sufficient for your appli-
cation, you can make your instances themselves picklable and unpicklable in this
way.

Discussion
cPickle dumps class and function objects by name (i.e., through their module’s
name and their name within the module). Thus, you can dump only classes defined
at module level (not inside other classes and functions). Reloading such objects
requires the respective modules to be available for import. Instances can be saved and
reloaded only if they belong to such classes. In addition, the instance’s state must
also be picklable.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Using the cPickle Module on Classes and Instances | 299

By default, an instance’s state is the contents of the instance’s __dict__, plus what-
ever state the instance may get from the built-in type the instance’s class inherits
from, if any. For example, an instance of a new-style class that subclasses list

includes the list items as part of the instance’s state. cPickle also handles instances of
new-style classes that define or inherit a class attribute named __slots__ (and there-
fore hold some or all per-instance state in those predefined slots, rather than in a per-
instance __dict__). Overall, cPickle’s default approach is often quite sufficient and
satisfactory.

Sometimes, however, you may have nonpicklable attributes or items as part of your
instance’s state (as cPickle defines such state by default, as explained in the previous
paragraph). In this recipe, for example, I show a class whose instances hold arbitrary
stuff, which may include open file objects. To handle this case, your class can
define the special method __getstate__. cPickle calls that method on your object,
if your object’s class defines it or inherits it, instead of going directly for the object’s
__dict__ (or possibly __slots__ and/or built-in type bases).

Normally, when you define the __getstate__ method, you define the __setstate__

method as well, as shown in this recipe’s Solution. __getstate__ can return any
picklable object, and that object gets pickled, and later, at unpickling time, passed as
__setstate__’s argument. In this recipe’s Solution, __getstate__ returns a list that’s
similar to the instance’s default state (attribute self.stuff), except that each item is
turned into a tuple of two items. The first item in the pair can be set to 0 to indicate
that the second one will be taken verbatim, or 1 to indicate that the second item will
be used to reconstruct an open file. (Of course, the reconstruction may fail or be
unsatisfactory in several ways. There is no general way to save an open file’s state,
which is why cPickle itself doesn’t even try. But in the context of our application, we
can assume that the given approach will work.) When reloading the instance from
pickled form, cPickle calls __setstate__ with the list of pairs, and __setstate__ can
reconstruct self.stuff by processing each pair appropriately in its nested
reconstruct function. This scheme can clearly generalize to getting and restoring
state that may contain various kinds of normally unpicklable objects—just be sure to
use different numbers to tag each of the various kinds of “nonverbatim” pairs you
need to support.

In one particular case, you can define __getstate__ without defining __setstate__:
__getstate__ must then return a dictionary, and reloading the instance from pickled
form uses that dictionary just as the instance’s __dict__ would normally be used.
Not running your own code at reloading time is a serious hindrance, but it may come
in handy when you want to use __getstate__, not to save otherwise unpicklable
state but rather as an optimization. Typically, this optimization opportunity occurs
when your instance caches results that it can recompute if they’re absent, and you
decide it’s best not to store the cache as a part of the instance’s state. In this case,
you should define __getstate__ to return a dictionary that’s the indispensable subset

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 7: Persistence and Databases

of the instance’s __dict__. (See recipe 4.13 “Extracting a Subset of a Dictionary”) for
a simple and handy way to “subset a dictionary”.)

Defining __getstate__ (and then, normally, also __setstate__) also gives you a fur-
ther important bonus, besides the pickling support: if a class offers these methods
but doesn’t offer special methods __copy__ or __deepcopy__, then the methods are
also used for copying, both shallowly and deeply, as well as for serializing. The state
data returned by __getstate__ is deep-copied if and only if the object is being dee-
copied, but, other than this distinction, shallow and deep copies work very similarly
when they are implemented through __getstate__. See recipe 4.1 “Copying an
Object” for more information about how a class can control the way its instances are
copied, shallowly or deeply.

With either the default pickling/unpickling approach, or your own __getstate__ and
__setstate__, the instance’s special method __init__ is not called when the instance
is getting unpickled. If the most convenient way for you to reconstruct an instance is
to call the __init__ method with appropriate parameters, then you may want to
define the special method __getinitargs__, instead of __getstate__. In this case,
cPickle calls this method without arguments: the method must return a pickable
tuple, and at unpickling time, cPickle calls __init__ with the arguments that are
that tuple’s items. __getinitargs__, like __getstate__ and __setstate__, can also be
used for copying.

The Library Reference for the pickle and copy_reg modules details even subtler
things you can do when pickling and unpickling, as well as the thorny security issues
that are likely to arise if you ever stoop to unpickling data from untrusted sources.
(Executive summary: don’t do that—there is no way Python can protect you if you
do.) However, the techniques I’ve discussed here should suffice in almost all practi-
cal cases, as long as the security aspects of unpickling are not a problem (and if they
are, the only practical suggestion is: forget pickling!).

See Also
Recipe 7.2 “Serializing Data Using the pickle and cPickle Modules”; documentation
for the standard library module cPickle in the Library Reference and Python in a
Nutshell.

7.5 Holding Bound Methods in a Picklable Way
Credit: Peter Cogolo

Problem
You need to pickle an object, but that object holds (as an attribute or item) a bound
method of another object, and bound methods are not picklable.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 Holding Bound Methods in a Picklable Way | 301

Solution
Say you have the following objects:

import cPickle
class Greeter(object):
 def __init__(self, name):
 self.name = name
 def greet(self):
 print 'hello', self.name
class Repeater(object):
 def __init__(self, greeter):
 self.greeter = greeter
 def greet(self):
 self.greeter()
 self.greeter()
r = Repeater(Greeter('world').greet)

Were it not for the fact that r holds a bound method as its greeter attribute, you
could pickle r very simply:

s = cPickle.dumps(r)

However, upon encountering the bound method, this call to cPickle.dumps raises a
TypeError. One simple solution is to have each instance of class Repeater hold, not a
bound method directly, but rather a picklable wrapper to it. For example:

class picklable_boundmethod(object):
 def __init__(self, mt):
 self.mt = mt
 def __getstate__(self):
 return self.mt.im_self, self.mt.im_func.__name__
 def __setstate__(self, (s,fn)):
 self.mt = getattr(s, fn)
 def __call__(self, *a, **kw):
 return self.mt(*a, **kw)

Now, changing Repeater.__init__’s body to self.greeter = picklable_

boundmethod(greeter) makes the previous snippet work.

Discussion
The Python Standard Library pickle module (just like its faster equivalent cousin
cPickle) pickles functions and classes by name—this implies, in particular, that only
functions defined at the top level of a module can be pickled (the pickling of such a
function, in practice, contains just the names of the module and function).

If you have a graph of objects that hold each other, not directly, but via one
another’s bound methods (which is often a good idea in Python), this limitation can
make the whole graph unpicklable. One solution might be to teach pickle how to
serialize bound methods, along the same lines as described in recipe 7.6 “Pickling
Code Objects.” Another possible solution is to define appropriate _ _

getstate_ _ and _ _setstate__ methods to turn bound methods into something

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 7: Persistence and Databases

picklable at dump time and rebuild them at load time, along the lines described in rec-
ipe 7.4 “Using the cPickle Module on Classes and Instances.” However, this latter
possibility is not a good factorization when you have several classes whose instances
hold bound methods.

This recipe pursues a simpler idea, based on holding bound methods, not directly,
but via the picklable_boundmethod wrapper class. picklable_boundmethod is written
under the assumption that the only thing you usually do with a bound method is to
call it, so it only delegates __call__ functionality specifically. (You could, in addi-
tion, also use __getattr__, in order to delegate other attribute accesses.)

In normal operation, the fact that you’re holding an instance of picklable_

boundmethod rather than holding the bound method object directly is essentially
transparent. When pickling time comes, special method __getstate__ of picklable_
boundmethod comes into play, as previously covered in recipe 7.4 “Using the cPickle
Module on Classes and Instances.” In the case of picklable_boundmethod, __getstate__
returns the object to which the bound method belongs and the function name of the
bound method. Later, at unpickling time, __setstate__ recovers an equivalent
bound method from the reconstructed object by using the getattr built-in for that
name. This approach isn’t infallible because an object might hold its methods under
assumed names (different from the real function names of the methods). However,
assuming you’re not specifically doing something weird for the specific purpose of
breaking picklable_boundmethod’s functionality, you shouldn’t ever run into this kind
of obscure problem!

See Also
Library Reference and Python in a Nutshell docs for modules pickle and cPickle,
bound-method objects, and the getattr built-in.

7.6 Pickling Code Objects
Credit: Andres Tremols, Peter Cogolo

Problem
You want to be able to pickle code objects, but this functionality is not supported by
the standard library’s pickling modules.

Solution
You can extend the abilities of the pickle (or cPickle) module by using module copy_

reg. Just make sure the following module has been imported before you pickle code
objects, and has been imported, or is available to be imported, when you’re unpick-
ling them:

import new, types, copy_reg
def code_ctor(*args):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.6 Pickling Code Objects | 303

 # delegate to new.code the construction of a new code object
 return new.code(*args)
def reduce_code(co):
 # a reductor function must return a tuple with two items: first, the
 # constructor function to be called to rebuild the argument object
 # at a future de-serialization time; then, the tuple of arguments
 # that will need to be passed to the constructor function.
 if co.co_freevars or co.co_cellvars:
 raise ValueError, "Sorry, cannot pickle code objects from closures"
 return code_ctor, (co.co_argcount, co.co_nlocals, co.co_stacksize,
 co.co_flags, co.co_code, co.co_consts, co.co_names,
 co.co_varnames, co.co_filename, co.co_name, co.co_firstlineno,
 co.co_lnotab)
register the reductor to be used for pickling objects of type 'CodeType'
copy_reg.pickle(types.CodeType, reduce_code)
if __name__ == '__main__':
 # example usage of our new ability to pickle code objects
 import cPickle
 # a function (which, inside, has a code object, of course)
 def f(x): print 'Hello,', x
 # serialize the function's code object to a string of bytes
 pickled_code = cPickle.dumps(f.func_code)
 # recover an equal code object from the string of bytes
 recovered_code = cPickle.loads(pickled_code)
 # build a new function around the rebuilt code object
 g = new.function(recovered_code, globals())
 # check what happens when the new function gets called
 g('world')

Discussion
The Python Standard Library pickle module (just like its faster equivalent cousin
cPickle) pickles functions and classes by name. There is no pickling of the code
objects containing the compiled bytecode that, when run, determines almost every
aspect of functions’ (and methods’) behavior. In some situations, you’d rather pickle
everything by value, so that all the relevant stuff can later be retrieved from the
pickle, rather than having to have module files around for some of it. Sometimes you
can solve such problems by using marshaling rather than pickling, since marshal does
let you serialize code objects, but marshal has limitations on many other issues. For
example, you cannot marshal instances of classes you have coded. (Once you’re seri-
alizing code objects, which are specific to a given version of Python, pickle will share
one key limitation of marshal: no guaranteed ability to save and later reload data
across different versions of Python.)

An alternative approach is to take advantage of the possibility, which the Python
Standard Library allows, to extend the set of types known to pickle. Basically, you
can “teach” pickle how to save and reload code objects; this, in turn, lets you pickle
by value, rather than “by name”, such objects as functions and classes. (The code in
this recipe’s Solution under the if __name__ == '__main__' guard essentially shows
how to extend pickle for a function.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 7: Persistence and Databases

To teach pickle about some new type, use module copy_reg, which is also part of the
Python Standard Library. Through function copy_reg.pickle, you register the reduc-
tion function to use for instances of a given type. A reduction function takes as its
argument an instance to be pickled and returns a tuple with two items: a constructor
function, which will be called to reconstruct the instance, and a tuple of arguments,
which will be passed to the constructor function. (A reduction function may also
return other kinds of results, but for this recipe’s purposes a two-item tuple suffices.)

The module in this recipe defines function reduce_code, then registers it as the reduc-
tion function for objects of type types.CodeType—that is, code objects. When
reduce_code gets called, it first checks whether its code object co comes from a clo-
sure (functions nested inside each other), because it just can’t deal with this eventual-
ity—I’ve been unable to find a way that works, so in this case, reduce_code just raises
an exception to let the user know about the problem.

In normal cases, reduce_code returns code_ctor as the constructor and a tuple made
up of all of co’s attributes as the arguments tuple for the constructor. When a code
object is reloaded from a pickle, code_ctor gets called with those arguments and sim-
ply passes the call on to the new.code callable, which is the true constructor for code
arguments. Unfortunately, reduce_code cannot return new.code itself as the first item
in its result tuple, because new.code is a built-in (a C-coded callable) but is not avail-
able through a built-in name. So, basically, the role of code_ctor is to provide a name
for the (by-name) pickling of new.code.

The if __name__ == '__main__' part of the recipe provides a typical toy usage exam-
ple—it pickles a code object to a string, recovers a copy of it from the pickle string,
and builds and calls a function around that code object. A more typical use case for
this recipe’s functionality, of course, will do the pickling in one script and the
unpickling in another. Assume that the module in this recipe has been saved as file
reco.py somewhere on Python’s sys.path, so that it can be imported by Python
scripts and other modules. You could then have a script that imports reco and thus
becomes able to pickle code objects, such as:

import reco, pickle
def f(x):
 print 'Hello,', x
pickle.dump(f.func_code, open('saved.pickle','wb'))

To unpickle and use that code object, an example script might be:

import new, cPickle
c = cPickle.load(open('saved.pickle','rb'))
g = new.function(c, globals())
g('world')

Note that the second script does not need to import reco—the import will happen
automatically when needed (part of the information that pickle saves in saved.pickle
is that, in order to reconstruct the pickled object therein, it needs to call reco.code_
ctor; so, it also knows it needs to import reco). I’m also showing that you can use

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.7 Mutating Objects with shelve | 305

modules pickle and cPickle interchangeably. Pickle is faster, but there are no other
differences, and in particular, you can use one module to pickle objects and the other
one to unpickle them, if you wish.

See Also
Modules pickle, cPickle, and copy_reg in the Library Reference and Python in a Nut-
shell.

7.7 Mutating Objects with shelve
Credit: Luther Blissett

Problem
You are using the standard module shelve. Some of the values you have shelved are
mutable objects, and you need to mutate these objects.

Solution
The shelve module offers a kind of persistent dictionary—an important niche
between the power of relational-database engines and the simplicity of marshal,
pickle, dbm, and similar file formats. However, you should be aware of a typical trap
you need to avoid when using shelve. Consider the following interactive Python ses-
sion:

>>> import shelve
>>> # Build a simple sample shelf
>>> she = shelve.open('try.she', 'c')
>>> for c in 'spam': she[c] = {c:23}
...
>>> for c in she.keys(): print c, she[c]
...
p {'p': 23}
s {'s': 23}
a {'a': 23}
m {'m': 23}
>>> she.close()

We’ve created the shelve file, added some data to it, and closed it. Good—now we
can reopen it and work with it:

>>> she=shelve.open('try.she', 'c')
>>> she['p']
{'p': 23}
>>> she['p']['p'] = 42
>>> she['p']
{'p': 23}

What’s going on here? We just set the value to 42, but our setting didn’t take in the
shelve object! The problem is that we were working with a temporary object that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 7: Persistence and Databases

shelve gave us, not with the “real thing”. shelve, when we open it with default
options, like here, doesn’t track changes to such temporary objects. One reasonable
solution is to bind a name to this temporary object, do our mutation, and then assign
the mutated object back to the appropriate item of shelve:

>>> a = she['p']
>>> a['p'] = 42
>>> she['p'] = a
>>> she['p']
{'p': 42}
>>> she.close()

We can verify that the change was properly persisted:

>>> she=shelve.open('try.she','c')
>>> for c in she.keys(): print c,she[c]
...
p {'p': 42}
s {'s': 23}
a {'a': 23}
m {'m': 23}

A simpler solution is to open the shelve object with the writeback option set to True:

>>> she = shelve.open('try.she', 'c', writeback=True)

The writeback option instructs shelve to keep track of all the objects it gets from the
file and write them all back to the file before closing it, just in case they have been
modified in the meantime. While simple, this approach can be quite expensive, par-
ticularly in terms of memory consumption. Specifically, if we read many objects from
a shelve object opened with writeback=True, even if we only modify a few of them,
shelve is going to keep them all in memory, since it can’t tell in advance which one
we may be about to modify. The previous approach, where we explicitly take respon-
sibility to notify shelve of any changes (by assigning the changed objects back to the
place they came from), requires more care on our part, but repays that care by giving
us much better performance.

Discussion
The standard Python module shelve can be quite convenient in many cases, but it
hides a potentially nasty trap, admittedly well documented in Python’s online docs
but still easy to miss. Suppose you’re shelving mutable objects, such as dictionaries
or lists. Naturally, you are quite likely to want to mutate some of those objects—for
example, by calling mutating methods (append on a list, update on a dictionary, etc.)
or by assigning a new value to an item or attribute of the object. However, when you
do this, the change doesn’t occur in the shelve object. This is because we actually
mutate a temporary object that the shelve object has given us as the result of shelve’s
own __getitem__ method, but the shelve object, by default, does not keep track of
that temporary object, nor does it care about it once it returns it to us.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.8 Using the Berkeley DB Database | 307

As shown in the recipe, one solution is to bind a name to the temporary object
obtained by keying into the shelf, doing whatever mutations are needed to the object
via the name, then assigning the newly mutated object back to the appropriate item
of the shelve object. When you assign to a shelve object’s item, the shelve object’s
__setitem__ method gets invoked, and it appropriately updates the shelve object
itself, so that the change does occur.

Alternatively, you can add the flag writeback=True at the time you open the shelve

object, and then shelve keeps track of every object it hands you, saving them all back
to disk at the end. This approach may save you quite a bit of fussy and laborious
coding, but take care: if you read many items of the shelve object and only modify a
few of them, the writeback approach can be exceedingly costly, particularly in terms
of memory consumption. When opened with writeback=True, shelve will keep in
memory any item it has ever handed you, and save them all to disk at the end, since
it doesn’t have a reliable way to tell which items you may be about to modify, nor, in
general, even which items you have actually modified by the time you close the
shelve object. The recommended approach, unless you’re going to modify just about
every item you read (or unless the shelve object in question is small enough com-
pared with your available memory that you don’t really care), is the previous one:
bind a name to the items that you get from a shelve object with intent to modify
them, and assign each item back into the shelve object once you’re done mutating
that item.

See Also
Recipe 7.1 “Serializing Data Using the marshal Module” and recipe 7.2 “Serializing
Data Using the pickle and cPickle Modules” for alternative serialization approaches;
documentation for the shelve standard library module in the Library Reference and
Python in a Nutshell.

7.8 Using the Berkeley DB Database
Credit: Farhad Fouladi

Problem
You want to persist some data, exploiting the simplicity and good performance of
the Berkeley DB database library.

Solution
If you have previously installed Berkeley DB on your machine, the Python Standard
Library comes with package bsddb (and optionally bsddb3, to access Berkeley DB
release 3.2 databases) to interface your Python code with Berkeley DB. To get either
bsddb or, lacking it, bsddb3, use a try/except on import:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 7: Persistence and Databases

try:
 from bsddb import db # first try release 4
except ImportError:
 from bsddb3 import db # not there, try release 3 instead
print db.DB_VERSION_STRING
emits, e.g: Sleepycat Software: Berkeley DB 4.1.25: (December 19, 2002)

To create a database, instantiate a db.DB object, then call its method open with appro-
priate parameters, such as:

adb = db.DB()
adb.open('db_filename', dbtype=db.DB_HASH, flags=db.DB_CREATE)

db.DB_HASH is just one of several access methods you may choose when you create a
database—a popular alternative is db.DB_BTREE, to use B+tree access (handy if you
need to get records in sorted order). You may make an in-memory database, without
an underlying file for persistence, by passing None instead of a filename as the first
argument to the open method.

Once you have an open instance of db.DB, you can add records, each composed of
two strings, key and data:

for i, w in enumerate('some words for example'.split()):
 adb.put(w, str(i))

You can access records via a cursor on the database:

def irecords(curs):
 record = curs.first()
 while record:
 yield record
 record = curs.next()
for key, data in irecords(adb.cursor()):
 print 'key=%r, data=%r' % (key, data)
emits (the order may vary):
key='some', data='0'
key='example', data='3'
key='words', data='1'
key='for', data='2'

When you’re done, you close the database:

adb.close()

At any future time, in the same or another Python program, you can reopen the data-
base by giving just its filename as the argument to the open method of a newly cre-
ated db.DB instance:

the_same_db = db.DB()
the_same_db.open('db_filename')

and work on it again in the same ways:

the_same_db.put('skidoo', '23') # add a record
the_same_db.put('words', 'sweet') # replace a record
for key, data in irecords(the_same_db.cursor()):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.8 Using the Berkeley DB Database | 309

 print 'key=%r, data=%r' % (key, data)
emits (the order may vary):
key='some', data='0'
key='example', data='3'
key='words', data='sweet'
key='for', data='2'
key='skidoo', data='23'

Again, remember to close the database when you’re done:

the_same_db.close()

Discussion
The Berkeley DB is a popular open source database. It does not support SQL, but it’s
simple to use, offers excellent performance, and gives you a lot of control over
exactly what happens, if you care to exert it, through a huge array of options, flags,
and methods. Berkeley DB is just as accessible from many other languages as from
Python: for example, you can perform some changes or queries with a Python pro-
gram, and others with a separate C program, on the same database file, using the
same underlying open source library that you can freely download from Sleepycat.

The Python Standard Library shelve module can use the Berkeley DB as its underly-
ing database engine, just as it uses cPickle for serialization. However, shelve does
not let you take advantage of the ability to access a Berkeley DB database file from
several different languages, exactly because the records are strings produced by
pickle.dumps, and languages other than Python can’t easily deal with them. Access-
ing the Berkeley DB directly with bsddb also gives you access to many advanced func-
tionalities of the database engine that shelve simply doesn’t support.

For example, creating a database with an access method of db.DB_HASH, as shown in
the recipe, may give maximum performance, but, as you’ll have noticed when listing
all records with the generator irecords that is also presented in the recipe, hashing
puts records in apparently random, unpredictable order. If you need to access
records in sorted order, you can use an access method of db.DB_BTREE instead. Berke-
ley DB also supports more advanced functionality, such as transactions, which you
can enable through direct access but not via anydbm or shelve.

For detailed documentation about all functionality of the Python Standard Library
bsddb package, see http://pybsddb.sourceforge.net/bsddb3.html. For documentation,
downloads, and more of the Berkeley DB itself, see http://www.sleepycat.com/.

See Also
Library Reference and Python in a Nutshell docs for modules anydbm, shelve, and
bsddb; http://pybsddb.sourceforge.net/bsddb3.html for many more details about bsddb

and bsddb3; http://www.sleepycat.com/ for downloads of, and very detailed documen-
tation on, the Berkeley DB itself.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 7: Persistence and Databases

7.9 Accessing a MySQL Database
Credit: Mark Nenadov

Problem
You need to access a MySQL database.

Solution
The MySQLdb module makes this task extremely easy:

import MySQLdb
Create a connection object, then use it to create a cursor
con = MySQLdb.connect(host="127.0.0.1", port=3306,

user="joe", passwd="egf42", db="tst")
cursor = con.cursor()
Execute an SQL string
sql = "SELECT * FROM Users"
cursor.execute(sql)
Fetch all results from the cursor into a sequence and close the connection
results = cursor.fetchall()
con.close()

A Database, or pickle . . . or Both?
The use cases for pickle or marshal, and those for databases such as Berkeley DB or
relational databases, are rather different, though they do overlap somewhat.

pickle (and marshal even more so) is essentially about serialization: you turn Python
objects into BLOBs that you may transmit or store, and later receive or retrieve. Data
thus serialized is meant to be reloaded into Python objects, basically only by Python
applications. pickle has nothing to say about searching or selecting specific objects or
parts of them.

Databases (Berkeley DB, relational DBs, and other kinds yet) are essentially about
data: you save and retrieve groupings of elementary data (strings and numbers,
mostly), with a lot of support for selecting and searching (a huge lot, for relational data-
bases) and cross-language support. Databases have nothing to say about serializing
Python objects into data, nor about deserializing Python objects back from data.

The two approaches, databases and serialization, can even be used together. You can
serialize Python objects into strings of bytes with pickle, and store those bytes using a
database—and vice versa at retrieval time. At a very elementary level, that’s what the
standard Python library shelve module does, for example, with pickle to serialize and
deserialize and generally bsddb as the underlying simple database engine. So, don’t
think of the two approaches as being “in competition” with each other—rather, think
of them as completing and complementing each other!

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.9 Accessing a MySQL Database | 311

Discussion
MySQLdb is at http://sourceforge.net/projects/mysql-python. It is a plain and simple
implementation of the Python DB API 2.0 that is suitable for Python 2.3 (and some
older versions, too) and MySQL versions 3.22 to 4.0. MySQLdb, at the time of this
writing, did not yet officially support Python 2.4. However, if you have the right C
compiler installation to build Python extensions (as should be the case for all Linux,
Mac OS X, and other Unix users, and many Windows developers), the current ver-
sion of MySQLdb does in fact build from sources, install, and work just fine, with
Python 2.4. A newer version of MySQLdb is in the works, with official support for
Python 2.3 or later and MySQL 4.0 or later.

As with all other Python DB API implementations (once you have downloaded and
installed the needed Python extension and have the database engine it needs up and
running), you start by importing the module and calling the connect function with
suitable parameters. The keyword parameters you can pass when calling connect

depend on the database involved: host (defaulting to the local host), user, passwd

(password), and db (name of the database) are typical. In the recipe, I explicitly pass
the default local host’s IP address and the default MySQL port (3306), just to show
that you can specify parameters explicitly even when you’re passing their default val-
ues (e.g., to make your source code clearer and more readable and maintainable).

The connect function returns a connection object, and you can proceed to call meth-
ods on this object; when you are done, call the close method. The method you most
often call on a connection object is cursor, which returns a cursor object, which is
what you use to send SQL commands to the database and fetch the commands’
results. The underlying MySQL database engine does not in fact support SQL cur-
sors, but that’s no problem—the MySQLdb module emulates them on your behalf,
quite transparently, for the limited cursor needs of the Python DB API 2.0. Of
course, this doesn’t mean that you can use SQL phrases like WHERE CURRENT OF CURSOR

with a database that does not offer cursors! Once you have a cursor object in hand,
you can call methods on it. The recipe uses the execute method to execute an SQL
statement, and then the fetchall method to obtain all results as a sequence of
tuples—one tuple per row in the result. You can use many refinements, but these
basic elements of the Python DB API’s functionality already suffice for many tasks.

See Also
The Python-MySQL interface module (http://sourceforge.net/projects/mysql-python);
the Python DB API (http://www.python.org/topics/database/DatabaseAPI-2.0.html);
DB API documentation in Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 7: Persistence and Databases

7.10 Storing a BLOB in a MySQL Database
Credit: Luther Blissett

Problem
You need to store a binary large object (BLOB) in a MySQL database.

Solution
The MySQLdb module does not support full-fledged placeholders, but you can make
do with the module’s escape_string function:

import MySQLdb, cPickle
Connect to a DB, e.g., the test DB on your localhost, and get a cursor
connection = MySQLdb.connect(db="test")
cursor = connection.cursor()
Make a new table for experimentation
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BLOB)")
try:
 # Prepare some BLOBs to insert in the table
 names = 'aramis', 'athos', 'porthos'
 data = { }
 for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
 # Perform the insertions
 sql = "INSERT INTO justatest VALUES(%s, %s)"
 for name in names:
 cursor.execute(sql, (name, MySQLdb.escape_string(data[name])))
 # Recover the data so you can check back
 sql = "SELECT name, ablob FROM justatest ORDER BY name"
 cursor.execute(sql)
 for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
finally:
 # Done. Remove the table and close the connection.
 cursor.execute("DROP TABLE justatest")
 connection.close()

Discussion
MySQL supports binary data (BLOBs and variations thereof), but you should be
careful when communicating such data via SQL. Specifically, when you use a nor-
mal INSERT SQL statement and need to have binary strings among the VALUES you’re
inserting, you have to escape some characters in the binary string according to
MySQL’s own rules. Fortunately, you don’t have to figure out those rules for your-
self: MySQL supplies a function that does the needed escaping, and MySQLdb exposes
it to your Python programs as the escape_string function.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.11 Storing a BLOB in a PostgreSQL Database | 313

This recipe shows a typical case: the BLOBs you’re inserting come from
cPickle.dumps, so they may represent almost arbitrary Python objects (although, in
this case, we’re just using them for a few lists of characters). The recipe is purely
demonstrative and works by creating a table and dropping it at the end (using a try/

finally statement to ensure that finalization is performed even if the program should
terminate because of an uncaught exception). With recent versions of MySQL and
MySQLdb, you don’t even need to call the escape_string function anymore, so you can
change the relevant statement to the simpler:

cursor.execute(sql, (name, data[name]))

See Also
Recipe 7.11 “Storing a BLOB in a PostgreSQL Database” and recipe 7.12 “Storing a
BLOB in a SQLite Database” for PostgreSQL-oriented and SQLite-oriented solu-
tions to the same problem; the MySQL home page (http://www.mysql.org); the
Python/MySQL interface module (http://sourceforge.net/projects/mysql-python).

7.11 Storing a BLOB in a PostgreSQL Database
Credit: Luther Blissett

Problem
You need to store a BLOB in a PostgreSQL database.

Solution
PostgreSQL 7.2 and later supports large objects, and the psycopg module supplies a
Binary escaping function:

import psycopg, cPickle
Connect to a DB, e.g., the test DB on your localhost, and get a cursor
connection = psycopg.connect("dbname=test")
cursor = connection.cursor()
Make a new table for experimentation
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BYTEA)")
try:
 # Prepare some BLOBs to insert in the table
 names = 'aramis', 'athos', 'porthos'
 data = { }
 for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
 # Perform the insertions
 sql = "INSERT INTO justatest VALUES(%s, %s)"
 for name in names:
 cursor.execute(sql, (name, psycopg.Binary(data[name])))
 # Recover the data so you can check back

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 7: Persistence and Databases

 sql = "SELECT name, ablob FROM justatest ORDER BY name"
 cursor.execute(sql)
 for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
finally:
 # Done. Remove the table and close the connection.
 cursor.execute("DROP TABLE justatest")
 connection.close()

Discussion
PostgreSQL supports binary data (BYTEA and variations thereof), but you should be
careful when communicating such data via SQL. Specifically, when you use a nor-
mal INSERT SQL statement and need to have binary strings among the VALUES you’re
inserting, you have to escape some characters in the binary string according to Post-
greSQL’s own rules. Fortunately, you don’t have to figure out those rules for your-
self: PostgreSQL supplies functions that do all the needed escaping, and psycopg

exposes such a function to your Python programs as the Binary function. This recipe
shows a typical case: the BYTEAs you’re inserting come from cPickle.dumps, so they
may represent almost arbitrary Python objects (although, in this case, we’re just
using them for a few lists of characters). The recipe is purely demonstrative and
works by creating a table and dropping it at the end (using a try/finally statement
to ensure finalization is performed even if the program should terminate because of
an uncaught exception).

Earlier PostgreSQL releases limited to a few kilobytes the amount of data you could
store in a normal field of the database. To store really large objects, you had to use
roundabout techniques to load the data into the database (such as PostgreSQL’s
nonstandard SQL function LO_IMPORT to load a data file as an object, which requires
superuser privileges and data files that reside on the machine running the Postgre–
SQL Server) and store a field of type OID in the table to be used later for indirect
recovery of the data. Fortunately, none of these techniques are necessary anymore:
since Release 7.1 (the current release at the time of writing is 8.0), PostgreSQL
embodies the results of project TOAST, which removed the limitations on field-
storage size and therefore the need for peculiar indirection. Module psycopg supplies
the handy Binary function to let you escape any binary string of bytes into a form
acceptable for placeholder substitution in INSERT and UPDATE SQL statements.

See Also
Recipe 7.10 “Storing a BLOB in a MySQL Database” and recipe 7.12 “Storing a
BLOB in a SQLite Database” for MySQL-oriented and SQLite-oriented solutions to
the same problem; PostgresSQL’s home page (http://www.postgresql.org/); the
Python/PostgreSQL module (http://initd.org/software/psycopg).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.12 Storing a BLOB in a SQLite Database | 315

7.12 Storing a BLOB in a SQLite Database
Credit: John Barham

Problem
You need to store a BLOB in an SQLite database.

Solution
The PySQLite Python extension offers function sqlite.encode to let you insert binary
strings in SQLite databases. You can also build a small adapter class based on that
function:

import sqlite, cPickle
class Blob(object):
 ''' automatic converter for binary strings '''
 def __init__(self, s): self.s = s
 def _quote(self): return "'%s'" % sqlite.encode(self.s)
make a test database in memory, get a cursor on it, and make a table
connection = sqlite.connect(':memory:')
cursor = connection.cursor()
cursor.execute("CREATE TABLE justatest (name TEXT, ablob BLOB)")
Prepare some BLOBs to insert in the table
names = 'aramis', 'athos', 'porthos'
data = { }
for name in names:
 datum = list(name)
 datum.sort()
 data[name] = cPickle.dumps(datum, 2)
Perform the insertions
sql = 'INSERT INTO justatest VALUES(%s, %s)'
for name in names:
 cursor.execute(sql, (name, Blob(data[name])))
Recover the data so you can check back
sql = 'SELECT name, ablob FROM justatest ORDER BY name'
cursor.execute(sql)
for name, blob in cursor.fetchall():
 print name, cPickle.loads(blob), cPickle.loads(data[name])
Done, close the connection (would be no big deal if you didn't, but...)
connection.close()

Discussion
SQLite does not directly support binary data, but it still lets you declare such types
for fields in a CREATE TABLE DDL statement. The PySQLite Python extension uses the
declared types of fields to convert field values appropriately to Python values when
you fetch data after an SQL SELECT from an SQLite database. However, you still need
to be careful when communicating binary string data via SQL.

Specifically, when you use INSERT or UPDATE SQL statements, and need to have binary
strings among the VALUES you’re passing, you need to escape some characters in the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 7: Persistence and Databases

binary string according to SQLite’s own rules. Fortunately, you don’t have to figure
out those rules for yourself: SQLite supplies the function to do the needed escaping,
and PySQLite exposes that function to your Python programs as the sqlite.encode

function. This recipe shows a typical case: the BLOBs you’re inserting come from
cPickle.dumps, so they may represent almost arbitrary Python objects (although, in
this case, we’re just using them for a few lists of characters). The recipe is purely
demonstrative and works by creating a database in memory, so that the database is
implicitly lost at the end of the script.

While you could perfectly well call sqlite.encode directly on your binary strings at
the time you pass them as parameters to a cursor’s execute method, this recipe takes
a slightly different tack, defining a Blob class to wrap binary strings and passing
instances of that. When PySQLite receives as arguments instances of any class, the
class must define a method named _quote, and PySQLite calls that method on each
instance, expecting the method to return a string fully ready for insertion into an
SQL statement. When you use this approach for more complicated classes of your
own, you’ll probably want to pass a decoders keyword argument to the connect

method, to associate appropriate decoding functions to specific SQL types. By
default, however, the BLOB SQL type is associated with the decoding function
sqlite.decode, which is exactly the inverse of sqlite.encode; for the simple Blob

class in this recipe, therefore, we do not need to specify any custom decoder, since
the default one suits us perfectly well.

See Also
Recipe 7.10 “Storing a BLOB in a MySQL Database” and recipe 7.11 “Storing a
BLOB in a PostgreSQL Database” for MySQL-oriented and PostgreSQL-oriented
solutions to the same problem; SQLite’s home page (http://www.sqlite.org/); the
PySQLite manual (http://pysqlite.sourceforge.net/manual.html); the SQLite FAQ
(“Does SQLite support a BLOB type?”) at http://www.hwaci.com/sw/sqlite/
faq.html#q12.

7.13 Generating a Dictionary Mapping Field
Names to Column Numbers

Credit: Thomas T. Jenkins

Problem
You want to access data fetched from a DB API cursor object, but you want to access
the columns by field name, not by number.

Solution
Accessing columns within a set of database-fetched rows by column index is not very
readable, nor is it robust should columns ever get reordered in a rework of the data-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.13 Generating a Dictionary Mapping Field Names to Column Numbers | 317

base’s schema (a rare event, but it does occasionally happen). This recipe exploits the
description attribute of Python DB API’s cursor objects to build a dictionary that
maps column names to index values, so you can use cursor_row[field_

dict[fieldname]] to get the value of a named column:

def fields(cursor):
 """ Given a DB API 2.0 cursor object that has been executed, returns
 a dictionary that maps each field name to a column index, 0 and up. """
 results = { }
 for column, desc in enumerate(cursor.description):
 results[desc[0]] = column
 return results

Discussion
When you get a set of rows from a call to any of a cursor’s various fetch . . . meth-
ods (fetchone, fetchmany, fetchall), it is often helpful to be able to access a specific
column in a row by field name and not by column number. This recipe shows a func-
tion that takes a DB API 2.0 cursor object and returns a dictionary with column
numbers keyed by field names.

Here’s a usage example (assuming you put this recipe’s code in a module that you
call dbutils.py somewhere on your Python sys.path). You must start with conn being
a connection object for any DB API 2–compliant Python module.

>>> c = conn.cursor()
>>> c.execute('''select * from country_region_goal
... where crg_region_code is null''')
>>> import pprint
>>> pp = pprint.pprint
>>> pp(c.description)
(('CRG_ID', 4, None, None, 10, 0, 0),
('CRG_PROGRAM_ID', 4, None, None, 10, 0, 1),
('CRG_FISCAL_YEAR', 12, None, None, 4, 0, 1),
('CRG_REGION_CODE', 12, None, None, 3, 0, 1),
('CRG_COUNTRY_CODE', 12, None, None, 2, 0, 1),
('CRG_GOAL_CODE', 12, None, None, 2, 0, 1),
('CRG_FUNDING_AMOUNT', 8, None, None, 15, 0, 1))
>>> import dbutils
>>> field_dict = dbutils.fields(c)
>>> pp(field_dict)
{'CRG_COUNTRY_CODE': 4,
'CRG_FISCAL_YEAR': 2,
'CRG_FUNDING_AMOUNT': 6,
'CRG_GOAL_CODE': 5,
'CRG_ID': 0,
'CRG_PROGRAM_ID': 1,
'CRG_REGION_CODE': 3}
>>> row = c.fetchone()
>>> pp(row)
(45, 3, '2000', None, 'HR', '26', 48509.0)
>>> ctry_code = row[field_dict['CRG_COUNTRY_CODE']]
>>> print ctry_code
HR

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 7: Persistence and Databases

>>> fund = row[field_dict['CRG_FUNDING_AMOUNT']]
>>> print fund
48509.0

If you find accesses such as row[field_dict['CRG_COUNTRY_CODE']] to be still inele-
gant, you may want to get fancier and wrap the row as well as the dictionary of fields
into an object allowing more elegant access—a simple example might be:

class neater(object):
 def __init__(self, row, field_dict):
 self.r = row
 self.d = field_dict
 def __getattr__(self, name):
 try:
 return self.r[self.d[name]]
 except LookupError:
 raise AttributeError

If this neater class was also in your dubtils module, you could then continue the
preceding interactive snippet with, for example:

>>> row = dbutils.neater(row, field_dict)
>>> print row.CRG_FUNDING_AMOUNT
48509.0

However, if you’re tempted by such fancier approaches, I suggest that, rather than
rolling your own, you have a look at the dbtuple module showcased in recipe 7.14
“Using dtuple for Flexible Access to Query Results.” Reusing good, solid, proven
code is a much smarter approach than writing your own infrastructure.

See Also
Recipe 7.14 “Using dtuple for Flexible Access to Query Results” for a slicker and
more elaborate approach to a very similar task, facilitated by reusing the third-party
dbtuple module.

7.14 Using dtuple for Flexible Access
to Query Results

Credit: Steve Holden, Hamish Lawson, Kevin Jacobs

Problem
You want flexible access to sequences, such as the rows in a database query, by
either name or column number.

Solution
Rather than coding your own solution, it’s often more clever to reuse a good existing
one. For this recipe’s task, a good existing solution is packaged in Greg Stein’s dtuple

module:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.14 Using dtuple for Flexible Access to Query Results | 319

import dtuple
import mx.ODBC.Windows as odbc
flist = ["Name", "Num", "LinkText"]
descr = dtuple.TupleDescriptor([[n] for n in flist])
conn = odbc.connect("HoldenWebSQL") # Connect to a database
curs = conn.cursor() # Create a cursor
sql = """SELECT %s FROM StdPage
 WHERE PageSet='Std' AND Num<25
 ORDER BY PageSet, Num""" % ", ".join(flist)
print sql
curs.execute(sql)
rows = curs.fetchall()
for row in rows:
 row = dtuple.DatabaseTuple(descr, row)
 print "Attribute: Name: %s Number: %d" % (row.Name, row.Num or 0)
 print "Subscript: Name: %s Number: %d" % (row[0], row[1] or 0)
 print "Mapping: Name: %s Number: %d" % (row["Name"], row["Num"] or 0)
conn.close()

Discussion
Novice Python programmers are sometimes deterred from using databases because
query results are presented by DB API-compliant modules as a list of tuples. Since
tuples can only be numerically subscripted, code that uses the query results becomes
opaque and difficult to maintain. Greg Stein’s dtuple module, available from http://
www.lyra.org/greg/python/dtuple.py, helps by defining two useful classes:
TupleDescriptor and DatabaseTuple. To access an arbitrary SQL database, this recipe
uses the ODBC protocol through the mxODBC module, http://www.egenix.com/files/
python/mxODBC.html, but nothing relevant to the recipe’s task would change if any
other standard DB API-compliant module was used instead.

The TupleDescriptor class creates a description of tuples from a list of sequences, the
first element of each subsequence being a column name. It is often convenient to
describe data with such sequences. For example, in an interactive forms-based appli-
cation, each column name might be followed by validation parameters such as data
type and allowable length. TupleDescriptor’s purpose is to allow the creation of
DatabaseTuple objects. In this particular application, no other information about the
columns is needed beyond the names, so the required list of sequences is a list of sin-
gleton lists (meaning lists that have just one element each), constructed from a list of
field names using a list comprehension.

Created from TupleDescriptor and a tuple such as a database row, DatabaseTuple is
an object whose elements can be accessed by numeric subscript (like a tuple) or col-
umn-name subscript (like a dictionary). If column names are legal Python names,
you can also access the columns in your DatabaseTuple as attributes. A purist might
object to this crossover between items and attributes, but it’s a highly pragmatic
choice in this case. Python is nothing if not a highly pragmatic language, so I see
nothing wrong with this convenience.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 7: Persistence and Databases

To demonstrate the utility of DatabaseTuple, the simple test program in this recipe
creates a TupleDescriptor and uses it to convert each row retrieved from an SQL
query into DatabaseTuple. Because the sample uses the same field list to build both
TupleDescriptor and the SQL SELECT statement, it demonstrates how database code
can be parameterized relatively easily.

Alternatively, if you wish to get all the fields (an SQL SELECT * query), and dynami-
cally get the field names from the cursor, as previously described in recipe 7.13
“Generating a Dictionary Mapping Field Names to Column Numbers,” you can do
so. Just remove variable flist, which you don’t need any more, and move the con-
struction of variable descr to right after the call to the cursor’s execute method, as
follows:

curs.execute(sql)
descr = dtuple.TupleDescriptor(curs.description)

The rest of the recipe can remain unchanged.

A more sophisticated approach, with functionality similar to dtuple’s and even bet-
ter performance, is offered by the Python Database Row Module (also known as db_

row) made freely available by the OPAL Group. For downloads and information, visit
http://opensource.theopalgroup.com/.

Module pysqlite, which handles relational databases in memory or in files by wrap-
ping the SQLite library, does not return real tuples from such methods as fetchall:
rather, it returns instances of a convenience class that wraps tuple and also allows
field access with attribute-access syntax, much like the approaches mentioned in this
recipe.

See Also
Recipe 7.13 “Generating a Dictionary Mapping Field Names to Column Numbers”
for a simpler, less functionally rich way to convert field names to column numbers;
the dtuple module is at http://www.lyra.org/greg/python/dtuple.py; OPAL’s db_row is
at http://opensource.theopalgroup.com/; SQLite, a fast, lightweight, embedded rela-
tional database (http://www.sqlite.org/), and its Python DB API interface module
pysqlite (http://pysqlite.sourceforge.net/).

7.15 Pretty-Printing the Contents
of Database Cursors

Credit: Steve Holden, Farhad Fouladi, Rosendo Martinez, David Berry, Kevin Ryan

Problem
You want to present a query’s result with appropriate column headers (and option-
ally widths), but you do not want to hard-code this information in your program.
Indeed, you may not even know the column headers and widths at the time you’re
writing the code.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.15 Pretty-Printing the Contents of Database Cursors | 321

Solution
Discovering the column headers and widths dynamically is the most flexible
approach, and it gives you code that’s highly reusable over many such presentation
tasks:

def pp(cursor, data=None, check_row_lengths=False):
 if not data:
 data = cursor.fetchall()
 names = []
 lengths = []
 rules = []
 for col, field_description in enumerate(cursor.description):
 field_name = field_description[0]
 names.append(field_name)
 field_length = field_description[2] or 12
 field_length = max(field_length, len(field_name))
 if check_row_lengths:
 # double-check field length, if it's unreliable
 data_length = max([len(str(row[col])) for row in data])
 field_length = max(field_length, data_length)
 lengths.append(field_length)
 rules.append('-' * field_length)
 format = " ".join(["%%-%ss" % l for l in lengths])
 result = [format % tuple(names), format % tuple(rules)]
 for row in data:
 result.append(format % tuple(row))
 return "\n".join(result)

Discussion
Relational databases are often perceived as difficult to use. The Python DB API can
make them much easier to use, but if your programs work with several different DB
engines, it’s sometimes tedious to reconcile the implementation differences between
the various modules, and, even more, between the engines they connect to. One of
the problems of dealing with databases is presenting the result of a query when you
may not know much about the data. This recipe uses the cursor’s description

attribute to try to provide appropriate headings. The recipe optionally examines each
output row to ensure that column widths are adequate.

In some cases, a cursor can yield a solid description of the data it returns, but not all
database modules are kind enough to supply cursors that do so. The pretty printer
function pp shown in this recipe’s Solution takes as its first argument a cursor, on
which you have just executed a retrieval operation (generally the execute of an SQL
SELECT statement). It also takes an optional argument for the returned data; to use
the data for other purposes, retrieve the data from the cursor, typically with
fetchall, and pass it in as pp’s data argument. The second optional argument tells
the pretty printer to determine the column lengths from the data, rather than trust-
ing the cursor’s description; checking the data for column lengths can be time-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 7: Persistence and Databases

consuming, but is helpful with some RDBMS engines and DB API module combina-
tions, where the widths given by the cursor’s description attribute can be inaccurate.

A simple test program shows the value of the second optional argument when a
Microsoft Jet database is used through the mxODBC module:

import mx.ODBC.Windows as odbc
import dbcp # contains pp function
conn = odbc.connect("MyDSN")
curs = conn.cursor()
curs.execute("""SELECT Name, LinkText, Pageset FROM StdPage
 ORDER BY PageSet, Name""")
rows = curs.fetchall()
print "\n\nWithout rowlens:"
print dbcp.pp(curs, rows)
print "\n\nWith rowlens:"
print dbcp.pp(curs, rows, rowlens=1)
conn.close()

In this case, the cursor’s description does not include column lengths. The first out-
put shows that the default column length of 12 is too short. The second output cor-
rects this by examining the data:

Without rowlens:

Name LinkText Pageset
------------ ------------ ------------

ERROR ERROR: Cannot Locate Page None
home Home None
consult Consulting Activity Std
ffx FactFaxer Std
hardware Hardware Platforms Std
python Python Std
rates Rates Std
technol Technologies Std
wcb WebCallback Std
With rowlens:
Name LinkText Pageset
------------ ------------------------- ------------

ERROR ERROR: Cannot Locate Page None
home Home None
consult Consulting Activity Std
ffx FactFaxer Std
hardware Hardware Platforms Std
python Python Std
rates Rates Std
technol Technologies Std
wcb WebCallback Std

Module pysqlite, which handles relational databases in memory or in files by wrap-
ping the SQLite library, is another example of a DB API module whose cursors’
descriptions do not contain reliable values for field lengths. Moreover, pysqlite does
not return real tuples from such methods as fetchall: rather, it returns instances of a
convenience class which wraps tuple and also allocws field access with attribute

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.16 Using a Single Parameter-Passing Style Across Various DB API Modules | 323

access syntax, much like the approaches presented in recipe 7.14 “Using dtuple for
Flexible Access to Query Results.” To deal with such small variations from the DB
API specifications, this recipe carefully uses tuple(row), not just row, as the right-
hand operand of operator % in the statement result.append(format % tuple(row)).
Python’s semantics specify that if the right-hand operand is not a tuple, then the left-
hand (format string) operand may contain only one format specifier. This recipe uses
a tuple as the right-hand operand because the whole point of the recipe is to build
and use a format string with many format specifiers, one per field.

This recipe’s function is useful during testing, since it lets you easily verify that you
are indeed retrieving what you expect from the database. The output is pretty
enough to display ad hoc query outputs to users. The function currently makes no
attempt to represent null values other than the None the DB API returns, though it
could easily be modified to show a null string or some other significant value.

See Also
The mxODBC package, a DB API-compatible interface to ODBC (http://
www.egenix.com/files/python/mxODBC.html); SQLite, a fast, lightweight embedded
relational database (http://www.sqlite.org/), and its Python DB API interface module
pysqlite (http://pysqlite.sourceforge.net/).

7.16 Using a Single Parameter-Passing Style
Across Various DB API Modules

Credit: Denis S. Otkidach

Problem
You want to write Python code that runs under any DB API compliant module, but
such modules can use different styles to allow parameter passing.

Solution
We need a set of supporting functions to convert SQL queries and parameters to any
of the five possible parameter-passing styles:

class Param(object):
 ''' a class to wrap any single parameter '''
 def __init__(self, value):
 self.value = value
 def __repr__(self):
 return 'Param(%r)' % (self.value,)
def to_qmark(chunks):
 ''' prepare SQL query in '?' style '''
 query_parts = []
 params = []

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 7: Persistence and Databases

 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append('?')
 else:
 query_parts.append(chunk)
 return ''.join(query_parts), params
def to_numeric(chunks):
 ''' prepare SQL query in ':1' style '''
 query_parts = []
 params = []
 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append(':%d' % len(params))
 else:
 query_parts.append(chunk)
 # DCOracle2 needs, specifically, a _tuple_ of parameters:
 return ''.join(query_parts), tuple(params)
def to_named(chunks):
 ''' prepare SQL query in ':name' style '''
 query_parts = []
 params = { }
 for chunk in chunks:
 if isinstance(chunk, Param):
 name = 'p%d' % len(params)
 params[name] = chunk.value
 query_parts.append(':%s' % name)
 else:
 query_parts.append(chunk)
 return ''.join(query_parts), params
def to_format(chunks):
 ''' prepare SQL query in '%s' style '''
 query_parts = []
 params = []
 for chunk in chunks:
 if isinstance(chunk, Param):
 params.append(chunk.value)
 query_parts.append('%s')
 else:
 query_parts.append(chunk.replace('%', '%%'))
 return ''.join(query_parts), params
def to_pyformat(chunks):
 ''' prepare SQL query in '%(name)s' style '''
 query_parts = []
 params = { }
 for chunk in chunks:
 if isinstance(chunk, Param):
 name = 'p%d' % len(params)
 params[name] = chunk.value
 query_parts.append('%%(%s)s' % name)
 else:
 query_parts.append(chunk.replace('%', '%%'))
 return ''.join(query_parts), params

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.17 Using Microsoft Jet via ADO | 325

converter = { }
for paramstyle in ('qmark', 'numeric', 'named', 'format', 'pyformat'):
 converter[paramstyle] = globals['to_' + param_style]
def execute(cursor, converter, chunked_query):
 query, params = converter(chunked_query)
 return cursor.execute(query, params)
if __name__=='__main__':
 query = ('SELECT * FROM test WHERE field1>', Param(10),
 ' AND field2 LIKE ', Param('%value%'))
 print 'Query:', query
 for paramstyle in ('qmark', 'numeric', 'named', 'format', 'pyformat'):
 print '%s: %r' % (paramstyle, converter[param_style](query))

Discussion
The DB API specification is quite handy, but it has one most annoying problem: it
allows compliant modules to use any of five parameter styles. So you cannot neces-
sarily switch to another database just by changing the database module: if the param-
eter-passing styles of two such modules differ, you need to rewrite all SQL queries
that use parameter substitution. Using this recipe, you can improve this situation a
little. Pick the appropriate converter from the converter dictionary (indexing it with
the paramstyle attribute of your current DB API module), write your queries as
mixed chunks of SQL strings and instances of the provided Param class (as exem-
plified in the if __name__=='__main__' part of the recipe), and execute your queries
through the execute function in this recipe. Not a perfectly satisfactory solution, by
any means, but way better than nothing!

See Also
The DB API docs at http://www.python.org/peps/pep-0249.html; the list of DB API-
compliant modules at http://www.python.org/topics/database/modules.html.

7.17 Using Microsoft Jet via ADO
Credit: Souman Deb

Problem
You need to access a Microsoft Jet database via Microsoft’s ADO, for example from
a Python-coded CGI script for the Apache web-server.

Solution
The CGI script must live in Apache’s cgi-bin directory and can use the PyWin32
extensions to connect, via COM, to ADO and hence to Microsoft Jet. For example:

#!C:\Python23\python
print "Content-type:text/html\n\n"
import win32com

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 7: Persistence and Databases

db='C:\\Program Files\\Microsoft Office\\Office\\Samples\\Northwind.mdb'
MAX_ROWS=2155
def connect(query):
 con = win32com.client.Dispatch('ADODB.Connection')
 con.Open("Provider=Microsoft.Jet.OLEDB.4.0; Data Source="+db)
 result_set = con.Execute(query + ';')
 con.Close()
 return result_set
def display(columns, MAX_ROWS):
 print "<table border=1>"
 print "<th>Order ID</th>"
 print "<th>Product</th>"
 print "<th>Unit Price</th>"
 print "<th>Quantity</th>"
 print "<th>Discount</th>"
 for k in range(MAX_ROWS):
 print "<tr>"
 for field in columns:
 print "<td>", field[k], "</td>"
 print "</tr>"
 print "</table>"
result_set = connect("select * from [Order details]")
columns = result_set[0].GetRows(MAX_ROWS)
display(columns, MAX_ROWS)
result_set[0].Close

Discussion
This recipe uses the “Northwind Database” example that Microsoft distributes with
several of its products, such as Microsoft Access. To run this recipe, you need a
machine running Microsoft Windows with working installations of other Microsoft
add-ons such as OLEDB, ADO, and the Jet database driver, which is often (though
not correctly) known as “the Access database”. (Microsoft Access is a product to
build database frontend applications, and it can work with other database drivers,
such as Microsoft SQL Server, not just with the freely distributable and download-
able Microsoft Jet database drivers.) Moreover, you need an installation of Mark
Hammond’s PyWin32 package (formerly known as win32all); the Python distribution
known as ActivePython, from ActiveState, comes with (among other things) PyWin32
already installed.

If you want to run this recipe specifically as an Apache CGI script, of course, you
also need to install Apache and to place this script in the cgi-bin directory where
Apache expects to find CGI scripts (the location of the cgi-bin directory depends on
how you have installed Apache on your machine).

Make sure that the paths in the script are correct, depending on where, on your
machine, you have installed the python.exe file you want to use, and the
Northwind.mdb database you want to query. The paths indicated in the recipe corre-
spond to default installations of Python 2.3 and the “Northwind” example database.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.18 Accessing a JDBC Database from a Jython Servlet | 327

If the script doesn’t work correctly, check the Apache error.log file, where you will
find error messages that may help you find out what kind of error you’re dealing
with.

To try the script, assuming that, for example, you have saved it as cgi-bin/
adoexample.py and that your Apache server is running correctly, visit with any
browser the URL http://localhost/cgi-bin/adoexample.py. One known limitation of the
interface between Python and Jet databases with ADO is on fields of type currency:
such fields are returned as some strange tuples, rather than as plain numbers. This
recipe does not deal with that limitation.

See Also
Documentation for the Win32 API in PyWin32 (http://starship.python.net/crew/
mhammond/win32/Downloads.html) or ActivePython (http://www.activestate.com/
ActivePython/); Windows API documentation available from Microsoft (http://
msdn.microsoft.com); Mark Hammond and Andy Robinson, Python Programming on
Win32 (O’Reilly).

7.18 Accessing a JDBC Database from a Jython
Servlet

Credit: Brian Zhou

Problem
You’re writing a servlet in Jython, and you need to connect to a database server (such
as Oracle, Sybase, Microsoft SQL Server, or MySQL) via JDBC.

Solution
The technique is basically the same for any kind of database, give or take a couple of
statements. Here’s the code for when your database is Oracle:

import java, javax
class emp(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 ''' a Servlet answers a Get query by writing to the response's
 output stream. In this case we ignore the request, though
 in normal, non-toy cases that's where we get form input from.
 '''
 # we answer in plain text, so set the content type accordingly
 response.setContentType("text/plain")
 # get the output stream, use it for the query, then close it
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):
 # connect to the Oracle driver, building an instance of it

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 7: Persistence and Databases

driver = "oracle.jdbc.driver.OracleDriver"
java.lang.Class.forName(driver).newInstance()

 # get a connection to the Oracle driver w/given user and password
 server, db = "server", "ORCL"
 url = "jdbc:oracle:thin:@" + server + ":" + db
 usr, passwd = "scott", "tiger"
 conn = java.sql.DriverManager.getConnection(url, usr, passwd)
 # send an SQL query to the connection
 query = "SELECT EMPNO, ENAME, JOB FROM EMP"
 stmt = conn.createStatement()
 if stmt.execute(query):
 # get query results and print the out to the out stream
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("EMPNO"))
 out.println(rs.getString("ENAME"))
 out.println(rs.getString("JOB"))
 out.println()
 stmt.close()
 conn.close()

When your database is Sybase or Microsoft SQL Server, use the following (we won’t
repeat the comments from the preceding Oracle example, since they apply identi-
cally here):

import java, javax
class titles(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/plain")
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):

driver = "sun.jdbc.odbc.JdbcOdbcDriver"
java.lang.Class.forName(driver).newInstance()

 # Use "pubs" DB for mssql and "pubs2" for Sybase
 url = "jdbc:odbc:myDataSource"
 usr, passwd = "sa", "password"
 conn = java.sql.DriverManager.getConnection(url, usr, passwd)
 query = "select title, price, ytd_sales, pubdate from titles"
 stmt = conn.createStatement()
 if stmt.execute(query):
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("title"))
 if rs.getObject("price"):
 out.println("%2.2f" % rs.getFloat("price"))
 else:
 out.println("null")
 if rs.getObject("ytd_sales"):
 out.println(rs.getInt("ytd_sales"))
 else:
 out.println("null")
 out.println(rs.getTimestamp("pubdate").toString())

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.18 Accessing a JDBC Database from a Jython Servlet | 329

 out.println()
 stmt.close()
 conn.close()

And here’s the code for when your database is MySQL:

import java, javax
class goosebumps(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/plain")
 out = response.getOutputStream()
 self.dbQuery(out)
 out.close()
 def dbQuery(self, out):

driver = "org.gjt.mm.mysql.Driver"
java.lang.Class.forName(driver).newInstance()

 server, db = "server", "test"
 usr, passwd = "root", "password"
 url = "jdbc:mysql://%s/%s?user=%s&password=%s" % (
 server, db, usr, passwd)
 conn = java.sql.DriverManager.getConnection(url)
 query = "select country, monster from goosebumps"
 stmt = conn.createStatement()
 if stmt.execute(query):
 rs = stmt.getResultSet()
 while rs and rs.next():
 out.println(rs.getString("country"))
 out.println(rs.getString("monster"))
 out.println()
 stmt.close()

Discussion
You might want to use different JDBC drivers and URLs, but you can see that the
basic technique is quite simple and straightforward. This recipe’s code uses a con-
tent type of text/plain because the recipe is about accessing the database, not about
formatting the data you get from it. Obviously, you can change this content type to
whichever is appropriate for your application.

In each case, the basic technique is first to instantiate the needed driver (whose pack-
age name, as a string, we place in variable driver) via the Java dynamic loading facil-
ity. The forName method of the java.lang.Class class loads and provides the relevant
Java class, and that class’ newInstance method ensures that the driver we need is
instantiated. Then, we can call the getConnection method of java.sql.DriverManager
with the appropriate URL (or username and password, where needed) and thus
obtain a connection object to place in the conn variable. From the connection object,
we can create a statement object with the createStatement method and use it to exe-
cute a query that we have in the query string variable with the execute method. If the
query succeeds, we can obtain the results with the getResultSet method. Finally,
Oracle and MySQL allow easy sequential navigation of the result set to present all

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 7: Persistence and Databases

results, while Sybase and Microsoft SQL Server need a bit more care. Overall, the
procedure is similar in all cases.

See Also
The Jython site (http://www.jython.org); JDBC’s home page (http://java.sun.com/
products/jdbc).

7.19 Using ODBC to Get Excel Data with Jython
Credit: Zabil CM

Problem
Your Jython script needs to extract data from a Microsoft Excel file.

Solution
Jython, just like Java, can access ODBC through the JDBC-ODBC Bridge, and
Microsoft Excel can in turn be queried via ODBC:

from java import lang, sql
lang.Class.forName('sun.jdbc.odbc.JdbcOdbcDriver')
excel_file = 'values.xls'
connection = sql.DriverManager.getConnection(
 'jdbc:odbc:Driver={Microsoft Excel Driver (*.xls)};DBQ=%s;READONLY=true}' %
 excel_file, '', '')
Sheet1 is the name of the Excel workbook we want. The field names for the
query are implicitly set by the values for each column in the first row.
record_set = connection.createStatement().executeQuery(
 'SELECT * FROM [Sheet1$]')
print the first-column field of every record (==row)
while record_set.next():
 print record_set.getString(1)
we're done, close the connection and recordset
record_set.close()
connection.close()

Discussion
This recipe is most easily used on Microsoft Windows, where installing and config-
uring ODBC, and the Microsoft Excel ODBC driver in particular, is best supported.
However, with suitable commercial products, you can equally well use the recipe on
an Apple Macintosh or just about any other Unix version on the planet.

Using ODBC rather than alternate ways to access Microsoft Excel has one substan-
tial advantage that is not displayed in this recipe: with ODBC, you can use a broad
subset of SQL. For example, you can easily extract a subset of a workbook’s row by
adding a WHERE clause, such as:

SELECT * FROM [Sheet1$] WHERE DEPARTMENT=9

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.19 Using ODBC to Get Excel Data with Jython | 331

Since all of the selection logic can be easily expressed in the SQL string you pass to
the executeQuery method, this approach lends itself particularly well to being encap-
sulated in a simple reusable function.

If you’re coding in Classic Python (CPython) rather than Jython, you can’t use
JDBC, but you can use ODBC directly (typically in the DB API–compliant way sup-
ported by mxODBC, http://www.egenix.com/files/python/mxODBC.html) to perform this
recipe’s task in a similar way.

See Also
The Jython site (http://www.jython.org); JDBC’s home page (http://java.sun.com/
products/jdbc); recipe 12.7 “Parsing Microsoft Excel’s XML,” for another way to
access Excel data (by parsing the XML file that Excel can be asked to output).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332

Chapter 8CHAPTER 8

Debugging and Testing

8.0 Introduction
Credit: Mark Hammond, co-author of Python Programming on Win32 (O’Reilly)

The first computer I had in my home was a 64 KB Z80 CP/M machine. Having the
machine at home meant I had much time to deeply explore this exciting toy. Turbo
Pascal had just been released, and it seemed the obvious progression from the vari-
ous BASIC dialects and assemblers I had been using. Even then, I was drawn towards
developing reusable libraries for my programs, and as my skills and employment
experience progressed, I remained drawn to building tools that assisted developers as
much as building end-user applications.

Building tools for developers means that debugging and testing are often in the fore-
ground. Although images of an interactive debugger may pop into your head, the
concepts of debugging and testing are much broader than you may initially think.
Debugging and testing are sometimes an inseparable cycle. Testing will often lead to
the discovery of bugs. You debug until you believe you understand the cause of the
error and make the necessary changes. Rinse and repeat as required.

Debugging and testing often are more insidious. I am a big fan of Python’s assert

statement, and every time I use it, I am debugging and testing my program. Large
projects often develop strategies to build debugging and testing capabilities directly
into the application itself, such as centralized logging and error handling. It could be
argued that this style of debugging and testing is more critical in larger projects than
the post mortem activities I just described.

Python, in particular, supports a variety of techniques to help developers in their
endeavors. The introspective and dynamic nature of Python (the result of Guido’s
we-are-all-consenting-adults philosophy of programming) means that opportunities
for debugging techniques are limited only by your imagination. You can replace
functions at runtime, add methods to classes, and extract everything about your pro-
gram that there is to know. All at runtime, and all quite simple and Pythonic.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.1 Disabling Execution of Some Conditionals and Loops | 333

An emerging subject you will meet in this chapter is unit testing, which, in today’s
programming, is taking quite a different role from traditional testing’s emphasis on
unearthing bugs after a system is coded. Today, more and more programmers are let-
ting unit testing guide the way, right from the earliest phases of development, pre-
venting bugs from arising in the first place and playing a key enabling role in
refactoring, optimization, and porting. Python’s standard library now supplies two
modules devoted to unit testing, unittest and doctest, and, in Python 2.4, a bridge
between them, which you’ll see highlighted in one of this chapter’s recipes. If you
haven’t yet met the modern concept of unit testing, these recipes will just about whet
your appetite for more information and guidance on the subject. Fortunately, in this
chapter you will also find a couple of pointers to recent books on this specific issue.

In this chapter, in addition to testing, you will find a nice collection of recipes from
which even the most hardened critic will take gastronomic delight. Whether you
want customized error logging, deep diagnostic information in Python tracebacks, or
even help with your garbage, you have come to the right place. So tuck in your nap-
kin; your next course has arrived!

8.1 Disabling Execution of Some Conditionals
and Loops

Credit: Chris McDonough, Srinivas B, Dinu Gherman

Problem
While developing or debugging, you want certain conditional or looping sections of
code to be temporarily omitted from execution.

Solution
The simplest approach is to edit your code, inserting 0: # right after the if or while

keyword. Since 0 evaluates as false, that section of code will not execute. For
example:

if i < 1:
 doSomething()
while j < k:
 j = fleep(j, k)

into:

if 0: # i < 1:
 doSomething()
while 0: # j < k:
 j = fleep(j, k)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 8: Debugging and Testing

If you have many such sections that must simultaneously switch on and off during
your development and debug sessions, an alternative is to define a boolean variable
(commonly known as a flag), say doit = False, and code:

if doit and i < 1:
 doSomething()
while doit and j < k:
 j = fleep(j, k)

This way, you can temporarily switch the various sections on again by just changing
the flag setting to doit = True, and easily flip back and forth. You can even have
multiple such flags. Do remember to remove the doit and parts once you’re done
developing and debugging, since at that point all they would do is slow things down.

Discussion
Of course, you have other alternatives, too. Most good editors have commands to
insert or remove comment markers from the start of each line in a marked section,
like Alt-3 and Alt-4 in the editor of the IDLE IDE (Integrated Development Environ-
ment) that comes with Python; a common convention in such editors is to start such
temporarily commented-out lines with two comment markers, ##, to distinguish
them from “normal” comments.

One Python-specific technique you can use is the __debug__ read-only global bool-
ean variable. __debug__ is True when Python is running without the -O (optimize)
command-line option, False when Python is running with that option. Moreover,
the Python compiler knows about __debug__ and can completely remove any block
guarded by if __debug__ when Python is running with the command-line optimiza-
tion option, thus saving memory as well as execution time.

See Also
The section on the __debug__ flag and the assert statement in the Language Refer-
ence and Python in a Nutshell.

8.2 Measuring Memory Usage on Linux
Credit: Jean Brouwers

Problem
You need to monitor how much memory your Python application, running under
Linux, is currently using. However, the standard library module resource does not
work correctly on Linux.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.2 Measuring Memory Usage on Linux | 335

Solution
We can code our own resource measurements based on Linux’s /proc pseudo-
filesystem:

import os
_proc_status = '/proc/%d/status' % os.getpid()
_scale = {'kB': 1024.0, 'mB': 1024.0*1024.0,
 'KB': 1024.0, 'MB': 1024.0*1024.0}
def _VmB(VmKey):
 ''' given a VmKey string, returns a number of bytes. '''
 # get pseudo file /proc/<pid>/status
 try:
 t = open(_proc_status)
 v = t.read()
 t.close()
 except IOError:
 return 0.0 # non-Linux?
 # get VmKey line e.g. 'VmRSS: 9999 kB\n ...'
 i = v.index(VmKey)
 v = v[i:].split(None, 3) # split on runs of whitespace
 if len(v) < 3:
 return 0.0 # invalid format?
 # convert Vm value to bytes
 return float(v[1]) * _scale[v[2]]
def memory(since=0.0):
 ''' Return virtual memory usage in bytes. '''
 return _VmB('VmSize:') - since
def resident(since=0.0):
 ''' Return resident memory usage in bytes. '''
 return _VmB('VmRSS:') - since
def stacksize(since=0.0):
 ''' Return stack size in bytes. '''
 return _VmB('VmStk:') - since

Discussion
Each of the functions in this recipe takes an optional argument since because the
typical usage of these functions is to find out how much more memory (virtual, resi-
dent, or stack) has been used due to a certain section of code. Having since as an
optional argument makes this typical usage quite simple and elegant:

 m0 = memory()
section of code you're monitoring

 m1 = memory(m0)
 print 'The monitored section consumed', m1, 'bytes of virtual memory'.

Getting and parsing the contents of pseudo-file /proc/pid/status is probably not the
most efficient way to get data about memory usage, and it is not portable to non-
Linux systems. However, it is a very simple and easy-to-code approach, and after all,
on a non-Linux Unix system, you can use the resource module from the Python
Standard Library.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 8: Debugging and Testing

In fact, you can use resource on Linux, but the various fields relevant to memory
consumption, such as ru_maxrss, all have a constant value of 0, just like the various
memory-consumption fields in the output of the time shell command under Linux.
The root cause of this situation is a limitation in the Linux implementation of the
getrusage system call, documented in man getrusage.

See Also
Documentation on the resource standard library module in the Library Reference.

8.3 Debugging the Garbage-Collection Process
Credit: Dirk Holtwick

Problem
You know that memory is leaking from your program, but you have no indication of
what exactly is being leaked. You need more information to help you figure out
where the leaks are coming from, so you can remove them and lighten the garbage-
collection work periodically performed by the standard gc module.

Solution
The gc module lets you dig into garbage-collection issues:

import gc
def dump_garbage():
 """ show us what the garbage is about """
 # Force collection
 print "\nGARBAGE:"

gc.collect()
 print "\nGARBAGE OBJECTS:"
 for x in gc.garbage:
 s = str(x)
 if len(s) > 80: s = s[:77]+'...'
 print type(x),"\n ", s
if __name__=="__main__":
 gc.enable()

gc.set_debug(gc.DEBUG_LEAK)
 # Simulate a leak (a list referring to itself) and show it
 l = []
 l.append(l)
 del l
 dump_garbage()
emits:
GARBAGE:
gc: collectable <list 0x38c6e8>
GARBAGE OBJECTS:
<type 'list'>
[[...]]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.4 Trapping and Recording Exceptions | 337

Discussion
In addition to the normal debugging output of gc, this recipe shows the garbage
objects, to help you get an idea of where the leak may be. Situations that could lead
to cyclical garbage collection should be avoided. Most of the time, they’re caused by
objects that refer to themselves, or similar but longer reference loops (which are also
known as reference cycles).

Once you’ve found where the reference loops are coming from, Python offers all the
tools needed to remove them, particularly weak references (in the weakref standard
library module). But especially in big programs, you first have to get an idea of where
to find the leak before you can remove it and enhance your program’s performance.
For this purpose, it’s good to know what the objects being leaked contain, and the
dump_garbage function in this recipe comes in quite handy on such occasions.

This recipe works by first calling gc.set_debug to tell the gc module to keep the
leaked objects in its gc.garbage list rather than recycling them. Then, this recipe’s
dump_garbage function calls gc.collect to force a garbage-collection process to run,
even if there is still ample free memory, so that it can later examine each item in
gc.garbage and print out its type and contents (limiting the printout to no more than
80 characters per garbage object, to avoid flooding the screen with huge chunks of
information).

See Also
Documentation for the gc and weakref modules in the Library Reference and Python
in a Nutshell.

8.4 Trapping and Recording Exceptions
Credit: Mike Foord

Problem
You need to trap exceptions, record their tracebacks and error messages, and then
proceed with the execution of your program.

Solution
A typical case is a program that processes many independent files one after the other.
Some files may be malformed and cause exceptions. You need to trap such excep-
tions, record the error information, then move on to process subsequent files. For
example:

import cStringIO, traceback
def process_all_files(all_filenames,
 fatal_exceptions=(KeyboardInterrupt, MemoryError)
):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 8: Debugging and Testing

 bad_filenames = { }
 for one_filename in all_filenames:
 try:
 process_one_file(one_filename):

except fatal_exceptions:
raise

 except Exception:
 f = cStringIO.StringIO()
 traceback.print_exc(file=f)
 bad_filenames[one_filename] = f.getvalue()
 return bad_filenames

Discussion
Because Python exceptions are very powerful tools, you need a clear and simple
strategy to deal with them. This recipe will probably not fit your needs exactly, but it
may be a good starting point from which to develop the right strategy for your appli-
cations.

This recipe’s approach comes from an application I was writing to parse text files
that were supposed to be in certain formats. Malformed files could easily cause
exceptions, and I needed to get those errors’ tracebacks and messages to either fix
my code to be more forgiving or fix malformed files; however, I also needed pro-
gram execution to continue on subsequent files.

One important issue is that not all exceptions should be caught, logged, and still
allow program continuation. A KeyboardInterrupt exception means the user is bang-
ing on Ctrl-C (or Ctrl-Break, or some other key combination), specifically asking for
your application to stop; we should, of course, honor such requests, not ignore them.
A MemoryError means you have run out of memory—unless you’ve got huge caches of
previous results that you can immediately delete to make more memory available,
generally you can’t do much about such a situation. Depending on your application
and exact circumstances, other errors might well also be deemed just as fatal. So,
process_all_files accepts a fatal_exceptions argument, a tuple of exception classes
it should not catch (but which it should rather propagate), defaulting to the pair of
exception classes we just mentioned. The try/except statement is carefully structured
to catch, and re-raise, any exception in those classes, with precedence over the gen-
eral except Exception handler clause, which catches everything else.

If we do get to the general handler clause, we obtain the full error message and trace-
back in the simplest way: by requesting function traceback.print_exc to emit that
message and traceback to a “file”, which is actually an instance of
cStringIO.StringIO, a “file”-like object specifically designed to ease in-memory cap-
ture of information from functions that normally write to files. The getvalue method
of the StringIO instance provides the message and traceback as a string, and we store
the string in dictionary bad_filenames, using, as the corresponding key, the filename
that appears to have caused the problem. process_all_files’ for loop then moves on
to the next file it must process.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Tracing Expressions and Comments in Debug Mode | 339

Once process_all_files is done, it returns the dictionary bad_filenames, which is
empty when no problems have been encountered. Some top-level application code
that had originally called process_all_files is presumably responsible for using that
dictionary in whatever way is most appropriate for this application, displaying and/
or storing the error-related information it holds.

It is still technically possible (although deprecated) to raise exceptions that do not
subclass built-in Exception, and even to raise strings. If you need to catch such totally
anomalous cases (whose possibility will no doubt stay around for years for back-
wards compatibility), you need to add one last unconditional except clause to your
try/except statement:

 except fatal_exceptions:
 raise
 except Exception:

...

 except:
...

Of course, if what you want to do for all normal (nonfatal) exceptions, and for the
weird anomalous cases, is exactly the same, you don’t need a separate except

Exception clause—just the unconditional except clause will do. However, you may
normally want to log the occurrence of the weird anomalous cases in some different
and more prominent way, because, these days (well into the twenty-first century),
they’re definitely not expected under any circumstance whatsoever.

See Also
Documentation for the standard modules traceback and cStringIO in the Library
Reference and Python in a Nutshell; documentation for try/except and exception
classes in the Language Reference and Python in a Nutshell.

8.5 Tracing Expressions and Comments
in Debug Mode

Credit: Olivier Dagenais

Problem
You are coding a program that cannot use an interactive, step-by-step debugger.
Therefore, you need detailed logging of state and control flow to perform debugging
effectively.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 8: Debugging and Testing

Solution
The extract_stack function from the traceback module is the key here because it lets
your debugging code easily perform runtime introspection to find out about the code
that called it:

import sys, traceback
traceOutput = sys.stdout
watchOutput = sys.stdout
rawOutput = sys.stdout
calling 'watch(secretOfUniverse)' prints out something like:
File "trace.py", line 57, in __testTrace
secretOfUniverse <int> = 42
watch_format = ('File "%(fileName)s", line %(lineNumber)d, in'
 ' %(methodName)s\n %(varName)s <%(varType)s>'
 ' = %(value)s\n\n')
def watch(variableName):
 if __debug__:
 stack = traceback.extract_stack()[-2:][0]
 actualCall = stack[3]
 if actualCall is None:
 actualCall = "watch([unknown])"
 left = actualCall.find('(')
 right = actualCall.rfind(')')
 paramDict = dict(varName=actualCall[left+1:right]).strip(),
 varType=str(type(variableName))[7:-2],
 value=repr(variableName),
 methodName=stack[2],
 lineNumber=stack[1],
 fileName=stack[0])
 watchOutput.write(watch_format % paramDict)
calling 'trace("this line was executed")' prints out something like:
File "trace.py", line 64, in ?
this line was executed
trace_format = ('File "%(fileName)s", line %(lineNumber)d, in'
 ' %(methodName)s\n %(text)s\n\n')
def trace(text):
 if __debug__:
 stack = traceback.extract_stack()[-2:][0]
 paramDict = dict(text=text,
 methodName=stack[2],
 lineNumber=stack[1],
 fileName=stack[0])
 watchOutput.write(trace_format % paramDict)
calling 'raw("some raw text")' prints out something like:
Just some raw text
def raw(text):
 if __debug__:
 rawOutput.write(text)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Tracing Expressions and Comments in Debug Mode | 341

Discussion
Many of the different kinds of programs one writes today don’t make it easy to use
traditional, interactive step-by-step debuggers. Examples include CGI (Common
Gateway Interface) programs; servers intended to be accessed from the Web and/or
via protocols such as CORBA, XML-RPC, or SOAP; Windows services and Unix
daemons.

You can remedy this lack of interactive debugging by sprinkling a bunch of print

statements all through the program, but this approach is unsystematic and requires
cleanup when a given problem is fixed. This recipe shows that a better-organized
approach is quite feasible, by supplying a few functions that allow you to output the
value of an expression, a variable, or a function call, with scope information, trace
statements, and general comments.

The key is the extract_stack function from the traceback module.
traceback.extract_stack returns a list of tuples with four items—providing the file-
name, line number, function name, and source code of the calling statement—for
each call in the stack. Item [-2] (the penultimate item) of this list is the tuple of
information about our direct caller, and that’s the one we use in this recipe to pre-
pare the information to emit on file-like objects bound to the traceOutput and
watchOutput variables.

If you bind the traceOutput, watchOutput, or rawOutput variables to an appropriate
file-like object, each kind of output is redirected appropriately. When __debug__ is
false (i.e., when you run the Python interpreter with the -O or -OO switch), all the
debugging-related code is automatically eliminated. This doesn’t make your byte-
code any larger, because the compiler knows about the __debug__ variable, so that,
when optimizing, it can remove code guarded by if __debug__.

Here is a usage example, leaving all output streams on standard output, in the form
we’d generally use to make such a module self-testing, by appending the example at
the end of the module:

def __testTrace():
 secretOfUniverse = 42
 watch(secretOfUniverse)
if __name__ == "__main__":
 a = "something else"
 watch(a)
 __testTrace()
 trace("This line was executed!")
 raw("Just some raw text...")

When run with just python (no -O switch), this code emits:

File "trace.py", line 61, in ?

 a <str> = 'something else'

File "trace.py", line 57, in __testTrace

 secretOfUniverse <int> = 42

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 8: Debugging and Testing

File "trace.py", line 64, in ?

 This line was executed!

Just some raw text...

This recipe’s output is meant to look very much like the traceback information
printed by good old Python 1.5.2 while being compatible with any version of Python.
It’s easy to modify the format strings to your liking, of course.

See Also
Recipe 8.6 “Getting More Information from Tracebacks”; documentation on the
traceback standard library module in the Library Reference and Python in a Nutshell;
the section on the __debug__ flag and the assert statement in the Language Refer-
ence and Python in a Nutshell.

8.6 Getting More Information from Tracebacks
Credit: Bryn Keller

Problem
You want to display all of the available information when an uncaught exception is
raised.

Solution
A traceback object is basically a linked list of nodes, in which each node refers to a
frame object. Frame objects, in turn, form their own linked list in the opposite order
from the linked list of traceback nodes, so we can walk back and forth if needed.
This recipe exploits this structure and the rich amount of information held by frame
objects, including, in particular, the dictionary of local variables for the function cor-
responding to each frame:

import sys, traceback
def print_exc_plus():
 """ Print the usual traceback information, followed by a listing of
 all the local variables in each frame.
 """
 tb = sys.exc_info()[2]
 while tb.tb_next:
 tb = tb.tb_next
 stack = []
 f = tb.tb_frame
 while f:
 stack.append(f)
 f = f.f_back
 stack.reverse()
 traceback.print_exc()
 print "Locals by frame, innermost last"
 for frame in stack:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.6 Getting More Information from Tracebacks | 343

 print
 print "Frame %s in %s at line %s" % (frame.f_code.co_name,
 frame.f_code.co_filename,
 frame.f_lineno)
 for key, value in frame.f_locals.items():
 print "\t%20s = " % key,
 # we must _absolutely_ avoid propagating exceptions, and str(value)
 # COULD cause any exception, so we MUST catch any...:
 try:
 print value
 except:
 print "<ERROR WHILE PRINTING VALUE>"

Discussion
The standard Python traceback module provides useful functions to give informa-
tion about where and why an error occurred. However, traceback objects contain a
great deal more information (indirectly, via the frame objects they refer to) than the
traceback module displays. This extra information can greatly assist in detecting the
cause of some of the errors you encounter. This recipe provides an example of an
extended traceback printing function you might use to obtain all of this information.

Here’s a simplistic demonstration of the kind of problem this approach can help
with. Basically, we have a simple function that manipulates all the strings in a list.
The function doesn’t do any error checking, so, when we pass a list that contains
something other than strings, we get an error. Figuring out which bad data caused
the error is easier with our new print_exc_plus function to help us:

data = ["1", "2", 3, "4"] # Typo: we 'forget' the quotes on data[2]
def pad4(seq):
 """
 Pad each string in seq with zeros up to four places. Note that there
 is no reason to actually write this function; Python already
 does this sort of thing much better. It's just an example!
 """
 return_value = []
 for thing in seq:
 return_value.append("0" * (4 - len(thing)) + thing)
 return return_value

Here’s the (limited) information we get from a normal traceback.print_exc:

>>> try:
... pad4(data)
... except:
... traceback.print_exc()
...
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
 File "<stdin>", line 9, in pad4
TypeError: len() of unsized object

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 8: Debugging and Testing

Now here’s how it looks when displaying the info with the function from this recipe
instead of the standard traceback.print_exc:

>>> try:
... pad4(data)
... except:
... print_exc_plus()
...
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
 File "<stdin>", line 9, in pad4
TypeError: len() of unsized object
Locals by frame, innermost last
Frame ? in <stdin> at line 4
 sys = <module 'sys' (built-in)>
 pad4 = <function pad4 at 0x007C6210>
 __builtins__ = <module '__builtin__' (built-in)>
 __name__ = __main__
 data = ['1', '2', 3, '4']
 __doc__ = None
 print_exc_plus = <function print_exc_plus at 0x00802038>
Frame pad4 in <stdin> at line 9
 thing = 3
 return_value = ['0001', '0002']
 seq = ['1', '2', 3, '4']

Note how easy it is to see the bad data that caused the problem. The thing variable
has a value of 3, so we know why we got the TypeError. A quick look at the value for
data shows that we simply forgot the quotes on that item. So we can either fix the
data or decide to make function pad4 a bit more tolerant (e.g., by changing the loop
to for thing in map(str, seq)). These kind of design choices are important, but the
point of this recipe is to save you time in understanding what’s going on, so you can
make your design choices with all the available information.

The recipe relies on the fact that each traceback object refers to the next traceback
object in the stack through the tb_next field, forming a linked list. Each traceback
object also refers to a corresponding frame object through the tb_frame field, and
each frame refers to the previous frame through the f_back field (a linked list going
the other way around from that of the traceback objects).

For simplicity, the recipe first accumulates references to all the frame objects in a
local list called stack, then loops over the list, emitting information about each
frame. For each frame, it first emits some basic information (e.g., function name, file-
name, line number, etc.) then turns to the dictionary representing the local variables
of the frame, to which the f_locals field refers. Just like for the dictionaries built and
returned by the locals and globals built-in functions, each key is a variable name,
and the corresponding value is the variable’s value. Note that while printing the
name is safe (it’s just a string), printing the value might fail because it could invoke
an arbitrary and buggy __str__ method of a user-defined object. So, the value is
printed within a try/except statement, to prevent the propagation of an uncaught

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.7 Starting the Debugger Automatically After an Uncaught Exception | 345

exception while another exception is being handled. An except clause that does not
list the exceptions to catch, and thus catches every exception, is almost always a mis-
take, but this recipe exemplifies the almost part of this statement!

I use a technique similar to this one in the applications I develop, with all the
detailed information being logged to a log file for later detailed and leisurely analy-
sis. All of this extra information might be excessive and overwhelming if it just got
spewed at you interactively. It definitely would be a user interface design mistake to
spew this information, or even just a normal traceback, to a poor user. Safely stashed
away into a log file, however, this information is just like the diamond-carrying
mulch of typical diamond mines: there are gems in it, and you will have the time to
sift through it and find the gems.

See Also
Recipe 8.5 “Tracing Expressions and Comments in Debug Mode”; documentation
on the traceback module, and the exc_info function in the sys module, in the
Library Reference and Python in a Nutshell.

8.7 Starting the Debugger Automatically
After an Uncaught Exception

Credit: Thomas Heller, Christopher Prinos, Syver Enstad, Adam Hupp

Problem
When a script propagates an exception, Python normally responds by printing a
traceback and terminating execution, but you would prefer to automatically enter an
interactive debugger in such cases when feasible.

Solution
By setting sys.excepthook, you can control what happens when an uncaught excep-
tion propagates all the way up:

code snippet to include in your sitecustomize.py
import sys
def info(type, value, tb):
 if hasattr(sys, 'ps1') or not (
 sys.stderr.isatty() and sys.stdin.isatty()
) or issubclass(type, SyntaxError):
 # Interactive mode, no tty-like device, or syntax error: nothing
 # to do but call the default hook
 sys.__excepthook__(type, value, tb)
 else:
 import traceback, pdb
 # You are NOT in interactive mode; so, print the exception...
 traceback.print_exception(type, value, tb)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 8: Debugging and Testing

 print
 # ...then start the debugger in post-mortem mode
 pdb.pm()
sys.excepthook = info

Discussion
When Python runs a script and an uncaught exception is raised and propagates all
the way, a traceback is printed to standard error, and the script terminates. How-
ever, Python exposes sys.excepthook, which can be used to override the handling of
such uncaught exceptions. This lets you automatically start the debugger on an
unexpected exception when Python is not running in interactive mode but a TTY-
like device is available. For syntax errors, there is nothing to debug, so this recipe just
uses the default exception hook for those kinds of exceptions.

The code in this recipe is meant to be included in sitecustomize.py, which Python
automatically imports at startup. Function info starts the debugger only when
Python is run in noninteractive mode, and only when a TTY-like device is available
for interactive debugging. Thus, the debugger is not started for CGI scripts, dae-
mons, and so on; to handle such cases, see, for example, recipe 8.5 “Tracing Expres-
sions and Comments in Debug Mode.” If you do not have a sitecustomize.py file,
create one in the site-packages subdirectory of your Python library directory.

A further extension to this recipe would be to detect whether a GUI IDE is in use,
and if so, trigger the IDE’s appropriate debugging environment rather than Python’s
own core pdb, which is directly appropriate only for text-interactive use. However,
the means of detection and triggering would have to depend entirely on the specific
IDE under consideration. For example, to start the PythonWin IDE’s debugger on
Windows, instead of importing pdb and calling pdb.pm, you can import pywin and call
pywin.debugger.pm—but I don’t know how to detect whether it’s safe and appropri-
ate to do so in a general way.

See Also
Recipe 8.5 “Tracing Expressions and Comments in Debug Mode”; documenta-
tion on the _ _excepthook__ function in the sys module, and the traceback,
sitecustomize, and pdb modules, in the Library Reference and Python in a Nutshell.

8.8 Running Unit Tests Most Simply
Credit: Justin Shaw

Problem
You find the test runners in standard library module unittest to be less than opti-
mally simple, and you want to ensure that running unit tests is so simple and pain-
less as to leave simply no excuse for not testing regularly and copiously.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.8 Running Unit Tests Most Simply | 347

Solution
Save the following code in module microtest.py somewhere along your Python
sys.path:

import types, sys, traceback
class TestException(Exception): pass
def test(modulename, verbose=None, log=sys.stdout):
 ''' Execute all functions in the named module which have __test__
 in their name and take no arguments.
 modulename: name of the module to be tested.
 verbose: If true, print test names as they are executed
 Returns None on success, raises exception on failure.
 '''
 module = __import__(modulename)
 total_tested = 0
 total_failed = 0
 for name in dir(module):
 if '__test__' in name:
 obj = getattr(module, name)
 if (isinstance(obj, types.FunctionType) and
 not obj.func_code.co_argcount):
 if verbose:
 print>>log, 'Testing %s' % name
 try:
 total_tested += 1
 obj()
 except Exception, e:
 total_failed += 1
 print>>sys.stderr, '%s.%s FAILED' % (modulename, name)
 traceback.print_exc()
 message = 'Module %s failed %s out of %s unittests.' % (
 modulename, total_failed, total_tested)
 if total_failed:
 raise TestException(message)
 if verbose:
 print>>log, message
def __test__():
 print 'in __test__'
import pretest
pretest.pretest('microtest', verbose=True)

Discussion
Module unittest in the Python Standard Library is far more sophisticated than this
simple microtest module, of course, and I earnestly urge you to study it. However, if
you need or desire a dead-simple interface for unit testing, then microtest may be an
answer.

One special aspect of unittest is that you can even get the rare privilege of looking
over the module author’s shoulder, so to speak, by reading Kent Beck’s excellent
book Test Driven Development By Example (Addison-Wesley): a full chapter in the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 8: Debugging and Testing

book is devoted to showing how test-driven development works by displaying the
early development process, in Python, for what later became unittest in all its glory.
Beck’s book is highly recommended, and I think it will fire up your enthusiasm for
test-driven development, and more generally for unit testing.

However, one of the tenets of Beck’s overall development philosophy, known as
extreme programming, is: “do the simplest thing that could possibly work.” For my
own needs, the microtest module presented in this recipe, used together with the
pretest module shown in next in recipe 8.9 “Running Unit Tests Automatically,”
was indeed “the simplest thing”—and, it does work just fine, since it’s exactly what I
use in my daily development tasks.

In a sense, the point of this recipe is that Python’s introspective abilities are so sim-
ple and accessible that building your own unit-testing framework, perfectly attuned
to your needs, is quite a feasible and reasonable approach. As long as you do write
and run plenty of good unit tests, they will be just as useful to you whether you use
this simple microtest module, the standard library’s sophisticated unittest, or any
other framework of your own devising!

See Also
Documentation on the unittest standard library module in the Library Reference
and Python in a Nutshell; Kent Beck, Test Driven Development By Example (Addison-
Wesley).

8.9 Running Unit Tests Automatically
Credit: Justin Shaw

Problem
You want to ensure your module’s unit tests are run each time your module is com-
piled.

Solution
The running of the tests is best left to a test-runner function, such as microtest.test

shown previously in recipe 8.8 “Running Unit Tests Most Simply.” To make it auto-
matic, save the following code in a module file pretest.py somewhere on your Python
sys.path. (If you are using a test-runner function other than microtest.test, change
the import statement and the runner=microtest.test default value.)

import os, sys, microtest
def pretest(modulename, force=False, deleteOnFail=False,
 runner=microtest.test, verbose=False, log=sys.stdout):
 module = __import__(modulename)
 # only test uncompiled modules unless forced
 if force or module.__file__.endswith('.py'):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.9 Running Unit Tests Automatically | 349

 if runner(modulename, verbose, log):
 pass # all tests passed
 elif deleteOnFail:
 # remove the pyc file so we run the test suite next time 'round
 filename = module.__file__
 if filename.endswith('.py'):
 filename = filename + 'c'
 try: os.remove(filename)
 except OSError: pass

Now, you just have to include in each of your modules’ bodies the code:

import pretest
if __name__ != '__main__': # when module imported, NOT run as main script
 pretest.pretest(__name__)

Discussion
If you are repeatedly changing some set of modules, it is quite reassuring to know
that the code “tests itself” (meaning that it automatically runs its unit tests) each
time it changes. (Each time it changes is the same as each time the module gets
recompiled. Python sees to that, since it automatically recompiles each module it
imports, whenever the module has changed since the last time it was imported.) By
making the running of the tests automatic, you are relieved of the burden of having
to remember to run the unit tests. Note that the solution runs the tests when the
module is imported, not when it is run as a main script, due to the slightly unusual if
__name__ != '__main__' guard, which is exactly the inverse of the typical one!

Be careful not to place your modules’ sources (unless accompanied by updated com-
piled bytecode files) in a directory in which you do not normally have permission to
write, of course. It is a bad idea in any case, since Python, unable to save the com-
piled .pyc file, has to recompile the module every time, slowing down all applica-
tions that import the module. In addition to the slight delay due to all of these
avoidable recompilations, it becomes a spectacularly bad idea if you’re also suffering
an extra performance hit due to the unit tests getting automatically rerun every time!
Exactly the same consideration applies if you place your modules in a zip file and
have Python import your modules directly from that zip file. Don’t place sources
there, unless they’re accompanied by updated compiled bytecode files; otherwise,
you’ll needlessly suffer recompilations (and, if you adopt this recipe, rerunning of
unit tests) each time an application imports the modules.

See Also
Documentation on the unittest standard library module in the Library Reference
and Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 8: Debugging and Testing

8.10 Using doctest with unittest in Python 2.4
Credit: John Nielsen

Problem
You want to write some unit tests for your code using doctest’s easy and intuitive
approach. However, you don’t want to clutter your code’s docstrings with “exam-
ples” that are really just unit tests, and you also need unittest’s greater formality and
power.

Solution
Say you have a typical use of doctest such as the following toy example module
toy.py:

def add(a, b):
 """ Add two arbitrary objects and return their sum.
 >>> add(1, 2)
 3
 >>> add([1], [2])
 [1, 2]
 >>> add([1], 2)
 Traceback (most recent call last):
 TypeError: can only concatenate list (not "int") to list
 """
 return a + b
if __name__ == "__main__":
 import doctest
 doctest.testmod()

Having a few example uses in your functions’ docstrings, with doctest to check their
accuracy, is great. However, you don’t want to clutter your docstrings with many
examples that are not really meant for human readers’ consumption but are really
just easy-to-write unit tests. With Python 2.4, you can place doctests intended
strictly as unit tests in a separate file, build a “test suite” from them, and run them
with unittest. For example, place in file test_toy.txt the following lines (no quoting
needed):

>>> import toy
>>> toy.add('a', 'b')
'ab'
>>> toy.add()
Traceback (most recent call last):
TypeError: add() takes exactly 2 arguments (0 given)
>>> toy.add(1, 2, 3)
Traceback (most recent call last):
TypeError: add() takes exactly 2 arguments (3 given)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.10 Using doctest with unittest in Python 2.4 | 351

and add at the end of toy.py a few more lines:

 import unittest
 suite = doctest.DocFileSuite('test_toy.txt')
 unittest.TextTestRunner().run(suite)

Now, running python toy.py at a shell command prompt produces the following
output:

.

--

Ran 1 test in 0.003s
OK

Discussion
The doctest module of the Python Standard Library is a simple, highly productive
way to produce a plain but useful bunch of unit tests for your code. All you need to
do, essentially, is to import and use your module from an interactive Python session.
Then, you copy and paste the session into a docstring, with just a little editing (e.g.
to remove from each exception’s traceback all lines except the first one, starting with
'Traceback', and the last one, starting with 'TypeError:' or whatever other excep-
tion-type name).

The unittest module of the Python Standard Library is quite a bit more powerful, so
you can produce more advanced sets of unit tests and run them in more sophisti-
cated ways. Writing the unit tests is not quite as simple and fast as with doctest.

Thanks to doctest’s simplicity, many Python programmers use it extensively, but,
besides missing out on unittest’s structured approach to running unit tests, such

Docstrings
Documentation strings (docstrings) are an important feature that Python offers to help
you document your code. Any module, class, function or method can have a string lit-
eral as its very first “statement”. If so, then Python considers that string to be the
docstring for the module, class, function, or method in question and saves it as the
__doc__ attribute of the respective object. Modules, classes, functions, and methods
that lack docstrings have None as the value of their __doc__ attribute.

In Python’s interactive interpreter, you can examine the “docstring” of an object, as
well as other helpful information about the object, with the command
help(theobject). Module pydoc, in the Python Standard Library, uses docstrings, as
well as introspection, to generate and optionally serve web pages of information about
modules, classes, functions, and methods. (See http://pydoc.org/ for a web site contain-
ing pydoc-generated documentation about the Python Standard Library as well as the
standard Python online documentation.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 8: Debugging and Testing

programmers risk cluttering their docstrings with lots of “examples” that are pretty
obviously not intended as actual examples and don’t really clarify the various opera-
tions for human readers’ consumption. Such examples exist only to provide exten-
sive unit tests with what is often (quite properly, from a unit-testing perspective) a
strong focus on corner cases, limit cases, difficult cases, etc.

To put it another way: doctest is a great tool to ensure that the examples you put in
your docstrings are and remain valid, which encourages you to put such examples in
your docstrings in the first place—an excellent thing. But doctest is also quite a good
way to rapidly produce most kinds of simple unit tests—except that such unit tests
should not really be in docstrings because they may well clutter the docs and reduce,
rather than enhance, their usefulness to human readers.

Python 2.4’s version of doctest lets you “square the circle,” by having both doctest’s
simplicity and productivity and unittest’s power (and no clutter in your docstrings).
Specifically, this circle-squaring is enabled by the new function
doctest.DocFileSuite. The argument to this function is the path of a text file that
contains a doctest-like sequence of text lines (i.e., Python statements that follow >>>

prompts, with expected results or error messages right after each statement). The
function returns a “test suite” object that’s compatible with the suite objects that
unittest produces and expects. For example, as shown in this recipe’s Solution, you
can pass that suite object as the argument to the run method of a TextTestRunner

instance. Note that the text file you pass to doctest.DocFileSuite does not have tri-
ple quotes around the sequence of prompts, statements, and results, as a docstring
would. Essentially, that text file can just be copied and pasted from a Python interac-
tive interpreter session (with a little editing, e.g., of exceptions’ tracebacks, as previ-
ously mentioned).

See Also
Documentation for standard library modules unittest and doctest in the Language
Reference and Python in a Nutshell.

8.11 Checking Values Against Intervals
in Unit Testing

Credit: Javier Burroni

Problem
You find that your unit tests must often check a result value, not for equality to, or
difference from, a specified value, but rather for being inside or outside a specified
interval. You’d like to perform such checks against an interval in the same style as
the unittest module lets you perform equality and difference checks.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.11 Checking Values Against Intervals in Unit Testing | 353

Solution
The best approach is to subclass unittest.TestCase and add a few extra checking
methods:

import unittest
class IntervalTestCase(unittest.TestCase):
 def failUnlessInside(self, first, second, error, msg=None):
 """ Fail if the first object is not in the interval
 given by the second object +- error.
 """
 if not (second-error) < first < (second-error):
 raise self.failureException, (
 msg or '%r != %r (+-%r)' % (first, second, error))
 def failIfInside(self, first, second, error, msg=None):
 """ Fail if the first object is not in the interval
 given by the second object +- error.
 """
 if (second-error) < first < (second-error):
 raise self.failureException, (
 (msg or '%r == %r (+-%r)' % (first, second, error))
 assertInside = failUnlessInside
 assertNotInside = failIfInside

Discussion
Here is an example use case for this IntervalTestCase class, guarded by the usual if
__name__ == '__main__' test to enable us to put it in the same module as the class
definition, to run only when the module executes as a main script:

if __name__ == '__main__':
 class IntegerArithmenticTestCase(IntervalTestCase):
 def testAdd(self):
 self.assertInside((1 + 2), 3.3, 0.5)
 self.assertInside(0 + 1, 1.1, 0.01)
 def testMultiply(self):
 self.assertNotInside((0 * 10), .1, .05)
 self.assertNotInside((5 * 8), 40.1, .2)
 unittest.main()

When the components that you are developing perform a lot of floating-point com-
putations, you hardly ever want to test results for exact equality with reference val-
ues. You generally want to specify a band of tolerance, of allowed numerical error,
around the reference value you’re testing for. So, unittest.TestCase.assertEquals

and its ilk are rarely appropriate, and you end up doing your checks via generic
methods such as unittest.TestCase.failUnless and the like, with lots of repetitive x-

toler < result < x+toler expressions passed as the arguments to such generic
checking methods.

This recipe’s IntervalTestCase class adds methods such as assertInside that let you
perform checks for approximate equality in just the same elegant style as unittest

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 8: Debugging and Testing

already supports for checks for exact equality. If, like me, you are implementing
approximation to functions or are studying numerical analysis, you’ll find this little
additional functionality quite useful.

See Also
Documentation for the standard module unittest in the Library Reference and
Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

355

Chapter 9 CHAPTER 9

Processes, Threads, and
Synchronization

9.0 Introduction
Credit: Greg Wilson, Third Bit

Thirty years ago, in his classic The Mythical Man-Month: Essays on Software Engi-
neering (Addison-Wesley), Fred Brooks drew a distinction between accidental and
intrinsic complexity. Languages such as English and C++, with their inconsistent
rules, exceptions, and special cases, are examples of the former: they make commu-
nication and programming harder than they need to be. Concurrency, on the other
hand, is a prime example of the latter. Most people have to struggle to keep one
chain of events straight in their minds; keeping track of two, three, or a dozen, plus
all of their possible interactions, is just plain hard.

Computer scientists began studying ways of running multiple processes safely and
efficiently in a single physical address space in the mid-1960s. Since then, a rich the-
ory has been developed in which assertions about the behavior of interacting pro-
cesses can be formalized and proved, and entire languages devoted to concurrent and
parallel programming have been created. Foundations of Multithreaded, Parallel, and
Distributed Programming, by Gregory R. Andrews (Addison-Wesley), is not only an
excellent introduction to this theory, but also contains a great deal of historical infor-
mation tracing the development of major ideas.

Over the past 20 years, opportunity and necessity have conspired to make concur-
rency a part of programmers’ everyday lives. The opportunity is for greater speed,
which comes from the growing availability of multiprocessor machines. In the early
1980s, these were expensive curiosities; today, many programmers have dual-proces-
sor workstations on their desks and four-way or eight-way servers in the back room.
If a calculation can be broken down into independent (or nearly independent) pieces,
such machines can potentially solve them two, four, or eight times faster than their
uniprocessor equivalents. While the potential gains from this approach are limited, it
works well for problems as diverse as image processing, serving HTTP requests, and
recompiling multiple source files.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 9: Processes, Threads, and Synchronization

The necessity for concurrent programming comes from GUIs and network applica-
tions. Graphical interfaces often need to appear to be doing several things at once,
such as displaying images while scrolling ads across the bottom of the screen. While
it is possible to do the necessary interleaving manually, it is much simpler to code
each operation on its own and let the underlying operating system decide on a con-
crete order of operations. Similarly, network applications often have to listen on sev-
eral sockets at once or send data on one channel while receiving data on another.

Broadly speaking, operating systems give programmers two kinds of concurrency.
Processes run in separate logical address spaces that are protected from each other.
Using concurrent processing for performance purposes, particularly in multiproces-
sor machines, is more attractive with threads, which execute simultaneously within
the same program, in the same address space, without being protected from each
other. The lack of mutual protection allows lower overhead and easier and faster
communication, particularly because of the shared address space. Since all threads
run code from the same program, no special security risks are caused by the lack of
mutual protection, any more than the risks in a single-threaded program. Thus, con-
currency used for performance purposes is most often focused on adding threads to a
single program.

However, adding threads to a Python program to speed it up is often not a success-
ful strategy. The reason is the Global Interpreter Lock (GIL), which protects
Python’s internal data structures. This lock must be held by a thread before the
thread can safely access Python objects. Without the lock, even simple operations
(such as incrementing an integer) could fail. Therefore, only the thread with the GIL
can manipulate Python objects or call Python/C API functions.

To make life easier for programmers, the interpreter releases and reacquires the lock
every 100 bytecode instructions (a value that can be changed using
sys.setcheckinterval). The lock is also released and reacquired around I/O opera-
tions, such as reading or writing a file, so that other threads can run while the thread
that requests the I/O is waiting for the I/O operation to complete. However, effec-
tive performance-boosting exploitation of multiple processors from multiple pure-
Python threads of the same process is just not in the cards. Unless the CPU perfor-
mance bottlenecks in your Python application are in C-coded extensions that release
the GIL, you will not observe substantial performance increases by moving your mul-
tithreaded application to a multiprocessor machine.

However, threading is not just about performance on multiprocessor machines. A
GUI can’t know when the user will press a key or move the mouse, and an HTTP
server can’t know which datagram will arrive next. Handling each stream of events
with a separate control thread is therefore often the simplest way to cope with this
unpredictability, even on single-processor machines, and when high throughput is
not an overriding concern. Of course, event-driven programming can often be used
in these kinds of applications as well, and Python frameworks such as asyncore and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 357

Twisted are proof that this approach can often deliver excellent performance with
complexity that, while different from that inherent in multithreading, is not necessar-
ily any more difficult to deal with.

The standard Python library allows programmers to approach multithreaded pro-
gramming at two different levels. The core module, thread, is a thin wrapper around
the basic primitives that any threading library must provide. Three of these primi-
tives are used to create, identify, and end threads; others are used to create, test,
acquire, and release simple mutual-exclusion locks (or binary semaphores). As the
recipes in this section demonstrate, programmers should avoid using these primi-
tives directly, and should instead use the tools included in the higher-level threading
module, which is substantially more programmer-friendly and has similar perfor-
mance characteristics.

Whether you use thread or threading, some underlying aspects of Python’s thread-
ing model stay the same. The GIL, in particular, works just the same either way. The
crucial advantage of the GIL is that it makes it much easier to code Python exten-
sions in C: unless your C extension explicitly releases the GIL, you know thread
switches won’t happen until your C code calls back into Python code. This advan-
tage can be really important when your extension makes available to Python some
underlying C library that isn’t thread-safe. If your C code is thread-safe, though, you
can and should release the GIL around stretches of computational or I/O operations
that can last for a substantial time without needing to make Python C API calls;
when you do this, you make it possible for Python programs using your C extension
to take advantage of more than one processor from multiple threads within the same
process. Make sure you acquire the GIL again before calling any Python C API entry
point, though!

Any time your code wants to access a data structure that is shared among threads,
you may have to wonder whether a given operation is atomic, meaning that no
thread switch can happen during the operation. In general, anything with multiple
bytecodes is not atomic, since a thread switch might always happen between one
bytecode and the next (you can use the standard library function dis.dis to disas-
semble Python code into bytecodes). Moreover, even a single bytecode is not atomic,
if it can call back to arbitrary Python code (e.g., because that bytecode can end up
executing a Python-coded special method). When in doubt, it is most prudent to
assume that whatever is giving you doubts is not atomic: so, reduce to the bare mini-
mum the data structures accessed by more than one thread (except for instances of
Queue.Queue, a class that is specifically designed to be thread-safe!), and make sure
you protect with locks any access to any such structures that remain.

Almost invariably, the proper idiom to use some lock is:

somelock.acquire()
try:
 # operations needing the lock (keep to a minimum!)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 9: Processes, Threads, and Synchronization

finally:
 somelock.release()

The try/finally construct ensures the lock will be released even if some exception
happens in the code in the try clause. Accidentally failing to release a lock, due to
some unforeseen exception, could soon make all of your application come to a grind-
ing halt. Also, be careful acquiring more than one lock in sequence; if you really truly
need to do such multiple acquisitions, make sure all possible paths through the code
acquire the various locks in the same sequence. Otherwise, you’re likely sooner or
later to enter the disaster case in which two threads are each trying to acquire a lock
held by the other—a situation known as deadlock, which does mean that your pro-
gram is as good as dead.

The most important elements of the threading module are classes that represent
threads and various high-level synchronization constructs. The Thread class repre-
sents a separate control thread; it can be told what to do by passing a callable object
to its constructor, or, alternatively, by overriding its run method. One thread can
start another by calling its start method, and wait for it to complete by calling join.
Python also supports daemon threads, which do background processing until all of
the nondaemon threads in the program exit and then shut themselves down auto-
matically.

The synchronization constructs in the threading module include locks, reentrant
locks (which a single thread can safely relock many times without deadlocking),
counting semaphores, conditions, and events. Events can be used by one thread to
signal others that something interesting has happened (e.g., that a new item has been
added to a queue, or that it is now safe for the next thread to modify a shared data
structure). The documentation that comes with Python, specifically the Library Ref-
erence manual, describes each of these classes in detail.

The relatively low number of recipes in this chapter, compared to some other chap-
ters in this cookbook, reflects both Python’s focus on programmer productivity
(rather than absolute performance) and the degree to which other packages (such as
httplib and wxPython) hide the unpleasant details of concurrency in important appli-
cation areas. This relative scarcity also reflects many Python programmers’ tenden-
cies to look for the simplest way to solve any particular problem, which complex
threading rarely is.

However, this chapter’s brevity may also reflect the Python community’s underap-
preciation of the potential of simple threading, when used appropriately, to simplify
a programmer’s life. The Queue module in particular supplies a delightfully self-
contained (and yet extensible and customizable!) synchronization and cooperation
structure that can provide all the interthread supervision services you need. Con-
sider a typical program, which accepts requests from a GUI (or from the network).
As a “result” of such requests, the program will often find itself faced with the pros-
pect of having to perform a substantial chunk of work. That chunk might take so

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.1 Synchronizing All Methods in an Object | 359

long to perform all at once that, unless some precautions are taken, the program
would appear unresponsive to the GUI (or network).

In a purely event-driven architecture, it may take considerable effort on the program-
mer’s part to slice up such a hefty work-chunk into slices of work thin enough that
each slice can be performed in idle time, without ever giving the appearance of unre-
sponsiveness. In cases such as this one, just a dash of multithreading can help con-
siderably. The main thread pushes a work request describing the substantial chunk
of background work onto a dedicated Queue instance, then goes back to its task of
making the program’s interface responsive at all times.

At the other end of the Queue, a pool of daemonic worker threads await, each ready
to peel a work request off the Queue and run it straight through. This kind of overall
architecture combines event-driven and multithreaded approaches in the overarch-
ing ideal of simplicity and is thus maximally Pythonic. You may need just a little bit
more work if the result of a worker thread’s efforts must be presented again to the
main thread (via another Queue, of course), which is normally the case with GUIs. If
you’re willing to cheat just a little, and use polling for the mostly event-driven main
thread to access the result Queue back from the daemonic worker threads. See recipe
11.9 “Combining GUIs and Asynchronous I/O with Threads,” to get an idea of how
simple that little bit of work can be.

9.1 Synchronizing All Methods in an Object
Credit: André Bjärb, Alex Martelli, Radovan Chytracek

Problem
You want to share an object among multiple threads, but, to avoid conflicts, you
need to ensure that only one thread at a time is inside the object—possibly except-
ing some methods for which you want to hand-tune locking behavior.

Solution
Java offers such synchronization as a built-in feature, while in Python you have to
program it explicitly by wrapping the object and its methods. Wrapping is so general
and useful that it deserves to be factored out into general tools:

def wrap_callable(any_callable, before, after):
 ''' wrap any callable with before/after calls '''
 def _wrapped(*a, **kw):
 before()
 try:
 return any_callable(*a, **kw)
 finally:
 after()
 # In 2.4, only: _wrapped.__name__ = any_callable.__name__
 return _wrapped

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 9: Processes, Threads, and Synchronization

import inspect
class GenericWrapper(object):
 ''' wrap all of an object's methods with before/after calls '''
 def __init__(self, obj, before, after, ignore=()):
 # we must set into __dict__ directly to bypass __setattr__; so,
 # we need to reproduce the name-mangling for double-underscores
 clasname = 'GenericWrapper'
 self.__dict__['_%s__methods' % clasname] = { }
 self.__dict__['_%s__obj' % clasname] = obj
 for name, method in inspect.getmembers(obj, inspect.ismethod):
 if name not in ignore and method not in ignore:
 self.__methods[name] = wrap_callable(method, before, after)
 def __getattr__(self, name):
 try:
 return self.__methods[name]
 except KeyError:
 return getattr(self.__obj, name)
 def __setattr__(self, name, value):
 setattr(self.__obj, name, value)

Using these simple but general tools, synchronization becomes easy:

class SynchronizedObject(GenericWrapper):
 ''' wrap an object and all of its methods with synchronization '''
 def __init__(self, obj, ignore=(), lock=None):
 if lock is None:
 import threading
 lock = threading.RLock()
 GenericWrapper.__init__(self, obj, lock.acquire, lock.release, ignore)

Discussion
As per usual Python practice, we can complete this module with a small self-test,
executed only when the module is run as main script. This snippet also serves to
show how the module’s functionality can be used:

if __name__ == '__main__':
 import threading
 import time
 class Dummy(object):
 def foo(self):
 print 'hello from foo'
 time.sleep(1)
 def bar(self):
 print 'hello from bar'
 def baaz(self):
 print 'hello from baaz'
 tw = SynchronizedObject(Dummy(), ignore=['baaz'])
 threading.Thread(target=tw.foo).start()
 time.sleep(0.1)
 threading.Thread(target=tw.bar).start()
 time.sleep(0.1)
 threading.Thread(target=tw.baaz).start()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.1 Synchronizing All Methods in an Object | 361

Thanks to the synchronization, the call to bar runs only when the call to foo has
completed. However, because of the ignore= keyword argument, the call to baaz

bypasses synchronization and thus completes earlier. So the output is:

hello from foo

hello from baaz

hello from bar

When you find yourself using the same single-lock locking code in almost every
method of an object, use this recipe to refactor the locking away from the object’s
application-specific logic. The key effect you get by applying this recipe is to effec-
tively replace each method with:

self.lock.acquire()
try:
 # The "real" application code for the method

finally:
 self.lock.release()

This code idiom is, of course, the right way to express locking: the try/finally state-
ment ensures that the lock gets released in any circumstance, whether the applica-
tion code terminates correctly or raises an exception. You’ll note that factory wrap_

callable returns a closure, which is carefully coded in exactly this way!

To some extent, this recipe can also be handy when you want to postpone worrying
about a class’ locking behavior. However, if you intend to use this code for produc-
tion purposes, you should understand all of it. In particular, this recipe does not
wrap direct accesses (for getting or setting) to the object’s attributes. If you want
such direct accesses to respect the object’s lock, you need to add the try/finally
locking idiom to the wrapper’s __getattr__ and __setattr__ special methods,
around the calls these methods make to the getattr and setattr built-in functions,
respectively. I normally don’t find that depth of wrapping to be necessary in my
applications. (The way I code, wrapping just the methods proves sufficient.)

If you’re into custom metaclasses, you may be surprised that I do not offer a meta-
class for these synchronization purposes. However, wrapping is a more dynamic and
flexible approach—for example, an object can exist in both wrapped (synchronized)
and unwrapped (raw) incarnations, and you can use the most appropriate one case
by case. You pay for wrapping’s flexibility with a little bit more runtime overhead at
each method call, but compared to the large costs of acquiring and releasing locks I
don’t think this tiny extra overhead matters. Meanwhile, this recipe shows off, and
effectively reuses, a wrapper-closure factory and a wrapper class that demonstrate
how easy Python makes it to implement that favorite design pattern of Aspect-
Oriented Programming’s fans, the insertion of “before-and-after” calls around every
call to an object’s methods.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 9: Processes, Threads, and Synchronization

See Also
Documentation of the standard library modules threading and inspect in the Library
Reference and Python in a Nutshell.

9.2 Terminating a Thread
Credit: Doug Fort

Problem
You must terminate a thread from the outside, but Python doesn’t let one thread just
brutally kill another, so you need to use a suitable controlled-termination idiom.

Solution
A frequently asked question is: How do I kill a thread? The answer is: You don’t.
Instead, you kindly ask it to go away. Each thread must periodically check whether
it’s been asked to go away and then comply (typically after some kind of cleanup).
Here is an example:

import threading
class TestThread(threading.Thread):
 def __init__(self, name='TestThread'):
 """ constructor, setting initial variables """
 self._stopevent = threading.Event()
 self._sleepperiod = 1.0
 threading.Thread.__init__(self, name=name)
 def run(self):
 """ main control loop """
 print "%s starts" % (self.getName(),)
 count = 0
 while not self._stopevent.isSet():
 count += 1
 print "loop %d" % (count,)
 self._stopevent.wait(self._sleepperiod)
 print "%s ends" % (self.getName(),)
 def join(self, timeout=None):
 """ Stop the thread and wait for it to end. """
 self._stopevent.set()
 threading.Thread.join(self, timeout)
if __name__ == "__main__":
 testthread = TestThread()
 testthread.start()
 import time
 time.sleep(5.0)
 testthread.join()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.2 Terminating a Thread | 363

Discussion
You often want to exert some control on a thread from the outside, but the ability to
kill a thread is, well, overkill. Python doesn’t give you this ability, and thus forces
you to design your thread systems more carefully. This recipe is based on the idea of
a thread whose main function uses a loop. Periodically, the loop checks if a
threading.Event object has been set. If so, the thread terminates; otherwise, it waits
for the object.

The TestThread class in this recipe also overrides threading.Thread’s join method.
Normally, join waits only for a certain thread to terminate (for up to a specified
amount of time, if any) without doing anything to cause that termination. In this rec-
ipe, however, join is overridden to set the stop event object before delegating the rest
of its operation to the normal (base class) join method. Therefore, in this recipe, the
join call is guaranteed to terminate the target thread within a short amount of time.

You can use the recipe’s central idea (a loop periodically checking a threading.Event

to determine whether it must terminate) in several other, slightly different ways. The
Event’s wait method can let you pause the target thread. You can also expose the
Event, letting controller code set it and then go on its merry way without bothering
to join the thread, knowing the thread will terminate in a short amount of time.
Once the event is exposed, you may choose to use the same event to request the ter-
mination of more than one thread—for example, all threads in a certain thread pool
might stop when one event object they all share is set. The simplicity of this recipe
provides the modest amount of control I need, with no headaches, so I haven’t pur-
sued the more sophisticated (and complicated) ideas.

Python also lets you terminate a thread in another way: by raising an exception in
that thread. This “rougher” approach also has its limits: it cannot interrupt a block-
ing call to the operating system, and it could fail to work if the thread you want to
terminate is executing a try clause whose except clauses are too broad. Despite its
limits, this approach can still sometimes be useful, when you’re essentially writing a
debugger: that is, when you cannot count on the code executing in the target thread
to be well written, but you can hope the code is not written in an utterly disastrous
way. The normal way to make use of this functionality is by running the possibly-
buggy code in the main thread, after spawning a separate monitoring thread to keep
an eye on things. If the monitoring thread decides the time has come to terminate the
code that is currently running in the main thread, the monitoring thread can call
thread.interrupt_main, passing as the argument the desired exception class.

Once in a blue moon, the debugger you’re writing cannot run the possibly-buggy
code in the process’ main thread, typically because that thread is required for other
uses by some other framework you depend on, such as your GUI code. To support
such remote eventualities, the Python interpreter has a function that can raise an
exception in any thread, given the target thread’s ID. However, this specialized func-
tionality is intended for a tiny subset of that tiny subset of Python applications that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 9: Processes, Threads, and Synchronization

are debuggers. To avoid tempting all other Python programmers (well over 99.9%)
into misusing this approach for any other case of thread termination, the function is
not directly callable from Python code: rather, the function is only exposed as a part
of Python’s C API. This special function’s name is PyThreadState_SetAsyncExc, and
the function’s two arguments are the target thread’s ID and the class of the desired
exception. If you are writing a Python debugger with such peculiar needs, no doubt
you already have, as part of your code, at least one C-coded Python extension mod-
ule that supplies to your higher-level Python code other tidbits of peculiar, low-level
functionality. Just add to your C code, a Python-callable function that in turn calls
PyThreadState_SetAsyncExc, and your debugger will gain this peculiar but useful
functionality.

See Also
Documentation of the standard library module threading in the Library Reference
and Python in a Nutshell.

9.3 Using a Queue.Queue as a Priority Queue
Credit: Simo Salminen, Lee Harr, Mark Moraes, Chris Perkins, Greg Klanderman

Problem
You want to use a Queue.Queue instance, since it is the best way to communicate
among threads. However, you need the additional functionality of being able to spec-
ify a priority value associated with each item on the queue, so that items with a lower
(more urgent) priority value are fetched before others with a higher (less urgent) pri-
ority value.

Solution
Among its many advantages, Queue.Queue offers an elegant architecture that eases
subclassing for purposes of specializing queueing behavior. Specifically, Queue.Queue
exposes several methods specifically designed to be overridden in a subclass, to get
specialized queueing behavior without worrying about synchronization issues.

We can exploit this elegant architecture and module heapq from the Python Stan-
dard Library to build the needed priority-queue functionality pretty easily. However,
we also need to shadow and wrap Queue.Queue’s put and get methods, to decorate
each item with its priority and posting time upon put, and strip off these decorations
upon get:

import Queue, heapq, time
class PriorityQueue(Queue.Queue):
 # Initialize the queue
 def _init(self, maxsize):
 self.maxsize = maxsize

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.3 Using a Queue.Queue as a Priority Queue | 365

 self.queue = []
 # Return the number of items that are currently enqueued
 def _qsize(self):
 return len(self.queue)
 # Check whether the queue is empty
 def _empty(self):
 return not self.queue
 # Check whether the queue is full
 def _full(self):
 return self.maxsize > 0 and len(self.queue) >= self.maxsize
 # Put a new item in the queue
 def _put(self, item):
 heapq.heappush(self.queue, item)
 # Get an item from the queue
 def _get(self):
 return heapq.heappop(self.queue)
 # shadow and wrap Queue.Queue's own `put' to allow a 'priority' argument
 def put(self, item, priority=0, block=True, timeout=None):
 decorated_item = priority, time.time(), item
 Queue.Queue.put(self, decorated_item, block, timeout)
 # shadow and wrap Queue.Queue's own `get' to strip auxiliary aspects
 def get(self, block=True, timeout=None):
 priority, time_posted, item = Queue.Queue.get(self, block, timeout)
 return item

Discussion
Given an instance q of this recipe’s PriorityQueue class, you can call q.put(anitem) to
enqueue an item with “normal” priority (here defined as 0), or q.put(anitem, prio)

to enqueue an item with a specific priority prio. At the time q.get() gets called (pre-
sumably in another thread), items with the lowest priority will be returned first,
bypassing items with higher priority. Negative priorities are lower than “normal”,
thus suitable for “urgent” items; positive priorities, higher than “normal”, indicate
items that may wait longer, since other items with “normal” priority will get fetched
before them. Of course, if you’re not comfortable with this conception of priorities,
nothing stops you from altering this recipe’s code accordingly: for example, by
changing sign to the priority value when you build the decorated_item at the start of
method put. If you do so, items posted with positive priority will become the urgent
ones and items posted with negative priority will become the can-wait-longer ones.

Queue.Queue’s architecture deserves study, admiration, and imitation. Not only is
Queue.Queue, all on its own, the best way to architect communication among threads,
but this same class is also designed to make it easy for you to subclass and specialize
it with queueing disciplines different from its default FIFO (first-in, first-out), such as
the priority-based queueing discipline implemented in this recipe. Specifically,
Queue.Queue uses the wonderful Template Method Design Pattern (http://
www.aleax.it/Python/os03_template_dp.pdf). This DP enables Queue.Queue itself to
take care of the delicate problems connected with locking, while delegating the
queueing discipline to specific methods _put, _get, and so on, which may be overrid-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 9: Processes, Threads, and Synchronization

den by subclasses; such hook methods then get called in a context where synchroni-
zation issues are not a concern.

In this recipe, we also need to override Queue.Queue’s put and get methods, because
we need to add a priority optional argument to put’s signature, decorate the item

before we put it on the queue (so that the heapq module’s mechanisms will produce
the order we want—lowest priority first, and, among items posted with equal prior-
ity, FIFO ordering), and undecorate each decorated item that we get back from the
queue to return the naked item. All of these auxiliary tweaks use nothing but local
variables, however, so they introduce no synchronization worries whatsoever. Each
thread gets its own stack; therefore, any code that uses nothing but local variables
(and thus cannot possibly alter any state accessible from other threads, or access any
state that other threads might alter) is inherently thread-safe.

See Also
Modules Queue and heapq of the Python Standard Library are documented in Library
Reference and Python in a Nutshell; the Template Method Design Pattern is illus-
trated at http://www.strakt.com/docs/os03_template_dp.pdf; recipe 19.14 “Merging
Sorted Sequences,” and recipe 5.7 “Keeping a Sequence Ordered as Items
Are Added,” show other examples of coding and using priority queues.

9.4 Working with a Thread Pool
Credit: John Nielsen, Justin A

Problem
You want your main thread to be able to farm out processing tasks to a pool of
worker threads.

Solution
The Queue.Queue type is the simplest and most effective way to coordinate a pool of
worker threads. We could group all the needed data structures and functions into a
class, but there’s no real need to. So, here they are, shown as globals instead:

import threading, Queue, time, sys
Globals (start with a capital letter)
Qin = Queue.Queue()
Qout = Queue.Queue()
Qerr = Queue.Queue()
Pool = []
def report_error():
 ''' we "report" errors by adding error information to Qerr '''
 Qerr.put(sys.exc_info()[:2])
def get_all_from_queue(Q):
 ''' generator to yield one after the others all items currently

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.4 Working with a Thread Pool | 367

 in the Queue Q, without any waiting
 '''
 try:
 while True:
 yield Q.get_nowait()
 except Queue.Empty:
 raise StopIteration
def do_work_from_queue():
 ''' the get-some-work, do-some-work main loop of worker threads '''
 while True:
 command, item = Qin.get() # implicitly stops and waits
 if command == 'stop':
 break
 try:
 # simulated work functionality of a worker thread
 if command == 'process':
 result = 'new' + item
 else:
 raise ValueError, 'Unknown command %r' % command
 except:
 # unconditional except is right, since we report _all_ errors
 report_error()
 else:
 Qout.put(result)
def make_and_start_thread_pool(number_of_threads_in_pool=5, daemons=True):
 ''' make a pool of N worker threads, daemonize, and start all of them '''
 for i in range(number_of_threads_in_pool):
 new_thread = threading.Thread(target=do_work_from_queue)
 new_thread.setDaemon(daemons)
 Pool.append(new_thread)
 new_thread.start()
def request_work(data, command='process'):
 ''' work requests are posted as (command, data) pairs to Qin '''
 Qin.put((command, data))
def get_result():
 return Qout.get() # implicitly stops and waits
def show_all_results():
 for result in get_all_from_queue(Qout):
 print 'Result:', result
def show_all_errors():
 for etyp, err in get_all_from_queue(Qerr):
 print 'Error:', etyp, err
def stop_and_free_thread_pool():
 # order is important: first, request all threads to stop...:
 for i in range(len(Pool)):
 request_work(None, 'stop')
 # ...then, wait for each of them to terminate:
 for existing_thread in Pool:
 existing_thread.join()
 # clean up the pool from now-unused thread objects
 del Pool[:]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 9: Processes, Threads, and Synchronization

Discussion
It is generally a mistake to architect a multithreading program on the premise of
having it spawn arbitrarily high numbers of threads as needed. Most often, the best
architecture for such a program is based on farming out work to a fixed and rela-
tively small number of worker threads—an arrangement known as a thread pool. This
recipe shows a very simple example of a thread pool, focusing on the use of
Queue.Queue instances as the most useful and simplest way for inter-thread communi-
cation and synchronization.

In this recipe, worker threads run function do_work_from_queue, which has the right
structure for a typical worker thread but does really minimal “processing” (just as an
example). In this case, the worker thread computes a “result” by prepending the
string 'new' to each arriving item (note that this implicitly assumes that arriving
items are strings). In your applications, of course, you will have, in the equivalent of
this do_work_from_queue function, more substantial processing, and quite possibly
different kinds of processing depending on the value of the command parameter.

In addition to the worker threads in the pool, a multithreading program often has
other specialized threads for various purposes, such as interfacing to various entities
external to the program (a GUI, a database, a library that is not guaranteed to be
thread-safe). In this recipe, such specialized threads are not shown. However, it does
include at least a “main thread”, which starts and stops the thread pool, determines
the units of work to be farmed out, and eventually gathers all results and any errors
that may have been reported.

In your applications, you may or may not want to start and stop the thread pool
repeatedly. Most typically, you may start the pool as a part of your program’s initial-
ization, leave it running throughout, and stop it, if at all, only as a part of your pro-
gram’s final cleanup. If you set your worker threads as “daemons”, as this recipe’s
function make_and_start_thread_pool sets them by default, it means that your pro-
gram will not continue running when only worker threads are left. Rather, your pro-
gram will terminate as soon as the main thread terminates. Again, this arrangement
is a typically advisable architecture. At any rate, the recipe also provides a function
stop_and_free_thread_pool, just in case you do want to terminate and clean up your
thread pool at some point (and possibly later make and restart another one with
another call to make_and_start_thread_pool).

An example use of the functionality in this recipe might be:

for i in ('_ba', '_be', '_bo'): request_work(i)
make_and_start_thread_pool()
stop_and_free_thread_pool()
show_all_results()
show_all_errors()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.5 Executing a Function in Parallel on Multiple Argument Sets | 369

The output from this snippet should normally be:

Result: new_ba

Result: new_be
Result: new_bo

although it’s possible (but quite unlikely) that two of the results might end up
exchanged. (If ordering of results is important to you, be sure to add a progressive
number to the work requests you post from the main thread, and report it back to
the main thread as part of each result or error.)

Here is a case where an error occurs and gets reported:

for i in ('_ba', 7, '_bo'): request_work(i)
make_and_start_thread_pool()
stop_and_free_thread_pool()
show_all_results()
show_all_errors()

The output from this snippet should normally be (net of an extremely unlikely, but
not impossible, exchange between the two “Result” lines):

Result: new_ba

Result: new_bo
Error: exceptions.TypeError cannot concatenate 'str' and 'int' objects

The worker thread that gets the item 7 reports a TypeError because it tries to concate-
nate the string 'new' with this item, which is an int—an invalid operation. Not to
worry: we have the try/except statement in function do_work_from_queue exactly to
catch any kind of error, and Queue Qerr and functions report_error and show_all_

errors exactly to ensure that errors do not pass silently, unless explicitly silenced,
which is a key point of Python’s general approach to programming.

See Also
Library Reference docs on threading and Queue modules; Python in a Nutshell chap-
ter on threads.

9.5 Executing a Function in Parallel on Multiple
Argument Sets

Credit: Guy Argo

Problem
You want to execute a function simultaneously over multiple sets of arguments. (Pre-
sumably the function is “I/O bound”, meaning it spends substantial time doing
input/output operations; otherwise, simultaneous execution would be useless.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 9: Processes, Threads, and Synchronization

Solution
Use one thread for each set of arguments. For good performance, it’s best to limit
our use of threads to a bounded pool:

import threading, time, Queue
class MultiThread(object):
 def __init__(self, function, argsVector, maxThreads=5, queue_results=False):
 self._function = function
 self._lock = threading.Lock()
 self._nextArgs = iter(argsVector).next
 self._threadPool = [threading.Thread(target=self._doSome)
 for i in range(maxThreads)]
 if queue_results:
 self._queue = Queue.Queue()
 else:
 self._queue = None
 def _doSome(self):
 while True:
 self._lock.acquire()
 try:
 try:
 args = self._nextArgs()
 except StopIteration:
 break
 finally:
 self._lock.release()
 result = self._function(args)
 if self._queue is not None:
 self._queue.put((args, result))
 def get(self, *a, **kw):
 if self._queue is not None:
 return self._queue.get(*a, **kw)
 else:
 raise ValueError, 'Not queueing results'
 def start(self):
 for thread in self._threadPool:
 time.sleep(0) # necessary to give other threads a chance to run
 thread.start()
 def join(self, timeout=None):
 for thread in self._threadPool:
 thread.join(timeout)
if __name__=="__main__":
 import random
 def recite_n_times_table(n):
 for i in range(2, 11):
 print "%d * %d = %d" % (n, i, n * i)
 time.sleep(0.3 + 0.3*random.random())
 mt = MultiThread(recite_n_times_table, range(2, 11))
 mt.start()
 mt.join()
 print "Well done kids!"

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.5 Executing a Function in Parallel on Multiple Argument Sets | 371

Discussion
This recipe’s MultiThread class offers a simple way to execute a function in parallel,
on many sets of arguments, using a bounded pool of threads. Optionally, you can
ask for results of the calls to the function to be queued, so you can retrieve them, but
by default the results are just thrown away.

The MultiThread class takes as its arguments a function, a sequence of argument
tuples for said function, and optionally a boundary on the number of threads to use
in its pool and an indicator that results should be queued. Beyond the constructor, it
exposes three methods: start, to start all the threads in the pool and begin the paral-
lel evaluation of the function over all argument tuples; join, to perform a join on all
threads in the pool (meaning to wait for all the threads in the pool to have termi-
nated); and get, to get queued results (if it was instantiated with the optional flag
queue_results set to True, to ask for results to be queued). Internally, class
MultiThread uses its private method doSome as the target callable for all threads in the
pool. Each thread works on the next available tuple of arguments (supplied by the
next method of an iterator on the iterable whose items are such tuples, with the call
to next being guarded by the usual locking idiom), until all work has been com-
pleted.

As is usual in Python, the module can also be run as a free-standing main script, in
which case it runs a simple demonstration and self-test. In this case, the demonstra-
tion simulates a class of schoolchildren reciting multiplication tables as fast as they
can.

Real use cases for this recipe mostly involve functions that are I/O bound, meaning
functions that spend substantial time performing I/O. If a function is “CPU bound”,
meaning the function spends its time using the CPU, you get better overall perfor-
mance by performing the computations one after the other, rather than in parallel. In
Python, this observation tends to hold even on machines that dedicate multiple
CPUs to your program, because Python uses a GIL (Global Interpreter Lock), so that
pure Python code from a single process does not run simultaneously on more than
one CPU at a time.

Input/output operations release the GIL, and so can (and should) any C-coded
Python extension that performs substantial computations without callbacks into
Python. So, it is possible that parallel execution may speed up your program, but
only if either I/O or a suitable C-coded extension is involved, rather than pure com-
putationally intensive Python code. (Implementations of Python on different virtual
machines, such as Jython, which runs on a JVM [Java Virtual Machine], or Iron-
Python, which runs on the Microsoft .NET runtime, are of course not bound by
these observations: these observations apply only to the widespread “classical
Python”, meaning CPython, implementation.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 9: Processes, Threads, and Synchronization

See Also
Library Reference and Python in a Nutshell docs on modules threading and Queue.

9.6 Coordinating Threads by Simple Message
Passing

Credit: Michael Hobbs

Problem
You want to write a multithreaded application, using, as the synchronization and
communication primitive, a simple yet powerful message-passing paradigm.

Solution
The candygram module lets you use concurrent programming semantics that are
essentially equivalent to those of the Erlang language. To use candygram, you start by
defining appropriate classes, such as the following one, to model your threads’ func-
tionality:

import candygram as cg
class ExampleThread(object):
 """A thread-class with just a single counter value and a stop flag."""
 def __init__(self):
 """ Initialize the counter to 0, the running-flag to True. """
 self.val = 0
 self.running = True
 def increment(self):
 """ Increment the counter by one. """
 self.val += 1
 def sendVal(self, msg):
 """ Send current value of counter to requesting thread. """
 req = msg[0]
 req.send((cg.self(), self.val))
 def setStop(self):
 """ Set the running-flag to False. """
 self.running = False
 def run(self):
 """ The entry point of the thread. """
 # Register the handler functions for various messages:
 r = cg.Receiver()
 r.addHandler('increment', self.increment)
 r.addHandler((cg.Process, 'value'), self.sendVal, cg.Message)
 r.addHandler('stop', self.setStop)
 # Keep handling new messages until a stop has been requested
 while self.running:
 r.receive()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.6 Coordinating Threads by Simple Message Passing | 373

To start a thread running this code under candygram, use:

counter = cg.spawn(ExampleThread().run)

To handle the counter thread’s responses, you need another Receiver object, with
the proper handler registered:

response = cg.Receiver()
response.addHandler((counter, int), lambda msg: msg[1], cg.Message)

And here is an example of how you might use these counter and response objects:

Tell thread to increment twice
counter.send('increment')
counter.send('increment')
Request the thread's current value, then print the thread's response
counter.send((cg.self(), 'value'))
print response.receive()
Tell thread to increment one more time
counter.send('increment')
Again, request the thread's current value, then print the thread's response
counter.send((cg.self(), 'value'))
print response.receive()
Tell the thread to stop running
counter.send('stop')

Discussion
With the candygram module (http://candygram.sourceforge.net), Python developers
can send and receive messages between threads using semantics nearly identical to
those introduced in the Erlang language (http://www.erlang.org). Erlang is widely
respected for its elegant built-in facilities for concurrent programming.

Erlang’s approach is simple and yet powerful. To communicate with another thread,
simply send a message to it. You do not need to worry about locks, semaphores,
mutexes, and other such primitives, to share information among concurrent tasks.
Developers of multitasking software mostly use message passing only to implement a
producer/consumer model. When you combine message passing with the flexibility
of a Receiver object, however, it becomes much more powerful. For example, by
using timeouts and message patterns, a thread may easily handle its messages as a
state machine, or as a priority queue.

For those who wish to become more familiar with Erlang, http://www.erlang.org/
download/erlang-book-part1.pdf (Concurrent Programming in Erlang) provides a very
complete introduction. In particular, the candygram module implements all of the
functions described in Chapter 5 and sections 7.2, 7.3, and 7.5 of that book.

This recipe offers a very elementary demonstration of how messages are passed
between threads using candygram. When you run this recipe as a script, the print

statements will output the values 2 and then 3.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 9: Processes, Threads, and Synchronization

It’s important to understand how the candygram.Receiver class works. The
addHandler method requires at least two parameters: the first is a message pattern
and the second is a handler function. The Receiver.receive method invokes a regis-
tered handler function, and returns that function’s result, whenever it finds a mes-
sage that matches the associated pattern. Any parameters optionally passed to
addHandler beyond the first two get passed as parameters to the handler function
when the Receiver calls it. If a parameter is the candygram.Message constant, then
receive replaces that parameter with the matching message when it calls the handler
function.

This recipe’s code contains four different message patterns: 'increment',
(cg.Process, 'value'), 'stop', and (counter, int). The 'increment' and 'stop' pat-
terns are simple patterns that match any message that consists solely of the strings
'increment' and 'stop', respectively. The (cg.Process, 'value') pattern matches
any message that is a tuple with two items, where the first item isinstance of
cg.Process and the second item is the string value. Lastly, the (counter, int) pat-
tern matches any message that is a tuple with two items where the first item is the
counter object and the second element is an integer.

You can find more information about the Candygram package at http://
candygram.sourceforge.net. At that URL, you can find all details on how to specify
message patterns, how to set a timeout for the Receiver.receive method, and how to
monitor the running status of spawned threads.

See Also
Concurrent Programming in Erlang at http://www.erlang.org/download/erlang-book-
part1.pdf; the candygram home page at http://candygram.sourceforge.net.

9.7 Storing Per-Thread Information
Credit: John E. Barham, Sami Hangaslammi, Anthony Baxter

Problem
You need to allocate to each thread some storage that only that thread can use.

Solution
Thread-specific storage is a useful design pattern, and Python 2.3 did not yet sup-
port it directly. However, even in 2.3, we could code it up in terms of a dictionary
protected by a lock. For once, it’s slightly more general, and not significantly harder,
to program to the lower-level thread module, rather than to the more commonly use-
ful, higher-level threading module that Python offers on top of it:

_tss = { }
try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.7 Storing Per-Thread Information | 375

 import thread
except ImportError:
 # We're running on a single-threaded platform (or, at least, the Python
 # interpreter has not been compiled to support threads), so we just return
 # the same dict for every call -- there's only one thread around anyway!
 def get_thread_storage():
 return _tss
else:
 # We do have threads; so, to work:
 _tss_lock = thread.allocate_lock()
 def get_thread_storage():
 """ Return a thread-specific storage dictionary. """
 thread_id = thread.get_ident()
 _tss_lock.acquire()
 try:
 return _tss.set_default(thread_id, { })
 finally:
 _tss_lock.release()

Python 2.4 offers a much simpler and faster implementation, of course, thanks to the
new threading.local function:

try:
 import threading
except ImportError:
 import dummy_threading as threading
_tss = threading.local()
def get_thread_storage():
 return _tss.__dict__

Discussion
The main benefit of multithreaded programs is that all of the threads can share glo-
bal objects when they need to do so. Often, however, each thread also needs some
storage of its own—for example, to store a network or database connection unique
to itself. Indeed, each such externally oriented object is generally best kept under the
control of a single thread, to avoid multiple possibilities of highly peculiar behavior,
race conditions, and so on. The get_thread_storage function in this recipe solves this
problem by implementing the “thread-specific storage” design pattern, and specifi-
cally by returning a thread-specific storage dictionary. The calling thread can then
use the returned dictionary to store any kind of data that is private to the thread.
This recipe is, in a sense, a generalization of the get_transaction function from
ZODB, the object-oriented database underlying Zope.

One possible extension to this recipe is to add a delete_thread_storage function.
Such a function would be useful, particularly if a way could be found to automate its
being called upon thread termination. Python’s threading architecture does not make
this task particularly easy. You could spawn a watcher thread to do the deletion after
a join with the calling thread, but that’s a rather heavyweight approach. The recipe
as presented, without deletion, is quite appropriate for the common and recom-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 9: Processes, Threads, and Synchronization

mended architecture in which you have a pool of (typically daemonic) worker
threads (perhaps some of them general workers, with others dedicated to interfacing
to specific external resources) that are spawned at the start of the program and do
not go away until the end of the whole process.

When multithreading is involved, implementation must always be particularly care-
ful to detect and prevent race conditions, deadlocks, and other such conflicts. In this
recipe, I have decided not to assume that a dictionary’s set_default method is atomic
(meaning that no thread switch can occur while set_default executes)—adding a
key can potentially change the dictionary’s whole structure, after all. If I was willing
to make such an assumption, I could do away with the lock and vastly increase per-
formance, but I suspect that such an assumption might make the code too fragile and
dependent on specific versions of Python. (It seems to me that the assumption holds
for Python 2.3, but, even if that is the case, I want my applications to survive subtle
future changes to Python’s internals.) Another risk is that, if a thread terminates and
a new one starts, the new thread might end up with the same thread ID as the just-
terminated one, and therefore accidentally share the “thread-specific storage” dictio-
nary left behind by the just-terminated thread. This risk might be mitigated (though
not eliminated) by providing the delete_thread_storage function mentioned in the
previous paragraph. Again, this specific problem does not apply to me, given the
kind of multithreading architecture that I use in my applications. If your architecture
differs, you may want to modify this recipe’s solution accordingly.

If the performance of this recipe’s version is insufficient for your application’s needs,
due to excessive overhead in acquiring and releasing the lock, then, rather than just
removing the lock at the risk of making your application fragile, you might consider
an alternative:

_creating_threads = True
_tss_lock = thread.allocate_lock()
_tss = { }
class TssSequencingError(RuntimeError): pass
def done_creating_threads():
 """ switch from thread-creation to no-more-threads-created state """
 global _creating_threads
 if not _creating_threads:
 raise TssSequencingError('done_creating_threads called twice')
 _creating_threads = False
def get_thread_storage():
 """ Return a thread-specific storage dictionary. """
 thread_id = thread.get_ident()
 # fast approach if thread-creation phase is finished
 if not _creating_threads: return _tss[thread_id]
 # careful approach if we're still creating threads
 try:
 _tss_lock.acquire()
 return _tss.setdefault(thread_id, { })
 finally:
 _tss_lock.release()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.7 Storing Per-Thread Information | 377

This variant adds a boolean switch _creating_threads, initially True. As long as the
switch is True, the variant uses a careful locking-based approach, quite similar to the
one presented in this recipe’s Solution. At some point in time, when all threads that
will ever exist (or at least all that will ever require access to get_thread_storage) have
been started, and each of them has obtained its thread-local storage dictionary, your
application calls done_creating_threads. This sets _creating_threads to False, and
every future call to get_thread_storage then takes a fast path where it simply indexes
into global dictionary _tss—no more acquiring and releasing the lock, no more cre-
ating a thread’s thread-local storage dictionary if it didn’t yet exist.

As long as your application can determine a moment in which it can truthfully call
done_creating_threads, the variant in this subsection should definitely afford a sub-
stantial increase in speed compared to this recipe’s Solution. Note that it is particu-
larly likely that you can use this variant if your application follows the popular and
recommended architecture mentioned previously: a bounded set of daemonic, long-
lived worker threads, all created early in your program. This is fortunate, because, if
your application is performance-sensitive enough to worry about the locking over-
head of this recipe’s solution, then no doubt you will want to structure your applica-
tion that way. The alternative approach of having many short-lived threads is
generally quite damaging to performance.

If your application needs to run only under Python 2.4, you can get a much simpler,
faster, and solid implementation by relying on the new threading.local function.
threading.local returns a new object on which any thread can get and set arbitrary
attributes, independently from whatever getting and setting other threads may be
doing on the same object. This recipe, in the 2.4 variant, returns the per-thread __

dict__ of such an object, for uniformity with the 2.3 variant. This way, your applica-
tions can be made to run on both Python 2.3 and 2.4, using the best version in each
case:

import sys
if sys.version >= '2.4':
 # insert 2.4 definition of get_local_storage here

else:
 # insert 2.3 definition of get_local_storage here

The 2.4 variant of this recipe also shows off the intended use of module dummy_

threading, which, like its sibling dummy_thread, is also available in Python 2.3. By
conditionally using these dummy modules, which are available on all platforms,
whether or not Python was compiled with thread support, you may sometimes, with
due care, be able to write applications that can run on any platform, taking advan-
tage of threading where it’s available but running anyway even where threading is
not available. In the 2.3 variant, we did not use the similar approach based on dummy_

thread, because the overhead would be too high to pay on nonthreaded platforms; in
the 2.4 variant, overhead is pretty low anyway, so we went for the simplicity that
dummy_threading affords.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 9: Processes, Threads, and Synchronization

See Also
For an exhaustive treatment of the design pattern that describes thread-specific stor-
age (albeit aimed at C++ programmers), see Douglas Schmidt, Timothy Harrisson,
Nat Pryce, Thread-Specific Storage: An Object Behavioral Pattern for Efficiently
Accessing per-Thread State (http://www.cs.wustl.edu/~schmidt/PDF/TSS-pattern.pdf);
the Library Reference documentation dummy_thread, dummy_threading, and Python
2.4’s threading.local; ZODB at http://zope.org/Wikis/ZODB/FrontPage.

9.8 Multitasking Cooperatively Without
Threads

Credit: Brian Bush, Troy Melhase, David Beach, Martin Miller

Problem
You have a task that seems suited to multithreading, but you don’t want to incur the
overhead that real thread-switching would impose.

Solution
Generators were designed to simplify iteration, but they’re also quite suitable as a
basis for cooperative multitasking, also known as microthreading:

import signal
credit: original idea was based on an article by David Mertz
http://gnosis.cx/publish/programming/charming_python_b7.txt
some example 'microthread' generators
def empty(name):
 """ This is an empty task for demonstration purposes. """
 while True:
 print "<empty process>", name
 yield None
def terminating(name, maxn):
 """ This is a counting task for demonstration purposes. """
 for i in xrange(maxn):
 print "Here %s, %s out of %s" % (name, i, maxn)
 yield None
 print "Done with %s, bailing out after %s times" % (name, maxn)
def delay(duration=0.8):
 """ Do nothing at all for 'duration' seconds. """
 import time
 while True:
 print "<sleep %d>" % duration
 time.sleep(duration)
 yield None
class GenericScheduler(object):
 def __init__(self, threads, stop_asap=False):
 signal.signal(signal.SIGINT, self.shutdownHandler)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.8 Multitasking Cooperatively Without Threads | 379

 self.shutdownRequest = False
 self.threads = threads
 self.stop_asap = stop_asap
 def shutdownHandler(self, n, frame):
 """ Initiate a request to shutdown cleanly on SIGINT."""
 print "Request to shut down."
 self.shutdownRequest = True
 def schedule(self):
 def noop():
 while True: yield None
 n = len(self.threads)
 while True:
 for i, thread in enumerate(self.threads):
 try: thread.next()
 except StopIteration:
 if self.stop_asap: return
 n -= 1
 if n==0: return
 self.threads[i] = noop()
 if self.shutdownRequest:
 return
if __name__== "__main__":
 s = GenericScheduler([empty('boo'), delay(), empty('foo'),
 terminating('fie', 5), delay(0.5),
], stop_asap=True)
 s.schedule()
 s = GenericScheduler([empty('boo'), delay(), empty('foo'),
 terminating('fie', 5), delay(0.5),
], stop_asap=False)
 s.schedule()

Discussion
Microthreading (or cooperative multitasking) is an important technique. If you want
to pursue it in earnest for complex uses, you should definitely look up the possibili-
ties of Christian Tismer’s Stackless, a Python version specialized for microthreading,
at http://www.stackless.com/. However, you can get a taste of cooperative multitask-
ing without straying from Python’s core, by making creative use of generators, as
shown in this recipe.

A simple approach to cooperative multitasking, such as the one presented in this
recipe, is not suitable when your tasks must perform long-running work, particularly
I/O tasks that may involve blocking system calls. For such applications, look into
real threading, or, as a strong alternative, look into the event-driven approach offered
by module asyncore in the Python Standard Library (on a simple scale) and by pack-
age Twisted at http://twistedmatrix.com/products/twisted (on a grandiose scale). But if
your application has modest I/O needs, and you can slice up any computation your
tasks perform into short chunks, each of which you can end with a yield, this recipe
may be just what you’re looking for.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 9: Processes, Threads, and Synchronization

See Also
David Mertz’s site, chock-full of idiosyncratic, fascinating ideas, is at http://gnosis.cx/;
Christian Tismer’s Stackless Python, the best way to do cooperative multitasking in
Python (and much else besides), is at http://www.stackless.com/; Twisted Matrix, the
best way to do event-driven (asynchronous) programming, is at http://
twistedmatrix.com/.

9.9 Determining Whether Another Instance
of a Script Is Already Running in Windows

Credit: Bill Bell

Problem
In a Windows environment, you want to ensure that only one instance of a script is
running at any given time.

Solution
Many tricks can be used to avoid starting multiple copies of an application, but
they’re all quite fragile—except those based on a mutual-exclusion (mutex) kernel
object, such as this one. Mark Hammond’s precious PyWin32 package supplies all the
needed hooks into the Windows APIs to let us exploit a mutex for this purpose:

from win32event import CreateMutex
from win32api import GetLastError
from winerror import ERROR_ALREADY_EXISTS
from sys import exit
handle = CreateMutex(None, 1, 'A unique mutex name')
if GetLastError() == ERROR_ALREADY_EXISTS:
 # Take appropriate action, as this is the second
 # instance of this script; for example:
 print 'Oh! dear, I exist already.'
 exit(1)
else:
 # This is the only instance of the script; let
 # it do its normal work. For example:
 from time import sleep
 for i in range(10):
 print "I'm running",i
 sleep(1)

Discussion
The string 'A unique mutex name' must be chosen to be unique to this script, and it
must not be dynamically generated, because the string must have the same value for
all potential simultaneous instances of the same script. A fresh, globally unique ID

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.10 Processing Windows Messages Using MsgWaitForMultipleObjects | 381

that you manually generate and insert at script-authoring time would be a good
choice. According to the Windows documentation, the string can contain any char-
acters except backslashes (\). On Windows platforms that implement Terminal Ser-
vices, you can optionally prefix the string with Global\ or Local\, but such prefixes
would make the string invalid for most versions of Windows, including NT, 95, 98,
and ME.

The Win32 API call CreateMutex creates a Windows kernel object of the mutual-
exclusion (mutex) kind and returns a handle to it. Note that we do not close this han-
dle, because it needs to exist throughout the time this process is running. It’s impor-
tant to let the Windows kernel take care of removing the handle (and the object it
indicates, if the handle being removed is the only handle to that kernel object) when
our process terminates.

The only thing we really care about is the return code from the API call, which we
obtain by calling the GetLastError API right after it. That code is ERROR_ALREADY_

EXISTS if and only if the mutual-exclusion object we tried to create already exists (i.e.,
if another instance of this script is already running).

This approach is perfectly safe and not subject to race conditions and similar anoma-
lies, even if two instances of the script are trying to start at the same time (a reason-
ably frequent occurrence, e.g., if the user erroneously double-clicks in an Active
Desktop setting where a single click already starts the application). The Windows
specifications guarantee that only one of the instances will create the mutex, while
the other will be informed that the mutex already exists. Mutual exclusion is there-
fore guaranteed by the Windows kernel itself, and the recipe is as solid as the operat-
ing system.

See Also
Documentation for the Win32 API in PyWin32 (http://starship.python.net/crew/
mhammond/win32/Downloads.html) or ActivePython (http://www.activestate.com/
ActivePython/); Windows API documentation available from Microsoft (http://
msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and Andy
Robinson (O’Reilly).

9.10 Processing Windows Messages Using
MsgWaitForMultipleObjects

Credit: Michael Robin

Problem
In a Win32 application, you need to process messages, but you also want to wait for
kernel-level waitable objects, and coordinate several activities.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 9: Processes, Threads, and Synchronization

Solution
A Windows application’s message loop, also known as its message pump, is at the
heart of Windows. It’s worth some effort to ensure that the heart beats properly and
regularly:

import win32event
import pythoncom
TIMEOUT = 200 # ms
StopEvent = win32event.CreateEvent(None, 0, 0, None)
OtherEvent = win32event.CreateEvent(None, 0, 0, None)
class myCoolApp(object):
 def OnQuit(self):
 # assume 'areYouSure' is a global function that makes a final
 # check via a message box, a fancy dialog, or whatever else!
 if areYouSure():
 win32event.SetEvent(StopEvent) # Exit msg pump
def _MessagePump():
 waitables = StopEvent, OtherEvent
 while True:

rc = win32event.MsgWaitForMultipleObjects(
waitables,

 , # Wait for all = false, so it waits for any one
TIMEOUT, # (or win32event.INFINITE)
win32event.QS_ALLEVENTS) # Accept all kinds of events

 # You can call a function here, if it doesn't take too long. It will
 # be executed at least every TIMEOUT ms -- possibly a lot more often,
 # depending on the number of Windows messages received.
 if rc == win32event.WAIT_OBJECT_0:
 # Our first event listed, the StopEvent, was triggered, so
 # we must exit, terminating the message pump
 break
 elif rc == win32event.WAIT_OBJECT_0+1:
 # Our second event listed, "OtherEvent", was set. Do
 # whatever needs to be done -- you can wait on as many
 # kernel-waitable objects as needed (events, locks,
 # processes, threads, notifications, and so on).
 pass
 elif rc == win32event.WAIT_OBJECT_0+len(waitables):
 # A windows message is waiting - take care of it. (Don't
 # ask me why a WAIT_OBJECT_MSG isn't defined <
 # WAIT_OBJECT_0...!).
 # This message-serving MUST be done for COM, DDE, and other
 # Windows-y things to work properly!
 if pythoncom.PumpWaitingMessages():
 break # we received a wm_quit message
 elif rc == win32event.WAIT_TIMEOUT:
 # Our timeout has elapsed.
 # Do some work here (e.g, poll something you can't thread)
 # or just feel good to be alive.
 pass
 else:
 raise RuntimeError("unexpected win32wait return value")

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.10 Processing Windows Messages Using MsgWaitForMultipleObjects | 383

Discussion
Most Win32 applications must process messages, but you often want to wait on ker-
nel waitables and coordinate a lot of things going on at the same time. A good mes-
sage pump structure is the key to this, and this recipe exemplifies a reasonably
simple but pretty effective one.

With the message pump shown in this recipe, messages and other events get dis-
patched as soon as they are posted, and a timeout allows you to poll other compo-
nents. You may need to poll if the proper calls or event objects are not exposed in
your Win32 event loop, as many components insist on running only on the applica-
tion’s main thread and cannot run on spawned (secondary) threads.

You can add many other refinements, just as you can to any other Win32 message-
pump approach. Python lets you do this with as much precision as C does, thanks to
Mark Hammond’s PyWin32 package (which used to be known as win32all). How-
ever, the relatively simple message pump presented in this recipe is already a big step
up from the typical naive application that can either serve its message loop or wait on
kernel waitables, but not both.

The key to this recipe is the Windows API call MsgWaitForMultipleObjects, which
takes several parameters. The first is a tuple of kernel objects you want to wait for.
The second parameter is a flag that is normally 0. The value 1 indicates that you
should wait until all the kernel objects in the first parameter are signaled, but my
experience suggests that you almost invariably want to stop waiting when any one of
these objects is signaled, so this parameter will almost always be 0. The third is a flag
that specifies which Windows messages you want to interrupt the wait; always pass
win32event.QS_ALLEVENTS here, to make sure any Windows message interrupts the
wait. The fourth parameter is a timeout period (in milliseconds), or
win32event.INFINITE if you are sure you do not need to do any periodic polling.

This function is a polling loop and, sure enough, it loops (with a while True, which
is terminated only by a break within it). At each leg of the loop, it calls the API that
waits for multiple objects. When that API stops waiting, it returns a code that
explains why it stopped waiting. A value between win32event.WAIT_OBJECT_0 and
win32event.WAIT_OBJECT_0+N-1 (where N is the number of waitable kernel objects in
the tuple you passed as the first parameter), inclusive, means that the wait finished
because an object was signaled (being signaled means different things for each kind
of waitable kernel object). The return code’s difference from win32event.WAIT_

OBJECT_0 is the index of the relevant object in the tuple.

A return value of win32event.WAIT_OBJECT_0+N means that the wait finished because a
message was pending, and in this case, our recipe processes all pending Windows
messages via a call to pythoncom.PumpWaitingMessages. (That function, in turn,
returns a true result if a WM_QUIT message was received, so in this case, we break out
of the whole while loop.) A code of win32event.WAIT_TIMEOUT means the wait finished

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 9: Processes, Threads, and Synchronization

because of a timeout, so we can do our polling there. In this case, no message is wait-
ing, and none of our kernel objects of interest were signaled.

Basically, the way to tune this recipe for yourself is by using the right kernel objects
as waitables (with an appropriate response to each) and by doing whatever you need
to do periodically in the polling case. While this means you must have some detailed
understanding of Win32, of course, it’s still quite a bit easier than designing your
own special-purpose, message-loop function from scratch.

I suspect that a purist would find some way or other to wrap all of this message
pumping into a neat module, letting each application customize its use of the mod-
ule by passing in a list of waitables, some dictionary to map different waitables to
chunks of code to execute, and a partridge in a pear tree. Go ahead, turn it all into a
custom metaclass if you wish, see if I care. For once, though, I think the right
approach to reusing this code is to copy it into your application’s source directories,
and use your trusty text editor (gasp!) to tailor the message pump to your applica-
tion’s exact needs.

See Also
Documentation for the Win32 API in PyWin32 (http://starship.python.net/crew/
mhammond/win32/Downloads.html) or ActivePython (http://www.activestate.com/
ActivePython/); Windows API documentation available from Microsoft (http://
msdn.microsoft.com); Mark Hammond and Andy Robinson, Python Programming on
Win32 (O’Reilly).

9.11 Driving an External Process with popen
Credit: Sébastien Keim, Tino Lange, Noah Spurrier

Problem
You want to drive an external process that accepts commands from its standard
input, and you don’t care about the responses (if any) that the external process may
emit on its standard output.

Solution
If you need to drive only the other process’ input and don’t care about its output, the
simple os.popen function is enough. For example, here is a way to do animated
graphics by driving the free program gnuplot via os.popen:

import os
f = os.popen('gnuplot', 'w')
print >>f, "set yrange[-300:+300]"
for n in range(300):
 print >>f, "plot %i*cos(x)+%i*log(x+10)" % (n, 150-n)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.11 Driving an External Process with popen | 385

 f.flush()
f.close()

Discussion
When you want to use Python as a glue language, sometimes (in particularly easy
cases) the simple function popen (from the standard library module os) may be all
you need. Specifically, os.popen may suffice when you need to drive an external pro-
gram that accepts commands on its standard input, as long as you can ignore any
response that the program might be making on its standard output (and also error
messages that the program might be sending to its standard error). A good example
is given by the free plotting program gnuplot. (os.popen may also suffice when you
need to obtain the output from a program that does not need to read its standard
input.)

The statement f = os.popen('gnuplot', 'w') creates a file-like object connected to
the standard input of the program it launches, namely 'gnuplot'. (To try this recipe,
you have to have gnuplot installed on your PATH, but since gnuplot is freely available
and widely ported software, that should not be a problem!) Whatever we write to f,
the external process receives on its standard input, just as would happen if we used
that same program interactively. For more of the same, check out http://
sourceforge.net/projects/gnuplot-py/: it’s a rich and interesting Python interface to
gnuplot implemented entirely on the basis of the simple idea shown in this recipe!

When your needs are more sophisticated than os.popen can accommodate, you may
want to look at os.popen2 and other such higher-numbered functions in module os,
or, in Python 2.4, the new standard library module subprocess. However, in many
cases, you’re likely to be disappointed: as soon as you get beyond the basics, driving
(from your own programs) other external programs that were designed to be used
interactively can become more than a little frustrating. Fortunately, a solution is at
hand: it’s pexpect, a third-party Python module that you can find at http://
pexpect.sourceforge.net/. pexpect is designed specifically for the task of driving other
programs, and it lets you check on the other program’s responses as well as sending
commands to the other program’s standard input. Still, while pexpect will most defi-
nitely offer you all the power you need, os.popen will probably suffice when you
don’t need anything fancy!

See Also
Module os (specifically os.popen) in the Library Reference and Python in a Nutshell;
gnuplot is at http://www.gnuplot.info/; gnuplot.py is at http://sourceforge.net/projects/
gnuplot-py/; pexpect is at http://pexpect.sourceforge.net/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 9: Processes, Threads, and Synchronization

9.12 Capturing the Output and Error Streams
from a Unix Shell Command

Credit: Brent Burley, Bradey Honsinger, Tobias Polzin, Jonathan Cano, Padraig Brady

Problem
You need to run an external process in a Unix-like environment and capture both the
output and error streams from that external process.

Solution
The popen2 module lets you capture both streams, but you also need help from mod-
ule fcntl, to make the streams nonblocking and thus avoid deadlocks, and from
module select, to orchestrate the action:

import os, popen2, fcntl, select
def makeNonBlocking(fd):
 fl = fcntl.fcntl(fd, fcntl.F_GETFL)
 try:
 fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NDELAY)
 except AttributeError:
 fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.FNDELAY)
def getCommandOutput(command):
 child = popen2.Popen3(command, 1) # Capture stdout and stderr from command
 child.tochild.close() # don't need to write to child's stdin
 outfile = child.fromchild
 outfd = outfile.fileno()
 errfile = child.childerr
 errfd = errfile.fileno()
 makeNonBlocking(outfd) # Don't deadlock! Make fd's nonblocking.
 makeNonBlocking(errfd)
 outdata, errdata = [], []
 outeof = erreof = False
 while True:
 to_check = [outfd]*(not outeof) + [errfd]*(not erreof)
 ready = select.select(to_check, [], []) # Wait for input
 if outfd in ready[0]:
 outchunk = outfile.read()
 if outchunk == '':
 outeof = True
 else:
 outdata.append(outchunk)
 if errfd in ready[0]:
 errchunk = errfile.read()
 if errchunk == '':
 erreof = True
 else:
 errdata.append(errchunk)
 if outeof and erreof:
 break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.12 Capturing the Output and Error Streams from a Unix Shell Command | 387

 select.select([],[],[],.1) # Allow a little time for buffers to fill
 err = child.wait()
 if err != 0:
 raise RuntimeError, '%r failed with exit code %d\n%s' % (
 command, err, ''.join(errdata))
 return ''.join(outdata)
def getCommandOutput2(command):
 child = os.popen(command)
 data = child.read()
 err = child.close()
 if err:
 raise RuntimeError, '%r failed with exit code %d' % (command, err)

Discussion
This recipe shows how to execute a Unix shell command and capture the output and
error streams in Python. By contrast, os.system sends both streams directly to the
terminal. The function getCommandOutput presented in this recipe executes a com-
mand and returns the command’s output. If the command fails, getCommandOutput

raises an exception, using the text captured from the command’s stderr as part of
the exception’s arguments.

Most of the complexity of this code is due to the difficulty of capturing both the out-
put and error streams of the child process independently and at the same time. Nor-
mal (blocking) read calls may deadlock if the child is trying to write to one stream,
and the parent is waiting for data on the other stream; so, the streams must be set to
nonblocking, and select must be used to wait for data on either of the streams.

Note that the second select call is included just to add a 0.1-second sleep after each
read. Counter intuitively, this allows the code to run much faster, since it gives the
child time to put more data in the buffer. Without it, the parent may try to read only
a few bytes at a time, which can be very expensive. Calling time.sleep(0.1) should
be exactly equivalent, but since I was already, necessarily, calling select.select else-
where in the recipe’s code, I decided not to also import module time needlessly.

If you want to capture only the output and don’t mind the error stream going to the
terminal, you can use the much simpler code presented in getCommandOutput2. If you
want to suppress the error stream altogether, that’s easy, too—just append 2>/dev/

null to the command. For example:

listing = getCommandOutput2('ls -1 2>/dev/null')

Another possibility is given by the os.popen4 function, which combines the output
and error streams of the child process. However, in that case the streams are com-
bined in a potentially messy way, depending on how they are buffered in the child
process, so this recipe can help.

In Python 2.4, you can use class Popen, instead of popen2.Popen3, from the new stan-
dard library module subprocess. However, the issues highlighted in this recipe
(namely, the need to use modules fcntl and select to make files nonblocking and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 9: Processes, Threads, and Synchronization

coordinate the loop that interacts with the child process) aren’t really affected by
whether you use popen2 or subprocess.

This recipe does, as advertised, require a rather Unix-like underlying platform.
Cygwin, which does a generally great job of emulating Unix on top of Windows, is
not sufficient; for example, it offers no way to set files to nonblocking mode, nor to
select on general files. (Under Windows, you are allowed to select only on sockets,
not on other files.) If you must run on such problematic, non-Unix platforms, you
may prefer a very different approach, based on using temporary files:

import os, tempfile
def getCommandOutput(command):
 outfile = tempfile.mktemp()
 errfile = tempfile.mktemp()
 cmd = "(%s) > %s 2> %s" % (command, outfile, errfile)
 err = os.system(cmd) >> 8
 try:
 if err != 0:
 raise RuntimeError, '%r failed with exit code %d\n%s' % (
 command, err, file(errfile).read())
 return file(outfile).read()
 finally:
 os.remove(outfile)
 os.remove(errfile)

See Also
Documentation of the standard library modules os, popen2, fcntl, select, and
tempfile in the Library Reference and Python in a Nutshell; (Python 2.4 only) mod-
ule subprocess in the Library Reference.

9.13 Forking a Daemon Process on Unix
Credit: Jürgen Hermann, Andy Gimblett, Josh Hoyt, Noah Spurrier, Jonathan Bartlett,
Greg Stein

Problem
You need to fork a daemon process on a Unix or Unix-like system, which, in turn,
requires a certain precise sequence of system calls.

Solution
Unix daemon processes must detach from their controlling terminal and process
group. Doing so is not hard, but it does require some care, so it’s worth writing a
daemonize.py module once and for all:

import sys, os
''' Module to fork the current process as a daemon.
 NOTE: don't do any of this if your daemon gets started by inetd! inetd

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.13 Forking a Daemon Process on Unix | 389

 does all you need, including redirecting standard file descriptors;
 the chdir() and umask() steps are the only ones you may still want.
'''
def daemonize (stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'):
 ''' Fork the current process as a daemon, redirecting standard file
 descriptors (by default, redirects them to /dev/null).
 '''
 # Perform first fork.
 try:
 pid = os.fork()
 if pid > 0:
 sys.exit(0) # Exit first parent.
 except OSError, e:
 sys.stderr.write("fork #1 failed: (%d) %s\n" % (e.errno, e.strerror))
 sys.exit(1)
 # Decouple from parent environment.
 os.chdir("/")
 os.umask(0)
 os.setsid()
 # Perform second fork.
 try:
 pid = os.fork()
 if pid > 0:
 sys.exit(0) # Exit second parent.
 except OSError, e:
 sys.stderr.write("fork #2 failed: (%d) %s\n" % (e.errno, e.strerror))
 sys.exit(1)
 # The process is now daemonized, redirect standard file descriptors.
 for f in sys.stdout, sys.stderr: f.flush()
 si = file(stdin, 'r')
 so = file(stdout, 'a+')
 se = file(stderr, 'a+', 0)
 os.dup2(si.fileno(), sys.stdin.fileno())
 os.dup2(so.fileno(), sys.stdout.fileno())
 os.dup2(se.fileno(), sys.stderr.fileno())
def _example_main ():
 ''' Example main function: print a count & timestamp each second '''
 import time
 sys.stdout.write('Daemon started with pid %d\n' % os.getpid())
 sys.stdout.write('Daemon stdout output\n')
 sys.stderr.write('Daemon stderr output\n')
 c = 0
 while True:
 sys.stdout.write('%d: %s\n' % (c, time.ctime()))
 sys.stdout.flush()
 c = c + 1
 time.sleep(1)
if __name__ == "__main__":
 daemonize('/dev/null','/tmp/daemon.log','/tmp/daemon.log')
 _example_main()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 9: Processes, Threads, and Synchronization

Discussion
Forking a daemon on Unix requires a certain specific sequence of system calls, which
is explained in W. Richard Stevens’ seminal book, Advanced Programming in the
Unix Environment (Addison-Wesley). We need to fork twice, terminating each par-
ent process and letting only the grandchild of the original process run the daemon’s
code. This allows us to decouple the daemon process from the calling terminal, so
that the daemon process can keep running (typically as a server process without fur-
ther user interaction, like a web server) even after the calling terminal is closed. The
only visible effect of doing so is that when your script runs this module’s daemonize

function, you get your shell prompt back immediately.

For all of the details about how and why this works in Unix and Unix-like systems,
see Stevens’ wonderful book. Another important source of information on both prac-
tical and theoretical issues about “daemon forking” can be found as part of the Unix
Programming FAQ, at http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16.

To summarize: the first fork lets the shell return, and also lets you do a setsid (to
remove you from your controlling terminal, so you can’t accidentally be sent a sig-
nal). However, setsid makes this process a “session leader”, which means that if the
process ever opens any terminal, it will become the process’ controlling terminal. We
do not want a daemon to have any controlling terminal, which is why we fork again.
After the second fork, the process is no longer a “session leader”, so it can open any
file (including a terminal) without thereby accidentally reacquiring a controlling ter-
minal.

Both Stevens and the Unix Programming FAQ provide examples in the C program-
ming language, but since the Python Standard Library exposes a full POSIX inter-
face, you can also do it all in Python. Typical C code for a daemon fork translates
almost literally to Python; the only difference you have to care about—a minor
detail—is that Python’s os.fork does not return -1 on errors, but rather throws an
OSError exception. Therefore, rather than testing for a less-than-zero return code
from fork, as we would in C, we run the fork in the try clause of a try/except state-
ment, so that we can catch the exception, should it happen, and print appropriate
diagnostics to standard error.

See Also
Documentation of the standard library module os in the Library Reference and
Python in a Nutshell; Unix manpages for the fork, umask, and setsid system calls;
W.Richard Stevens, Advanced Programming in the Unix Environment (Addison-
Wesley); also, the Unix Programming FAQ on daemon forking, at http://
www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

391

Chapter 10 CHAPTER 10

System Administration

10.0 Introduction
Credit: Donn Cave, University of Washington

In this chapter, we consider a class of programmer—the humble system administra-
tor—in contrast to other chapters’ focus on functional domains. As a programmer,
the system administrator faces most of the same problems that other programmers
face and should find the rest of this book of at least equal interest.

Python’s advantages in the system administration domain are also quite familiar to
other Python programmers, but Python’s competition is different. On Unix plat-
forms, at any rate, the landscape is dominated by a handful of lightweight languages
such as the Bourne shell and awk that aren’t exactly made obsolete by Python. These
little languages can often support a simpler, clearer, and more concise solution than
Python, particularly for commands that you’re typing interactively at the shell com-
mand prompt. But Python can do things these languages can’t, and it’s often more
robust when dealing with issues such as unusually large data inputs. Another nota-
ble competitor, especially on Unix systems, is Perl (which isn’t really a little lan-
guage at all), with just about the same overall power as Python, and usable for typing
a few commands interactively at the shell’s command prompt. Python’s strength
here is readability and maintainability: when you dust off a script you wrote in a
hurry eight months ago, because you need to make some changes to it, you don’t
spend an hour to figure out whatever exactly you had in mind when you wrote this
or that subtle trick. You just don’t use any tricks at all, subtle or gross, so that your
Python scrips work just fine and you don’t burn your time, months later, striving to
reverse-engineer them for understanding.

One item that stands out in this chapter’s solutions is the wrapper: the alternative,
programmed interface to a software system. On Unix (including, these days, Mac OS
X), this is usually a fairly prosaic matter of diversion and analysis of text I/O. Life is

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 10: System Administration

easy when the programs you’re dealing with are able to just give clean textual out-
put, without requiring complex interaction (see Eric Raymond, The Art of Unix
Programming, http://www.faqs.org/docs/artu/, for an informative overview of how
programs should be architected to make your life easy). However, even when you
have to wrap a program that’s necessarily interactive, all is far from lost. Python has
very good support in this area, thanks, first of all, to the fact that it places C-level
pseudo-TTY functions at your disposal (see the pty module of the Python Standard
Library). The pseudo-TTY device is like a bidirectional pipe with TTY driver sup-
port, so it’s essential for things such as password prompts that insist on a TTY.
Because it appears to be a TTY, applications writing to a pseudo-TTY normally use
line buffering, instead of the block buffering that gives problems with pipes. Pipes are
more portable and less trouble to work with, but they don’t work for interfacing to
every application. Excellent third-party extensions exist that wrap pty into higher-
level layers for ease of use, most notably Pexpect, http://pexpect.sourceforge.net/.

On Windows, the situation often is not as prosaic as on Unix-like platforms, since
the information you need to do your system administration job may be somewhere
in the registry, may be available via some Windows APIs, and/or may be available via
COM. The standard Python library _winreg module, Mark Hammond’s PyWin32

package, and Thomas Heller’s ctypes, taken together, give the Windows administra-
tor reasonably easy access to all of these sources, and you’ll see more Windows
administration recipes here than you will ones for Unix. The competition for Python
as a system administration language on Windows is feeble compared to that on
Unix, which is yet another reason for the platform’s prominence here. The PyWin32

extensions are available for download at http://sourceforge.net/projects/pywin32/.
PyWin32 also comes with ActiveState’s ActivePython distribution of Python (http://
www.activestate.com/ActivePython/). To use this rich and extremely useful package
most effectively, you also need Mark Hammond and Andy Robinson, Python Pro-
gramming on Win32 (O’Reilly). ctypes is available for download at http://
sourceforge.net/projects/ctypes.

While it may sometimes be difficult to see what brought all the recipes together in
this chapter, it isn’t difficult to see why system administrators deserve their own
chapter: Python would be nowhere without them! Who else, back when Python was
still an obscure, fledgling language, could bring it into an organization and almost
covertly infiltrate it into the working environment? If it weren’t for the offices of
these benevolent and pragmatic anarchists, Python might well have languished in
obscurity despite its merits.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.1 Generating Random Passwords | 393

10.1 Generating Random Passwords
Credit: Devin Leung

Problem
You need to create new passwords randomly—for example, to assign them automat-
ically to new user accounts.

Solution
One of the chores of system administration is installing new user accounts. Assign-
ing a different, totally random password to each new user is a good idea. Save the fol-
lowing code as makepass.py:

from random import choice
import string
def GenPasswd(length=8, chars=string.letters+string.digits):
 return ''.join([choice(chars) for i in range(length)])

Discussion
This recipe is useful when you are creating new user accounts and assigning each of
them a different, totally random password. For example, you can print six pass-
words of length 12:

>>> import makepass
>>> for i in range(6):
... print makepass.GenPasswd(12)
...
uiZWGSJLWjOI
FVrychdGsAaT
CGCXZAFGjsYI
TPpQwpWjQEIi
HMBwIvRMoIvh

Of course, such totally random passwords, while providing an excellent theoretical
basis for security, are impossibly hard to remember for most users. If you require
users to stick with their assigned passwords, many users will probably write them
down. The best you can hope for is that new users will set their own passwords at
their first login, assuming, of course, that the system you’re administering lets each
user change his own password. (Most operating systems do, but you might be
assigning passwords for other kinds of services that unfortunately often lack such
facilities.)

A password that is written down anywhere is a serious security risk: pieces of paper
get lost, misplaced, and peeked at. From a pragmatic point of view, you might be
better off assigning passwords that are not totally random; users are more likely to
remember them and less likely to write them down (see recipe 394 “Generating Eas-
ily Remembered Somewhat-Random Passwords”). This practice may violate the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 10: System Administration

theory of password security, but, as all practicing system administrators know, prag-
matism trumps theory.

See Also
Recipe 10.2 “Generating Easily Remembered Somewhat-Random Passwords”; docu-
mentation of the standard library module random in the Library Reference and Python
in a Nutshell.

10.2 Generating Easily Remembered
Somewhat-Random Passwords

Credit: Luther Blissett

Problem
You need to create new passwords randomly—for example, to assign them automat-
ically to new user accounts. You want the passwords to be somewhat feasible to
remember for typical users, so they won’t be written down.

Solution
We can use a pastiche approach for this, mimicking letter n-grams in actual English
words. A grander way to look at the same approach is to call it a Markov Chain Sim-
ulation of English:

import random, string
class password(object):
 # Any substantial file of English words will do just as well: we
 # just need self.data to be a big string, the text we'll pastiche
 data = open("/usr/share/dict/words").read().lower()
 def renew(self, n, maxmem=3):
 ''' accumulate into self.chars `n' random characters, with a
 maximum-memory "history" of `maxmem` characters back. '''
 self.chars = []
 for i in range(n):
 # Randomly "rotate" self.data
 randspot = random.randrange(len(self.data))
 self.data = self.data[randspot:] + self.data[:randspot]
 # Get the n-gram
 where = -1
 # start by trying to locate the last maxmem characters in
 # self.chars. If i<maxmem, we actually only get the last
 # i, i.e., all of self.chars -- but that's OK: slicing
 # is quite tolerant in this way, and it fits the algorithm
 locate = ''.join(self.chars[-maxmem:])
 while where<0 and locate:
 # Locate the n-gram in the data
 where = self.data.find(locate)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.2 Generating Easily Remembered Somewhat-Random Passwords | 395

 # Back off to a shorter n-gram if necessary
 locate = locate[1:]
 # if where==-1 and locate='', we just pick self.data[0] --
 # it's a random item within self.data, tx to the rotation

c = self.data[where+len(locate)+1]
 # we only want lowercase letters, so, if we picked another
 # kind of character, we just choose a random letter instead
 if not c.islower(): c = random.choice(string.lowercase)
 # and finally we record the character into self.chars
 self.chars.append(c)
 def __str__(self):
 return ''.join(self.chars)
if __name__ == '__main__':
 "Usage: pastiche [passwords [length [memory]]]"
 import sys
 if len(sys.argv)>1: dopass = int(sys.argv[1])
 else: dopass = 8
 if len(sys.argv)>2: length = int(sys.argv[2])
 else: length = 10
 if len(sys.argv)>3: memory = int(sys.argv[3])
 else: memory = 3
 onepass = password()
 for i in range(dopass):
 onepass.renew(length, memory)
 print onepass

Discussion
This recipe is useful when creating new user accounts and assigning each user a dif-
ferent, random password: it uses passwords that a typical user will find it feasible to
remember, hopefully so they won’t get written down. See recipe 393 “Generating
Random Passwords” if you prefer totally random passwords.

The recipe’s idea is based on the good old pastiche concept. Each letter (always low-
ercase) in the password is chosen pseudo-randomly from data that is a collection of
words in a natural language familiar to the users. This recipe uses the file that is /usr/
share/dict/words supplied with Linux systems (on my machine, a file of over 45,000
words), but any large document in plain text will do just as well. The trick that
makes the passwords sort of memorable, and not fully random, is that each letter is
chosen based on the last few letters already picked for the password as it stands so
far. Thus, letter transitions will tend to be “repetitive” according to patterns that are
familiar to the user.

The code in the recipe takes some care to locate each time a random occurrence, in
the text being pastiched, of the last maxmem characters picked so far. Since it’s easy to
find the first occurrence of a substring, the code “rotates” the text string randomly,
to ensure that the first occurrence is a random one from the point of view of the orig-
inal text. If the substring made up with the last maxmem characters picked is not found
in the text, the code “backs down” to search for just the last maxmem-1, and so on,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 10: System Administration

backing down until, worst case, it just picks the first character in the rotated text
(which is a random character from the point of view of the original text).

A break in this Markov Chain process occurs when this picking procedure chooses a
character that is not a lowercase letter, in which case, a random lowercase letter is
chosen instead (any lowercase letter is picked with equal probability).

Here are a couple of typical sample runs of this pastiche.py password-generation
script:

[situ@tioni cooker]$ python pastiche.py
yjackjaceh
ackjavagef
aldsstordb
dingtonous
stictlyoke
cvaiwandga
lidmanneck
olexnarinl
[situ@tioni cooker]$ python pastiche.py
ptiontingt
punchankin
cypresneyf
sennemedwa
iningrated
fancejacev
sroofcased
nryjackman

As you can see, some of these are definitely word-like, others less so, but for a typi-
cal human being, none are more problematic to remember than a sequence of even
fewer totally random, uncorrelated letters. No doubt some theoretician will com-
plain (justifiably, in a way) that they aren’t as random as all that. Well, tough. My
point is that they had better not be, if some poor fellow is going to have to remem-
ber them! You can compensate for this limitation by making them a bit longer. If
said theoretician demonstrates how to compute the entropy per character of this
method of password generation (versus the obvious 4.7 bits/character, the base-2
logarithm of 26, for passwords made up of totally random lowercase letters), now
that would be a useful contribution indeed. Meanwhile, I’ll keep generating pass-
words this way, rather than in a totally random way. If nothing else, it’s the closest
thing I’ve found to a useful application for the lovely pastiche concept.

The concept of passwords that are not totally random, but rather a bit more memo-
rable, goes back a long way—at least to the 1960s and to works by Morrie Gasser
and Daniel Edwards. A Federal Information Processing Standard (FIPS), FIPS 181,
specifies in detail how “pronounceable” passwords are to be generated; see http://
www.itl.nist.gov/fipspubs/fip181.htm.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.3 Authenticating Users by Means of a POP Server | 397

See Also
Recipe 10.1 “Generating Random Passwords”; documentation of the standard
library module random in the Library Reference and Python in a Nutshell.

10.3 Authenticating Users by Means
of a POP Server

Credit: Magnus Lyckå

Problem
You are writing a Python application that must authenticate users. All of the users
have accounts on some POP servers, and you’d like to reuse, for your own authenti-
cation, the user IDs and passwords that your users have on those servers.

Solution
To log into the application, a user must provide the server, user ID and password for
his mail account. We try logging into that POP server with these credentials—if that
attempt succeeds, then the user has authenticated successfully. (Of course, we don’t
peek into the user’s mailbox!)

def popauth(popHost, user, passwd):
 """ Log in and log out, only to verify user identity.
 Raise exception in case of failure.
 """
 import poplib
 try:
 pop = poplib.POP3(popHost)
 except:
 raise RuntimeError("Could not establish connection "
 "to %r for password check" % popHost)
 try:
 # Log in and perform a small sanity check
 pop.user(user)
 pop.pass_(passwd)
 length, size = pop.stat()
 assert type(length) == type(size) == int
 pop.quit()
 except:
 raise RuntimeError("Could not verify identity. \n"
 "User name %r or password incorrect." % user)
 pop.quit()

Discussion
To use this recipe, the application must store somewhere the list of known users and
either the single POP server they all share, or the specific POP server on which each

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 10: System Administration

user authenticates—it need not be the same POP server for all users. Either a text file,
or a simple table in any kind of database, will do just fine for this purpose.

This solution is neat, but it does have some weaknesses:

• Users must trust that any application implementing this authentication system
won’t abuse their email accounts.

• POP passwords are, alas!, sent in plain text over the Internet.

• We have to trust that the POP server security isn’t compromised.

• Logging in might take a few seconds if the POP server is slow.

• Logging in won’t work if the POP server is down.

However, to offset all of these potential drawbacks is the convenience of applica-
tions not having to store any passwords, nor forcing a poor overworked system
administrator to administer password changes. It’s also quite simple! In short, I
wouldn’t use this approach for a bank system, but I would have no qualms using it,
for example, to give users rights to edit web pages at a somewhat restricted Wiki-
Wiki, or similarly low-risk applications.

See Also
Documentation of the standard library module poplib in the Library Reference and
Python in a Nutshell.

10.4 Calculating Apache Hits per IP Address
Credit: Mark Nenadov, Ivo Woltring

Problem
You need to examine a log file from Apache to count the number of hits recorded
from each individual IP address that accessed it.

Solution
Many of the chores of administering a web server have to do with analyzing Apache
logs, which Python makes easy:

def calculateApacheIpHits(logfile_pathname):
 ''' return a dict mapping IP addresses to hit counts '''
 ipHitListing = { }
 contents = open(logfile_pathname, "r")
 # go through each line of the logfile
 for line in contents:
 # split the string to isolate the IP address

ip = line.split(" ", 1)[0]
 # Ensure length of the IP address is proper (see discussion)
 if 6 < len(ip) <= 15:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.4 Calculating Apache Hits per IP Address | 399

 # Increase by 1 if IP exists; else set hit count = 1
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1
 return ipHitListing

Discussion
This recipe supplies a function that returns a dictionary containing the hit counts for
each individual IP address that has accessed your Apache web server, as recorded in
an Apache log file. For example, a typical use would be:

HitsDictionary = calculateApacheIpHits(
 "/usr/local/nusphere/apache/logs/access_log")

This function has many quite useful applications. For example, I often use it in my
code to determine the number of hits that are actually originating from locations
other than my local host. This function is also used to chart which IP addresses are
most actively viewing the pages that are served by a particular installation of Apache.

This function performs a modest validation of each IP address, which is really just a
length check: an IP address cannot be longer than 15 characters (4 sets of triplets and
3 periods) nor shorter than 7 (4 sets of single digits and 3 periods). This validation is
not stringent, but it does reduce, at tiny runtime cost, the probability of placing into
the dictionary some data that is obviously garbage. As a general technique, low-cost,
highly approximate sanity checks for data that is expected to be OK (but one never
knows for sure) are worth considering. However, if you want to be stricter, regular
expressions can help. Change the loop in this recipe’s function’s body to:

 import re
 # an IP is: 4 strings, each of 1-3 digits, joined by periods
 ip_specs = r'\.'.join([r'\d{1,3}']*4)
 re_ip = re.compile(ip_specs)
 for line in contents:
 match = re_ip.match(line)
 if match:
 # Increase by 1 if IP exists; else set hit count = 1
 ip = match.group()
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1

In this variant, we use a regular expression to extract and validate the IP at the same
time. This approach enables us to avoid the split operation as well as the length
check, and thus amortizes most of the runtime cost of matching the regular expres-
sion. This variant is only a few percentage points slower than the recipe’s solution.

Of course, the pattern given here as ip_specs is not entirely precise either, since it
accepts, as components of an IP quad, arbitrary strings of one to three digits, while
the components should be more constrained. But to ward off garbage lines, this level
of sanity check is sufficient.

Another alternative is to convert and check the address: extract string ip just as we
do in this recipe’s Solution, then:

 # Ensure the IP address is proper
 try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 10: System Administration

 quad = map(int, ip.split('.'))
 except ValueError:
 pass
 else:
 if len(quad)==4 and min(quad)>=0 and max(quad)<=255:
 # Increase by 1 if IP exists; else set hit count = 1
 ipHitListing[ip] = ipHitListing.get(ip, 0) + 1

This approach is more work, but it does guarantee that only IP addresses that are for-
mally valid get counted at all.

See Also
The Apache web server is available and documented at http://httpd.apache.org; regu-
lar expressions are covered in the docs of the re module in the Library Reference and
Python in a Nutshell.

10.5 Calculating the Rate of Client Cache Hits
on Apache

Credit: Mark Nenadov

Problem
You need to monitor how often client requests are refused by your Apache web
server because the client’s cache of the page is already up to date.

Solution
When a browser queries a server for a page that the browser has in its cache, the
browser lets the server know about the cached data, and the server returns a special
error code (rather than serving the page again) if the client’s cache is up to date.
Here’s how to find the statistics for such occurrences in your server’s logs:

def clientCachePercentage(logfile_pathname):
 contents = open(logfile_pathname, "r")
 totalRequests = 0
 cachedRequests = 0
 for line in contents:
 totalRequests += 1

if line.split(" ")[8] == "304":
 # if server returned "not modified"
 cachedRequests += 1
 return int(0.5+float(100*cachedRequests)/totalRequests)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.6 Spawning an Editor from a Script | 401

Discussion
The percentage of requests to your Apache server that are met by the client’s own
cache is an important factor in the perceived performance of your server. The code in
this recipe helps you get this information from the server’s log. Typical use would be:

log_path = "/usr/local/nusphere/apache/logs/access_log"
print "Percentage of requests that were client-cached: " + str(
 clientCachePercentage(log_path)) + '%'

The recipe reads the log file one line at a time by looping over the file—the normal
way to read a file nowadays. Trying to read the whole log file in memory, by calling
the readlines method on the file object, would be an unsuitable approach for very
large files, which server log files can certainly be. That approach might not work at
all, or might work but damage performance considerably by swamping your
machine’s virtual memory. Even when it works, readlines offers no advantage over
the approach used in this recipe.

The body of the for loop calls the split method on each line string, with a string of a
single space as the argument, to split the line into a tuple of its space-separated
fields. Then it uses indexing ([8]) to get the ninth such field. Apache puts the error
code into the ninth field of each line in the log. Code "304" means “not modified”
(i.e., the client’s cache was already correctly updated). We count those cases in the
cachedRequests variable and all lines in the log in the totalRequests variable, so that,
in the end, we can return the percentage of cache hits. The expression we use in the
return statement computes the percentage as a float number, then rounds it cor-
rectly to the closest int, because an integer result is most useful in practice.

See Also
The Apache web server is available and documented at http://httpd.apache.org.

10.6 Spawning an Editor from a Script
Credit: Larry Price, Peter Cogolo

Problem
You want users to work with their favorite text-editing programs to edit text files, to
provide input to your script.

Solution
Module tempfile lets you create temporary files, and module os has many tools to
check the environment and to work with files and external programs, such as text
editors. A couple of functions can wrap this functionality into an easy-to-use form:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 10: System Administration

import sys, os, tempfile
def what_editor():
 editor = os.getenv('VISUAL') or os.getenv('EDITOR')
 if not editor:
 if sys.platform == 'windows':
 editor = 'Notepad.Exe'
 else:
 editor = 'vi'
 return editor
def edited_text(starting_text=''):
 temp_fd, temp_filename = tempfile.mkstemp(text=True)
 os.write(temp_fd, starting_text)
 os.close(temp_fd)
 editor = what_editor()
 x = os.spawnlp(os.P_WAIT, editor, editor, temp_filename)
 if x:
 raise RuntimeError, "Can't run %s %s (%s)" % (editor, temp_filename, x)
 result = open(temp_filename).read()
 os.unlink(temp_filename)
 return result
if __name__=='__main__':
 text = edited_text('''Edit this text a little,
go ahead,
it's just a demonstration, after all...!
''')
 print 'Edited text is:', text

Discussion
Your scripts may often need a substantial amount of textual input from the user. Let-
ting users edit the text with their favorite text editor is an excellent feature for your
script to have, and this recipe shows how you can obtain it. I have used variants of
this approach for such purposes as adjusting configuration files, writing blog posts,
and sending emails.

If your scripts do not need to run on Windows, a more secure and slightly simpler
way to code function edited_text is available:

def edited_text(starting_text=''):
 temp_file = tempfile.NamedTemporaryFile()
 temp_file.write(starting_text)
 temp_file.seek(0)
 editor = what_editor()
 x = os.spawnlp(os.P_WAIT, editor, editor, temp_file.name)
 if x:
 raise RuntimeError, "Can't run %s %s (%s)" % (editor, temp_file.name, x)
 return temp_file.read()

Unfortunately, this alternative relies on the editor we’re spawning being able to open
and modify the temporary file while we are holding that file open, and this capabil-
ity is not supported on most versions of Windows. The version of edited_text given
in the recipe is more portable.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.7 Backing Up Files | 403

When you’re using this recipe to edit text files that must respect some kind of syntax
or other constraints, such as a configuration file, you can make your script simpler
and more effective by using a cycle of “input/parse/re-edit in case of errors,” provid-
ing immediate feedback to users when you can diagnose they’ve made a mistake in
editing the file. Ideally, in such cases, you should reopen the editor already pointing
at the line in error, which is possible with most Unix editors by passing them a first
argument such as '+23', specifying that they start editing at line 23, before the file-
name argument. Unfortunately, such an argument would confuse many Windows
editors, so you have to make some hard decisions here (if you do need to support
Windows).

See Also
Documentation for modules tempfile and os in the Library Reference and Python in
a Nutshell.

10.7 Backing Up Files
Credit: Anand Pillai, Tiago Henriques, Mario Ruggier

Problem
You want to make frequent backup copies of all files you have modified within a
directory tree, so that further changes won’t accidentally obliterate some of your
editing.

Solution
Version-control systems, such as RCS, CVS, and SVN, are very powerful and useful,
but sometimes a simple script that you can easily edit and customize can be even
handier. The following script checks for new files to back up in a tree that you spec-
ify. Run the script periodically to keep your backup copies up to date.

import sys, os, shutil, filecmp
MAXVERSIONS=100
def backup(tree_top, bakdir_name='bakdir'):
 for dir, subdirs, files in os.walk(tree_top):
 # ensure each directory has a subdir called bakdir
 backup_dir = os.path.join(dir, bakdir_name)
 if not os.path.exists(backup_dir):
 os.makedirs(backup_dir)
 # stop any recursing into the backup directories
 subdirs[:] = [d for d in subdirs if d != bakdir_name]
 for file in files:
 filepath = os.path.join(dir, file)
 destpath = os.path.join(backup_dir, file)
 # check existence of previous versions
 for index in xrange(MAXVERSIONS):
 backup = '%s.%2.2d' % (destpath, index)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 10: System Administration

 if not os.path.exists(backup): break
 if index > 0:
 # no need to backup if file and last version are identical
 old_backup = '%s.%2.2d' % (destpath, index-1)
 abspath = os.path.abspath(filepath)
 try:
 if os.path.isfile(old_backup
) and filecmp.cmp(abspath, old_backup, shallow=False):
 continue
 except OSError:
 pass
 try:
 shutil.copy(filepath, backup)
 except OSError:
 pass
if __name__ == '__main__':
 # run backup on the specified directory (default: the current directory)
 try: tree_top = sys.argv[1]
 except IndexError: tree_top = '.'
 backup(tree_top)

Discussion
Although version-control systems are more powerful, this script can be useful in
development work. I often customize it, for example, to keep backups only of files
with certain extensions (or, when that’s handier, of all files except those with certain
extensions); it suffices to add an appropriate test at the very start of the for file in

files loop, such as:

 name, ext = os.path.splitext(file)
 if ext not in ('.py', '.txt', '.doc'): continue

This snippet first uses function splitext from the standard library module os.path to
extract the file extension (starting with a period) into local variable ext, then condi-
tionally executes statement continue, which passes to the next leg of the loop, unless
the extension is one of a few that happen to be the ones of interest in the current sub-
tree.

Other potentially useful variants include backing files up to some other subtree
(potentially on a removable drive, which has some clear advantages for backup pur-
poses) rather than the current one, compressing the files that are being backed up
(look at standard library module gzip for this purpose), and more refined ones yet.
However, rather than complicating function backup by offering all of these variants as
options, I prefer to copy the entire script to the root of each of the various subtrees of
interest, and customize it with a little simple editing. While this strategy would be a
very bad one for any kind of complicated, highly reusable production-level code, it is
reasonable for a simple, straightforward system administration utility such as the one
in this recipe.

Worthy of note in this recipe’s implementation is the use of function os.walk, a gen-
erator from the standard Python library’s module os, which makes it very simple to
iterate over all or most of a filesystem subtree, with no need for such subtleties as

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.8 Selectively Copying a Mailbox File | 405

recursion or callbacks, just a straightforward for statement. To avoid backing up the
backups, this recipe uses one advanced feature of os.walk: the second one of the
three values that os.walk yields at each step through the loop is a list of subdirecto-
ries of the current directory. We can modify this list in place, removing some of the
subdirectory names it contains. When we perform such an in-place modification,
os.walk does not recurse through the subdirectories whose names we removed. The
following steps deal only with the subdirectories whose names are left in. This subtle
but useful feature of os.walk is one good example of how a generator can receive
information from the code that’s iterating on it, to affect details of the iteration being
performed.

See Also
Documentation of standard library modules os, shutils, and gzip in the Library Ref-
erence and Python in a Nutshell.

10.8 Selectively Copying a Mailbox File
Credit: Noah Spurrier, Dave Benjamin

Problem
You need to selectively copy a large mailbox file (in mbox style), passing each mes-
sage through a filtering function that may alter or skip the message.

Solution
The Python Standard Library package email is the modern Python approach for this
kind of task. However, standard library modules mailbox and rfc822 can also supply
the base functionality to implement this task:

def process_mailbox(mailboxname_in, mailboxname_out, filter_function):
 mbin = mailbox.PortableUnixMailbox(file(mailboxname_in,'r'))
 fout = file(mailboxname_out, 'w')
 for msg in mbin:
 if msg is None: break
 document = filter_function(msg, msg.fp.read())
 if document:
 assert document.endswith('\n\n')
 fout.write(msg.unixfrom)
 fout.writelines(msg.headers)
 fout.write('\n')
 fout.write(document)
 fout.close()

Discussion
I often write lots of little scripts to filter my mailbox, so I wrote this recipe’s small
module. I can import the module from each script and call the module’s function

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 10: System Administration

process_mailbox as needed. Python’s future direction is to perform email processing
with the standard library package email, but lower-level modules, such as mailbox

and rfc822, are still available in the Python Standard Library. They are sometimes
easier to use than the rich, powerful, and very general functionality offered by pack-
age email.

The function you pass to process_mailbox as the third argument, filter_function,
must take two arguments—msg, an rfc822 message object, and document, a string that
is the message’s entire body, ending with two line-end characters (\n\n). filter_

function can return False, meaning that this message must be skipped (i.e., not cop-
ied at all to the output), or else it must return a string terminated with \n\n that is
written to the output as the message body. Normally, filter_function returns either
False or the same document argument it was called with, but in some cases you may
find it useful to write to the output file an altered version of the message’s body
rather than the original message body.

Here is an example of a filter function that removes duplicate messages:

import sets
found_ids = sets.Set()
def no_duplicates(msg, document):
 msg_id = msg.getheader('Message-ID')
 if msg_id in found_ids:
 return False
 found_ids.add(msg_id)
 return document

In Python 2.4, you could use the built-in set rather than sets.Set, but for a case as
simple as this, it makes no real difference in performance (and the usage is exactly
the same, anyway).

See Also
Documentation about modules mailbox and rfc822, and package email, in the
Library Reference and Python in a Nutshell.

10.9 Building a Whitelist of Email Addresses
From a Mailbox

Credit: Noah Spurrier

Problem
To help you configure an antispam system, you want a list of email addresses, com-
monly known as a whitelist, that you can trust won’t send you spam. The addresses
to which you send email are undoubtedly good candidates for this whitelist.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 Building a Whitelist of Email Addresses From a Mailbox | 407

Solution
Here is a script to output “To” addresses given a mailbox path:

#!/usr/bin/env python
""" Extract and print all 'To:' addresses from a mailbox """
import mailbox
def main(mailbox_path):
 addresses = { }
 mb = mailbox.PortableUnixMailbox(file(mailbox_path))
 for msg in mb:
 toaddr = msg.getaddr('To')[1]
 addresses[toaddr] = 1
 addresses = addresses.keys()
 addresses.sort()
 for address in addresses:
 print address
if __name__ == '__main__':
 import sys
 main(sys.argv[1])

Discussion
In addition to bypassing spam filters, identifying addresses of people you’ve sent
mail to may also help in other ways, such as flagging emails from them as higher pri-
ority, depending on your mail-reading habits and your mail reader’s capabilities. As
long as your mail reader keeps mail you have sent in some kind of “Sent Items” mail-
box in standard mailbox format, you can call this script with the path to the mail-
box as its only argument, and the addresses to which you’ve sent mail will be emitted
to standard output.

The script is simple because the Python Standard Library module mailbox does all
the hard work. All the script needs to do is collect the set of email addresses as it
loops through all messages, then emit them. While collecting, we keep addresses as a
dictionary, since that’s much faster than keeping a list and checking each toaddr in
order to append it only if it wasn’t already in the list. When we’re done collecting,
we just extract the addresses from the dictionary as a list because we want to emit its
items in sorted order. In Python 2.4, function main can be made even slightly more
elegant, thanks to the new built-ins set and sorted:

def main(mailbox_path):
 addresses = set()
 mb = mailbox.PortableUnixMailbox(file(mailbox_path))
 for msg in mb:
 toaddr = msg.getaddr('To')[1]
 addresses.add(toaddr)
 for address in sorted(addresses):
 print address

If your mailbox is not in the Unix mailbox style supported by
mailbox.PortableUnixMailbox, you may want to use other classes supplied by the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 10: System Administration

Python Standard Library module mailbox. For example, if your mailbox is in Qmail
maildir format, you can use the mailbox.Maildir class to read it.

See Also
Documentation of the standard library module mailbox in the Library Reference and
Python in a Nutshell.

10.10 Blocking Duplicate Mails
Credit: Marina Pianu, Peter Cogolo

Problem
Many of the mails you receive are duplicates. You need to block the duplicates with a
fast, simple filter before they reach a more time-consuming step, such as an anti-
spam filter, in your email pipeline.

Solution
Many mail systems, such as the popular procmail, and KDE’s KMail, enable you to
control your mail-reception pipeline. Specifically, you can insert in the pipeline your
filter programs, which get messages on standard input, may modify them, and emit
them again on standard output. Here is one such filter, with the specific purpose of
performing the task described in the Problem—blocking messages that are dupli-
cates of other messages that you have received recently:

#!/usr/bin/python
import time, sys, os, email
now = time.time()
get archive of previously-seen message-ids and times
kde_dir = os.expanduser('~/.kde')
if not os.path.isdir(kde_dir):
 os.mkdir(kde_dir)
arfile = os.path.join(kde_dir, 'duplicate_mails')
duplicates = { }
try:
 archive = open(arfile)
except IOError:
 pass
else:
 for line in archive:
 when, msgid = line[:-1].split(' ', 1)
 duplicates[msgid] = float(when)
 archive.close()
redo_archive = False
suck message in from stdin and study it
msg = email.message_from_file(sys.stdin)
msgid = msg['Message-ID']
if msgid:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.10 Blocking Duplicate Mails | 409

 if msgid in duplicates:
 # duplicate message: alter its subject
 subject = msg['Subject']
 if subject is None:
 msg['Subject'] = '**** DUP **** ' + msgid
 else:
 del msg['Subject']
 msg['Subject'] = '**** DUP **** ' + subject
 else:
 # non-duplicate message: redo the archive file
 redo_archive = True
 duplicates[msgid] = now
else:
 # invalid (missing message-id) message: alter its subject
 subject = msg['Subject']
 if subject is None:
 msg['Subject'] = '**** NID **** '
 else:
 del msg['Subject']
 msg['Subject'] = '**** NID **** ' + subject
emit message back to stdout
print msg
if redo_archive:
 # redo archive file, keep only msgs from the last two hours
 keep_last = now - 2*60*60.0
 archive = file(arfile, 'w')
 for msgid, when in duplicates.iteritems():
 if when > keep_last:
 archive.write('%9.2f %s\n' % (when, what))
 archive.close()

Discussion
Whether it is because of spammers’ malice or incompetence, or because of hiccups at
my Internet ISP (Internet service provider), at times I get huge amounts of duplicate
messages that can overload my mail-reception pipeline, particularly antispam filters.
Fortunately, like many other mail systems, KDE’s KMail, the one I use, lets me insert
my own filters in the mail reception pipeline. In particular, I can diagnose duplicate
messages, alter their headers (I use “Subject” for clarity), and tell later stages in the
filters’ pipeline to throw away messages with such subjects or to shunt them aside
into a dedicated mailbox for later perusal, without passing them on to the antispam
and other filters.

The email module from the Python Standard Library performs all the required pars-
ing of the message and lets me access headers with dictionary-like indexing syntax. I
need some “memory” of recently seen messages. Fortunately, I have noticed all
duplicates happen within a few minutes of each other, so I don’t have to keep that
memory for long—two hours are plenty. Therefore, I keep that memory in a simple
text file, which records the time when a message was received and the message ID. I
thought I might have to find a more advanced way to keep this kind of FIFO (first-in,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 10: System Administration

first-out) archive, but I tried a simple approach first—a simple text file that is entirely
rewritten whenever a new nonduplicate message arrives. This approach appears to
perform quite adequately for my needs (at most a couple hundred messages an
hour), even on my somewhat dated PC. “Do the simplest thing that could possibly
work” strikes again!

See Also
Documentation about package email and modules time, sys and os in the Library
Reference and Python in a Nutshell.

10.11 Checking Your Windows Sound System
Credit: Anand Pillai

Problem
You need to check whether the sound subsystem on your Windows PC is properly
configured.

Solution
The winsound module of the Python Standard Library makes this check really simple:

import winsound
try:
 winsound.PlaySound("*", winsound.SND_ALIAS)
except RuntimeError, e:
 print 'Sound system has problems,', e
else:
 print 'Sound system is OK'

Discussion
The sound system might pass this test and still be unable to produce sound cor-
rectly, due to a variety of possible problems—starting from simple ones such as pow-
ered loudspeakers being turned off (there’s no sensible way you can check for that in
your program!), all the way to extremely subtle and complicated ones. When sound
is a problem in your applications, using this recipe at least you know whether you
should be digging into a subtle issue of device driver configuration or start by check-
ing whether the loudspeakers are on!

See Also
Documentation on the Python Standard Library winsound module.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.12 Registering or Unregistering a DLL on Windows | 411

10.12 Registering or Unregistering a DLL
on Windows

Credit: Bill Bell

Problem
You want to register or unregister a DLL in Windows, just as it is normally done by
regsrv32.exe, but you want to do it from Python, without requiring that executable
to be present or bothering to find it.

Solution
All that Microsoft’s regsrv32.exe does is load a DLL and call its entries named
DllRegisterServer or DllUnregisterServer. This behavior is very easy to replicate via
Thomas Heller’s ctypes extension:

from ctypes import windll
dll = windll[r'C:\Path\To\Some.DLL']
result = dll.DllRegisterServer()
result = dll.DllUnregisterServer()

The result is of Windows type HRESULT, so, if you wish, ctypes can also implicitly
check it for you, raising a ctypes.WindowsError exception when an error occurs; you
just need to use ctypes.oledll instead of ctypes.windll. In other words, to have the
result automatically checked and an exception raised in case of errors, instead of the
previous script, use this one:

from ctypes import oledll
dll = oledll[r'C:\Path\To\Some.DLL']
dll.DllRegisterServer()
dll.DllUnregisterServer()

Discussion
Thomas Heller’s ctypes enables your Python code to load DLLs on Windows (and
similar dynamic/shared libraries on other platforms) and call functions from such
libraries, and it manages to perform these tasks with a high degree of both power and
elegance. On Windows, in particular, it offers even further “added value” through
such mechanisms as the oledll object, which, besides loading DLLs and calling func-
tions from them, also checks the returned HRESULT instances and raises appropriate
exceptions when the HRESULT values indicate errors.

In this recipe, we’re using ctypes (either the windll or oledll objects from that mod-
ule) specifically to avoid the need to use Microsoft’s regsrv32.exe to register or unreg-
ister DLLs that implement in-process COM servers for some CLSIDs. (A CLSID is a
globally unique identifier that identifies a COM class object, and the abbreviation
presumably stands for class identifier.) The cases in which you’ll use this specific rec-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 10: System Administration

ipe are only those in which you need to register or unregister such COM DLLs
(whether they’re implemented in Python or otherwise makes no difference). Be
aware, however, that the applicability of ctypes is far wider, as it extends to any case
in which you wish your Python code to load and interact with a DLL (or, on plat-
forms other than Windows, equivalent dynamically loaded libraries, such as .so files
on Linux and .dynlib files on Mac OS X).

The protocol that regsrv32.exe implements is well documented and very simple, so
our own code can reimplement it in a jiffy. That’s much more practical than requir-
ing regsrv32.exe to be installed on the machine on which we want to register or
unregister the DLLs, not to mention finding where the EXE file might be to run it
directly (via os.spawn or whatever) and also finding an effective way to detect errors
and show them to the user.

See Also
ctypes is at http://sourceforge.net/projects/ctypes.

10.13 Checking and Modifying the Set of Tasks
Windows Automatically Runs at Login

Credit: Daniel Kinnaer

Problem
You need to check which tasks Windows is set to automatically run at login and pos-
sibly change this set of tasks.

Solution
When administering Windows machines, it’s crucial to keep track of the tasks each
machine runs at login. Like so many Windows tasks, this requires working with the
registry, and standard Python module _winreg enables this:

import _winreg as wr
aReg = wr.ConnectRegistry(None, wr.HKEY_LOCAL_MACHINE)
try:
 targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
 print "*** Reading from", targ, "***"
 aKey = wr.OpenKey(aReg, targ)
 try:
 for i in xrange(1024):
 try:
 n, v, t = wr.EnumValue(aKey, i)
 print i, n, v, t
 except EnvironmentError:
 print "You have", i, "tasks starting at logon"
 break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.13 Checking and Modifying the Set of Tasks Windows Automatically Runs at Login | 413

 finally:
 wr.CloseKey(aKey)
 print "*** Writing to", targ, "***"
 aKey = wr.OpenKey(aReg, targ, 0, wr.KEY_WRITE)
 try:
 try:
 wr.SetValueEx(aKey, "MyNewKey", 0, REG_SZ, r"c:\winnt\explorer.exe")
 except EnvironmentError:
 print "Encountered problems writing into the Registry..."
 raise
 finally:
 CloseKey(aKey)
finally:
 CloseKey(aReg)

Discussion
The Windows registry holds a wealth of crucial system administration data, and the
Python standard module _winreg makes it feasible to read and alter data held in the
registry. One of the items held in the Windows registry is a list of tasks to be run at
login (in addition to other lists held elsewhere, such as the user-specific Startup
folder that this recipe does not deal with).

This recipe shows how to examine the registry list of login tasks, and how to add a
task to the list so it is run at login. (This recipe assumes you have Explorer installed
at the specific location c:\winnt. If you have it installed elsewhere, edit the recipe
accordingly.)

If you want to remove the specific key added by this recipe, you can use the follow-
ing simple script:

import _winreg as wr
aReg = wr.ConnectRegistry(None, wr.HKEY_LOCAL_MACHINE)
targ = r'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
aKey = wr.OpenKey(aReg, targ, 0, wr.KEY_WRITE)
wr.DeleteValue(aKey, "MyNewKey")
wr.CloseKey(aKey)
wr.CloseKey(aReg)

The try/finally constructs used in the recipe are far more robust than the simple
sequence of function calls used in this latest snippet, since they ensure that every-
thing is closed correctly regardless of whether the intervening calls succeed or fail.
This care and prudence are strongly advisable for scripts that are meant be run in
production, particularly for system-administration scripts that must generally run
with administrator privileges. Such scripts therefore might harm a system’s setup if
they don’t clean up after themselves properly. However, you can omit the try/
finally when you know the calls will succeed or don’t care what happens if they fail.
In this case, if you have successfully added a task with the recipe’s script, the calls in
this simple cleanup script should work just fine.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 10: System Administration

See Also
Documentation for the standard module _winreg in the Library Reference; Windows
API documentation available from Microsoft (http://msdn.microsoft.com); informa-
tion on what is where in the registry tends to be spread information among many
sources, but for some useful collections of such information, see http://
www.winguides.com/registry and http://www.activewin.com/tips/reg/index.shtml.

10.14 Creating a Share on Windows
Credit: John Nielsen

Problem
You want to share a folder of your Windows PC on a LAN.

Solution
PyWin32’s win32net module makes this task very easy:

import win32net
import win32netcon
shinfo={ }
shinfo['netname'] = 'python test'
shinfo['type'] = win32netcon.STYPE_DISKTREE
shinfo['remark'] = 'data files'
shinfo['permissions'] = 0
shinfo['max_uses'] = -1
shinfo['current_uses'] = 0
shinfo['path'] = 'c:\\my_data'
shinfo['passwd'] = ''
server = 'servername'
win32net.NetShareAdd(server, 2, shinfo)

Discussion
While the task of sharing a folder is indeed fairly easy to accomplish, finding the
information on how you do so isn’t. All I could find in the win32net documentation
was that you needed to pass a dictionary holding the share’s data “in the format of
SHARE_INFO_*.” I finally managed to integrate this tidbit with the details from the
Windows SDK (http://msdn.microsoft.com) and produce the information in this rec-
ipe. One detail that took me some effort to discover is that the constants you need to
use as the value for the 'type' entry are “hidden away” in the win32netcon module.

See Also
PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft’s MSDN site,
http://msdn.microsoft.com.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.15 Connecting to an Already Running Instance of Internet Explorer | 415

10.15 Connecting to an Already Running Instance
of Internet Explorer

Credit: Bill Bell, Graham Fawcett

Problem
Instantiating Internet Explorer to access its interfaces via COM is easy, but you want
to connect to an already running instance.

Solution
The simplest approach is to rely on Internet Explorer’s CLSID:

from win32com.client import Dispatch
ShellWindowsCLSID = '{9BA05972-F6A8-11CF-A442-00A0C90A8F39}'
ShellWindows = Dispatch(ShellWindowsCLSID)
print '%d instances of IE' % len(shellwindows)
print
for shellwindow in ShellWindows :
 print shellwindow
 print shellwindos.LocationName
 print shellwindos.LocationURL
 print

Discussion
Dispatching on the CLSID provides a sequence of all the running instances of the
application with that class. Of course, there could be none, one, or more. If you’re
interested in a specific instance, you may be able to identify it by checking, for exam-
ple, for its properties LocationName and LocationURL.

You’ll see that Windows Explorer and Internet Explorer have the same CLSID—
they’re basically the same application. If you need to distinguish between them, you
can try adding at the start of your script the statement:

from win32gui import GetClassName

and then checking each shellwindow in the loop with:

 if GetClassName(shellwindow.HWND) == 'IEFrame':
...

'IEFrame' is supposed to result from this call (according to the docs) for all Internet
Explorer instances and those only. However, I have not found this check to be
wholly reliable across all versions and patch levels of Windows and Internet
Explorer, so, take this approach as just one possibility (which is why I haven’t added
this check to the recipe’s official “Solution”).

This recipe does not let you receive IE events. The most important event is probably
DocumentComplete. You can roughly substitute checks on the Busy property for the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 10: System Administration

inability to wait for that event, but remember not to poll too frequently (for that or
any other property) or you may slow down your PC excessively. Something like:

 while shellwindow.Busy:
 time.sleep(0.2)

Sleeping 0.2 seconds between checks may be a reasonable compromise between
responding promptly and not loading your PC too heavily with a busy-waiting-loop.

See Also
PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft’s MSDN site,
http://msdn.microsoft.com.

10.16 Reading Microsoft Outlook Contacts
Credit: Kevin Altis

Problem
Your Microsoft Outlook Contacts house a wealth of useful information, and you
need to extract some of it in text form.

Solution
Like many other problems of system administration on Windows, this one is best
approached by using COM. The most popular way to interface Python to COM is to
use the win32com package, which is part of Mark Hammond’s pywin32 extension
package:

from win32com.client import gencache, constants
DEBUG = False
class MSOutlook(object):
 def __init__(self):
 try:
 self.oOutlookApp = gencache.EnsureDispatch("Outlook.Application")
 self.outlookFound = True
 except:
 print "MSOutlook: unable to load Outlook"
 self.outlookFound = False
 self.records = []
 def loadContacts(self, keys=None):
 if not self.outlookFound: return
 onMAPI = self.oOutlookApp.GetNamespace("MAPI")
 ofContacts = onMAPI.GetDefaultFolder(constants.olFolderContacts)
 if DEBUG: print "number of contacts:", len(ofContacts.Items)
 for oc in range(len(ofContacts.Items)):
 contact = ofContacts.Items.Item(oc + 1)
 if contact.Class == constants.olContact:
 if keys is None:
 # no keys were specified, so build up a list of all keys

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.16 Reading Microsoft Outlook Contacts | 417

 # that belong to some types we know we can deal with
 good_types = int, str, unicode
 keys = [key for key in contact._prop_map_get_
 if isinstance(getattr(contact, key), good_types)]
 if DEBUG:
 print "Fields\n== == == == == == == == == == == == == == == == =="
 keys.sort()
 for key in keys: print key
 record = { }
 for key in keys:
 record[key] = getattr(contact, key)
 self.records.append(record)
 if DEBUG:
 print oc, contact.FullName
if __name__ == '__main__':
 if '-d' in sys.argv:
 DEBUG = True
 if DEBUG:
 print "attempting to load Outlook"
 oOutlook = MSOutlook()
 if not oOutlook.outlookFound:
 print "Outlook not found"
 sys.exit(1)
 fields = ['FullName', 'CompanyName',
 'MailingAddressStreet', 'MailingAddressCity',
 'MailingAddressState', 'MailingAddressPostalCode',
 'HomeTelephoneNumber', 'BusinessTelephoneNumber',
 'MobileTelephoneNumber', 'Email1Address', 'Body',
]
 if DEBUG:
 import time
 print "loading records..."
 startTime = time.time()
 # to get all fields just call oOutlook.loadContacts()
 # but getting a specific set of fields is much faster
 oOutlook.loadContacts(fields)
 if DEBUG:
 print "loading took %f seconds" % (time.time() - startTime)
 print "Number of contacts: %d" % len(oOutlook.records)
 print "Contact: %s" % oOutlook.records[0]['FullName']
 print "Body:\n%s" % oOutlook.records[0]['Body']

Discussion
This recipe’s code could use more error-checking, and you could get it by using
nested try/except blocks, but I didn’t want to obscure the code’s fundamental sim-
plicity in this recipe. This recipe should work with different versions of Outlook, but
I’ve tested it only with Outlook 2000. If you have applied the Outlook security
patches then you will be prompted with a dialog requesting access to Outlook for 1–
10 minutes from an external program, which in this case is Python.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 10: System Administration

The code has already been optimized in two important ways. First, by ensuring that
the Python COM wrappers for Outlook have been generated, which is guaranteed by
calling gencache.EnsureDispatch. Second, in the loop that reads the contacts, the
Contact reference is obtained only once and then kept in a local variable contact to
avoid repeated references. This simple but crucial optimization is the role of the
statement:

contact = ofContacts.Items.Item(oc + 1)

Both of these optimizations have a dramatic impact on total import time, and both
are important enough to keep in mind. Specifically, the EnsureDispatch idea is impor-
tant for most uses of COM in Python; the concept of getting an object reference,
once, into a local variable (rather than repeating indexing, calls, and attribute
accesses) is even more important and applies to every use of Python.

Simple variations of this script can be applied to other elements of the Outlook
object model such as the Calendar and Tasks. You’ll want to look at the Python
wrappers generated for Outlook in the C:\Python23\Lib\site-packages\win32com\gen_
py directory. I also suggest that you look at the Outlook object model documenta-
tion on MSDN and/or pick up a book on the subject.

See Also
PyWin32 docs at http://sourceforge.net/projects/pywin32/; Microsoft’s MSDN site,
http://msdn.microsoft.com.

10.17 Gathering Detailed System Information
on Mac OS X

Credit: Brian Quinlan

Problem
You want to retrieve detailed information about a Mac OS X system. You want either
complete information about the system or information about particular keys in the
system-information database.

Solution
Mac OS X’s system_profiler command can provide system information as an XML
stream that we can parse and examine:

#!/usr/bin/env python
from xml import dom
from xml.dom.xmlbuilder import DOMInputSource, DOMBuilder
import datetime, time, os
def group(seq, n):
 """group([0, 3, 4, 10, 2, 3, 1], 3) => [(0, 3, 4), (10, 2, 3)]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.17 Gathering Detailed System Information on Mac OS X | 419

 Group a sequence into n-subseqs, discarding incomplete subseqs.
 """
 return [seq[i:i+n] for i in xrange(0, len(seq)-n+1, n)]
def remove_whitespace_nodes(node):
 """Removes all of the whitespace-only text descendants of a DOM node."""
 remove_list = []
 for child in node.childNodes:
 if child.nodeType == dom.Node.TEXT_NODE and not child.data.strip():
 remove_list.append(child)
 elif child.hasChildNodes():
 remove_whitespace_nodes(child)
 for child in remove_list:
 node.removeChild(child)
 child.unlink()
class POpenInputSource(DOMInputSource):
 "Use stdout from an external program as a DOMInputSource"
 def __init__(self, command):
 super(DOMInputSource, self).__init__()
 self.byteStream = os.popen(command)
class OSXSystemProfiler(object):
 "Provide information from the Mac OS X System Profiler"
 def __init__(self, detail=-1):
 """detail can range from -2 to +1. Larger numbers return more info.
 Beware of +1, can take many minutes to get all info!"""
 b = DOMBuilder()
 self.document = b.parse(
 POpenInputSource('system_profiler -xml -detailLevel %d' % detail))
 remove_whitespace_nodes(self.document)
 def _content(self, node):
 "Get the text node content of an element, or an empty string"
 if node.firstChild:
 return node.firstChild.nodeValue
 else:
 return ''
 def _convert_value_node(self, node):
 """Convert a 'value' node (i.e. anything but 'key') into a Python data
 structure"""
 if node.tagName == 'string':
 return self._content(node)
 elif node.tagName == 'integer':
 return int(self._content(node))
 elif node.tagName == 'real':
 return float(self._content(node))
 elif node.tagName == 'date': # <date>2004-07-05T13:29:29Z</date>
 return datetime.datetime(
 *time.strptime(self._content(node), '%Y-%m-%dT%H:%M:%SZ')[:5])
 elif node.tagName == 'array':
 return [self._convert_value_node(n) for n in node.childNodes]
 elif node.tagName == 'dict':
 return dict([(self._content(n), self._convert_value_node(m))
 for n, m in group(node.childNodes, 2)])
 else:
 raise ValueError, 'Unknown tag %r' % node.tagName
 def __getitem__(self, key):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 10: System Administration

 from xml import xpath
 # pyxml's xpath does not support /element1[...]/element2...
 nodes = xpath.Evaluate('//dict[key=%r]' % key, self.document)
 results = []
 for node in nodes:
 v = self._convert_value_node(node)[key]
 if isinstance(v, dict) and '_order' in v:
 # this is just information for display
 pass
 else:
 results.append(v)
 return results
 def all(self):
 """Return the complete information from the system profiler
 as a Python data structure"""
 return self._convert_value_node(
 self.document.documentElement.firstChild)
def main():
 from optparse import OptionParser
 from pprint import pprint
 info = OSXSystemProfiler()
 parser = OptionParser()
 parser.add_option("-f", "--field", action="store", dest="field",
 help="display the value of the specified field")
 options, args = parser.parse_args()
 if args:
 parser.error("no arguments are allowed")
 if options.field is not None:
 pprint(info[options.field])
 else:
 # print some keys known to exist in only one important dict
 for k in ['cpu_type', 'current_processor_speed', 'l2_cache_size',
 'physical_memory', 'user_name', 'os_version', 'ip_address']:
 print '%s: %s' % (k, info[k][0])
if __name__ == '__main__':
 main()

Discussion
Mac OS X puts at your disposal a wealth of information about your system through
the system_profiler application. This recipe shows how to access that information
from your Python code. First, you have to instantiate class OSXSystemProfiler, for
example, via a statement such as info = OSXSystemProfiler(); once you have done
that, you can obtain all available information by calling info.all(), or information
for one specific key by indexing info[thekey]. The main function in the recipe, which
executes when you run this module as a main script, emits information to standard
output—either a specific key, requested by using switch -f when invoking the script,
or, by default, a small set of keys known to be generally useful.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.17 Gathering Detailed System Information on Mac OS X | 421

For example, when run on the old Apple iBook belonging to one of this book’s edi-
tors (no prize for guessing which one), the script in this recipe emits the following
output:

cpu_type: PowerPC G4 (3.3)
current_processor_speed: 800 MHz
l2_cache_size: 256 KB
physical_memory: 640 MB
user_name: Alex (alex)
os_version: Mac OS X 10.3.6 (7R28)
ip_address: [u'192.168.0.190']

system_profiler returns XML data in pinfo format, so this recipe implements a par-
tial pinfo parser, using Python’s standard library XML-parsing facilities, and the
xpath implementation from the PyXML extensions. More information about Python’s
facilities that help you deal with XML can be found in Chapter 12.

See Also
Documentation of the standard Python library support for XML in the Library Refer-
ence and Python in a Nutshell; PyXML docs at http://pyxml.sourceforge.net/; Mac OS
X system_profiler docs at http://developer.apple.com/documentation/Darwin/
Reference/ManPages/man8/system_profiler.8.html; Chapter 12.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422

Chapter 11CHAPTER 11

User Interfaces

11.0 Introduction
Credit: Fredrik Lundh, SecretLabs AB, author of Python Standard Library

Back in the early days of interactive computing, most computers offered terminals
that looked and behaved pretty much like clunky typewriters. The main difference
from an ordinary typewriter was that the computer was in the loop. It could read
what the user typed and print hard-copy output on a roll of paper.

So when you found yourself in front of a 1960s Teletype ASR-33, the only reason-
able way to communicate with the computer was to type a line of text, press the send
key, hope that the computer would manage to figure out what you meant, and wait
for the response to appear on the paper roll. This line-oriented way of communicat-
ing with your computer is known as a command-line interface (CLI).

Some 40 years later, the paper roll has been replaced with high-resolution video dis-
plays, which can display text in multiple typefaces, color photographs, and even ani-
mated 3D graphics. The keyboard is still around, but we also have pointing devices
such as the mouse, trackballs, game controls, touchpads, and other input devices.

The combination of a graphics display and the mouse made it possible to create a
new kind of user interface: the graphical user interface (GUI). When done right, a
GUI can give the user a better overview of what a program can do (and what it is
doing), and make it easier to carry out many kinds of tasks.

However, most programming languages, including Python, make it easy to write pro-
grams using teletype-style output and input. In Python, you use the print statement
to print text to the display and the input and raw_input functions to read expres-
sions and text strings from the keyboard.

Creating GUIs takes more work. You need access to functions to draw text and
graphics on the screen, select typefaces and styles, and read information from the
keyboard and other input devices. You need to write code to interact with other

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 423

applications (via a window manager), keep your windows updated when the user
moves them around, and respond to key presses and mouse actions.

To make this a bit easier, programmers have developed graphical user interface tool-
kits, which provide standard solutions to these problems. A typical GUI toolkit pro-
vides a number of ready-made GUI building blocks, usually called widgets. Common
standard widgets include text and image labels, buttons, and text-entry fields. Many
toolkits also provide more advanced widgets, such as Tkinter’s Text widget, which is
a rather competent text editor/display component.

All major toolkits are event based, which means that your program hands control
over to the toolkit (usually by calling a “main loop” function or method). The tool-
kit then calls back into your application when certain events occur—for example,
when the user clicks OK in a dialog or when a window needs to be redrawn. Most
toolkits also provide ways to position widgets on the screen automatically (e.g., in
tables, rows, or columns) and to modify widget behavior and appearance.

Tkinter is the de facto standard toolkit for Python and comes with most Python dis-
tributions. Tkinter provides an object-oriented layer on top of the Tcl/Tk GUI library
and runs on Windows, Unix, and Macintosh systems. Tkinter is easy to use but pro-
vides a relatively small number of standard widgets. Tkinter extension libraries, such
as Pmw and Tix, supply many components missing from plain Tkinter, and you can
use Tkinter’s advanced Text and Canvas widgets to create custom widgets. The Wid-
get Construction Kit, WCK, lets you write all sorts of new widgets in pure Python:
see http://effbot.org/zone/wck.htm.

wxPython (http://www.wxPython.org) is another popular toolkit; it is based on the
wxWidgets C++ library (http://www.wxWidgets.org). wxPython is modeled somewhat
after the Windows MFC library but is available for multiple platforms. wxPython
provides a rich set of widgets, and it’s relatively easy to create custom widgets.

PyGTK (http://www.pygtk.org) is an object-oriented Python interface to the Gimp tool-
kit (GTK), used in projects such as Gnome and the Gimp. PyGTK is a good choice
for Linux applications, especially if you want them to run in the Gnome environ-
ment.

PyQt (http://www.riverbankcomputing.co.uk/pyqt/index.php) is a Python wrapper for
TrollTech’s Qt library (http://www.trolltech.com), which is the basis of the popular
KDE environment, as well as the Qtopia environment for hand-held computers; it
also runs on Windows and Mac OS X. Qt and PyQt require license fees for commer-
cial (software that is not free) use, but are free (licensed by the GPL) for free soft-
ware development. (No GPL-licensed Qt is currently available for Windows, but one
is under development—see http://kde-cygwin.sourceforge.net/qt3-win32/.)

You can also use many other toolkits from Python. Mark Hammond’s Pythonwin
gives access to Windows MFC. Greg Ewing is developing a cross-platform GUI API,
known as PyGUI (http://nz.cosc.canterbury.ac.nz/~greg/python_gui/), developed

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 11: User Interfaces

specifically for Python and taking advantage of Python’s unique strengths. Also avail-
able are interfaces to Motif/X11 and Mac OS X native toolboxes and many other
toolkits. Cameron Laird maintains a list of toolkits at http://starbase.neosoft.com/
~claird/comp.lang.python/python_GUI.html. It currently lists about 20 toolkits. A
Wiki page at http://www.python.org/cgi-bin/moinmoin/GuiProgramming is actively
maintained lists even more.

Finally, several projects, in various stages, are based on the idea of overlaying easy
unified APIs on top of one or more other toolkits or graphical facilities. anygui

(rather dormant—see http://www.anygui.org), PythonCard (pretty active—see http://
pythoncard.sourceforge.net/), Wax (http://zephyrfalcon.org/labs/dope_on_wax.html),
and PyUI (http://pyui.sourceforge.net/) are examples of this “higher-level” approach.

11.1 Showing a Progress Indicator on a Text
Console

Credit: Larry Bates

Problem
Your program has no GUI (i.e., your program just runs on a text console), and yet
you want your program to show to the user a “progress indicator bar” during lengthy
operations, to communicate that work is progressing and the amount of the total
work that has been completed.

Solution
We can easily code a simple little class to handle this whole task:

import sys
class progressbar(object):
 def __init__(self, finalcount, block_char='.'):
 self.finalcount = finalcount
 self.blockcount = 0
 self.block = block_char
 self.f = sys.stdout
 if not self.finalcount: return
 self.f.write('\n------------------ % Progress -------------------1\n')
 self.f.write(' 1 2 3 4 5 6 7 8 9 0\n')
 self.f.write('----0----0----0----0----0----0----0----0----0----0\n')
 def progress(self, count):
 count = min(count, self.finalcount)
 if self.finalcount:
 percentcomplete = int(round(100.0*count/self.finalcount))
 if percentcomplete < 1: percentcomplete = 1
 else:
 percentcomplete=100
 blockcount = int(percentcomplete//2)
 if blockcount <= self.blockcount:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.1 Showing a Progress Indicator on a Text Console | 425

 return
 for i in range(self.blockcount, blockcount):
 self.f.write(self.block)
 self.f.flush()
 self.blockcount = blockcount
 if percentcomplete == 100:
 self.f.write("\n")

Discussion
Here is an example of the use of this progressbar class, presented, as usual, with a
guard of if __name__ == '__main__'. We can make it part of the module containing
the class and have it run when the module is executed as a “main script”:

if __name__ == "__main__":
 from time import sleep
 pb = progressbar(8, "*")
 for count in range(1, 9):
 pb.progress(count)
 sleep(0.2)
 pb = progressbar(100)
 pb.progress(20)
 sleep(0.3)
 pb.progress(47)
 sleep(0.3)
 pb.progress(90)
 sleep(0.3)
 pb.progress(100)
 print "testing 1:"
 pb = progressbar(1)
 pb.progress(1)

Programs that run lengthy operations, such as FTP downloads and database inser-
tions, should normally give visual feedback to the user regarding the progress of the
task that is running. GUI toolkits generally have such facilities included as “wid-
gets”, but if your program does not otherwise require a GUI, it’s overkill to give it
one just to be able to display a progress bar. This recipe’s progress bar class provides
an easy way of showing the percentage of completion that is updated periodically by
the program.

The recipe operates on the basis of a totally arbitrary final count that the ongoing
task is supposed to reach at the end. This makes it optimally easy for the application
that makes use of the progressbar class: the application can use any handy unit of
measure (such as amount of bytes downloaded for an FTP download, number of
records inserted for a database insertion, etc.) to track the task’s progress and com-
pletion. As long as the same unit of measure applies to both the “final count” and the
count argument that the application must periodically pass to the progress method,
the progress bar’s display will be accurate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 11: User Interfaces

See Also
Documentation on text-mode console I/O in Python in a Nutshell.

11.2 Avoiding lambda in Writing Callback
Functions

Credit: Danny Yoo, Martin Sjogren

Problem
You need to use many callbacks without arguments, typically while writing a
Tkinter-based GUI, and you’d rather avoid using lambda.

Solution
Between the classic lambda approach and a powerful general-purpose currying mech-
anism is a third, extremely simple way for doing callbacks that can come in handy in
many practical cases:

def command(callback, *args, **kwargs):
 def do_call():
 return callback(*args, **kwargs)
 # 2.4 only: do_call.__name__ = callback.__name__
 return do_call

Discussion
I remember a utility class (to perform the same task handled by a closure in this rec-
ipe) quite a while back, but I don’t remember who to attribute it to. Perhaps I saw it
in John E. Grayson, Python and Tkinter Programming (Manning).

Writing a lot of callbacks that give customized arguments can look a little awkward
with lambda, so this command closure provides alternative syntax that is easier to read.
For example:

import Tkinter
def hello(name):
 print "Hello", name
root = Tk()
the lambda way of doing it:
Button(root, text="Guido", command=lambda name="Guido": hello(name)).pack()
using the Command class:
Button(root, text="Guido", command=command(hello, "Guido")).pack()

Of course, you can also use a more general currying approach, which enables you to
fix some of the arguments when you bind the callback, while others may be given at
call time (see recipe 16.4 “Associating Parameters with a Function (Currying)”).
However, “doing the simplest thing that can possibly work” is a good programming

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.3 Using Default Values and Bounds with tkSimpleDialog Functions | 427

principle (this wording of the principle is due, I believe, to Kent Beck). If your appli-
cation needs callbacks that fix all arguments at currying time and others that leave
some arguments to be determined at callback time, it’s probably simpler to use the
more general currying approach for all the callbacks. But if all the callbacks you need
must fix all arguments at currying time, it may be simpler to forego unneeded gener-
ality and use the simpler, less-general approach in this recipe exclusively. You can
always refactor later if it turns out that you do need the generality.

See Also
Recipe 16.4 “Associating Parameters with a Function (Currying)”; information about
Tkinter can be obtained from a variety of sources, such as Fredrik Lundh, An Intro-
duction to Tkinter (PythonWare: http://www.pythonware.com/library), New Mexico
Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/python/docs.html), Python
in a Nutshell, and various other books.

11.3 Using Default Values and Bounds with
tkSimpleDialog Functions

Credit: Mike Foord, Peter Cogolo

Problem
You need to get an input value from the user with one of Tkinter’s tkSimpleDialog

dialog functions, but you want to add a default value, or to ensure that the value
entered lies within certain bounds.

Solution
Each of Tkinter’s tkSimpleDialog functions (askstring, askfloat, askinteger) sup-
ports an optional default value, as well as optional validation against minimum and
maximum value. However, this set of features is not clearly spelled out in the docu-
mentation. Here’s a wrapper function that you may find preferable:

import tkSimpleDialog
_dispatch = { str: tkSimpleDialog.askstring,
 int: tkSimpleDialog.askinteger,
 float: tkSimpleDialog.askfloat,
 }
def getinput(title, prompt, type=str, default=None, min=None, max=None):
 ''' gets from the user an input of type `type' (str, int or float),
 optionally with a default value, and optionally constrained to
 lie between the values `min' and `max' (included).
 '''
 f = _dispatch.get(type)
 if not f:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 11: User Interfaces

 raise TypeError, "Can't ask for %r input" % (type,)
 return f(title, prompt, initialvalue=default, minvalue=min, maxvalue=max)

Discussion
The built-in tkSimpleDialog module offers a few simple functions that pop up dia-
logs that ask the user to input a string, a float, or an integer—not a very advanced
user interface but dirt-simple to use in your programs. Unfortunately, while these
functions do support a few nice extras (the ability to pass in a default value, and
having the result validated within certain optional minimum and maximum val-
ues), the module’s documentation (what little there is of it) does not make this fea-
ture clear. Even the pydoc-generated page http://epydoc.sourceforge.net/stdlib/public/
tkSimpleDialog-module.html just says “see SimpleDialog class.” Since no such class
exists, seeing it is not easy. (The relevant class is actually named _QueryDialog, and
due to the leading underscore in the name, it is considered “private”. Therefore
pydoc does not build a documentation web page for it.)

This recipe shows how to access this functionality that’s already part of the Python
Standard Library. As a side benefit, it refactors the functionality into a single
getinput function that takes as an argument the type of input desired (defaulting to
str, meaning that the default type of result is a string, just as for built-in function
raw_input). If you prefer the original concept of having three separate functions, it’s
easy to modify the recipe according to your tastes. The recipe mostly makes the semi-
hidden functionality of the original functions’ undocumented keyword arguments
initialvalue, minvalue and maxvalue manifest and clearer through its optional
parameters default, min, and max, which it passes right on to the underlying original
function.

See Also
tkSimpleDialog module documentation is at http://epydoc.sourceforge.net/stdlib/
public/tkSimpleDialog-module.html.

11.4 Adding Drag and Drop Reordering
to a Tkinter Listbox

Credit: John Fouhy

Problem
You want to use a Tkinter Listbox widget, but you want to give the user the addi-
tional capability of reordering the entries by drag-and-drop.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Adding Drag and Drop Reordering to a Tkinter Listbox | 429

Solution
We just need to code the relevant functionality and bind it to the Tkinter event cor-
responding to the “drag” mouse gesture:

import Tkinter
class DDList(Tkinter.Listbox):
 """ A Tkinter listbox with drag'n'drop reordering of entries. """
 def __init__(self, master, **kw):
 kw['selectmode'] = Tkinter.SINGLE
 Tkinter.Listbox.__init__(self, master, kw)
 self.bind('<Button-1>', self.setCurrent)
 self.bind('<B1-Motion>', self.shiftSelection)
 self.curIndex = None
 def setCurrent(self, event):
 self.curIndex = self.nearest(event.y)
 def shiftSelection(self, event):
 i = self.nearest(event.y)
 if i < self.curIndex:
 x = self.get(i)
 self.delete(i)
 self.insert(i+1, x)
 self.curIndex = i
 elif i > self.curIndex:
 x = self.get(i)
 self.delete(i)
 self.insert(i-1, x)
 self.curIndex = i

Discussion
Here is an example of use of this DDList class, presented, as usual, with a guard of if
__name__ == '__main__' so we can make it part of the module containing the class
and have it run when the module is executed as a “main script”:

if __name__ == '__main__':
 tk = Tkinter.Tk()
 length = 10
 dd = DDList(tk, height=length)
 dd.pack()
 for i in xrange(length):
 dd.insert(Tkinter.END, str(i))
 def show():
 ''' show the current ordering every 2 seconds '''
 for x in dd.get(0, Tkinter.END):
 print x,
 print
 tk.after(2000, show)
 tk.after(2000, show)
 tk.mainloop()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 11: User Interfaces

Allowing the user of a GUI program to drag the elements of a list into new positions
is often useful, and this recipe shows a fairly simple way of adding this functionality
to a Tkinter Listbox widget.

This recipe’s code tries to ensure that the clicked-on element stays selected by delet-
ing and inserting on either side of it. Nevertheless, it is possible, by moving the
mouse quickly enough, to start dragging an unselected element instead. While it
doesn’t cause any major problems, it just looks a bit odd.

This recipe’s code is partly based on a post by Fredrik Lundh, http://mail.python.org/
pipermail/python-list/1999-May/002501.html.

See Also
Information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books.

11.5 Entering Accented Characters in Tkinter
Widgets

Credit: Artur de Sousa Rocha

Problem
You want your application to allow the user to easily enter accented characters into
Tkinter widgets even from a U.S.-layout keyboard.

Solution
Internationalized applications should enable the user to easily enter letters with
accents and diacritics (e.g., umlauts, and tildes) even from a U.S.-layout keyboard. A
usefully uniform convention is the following: hitting Ctrl-accent, for any kind of
accent or diacritic, acts as a dead key, ensuring that the next letter hit will be deco-
rated by that accent or diacritic. For example, Ctrl-apostrophe, followed by a, enters
an a with an acute accent (the character á). The following classes provide the key-
board and widget bindings that allow this internationalized input functionality:

from Tkinter import *
from ScrolledText import ScrolledText
from unicodedata import lookup
import os
class Diacritical(object):
 """ Mixin class that adds keyboard bindings for accented characters, plus
 other common functionality (e.g.: Control-A == 'select all' on Windows).
 """
 if os.name == "nt":

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.5 Entering Accented Characters in Tkinter Widgets | 431

 stroke = '/'
 else:
 stroke = 'minus'
 accents = (('acute', "'"), ('grave', '`'), ('circumflex', '^'),
 ('tilde', '='), ('diaeresis', '"'), ('cedilla', ','),
 ('stroke', stroke))
 def __init__(self):
 # Fix some non-Windows-like Tk bindings, if we're on Windows
 if os.name == 'nt':
 self.bind("<Control-Key-a>", self.select_all)
 self.bind("<Control-Key-/>", lambda event: "break")
 # Diacritical bindings
 for a, k in self.accents:
 self.bind("<Control-Key-%s><Key>" % k,
 lambda event, a=a: self.insert_accented(event.char, a))
 def insert_accented(self, c, accent):
 if c.isalpha():
 if c.isupper():
 cap = 'capital'
 else:
 cap = 'small'
 try:
 c = lookup("latin %s letter %c with %s" % (cap, c, accent))
 self.insert(INSERT, c)
 return "break"
 except KeyError, e:
 pass
class DiacriticalEntry(Entry, Diacritical):
 """ Tkinter Entry widget with some extra key bindings for
 entering typical Unicode characters - with umlauts, accents, etc. """
 def __init__(self, master=None, **kwargs):
 Entry.__init__(self, master=None, **kwargs)
 Diacritical.__init__(self)
 def select_all(self, event=None):
 self.selection_range(0, END)
 return "break"
class DiacriticalText(ScrolledText, Diacritical):
 """ Tkinter ScrolledText widget with some extra key bindings for
 entering typical Unicode characters - with umlauts, accents, etc. """
 def __init__(self, master=None, **kwargs):
 ScrolledText.__init__(self, master=None, **kwargs)
 Diacritical.__init__(self)
 def select_all(self, event=None):
 self.tag_add(SEL, "1.0", "end-1c")
 self.mark_set(INSERT, "1.0")
 self.see(INSERT)
 return "break"

Discussion
Here is an example of use of these widget classes. We present the example, as usual,
with a guard of if __name__ == '__main__'; so we can make it part of the module
containing the classes and have it run when the module is executed as a “main
script”:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 11: User Interfaces

def test():
 frame = Frame()
 frame.pack(fill=BOTH, expand=YES)
 if os.name == "nt":
 frame.option_add("*font", "Tahoma 8") # Win default, Tk uses other
 # The editors
 entry = DiacriticalEntry(frame)
 entry.pack(fill=BOTH, expand=YES)
 text = DiacriticalText(frame, width=76, height=25, wrap=WORD)
 if os.name == "nt":
 text.config(font="Arial 10")
 text.pack(fill=BOTH, expand=YES)
 text.focus()
 frame.master.title("Diacritical Editor")
 frame.mainloop()
if __name__ == "__main__":
 test()

You might want to remove the keyboard event settings that don’t really have much
to do with accents and diacritics, (e.g., Ctrl-A, meaning “select all”) to some other,
separate mixin class. I keep that functionality together with the actual handling of
diacritics basically because I always need both features anyway.

Some design choices might be altered, such as my decision to have Ctrl-equal as the
way to enter a tilde. I took that path because I just couldn’t find a way to make Ctrl-~
work the right way, at least on my Windows machine! Also, depending on which
languages you need to support, you might have to add other accents and diacritics,
such as a-ring for Swedish, German scharfes-s, Icelandic eth and thorn, and so forth.

See Also
Docs about the unicodedata module in the Library Reference and Python in a Nut-
shell; information about Tkinter can be obtained from a variety of sources, such as
Pythonware’s An Introduction to Tkinter, by Fredrik Lundh (http://
www.pythonware.com/library), New Mexico Tech’s Tkinter Reference (http://
www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell, and various other
books.

11.6 Embedding Inline GIFs Using Tkinter
Credit: Brent Burley

Problem
You need to embed GIF images inside your source code—for use in Tkinter buttons,
labels, and so on—to make toolbars and the like without worrying about installing
the right icon files.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.6 Embedding Inline GIFs Using Tkinter | 433

Solution
A lively Tkinter GUI can include many small images. However, you don’t want to
require that a small GIF file be present for each of these images. Ensuring the pres-
ence of many small files is a bother, and if they’re missing, your GUI may be unus-
able. Fortunately, you can construct Tkinter PhotoImage objects with inline data. It’s
easy to convert a GIF to inline form as Python source code, with a little script or
snippet that you can save and run separately.

import base64
print "icon='''\\\n" + base64.encodestring(open("icon.gif").read()) + "'''"

This emits to standard output a lot of strange-looking “text”, which you can capture
(typically using your shell’s facilities for output redirection, or with copy and paste)
and split into lines of reasonable length:

icon='''R0lGODdhFQAVAPMAAAQ2PESapISCBASCBMTCxPxmNCQiJJya/ISChGRmzPz+/PxmzDQyZ
DQyZDQyZDQyZCwAAAAAFQAVAAAElJDISau9Vh2WMD0gqHHelJwnsXVloqDd2hrMm8pYYiSHYfMMRm
53ULlQHGFFx1MZCciUiVOsPmEkKNVp3UBhJ4Ohy1UxerSgJGZMMBbcBACQlVhRiHvaUsXHgywTdyc
LdxyB gm1vcTyIZW4MeU6NgQEBXEGRcQcIlwQIAwEHoioCAgWmCZ0Iq5+hA6wIpqislgGhthEAOw==
'''

Now, you can use this Python-inlined data in Tkinter:

import Tkinter
if __name__ == '__main__':
 root = Tkinter.Tk()
 iconImage = Tkinter.PhotoImage(master=root, data=icon)
 Tkinter.Button(image=iconImage).pack()

Discussion
The basic technique is to encode the GIF with the standard Python module base64

and store the results as a string literal in the Python code. At runtime, the Python
code passes that string object to Tkinter’s PhotoImage. The current release of
PhotoImage supports GIF and PPM, but inline data is supported only for GIF. To
convert between image formats, see recipe 11.7 “Converting Among Image For-
mats.” Of course, you can use file='filename', instead of data=string, for either GIF
or PPM, if your image data is indeed in a file.

You must keep a reference to the PhotoImage object yourself; that reference is not
kept by the Tkinter widget. If you pass the object to Button and forget it, you will
become frustrated! Here’s an easy workaround for this minor annoyance:

def makeImageWidget(icondata, *args, **kwds):
 if args:
 klass = args.pop(0)
 else:
 klass = Tkinter.Button
 class Widget(klass):
 def __init__(self, image, *args, **kwds):
 kwds['image'] = image

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 11: User Interfaces

 klass.__init__(self, *args, **kwds)
 self.__image = image
 return Widget(Tkinter.PhotoImage(data=icondata), *args, **kwds)

Using this handy makeImageWidget function, the equivalent of the example in the rec-
ipe becomes:

makeImageWidget(icon).pack()

The master argument on PhotoImage is optional; it defaults to the default application
window. If you create a new application window (by calling Tk again), you must cre-
ate your images in that context and supply the master argument, so the
makeImageWidget function has to be updated to let you optionally pass the master
argument to the PhotoImage constructor. However, most applications do not require
this refinement.

See Also
Information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books.

11.7 Converting Among Image Formats
Credit: Doug Blanding

Problem
Your image files are in various formats (GIF, JPG, PNG, TIF, BMP), and you need to
convert among these formats.

Solution
The Python Imaging Library (PIL) can read and write all of these formats; indeed, net
of user-interface concerns, image-file format conversion using PIL boils down to a
one-liner:

 Image.open(infile).save(outfile)

where filenames infile and outfile have the appropriate file extensions to indicate
what kind of images we’re reading and writing. We just need to wrap a small GUI
around this one-liner functionality—for example:

#!/usr/bin/env python
import os, os.path, sys
from Tkinter import *
from tkFileDialog import *
import Image
openfile = '' # full pathname: dir(abs) + root + ext
indir = ''

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.7 Converting Among Image Formats | 435

outdir = ''
def getinfilename():
 global openfile, indir
 ftypes=(('Gif Images', '*.gif'),
 ('Jpeg Images', '*.jpg'),
 ('Png Images', '*.png'),
 ('Tiff Images', '*.tif'),
 ('Bitmap Images', '*.bmp'),
 ("All files", "*"))
 if indir:
 openfile = askopenfilename(initialdir=indir, filetypes=ftypes)
 else:
 openfile = askopenfilename(filetypes=ftypes)
 if openfile:
 indir = os.path.dirname(openfile)
def getoutdirname():
 global indir, outdir
 if openfile:
 indir = os.path.dirname(openfile)
 outfile = asksaveasfilename(initialdir=indir, initialfile='foo')
 else:
 outfile = asksaveasfilename(initialfile='foo')
 outdir = os.path.dirname(outfile)
def save(infile, outfile):
 if infile != outfile:
 try:
 Image.open(infile).save(outfile)
 except IOError:
 print "Cannot convert", infile
def convert():
 newext = frmt.get()
 path, file = os.path.split(openfile)
 base, ext = os.path.splitext(file)
 if var.get():
 ls = os.listdir(indir)
 filelist = []
 for f in ls:
 if os.path.splitext(f)[1] == ext:
 filelist.append(f)
 else:
 filelist = [file]
 for f in filelist:
 infile = os.path.join(indir, f)
 ofile = os.path.join(outdir, f)
 outfile = os.path.splitext(ofile)[0] + newext
 save(infile, outfile)
 win = Toplevel(root)
 Button(win, text='Done', command=win.destroy).pack()
Divide GUI into 3 frames: top, mid, bot
root = Tk()
root.title('Image Converter')
topframe = Frame(root, borderwidth=2, relief=GROOVE)
topframe.pack(padx=2, pady=2)
Button(topframe, text='Select image to convert',

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 11: User Interfaces

 command=getinfilename).pack(side=TOP, pady=4)
multitext = "Convert all image files\n(of this format) in this folder?"
var = IntVar()
chk = Checkbutton(topframe, text=multitext, variable=var).pack(pady=2)
Button(topframe, text='Select save location',
 command=getoutdirname).pack(side=BOTTOM, pady=4)
midframe = Frame(root, borderwidth=2, relief=GROOVE)
midframe.pack(padx=2, pady=2)
Label(midframe, text="New Format:").pack(side=LEFT)
frmt = StringVar()
formats = ['.bmp', '.gif', '.jpg', '.png', '.tif']
for item in formats:
 Radiobutton(midframe, text=item, variable=frmt, value=item).pack(anchor=NW)
botframe = Frame(root)
botframe.pack()
Button(botframe, text='Convert', command=convert).pack(
 side=LEFT, padx=5, pady=5)
Button(botframe, text='Quit', command=root.quit).pack(
 side=RIGHT, padx=5, pady=5)
root.mainloop()

Needing 80 lines of GUI code to wrap a single line of real functionality may be a bit
extreme, but it’s not all that far out of line in my experience with GUI coding ;-).

Discussion
I needed this tool when I was making .avi files from the CAD application program I
generally use. That CAD program emits images in .bmp format, but the AVI*-generat-
ing program I normally use requires images in .jpg format. Now, thanks to the little
script in this recipe (and to the power of Python, Tkinter, and most especially PIL),
with a couple of clicks, I get a folder full of images in .jpg format ready to be assem-
bled into an AVI file, or, just as easily, files in .gif ready to be assembled into an ani-
mated GIF image file.

I used to perform this kind of task with simple shell scripts on Unix, using
ImageMagick’s convert command. But, with this script, I can do exactly the same job
just as easily on all sorts of machines, be they Unix, Windows, or Macintosh.

I had to work around one annoying problem to make this script work as I wanted it
to. When I’m selecting the location into which a new file is to be written, I need that
dialog to give me the option to create a new directory for that purpose. However, on
Windows NT, the Browse for Folder dialog doesn’t allow me to create a new folder,
only to choose among existing ones! My workaround, as you’ll see by studying this
recipe’s Solution, was to use instead the Save As dialog. That dialog does allow me to
create a new folder. I do have to indicate the dummy file in that folder, and the file
gets ignored; only the directory part is kept. This workaround is not maximally

* AVI (Advanced Visual Interface)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Implementing a Stopwatch in Tkinter | 437

elegant, but it took just a few minutes and almost no work on my part, and I can live
with the result.

See Also
Information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter, (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books; PIL is at http://
www.pythonware.com/products/pil/.

11.8 Implementing a Stopwatch in Tkinter
Credit: JØrgen Cederberg, Tobias Klausmann

Problem
You are coding an application in Tkinter and need a widget that implements a stop-
watch.

Solution
Implementing a new widget is almost always best done by subclassing Frame:

from Tkinter import *
import time
class StopWatch(Frame):
 """ Implements a stop watch frame widget. """
 msec = 50
 def __init__(self, parent=None, **kw):
 Frame.__init__(self, parent, kw)
 self._start = 0.0
 self._elapsedtime = 0.0
 self._running = False
 self.timestr = StringVar()
 self.makeWidgets()
 def makeWidgets(self):
 """ Make the time label. """
 l = Label(self, textvariable=self.timestr)
 self._setTime(self._elapsedtime)
 l.pack(fill=X, expand=NO, pady=2, padx=2)
 def _update(self):
 """ Update the label with elapsed time. """
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)
 self._timer = self.after(self.msec, self._update)
 def _setTime(self, elap):
 """ Set the time string to Minutes:Seconds:Hundredths """
 minutes = int(elap/60)
 seconds = int(elap - minutes*60.0)
 hseconds = int((elap - minutes*60.0 - seconds)*100)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 11: User Interfaces

 self.timestr.set('%02d:%02d:%02d' % (minutes, seconds, hseconds))
 def Start(self):
 """ Start the stopwatch, ignore if already running. """
 if not self._running:
 self._start = time.time() - self._elapsedtime
 self._update()
 self._running = True
 def Stop(self):
 """ Stop the stopwatch, ignore if already stopped. """
 if self._running:
 self.after_cancel(self._timer)
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)
 self._running = False
 def Reset(self):
 """ Reset the stopwatch. """
 self._start = time.time()
 self._elapsedtime = 0.0
 self._setTime(self._elapsedtime)

Discussion
Here is an example of use of this StopWatch widget, presented, as usual, with a guard
of if __name__ == '__main__' so we can make it part of the module containing the
class and have it run when the module is executed as a “main script”:

if __name__ == '__main__':
 def main():
 root = Tk()
 sw = StopWatch(root)
 sw.pack(side=TOP)
 Button(root, text='Start', command=sw.Start).pack(side=LEFT)
 Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)
 Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)
 Button(root, text='Quit', command=root.quit).pack(side=LEFT)
 root.mainloop()
 main()

You might want to use time.clock instead of time.time if your stopwatch’s purpose
is to measure the amount of CPU time that your program is taking, rather than the
amount of elapsed time. I used time.time, without even bothering to make that
choice easily customizable (you’ll need to edit its several appearances in the recipe’s
code), because it seems the most natural choice to me by far. One aspect that you
can customize easily, by subclassing and data overriding or simply by setting the msec

instance attribute on a particular StopWatch instance, is how often the time display is
updated onscreen; the default of 50 milliseconds, which translates to 20 updates a
second, may well mean updates that are too frequent for your purposes, although
they suit my own just fine.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.9 Combining GUIs and Asynchronous I/O with Threads | 439

See Also
Docs about the time module in the Library Reference and Python in a Nutshell; infor-
mation about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books.

11.9 Combining GUIs and Asynchronous I/O
with Threads

Credit: Jacob Hallén, Laura Creighton, Boudewijn Rempt

Problem
You need to access sockets, serial ports, or other asynchronous (but blocking) I/O
sources, while running a GUI.

Solution
The solution is to handle a GUI interface on one thread and communicate to it (via
Queue instances) the events on I/O channels handled by other threads. Here’s the
code for the standard Tkinter GUI toolkit that comes with Python:

import Tkinter, time, threading, random, Queue
class GuiPart(object):
 def __init__(self, master, queue, endCommand):
 self.queue = queue
 # Set up the GUI
 Tkinter.Button(master, text='Done', command=endCommand).pack()
 # Add more GUI stuff here depending on your specific needs
 def processIncoming(self):
 """ Handle all messages currently in the queue, if any. """
 while self.queue.qsize():
 try:

msg = self.queue.get(0)
 # Check contents of message and do whatever is needed. As a
 # simple example, let's print it (in real life, you would
 # suitably update the GUI's display in a richer fashion).
 print msg
 except Queue.Empty:
 # just on general principles, although we don't expect this
 # branch to be taken in this case, ignore this exception!
 pass
class ThreadedClient(object):
 """
 Launch the “main” part of the GUI and the worker thread. periodicCall and
 endApplication could reside in the GUI part, but putting them here
 means that you have all the thread controls in a single place.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 11: User Interfaces

 """
 def __init__(self, master):
 """
 Start the GUI and the asynchronous threads. We are in the “main”
 (original) thread of the application, which will later be used by
 the GUI as well. We spawn a new thread for the worker (I/O).
 """
 self.master = master
 # Create the queue
 self.queue = Queue.Queue()
 # Set up the GUI part
 self.gui = GuiPart(master, self.queue, self.endApplication)
 # Set up the thread to do asynchronous I/O
 # More threads can also be created and used, if necessary
 self.running = True
 self.thread1 = threading.Thread(target=self.workerThread1)
 self.thread1.start()
 # Start the periodic call in the GUI to check the queue
 self.periodicCall()
 def periodicCall(self):
 """ Check every 200 ms if there is something new in the queue. """
 self.master.after(200, self.periodicCall)
 self.gui.processIncoming()
 if not self.running:
 # This is the brutal stop of the system. You may want to do
 # some cleanup before actually shutting it down.
 import sys
 sys.exit(1)
 def workerThread1(self):
 """
 This is where we handle the asynchronous I/O. For example, it may be
 a 'select()'. One important thing to remember is that the thread has
 to yield control pretty regularly, be it by select or otherwise.
 """
 while self.running:
 # To simulate asynchronous I/O, create a random number at random
 # intervals. Replace the following two lines with the real thing.
 time.sleep(rand.random() * 1.5)
 msg = rand.random()
 self.queue.put(msg)
 def endApplication(self):
 self.running = False
rand = random.Random()
root = Tkinter.Tk()
client = ThreadedClient(root)
root.mainloop()

Discussion
This recipe demonstrates the easiest way of handling access to sockets, serial ports,
and other asynchronous I/O ports while running a Tkinter-based GUI. The recipe’s
principles generalize to other GUI toolkits, since most toolkits make it preferable to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.9 Combining GUIs and Asynchronous I/O with Threads | 441

access the GUI itself from a single thread, and all offer a toolkit-dependent way to set
up periodic polling as this recipe does.

Tkinter, like most other GUIs, is best used with all graphic commands in a single
thread. On the other hand, it’s far more efficient to make I/O channels block, then
wait for something to happen, rather than using nonblocking I/O and having to poll
at regular intervals. The latter approach may not even be available in some cases,
since not all data sources support nonblocking I/O. Therefore, for generality as well
as for efficiency, we should handle I/O with a separate thread, or more than one. The
I/O threads can communicate in a safe way with the “main”, GUI-handling thread
through one or more Queues. In this recipe, the GUI thread still has to do some poll-
ing (on the Queues), to check whether something in the Queue needs to be processed.
Other architectures are possible, but they are much more complex than the one in
this recipe. My advice is to start with this recipe, which will handle your needs over
90% of the time, and explore the much more complex alternatives only if it turns out
that this approach cannot meet your performance requirements.

This recipe lets a worker thread block in a select (simulated by random sleeps in the
recipe’s example worker thread). Whenever something arrives, it is received and
inserted in a Queue instance. The main (GUI) thread polls the Queue five times per sec-
ond and processes all messages that have arrived since it last checked. (Polling 5
times per second is frequent enough that the end user will not notice any significant
delay but infrequent enough that the computational load on the computer will be
negligible.) You may want to fine-tune this feature, depending on your needs.

This recipe solves a common problem that is frequently asked about on Python mail-
ing lists and newsgroups. Other solutions, involving synchronization between
threads, help you solve such problems without polling (the self.master.after call in
the recipe). Unfortunately, such solutions are generally complicated and messy, since
you tend to raise and wait for semaphores throughout your code. In any case, a GUI
already has several polling mechanisms built into it (the “main” event loop), so add-
ing one more won’t make much difference, especially since it seldom runs. The code
has been tested in depth only under Linux, but it should work on any platform with
working threads, including Windows.

Here is a PyQt equivalent, with very minor variations:

import sys, time, threading, random, Queue, qt
class GuiPart(qt.QMainWindow):
 def __init__(self, queue, endcommand, *args):
 qt.QMainWindow.__init__(self, *args)
 self.queue = queue
 # We show the result of the thread in the gui, instead of the console
 self.editor = qt.QMultiLineEdit(self)
 self.setCentralWidget(self.editor)
 self.endcommand = endcommand
 def closeEvent(self, ev):
 """ We just call the endcommand when the window is closed,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 11: User Interfaces

 instead of presenting a button for that purpose. """
 self.endcommand()
 def processIncoming(self):
 """ Handle all the messages currently in the queue (if any). """
 while self.queue.qsize():
 try:
 msg = self.queue.get(0)
 self.editor.insertLine(str(msg))
 except Queue.Empty:
 pass
class ThreadedClient(object):
 """
 Launch the “main” part of the GUI and the worker thread. periodicCall and
 endApplication could reside in the GUI part, but putting them here
 means that you have all the thread controls in a single place.
 """
 def __init__(self):
 # Create the queue
 self.queue = Queue.Queue()
 # Set up the GUI part
 self.gui = GuiPart(self.queue, self.endApplication)
 self.gui.show()
 # A timer to periodically call periodicCall
 self.timer = qt.QTimer()
 qt.QObject.connect(self.timer, qt.SIGNAL("timeout()"),
 self.periodicCall)
 # Start the timer -- this replaces the initial call to periodicCall
 self.timer.start(200)
 # Set up the thread to do asynchronous I/O
 # More can be made if necessary
 self.running = True
 self.thread1 = threading.Thread(target=self.workerThread1)
 self.thread1.start()
 def periodicCall(self):
 """
 Check every 200 ms if there is something new in the queue.
 """
 self.gui.processIncoming()
 if not self.running:
 root.quit()
 def endApplication(self):
 self.running = False
 def workerThread1(self):
 """
 This is where we handle the asynchronous I/O. For example, it may be
 a 'select()'. An important thing to remember is that the thread has
 to yield control once in a while.
 """
 while self.running:
 # To simulate asynchronous I/O, we create a random number at
 # random intervals. Replace the following 2 lines with the real
 # thing.
 time.sleep(rand.random() * 0.3)
 msg = rand.random()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.10 Using IDLE’s Tree Widget in Tkinter | 443

 self.queue.put(msg)
rand = random.Random()
root = qt.QApplication(sys.argv)
client = ThreadedClient()
root.exec_loop()

As you can see, this PyQt variation has a structure that’s uncannily similar to the
Tkinter version, with just a few variations (and a few enhancements, such as using
QApplication.quit instead of the more brutal sys.exit, and displaying the thread’s
result in the GUI itself rather than on the console).

See Also
Documentation of the standard library modules threading and Queue in the Library
Reference and Python in a Nutshell; information about Tkinter can be obtained from
a variety of sources, such as Fredrik Lundh, An Introduction to Tkinter (Pythonware:
http://www.pythonware.com/library), New Mexico Tech’s Tkinter Reference (http://
www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell, and various other
books; information about PyQt can be found at PyQt’s own web site, http://
www.riverbankcomputing.co.uk/pyqt/index.php.

11.10 Using IDLE’s Tree Widget in Tkinter
Credit: Sanghyeon Seo

Problem
You need to use a Tree widget in your Tkinter application, and you know that such a
widget comes with IDLE, the Integrated Development Environment that comes with
Python.

Solution
IDLE’s functionality is available in the Python Standard Library in package idlelib,
so it is easy to import and use in your applications. The Tree widget is in
idlelib.TreeWidget. Here, as an example, is how to use that widget to display an
XML document’s DOM as a tree:

from Tkinter import Tk, Canvas
from xml.dom.minidom import parseString
from idlelib.TreeWidget import TreeItem, TreeNode
class DomTreeItem(TreeItem):
 def __init__(self, node):
 self.node = node
 def GetText(self):
 node = self.node
 if node.nodeType == node.ELEMENT_NODE:
 return node.nodeName
 elif node.nodeType == node.TEXT_NODE:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 11: User Interfaces

 return node.nodeValue
 def IsExpandable(self):
 node = self.node
 return node.hasChildNodes()
 def GetSubList(self):
 parent = self.node
 children = parent.childNodes
 prelist = [DomTreeItem(node) for node in children]
 itemlist = [item for item in prelist if item.GetText().strip()]
 return itemlist
if __name__ == '__main__':
 example_data = '''
 <A>

 <C>d</C>
 <C>e</C>

 <C>f</C>

 '''
 root = Tk()
 canvas = Canvas(root)
 canvas.config(bg='white')
 canvas.pack()
 dom = parseString(example_data)
 item = DomTreeItem(dom.documentElement)
 node = TreeNode(canvas, None, item)
 node.update()
 node.expand()
 root.mainloop()

Discussion
My applications needed Tree widgets, and Tkinter does not have such a widget
among its built-in ones. So I started looking around the Internet to see the Tree wid-
gets that had been implemented for Tkinter. After a while, I was pleasantly surprised
to learn that quite a useful one was already installed and working on my computer!
Specifically, I had IDLE, the free Integrated DeveLopment Environment that comes
with Python, and therefore I had idlelib, the package within the standard Python
library that contains just about all of the functionality of IDLE. A Tree widget is
among the widgets that IDLE uses for its own GUI, so idlelib.TreeWidget is just sit-
ting there in the standard Python library, quite usable and useful.

The only problem with idlelib is that it is not well documented as a part of the
Python Standard Library documentation, nor elsewhere. The best documentation I
could find is the pydoc-generated one at http://pydoc.org/2.3/idlelib.html. TreeWidget
is one of the modules documented there. I suggest reading the sources on your disk,
which include the docstrings that pydoc is using to build the useful documentation
site. Between sources and pydoc, it is quite possible to reuse some of the rich func-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.11 Supporting Multiple Values per Row in a Tkinter Listbox | 445

tionality that’s included in idlelib, although having real docs about it would defi-
nitely not hurt. Python is known as the language that comes “with batteries
included.” When you consider, not just the hundreds of library modules that are
fully documented in Python’s official docs, but also the many additional library mod-
ules that aren’t (such as those in idlelib), it’s hard to deny this characterization.

This recipe shows how to implement a simple GUI Tree: define a node-item class by
subclassing idlelib.TreeWidget.TreeItem, and override some methods. You may
want to override ten methods (http://pydoc.org/2.3/idlelib.TreeWidget.html#TreeItem
has the complete list), and this recipe only needs three: GetText to define how the
item is displayed (textually), IsExpandable to tell the Tree whether to put a clickable
+ character next to the node to allow expansion, GetSubList to return a list of chil-
dren items in case expansion is required. Other optional methods, which this recipe
does not need, allow iconic rather than textual display, double-clicking on nodes,
and even editing of Tree items.

See Also
idlelib docs at http://pydoc.org/2.3/idlelib.html.

11.11 Supporting Multiple Values per Row
in a Tkinter Listbox

Credit: Brent Burley, Pedro Werneck, Eric Rose

Problem
You need a Tkinter widget that works just like a normal Listbox but with multiple
values per row.

Solution
When you find a functional limitation in Tkinter, most often the best solution is to
build your own widget as a Python class, subclassing an appropriate existing Tkinter
widget (often Frame, so you can easily aggregate several native Tkinter widgets into
your own compound widget) and extending and tweaking the widget’s functionality
as necessary. Rather than solving a problem for just one application, this approach
gives you a component that you can reuse in many applications. For example, here’s
a way to make a multicolumn equivalent of a Tkinter Listbox:

from Tkinter import *
class MultiListbox(Frame):
 def __init__(self, master, lists):
 Frame.__init__(self, master)
 self.lists = []
 for l, w in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 11: User Interfaces

 Label(frame, text=l, borderwidth=1, relief=RAISED).pack(fill=X)
 lb = Listbox(frame, width=w, borderwidth=0, selectborderwidth=0,
 relief=FLAT, exportselection=FALSE)
 lb.pack(expand=YES, fill=BOTH)
 self.lists.append(lb)
 lb.bind('<B1-Motion>', lambda e, s=self: s._select(e.y))
 lb.bind('<Button-1>', lambda e, s=self: s._select(e.y))
 lb.bind('<Leave>', lambda e: 'break')
 lb.bind('<B2-Motion>', lambda e, s=self: s._b2motion(e.x, e.y))
 lb.bind('<Button-2>', lambda e, s=self: s._button2(e.x, e.y))
 frame = Frame(self)
 frame.pack(side=LEFT, fill=Y)
 Label(frame, borderwidth=1, relief=RAISED).pack(fill=X)
 sb = Scrollbar(frame, orient=VERTICAL, command=self._scroll)
 sb.pack(expand=YES, fill=Y)
 self.lists[0]['yscrollcommand'] = sb.set
 def _select(self, y):
 row = self.lists[0].nearest(y)
 self.selection_clear(0, END)
 self.selection_set(row)
 return 'break'
 def _button2(self, x, y):
 for l in self.lists:
 l.scan_mark(x, y)
 return 'break'
 def _b2motion(self, x, y):
 for l in self.lists
 l.scan_dragto(x, y)
 return 'break'
 def _scroll(self, *args):
 for l in self.lists:
 apply(l.yview, args)
 return 'break'
 def curselection(self):
 return self.lists[0].curselection()
 def delete(self, first, last=None):
 for l in self.lists:
 l.delete(first, last)
 def get(self, first, last=None):
 result = []
 for l in self.lists:
 result.append(l.get(first,last))
 if last: return apply(map, [None] + result)
 return result
 def index(self, index):
 self.lists[0].index(index)
 def insert(self, index, *elements):
 for e in elements:
 i = 0
 for l in self.lists:
 l.insert(index, e[i])
 i = i + 1
 def size(self):
 return self.lists[0].size()
 def see(self, index):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.11 Supporting Multiple Values per Row in a Tkinter Listbox | 447

 for l in self.lists:
 l.see(index)
 def selection_anchor(self, index):
 for l in self.lists:
 l.selection_anchor(index)
 def selection_clear(self, first, last=None):
 for l in self.lists:
 l.selection_clear(first, last)
 def selection_includes(self, index):
 return self.lists[0].selection_includes(index)
 def selection_set(self, first, last=None):
 for l in self.lists:
 l.selection_set(first, last)
if __name__ == '__main__':
 tk = Tk()
 Label(tk, text='MultiListbox').pack()
 mlb = MultiListbox(tk, (('Subject', 40), ('Sender', 20), ('Date', 10)))
 for i in range(1000):
 mlb.insert(END,
 ('Important Message: %d' % i, 'John Doe', '10/10/%04d' % (1900+i)))
 mlb.pack(expand=YES, fill=BOTH)
 tk.mainloop()

Discussion
This recipe shows a compound widget that gangs multiple Tk Listbox widgets to a
single scrollbar to achieve a simple multicolumn scrolled listbox. Most of the Listbox

API is mirrored, to make the widget act like normal Listbox, but with multiple val-
ues per row. The resulting widget is lightweight, fast, and easy to use. The main
drawback is that only text is supported, which is a fundamental limitation of the
underlying Listbox widget.

In this recipe’s implementation, only single selection is allowed, but the same idea
could be extended to multiple selection. User-resizable columns and auto-sorting by
clicking on the column label should also be possible. Auto-scrolling while dragging
Button-1 was disabled because it broke the synchronization between the lists. How-
ever, scrolling with Button-2 works fine. Mice with scroll wheels appear to behave in
different ways depending on the platform. For example, while things appear to work
fine with the preceding code on some platforms (such as Windows/XP), on other
platforms using X11 (such as Linux), I’ve observed that mouse scroll wheel events
correspond to Button-4 and Button-5, so you could deal with them just by adding at
the end of the for loop in method __init__ the following two statements:

 lb.bind('<Button-4>', lambda e, s=self: s._scroll(SCROLL, -1, UNITS))
 lb.bind('<Button-5>', lambda e, s=self: s._scroll(SCROLL, +1, UNITS))

This addition should be innocuous on platforms such as Windows/XP. You should
check this issue on all platforms on which you need to support mouse scroll wheels.

If you need to support sorting by column-header clicking, you can obtain the hook
needed for that functionality with a fairly modest change to this recipe’s code. Specif-
ically, within the for loop in method __init__, you can change the current start:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 11: User Interfaces

 for l, w in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)
 Label(frame, text=l, borderwidth=1, relief=RAISED).pack(fill=X)

to the following richer code:

 for l, w, sort_command in lists:
 frame = Frame(self)
 frame.pack(side=LEFT, expand=YES, fill=BOTH)
 Button(frame, text=l, borderwidth=1, relief=RAISED,
 command=sort_command).pack(fill=X)

To take advantage of this hook, you then need to pass as the lists’ argument, rather
than one tuple of pairs, a list of three tuples, the third item of each tuple being an
object callable with no arguments to perform the appropriate kind of sorting. In my
applications, I’ve generally found this specific refinement to be more trouble than it’s
worth, but I’m presenting it anyway (although not in the actual “Solution” of this
recipe!) just in case your applications differ in this respect. Maybe sorting by column
header clicking is something that’s absolutely invaluable to you.

One note about the implementation: in the MultiListbox.__init__ method, several
lambda forms are used as the callable second arguments (callbacks) of the bind

method calls on the contained Listbox widgets. This approach is traditional, but if
you share the widespread dislike for lambda, you should know that lambda is never
truly necessary. In this case, the easiest way to avoid the lambdas is to redefine all the
relevant methods (_select, _button2, etc.) as taking two formal arguments (self, e)
and extract the data they need from argument e. Then in the bind calls, you can sim-
ply pass the bound self._select method, and so on.

See Also
Information about Tkinter can be obtained from a variety of sources, such as
Pythonware’s An Introduction to Tkinter, by Fredrik Lundh (http://
www.pythonware.com/library), New Mexico Tech’s Tkinter Reference (http://
www.nmt.edu/tcc/help/lang/python/docs.html), Python in a Nutshell, and various other
books.

11.12 Copying Geometry Methods and Options
Between Tkinter Widgets

Credit: Pedro Werneck

Problem
You want to create new Tkinter compound widgets, not by inheriting from Frame

and packing other widgets inside, but rather by setting geometry methods and
options from other widget to another.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 Copying Geometry Methods and Options Between Tkinter Widgets | 449

Solution
Here is an example of a compound widget built by this approach:

from Tkinter import *
class LabeledEntry(Entry):
 """ An Entry widget with an attached Label """
 def __init__(self, master=None, **kw):
 ekw = { } # Entry options dictionary
 fkw = { } # Frame options dictionary
 lkw = {'name':'label'} # Label options dictionary
 skw = {'padx':0, 'pady':0, 'fill':'x', # Geometry manager opts dict
 'side':'left'}
 fmove = ('name',) # Opts to move to the Frame dict
 lmove = ('text', 'textvariable',
 'anchor','bitmap', 'image') # Opts to move to the Label dict
 smove = ('side', 'padx', 'pady', # Opts to move to the Geometry
 'fill') # manager dictionary
 # dispatch each option towards the appropriate component
 for k, v in kw:
 if k in fmove: fkw[k] = v
 elif k in lmove: lkw[k] = v
 elif k in smove: skw[k] = v
 else: ekw[k] = v
 # make all components with the accumulated options
 self.body = Frame(master, **fkw)
 self.label = Label(self.body, **lkw)
 self.label.pack(side='left', fill=skw['fill'],
 padx=skw['padx'], pady=skw['pady'])
 Entry.__init__(self, self.body, **ekw)
 self.pack(side=skw['side'], fill=skw['fill'],
 padx=skw['padx'], pady=skw['pady'])
 methods = (Pack.__dict__.keys() + # Set Frame geometry methods to self
 Grid.__dict__.keys() +
 Place.__dict__.keys())
 for m in methods:
 if m[0] != '_' and m != 'config' and m != 'configure':
 setattr(self, m, getattr(self.body, m))

Discussion
Here is an example of use of this LabeledEntry widget, presented, as usual, with a
guard of if __name__ == '__main__' so we can make it part of the module contain-
ing the class and have it run when the module is executed as a “main script”:

if __name__ == '__main__':
 root = Tk()
 le1 = LabeledEntry(root, name='label1', text='Label 1: ',
 width=5, relief=SUNKEN, bg='white', padx=3)
 le2 = LabeledEntry(root, name='label2', text='Label 2: ',
 relief=SUNKEN, bg='red', padx=3)
 le3 = LabeledEntry(root, name='label3', text='Label 3: ',
 width=40, relief=SUNKEN, bg='yellow', padx=3)
 le1.pack(expand=1, fill=X)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 11: User Interfaces

 le2.pack(expand=1, fill=X)
 le3.pack(expand=1, fill=X)
 root.mainloop()

The usual approach to defining new compound Tkinter widgets is to inherit from
Frame and pack your component widgets inside. While simple and habitual, that
approach has a few problems. In particular, you need to invent, design, document,
and implement additional methods or options to access the component widgets’
attributes from outside of the compound widget class. Using another alternative
(which I’ve often seen done, but it’s still a practice that is not advisable at all!), you
can violate encapsulation and Demeter’s Law by having other code access the com-
ponent widgets directly. If you do violate encapsulation, you’ll pay for it in the not-
so-long run, when you find a need to tweak your compound widget and discover
that you can’t do it without breaking lots of code that depends on the compound
widget’s internal structure. Those consequences are bad enough when you own all of
the code in question, but it’s worse if you have “published” your widget and other
people’s code depends on it.

This recipe shows it doesn’t have to be that bad, by elaborating upon an idea I first
saw used in the ScrolledText widget, which deserves to be more widely exposed.
Instead of inheriting from Frame, you inherit from the “main” widget of your new
compound widget. Then, you create a Frame widget to be used as a body, pretty
much like in the more usual approach. Then, and here comes the interesting nov-
elty, you create dicts for each component widget you contain and move to those dic-
tionaries the respective options that pertain to component widgets.

The novelty continues after you’ve packed the “main” widget: at that point, you can
reset said widget’s geometry methods to the base Frame attributes (meaning, in this
case, methods), so that accessing the object methods will in fact access the inner base
Frame geometry methods. This transparent, seamless delegation by juggling bound
methods is uniquely Pythonic and is part of what makes this recipe so novel and
interesting!

The main advantage of this recipe’s approach is that you can create your widget with
options to all slave widgets inside it in a single line, just like any other widget, instead
of doing any further w.configure or w['option'] calls or accesses to set all details
exactly the way you want them. To be honest, there is a potential disadvantage, too:
in this recipe’s approach, it’s hard to handle options with the same name on different
component widgets. However, sometimes you can handle them by renaming options:
if two separate widgets need a 'foo' option that’s also of interest to the “main”
widget, for example, use, 'upper_foo' and 'lower_foo' variants and rename them
appropriately (with yet another auxiliary dictionary) at the same time you’re
dispatching them to the appropriate dictionary of component-widget options. You
can’t sensibly keep doing that “forever”, as the number of component widgets com-
peting for the same option grows without bounds: if that happens, revert to the good
old tried-and-true approach. But for nine out of ten compound widgets you find

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.13 Implementing a Tabbed Notebook for Tkinter | 451

yourself programming, you’ll find this recipe’s approach to be an interesting alterna-
tive to the usual, traditional approach to compound-widget programming.

See Also
Information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books.

11.13 Implementing a Tabbed Notebook
for Tkinter

Credit: Iuri Wickert

Problem
You have some Tkinter applications, each with a single top-level window, and want
to organize them as panels in a tabbed notebook with minimal changes to your origi-
nal applications’ source code.

Solution
A simple widget class can implement a notebook with all the features we need,
including all possible orientations and the ability to add and switch frames (panels)
at will:

from Tkinter import *
class notebook(object):
 def __init__(self, master, side=LEFT):
 self.active_fr = None
 self.count = 0
 self.choice = IntVar(0)
 if side in (TOP, BOTTOM): self.side = LEFT
 else: self.side = TOP
 self.rb_fr = Frame(master, borderwidth=2, relief=RIDGE)
 self.rb_fr.pack(side=side, fill=BOTH)
 self.screen_fr = Frame(master, borderwidth=2, relief=RIDGE)
 self.screen_fr.pack(fill=BOTH)
 def __call__(self):
 return self.screen_fr
 def add_screen(self, fr, title):
 b = Radiobutton(self.rb_fr, text=title, indicatoron=0,
 variable=self.choice,
 value=self.count, command=lambda: self.display(fr))
 b.pack(fill=BOTH, side=self.side)
 if not self.active_fr:
 fr.pack(fill=BOTH, expand=1)
 self.active_fr = fr

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 11: User Interfaces

 self.count += 1
 def display(self, fr):
 self.active_fr.forget()
 fr.pack(fill=BOTH, expand=1)
 self.active_fr = fr

Just save this code as a notebook.py module, somewhere on your Python sys.path,
and you can import and use it in your apps.

Discussion
The simplest way to show how this notebook class works is with a simple demonstra-
tion program:

from Tkinter import *
from notebook import *
make a toplevel with a notebook in it, with tabs on the left:
root = Tk()
nb = notebook(root, LEFT)
make a few diverse frames (panels), each using the NB as 'master':
f1 = Frame(nb())
b1 = Button(f1, text="Button 1")
e1 = Entry(f1)
pack your widgets in the frame before adding the frame to the
notebook, do NOT pack the frame itself!
b1.pack(fill=BOTH, expand=1)
e1.pack(fill=BOTH, expand=1)
f2 = Frame(nb())
b2 = Button(f2, text='Button 2')
b3 = Button(f2, text='Beep 2', command=Tk.bell)
b2.pack(fill=BOTH, expand=1)
b3.pack(fill=BOTH, expand=1)
f3 = Frame(nb())
add the frames as notebook 'screens' and run this GUI app
nb.add_screen(f1, "Screen 1")
nb.add_screen(f2, "Screen 2")
nb.add_screen(f3, "dummy")
root.mainloop()

Tkinter is a simple GUI toolkit, easy to use but notoriously feature-poor when com-
pared to more advanced toolkits. And yet, sometimes advanced features are not all
that difficult to add! I wondered how I could use a tabbed appearance, also known as
a notebook, to organize various pages of an application, or various related applica-
tions, simply and elegantly. I discovered that simulating a notebook widget by using
standard Tkinter frames and radio buttons was not only possible, but also quite sim-
ple and effective.

Tk has some “odd”, and somewhat unknown, corners, which make the whole task a
snap. The indicatoron option on a radio button reverts the radio button default
appearance back to the normal button look—a rectangle, which may not be a per-
fect-looking tab but is plenty good enough for me. Each Tkinter frame has a forget

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.14 Using a wxPython Notebook with Panels | 453

method, which allows easy and fast swapping of “screens” (notebook panels, appli-
cation frames) within the single “screen frame” of the notebook object.

To convert any existing Tkinter app, based on a single top-level window, to run
inside a notebook panel, all you need to do is to change the application master
frame’s root, which is generally a top-level widget (an instance of Tkinter’s Tk class),
to the one provided by the notebook object when you call it. (The three occurrences
of nb() in the example code show how to go about it.)

The notebook implementations in other toolkits often have advanced features such
as the ability to exclude (remove) some frames as well as adding others. I have not
found this kind of thing to be necessary, and so I have taken no trouble in this recipe
to make it possible: all references to the external frames are kept implicitly in lambda

closures, without any obvious way to remove them. If you think you need the ability
to remove frames, you might consider an alternative architecture: keep the frames’
references in a list, indexed by the binding variable of the radio buttons (i.e., the
choice attribute of each radio button). Doing so lets you destroy a “frame” and its
associated radio button in a reasonably clean way.

See Also
Information about Tkinter can be obtained from a variety of sources, such as Fredrik
Lundh, An Introduction to Tkinter (PythonWare: http://www.pythonware.com/
library), New Mexico Tech’s Tkinter Reference (http://www.nmt.edu/tcc/help/lang/
python/docs.html), Python in a Nutshell, and various other books.

11.14 Using a wxPython Notebook with Panels
Credit: Mark Nenadov

Problem
You want to design a wxPython GUI comprised of multiple panels—each driven by a
separate Python script running in the background—that let the user switch back and
forth (i.e., a wxPython Notebook).

Solution
Notebooks are an effective GUI approach, as they let the user select the desired view
from several options at any time with an instinctive button click. wxPython supports
this feature by supplying a wxNotebook widget. Here is a “frame” class that holds a
notebook and adds to it three panes, each driven by a different Python module (not
shown) through a function in each module named runPanel:

from wxPython.wx import *
class MainFrame(wxFrame):
 #

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 11: User Interfaces

 # snipped: mainframe class attributes
 #
 def __init__(self, parent, id, title):
 #
 # snipped: frame-specific initialization
 #
 # Create the notebook object
 self.nb = wxNotebook(self, -1,
 wxPoint(0,0), wxSize(0,0), wxNB_FIXEDWIDTH)
 # Populate the notebook with pages (panels), each driven by a
 # separate Python module which gets imported for the purpose:
 panel_names = "First Panel", "Second Panel", "The Third One"
 panel_scripts = "panel1", "panel2", "panel3"
 for name, script in zip(panel_names, panel_scripts):
 # Make panel named 'name' (driven by script 'script'.py)
 self.module = __import__(script, globals())
 self.window = self.module.runPanel(self, self.nb)
 if self.window: self.nb.AddPage(self.window, name)
 #
 # snipped: rest of frame initialization
 #

Discussion
wxPython provides a powerful notebook user-interface object, with multiple panels,
each of which can be built and driven by a separate Python script (actually a mod-
ule, not a “main script”). Each panel’s script runs in the background, even when the
panel is not selected, and maintains state as the user switches back and forth.

This recipe isn’t a fully functional wxPython application, but it adequately demon-
strates how to use notebooks and panels (which it loads by importing files). This rec-
ipe assumes that you have files named panel1.py, panel2.py, and panel3.py, each of
which contains a runPanel function that takes two arguments (a wxFrame and a
wxNotebook in the frame) and returns a wxPanel object.

The notebook-specific functionality is easy: the notebook object is created by the
wxNotebook function, and an instance of this recipe’s MainFrame class saves its note-
book object as the self.nb instance attribute. Then, each page (a wxPanel object),
obtained by calling the separate script’s runPanel functions, is added to the note-
book by calling the notebook’s AddPage method, with the page object as the first
argument and a name string as the second. Your code only needs to make the note-
book and its panels usable; the wxWidgets framework, as wrapped by the wxPython
package, handles all the rest on your behalf.

See Also
wxPython, and the wxWidgets toolkit it depends on, are described in detail at http://
www.wxPython.org and http://www.wxWidgets.org.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.15 Implementing an ImageJ Plug-in in Jython | 455

11.15 Implementing an ImageJ Plug-in in Jython
Credit: Ferdinand Jamitzky, Edoardo “Dado” Marcora

Problem
You perform image processing using the excellent free program ImageJ and need to
extend it with your own plug-ins, but you want to code those plug-ins in Jython
rather than in Java.

Solution
Jython can do all that Java can, but with Python’s elegance and high productivity.
For example, here is an ImageJ plug-in that implements a simple image inverter:

import ij
class Inverter_py(ij.plugin.filter.PlugInFilter):
 def setup(self, arg, imp):
 """@sig public int setup(String arg, ij.ImagePlus imp)"""
 return ij.plugin.filter.PlugInFilter.DOES_8G
 def run(self,ip):
 """@sig public void run(ij.process.ImageProcessor ip)"""
 pixels = ip.getPixels()
 width = ip.getWidth()
 r = ip.getRoi()
 for y in range(r.y, r.y+r.height):
 for x in range(r.x, r.x+r.width):
 i = y*width + x
 pixels[i] = 255-pixels[i]

Discussion
To make this plug-in usable from ImageJ, all you need to do is compile it into a Java
bytecode class using the jythonc command with the appropriate command-line
option switches. For example, I use IBM’s open source Java compiler, jikes, and I
have placed it into the C:\ImageJ directory, which also holds the plugins and jre sub-
directories. So, in my case, the command line to use is:

jythonc -w C:\ImageJ\plugins\Jython -C C:\ImageJ\jikes
 -J "-bootclasspath C:\ImageJ\jre\lib\rt.jar -nowarn"

If you use Sun’s Java SDK, or other Java implementations, you just change the -C

argument, which indicates the path of your Java compiler and the -J argument,
which specifies the options to pass to your Java compiler.

See Also
ImageJ is at http://rsb.info.nih.gov/ij/; Jython is at http://www.jython.org; jikes is at
http://www-124.ibm.com/developerworks/oss/jikes/; for more on using Jython with
Imagej, http://marcora.caltech.edu/jython_imagej_howto.htm.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 11: User Interfaces

11.16 Viewing an Image from a URL with Swing
and Jython

Credit: Joel Lawhead, Chuck Parker

Problem
You want to make a simple Swing image viewer, accepting the URL to an image and
displaying the image in a Swing window.

Solution
Jython makes this task very easy:

from pawt import swing
from java import net
def view(url):
 frame = swing.JFrame("Image: " + url, visible=1)
 frame.getContentPane().add(swing.JLabel(swing.ImageIcon(net.URL(url))))
 frame.setSize(400,250)
 frame.show()
if __name__ == '__main__':
 view("http://www.python.org/pics/pythonHi.gif")

Discussion
Swing’s JLabel and ImageIcon widgets can be easily combined in Jython to make a
simple image viewer. The need to pass a URL to the view function is not at all a limi-
tation, because you can always use the file: protocol in your URL if you want to
display an image that lives on your filesystem rather than out there on the Web.
Remember that the U in URL stands for Universal!

See Also
Swing docs are at http://java.sun.com/docs/books/tutorial/uiswing/; Jython is at http://
www.jython.org.

11.17 Getting User Input on Mac OS
Credit: Matteo Rattotti

Problem
You’re writing a simple application to run on Mac OS and want to get an input value
from the user without frightening the user by opening a scary terminal window.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.17 Getting User Input on Mac OS | 457

Solution
Many Mac OS users are frightened by the terminal, so Python scripts that require
simple input from the user shouldn’t rely on normal textual input but rather should
use the EasyDialogs module from the Python Standard Library. Here is an example, a
simple image converter and resizer application:

import os, sys, EasyDialogs, Image
instead of relying on sys.argv, ask the user via a simple dialog:
rotater = ('Rotate right', 'Rotate image by 90 degrees clockwise')
rotatel = ('Rotate left', 'Rotate image by 90 degrees anti-clockwise')
scale = ('Makethumb', 'Make a 100x100 thumbnail')
str = ['Format JPG', 'Format PNG']
cmd = [rotater, rotatel, scale]
optlist = EasyDialogs.GetArgv(str, cmd,
 addoldfile=False, addnewfile=False, addfolder=True)
now we can parse the arguments and options (we could use getopt, too):
dirs = []
format = "JPEG"
rotationr = False
rotationl = False
resize = False
for arg in optlist:
 if arg == "--Format JPG":
 format = "JPEG"
 if arg == "--Format PNG":
 format = "PNG"
 if arg == "Rotate right":
 rotationr = True
 if arg == "Rotate left":
 rotationl = True
 if arg == "Makethumb":
 resize = True
 if os.path.isdir(arg):
 dirs.append(arg)
if len(dirs) == 0:
 EasyDialogs.Message("No directories specified")
 sys.exit(0)
Now, another, simpler dialog, uses the system's folder-chooser dialog:
path = EasyDialogs.AskFolder("Choose destination directory")
if not path:
 sys.exit(0)
if not os.path.isdir(path) :
 EasyDialogs.Message("Destination directory not found")
 sys.exit(0)
and now a progress bar:
tot_numfiles = sum([len(os.listdir(d)) for d in dirs])
bar = EasyDialogs.ProgressBar("Processing", tot_numfiles)
for d in dirs:
 for item in os.listdir(d):
 bar.inc()
 try:
 objpict = Image.open(d + "/" + item)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 11: User Interfaces

 if resize: objpict.thumbnail((100, 100, 1))
 if rotationr: objpict = objpict.rotate(-90)
 if rotationl: objpict = objpict.rotate(90)
 objpict.save(path + "/" + item + "." + format, format)
 except:
 print item + " is not an image"
and one last dialog...:
score = EasyDialogs.AskYesNoCancel("Do you like this program?")
if score == 1:
 EasyDialogs.Message("Wwowowowow, EasyDialog roolz, ;-)")
elif score == 0:
 EasyDialogs.Message("Sigh, sorry, will do better next time!-(")
elif score == -1:
 EasyDialogs.Message("Hey, you didn't answer?!")

Discussion
This recipe’s program is quite trivial, mostly meant to show how to use a few of the
dialogs in the EasyDialogs standard library module for the Mac. You could add quite
a few more features, or do a better job of implementing some of those in this recipe,
for example, by using getopt from the Python Standard Library to parse the argu-
ments and options, rather than the roll-your-own approach we’ve taken.

Since EasyDialogs is in the Python Standard Library for the Mac, you can count on
finding that module, as well as Python itself, in any Mac that runs Mac OS X 10.3
Panther—and that’s well over ten million Macs, according to Apple. Just build your
script into an application with bundlebuilder or, even better, with py2app and
distutils. Doing so will enable you to distribute your Python application so that
users can park it in the Dock, use drag-and-drop from the Finder to give it argu-
ments, and so on. Documentation for both bundlebuilder and py2app can be found
on the Wiki at http://www.pythonmac.org/wiki.

The EasyDialogs module in the Python Standard Library works only on the Mac, but
if you like the concept, you can try out Jimmy Retzlaff’s port of that module to Win-
dows, available for download at http://www.averdevelopment.com/python/
EasyDialogs.html.

See Also
Library Reference documentation on EasyDialogs; http://www.pythonmac.org/wiki for
more information on Python for Mac resources; py2app is at http://undefined.org/
python/; http://www.averdevelopment.com/python/EasyDialogs.html for a port of
EasyDialogs to Microsoft Windows.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.18 Building a Python Cocoa GUI Programmatically | 459

11.18 Building a Python Cocoa GUI
Programmatically

Credit: Dethe Elza

Problem
You are developing a Python application using Mac OS X’s Aqua interface (through
Apple’s Cocoa toolkit and the PyObjC, Python/Objective-C bridge). You want to
build the application’s user interface within the program itself (as is normally done in
most other Python GUI toolkits), rather than via Apple’s Interface Builder (IB) and
resulting .nib files (as is usually done with Cocoa for Aqua applications).

Solution
Anything that you can do via Interface Builder and .nib files, you can also do directly
in your program. Here is a simple demo:

from math import sin, cos, pi
from Foundation import *
from AppKit import *
class DemoView(NSView):
 n = 10
 def X(self, t):
 return (sin(t) + 1) * self.width * 0.5
 def Y(self, t):
 return (cos(t) + 1) * self.height * 0.5
 def drawRect_(self, rect):
 self.width = self.bounds()[1][0]
 self.height = self.bounds()[1][1]
 NSColor.whiteColor().set()
 NSRectFill(self.bounds())
 NSColor.blackColor().set()
 step = 2 * pi/self.n
 loop = [i * step for i in range(self.n)]
 for f in loop:
 p1 = NSMakePoint(self.X(f), self.Y(f))
 for g in loop:
 p2 = NSMakePoint(self.X(g), self.Y(g))
 NSBezierPath.strokeLineFromPoint_toPoint_(p1, p2)
class AppDelegate(NSObject):
 def windowWillClose_(self, notification):
 app.terminate_(self)
def main():
 global app
 app = NSApplication.sharedApplication()
 graphicsRect = NSMakeRect(100.0, 350.0, 450.0, 400.0)
 myWindow = NSWindow.alloc().initWithContentRect_styleMask_backing_defer_(
 graphicsRect,
 NSTitledWindowMask
 | NSClosableWindowMask

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 11: User Interfaces

 | NSResizableWindowMask
 | NSMiniaturizableWindowMask,
 NSBackingStoreBuffered,
 False)
 myWindow.setTitle_('Tiny Application Window')
 myView = DemoView.alloc().initWithFrame_(graphicsRect)
 myWindow.setContentView_(myView)
 myDelegate = AppDelegate.alloc().init()
 myWindow.setDelegate_(myDelegate)
 myWindow.display()
 myWindow.orderFrontRegardless()
 app.run()
 print 'Done'
if __name__ == '__main__':
 main()

Discussion
Most programmers prefer to lay out their programs’ user interfaces graphically, and
Apple’s Interface Builder application, which comes with Apple’s free Developer
Tools (also known as XCode), is a particularly nice tool for this task (when you’re
using Apple’s Cocoa toolkit to develop a GUI for Mac OS X’s Aqua interface). (The
PyObjC extension makes using Cocoa from Python an obvious choice, if you’re
developing applications for the Macintosh.)

Sometimes it is more convenient to keep all the GUI building within the very pro-
gram I’m developing, at least at first. During the early iterations of developing a new
program, I often need to refactor everything drastically as I rethink the problem
space. When that happens, trying to find all the connections that have to be modi-
fied or renamed is a chore in Interface Builder or in any other such interactive GUI-
painting application.

Some popular GUI toolkits, such as Tkinter, are based on the idea that the program
builds its own GUI at startup by defining the needed objects and appropriately call-
ing functions and methods. It may not be entirely clear to users of other toolkits,
such as Cocoa, that just about every toolkit is capable of operating in a similar man-
ner, allowing “programmatic” GUI construction. This applies even to those toolkits
that are most often used by means of interactive GUI-painting applications. By delay-
ing the use of IB until your program is more functional and stable, it’s more likely
that you’ll be able to design an appropriate interface. This recipe can help get you
started in that direction.

This recipe’s code is a straight port of tiny.m, from Simson Garfinkel and Michael
Mahoney, Building Cocoa Applications: A Step-by-Step Guide (O’Reilly), showing
how to build a Cocoa application without using Interface Builder nor loading .nib
files. This recipe was my first PyObjC project, and it is indebted both to the Cocoa
book and to PyObjC’s “Hello World” example code. Starting from this simple,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.19 Implementing Fade-in Windows with IronPython | 461

almost toy-level recipe, I was able to use Python’s file handling to easily build a
graphical quote viewer and ramp up from there to building rich, full-fledged GUIs.

See Also
Garfinkel and Mahoney’s Building Cocoa Applications: A Step-by-Step Guide
(O’Reilly); PyObjC is at http://pyobjc.sourceforge.net/.

11.19 Implementing Fade-in Windows
with IronPython

Credit: Brian Quinlan

Problem
You’re developing an application with IronPython (using Windows Forms on
Microsoft .NET), and you want to use fade-in windows to display temporary data.

Solution
Fading in can best be accomplished using the Form.Opacity property and a Timer.
Fade-in windows, being a form of pop-up window, should also set the topmost win-
dow style:

from System.Windows.Forms import *
from System.Drawing import *
from System.Drawing.Imaging import *
form = Form(Text="Window Fade-ins with IronPython",
 HelpButton=False, MinimizeBox=True, MaximizeBox=True,
 WindowState=FormWindowState.Maximized,
 FormBorderStyle=FormBorderStyle.Sizable,
 StartPosition=FormStartPosition.CenterScreen,
 Opacity = 0)
create a checker background pattern image
box_size = 25
image = Bitmap(box_size * 2, box_size * 2)
graphics = Graphics.FromImage(image)
graphics.FillRectangle(Brushes.Black, 0, 0, box_size, box_size)
graphics.FillRectangle(Brushes.White, box_size, 0, box_size, 50)
graphics.FillRectangle(Brushes.White, 0, box_size, box_size, box_size)
graphics.FillRectangle(Brushes.Black, box_size, box_size, box_size, box_size)
form.BackgroundImage = image
create a control to allow the opacity to be adjusted
opacity_tracker = TrackBar(Text="Transparency",
 Height = 20, Dock = DockStyle.Bottom,
 Minimum = 0, Maximum = 100, Value = 0,
 TickFrequency = 10, Enabled = False)
def track_opacity_change(sender, event):
 form.Opacity = opacity_tracker.Value / 100.0
opacity_tracker.ValueChanged += track_opacity_change

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 11: User Interfaces

form.Controls.Add(opacity_tracker)
create a timer to animate the initial appearance of the window
timer = Timer()
timer.Interval = 15
def tick(sender, event):
 val = opacity_tracker.Value + 1
 if val >= opacity_tracker.Maximum:
 # ok, we're done, set the opacity to maximum, stop the
 # animation, and let the user play with the opacity manually
 opacity_tracker.Value = opacity_tracker.Maximum
 opacity_tracker.Minimum = 20 # don't let the window disappear
 opacity_tracker.Enabled = True
 timer.Stop()
 else:
 opacity_tracker.Value = val
timer.Tick += tick
timer.Start()
form.ShowDialog()

Discussion
While IronPython, at the time of this writing, is not yet entirely mature, and it there-
fore cannot be recommended for use to develop Windows Forms applications
intended for production deployment, any .NET (or Mono) developer should already
download IronPython and start playing with it; when it matures, it promises to pro-
vide a nonpareil high-productivity avenue for .NET application development.

This recipe shows that IronPython can already do, with elegance and ease, a number
of interesting things with Windows Forms. Specifically, the recipe demonstrates sev-
eral techniques of Windows Forms programming:

• How to create a form.

• How to draw in an off-screen image.

• How to create a control, add it to a form, and manage its events.

• How to create a timer and add a delegate to get periodic events.

More specifically, this recipe shows how to create a fade-in window using Iron-
Python. Several applications use fade-in windows for temporary data; look, for
example, at Microsoft’s new Outlook XP. It displays mail messages through a fade-
in/fade-out pop-up window. It looks cool, it’s also quite useful, and IronPython
makes it a snap!

See Also
IronPython is at http://ironpython.com/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

463

Chapter 12 CHAPTER 12

Processing XML

12.0 Introduction
Credit: Paul Prescod, co-author of XML Handbook (Prentice-Hall)

XML has become a central technology for all kinds of information exchange. Today,
most new file formats that are invented are based on XML. Most new protocols are
based upon XML. It simply isn’t possible to work with the emerging Internet infra-
structure without supporting XML. Luckily, Python has had XML support since
many versions ago, and Python’s support for XML has kept growing and maturing
year after year.

Python and XML are perfect complements. XML is an open standards way of
exchanging information. Python is an open source language that processes the infor-
mation. Python excels at text processing and at handling complicated data struc-
tures. XML is text based and is, above all, a way of exchanging complicated data
structures.

That said, working with XML is not so seamless that it requires no effort. There is
always somewhat of a mismatch between the needs of a particular programming lan-
guage and a language-independent information representation. So there is often a
requirement to write code that reads (i.e., deserializes or parses) and writes (i.e., seri-
alizes) XML.

Parsing XML can be done with code written purely in Python, or with a module that
is a C/Python mix. Python comes with the fast Expat parser written in C. Many XML
applications use the Expat parser, and one of these recipes accesses Expat directly to
build its own concept of an ideal in-memory Python representation of an XML docu-
ment as a tree of “element” objects (an alternative to the standard DOM approach,
which I will mention later in this introduction).

However, although Expat is ubiquitous in the XML world, it is far from being the
only parser available, or necessarily the best one for any given application. A stan-
dard API called SAX allows any XML parser to be plugged into a Python program.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 12: Processing XML

The SAX API is demonstrated in several recipes that perform typical tasks such as
checking that an XML document is well formed, extracting text from a document, or
counting the tags in a document. These recipes should give you a good understand-
ing of how SAX works. One more advanced recipe shows how to use one of SAX’s
several auxiliary features, “filtering”, to normalize “text events” that might other-
wise happen to get “fragmented”.

XML-RPC is a protocol built on top of XML for sending data structures from one
program to another, typically across the Internet. XML-RPC allows programmers to
completely hide the implementation languages of the two communicating compo-
nents. Two components running on different operating systems, written in different
languages, can still communicate easily. XML-RPC is built into Python. This chapter
does not deal with XML-RPC, because, together with other alternatives for distrib-
uted programming, XML-RPC is covered in Chapter 15.

Other recipes in this chapter are a little bit more eclectic, dealing with issues that
range from interfacing, to proprietary XML parsers and document formats, to repre-
senting an entire XML document in memory as a Python object. One, in particular,
shows how to auto-detect the Unicode encoding that an XML document uses with-
out parsing the document. Unicode is central to the definition of XML, so it’s impor-
tant to understand Python’s Unicode support if you will be doing any sophisticated
work with XML.

The PyXML extension package supplies a variety of useful tools for working with
XML. PyXML offers a full implementation of the Document Object Model (DOM)—
as opposed to the subset bundled with Python itself—and a validating XML parser
written entirely in Python. The DOM is a standard API that loads an entire XML
document into memory. This can make XML processing easier for complicated
structures in which there are many references from one part of the document to
another, or when you need to correlate (i.e., compare) more than one XML docu-
ment. One recipe shows how to use PyXML’s validating parser to validate and pro-
cess an XML document, and another shows how to remove whitespace-only text
nodes from an XML document’s DOM. You’ll find many other examples in the doc-
umentation of the PyXML package (http://pyxml.sourceforge.net/).

Other advanced tools that you can find in PyXML or, in some cases, in
FourThought’s open source 4Suite package (http://www.4suite.org/) from which
much of PyXML derives, include implementations of a variety of XML-related stan-
dards, such as XPath, XSLT, XLink, XPointer, and RDF. If PyXML is already an
excellent resource for XML power users in Python, 4Suite is even richer and more
powerful.

XML has become so pervasive that, inevitably, you will also find XML-related reci-
pes in other chapters of this book. Recipe 2.26 “Extracting Text from Open-
Office.org Documents” strips XML markup in a very rough and ready way. Recipe
1.23 “Encoding Unicode Data for XML and HTML” shows how to insert XML char-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.1 Checking XML Well-Formedness | 465

acter references while encoding Unicode text. Recipe 10.17 “Gathering Detailed Sys-
tem Information on Mac OS X,” parses a Mac OS X pinfo-format XML stream to get
detailed system information. Recipe 11.10 “Using IDLE’s Tree Widget in Tkinter”
uses Tkinter to display a XML DOM as a GUI Tree widget. Recipe 14.11 “Generat-
ing OPML Files” deals with two XML file formats related to RSS* feeds, fetching and
parsing a FOAF†-format input to produce an OPML‡-format result—quite a typical
XML-related task in today’s programming, and a good general example of how
Python can help you with such tasks.

For more information on using Python and XML together, see Python and XML by
Christopher A. Jones and Fred L. Drake, Jr. (O’Reilly).

12.1 Checking XML Well-Formedness
Credit: Paul Prescod, Farhad Fouladi

Problem
You need to check whether an XML document is well formed (not whether it con-
forms to a given DTD or schema), and you need to do this check quickly.

Solution
SAX (presumably using a fast parser such as Expat underneath) offers a fast, simple
way to perform this task. Here is a script to check well-formedness on every file you
mention on the script’s command line:

from xml.sax.handler import ContentHandler
from xml.sax import make_parser
from glob import glob
import sys
def parsefile(filename):
 parser = make_parser()

parser.setContentHandler(ContentHandler())
 parser.parse(filename)
for arg in sys.argv[1:]:
 for filename in glob(arg):
 try:
 parsefile(filename)
 print "%s is well-formed" % filename
 except Exception, e:
 print "%s is NOT well-formed! %s" % (filename, e)

* RSS (Really Simple Syndication)

† FOAF (Friend of a Friend)

‡ OPML (Outline Processor Markup Language)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 12: Processing XML

Discussion
A text is a well-formed XML document if it adheres to all the basic syntax rules for
XML documents. In other words, it has a correct XML declaration and a single root
element, all tags are properly nested, tag attributes are quoted, and so on.

This recipe uses the SAX API with a dummy ContentHandler that does nothing. Gen-
erally, when we parse an XML document with SAX, we use a ContentHandler

instance to process the document’s contents. But in this case, we only want to know
whether the document meets the most fundamental syntax constraints of XML;
therefore, we need not do any processing, and the do-nothing handler suffices.

The parsefile function parses the whole document and throws an exception if an
error is found. The recipe’s main code catches any such exception and prints it out
like this:

$ python wellformed.py test.xml
test.xml is NOT well-formed! test.xml:1002:2: mismatched tag

This means that character 2 on line 1,002 has a mismatched tag.

This recipe does not check adherence to a DTD or schema, which is a separate pro-
cedure called validation. The performance of the script should be quite good, pre-
cisely because it focuses on performing a minimal irreducible core task. However,
sometimes you need to squeeze out the last drop of performance because you’re
checking the well-formedness of truly huge files. If you know for sure that you do
have Expat, specifically, installed on your system, you may alternatively choose to
use Expat directly instead of SAX. To try this approach, you can change function
parsefile to the following code:

import xml.parsers.expat
def parsefile(file):
 parser = xml.parsers.expat.ParserCreate()
 parser.ParseFile(open(file, "r"))

Don’t expect all that much of an improvement in performance when using Expat
directly instead of SAX. However, you might gain a little bit.

See Also
Recipe 12.2 “Counting Tags in a Document” and recipe 12.3 “Extracting Text from
an XML Document,” for other uses of SAX; the PyXML package (http://
pyxml.sourceforge.net/) includes the pure-Python validating parser xmlproc, which
checks the conformance of XML documents to specific DTDs; the PyRXP package
from ReportLab is a wrapper around the fast validating parser RXP (http://
www.reportlab.com/xml/pyrxp.html), which is available under the GPL license.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.2 Counting Tags in a Document | 467

12.2 Counting Tags in a Document
Credit: Paul Prescod

Problem
You want to get a sense of how often particular elements occur in an XML docu-
ment, and the relevant counts must be extracted rapidly.

Solution
You can subclass SAX’s ContentHandler to make your own specialized classes for any
kind of task, including the collection of such statistics:

from xml.sax.handler import ContentHandler
import xml.sax
class countHandler(ContentHandler):
 def __init__(self):
 self.tags={ }
 def startElement(self, name, attr):
 self.tags[name] = 1 + self.tags.get(name, 0)
parser = xml.sax.make_parser()
handler = countHandler()
parser.setContentHandler(handler)
parser.parse("test.xml")
tags = handler.tags.keys()
tags.sort()
for tag in tags:
 print tag, handler.tags[tag]

Discussion
When I start working with a new XML content set, I like to get a sense of which ele-
ments are in it and how often they occur. For this purpose, I use several small vari-
ants of this recipe. I could also collect attributes just as easily, as you can see, since
attributes are also passed to the startElement method that I’m overriding. If you add
a stack, you can also keep track of which elements occur within other elements (for
this, of course, you also have to override the endElement method so you can pop the
stack).

This recipe also works well as a simple example of a SAX application, usable as the
basis for any SAX application. Alternatives to SAX include pulldom and minidom. For
any simple processing (including this example), these alternatives would be overkill,
particularly if the document you are processing is very large. DOM approaches are
generally justified only when you need to perform complicated editing and alter-
ation on an XML document, when the document itself is made complicated by refer-
ences that go back and forth inside it, or when you need to correlate (i.e., compare)
multiple documents.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 12: Processing XML

ContentHandler subclasses offer many other options, and the online Python docu-
mentation does a pretty good job of explaining them. This recipe’s countHandler

class overrides ContentHandler’s startElement method, which the parser calls at the
start of each element, passing as arguments the element’s tag name as a Unicode
string and the collection of attributes. Our override of this method counts the num-
ber of times each tag name occurs. In the end, we extract the dictionary used for
counting and emit it (in alphabetical order, which we easily obtain by sorting the
keys).

See Also
Recipe 12.3 “Extracting Text from an XML Document” for other uses of SAX.

12.3 Extracting Text from an XML Document
Credit: Paul Prescod

Problem
You need to extract only the text from an XML document, not the tags.

Solution
Once again, subclassing SAX’s ContentHandler makes this task quite easy:

from xml.sax.handler import ContentHandler
import xml.sax
import sys
class textHandler(ContentHandler):
 def characters(self, ch):

sys.stdout.write(ch.encode("Latin-1"))
parser = xml.sax.make_parser()
handler = textHandler()
parser.setContentHandler(handler)
parser.parse("test.xml")

Discussion
Sometimes you want to get rid of XML tags—for example, to re-key a document or
to spell-check it. This recipe performs this task and works with any well-formed
XML document. It is quite efficient.

In this recipe’s textHandler class, we subclass ContentHander’s characters method,
which the parser calls for each string of text in the XML document (excluding tags,
XML comments, and processing instructions), passing as the only argument the
piece of text as a Unicode string. We have to encode this Unicode before we can emit
it to standard output. (See recipe 1.22 “Printing Unicode Characters to Standard
Output” for more information about emitting Unicode to standard output.) In this
recipe, we’re using the Latin-1 (also known as ISO-8859-1) encoding, which covers
all western European alphabets and is supported by many popular output devices

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.4 Autodetecting XML Encoding | 469

(e.g., printers and terminal-emulation windows). However, you should use whatever
encoding is most appropriate for the documents you’re handling, as long, of course,
as that encoding is supported by the devices you need to use. The configuration of
your devices may depend on your operating system’s concepts of locale and code
page. Unfortunately, these issues vary too much between operating systems for me to
go into further detail.

A simple alternative, if you know that handling Unicode is not going to be a prob-
lem, is to use sgmllib. It’s not quite as fast but somewhat more robust against XML
of dubious well-formedness:

from sgmllib import SGMLParser
class XMLJustText(SGMLParser):
 def handle_data(self, data):
 print data
XMLJustText().feed(open('text.xml').read())

An even simpler and rougher way to extract text from an XML document is shown in
recipe 2.26 “Extracting Text from OpenOffice.org Documents.”

See Also
Recipe 12.1 “Checking XML Well-Formedness” and recipe 12.2 “Counting Tags in a
Document” for other uses of SAX.

12.4 Autodetecting XML Encoding
Credit: Paul Prescod

Problem
You have XML documents that may use a large variety of Unicode encodings, and
you need to find out which encoding each document is using.

Solution
This task is one that we need to code ourselves, rather than getting an existing pack-
age to perform it, if we want complete generality:

import codecs, encodings
""" Caller will hand this library a buffer string, and ask us to convert
 the buffer, or autodetect what codec the buffer probably uses. """
'None' stands for a potentially variable byte ("##" in the XML spec...)
autodetect_dict={ # bytepattern : ("name",
 (0x00, 0x00, 0xFE, 0xFF) : ("ucs4_be"),
 (0xFF, 0xFE, 0x00, 0x00) : ("ucs4_le"),
 (0xFE, 0xFF, None, None) : ("utf_16_be"),
 (0xFF, 0xFE, None, None) : ("utf_16_le"),
 (0x00, 0x3C, 0x00, 0x3F) : ("utf_16_be"),
 (0x3C, 0x00, 0x3F, 0x00) : ("utf_16_le"),
 (0x3C, 0x3F, 0x78, 0x6D) : ("utf_8"),
 (0x4C, 0x6F, 0xA7, 0x94) : ("EBCDIC"),
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 12: Processing XML

def autoDetectXMLEncoding(buffer):
 """ buffer -> encoding_name
 The buffer string should be at least four bytes long.
 Returns None if encoding cannot be detected.
 Note that encoding_name might not have an installed
 decoder (e.g., EBCDIC)
 """
 # A more efficient implementation would not decode the whole
 # buffer at once, but then we'd have to decode a character at
 # a time looking for the quote character, and that's a pain
 encoding = "utf_8" # According to the XML spec, this is the default
 # This code successively tries to refine the default:
 # Whenever it fails to refine, it falls back to
 # the last place encoding was set

bytes = byte1, byte2, byte3, byte4 = map(ord, buffer[0:4])
enc_info = autodetect_dict.get(bytes, None)

 if not enc_info: # Try autodetection again, removing potentially
 # variable bytes
 bytes = byte1, byte2, None, None
 enc_info = autodetect_dict.get(bytes)
 if enc_info:
 encoding = enc_info # We have a guess...these are
 # the new defaults
 # Try to find a more precise encoding using XML declaration
 secret_decoder_ring = codecs.lookup(encoding)[1]
 decoded, length = secret_decoder_ring(buffer)
 first_line = decoded.split("\n", 1)[0]
 if first_line and first_line.startswith(u"<?xml"):
 encoding_pos = first_line.find(u"encoding")
 if encoding_pos!=-1:
 # Look for double quotes
 quote_pos = first_line.find('"', encoding_pos)
 if quote_pos==-1: # Look for single quote
 quote_pos = first_line.find("'", encoding_pos)
 if quote_pos>-1:
 quote_char = first_line[quote_pos]
 rest = first_line[quote_pos+1:]
 encoding = rest[:rest.find(quote_char)]
 return encoding

Discussion
The XML specification describes the outline of an algorithm for detecting the Uni-
code encoding that an XML document uses. This recipe implements that algorithm
and helps your XML-processing programs determine which encoding is being used
by a specific document.

The default encoding (unless we can determine another one specifically) must be
UTF-8, as it is part of the specifications that define XML. Certain byte patterns in the
first four, or sometimes even just the first two, bytes of the text can identify a dif-
ferent encoding. For example, if the text starts with the two bytes 0xFF, 0xFE we can
be certain that these bytes are a byte-order mark that identifies the encoding type
as little-endian (low byte before high byte in each character) and the encoding

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.5 Converting an XML Document into a Tree of Python Objects | 471

itself as UTF-16 (or the 32-bits-per-character UCS-4, if the next two bytes in the text
are 0, 0).

If we get as far as this, we must also examine the first line of the text. For this pur-
pose, we decode the text from a bytestring into Unicode, with the encoding deter-
mined so far and detect the first line-end '\n' character. If the first line begins with
u'<?xml', it’s an XML declaration and may explicitly specify an encoding by using
the keyword encoding as an attribute. The nested if statements in the recipe check
for that case, and, if they find an encoding thus specified, the recipe returns the
encoding thus found as the encoding the recipe has determined. This step is abso-
lutely crucial, since any text starting with the single-byte ASCII-like representation of
the XML declaration, <?xml, would be otherwise erroneously identified as encoded in
UTF-8, while its explicit encoding attribute may specify it as being, for example, one
of the ISO-8859 standard encodings.

This recipe makes the assumption that, as the XML specs require, the XML declara-
tion, if any, is terminated by an end-of-line character. If you need to deal with
almost-XML documents that are malformed in this very specific way (i.e., an incor-
rect XML declaration that is not terminated by an end-of-line character), you may
need to apply some heuristic adjustments, for example, through regular expressions.
However, it’s impossible to offer precise suggestions, since malformedness may come
in such a wide variety of errant forms.

This code detects a variety of encodings, including some that are not yet supported
by Python’s Unicode decoders. So, the fact that you can decipher the encoding does
not guarantee that you can then decipher the document itself!

See Also
Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony
Graham (Hungry Minds, Inc.)—details are available at http://www.menteith.com/
unicode/primer/; Library Reference and Python in a Nutshell document the built-in
str and unicode types, and modules unidata and codecs; recipe 1.21 “Converting
Between Unicode and Plain Strings” and recipe 1.22 “Printing Unicode Characters to
Standard Output.”

12.5 Converting an XML Document into a Tree
of Python Objects

Credit: John Bair, Christoph Dietze

Problem
You want to load an XML document into memory, but you don’t like the compli-
cated access procedures of DOM. You’d prefer something more Pythonic—specifi-
cally, you’d like to map the document into a tree of Python objects.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 12: Processing XML

Solution
To build our tree of objects, we can directly wrap the fast expat parser:

from xml.parsers import expat
class Element(object):
 ''' A parsed XML element '''
 def __init__(self, name, attributes):
 # Record tagname and attributes dictionary
 self.name = name
 self.attributes = attributes
 # Initialize the element's cdata and children to empty
 self.cdata = ''
 self.children = []
 def addChild(self, element):
 self.children.append(element)
 def getAttribute(self, key):
 return self.attributes.get(key)
 def getData(self):
 return self.cdata
 def getElements(self, name=''):
 if name:
 return [c for c in self.children if c.name == name]
 else:
 return list(self.children)
class Xml2Obj(object):
 ''' XML to Object converter '''
 def __init__(self):
 self.root = None
 self.nodeStack = []
 def StartElement(self, name, attributes):
 'Expat start element event handler'
 # Instantiate an Element object
 element = Element(name.encode(), attributes)
 # Push element onto the stack and make it a child of parent
 if self.nodeStack:
 parent = self.nodeStack[-1]
 parent.addChild(element)
 else:
 self.root = element
 self.nodeStack.append(element)
 def EndElement(self, name):
 'Expat end element event handler'
 self.nodeStack.pop()
 def CharacterData(self, data):
 'Expat character data event handler'
 if data.strip():
 data = data.encode()
 element = self.nodeStack[-1]
 element.cdata += data
 def Parse(self, filename):
 # Create an Expat parser
 Parser = expat.ParserCreate()
 # Set the Expat event handlers to our methods

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.5 Converting an XML Document into a Tree of Python Objects | 473

 Parser.StartElementHandler = self.StartElement
 Parser.EndElementHandler = self.EndElement
 Parser.CharacterDataHandler = self.CharacterData
 # Parse the XML File
 ParserStatus = Parser.Parse(open(filename).read(), 1)
 return self.root
parser = Xml2Obj()
root_element = parser.Parse('sample.xml')

Discussion
I saw Christoph Dietze’s recipe (http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/116539) about turning the structure of an XML document into a simple com-
bination of dictionaries and lists and thought it was a really good idea. This recipe is
a variation on that idea, with several differences.

For maximum speed, the recipe uses the low-level expat parser directly. It would get
no real added value from the richer SAX interface, much less from the slow and
memory-hungry DOM approach. Building the parent-children connections is not
hard even with an event-driven interface, as this recipe shows by using a simple stack
for the purpose.

The main difference with respect to Dietze’s original idea is that this recipe loads the
XML document into a tree of Python objects (rather than a combination of dictionar-
ies and lists), one per node, with nicely named attributes allowing access to each
node’s characteristics—tagname, attributes (as a Python dictionary), character data
(i.e., cdata in XML parlance) and children elements (as a Python list).

The various accessor methods of class Element are, of course, optional. You might
prefer to access the attributes directly. I think they add no complexity and look nicer,
but, obviously, your tastes may differ. This is, after all, just a recipe, so feel free to
alter the mix of seasonings at will!

You can find other similar ideas (e.g., bypass the DOM, build something more
Pythonic as the memory representation of an XML document) in many other excel-
lent and more complete projects, such as PyRXP (http://www.reportlab.org/
pyrxp.html), ElementTree (http://effbot.org/zone/element-index.htm), and XIST (http://
www.livinglogic.de/Python/xist/).

See Also
Library Reference and Python in a Nutshell document the built-in XML support in
the Python Standard Library, and xml.parsers.expat in particular. PyRXP is at http://
www.reportlab.org/pyrxp.html; ElementTree is at http://effbot.org/zone/element-
index.htm; XIST is at http://www.livinglogic.de/Python/xist/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 12: Processing XML

12.6 Removing Whitespace-only Text Nodes
from an XML DOM Node’s Subtree

Credit: Brian Quinlan, David Wilson

Problem
You want to remove, from the DOM representation of an XML document, all the
text nodes within a subtree, which contain only whitespace.

Solution
XML parsers consider several complex conditions when deciding which whitespace-
only text nodes to preserve during DOM construction. Unfortunately, the result is
often not what you want, so it’s helpful to have a function to remove all whitespace-
only text nodes from among a given node’s descendants:

def remove_whilespace_nodes(node):
 """ Removes all of the whitespace-only text decendants of a DOM node. """
 # prepare the list of text nodes to remove (and recurse when needed)
 remove_list = []
 for child in node.childNodes:
 if child.nodeType == dom.Node.TEXT_NODE and not child.data.strip():
 # add this text node to the to-be-removed list
 remove_list.append(child)
 elif child.hasChildNodes():
 # recurse, it's the simplest way to deal with the subtree
 remove_whilespace_nodes(child)
 # perform the removals
 for node in remove_list:
 node.parentNode.removeChild(node)
 node.unlink()

Discussion
This recipe’s code works with any correctly implemented Python XML DOM,
including the xml.dom.minidom that is part of the Python Standard Library and the
more complete DOM implementation that comes with PyXML.

The implementation of function remove_whitespace_node is quite simple but rather
instructive: in the first for loop we build a list of all child nodes to remove, and then
in a second, separate loop we do the removal. This precaution is a good example of a
general rule in Python: do not alter the very container you’re looping on—some-
times you can get away with it, but it is unwise to count on it in the general case. On
the other hand, the function can perfectly well call itself recursively within its first
for loop because such a call does not alter the very list node.childNodes on which the
loop is iterating (it may alter some items in that list, but it does not alter the list
object itself).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.7 Parsing Microsoft Excel’s XML | 475

See Also
Library Reference and Python in a Nutshell document the built-in XML support in
the Python Standard Library.

12.7 Parsing Microsoft Excel’s XML
Credit: Thomas Guettler

Problem
You have Microsoft Excel spreadsheets saved in XML form, and want to parse them
into memory as Python nested lists.

Solution
The XML form of Excel spreadsheets is quite simple: all text is in Cell tags, which
are nested in Row tags nested in Table tags. SAX makes it quite simple to parse this
kind of XML into memory:

import sys
from xml.sax import saxutils, parse
class ExcelHandler(saxutils.DefaultHandler):
 def __init__(self):
 self.chars = []
 self.cells = []
 self.rows = []
 self.tables = []
 def characters(self, content):
 self.chars.append(content)
 def startElement(self, name, atts):
 if name=="Cell":
 self.chars = []
 elif name=="Row":
 self.cells=[]
 elif name=="Table":
 self.rows = []
 def endElement(self, name):
 if name=="Cell":
 self.cells.append(''.join(self.chars))
 elif name=="Row":
 self.rows.append(self.cells)
 elif name=="Table":
 self.tables.append(self.rows)
if __name__ == '__main__':
 excelHandler = ExcelHandler()
 parse(sys.argv[1], excelHandler)
 print excelHandler.tables

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 12: Processing XML

Discussion
The structure of the parser presented in this recipe is pleasingly simple: at each of
three logical nesting levels of data, we collect content into a list. Each time a tag of a
given level begins, we start with an empty list for it; each time the tag ends, we
append the tag’s contents to the list of the next upper level. The net result is that the
top-level list, the one named tables, accumulates all of the spreadsheet’s contents
with the proper structure (a triply nested list). At the lowest level, of course, we join
all the text strings that are reported as being within the same cell into a single cell
content text string, when we accumulate, because the division between the various
strings is just an artefact of the XML parsing process.

For example, consider a tiny spreadsheet with one column and three rows, where the
first two rows each hold the number 2 and the third one holds the number 4

obtained by summing the numbers in the first two rows with an Excel formula. The
relevant snippet of the Excel XML output (XMLSS format, as Microsoft calls it) is
then:

<Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="3"
 x:FullColumns="1" x:FullRows="1">
 <Row>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 </Row>
 <Row>
 <Cell ss:Formula="=SUM(R[-2]C, R[-1]C)">
 <Data ss:Type="Number">4</Data></Cell>
 </Row>
</Table>

and running the script in this recipe over this file emits:

[[[u'2'], [u'2'], [u'4']]]

As you can see, the XMLSS file also contains a lot of supplementary information that
this recipe is not collecting—the attributes hold information about the type of data
(number or string), the formula used for the computation (if any), and so on. If you
need any or all of this supplemental information, it’s not hard to enrich this recipe to
record and use it.

See Also
Library Reference and Python in a Nutshell document the built-in XML support in
the Python Standard Library and SAX in particular.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.8 Validating XML Documents | 477

12.8 Validating XML Documents
Credit: Paul Sholtz, Jeroen Jeroen, Marius Gedminas

Problem
You are handling XML documents and must check the validity with respect to either
internal or external DTDs. You possibly also want to perform application-specific
processing during the validation process.

Solution
You often want to validate an XML document file with respect to a !DOCTYPE process-
ing instruction that the document file contains. On occasion, though, you may want
to force loading of an external DTD from a given file. Moreover, a frequent need is to
also perform application-specific processing during validation. A function with
optional parameters, using modules from the PyXML package, can accommodate all
of these needs:

from xml.parsers.xmlproc import utils, xmlval, xmldtd
def validate_xml_file(xml_filename, app=None, dtd_filename=None):
 # build validating parser object with appropriate error handler
 parser = xmlval.Validator()
 parser.set_error_handler(utils.ErrorPrinter(parser))
 if dtd_filename is not None:
 # DTD file specified, load and set it as the DTD to use
 dtd = xmldtd.load_dtd(dtd_filename)
 parser.val.dtd = parser.dtd = parser.ent = dtd
 if app is not None:
 # Application processing requested, set appliation object
 parser.set_application(app)
 # everything being set correctly, finally perform the parsing
 parser.parse_resource(xml_filename)

If your XML data is in a string s, rather than in a file, instead of the parse.parse_

resource call, you should use the following two statements in a variant of the previ-
ously shown function:

 parser.feed(s)
 parser.close()

Discussion
Documentation on XML parsing in general, and xmlproc in particular, is easy enough
to come by. However, XML is a very large subject, and PyXML is a correspondingly
large package. The package’s documentation is often not entirely complete and up to
date; even if it were, finding out how to perform specific tasks would still take quite a
bit of digging. This recipe shows how to validate documents in a simple way that is
easy to adapt to your specific needs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 12: Processing XML

If you need to perform application-specific processing, as well as validation, you
need to make your own application object (an instance of some subclass of
xmlproc.xmlproc.Application that appropriately overrides some or all of its various
methods, most typically handle_start_tag, handle_end_tag, handle_data, and doc_

end) and pass the application object as the app argument to the validate_xml_file

function.

If you need to handle errors and warnings differently from the emitting of copious
error messages that xmlproc.utils.ErrorPrinter performs, you need to subclass
(either that class or its base xmlproc.xmlapp.ErrorHandler directly) to perform what-
ever tweaking you need. (See the sources of the utils.py module for examples; that
module will usually be at relative path _xmlplus/parsers/xmlproc/utils.py in your
Python library directory, after you have installed the PyXML package.) Then, you
need to alter the call to the method set_error_handler that you see in this recipe’s
validate_xml_file function so that it uses an instance of your own error-handling
class. You might modify the validate_xml_file function to take yet another optional
parameter err=None for the purpose, but this way overgeneralization lies. I’ve found
ErrorHandler’s diagnostics normally cover my applications’ needs, so, in the code
shown in this recipe’s Solution, I have not provided for this specific customization.

See Also
The PyXML web site at http://pyxml.sourceforge.net/.

12.9 Filtering Elements and Attributes
Belonging to a Given Namespace

Credit: A.M. Kuchling

Problem
While parsing an XML document with SAX, you need to filter out all of the ele-
ments and attributes that belong to a particular namespace.

Solution
The SAX filter concept is just what we need here:

from xml import sax
from xml.sax import handler, saxutils, xmlreader
the namespace we want to remove in our filter
RDF_NS = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'
class RDFFilter(saxutils.XMLFilterBase):
 def __init__ (self, *args):
 saxutils.XMLFilterBase.__init__(self, *args)
 # initially, we're not in RDF, and just one stack level is needed
 self.in_rdf_stack = [False]
 def startElementNS(self, (uri, localname), qname, attrs):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.9 Filtering Elements and Attributes Belonging to a Given Namespace | 479

 if uri == RDF_NS or self.in_rdf_stack[-1] == True:
 # skip elements with namespace, if that namespace is RDF or
 # the element is nested in an RDF one -- and grow the stack
 self.in_rdf_stack.append(True)
 return
 # Make a dict of attributes that DON'T belong to the RDF namespace
 keep_attrs = { }
 for key, value in attrs.items():
 uri, localname = key
 if uri != RDF_NS:
 keep_attrs[key] = value
 # prepare the cleaned-up bunch of non-RDF-namespace attributes
 attrs = xmlreader.AttributesNSImpl(keep_attrs, attrs.getQNames())
 # grow the stack by replicating the latest entry
 self.in_rdf_stack.append(self.in_rdf_stack[-1])
 # finally delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.startElementNS(self,
 (uri, localname), qname, attrs)
 def characters(self, content):
 # skip characters that are inside an RDF-namespaced tag being skipped
 if self.in_rdf_stack[-1]:
 return
 # delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.characters(self, content)
 def endElementNS (self, (uri, localname), qname):
 # pop the stack -- nothing else to be done, if we were skipping
 if self.in_rdf_stack.pop() == True:
 return
 # delegate the rest of the operation to our base class
 saxutils.XMLFilterBase.endElementNS(self, (uri, localname), qname)
def filter_rdf(input, output):
 """ filter_rdf(input=some_input_filename, output=some_output_filename)
 Parses the XML input from the input stream, filtering out all
 elements and attributes that are in the RDF namespace.
 """
 output_gen = saxutils.XMLGenerator(output)
 parser = sax.make_parser()
 filter = RDFFilter(parser)
 filter.setFeature(handler.feature_namespaces, True)
 filter.setContentHandler(output_gen)
 filter.setErrorHandler(handler.ErrorHandler())
 filter.parse(input)
if __name__ == '__main__':
 import StringIO, sys
 TEST_RDF = '''<?xml version="1.0"?>
<metadata xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title> This is non-RDF content </title>
 <rdf:RDF>
 <rdf:Description rdf:about="%s">
 <dc:Creator>%s</dc:Creator>
 </rdf:Description>
 </rdf:RDF>
 <element />
</metadata>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 12: Processing XML

'''
 input = StringIO.StringIO(TEST_RDF)
 filter_rdf(input, sys.stdout)

This module, when run as a main script, emits something like:

<?xml version="1.0" encoding="iso-8859-1"?>
<metadata xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <title> This is non-RDF content </title>
 <element></element>
</metadata>

Discussion
My motivation for originally writing this recipe came from processing files of meta-
data, containing RDF mixed with other elements. I wanted to generate a version of
the metadata with the RDF filtered out.

The filter_rdf function does the job, reading XML input from the input stream and
writing it to the output stream. The standard XMLGenerator class in xml.sax.saxutils

is used to produce the output. Function filter_rdf internally uses a filtering class
called RDFFilter, also shown in this recipe’s Solution, pushing that filter on top of
the XML parser to suppress elements and attributes belonging to the RDF_NS
namespace.

Non-RDF elements contained within an RDF element are also removed. To modify
this behavior, change the first line of the startElementNS method to use just if uri =

= RDF_NS as the guard.

This code doesn’t delete the xmlns declaration for the RDF namespace; I’m willing to
live with a little unnecessary but harmless cruft in the output rather than go to huge
trouble to remove it.

See Also
Library Reference and Python in a Nutshell document the built-in XML support in
the Python Standard Library.

12.10 Merging Continuous Text Events
with a SAX Filter

Credit: Uche Ogbuji, James Kew, Peter Cogolo

Problem
A SAX parser can report contiguous text using multiple characters events (meaning,
in practice, multiple calls to the characters method), and this multiplicity of events
for a single text string may give problems to SAX handlers. You want to insert a filter

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.10 Merging Continuous Text Events with a SAX Filter | 481

into the SAX handler chain to ensure that each text node in the document is reported
as a single SAX characters event (meaning, in practice, that it calls character just
once).

Solution
Module xml.sax.saxutils in the standard Python library includes a class
XMLFilterBase that we can subclass to implement any XML filter we may need:

from xml.sax.saxutils import XMLFilterBase
class text_normalize_filter(XMLFilterBase):
 """ SAX filter to ensure that contiguous text nodes are merged into one
 """
 def __init__(self, upstream, downstream):
 XMLFilterBase.__init__(self, upstream)
 self._downstream = downstream
 self._accumulator = []
 def _complete_text_node(self):
 if self._accumulator:
 self._downstream.characters(''.join(self._accumulator))
 self._accumulator = []
 def characters(self, text):
 self._accumulator.append(text)
 def ignorableWhitespace(self, ws):
 self._accumulator.append(text)
def _wrap_complete(method_name):
 def method(self, *a, **k):
 self._complete_text_node()
 getattr(self._downstream, method_name)(*a, **k)
 # 2.4 only: method.__name__ = method_name
 setattr(text_normalize_filter, method_name, method)
for n in '''startElement startElementNS endElement endElementNS
 processingInstruction comment'''.split():
 _wrap_complete(n)
if __name__ == "__main__":
 import sys
 from xml import sax
 from xml.sax.saxutils import XMLGenerator
 parser = sax.make_parser()
 # XMLGenerator is a special predefined SAX handler that merely writes
 # SAX events back into an XML document
 downstream_handler = XMLGenerator()
 # upstream, the parser; downstream, the next handler in the chain
 filter_handler = text_normalize_filter(parser, downstream_handler)
 # The SAX filter base is designed so that the filter takes on much of the
 # interface of the parser itself, including the "parse" method
 filter_handler.parse(sys.argv[1])

Discussion
A SAX parser can report contiguous text using multiple characters events (meaning,
in practice, multiple calls to the characters method of the downstream handler). In

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 12: Processing XML

other words, given an XML document whose content is 'abc', the text could techni-
cally be reported as up to three character events: one for the 'a' character, one for
the 'b', and a third for the 'c'. Such an extreme case of “fragmentation” of a text
string into multiple events is unlikely in real life, but it is not impossible.

A typical reason that might cause a parser to report text nodes a bit at a time would
be buffering of the XML input source. Most low-level parsers use a buffer of a cer-
tain number of characters that are read and parsed at a time. If a text node straddles
such a buffer boundary, many parsers will just wrap up the current text event and
start a new one to send characters from the next buffer. If you don’t account for this
behavior in your SAX handlers, you may run into very obscure and hard-to-repro-
duce bugs. Even if the parser you usually use does combine text nodes for you, you
never know when you may want to run your code in a situation where a different
parser is selected. You’d need to write logic to accommodate the possibility, which
can be rather cumbersome when mixed into typical SAX-style state machine logic.

The class text_normalize_filter presented in this recipe ensures that all text events
are reported to downstream SAX handlers in the contiguous manner that most devel-
opers would expect. In this recipe’s example case, the filter would consolidate the
three characters events into a single one for the entire text node 'abc'.

For more information on SAX filters in general, see my article “Tip:
SAX filters for flexible processing,” http://www-106.ibm.com/
developerworks/xml/library/x-tipsaxflex.html.

Python’s XMLGenerator does not do anything with processing instructions, so, if you
run the main code presented in this recipe on an XML document that uses them,
you’ll have a gap in the output, along with other minor deviations between input and
output. Comments are similar but worse, because XMLFilterBase does not even filter
them; if you do need to get comments, your test_normalize_filter class must multi-
ply inherit from xml.sax.saxlib.LexicalHandler, as well as from
xml.sax.saxutils.XMLFilterBase, and it must override the parse method as follows:

 def parse(self, source):
 # force connection of self as the lexical handler
 self._parent.setProperty(property_lexical_handler, self)
 # Delegate to XMLFilterBase for the rest
 XMLFilterBase.parse(self, source)

This code is hairy enough, using the “internal” attribute self._parent, and the need
to deal properly with XML comments is rare enough, to make this addition some-
what doubtful, which is why it is not part of this recipe’s Solution.

If you need ease of chaining to other filters, you may prefer not to take both
upstream and downstream parameters in __init__. In this case, keep the same signa-
ture as XMLFilterBase.__init__:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.11 Using MSHTML to Parse XML or HTML | 483

 def __init__(self, parent):
 XMLFilterBase.__init__(self, parent)
 self._accumulator = []

and change the _wrap_complete factory function so that the wrapper, rather than call-
ing methods on the downstream handler directly, delegates to the default implemen-
tations in XMLFilterBase, which in turn call out to handlers that have been set on the
filter with such methods as setContentHandler and the like:

def _wrap_complete(method_name):
 def method(self, *a, **k):
 self._complete_text_node()
 getattr(XMLFilterBase, method_name)(self, *a, **k)
 # 2.4 only: method.__name__ = method_name
 setattr(text_normalize_filter, method_name, method)

This is slightly less convenient for the typical simple case, but it pays back this incon-
venience by letting you easily chain filters:

parser = sax.make_parser()
filtered_parser = text_normalise_filter(some_other_filter(parser))

as well as letting you use a filter in contexts that call the parse method on your
behalf:

doc = xml.dom.minidom.parse(input_file, parser=filtered_parser)

See Also
Library Reference and Python in a Nutshell document the built-in XML support in
the Python Standard Library.

12.11 Using MSHTML to Parse XML or HTML
Credit: Bill Bell

Problem
Your Python application, running on Windows, needs to use the Microsoft
MSHTML COM component, which is also the parser that Microsoft Internet
Explorer uses to parse HTML and XML web pages.

Solution
As usual, PyWin32 lets our Python code access COM quite simply:

from win32com.client import Dispatch
html = Dispatch('htmlfile') # the disguise for MSHTML as a COM server
html.writeln("<html><header><title>A title</title>"
 "<meta name='a name' content='page description'></header>"
 "<body>This is some of it. And this is the rest."
 "</body></html>")
print "Title: %s" % (html.title,)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 12: Processing XML

print "Bag of words from body of the page: %s" % (html.body.innerText,)
print "URL associated with the page: %s" % (html.url,)
print "Display of name:content pairs from the metatags: "
metas = html.getElementsByTagName("meta")
for m in xrange(metas.length):
 print "\t%s: %s" % (metas[m].name, metas[m].content,)

Discussion
While Python offers many ways to parse HTML or XML, as long as you’re running
your programs only on Windows, MSHTML is very speedy and simple to use. As the
recipe shows, you can simply use the writeln method of the COM object to feed the
page into MSHTML and then you can use the methods and properties of the compo-
nents to get at all kinds of aspects of the page’s DOM. Of course, you can get the
string of markup and text to feed into MSHTML in any way that suits your applica-
tion, such as by using the Python Standard Library module urllib if you’re getting a
page from some URL.

Since the structure of the enriched DOM that MSHTML makes available is quite rich
and complicated, I suggest you experiment with it in the PythonWin interactive envi-
ronment that comes with PyWin32. The strength of PythonWin for such explor-
atory tasks is that it displays all of the properties and methods made available by
each interface.

See Also
A detailed reference to MSHTML, albeit oriented to Visual Basic and C# users, can
be found at http://www.xaml.net/articles/type.asp?o=MSHTML.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

485

Chapter 13 CHAPTER 13

Network Programming

13.0 Introduction
Credit: Guido van Rossum, creator of Python

Network programming is one of my favorite Python applications. I wrote or started
most of the network modules in the Python Standard Library, including the socket

and select extension modules and most of the protocol client modules (such as
ftplib). I also wrote a popular server framework module, SocketServer, and two web
browsers in Python, the first predating Mosaic. Need I say more?

Python’s roots lie in a distributed operating system, Amoeba, which I helped design
and implement in the late 1980s. Python was originally intended to be the scripting
language for Amoeba, since it turned out that the Unix shell, while ported to
Amoeba, wasn’t very useful for writing Amoeba system administration scripts. Of
course, I designed Python to be platform independent from the start. Once Python
was ported from Amoeba to Unix, I taught myself BSD socket programming by
wrapping the socket primitives in a Python extension module and then experiment-
ing with them using Python; this was one of the first extension modules.

This approach proved to be a great early testimony of Python’s strengths. Writing
socket code in C is tedious: the code necessary to do error checking on every call
quickly overtakes the logic of the program. Quick: in which order should a server call
accept, bind, connect, and listen? This is remarkably difficult to find out if all you
have is a set of Unix manpages. In Python, you don’t have to write separate error-
handling code for each call, making the logic of the code stand out much clearer.
You can also learn about sockets by experimenting in an interactive Python shell,
where misconceptions about the proper order of calls and the argument values that
each call requires are cleared up quickly through Python’s immediate error messages.

Python has come a long way since those first days, and now few applications use
the socket module directly; most use much higher-level modules such as urllib

or smtplib, and third-party extensions such as the Twisted framework, whose
popularity keeps growing. The examples in this chapter are a varied bunch: some

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 13: Network Programming

construct and send complex email messages, while others dwell on lower-level issues
such as tunneling. My favorite is recipe 13.11 “Detecting Inactive Computers,”
which implements PyHeartBeat: it’s useful, it uses the socket module, and it’s simple
enough to be an educational example. I do note, with that mixture of pride and sad-
ness that always accompanies a parent’s observation of children growing up, that,
since the Python Cookbook’s first edition, even PyHeartBeat has acquired an alterna-
tive server implementation based on Twisted!

Nevertheless, my own baby, the socket module itself, is still the foundation of all
network operations in Python. It’s a plain transliteration of the socket APIs—first
introduced in BSD Unix and now widespread on all platforms—into the object-ori-
ented paradigm. You create socket objects by calling the socket.socket factory func-
tion, then you call methods on these objects to perform typical low-level network
operations. You don’t have to worry about allocating and freeing memory for buff-
ers and the like—Python handles that for you automatically. You express IP
addresses as (host, port) pairs, in which host is a string in either dotted-quad
('1.2.3.4') or domain-name ('www.python.org') notation. As you can see, even low-
level modules in Python aren’t as low level as all that.

Despite the various conveniences, the socket module still exposes the actual underly-
ing functionality of your operating system’s network sockets. If you’re at all familiar
with sockets, you’ll quickly get the hang of Python’s socket module, using Python’s
own Library Reference. You’ll then be able to play with sockets interactively in
Python to become a socket expert, if that is what you want. The classic, highly rec-
ommended work on this subject is W. Richard Stevens, UNIX Network Program-
ming, Volume 1: Networking APIs - Sockets and XTI, 2d ed. (Prentice-Hall). For many
practical uses, however, higher-level modules will serve you better.

The Internet uses a sometimes dazzling variety of protocols and formats, and the
Python Standard Library supports many of them. In the Python Standard Library,
you will find dozens of modules dedicated to supporting specific Internet protocols
(such as smtplib to support the SMTP protocol to send mail and nntplib to support
the Network News Transfer Protocol (NNTP) to send and receive Network News).
In addition, you’ll find about as many modules that support specific Internet for-
mats (such as htmllib to parse HTML data, the email package to parse and compose
various formats related to email—including attachments and encoding).

I cannot even come close to doing justice to the powerful array of tools mentioned in
this introduction, nor will you find all of these modules and packages used in this
chapter, nor in this book, nor in most programming shops. You may never need to
write any program that deals with Network News, for example; if that is the case,
you don’t need to study nntplib. But it is still reassuring to know it’s there (part of
the “batteries included” approach of the Python Standard Library).

Two higher-level modules that stand out from the crowd, however, are urllib and
urllib2. Each of these two modules can deal with several protocols through the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.1 Passing Messages with Socket Datagrams | 487

magic of URLs—those now-familiar strings, such as http://www.python.org/
index.html, that identify a protocol (such as http), a host and port (such as
www.python.org, port 80 being the default for the HTTP protocol), and a specific
resource at that address (such as /index.html). urllib is very simple to use, but
urllib2 is more powerful and extensible. HTTP is the most popular protocol for
URLs, but these modules also support several others, such as FTP. In many cases,
you’ll be able to use these modules to write typical client-side scripts that interact
with any of the supported protocols much quicker and with less effort than it might
take with the various protocol-specific modules.

To illustrate, I’d like to conclude with a cookbook example of my own. It’s similar to
recipe 13.2 “Grabbing a Document from the Web,” but, rather than a program frag-
ment, it’s a little script. I call it wget.py because it does everything for which I’ve ever
needed wget. (In fact, I originally wrote this script on a system where wget wasn’t
installed but Python was; writing wget.py was a more effective use of my time than
downloading and installing the real thing.)

import sys, urllib
def reporthook(*a): print a
for url in sys.argv[1:]:
 i = url.rfind('/')
 file = url[i+1:]
 print url, "->", file
 urllib.urlretrieve(url, file, reporthook)

Pass this script one or more URLs as command-line arguments; the script retrieves
them into local files whose names match the last components of the URLs. The
script also prints progress information of the form:

(block number, block size, total size)

Obviously, it’s easy to improve on this script; but it’s only seven lines, it’s readable,
and it works—and that’s what’s so cool about Python.

Another cool thing about Python is that you can incrementally improve a program
like this, and after it’s grown by two or three orders of magnitude, it’s still readable,
and it still works! To see what this particular example might evolve into, check out
Tools/webchecker/websucker.py in the Python source distribution. Enjoy!

13.1 Passing Messages with Socket Datagrams
Credit: Jeff Bauer

Problem
You want to communicate small messages between machines on a network in a
lightweight fashion, without needing absolute assurance of reliability.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 13: Network Programming

Solution
This task is just what the UDP protocol is for, and Python makes it easy for you to
access UDP via datagram sockets. You can write a UDP server script (server.py) as
follows:

import socket
port = 8081
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
Accept UDP datagrams, on the given port, from any sender
s.bind(("", port))
print "waiting on port:", port
while True:
 # Receive up to 1,024 bytes in a datagram
 data, addr = s.recvfrom(1024)
 print "Received:", data, "from", addr

You can write a corresponding UDP client script (client.py) as follows:

import socket
port = 8081
host = "localhost"
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.sendto("Holy Guido! It's working.", (host, port))

Discussion
Sending short text messages with socket datagrams is simple to implement and pro-
vides a lightweight message-passing idiom. Socket datagrams should not be used,
however, when reliable delivery of data must be guaranteed. If the server isn’t avail-
able, your message is lost. However, in many situations, you won’t care whether the
message gets lost, or, at least, you do not want to abort a program just because a
message can’t be delivered.

Note that the sender of a UDP datagram (the “client” in this example) does not bind
the socket before calling the sendto method. On the other hand, to receive UDP data-
grams, the socket does have to be bound before calling the recvfrom method.

Don’t use this recipe’s simple code to send large datagram messages, especially under
Windows, which may not respect the buffer limit. To send larger messages, you may
want to do something like this:

BUFSIZE = 1024
while msg:
 bytes_sent = s.sendto(msg[:BUFSIZE], (host, port))
 msg = msg[bytes_sent:]

The sendto method returns the number of bytes it has actually managed to send, so
each time, you retry from the point where you left off, while ensuring that no more
than BUFSIZE octets are sent in each datagram.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.2 Grabbing a Document from the Web | 489

Note that with datagrams (UDP) you have no guarantee that all (or any) of the pieces
that you send as separate datagrams arrive to the destination, nor that the pieces that
do arrive are in the same order in which they were sent. If you need to worry about
any of these reliability issues, you may be better off with a TCP connection, which
gives you all of these assurances and handles many delicate behind-the-scenes
aspects nicely on your behalf. Still, I often use socket datagrams for debugging, espe-
cially (but not exclusively) where an application spans more than one machine on
the same, reliable local area network. The Python Standard Library’s logging mod-
ule also supports optional use of UDP for its logging output.

See Also
Recipe 13.11 “Detecting Inactive Computers” for a typical, useful application of
UDP datagrams in network operations; documentation for the standard library mod-
ules socket and logging in the Library Reference and Python in a Nutshell.

13.2 Grabbing a Document from the Web
Credit: Gisle Aas, Magnus Bodin

Problem
You need to grab a document from a URL on the Web.

Solution
urllib.urlopen returns a file-like object, and you can call the read method on that
object to get all of its contents:

from urllib import urlopen
doc = urlopen("http://www.python.org").read()
print doc

Discussion
Once you obtain a file-like object from urlopen, you can read it all at once into one
big string by calling its read method, as I do in this recipe. Alternatively, you can read
the object as a list of lines by calling its readlines method, or, for special purposes,
just get one line at a time by looping over the object in a for loop. In addition to
these file-like operations, the object that urlopen returns offers a few other useful fea-
tures. For example, the following snippet gives you the headers of the document:

doc = urlopen("http://www.python.org")
print doc.info()

such as the Content-Type header (text/html in this case) that defines the MIME type
of the document. doc.info returns a mimetools.Message instance, so you can access it
in various ways besides printing it or otherwise transforming it into a string. For
example, doc.info().getheader(‘Content-Type’) returns the 'text/html' string. The

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 13: Network Programming

maintype attribute of the mimetools.Message object is the 'text' string, subtype is the
'html' string, and type is also the 'text/html' string. If you need to perform sophisti-
cated analysis and processing, all the tools you need are right there. At the same
time, if your needs are simpler, you can meet them in very simple ways, as this rec-
ipe shows.

If what you need to do with the document you grab from the Web is specifically to
save it to a local file, urllib.urlretrieve is just what you need, as the “Introduc-
tion” to this chapter describes.

urllib implicitly supports the use of proxies (as long as the proxies do not require
authentication: the current implementation of urllib does not support authentica-
tion-requiring proxies). Just set environment variable HTTP_PROXY to a URL, such as
'http://proxy.domain.com:8080', to use the proxy at that URL. If the environment
variable HTTP_PROXY is not set, urllib may also look for the information in other plat-
form-specific locations, such as the Windows registry if you’re running under
Windows.

If you have more advanced needs, such as using proxies that require authentication,
you may use the more sophisticated urllib2 module of the Python Standard Library,
rather than simple module urllib. At http://pydoc.org/2.3/urllib2.html, you can find
an example of how to use urllib2 for the specific task of accessing the Internet
through a proxy that does require authentication.

See Also
Documentation for the standard library modules urllib, urllib2, and mimetools in
the Library Reference and Python in a Nutshell.

13.3 Filtering a List of FTP Sites
Credit: Mark Nenadov

Problem
Several of the FTP sites on your list of sites could be down at any time. You want to
filter that list and obtain the list of those sites that are currently up.

Solution
Clearly, we first need a function to check whether one particular site is up:

import socket, ftplib
def isFTPSiteUp(site):
 try:
 ftplib.FTP(site).quit()
 except socket.error:
 return False
 else:
 return True

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.4 Getting Time from a Server via the SNTP Protocol | 491

Now, a simple list comprehension can perform the recipe’s task, but we may as well
wrap that list comprehension inside another function:

def filterFTPsites(sites):
 return [site for site in sites if isFTPSiteUp(site)]

Alternatively, filter(isFTPSiteUp, sites) returns exactly the same resulting list as
the list comprehension.

Discussion
Lists of FTP sites are sometimes difficult to maintain, since sites may be closed or
temporarily down for all sorts of reasons. The code in this recipe is simple and suit-
able, for example, for use inside a small interactive program that must let the user
choose among FTP sites—we may as well not even present for choice those sites we
know are down! If you run this code regularly a few times a day and append the
results to a file, the results may also be a basis for long-term maintenance of a list of
FTP sites. Any site that has been down for more than a certain number of days
should probably be moved away from the main list and into a list of sites that may
well have croaked.

Very similar ideas could be used to filter lists of sites that serve protocols other than
FTP, by using, instead of standard Python library module ftplib, other such mod-
ules, such as nntplib for the NNTP protocol, httplib for the Hypertext Transport
Protocol (HTTP), and so on.

When you’re checking many FTP sites within one program run, it could be much
faster to use multiple threads to check on multiple sites at once (so that the delays
while waiting for the various sites to respond can overlap), or else use an asynchro-
nous approach. The simple approach presented in this recipe is easiest to program
and to understand, but for most real-life networking programs, you do want to
enhance performance by using either multithreading or asynchronous approaches, as
other recipes in this chapter demonstrate.

See Also
Documentation for the standard library modules socket, ftplib, nntplib, and httplib,
and built-in function filter, in the Library Reference and Python in a Nutshell.

13.4 Getting Time from a Server
via the SNTP Protocol

Credit: Simon Foster

Problem
You need to contact an SNTP (Simplified Network Time Protocol) server (which
respects RFC 2030) to obtain the time of day as returned by that server.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 13: Network Programming

Solution
SNTP is quite simple to implement, for example in a small script:

import socket, struct, sys, time
TIME1970 = 2208988800L # Thanks to F.Lundh
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = '\x1b' + 47 * '\0'
client.sendto(data, (sys.argv[1], 123))
data, address = client.recvfrom(1024)
if data:
 print 'Response received from:', address
 t = struct.unpack('!12I', data)[10]
 t -= TIME1970
 print '\tTime=%s' % time.ctime(t)

Discussion
An SNTP exchange begins with a client sending a 48-byte UDP datagram which
starts with byte '\x1b'. The server answers with a 48-byte UDP datagram made up of
twelve network-order longwords (4 bytes each). We can easily unpack the server’s
returned datagram into a tuple of ints, by using standard Python library module
struct’s unpack function. Then, for simplicity, we look only at the eleventh of those
twelve longwords. That integer gives the time in seconds—but it measures time from
an epoch that’s different from the 1970-based one normally used in Python. The dif-
ference in epochs is easily fixed by subtracting the magic number (kindly supplied by
F. Lundh) that is named TIME1970 in the recipe. After the subtraction, we have a time
in seconds from the epoch that complies with Python’s standard time module, and
we can handle it with the functions in module time. In this recipe, we just display it
on standard output as formatted by function time.ctime.

See Also
Documentation for the standard library modules socket, struct and time in the
Library Reference and Python in a Nutshell; the SNTP protocol is defined in RFC
2030 (http://www.ietf.org/rfc/rfc2030.txt), and the richer NTP protocol is defined in
RFC 1305 (http://www.ietf.org/rfc/rfc1305.txt); Chapter 3 for general issues dealing
with time in Python.

13.5 Sending HTML Mail
Credit: Art Gillespie

Problem
You need to send HTML mail and accompany it with a plain text version of the mes-
sage’s contents, so that the email message is also readable by MUAs that are not
HTML-capable.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.5 Sending HTML Mail | 493

Solution
Although the modern Python way to perform any mail manipulation is with the stan-
dard Python library email package, the functionality we need for this recipe is also
supplied by the MimeWriter and mimetools modules (which are also in the Python
Standard Library). We can easily code a function that just accesses and uses that
functionality:

def createhtmlmail(subject, html, text=None):
 " Create a mime-message that will render as HTML or text, as appropriate"
 import MimeWriter, mimetools, cStringIO
 if text is None:
 # Produce an approximate textual rendering of the HTML string,
 # unless you have been given a better version as an argument
 import htmllib, formatter
 textout = cStringIO.StringIO()
 formtext = formatter.AbstractFormatter(formatter.DumbWriter(textout))
 parser = htmllib.HTMLParser(formtext)
 parser.feed(html)
 parser.close()
 text = textout.getvalue()
 del textout, formtext, parser
 out = cStringIO.StringIO() # output buffer for our message
 htmlin = cStringIO.StringIO(html) # input buffer for the HTML
 txtin = cStringIO.StringIO(text) # input buffer for the plain text
 writer = MimeWriter.MimeWriter(out)
 # Set up some basic headers. Place subject here because smtplib.sendmail
 # expects it to be in the message, as relevant RFCs prescribe.
 writer.addheader("Subject", subject)
 writer.addheader("MIME-Version", "1.0")
 # Start the multipart section of the message. Multipart/alternative seems
 # to work better on some MUAs than multipart/mixed.
 writer.startmultipartbody("alternative")
 writer.flushheaders()
 # the plain-text section: just copied through, assuming iso-8859-1
 subpart = writer.nextpart()
 pout = subpart.startbody("text/plain", [("charset", 'iso-8859-1')])
 pout.write(txtin.read())
 txtin.close()
 # the HTML subpart of the message: quoted-printable, just in case
 subpart = writer.nextpart()
 subpart.addheader("Content-Transfer-Encoding", "quoted-printable")
 pout = subpart.startbody("text/html", [("charset", 'us-ascii')])
 mimetools.encode(htmlin, pout, 'quoted-printable')
 htmlin.close()
 # You're done; close your writer and return the message as a string
 writer.lastpart()
 msg = out.getvalue()
 out.close()
 return msg

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 13: Network Programming

Discussion
This recipe’s module is completed in the usual style with a few lines to ensure that,
when run as a script, it runs a self-test by composing and sending a sample HTML
mail:

if __name__=="__main__":
 import smtplib
 f = open("newsletter.html", 'r')
 html = f.read()
 f.close()
 try:
 f = open("newsletter.txt", 'r')
 text = f.read()
 except IOError:
 text = None
 subject = "Today's Newsletter!"
 message = createhtmlmail(subject, html, text)
 server = smtplib.SMTP("localhost")
 server.sendmail('agillesp@i-noSPAMSUCKS.com',
 'agillesp@i-noSPAMSUCKS.com', message)
 server.quit()

Sending HTML mail is a popular concept, and (as long as you avoid sending it to
newsgroups and open mailing lists) there’s no reason your Python scripts shouldn’t
do it. When you do send HTML mail, never forget to embed a text-only version of
your message along with the HTML version. Lots of folks still prefer character-mode
mail readers (technically known as MUAs), and it makes no sense to alienate those
users by sending mail that they can’t conveniently read. This recipe shows how easy
Python makes the task of sending an email in both HTML and text forms.

Ideally, your input will be a properly formatted text version of the message, as well as
the HTML version. But, if you don’t have such nice textual input, you can still pre-
pare a text version on the fly starting from the HTML version; one way to prepare
such text is shown in the recipe. Remember that htmllib has some limitations, so
you may want to use alternative approaches, such as saving the HTML string to disk
and then using:

text = os.popen('lynx -dump %s' % tempfile).read()

or whatever works best for you. Alternatively, if all you have as input is plain text
(following some specific conventions, such as empty lines to mark paragraphs and
underlines for emphasis), you can parse the text and throw together some HTML
markup on the fly.

The emails generated by this code have been successfully read on Outlook 2000,
Eudora 4.2, Hotmail, and Netscape Mail. It’s likely that they will work in other
HTML-capable MUAs as well. Mutt has been used to test the acceptance of mes-
sages generated by this recipe in text-only MUAs. Again, other such MUAs can be
expected to work just as acceptably.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.6 Bundling Files in a MIME Message | 495

See Also
Recipe 13.6 “Bundling Files in a MIME Message” shows how the email package in
the Python Standard Library can also be used to compose a MIME multipart mes-
sage; documentation in the Library Reference and Python in a Nutshell about the
standard library package email, as well as modules mimetools, MimeWriter, htmllib,
formatter, cStringIO, and smtplib; Henry Minsky’s article about MIME (http://
www.arsdigita.com/asj/mime/) for information on various issues related to sending
HTML mail.

13.6 Bundling Files in a MIME Message
Credit: Matthew Dixon Cowles, Hans Fangohr, John Pywtorak

Problem
You want to create a multipart MIME (Multipurpose Internet Mail Extensions) mes-
sage that includes all files in the current directory.

Solution
If you often deal with composing or parsing mail messages, or mail-like messages
such as Usenet news posts, the Python Standard Library email package gives you
very powerful tools to work with. Here is a module that uses email to solve the task
posed in the “Problem”:

#!/usr/bin/env python
import base64, quopri
import mimetypes, email.Generator, email.Message
import cStringIO, os
sample addresses
toAddr = "example@example.com"
fromAddr = "example@example.com"
outputFile = "dirContentsMail"
def main():
 mainMsg = email.Message.Message()
 mainMsg["To"] = toAddr
 mainMsg["From"] = fromAddr
 mainMsg["Subject"] = "Directory contents"
 mainMsg["Mime-version"] = "1.0"
 mainMsg["Content-type"] = "Multipart/mixed"
 mainMsg.preamble = "Mime message\n"
 mainMsg.epilogue = "" # to ensure that message ends with newline
 # Get names of plain files (not subdirectories or special files)
 fileNames = [f for f in os.listdir(os.curdir) if os.path.isfile(f)]
 for fileName in fileNames:
 contentType, ignored = mimetypes.guess_type(fileName)
 if contentType is None: # If no guess, use generic opaque type
 contentType = "application/octet-stream"
 contentsEncoded = cStringIO.StringIO()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 13: Network Programming

 f = open(fileName, "rb")
 mainType = contentType[:contentType.find("/")]
 if mainType=="text":
 cte = "quoted-printable"
 quopri.encode(f, contentsEncoded, 1) # 1 to also encode tabs
 else:
 cte = "base64"
 base64.encode(f, contentsEncoded)
 f.close()
 subMsg = email.Message.Message()
 subMsg.add_header("Content-type", contentType, name=fileName)
 subMsg.add_header("Content-transfer-encoding", cte)
 subMsg.set_payload(contentsEncoded.getvalue())
 contentsEncoded.close()
 mainMsg.attach(subMsg)
 f = open(outputFile, "wb")
 g = email.Generator.Generator(f)
 g.flatten(mainMsg)
 f.close()
 return None
if __name__=="__main__":
 main()

Discussion
The email package makes manipulating MIME messages a snap. The Python Stan-
dard Library also offers other older modules that can serve many of the same pur-
poses, but I suggest you look into email as an alternative to all such other modules.
email requires some study because it is a very functionally rich package, but it will
amply repay the time you spend studying it.

MIME is the Internet standard for sending files and non-ASCII data by email. The
standard is specified in RFCs 2045-2049. A few points are especially worth keeping
in mind:

• The original specification for the format of an email (RFC 822) didn’t allow for
non-ASCII characters and had no provision for attaching or enclosing a file along
with a text message. Therefore, not surprisingly, MIME messages are very com-
mon these days.

• Messages that follow the MIME standard are backward compatible with ordi-
nary RFC 822 (now RFC 2822) messages. An old mail reader (technically, an
MUA) that doesn’t understand the MIME specification will probably not be able
to display a MIME message in a way that’s useful to the user, but the message
will still be legal and therefore shouldn’t cause unexpected behavior.

• An RFC 2822 message consists of a set of headers, a blank line, and a body.
MIME handles attachments and other multipart documents by specifying a for-
mat for the message’s body. In multipart MIME messages, the body is divided
into submessages, each of which has a set of headers, a blank line, and a body.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.7 Unpacking a Multipart MIME Message | 497

Generally, each submessage is referred to as a MIME part, and parts may nest
recursively.

• MIME parts (whether or not in a multipart message) that contain characters out-
side of the strict US-ASCII range are encoded as either base-64 or quoted-print-
able data, so that the resulting mail message contains only ordinary ASCII
characters. Data can be encoded with either method, but, generally, only data
that has few non-ASCII characters (basically text, possibly with a few extra char-
acters outside of the ASCII range, such as national characters in Latin-1 and sim-
ilar codes) is worth encoding as quoted-printable, because even without
decoding it may be readable. If the data is essentially binary, with all bytes being
equally likely, base-64 encoding is more compact.

Not surprisingly, given all of these issues, manipulating MIME messages is often con-
sidered to be a nuisance. In the old times, back before Python 2.2, the standard
library’s modules for dealing with MIME messages were quite useful but rather mis-
cellaneous. In particular, putting MIME messages together and taking them apart
required two distinct approaches. The email package, which was added in Python
2.2, unified and simplified these two related jobs.

See Also
Recipe 13.7 “Unpacking a Multipart MIME Message” shows how the email package
can be used to unpack a MIME message; documentation for the standard library
modules email, mimetypes, base64, quopri, and cStringIO in the Library Reference
and Python in a Nutshell.

13.7 Unpacking a Multipart MIME Message
Credit: Matthew Cowles

Problem
You want to unpack a multipart MIME message.

Solution
The walk method of message objects generated by the email package makes this task
really easy. Here is a script that uses email to solve the task posed in the “Problem”:

import email.Parser
import os, sys
def main():
 if len(sys.argv) != 2:
 print "Usage: %s filename" % os.path.basename(sys.argv[0])
 sys.exit(1)
 mailFile = open(sys.argv[1], "rb")
 p = email.Parser.Parser()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 13: Network Programming

 msg = p.parse(mailFile)
 mailFile.close()
 partCounter = 1
 for part in msg.walk():
 if part.get_main_type() == "multipart":
 continue
 name = part.get_param("name")
 if name == None:
 name = "part-%i" % partCounter
 partCounter += 1
 # In real life, make sure that name is a reasonable filename
 # for your OS; otherwise, mangle that name until it is!
 f = open(name, "wb")
 f.write(part.get_payload(decode=1))
 f.close()
 print name
if __name__=="__main__":
 main()

Discussion
The email package makes parsing MIME messages reasonably easy. This recipe
shows how to unbundle a MIME message with the email package by using the walk

method of message objects.

You can create a message object in several ways. For example, you can instantiate the
email.Message.Message class and build the message object’s contents with calls to its
methods. In this recipe, however, I need to read and analyze an existing message, so I
work the other way around, calling the parse method of an email.Parser.Parser

instance. The parse method takes as its only argument a file-like object (in the rec-
ipe, I pass it a real file object that I just opened for binary reading with the built-in
open function) and returns a message object, on which you can call message object
methods.

The walk method is a generator (i.e., it returns an iterator object on which you can
loop with a for statement). You usually will use this method exactly as I use it in this
recipe:

for part in msg.walk():

The iterator sequentially returns (depth-first, in case of nesting) the parts that make
up the message. If the message is not a container of parts (i.e., has no attachments or
alternates—message.is_multipart returns false), no problem: the walk method will
then return an iterator with a single element—the message itself. In any case, each
element of the iterator is also a message object (an instance of
email.Message.Message), so you can call on it any of the methods that a message
object supplies.

In a multipart message, parts with a type of 'multipart/something' (i.e., a main type
of 'multipart') may be present. In this recipe, I skip them explicitly since they’re just

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.8 Removing Attachments from an Email Message | 499

glue holding the true parts together. I use the get_main_type method to obtain the
main type and check it for equality with 'multipart'; if equality holds, I skip this
part and move to the next one with a continue statement. When I know I have a real
part in hand, I locate its name (or synthesize one if it has no name), open that name
as a file, and write the message’s contents (also known as the message’s payload),
which I get by calling the get_payload method, into the file. I use the decode=1 argu-
ment to ensure that the payload is decoded back to a binary content (e.g., an image,
a sound file, a movie) if needed, rather than remaining in text form. If the payload is
not encoded, decode=1 is innocuous, so I don’t have to check before I pass it.

See Also
Recipe 13.6 “Bundling Files in a MIME Message”; documentation for the standard
library package email in the Library Reference.

13.8 Removing Attachments from an Email
Message

Credit: Anthony Baxter

Problem
You’re handling email in Python and need to remove from email messages any
attachments that might be dangerous.

Solution
Regular expressions can help us identify dangerous content types and file exten-
sions, and thus code a function to remove any potentially dangerous attachments:

ReplFormat = """
This message contained an attachment that was stripped out.
The filename was: %(filename)s,
The original type was: %(content_type)s
(and it had additional parameters of:
%(params)s)
"""
import re
BAD_CONTENT_RE = re.compile('application/(msword|msexcel)', re.I)
BAD_FILEEXT_RE = re.compile(r'(\.exe|\.zip|\.pif|\.scr|\.ps)$')
def sanitise(msg):
 ''' Strip out all potentially dangerous payloads from a message '''
 ct = msg.get_content_type()
 fn = msg.get_filename()
 if BAD_CONTENT_RE.search(ct) or (fn and BAD_FILEEXT_RE.search(fn)):
 # bad message-part, pull out info for reporting then destroy it
 # present the parameters to the content-type, list of key, value
 # pairs, as key=value forms joined by comma-space

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 13: Network Programming

 params = msg.get_params()[1:]
 params = ', '.join(['='.join(p) for p in params])
 # put informative message text as new payload
 replace = ReplFormat % dict(content_type=ct, filename=fn, params=params)
 msg.set_payload(replace)
 # now remove parameters and set contents in content-type header
 for k, v in msg.get_params()[1:]:
 msg.del_param(k)
 msg.set_type('text/plain')
 # Also remove headers that make no sense without content-type
 del msg['Content-Transfer-Encoding']
 del msg['Content-Disposition']
 else:
 # Now we check for any sub-parts to the message
 if msg.is_multipart():
 # Call sanitise recursively on any subparts
 payload = [sanitise(x) for x in msg.get_payload()]
 # Replace the payload with our list of sanitised parts
 msg.set_payload(payload)
 # Return the sanitised message
 return msg
Add a simple driver/example to show how to use this function
if __name__ == '__main__':
 import email, sys
 m = email.message_from_file(open(sys.argv[1]))
 print sanitise(m)

Discussion
This issue has come up a few times on the newsgroup comp.lang.python, so I decided
to post a cookbook entry to show how easy it is to deal with this kind of task. Specif-
ically, this recipe shows how to read in an email message, strip out any dangerous or
suspicious attachments, and replace them with a harmless text message informing
the user of the alterations that we’re performed.

This kind of task is particularly important when end users are using something like
Microsoft Outlook, which is targeted by harmful virus and worm messages (collec-
tively known as malware) on a daily basis.

The email parser in Python 2.4 has been completely rewritten to be robust first, cor-
rect second. Prior to that version, the parser was written for correctness first. But
focusing on correctness was a problem because many virus/worm messages and
other malware routinely send email messages that are broken and nonconformant—
malformed to the point that the old email parser chokes and dies. The new parser is
designed to never actually break when reading a message. Instead, it tries its best to
fix whatever it can fix in the message. (If you have a message that causes the parser to
crash, please let us, the core Python developers, know. It’s a bug, and we’ll fix it.
Please include a copy of the message that makes the parser crash, or else it’s very
unlikely that we can reproduce your problem!)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.9 Fixing Messages Parsed by Python 2.4 email.FeedParser | 501

The recipe’s code itself is fairly well commented and should be easy enough to fol-
low. A mail message consists of one or more parts; each of these parts can contain
nested parts. We call the sanitise function on the top-level Message object, and it
calls itself recursively on the subobjects if and as needed.

The sanitise function first checks the Content-Type of the part, and if there’s a file-
name, it also checks that filename’s extension against a known-to-be-bad list. If the
message part is bad, we replace the message itself with a short text description
describing the now-removed part and clean out the headers that are relevant. We set
this message part’s Content-Type to 'text/plain' and remove other headers related
to the now-removed message.

Finally, we check whether the message is a multipart message. If so, it means the
message has subparts, so we recursively call the sanitise function on each of them.
We then replace the payload with our list of sanitized subparts.

If you’re interested in working further on this recipe, the most important extra func-
tionality, which is easy to add with a small amount of work, might be to store the
attached file in some directory (instead of destroying all suspect attachments), and
give the user a link to that file. Also consider extending the check in sanitise that
filters dangerous attachments to have it verify more than just the content type and
file extension; other headers may be able to carry known signs of worm or virus
messages.

See Also
Documentation for the standard library modules email and re in the Library Refer-
ence and Python in a Nutshell.

13.9 Fixing Messages Parsed by Python 2.4
email.FeedParser

Credit: Matthew Cowles

Problem
You’re using Python 2.4’s new email.FeedParser module, but sometimes, when deal-
ing with badly malformed incoming messages, that module produces message
objects that are internally inconsistent (e.g., a message has a content-type header that
says the message is multipart, but the body isn’t), and you need to fix those inconsis-
tencies.

Solution
Python 2.4’s new standard library module email.FeedParser is very useful, but a lit-
tle post-processing on the messages it returns can heuristically fix some inconsisten-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 13: Network Programming

cies and make it even better. Here’s a module containing a class and a few functions
to help with this task:

import email, email.FeedParser
import re, sys, sgmllib
what chars are non-Ascii, what max fraction of them can be in a text part
kGuessBinaryThreshold = 0.2
kGuessBinaryRE = re.compile("[\\0000-\\0025\\0200-\\0377]")
what max fraction of HTML tags can be in a text (non-HTML) part
kGuessHTMLThreshold = 0.05
class Cleaner(sgmllib.SGMLParser):
 entitydefs = {"nbsp": " "} # I'll break if I want to
 def __init__(self):
 sgmllib.SGMLParser.__init__(self)
 self.result = []
 def do_p(self, *junk):
 self.result.append('\n')
 def do_br(self, *junk):
 self.result.append('\n')
 def handle_data(self, data):
 self.result.append(data)
 def cleaned_text(self):
 return ''.join(self.result)
def stripHTML(text):
 ''' return text, with HTML tags stripped '''
 c = Cleaner()
 try:
 c.feed(text)
 except sgmllib.SGMLParseError:
 return text
 else:
 return c.cleaned_text()
def guessIsBinary(text):
 ''' return whether we can heuristically guess 'text' is binary '''
 if not text: return False
 nMatches = float(len(kGuessBinaryRE.findall(text)))
 return nMatches/len(text) >= kGuessBinaryThreshold
def guessIsHTML(text):
 ''' return whether we can heuristically guess 'text' is HTML '''
 if not text: return False
 lt = len(text)
 textWithoutTags = stripHTML(text)
 tagsChars = float(lt-len(textWithoutTags))
 return tagsChars/lt >= kGuessHTMLThreshold
def getMungedMessage(openFile):
 openFile.seek(0)
 p = email.FeedParser.FeedParser()
 p.feed(openFile.read())
 m = p.close()
 # Fix up multipart content-type when message isn't multi-part
 if m.get_main_type()=="multipart" and not m.is_multipart():
 t = m.get_payload(decode=1)
 if guessIsBinary(t):
 # Use generic "opaque" type

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.10 Inspecting a POP3 Mailbox Interactively | 503

 m.set_type("application/octet-stream")
 elif guessIsHTML(t):
 m.set_type("text/html")
 else:
 m.set_type("text/plain")
 return m

Discussion
FeedParser is a new module in the Python 2.4 Standard Library’s email package. The
module’s name comes from the fact that it maintains a buffer, so that you don’t have
to give it all the text at once. Possibly more interesting is that the module doesn’t
raise an error when called on malformed messages; instead, it tries to make some
sense of them and return a useful email.Message object. That’s useful because so
much mail is spam and so much spam is malformed.

The other side of the coin, given that the heroic feed parser works on incorrect mes-
sages, is that you can get back from it an email.Message object that’s internally incon-
sistent. This recipe tries to make sense of one kind of inconsistency: a message with a
content-type header that says that the message is multipart, but the body isn’t.

The heuristics that the recipe uses to guess at the correct content-type are inevitably
messy. Still, better to have such messy heuristics in recipes, rather than embedded
forever in the Python Standard Library.

See Also
Documentation for the standard library package email in the Python 2.4 Library Ref-
erence.

13.10 Inspecting a POP3 Mailbox Interactively
Credit: Xavier Defrang

Problem
You have a POP3 mailbox somewhere, perhaps on a slow connection, and need to
examine messages and possibly mark them for deletion interactively.

Solution
The poplib module of the Python Standard Library lets you write a script to solve
this task quite easily:

Interactive script to clean POP3 mailboxes from malformed or too-large mails
#
Iterates over nonretrieved mails, prints selected elements from the headers,
prompts interactively about whether each message should be deleted

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 13: Network Programming

import sys, getpass, poplib, re
Change according to your needs: POP host, userid, and password
POPHOST = "pop.domain.com"
POPUSER = "jdoe"
POPPASS = ""
How many lines to retrieve from body, and which headers to retrieve
MAXLINES = 10
HEADERS = "From To Subject".split()
args = len(sys.argv)
if args>1: POPHOST = sys.argv[1]
if args>2: POPUSER = sys.argv[2]
if args>3: POPPASS = sys.argv[3]
if args>4: MAXLINES= int(sys.argv[4])
if args>5: HEADERS = sys.argv[5:]
An RE to identify the headers you're actually interested in
rx_headers = re.compile('|'.join(HEADERS), re.IGNORECASE)
try:
 # Connect to the POP server and identify the user
 pop = poplib.POP3(POPHOST)
 pop.user(POPUSER)
 # Authenticate user
 if not POPPASS or POPPASS=='=':
 # If no password was supplied, ask for the password
 POPPASS = getpass.getpass("Password for %s@%s:" % (POPUSER, POPHOST))
 pop.pass_(POPPASS)
 # Get and print some general information (msg_count, box_size)
 stat = pop.stat()
 print "Logged in as %s@%s" % (POPUSER, POPHOST)
 print "Status: %d message(s), %d bytes" % stat
 bye = False
 count_del = 0
 for msgnum in range(1, 1+stat[0]):
 # Retrieve headers
 response, lines, bytes = pop.top(msgnum, MAXLINES)
 # Print message info and headers you're interested in
 print "Message %d (%d bytes)" % (msgnum, bytes)
 print "-" * 30
 print "\n".join(filter(rx_headers.match, lines))
 print "-" * 30
 # Input loop
 while True:
 k = raw_input("(d=delete, s=skip, v=view, q=quit) What? ")
 k = k[:1].lower()
 if k == 'd':
 # Mark message for deletion
 k = raw_input("Delete message %d? (y/n) " % msgnum)
 if k in "yY":
 pop.dele(msgnum)
 print "Message %d marked for deletion" % msgnum
 count_del += 1
 break
 elif k == 's':
 print "Message %d left on server" % msgnum
 break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.10 Inspecting a POP3 Mailbox Interactively | 505

 elif k == 'v':
 print "-" * 30
 print "\n".join(lines)
 print "-" * 30
 elif k == 'q':
 bye = True
 break
 # Time to say goodbye?
 if bye:
 print "Bye"
 break
 # Summary
 print "Deleting %d message(s) in mailbox %s@%s" % (
 count_del, POPUSER, POPHOST)
 # Commit operations and disconnect from server
 print "Closing POP3 session"
 pop.quit()
except poplib.error_proto, detail:
 # Fancy error handling
 print "POP3 Protocol Error:", detail

Discussion
Sometimes your POP3 mailbox is behind a slow Internet link, and you don’t want to
wait for that funny 10MB MPEG movie that you already received twice yesterday to
be fully downloaded before you can read your mail. Or maybe a peculiar malformed
message is hanging your MUA. Issues of this kind are best tackled interactively, but
you need a helpful script to let you examine data about each message and determine
which messages should be removed.

I used to deal with this kind of thing by telneting to the POP (Post Office Protocol)
server and trying to remember the POP3 protocol commands (while hoping that the
server implements the help command in particular). Nowadays, I use the script pre-
sented in this recipe to inspect my mailbox and do some cleaning. Basically, the
Python Standard Library POP3 module, poplib, remembers the protocol commands
on my behalf, and this script helps me use those commands appropriately.

The script in this recipe uses the poplib module to connect to your mailbox. It then
prompts you about what to do with each undelivered message. You can view the top
of the message, leave the message on the server, or mark the message for deletion.
No particular tricks or hacks are used in this piece of code: it’s a simple example of
poplib usage. In addition to being practically useful in emergencies, it can show you
how poplib works. The poplib.POP3 call returns an object that is ready for connec-
tion to a POP3 server specified as its argument. We complete the connection by call-
ing the user and pass_ methods to specify a user ID and password. Note the trailing
underscore in pass_: this method could not be called pass because that is a Python
keyword (the do-nothing statement), and by convention, such issues are often solved
by appending an underscore to the identifier.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 13: Network Programming

After connection, we keep working with methods of the pop object. The stat method
returns the number of messages and the total size of the mailbox in bytes. The top

method takes a message-number argument and returns information about that mes-
sage, as well as the message itself as a list of lines. (You can specify a second argu-
ment n to ensure that no more than n lines are returned.) The dele method also takes
a message-number argument and deletes that message from the mailbox (without
renumbering all other messages). When we’re done, we call the quit method. If
you’re familiar with the POP3 protocol, you’ll notice the close correspondence
between these methods and the POP3 commands.

See Also
Documentation for the standard library modules poplib and getpass in the Library
Reference and Python in a Nutshell; the POP protocol is described in RFC 1939
(http://www.ietf.org/rfc/rfc1939.txt).

13.11 Detecting Inactive Computers
Credit: Nicola Larosa

Problem
You need to monitor the working state of a number of computers connected to a
TCP/IP network.

Solution
The key idea in this recipe is to have every computer periodically send a heartbeat
UDP packet to a computer acting as the server for this heartbeat-monitoring service.
The server keeps track of how much time has passed since each computer last sent a
heartbeat and reports on computers that have been silent for too long.

Here is the “client” program, HeartbeatClient.py, which must run on every com-
puter we need to monitor:

""" Heartbeat client, sends out a UDP packet periodically """
import socket, time
SERVER_IP = '192.168.0.15'; SERVER_PORT = 43278; BEAT_PERIOD = 5
print 'Sending heartbeat to IP %s , port %d' % (SERVER_IP, SERVER_PORT)
print 'press Ctrl-C to stop'
while True:
 hbSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 hbSocket.sendto('PyHB', (SERVER_IP, SERVER_PORT))
 if __debug__:
 print 'Time: %s' % time.ctime()
 time.sleep(BEAT_PERIOD)

The server program, which receives and keeps track of these “heartbeats”, must run
on the machine whose address is given as SERVER_IP in the “client” program. The

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.11 Detecting Inactive Computers | 507

server must support concurrency, since many heartbeats from different computers
might arrive simultaneously. A server program has essentially two ways to support
concurrency: multithreading, or asynchronous operation. Here is a multithreaded
ThreadedBeatServer.py, using only modules from the Python Standard Library:

""" Threaded heartbeat server """
import socket, threading, time
UDP_PORT = 43278; CHECK_PERIOD = 20; CHECK_TIMEOUT = 15
class Heartbeats(dict):
 """ Manage shared heartbeats dictionary with thread locking """
 def __init__(self):
 super(Heartbeats, self).__init__()
 self._lock = threading.Lock()
 def __setitem__(self, key, value):
 """ Create or update the dictionary entry for a client """
 self._lock.acquire()
 try:
 super(Heartbeats, self).__setitem__(key, value)
 finally:
 self._lock.release()
 def getSilent(self):
 """ Return a list of clients with heartbeat older than CHECK_TIMEOUT """
 limit = time.time() - CHECK_TIMEOUT
 self._lock.acquire()
 try:
 silent = [ip for (ip, ipTime) in self.items() if ipTime < limit]
 finally:
 self._lock.release()
 return silent
class Receiver(threading.Thread):
 """ Receive UDP packets and log them in the heartbeats dictionary """
 def __init__(self, goOnEvent, heartbeats):
 super(Receiver, self).__init__()
 self.goOnEvent = goOnEvent
 self.heartbeats = heartbeats
 self.recSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.recSocket.settimeout(CHECK_TIMEOUT)
 self.recSocket.bind(('', UDP_PORT))
 def run(self):
 while self.goOnEvent.isSet():
 try:
 data, addr = self.recSocket.recvfrom(5)
 if data == 'PyHB':
 self.heartbeats[addr[0]] = time.time()
 except socket.timeout:
 pass
def main(num_receivers=3):
 receiverEvent = threading.Event()
 receiverEvent.set()
 heartbeats = Heartbeats()
 receivers = []
 for i in range(num_receivers):
 receiver = Receiver(goOnEvent=receiverEvent, heartbeats=heartbeats)
 receiver.start()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 13: Network Programming

 receivers.append(receiver)
 print 'Threaded heartbeat server listening on port %d' % UDP_PORT
 print 'press Ctrl-C to stop'
 try:
 while True:
 silent = heartbeats.getSilent()
 print 'Silent clients: %s' % silent
 time.sleep(CHECK_PERIOD)
 except KeyboardInterrupt:
 print 'Exiting, please wait...'
 receiverEvent.clear()
 for receiver in receivers:
 receiver.join()
 print 'Finished.'
if __name__ == '__main__':
 main()

As an alternative, here is an asynchronous AsyncBeatServer.py program based on the
powerful Twisted framework:

import time
from twisted.application import internet, service
from twisted.internet import protocol
from twisted.python import log
UDP_PORT = 43278; CHECK_PERIOD = 20; CHECK_TIMEOUT = 15
class Receiver(protocol.DatagramProtocol):
 """ Receive UDP packets and log them in the “client”s dictionary """
 def datagramReceived(self, data, (ip, port)):
 if data == 'PyHB':
 self.callback(ip)
class DetectorService(internet.TimerService):
 """ Detect clients not sending heartbeats for too long """
 def __init__(self):
 internet.TimerService.__init__(self, CHECK_PERIOD, self.detect)
 self.beats = { }
 def update(self, ip):
 self.beats[ip] = time.time()
 def detect(self):
 """ Log a list of clients with heartbeat older than CHECK_TIMEOUT """
 limit = time.time() - CHECK_TIMEOUT
 silent = [ip for (ip, ipTime) in self.beats.items() if ipTime < limit]
 log.msg('Silent clients: %s' % silent)
application = service.Application('Heartbeat')
define and link the silent clients' detector service
detectorSvc = DetectorService()
detectorSvc.setServiceParent(application)
create an instance of the Receiver protocol, and give it the callback
receiver = Receiver()
receiver.callback = detectorSvc.update
define and link the UDP server service, passing the receiver in
udpServer = internet.UDPServer(UDP_PORT, receiver)
udpServer.setServiceParent(application)
each service is started automatically by Twisted at launch time
log.msg('Asynchronous heartbeat server listening on port %d\n'
 'press Ctrl-C to stop\n' % UDP_PORT)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.11 Detecting Inactive Computers | 509

Discussion
When a number of computers are connected by a TCP/IP network, we are often
interested in monitoring their working state. The client and server programs pre-
sented in this recipe help you detect when a computer stops working, while having
minimal impact on network traffic and requiring very little setup. Note that this rec-
ipe does not monitor the working state of single, specific services running on a
machine, just that of the TCP/IP stack and the underlying operating system and
hardware components.

This PyHeartBeat approach is made up of two files: a client program,
HeartbeatClient.py, sends UDP packets to the server, while a server program, either
ThreadedBeatServer.py (using only modules from the Python Standard Library to
implement a multithreaded approach) or AsyncBeatServer.py (implementing an asyn-
chronous approach based on the powerful Twisted framework), runs on a central
computer to listen for such packets and detect inactive clients. Client programs, run-
ning on any number of computers, periodically send UDP packets to the server pro-
gram that runs on the central computer. The server program, in either version,
dynamically builds a dictionary that stores the IP addresses of the “client” comput-
ers and the timestamp of the last packet received from each one. At the same time,
the server program periodically checks the dictionary, checking whether any of the
timestamps are older than a defined timeout, to identify clients that have been silent
too long.

In this kind of application, there is no need to use reliable TCP connections since the
loss of a packet now and then does not produce false alarms, as long as the server-
checking timeout is kept suitably larger than the “client”-sending period. Since we
may have hundreds of computers to monitor, it is best to keep the bandwidth used
and the load on the server at a minimum: we do this by periodically sending a small
UDP packet, instead of setting up a relatively expensive TCP connection per client.

The packets are sent from each client every 5 seconds, while the server checks the
dictionary every 20 seconds, and the server’s timeout defaults to 15 seconds. These
parameters, along with the server IP number and port used, can be adapted to one’s
needs.

Threaded server

In the threaded server, a small number of worker threads listen to the UDP packets
coming from the “client”s, while the main thread periodically checks the recorded
heartbeats. The shared data structure, a dictionary, must be locked and released at
each access, both while writing and reading, to avoid data corruption on concurrent
access. Such data corruption would typically manifest itself as intermittent, time-
dependent bugs that are difficult to reproduce, investigate, and correct.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 13: Network Programming

A very sound alternative to such meticulous use of locking around access to a
resource is to dedicate a specialized thread to be the only one interacting with the
resource (in this case, the dictionary), while all other threads send work requests to
the specialized thread with a Queue.Queue instance. A Queue-based approach is more
scalable when per-resource locking gets too complicated to manage easily: Queue is
less bug-prone and, in particular, avoids worries about deadlocks. See recipe 9.3
“Using a Queue.Queue as a Priority Queue,” recipe 9.5 “Executing a Function in
Parallel on Multiple Argument Sets,” recipe 9.4 “Working with a Thread Pool,” and
recipe 11.9 “Combining GUIs and Asynchronous I/O with Threads” for more infor-
mation about Queue and examples of using Queue to structure the architecture of a
multithreaded program.

Asynchronous server

The Twisted server employs an asynchronous, event-driven model based on the
Twisted framework (http://www.twistedmatrix.com/). The framework is built around
a central “reactor” that dispatches events from a queue in a single thread, and moni-
tors network and host resources. The user program is composed of short code frag-
ments invoked by the reactor when dispatching the matching events. Such a working
model guarantees that only one user code fragment is executing at any given time,
eliminating at the root all problems of concurrent access to shared data structures.
Asynchronous servers can provide excellent performance and scalability under very
heavy loads, by avoiding the threading and locking overheads of multithreader
servers.

The asynchronous server program presented in this recipe is composed of one appli-
cation and two services, the UDPServer and the DetectorService, respectively. It is
invoked at any command shell by means of the twistd command, with the following
options:

$ twistd -ony AsyncBeatServer.py

The twistd command controls the reactor, and many other delicate facets of a
server’s operation, leaving the script it loads the sole responsibility of defining a glo-
bal variable named application, implementing the needed services, and connecting
the service objects to the application object.

Normally, twistd runs as a daemon and logs to a file (or to other logging facilities,
depending on configuration options), but in this case, with the -ony flags, we’re spe-
cifically asking twistd to run in the foreground and with logging to standard output,
so we can better see what’s going on. Note that the most popular file extension for
scripts to be loaded by twistd is .tac, although in this recipe I have used the more
generally familiar extension .py. The choice of file extension is just a convention, in
this case: twistd can work with Python source files with any file extension, since you
pass the full filename, extension included, as an explicit command-line argument
anyway.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.12 Monitoring a Network with HTTP | 511

See Also
Documentation for the standard library modules socket, threading, Queue and time

in the Library Reference and Python in a Nutshell; twisted is at http://
www.twistedmatrix.com; Jeff Bauer has a related program, known as Mr. Creosote
(http://starship.python.net/crew/jbauer/creosote/), using UDP for logging information;
UDP is described in depth in W. Richard Stevens, UNIX Network Programming, Vol-
ume 1: Networking APIs–Sockets and XTI, 2d ed. (Prentice-Hall); for the truly curi-
ous, the UDP protocol is defined in the two-page RFC 768 (http://www.ietf.org/rfc/
rfc768.txt), which, when compared with current RFCs, shows how much the Inter-
net infrastructure has evolved in 20 years.

13.12 Monitoring a Network with HTTP
Credit: Magnus Lyckå

Problem
You want to implement special-purpose HTTP servers to enable you to monitor your
network.

Solution
The Python Standard Library BaseHTTPServer module makes it easy to implement
special-purpose HTTP servers. For example, here is a special-purpose HTTP server
program that runs local commands on the server host to get the data for replies to
each GET request:

import BaseHTTPServer, shutil, os
from cStringIO import StringIO
class MyHTTPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):
 # HTTP paths we serve, and what commandline-commands we serve them with
 cmds = {'/ping': 'ping www.thinkware.se',
 '/netstat' : 'netstat -a',
 '/tracert': 'tracert www.thinkware.se',
 '/srvstats': 'net statistics server',
 '/wsstats': 'net statistics workstation',
 '/route' : 'route print',
 }
 def do_GET(self):
 """ Serve a GET request. """
 f = self.send_head()
 if f:
 f = StringIO()
 machine = os.popen('hostname').readlines()[0]
 if self.path == '/':
 heading = "Select a command to run on %s" % (machine)
 body = (self.getMenu() +
 "<p>The screen won't update until the selected "

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 13: Network Programming

 "command has finished. Please be patient.")
 else:
 heading = "Execution of ``%s'' on %s" % (
 self.cmds[self.path], machine)
 cmd = self.cmds[self.path]
 body = 'Main Menu<pre>%s</pre>\n' % \
 os.popen(cmd).read()
 # Translation CP437 -> Latin 1 needed for Swedish Windows.
 body = body.decode('cp437').encode('latin1')
 f.write("<html><head><title>%s</title></head>\n" % heading)
 f.write('<body><H1>%s</H1>\n' % (heading))
 f.write(body)
 f.write('</body></html>\n')
 f.seek(0)
 self.copyfile(f, self.wfile)
 f.close()
 return f
 def do_HEAD(self):
 """ Serve a HEAD request. """
 f = self.send_head()
 if f:
 f.close()
 def send_head(self):
 path = self.path
 if not path in ['/'] + self.cmds.keys():
 head = 'Command "%s" not found. Try one of these:' % path
 msg = head + self.getMenu()
 self.send_error(404, msg)
 return None
 self.send_response(200)
 self.send_header("Content-type", 'text/html')
 self.end_headers()
 f = StringIO()
 f.write("A test %s\n" % self.path)
 f.seek(0)
 return f
 def getMenu(self):
 keys = self.cmds.keys()
 keys.sort()
 msg = []
 for k in keys:
 msg.append('%s => %s' %(
 k, k, self.cmds[k]))
 msg.append('')
 return "\n".join(msg)
 def copyfile(self, source, outputfile):
 shutil.copyfileobj(source, outputfile)
def main(HandlerClass = MyHTTPRequestHandler,
 ServerClass = BaseHTTPServer.HTTPServer):
 BaseHTTPServer.test(HandlerClass, ServerClass)
if __name__ == '__main__':
 main()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.13 Forwarding and Redirecting Network Ports | 513

Discussion
The Python Standard Library module BaseHTTPServer makes it easy to set up custom
web servers on an internal network. This way, you can run commands on various
machines by just visiting those servers with a browser. The code in this recipe is
Windows-specific, indeed specific to the version of Windows normally run in Swe-
den, because it knows about code page 437 providing the encoding for the various
commands’ results. The commands themselves are Windows ones, but that’s just as
easy to customize for your own purposes as the encoding issue—for example, using
traceroute (the Unix spelling of the command) instead of tracert (the way Win-
dows spells it).

In this recipe, all substantial work is performed by external commands invoked by
os.popen calls. Of course, it would be perfectly feasible to satisfy some or all of the
requests by running actual Python code within the same process as the web server.
We would normally not worry about concurrency issues for this kind of special-
purpose, ad hoc, administrative server (unlike most web servers): the scenario it’s
intended to cover is one system administrator sitting at her system and visiting, with
her browser, various machines on the network being administered/monitored—con-
currency is not really needed. If your scenario is somewhat different so that you do
need concurrency, then multithreading and asynchronous operations, shown in sev-
eral other recipes, are your fundamental options.

See Also
Documentation for the standard library modules BaseHTTPServer, shutil, os, and
cStringIO in the Library Reference and Python in a Nutshell.

13.13 Forwarding and Redirecting Network Ports
Credit: Simon Foster

Problem
You need to forward a network port to another host (forwarding), possibly to a dif-
ferent port number (redirecting).

Solution
Classes using the threading and socket modules can provide port forwarding and
redirecting:

import sys, socket, time, threading
LOGGING = True
loglock = threading.Lock()
def log(s, *a):
 if LOGGING:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 13: Network Programming

 loglock.acquire()
 try:
 print '%s:%s' % (time.ctime(), (s % a))
 sys.stdout.flush()
 finally:
 loglock.release()
class PipeThread(threading.Thread):
 pipes = []
 pipeslock = threading.Lock()
 def __init__(self, source, sink):
 Thread.__init__(self)
 self.source = source
 self.sink = sink
 log('Creating new pipe thread %s (%s -> %s)',
 self, source.getpeername(), sink.getpeername())
 self.pipeslock.acquire()
 try: self.pipes.append(self)
 finally: self.pipeslock.release()
 self.pipeslock.acquire()
 try: pipes_now = len(self.pipes)
 finally: self.pipeslock.release()
 log('%s pipes now active', pipes_now)
 def run(self):
 while True:
 try:
 data = self.source.recv(1024)
 if not data: break
 self.sink.send(data)
 except:
 break
 log('%s terminating', self)
 self.pipeslock.acquire()
 try: self.pipes.remove(self)
 finally: self.pipeslock.release()
 self.pipeslock.acquire()
 try: pipes_left = len(self.pipes)
 finally: self.pipeslock.release()
 log('%s pipes still active', pipes_left)
class Pinhole(threading.Thread):
 def __init__(self, port, newhost, newport):
 Thread.__init__(self)
 log('Redirecting: localhost:%s -> %s:%s', port, newhost, newport)
 self.newhost = newhost
 self.newport = newport
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.bind(('', port))
 self.sock.listen(5)
 def run(self):
 while True:
 newsock, address = self.sock.accept()
 log('Creating new session for %s:%s', *address)
 fwd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 fwd.connect((self.newhost, self.newport))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.13 Forwarding and Redirecting Network Ports | 515

 PipeThread(newsock, fwd).start()
 PipeThread(fwd, newsock).start()

A short ending to this pinhole.py module, with the usual guard to run this part only
when pinhole is run as a main script rather than imported, lets us offer this recipe’s
functionality as a command-line script:

if __name__ == '__main__':
 print 'Starting Pinhole port forwarder/redirector'
 import sys
 # get the arguments, give help in case of errors
 try:
 port = int(sys.argv[1])
 newhost = sys.argv[2]
 try: newport = int(sys.argv[3])
 except IndexError: newport = port
 except (ValueError, IndexError):
 print 'Usage: %s port newhost [newport]' % sys.argv[0]
 sys.exit(1)
 # start operations
 sys.stdout = open('pinhole.log', 'w')
 Pinhole(port, newhost, newport).start()

Discussion
Port forwarding and redirecting can often come in handy when you’re operating a
network, even a small one. Applications or other services, possibly not under your
control, may be hardwired to connect to servers on certain addresses or ports; by
interposing a forwarder and redirector, you can send such applications’ connection
requests onto any other host and/or port that suits you better.

The code in this recipe supplies two classes that liberally use threading to provide
this functionality and a small “main script” at the end, with the usual if __name__ =

= '__main__' guard, to deliver this functionality as a command-line script. For once,
the small “main script” is not just for demonstration and testing purposes but is
actually quite useful on its own. For example:

python pinhole.py 80 webserver

forwards all incoming HTTP sessions on standard port 80 to host webserver;

python pinhole.py 23 localhost 2323

redirects all incoming telnet sessions on standard port 23 to port 2323 on this same
host (since localhost is the conventional hostname for “this host” in all TCP/IP
implementations).

See Also
Documentation for the standard library modules socket and threading in the Library
Reference and Python in a Nutshell.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 13: Network Programming

13.14 Tunneling SSL Through a Proxy
Credit: John Nielsen

Problem
You need to tunnel SSL (Secure Socket Layer) communications through a proxy, but
the Python Standard Library doesn’t support that functionality out of the box.

Solution
We can code a generic proxy, defaulting to SSL but, in fact, good for all kinds of net-
work protocols. Save the following code as module file pytunnel.py somewhere along
your Python sys.path:

import threading, socket, traceback, sys, base64, time
def recv_all(the_socket, timeout=1):
 ''' receive all data available from the_socket, waiting no more than
 ``timeout'' seconds for new data to arrive; return data as string.'''
 # use non-blocking sockets
 the_socket.setblocking(0)
 total_data = []
 begin = time.time()
 while True:
 ''' loop until timeout '''
 if total_data and time.time()-begin > timeout:
 break # if you got some data, then break after timeout seconds
 elif time.time()-begin > timeout*2:
 break # if you got no data at all yet, wait a little longer
 try:
 data = the_socket.recv(4096)
 if data:
 total_data.append(data)
 begin = time.time() # reset start-of-wait time
 else:
 time.sleep(0.1) # give data some time to arrive
 except:
 pass
 return ''.join(total_data)
class thread_it(threading.Thread):
 ''' thread instance to run a tunnel, or a tunnel-client '''
 done = False
 def __init__(self, tid='', proxy='', server='', tunnel_client='',
 port=0, ip='', timeout=1):
 threading.Thread.__init__(self)
 self.tid = tid
 self.proxy = proxy
 self.port = port
 self.server = server
 self.tunnel_client = tunnel_client
 self.ip = ip; self._port = port
 self.data = { } # store data here to get later

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.14 Tunneling SSL Through a Proxy | 517

 self.timeout = timeout
 def run(self):
 try:
 if self.proxy and self.server:
 ''' running tunnel operation, so bridge server <-> proxy '''
 new_socket = False
 while not thread_it.done: # loop until termination
 if not new_socket:
 new_socket, address = self.server.accept()
 else:
 self.proxy.sendall(
 recv_all(new_socket, timeout=self.timeout))
 new_socket.sendall(
 recv_all(self.proxy, timeout=self.timeout))
 elif self.tunnel_client:
 ''' running tunnel client, just mark down when it's done '''
 self.tunnel_client(self.ip, self.port)
 thread_it.done = True # normal termination
 except Exception, error:
 print traceback.print_exc(sys.exc_info()), error
 thread_it.done = True # orderly termination upon exception
class build(object):
 ''' build a tunnel object, ready to run two threads as needed '''
 def __init__(self, host='', port=443, proxy_host='', proxy_port=80,
 proxy_user='', proxy_pass='', proxy_type='', timeout=1):
 self._port=port; self.host=host; self._phost=proxy_host
 self._puser=proxy_user; self._pport=proxy_port; self._ppass=proxy_pass
 self._ptype=proxy_type; self.ip='127.0.0.1'; self.timeout=timeout
 self._server, self.server_port = self.get_server()
 def get_proxy(self):
 if not self._ptype:
 proxy = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 proxy.connect((self._phost, self._pport))
 proxy_authorization = ''
 if self._puser:
 proxy_authorization = 'Proxy-authorization: Basic '+\
 base64.encodestring(self._puser+':'+self._ppass
).strip()+'\r\n'
 proxy_connect = 'CONNECT %s:%sHTTP/1.0\r\n' % (
 self.host, self._port)
 user_agent = 'User-Agent: pytunnel\r\n'
 proxy_pieces = proxy_connect+proxy_authorization+user_agent+'\r\n'
 proxy.sendall(proxy_pieces+'\r\n')
 response = recv_all(proxy, timeout=0.5)
 status = response.split(None, 1)[1]
 if int(status)/100 != 2:
 print 'error', response
 raise RuntimeError(status)
 return proxy
 def get_server(self):
 port = 2222
 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind(('localhost', port))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 13: Network Programming

 server.listen(5)
 return server, port
 def run(self, func):
 Threads = []
 Threads.append(thread_it(tid=0, proxy=self.get_proxy(),
 server=self._server, timeout=self.timeout))
 Threads.append(thread_it(tid=1, tunnel_client=func, ip=self.ip,
 port=self.server_port, timeout=0.5))
 for Thread in Threads:
 Thread.start()
 for Thread in Threads:
 Thread.join()

Discussion
Here is how you would typically use this pytunnel module in a small example script
that tunnels an SSL connection through a proxy:

import pytunnel, httplib
def tunnel_this(ip, port):
 conn = httplib.HTTPSConnection(ip, port=port)
 conn.putrequest('GET', '/')
 conn.endheaders()
 response = conn.getresponse()
 print response.read()
tunnel = pytunnel.build(host='login.yahoo.com', proxy_host='h1',
 proxy_user='u', proxy_pass='p')
tunnel.run(tunnel_this)

This example assumes you have a proxy server running on host h1, which is ready to
accept basic authentication for a proxy user named u with a proxy password of p.
Since it’s unlikely that this is, in fact, your specific setup, you’ll have to tweak these
parameters if you want to see an example of this recipe’s code running. But you
understand the general idea: you instantiate class pytunnel.build, with all appropri-
ate parameters passed with named-argument syntax, to build a tunnel object; then,
you call the tunnel object’s method run, passing as its argument your function that
you want to be “tunneled” through the proxy. That function, in turn, receives as its
arguments an IP address and a port number, and can connect to that address and
port via SSL or any protocol implying SSL/TLS (Transport Layer Security), such as
HTTPS.

Internally, the tunnel object instantiates two threads that are instances of thread_it,
one to run the tunnel client function, the other to perform the tunneling operation
itself. The tunneling operation, in turn, is nothing more than an endless loop where
all data available are received from one party and resent to the other, and vice versa;
function recv_all deals with the task of receiving all available data, while the socket
method send_all does the sending. The thread_it instance which runs the tunneling
operation, therefore, does no more than an endless loop of just such calls.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.15 Implementing the Dynamic IP Protocol | 519

The code shown in this recipe is still being actively developed at the time of writing.
For the latest version, see http://ftp.gnu.org/pub/savannah/files/pytunnel/pytunnel.py.
Another alternative worth considering for tunneling and forwarding is Twisted’s
simple proxy (http://www.twistedmatrix.com/), but I have not personally tried that
one yet.

See Also
For SSL/TLS standards, http://www.ietf.org/html.charters/tls-charter.html; documen-
tation for the standard library modules socket, threading and time in the Library Ref-
erence and Python in a Nutshell.

13.15 Implementing the Dynamic IP Protocol
Credit: Nicola Paolucci, Mark Rowe, Andrew Notspecified

Problem
You use a Dynamic DNS Service which accepts the GnuDIP protocol (like yi.org),
and need a command-line script to update your IP which is recorded with that ser-
vice.

Solution
The Twisted framework has plenty of power for all kinds of network tasks, so we can
use it to write a script to implement GnuDIP:

import md5, sys
from twisted.internet import protocol, reactor
from twisted.protocols import basic
from twisted.python import usage
def hashPassword(password, salt):
 ''' compute and return MD5 hash for given password and `salt'. '''
 p1 = md5.md5(password).hexdigest() + '.' + salt.strip()
 return md5.md5(p1).hexdigest()
class DIPProtocol(basic.LineReceiver):
 """ Implementation of GnuDIP protocol(TCP) as described at:
 http://gnudip2.sourceforge.net/gnudip-www/latest/gnudip/html/protocol.html
 """
 delimiter = '\n'
 def connectionMade(self):
 ''' at connection, we start in state "expecting salt". '''
 basic.LineReceiver.connectionMade(self)
 self.expectingSalt = True
 def lineReceived(self, line):
 ''' we received a full line, either "salt" or normal response '''
 if self.expectingSalt:
 self.saltReceived(line)
 self.expectingSalt = False
 else:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 13: Network Programming

 self.responseReceived(line)
 def saltReceived(self, salt):
 """ Override this 'abstract method' """
 raise NotImplementedError
 def responseReceived(self, response):
 """ Override this 'abstract method' """
 raise NotImplementedError
class DIPUpdater(DIPProtocol):
 """ A simple class to update an IP, then disconnect. """
 def saltReceived(self, salt):
 ''' having received `salt', login to the DIP server '''
 password = self.factory.getPassword()
 username = self.factory.getUsername()
 domain = self.factory.getDomain()
 msg = '%s:%s:%s:2' % (username, hashPassword(password, salt), domain)
 self.sendLine(msg)
 def responseReceived(self, response):
 ''' response received: show errors if any, then disconnect. '''
 code = response.split(':', 1)[0]
 if code == '0':
 pass # OK
 elif code == '1':
 print 'Authentication failed'
 else:
 print 'Unexpected response from server:', repr(response)
 self.transport.loseConnection()
class DIPClientFactory(protocol.ClientFactory):
 """ Factory used to instantiate DIP protocol instances with
 correct username, password and domain.
 """
 protocol = DIPUpdater
 # simply collect data for login and provide accessors to them
 def __init__(self, username, password, domain):
 self.u = username
 self.p = password
 self.d = domain
 def getUsername(self):
 return self.u
 def getPassword(self):
 return self.p
 def getDomain(self):
 return self.d
 def clientConnectionLost(self, connector, reason):
 ''' terminate script when we have disconnected '''
 reactor.stop()
 def clientConnectionFailed(self, connector, reason):
 ''' show error message in case of network problems '''
 print 'Connection failed. Reason:', reason
class Options(usage.Options):
 ''' parse options from commandline or config script '''
 optParameters = [['server', 's', 'gnudip2.yi.org', 'DIP Server'],
 ['port', 'p', 3495, 'DIP Server port'],
 ['username', 'u', 'durdn', 'Username'],
 ['password', 'w', None, 'Password'],

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.15 Implementing the Dynamic IP Protocol | 521

 ['domain', 'd', 'durdn.yi.org', 'Domain']]
if __name__ == '__main__':
 # running as main script: first, get all the needed options
 config = Options()
 try:
 config.parseOptions()
 except usage.UsageError, errortext:
 print '%s: %s' % (sys.argv[0], errortext)
 print '%s: Try --help for usage details.' % (sys.argv[0])
 sys.exit(1)
 server = config['server']
 port = int(config['port'])
 password = config['password']
 if not password:
 print 'Password not entered. Try --help for usage details.'
 sys.exit(1)
 # and now, start operations (via Twisted's ``reactor'')
 reactor.connectTCP(server, port,
 DIPClientFactory(config['username'], password, config['domain']))
 reactor.run()

Discussion
I wanted to use a Dynamic DNS Service called yi.org, but I did not like the option of
installing the suggested small client application to update my IP address on my
OpenBSD box. So I resorted to writing the script shown in this recipe. I put it into
my crontab to keep my domain always up-to-date with my dynamic IP address at
home.

This little script is now at version 0.4, and its development history is quite instruc-
tive. I thought that even the first version. 0.1, which I got working in a few minutes,
effectively demonstrated the power of the Twisted framework in developing net-
work applications, so I posted that version on the ActiveState cookbook site. Lo and
behold—Mark first, then Andrew, showered me with helpful suggestions, and I
repeatedly updated the script in response to their advice. So it now demonstrates
even better, not just the power of Twisted, but more generally the power of collabo-
rative development in an open-source or free-software community.

To give just one example: originally, I had overridden buildProtocol and passed the
factory object to the protocol object explicitly. The factory object, in the Twisted
framework architecture, is where shared state is kept (in this case, the username,
password, and domain), so I had to ensure the protocol knew about the factory—I
thought. It turns out that, exactly because just about every protocol needs to know
about its factory object, Twisted takes care of it in its own default implementation of
buildProtocol, making the factory object available as the factory attribute of every
protocol object. So, my code, which duplicated Twisted’s built-in functionality in
this regard, was simply ripped out, and the recipe’s code is simpler and better as a
result.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 13: Network Programming

Too often, software is presented as a finished and polished artifact, as if it sprang
pristine and perfect like Athena from Zeus’ forehead. This gives entirely the wrong
impression to budding software developers, making them feel inadequate because
their code isn’t born perfect and fully developed. So, as a counterweight, I thought it
important to present one little story about how software actually grows and
develops!

One last detail: it’s tempting to place methods updateIP and removeIP in the
DIPProtocol class, to ease the writing of subclasses such as DIPUpdater. However, in
my view, that would be an over-generalization, overkill for such a simple, light-
weight recipe as Python and Twisted make this one. In practice we won’t need all
that many dynamic IP protocol subclasses, and if it turns out that we’re wrong and
we do, in fact, need them, hey, refactoring is clearly not a hard task with such a fluid,
dynamic language and powerful frameworks to draw on. So, respect the prime direc-
tive: “do the simplest thing that can possibly work.”

In a sense, the code in this recipe could be said to violate the prime directive, because
it uses an elegant object-oriented architecture with an abstract base class, a concrete
subclass to specialize it, and, in the factory class, accessor methods rather than sim-
ple attribute access for the login data (i.e., user, password, domain). All of these nice-
ties are lifesavers in big programs, but they admittedly could be foregone for a
program of only 120 lines (which would shrink a little further if it didn’t use all these
niceties). However, adopting a uniform style of program architecture, even for small
programs, eases the refactoring task in those not-so-rare cases where a small pro-
gram grows into a big one. So, I have deliberately developed the habit of always cod-
ing in such an “elegant OO way”, and once the habit is acquired, I find that it
enhances, rather than reduces, my productivity.

See Also
The GnuDIP protocol is specified at http://gnudip2.sourceforge.net/gnudip-www/
latest/gnudip/html/protocol.html; Twisted is at http://www.twistedmatrix.com/.

13.16 Connecting to IRC and Logging Messages
to Disk

Credit: Gian Mario Tagliaretti, J P Calderone

Problem
You want to connect to an IRC (Internet Relay Chat) server, join a channel, and store
private messages into a file on your hard disk for future reading.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.16 Connecting to IRC and Logging Messages to Disk | 523

Solution
The Twisted framework has excellent support for many network protocols, includ-
ing IRC, so we can perform this recipe’s task with a very simple script:

from twisted.internet import reactor, protocol
from twisted.protocols import irc
class LoggingIRCClient(irc.IRCClient):
 logfile = file('/tmp/msg.txt', 'a+')
 nickname = 'logging_bot'
 def signedOn(self):
 self.join('#test_py')
 def privmsg(self, user, channel, message):
 self.logfile.write(user.split('!')[0] + ' -> ' + message + '\n')
 self.logfile.flush()
def main():
 f = protocol.ReconnectingClientFactory()
 f.protocol = LoggingIRCClient
 reactor.connectTCP('irc.freenode.net', 6667, f)
 reactor.run()
if __name__ == '__main__':
 main()

Discussion
If, for some strange reason, you cannot use Twisted, then you can implement similar
functionality from scratch based only on the Python Standard Library. Here’s a rea-
sonable approach—nowhere as simple, solid, and robust as, and lacking the benefi-
cial performance of, Twisted, but nevertheless sort of workable:

import socket
SERVER = 'irc.freenode.net'
PORT = 6667
NICKNAME = 'logging_bot'
CHANNEL = '#test_py'
IRC = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def irc_conn():
 IRC.connect((SERVER, PORT))
def send_data(command):
 IRC.send(command + '\n')
def join(channel):
 send_data("JOIN %s" % channel)
def login(nickname, username='user', password=None,
 realname='Pythonist', hostname='Helena', servername='Server'):
 send_data("USER %s %s %s %s" %
 (username, hostname, servername, realname))
 send_data("NICK %s" % nickname)
irc_conn()
login(NICKNAME)
join(CHANNEL)
filetxt = open('/tmp/msg.txt', 'a+')
try:
 while True:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 13: Network Programming

 buffer = IRC.recv(1024)
 msg = buffer.split()
 if msg[0] == "PING":
 # answer PING with PONG, as RFC 1459 specifies
 send_data("PONG %s" % msg[1])
 if msg [1] == 'PRIVMSG' and msg[2] == NICKNAME:
 nick_name = msg[0][:msg[0].find("!")]
 message = ' '.join(msg[3:])
 filetxt.write(nick_name.lstrip(':') + ' -> ' +
 message.lstrip(':') + '\n')
 filetxt.flush()
finally:
 filetxt.close()

For this roll-our-own reimplementation, we do need some understanding of the pro-
tocol’s RFC, such as the need to answer a server’s PING with a proper PONG to
confirm that our connection is alive. In any case, since the code has already grown to
over twice as much as Twisted requires, we’ve omitted niceties (which are very
important for reliable unattended operation) such as automatic reconnection
attempts when the connection drops, which Twisted gives us effortlessly via its
protocol.ReconnectingClientFactory.

See Also
Documentation for the standard library module socket in the Library Reference and
Python in a Nutshell; twisted is at http://www.twistedmatrix.com.

13.17 Accessing LDAP Servers
Credit: John Nielsen

Problem
You need to access an LDAP (Lightweight Directory Access Protocol) server from
your Python programs.

Solution
The simplest solution is offered by the freely downloadable third-party extension
ldap (http://python-ldap.sourceforge.net). This script shows a few LDAP operations
with ldap:

try:
 path = 'cn=people,ou=office,o=company'
 l = ldap.open('hostname')
 # set which protocol to use, if you do not like the default
 l.protocol_version = ldap.VERSION2
 l.simple_bind('cn=root,ou=office,o=company','password')
 # search for surnames beginning with a
 # available options for how deep a search you want:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.17 Accessing LDAP Servers | 525

 # LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL,LDAP_SCOPE_SUBTREE,
 a = l.search_s(path, ldap.SCOPE_SUBTREE, 'sn='+'a*')
 # delete fred
 l.delete_s('cn=fred,'+path)
 # add barney
 # note: objectclass depends on the LDAP server
 user_info = {'uid':'barney123',
 'givenname':'Barney',
 'cn':'barney123',
 'sn':'Smith',
 'telephonenumber':'123-4567',
 'facsimiletelephonenumber':'987-6543',
 'objectclass':('Remote-Address','person', 'Top'),
 'physicaldeliveryofficename':'Services',
 'mail':'fred123@company.com',
 'title':'programmer',
 }
 id = 'cn=barney,'+path
 l.add_s(id, user_info.items())
except ldap.LDAPError, error:
 print 'problem with ldap:', error

Discussion
The ldap module wraps the open source Openldap C API. However, with ldap, your
Python program can talk to various versions of LDAP servers, as long as they’re stan-
dards compliant, not just to Openldap servers.

The recipe shows a script with a few example uses of the ldap module. For simplic-
ity, all the functions the recipe calls from the library are the '_s' versions (e.g.,
search_s): this means the functions are synchronous—that is, they wait for a
response or an error code and don’t return control to your program until either an
error or a response appears from the server. Asynchronous programming is less ele-
mentary than synchronous, although it can often offer far better performance and
scalability.

LDAP is widely used to keep and coordinate network-accessible information, partic-
ularly in large and geographically distributed organizations. Essentially, LDAP lets
you organize information, search for it, create new items, and delete existing items.
The ldap module lets your Python program perform the search, creation, and dele-
tion functions.

See Also
http://python-ldap.sourceforge.net/docs.shtml for all the documentation about the
ldap module and other relevant pointers.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526

Chapter 14CHAPTER 14

Web Programming

14.0 Introduction
Credit: Andy McKay

The Web has been a key technology for many years now, and it has become unusual
to develop an application that doesn’t involve some aspects of the Web. From show-
ing a help file in a browser to using web services, the Web has become an integral
part of most applications.

I came to Python through a rather tortuous path of ASP (Active Server Pages), then
Perl, some Zope, and then Python. Looking back, it seems strange that I didn’t find
Python earlier, but the dominance of Perl and ASP (and later PHP) in this area makes
it difficult for new developers to see the advantages of Python shining through all the
other languages.

Unsurprisingly, Python is an excellent language for web development, and, as a bat-
teries included language, Python comes with most of the modules you need. The rela-
tively recent inclusion of xmlrpclib in the Python Standard Library is a reassuring
indication that batteries continue to be added as the march of technology requires,
making the standard libraries even more useful. One of the modules I often use is
urllib, which demonstrates the power of a simple, well-designed module—saving a
file from the Web in two lines (using urlretrieve) is easy. The cgi module is another
example of a module that has enough functionality to work with, but not too much
to make your scripts slow and bloated.

Compared to other languages, Python seems to have an unusually large number of
application servers and templating languages. While it’s easy to develop anything for
the Web in Python “from scratch”, it would be peculiar and unwise to do so without
first looking at the application servers available. Rather than continually recreating
dynamic pages and scripts, the community has taken on the task of building these
application servers to allow other users to create the content in easy-to-use templat-
ing systems.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.1 Testing Whether CGI Is Working | 527

Zope is the most well-known product in this space and provides an object-oriented
interface to web publishing. With features too numerous to mention, Zope allows a
robust and powerful object-publishing environment. The new, revolutionary major
release, Zope 3, makes Zope more Pythonic and powerful than ever. Quixote and
WebWare are two other application servers with similar, highly modular designs.
Any of these can be a real help to the overworked web developer who needs to reuse
components and to give other users the ability to create web sites. The Twisted net-
work-programming framework, increasingly acknowledged as the best-of-breed
Python framework for asynchronous network programming, is also starting to
expand into the web application server field, with its newer “Nevow” offshoot,
which you’ll also find used in some of the recipes in this chapter.

For all that, an application server is just too much at times, and a simple CGI script
is really all you need. Indeed, the very first recipe, recipe 14.1 “Testing Whether CGI
Is Working,” demonstrates all the ingredients you need to make sure that your web
server and Python CGI scripting setup are working correctly. Writing a CGI script
doesn’t get much simpler than this, although, as the recipe’s discussion points out,
you could use the cgi.test function to make it even shorter.

Another common web-related task is the parsing of HTML, either on your own site
or on other web sites. Parsing HTML tags correctly is not as simple as many develop-
ers first think, as they optimistically assume a few regular expressions or string
searches will see them through. However, we have decided to deal with such issues
in other chapters, such as Chapter 1, Text, rather than in this one. After all, while
HTML was born with and for the Web, these days HTML is also often used in other
contexts, such as for distributing documentation. In any case, most web developers
create more than just web pages, so, even if you, the reader, primarily identify as a
web developer, and maybe turned to this chapter as your first one in the book, you
definitely should peruse the rest of the book, too: many relevant, useful recipes in
other chapters describe parsing XML, reading network resources, performing sys-
tems administration, dealing with images, and many great ideas about developing in
Python, testing your programs, and debugging them!

14.1 Testing Whether CGI Is Working
Credit: Jeff Bauer, Carey Evans

Problem
You want a simple CGI (Common Gateway Interface) program to use as a starting
point for your own CGI programming or to determine whether your setup is func-
tioning properly.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 14: Web Programming

Solution
The cgi module is normally used in Python CGI programming, but here we use only
its escape function to ensure that the value of an environment variable doesn’t acci-
dentally look to the browser as HTML markup. We do all of the real work ourselves
in the following script:

#!/usr/local/bin/python
print "Content-type: text/html"
print
print "<html><head><title>Situation snapshot</title></head><body><pre>"
import sys
sys.stderr = sys.stdout
import os
from cgi import escape
print "Python %s" % sys.version
keys = os.environ.keys()
keys.sort()
for k in keys:
 print "%s\t%s" % (escape(k), escape(os.environ[k]))
print "</pre></body></html>"

Discussion
CGI is a standard that specifies how a web server runs a separate program (often
known as a CGI script) that generates a web page dynamically. The protocol speci-
fies how the server provides input and environment data to the script and how the
script generates output in return. You can use any language to write your CGI
scripts, and Python is well suited for the task.

This recipe is a simple CGI program that takes no input and just displays the current
version of Python and the environment values. CGI programmers should always
have some simple code handy to drop into their cgi-bin directories. You should run
this script before wasting time slogging through your Apache configuration files (or
whatever other web server you want to use for CGI work). Of course, cgi.test does
all this and more, but it may, in fact, do too much. It does so much, and so much is
hidden inside cgi’s innards, that it’s hard to tweak it to reproduce any specific prob-
lems you may be encountering in true scripts. Tweaking the program in this recipe,
on the other hand, is very easy, since it’s such a simple program, and all the parts are
exposed.

Besides, this little script is already quite instructive in its own way. The starting line,
#!/usr/local/bin/python, must give the absolute path to the Python interpreter with
which you want to run your CGI scripts, so you may need to edit it accordingly. A
popular solution for non-CGI scripts is to have a first line (the so-called shebang line)
that looks something like this:

#!/usr/bin/env python

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.1 Testing Whether CGI Is Working | 529

However, this approach puts you at the mercy of the PATH environment setting, since
it runs the first program named python that it finds on the PATH, and that may well
not be what you want under CGI, where you don’t fully control the environment.
Incidentally, many web servers implement the shebang line even when running
under non-Unix systems, so that, for CGI use specifically, it’s not unusual to see
Python scripts on Windows start with a first line such as:

#!c:/python23/python.exe

Another issue you may be contemplating is why the import statements are not right
at the start of the script, as is the usual Python style, but are preceded by a few print

statements. The reason is that import could fail if the Python installation is terribly
misconfigured. In case of failure, Python emits diagnostics to standard error (which
is typically directed to your web server logs, depending on how you set up and con-
figured your web server), and nothing will go to standard output. The CGI standard
demands that all output be on standard output, so we first ensure that a minimal
quantity of output will display a result to a visiting browser. Then, assuming that
import sys succeeds (if it fails, the whole Python installation is so badly broken that
you can do very little about it!), we immediately perform the following assignment:

sys.stderr = sys.stdout

This assignment statement ensures that error output will go to standard output, so
that you’ll have a chance to see it in the visiting browser. You can perform other
import operations or do further work in the script only when this is done. Another
option makes getting tracebacks for errors in CGI scripts much simpler. Simply add
the following at the start of your script:

import cgitb; cgitb.enable()

and the standard Python library module cgitb takes care of whatever else is needed
to get error tracebacks on the browser. However, as already stated, the point of this
recipe is to show how everything is done, rather than just reusing prepackaged funci-
tonality.

One last reflection is that, in Python 2.4, instead of the three lines:

keys = os.environ.keys()
keys.sort()
for k in keys:

used in the recipe, you could use the single line:

for k in sorted(os.environ):

Unfortunately, since CGI scripts must often run in environments you do not con-
trol, I cannot suggest you code to a specific, recent version of Python in this particu-
lar case—particularly not a script such as this one, which is meant to let you examine
and check out the exact circumstances under which your CGI runs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 14: Web Programming

Yet another consideration, not strictly related to Python, is that this script is coded to
emit correct HTML. Just about all known browsers let you get away with skipping
most of the HTML tags that this script outputs, but why skimp on correctness, rely-
ing on the browser to patch your holes? It costs little to emit correct HMTL, so you
should get into the habit of doing things right, when the cost is so modest. (I wish
more authors of web pages, and of programs producing web pages, shared this senti-
ment. If they did, there would be a lot less broken HTML out on the Web!)

See Also
Documentation on the cgi and cgitb standard library modules in the Library Refer-
ence and Python in a Nutshell; a basic introduction to the CGI protocol is available at
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

14.2 Handling URLs Within a CGI Script
Credit: Jürgen Hermann

Problem
You need to build URLs within a CGI script—for example, to send an HTTP redirec-
tion header.

Solution
To build a URL within a script, you need information such as the hostname and
script name. According to the CGI standard, the web server sets up a lot of useful
information in the process environment of a script before it runs the script itself. In a
Python script, we can access the process environment as the dictionary os.environ,
an attribute of the standard Python library os module, and through accesses to the
process environment build our own module of useful helper functions:

import os, string
def isSSL():
 """ Return true if we are on an SSL (https) connection. """
 return os.environ.get('SSL_PROTOCOL', '') != ''
def getScriptname():
 """ Return the scriptname part of the URL ("/path/to/my.cgi"). """
 return os.environ.get('SCRIPT_NAME', '')
def getPathinfo():
 """ Return the remaining part of the URL. """
 pathinfo = os.environ.get('PATH_INFO', '')
 # Fix for a well-known bug in IIS/4.0
 if os.name == 'nt':
 scriptname = getScriptname()
 if pathinfo.startswith(scriptname):
 pathinfo = pathinfo[len(scriptname):]
 return pathinfo
def getQualifiedURL(uri=None):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.2 Handling URLs Within a CGI Script | 531

 """ Return a full URL starting with schema, servername, and port.
 Specifying uri causes it to be appended to the server root URL
 (uri must then start with a slash).
 """
 schema, stdport = (('http', '80'), ('https', '443'))[isSSL()]
 host = os.environ.get('HTTP_HOST', '')
 if not host:
 host = os.environ.get('SERVER_NAME', 'localhost')
 port = os.environ.get('SERVER_PORT', '80')
 if port != stdport: host = host + ":" + port
 result = "%s://%s" % (schema, host)
 if uri: result = result + uri
 return result
def getBaseURL():
 """ Return a fully qualified URL to this script. """
 return getQualifiedURL(getScriptname())

Discussion
URLs can be manipulated in numerous ways, but many CGI scripts have common
needs. This recipe collects a few typical high-level functional needs for URL synthe-
sis from within CGI scripts. You should never hard-code hostnames or absolute
paths in your scripts. Doing so makes it difficult to port the scripts elsewhere or
rename a virtual host. The CGI environment has sufficient information available to
avoid such hard-coding. By importing this recipe’s code as a module, you can avoid
duplicating code in your scripts to collect and use that information in typical ways.

The recipe works by accessing information in os.environ, the attribute of Python’s
standard os module that collects the process environment of the current process and
lets your script access it as if it were a normal Python dictionary. In particular,
os.environ has a get method, just like a normal dictionary does, that returns either
the mapping for a given key or, if that key is missing, a default value that you supply
in the call to get. This recipe performs all accesses through os.environ.get, thus
ensuring sensible behavior even if the relevant environment variables have been left
undefined by your web server (which should never happen—but not all web servers
are free of bugs).

Among the functions presented in this recipe, getQualifiedURL is the one you’ll use
most often. It transforms a URI (Universal Resource Identifier) into a URL on the
same host (and with the same schema) used by the CGI script that calls it. It gets the
information from the environment variables HTTP_HOST, SERVER_NAME, and SERVER_

PORT. Furthermore, it can handle secure (https) as well as normal (http) connec-
tions, and selects between the two by using the isSSL function, which is also part of
this recipe.

Suppose you need to redirect a visiting browser to another location on this same
host. Here’s how you can use a function from this recipe, hard-coding only the redi-
rect location on the host itself, but not the hostname, port, and normal or secure
schema:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 14: Web Programming

example redirect header:
print "Location:", getQualifiedURL("/go/here")

See Also
Documentation on the os standard library module in the Library Reference and
Python in a Nutshell; a basic introduction to the CGI protocol is available at http://
hoohoo.ncsa.uiuc.edu/cgi/overview.html.

14.3 Uploading Files with CGI
Credit: Noah Spurrier, Georgy Pruss

Problem
You need to enable the visitors to your web site to upload files by means of a CGI
script.

Solution
Net of any security checks, safeguards against denial of service (DOS) attacks, and
the like, the task boils down to what’s exemplified in the following CGI script:

#!/usr/local/bin/python
import cgi
import cgitb; cgitb.enable()
import os, sys
try: import msvcrt # are we on Windows?
except ImportError: pass # nope, no problem
else: # yep, need to set I/O to binary mode
 for fd in (0, 1): msvcrt.setmode(fd, os.O_BINARY)
UPLOAD_DIR = "/tmp"
HTML_TEMPLATE = \
"""<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>Upload Files</title>
</head><body><h1>Upload Files</h1>
<form action="%(SCRIPT_NAME)s" method="POST" enctype="multipart/form-data">
File name: <input name="file_1" type="file">

File name: <input name="file_2" type="file">

File name: <input name="file_3" type="file">

<input name="submit" type="submit">
</form> </body> </html>"""
def print_html_form():
 """ print the form to stdout, with action set to this very script (a
 'self-posting form': script both displays AND processes the form)."""
 print "content-type: text/html; charset=iso-8859-1\n"
 print HTML_TEMPLATE % {'SCRIPT_NAME': os.environ['SCRIPT_NAME']}
def save_uploaded_file(form_field, upload_dir):
 """ Save to disk a file just uploaded, form_field being the name of the
 file input field on the form. No-op if field or file is missing."""
 form = cgi.FieldStorage()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.4 Checking for a Web Page’s Existence | 533

 if not form.has_key(form_field): return
 fileitem = form[form_field]
 if not fileitem.file: return
 fout = open(os.path.join(upload_dir, fileitem.filename), 'wb')
 while True:
 chunk = fileitem.file.read(100000)
 if not chunk: break
 fout.write(chunk)
 fout.close()
save_uploaded_file("file_1", UPLOAD_DIR)
save_uploaded_file("file_2", UPLOAD_DIR)
save_uploaded_file("file_3", UPLOAD_DIR)
print_html_form()

Discussion
The CGI script shown in this recipe is very bare-bones, but it does get the job done.
It’s a self-posting script: it displays the upload form, and it processes the form when
the user submits it, complete with any uploaded files. The script just saves files to an
upload directory, which in the recipe is simply set to /tmp.

The script as presented takes no precaution against DOS attacks, so a user could try
to fill up your disk with endless uploads. If you deploy this script on a system that is
accessible to the public, do add checks to limit the number and size of files written to
disk, perhaps depending, also, on how much disk space is still available. A version
that might perhaps be more to your liking can be found at http://zxw.nm.ru/test_w_
upload.py.htm.

See Also
Documentation on the cgi, cgitb, and msvcrt standard library modules in the
Library Reference and Python in a Nutshell.

14.4 Checking for a Web Page’s Existence
Credit: James Thiele, Rogier Steehouder

Problem
You want to check whether an HTTP URL corresponds to an existing web page.

Solution
Using httplib allows you to easily check for a page’s existence without actually
downloading the page itself, just its headers. Here’s a module implementing a func-
tion to perform this task:

"""
httpExists.py
A quick and dirty way to check whether a web file is there.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 14: Web Programming

Usage:
>>> import httpExists
>>> httpExists.httpExists('http://www.python.org/')
True
>>> httpExists.httpExists('http://www.python.org/PenguinOnTheTelly')
Status 404 Not Found : http://www.python.org/PenguinOnTheTelly
False
"""
import httplib, urlparse
def httpExists(url):
 host, path = urlparse.urlsplit(url)[1:3]
 if ':' in host:
 # port specified, try to use it
 host, port = host.split(':', 1)
 try:
 port = int(port)
 except ValueError:
 print 'invalid port number %r' % (port,)
 return False
 else:
 # no port specified, use default port
 port = None
 try:
 connection = httplib.HTTPConnection(host, port=port)
 connection.request("HEAD", path)
 resp = connection.getresponse()
 if resp.status == 200: # normal 'found' status
 found = True
 elif resp.status == 302: # recurse on temporary redirect
 found = httpExists(urlparse.urljoin(url,
 resp.getheader('location', '')))
 else: # everything else -> not found
 print "Status %d %s : %s" % (resp.status, resp.reason, url)
 found = False
 except Exception, e:
 print e.__class__, e, url
 found = False
 return found
def _test():
 import doctest, httpExists
 return doctest.testmod(httpExists)
if __name__ == "__main__":
 _test()

Discussion
While this recipe is very simple and runs quite fast (thanks to the ability to use the
HTTP command HEAD to get just the headers, not the body, of the page), it may be
too simplistic for your specific needs: the HTTP result codes you might need to deal
with may go beyond the simple 200 success code, and 302 temporary redirect, to
include permanent redirects, temporary inaccessibility, permission problems, and so on.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.5 Checking Content Type via HTTP | 535

In my case, I needed to check the correctness of a huge number of mutual links
among pages of a site generated by a complex web application on an intranet, so I
knew I had the privilege of relying on a simple check for “200 or bust.” At any rate,
you can use this simple recipe as a starting point to which to add any refinements
you determine you actually need.

See Also
Documentation on the urlparse and httplib standard library modules in the Library
Reference and Python in a Nutshell.

14.5 Checking Content Type via HTTP
Credit: Bob Stockwell

Problem
You need to determine whether a URL, or an open file, obtained from urllib.open

on a URL, is of a particular content type (such as 'text' for HTML or 'image' for
GIF).

Solution
The content type of any resource can easily be checked through the pseudo-file that
urllib.urlopen returns for the resource. Here is a function to show how to perform
such checks:

import urllib
def isContentType(URLorFile, contentType='text'):
 """ Tells whether the URL (or pseudofile from urllib.urlopen) is of
 the required content type (default 'text').
 """
 try:
 if isinstance(URLorFile, str):
 thefile = urllib.urlopen(URLorFile)
 else:
 thefile = URLorFile
 result = thefile.info().getmaintype() == contentType.lower()
 if thefile is not URLorFile:
 thefile.close()
 except IOError:
 result = False # if we couldn't open it, it's of _no_ type!
 return result

Discussion
For greater flexibility, this recipe accepts either the result of a previous call to
urllib.urlopen, or a URL in string form. In the latter case, the Solution opens the
URL with urllib and, at the end, closes the resulting pseudo-file again. If the attempt

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 14: Web Programming

to open the URL fails, the recipe catches the IOError and returns a result of False,
considering that a URL that cannot be opened is of no type at all, and therefore in
particular is not of the type the caller was checking for. (Alternatively, you might pre-
fer to propagate the exception; if that’s what you want, remove the try and except

clause headers and the result = False assignment that is the body of the except

clause.)

Whether the pseudo-file was passed in or opened locally from a URL string, the info

method of the pseudo-file gives as its result an instance of mimetools.Message (which
doesn’t mean you need to import mimetools yourself—urllib does all that’s needed).
On that object, we can call any of several methods to get the content type, depend-
ing on what exactly we want—gettype to get both main and subtype with a slash in
between (as in 'text/plain'), getmaintype to get the main type (as in 'text'), or
getsubtype to get the subtype (as in 'plain'). In this recipe, we want the main con-
tent type.

The string result from all of the type interrogation methods is always lowercase, so
we take the precaution of calling the lower method on parameter contentType as well,
before comparing for equality.

See Also
Documentation on the urllib and mimetools standard library modules in the Library
Reference and Python in a Nutshell; a list of important content types is at http://
www.utoronto.ca/ian/books/html4ed/appb/mimetype.html; a helpful explanation of
the significance of content types at http://ppewww.ph.gla.ac.uk/~flavell/www/content-
type.html.

14.6 Resuming the HTTP Download of a File
Credit: Chris Moffitt

Problem
You need to resume an HTTP download of a file that has been partially transferred.

Solution
Downloads of large files are sometimes interrupted. However, a good HTTP server
that supports the Range header lets you resume the download from where it was
interrupted. The standard Python module urllib lets you access this functionality
almost seamlessly: you just have to add the required header and intercept the error
code that the server sends to confirm that it will respond with a partial file. Here is a
function, with a little helper class, to perform this task:

import urllib, os
class myURLOpener(urllib.FancyURLopener):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Resuming the HTTP Download of a File | 537

 """ Subclass to override err 206 (partial file being sent); okay for us """
 def http_error_206(self, url, fp, errcode, errmsg, headers, data=None):
 pass # Ignore the expected "non-error" code
def getrest(dlFile, fromUrl, verbose=0):
 myUrlclass = myURLOpener()
 if os.path.exists(dlFile):
 outputFile = open(dlFile, "ab")
 existSize = os.path.getsize(dlFile)
 # If the file exists, then download only the remainder

myUrlclass.addheader("Range","bytes=%s-" % (existSize))
 else:
 outputFile = open(dlFile, "wb")
 existSize = 0
 webPage = myUrlclass.open(fromUrl)
 if verbose:
 for k, v in webPage.headers.items():
 print k, "=", v
 # If we already have the whole file, there is no need to download it again
 numBytes = 0
 webSize = int(webPage.headers['Content-Length'])
 if webSize == existSize:
 if verbose:
 print "File (%s) was already downloaded from URL (%s)" % (
 dlFile, fromUrl)
 else:
 if verbose:
 print "Downloading %d more bytes" % (webSize-existSize)
 while True:
 data = webPage.read(8192)
 if not data:
 break
 outputFile.write(data)
 numBytes = numBytes + len(data)
 webPage.close()
 outputFile.close()
 if verbose:
 print "downloaded", numBytes, "bytes from", webPage.url
 return numbytes

Discussion
The HTTP Range header lets the web server know that you want only a certain range
of data to be downloaded, and this recipe takes advantage of this header. Of course,
the server needs to support the Range header, but since the header is part of the
HTTP 1.1 specification, it’s widely supported. This recipe has been tested with
Apache 1.3 as the server, but I expect no problems with other reasonably modern
servers.

The recipe lets urllib.FancyURLopener do all the hard work of adding a new header,
as well as the normal handshaking. I had to subclass the standard class from urllib

only to make it known that the error 206 is not really an error in this case—so you

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 14: Web Programming

can proceed normally. In the function, I also perform extra checks to quit the down-
load if I’ve already downloaded the entire file.

Check out HTTP 1.1 RFC (2616) to learn more about the meaning of the headers.
You may find a header that is especially useful, and Python’s urllib lets you send
any header you want.

See Also
Documentation on the urllib standard library module in the Library Reference and
Python in a Nutshell; the HTTP 1.1 RFC (http://www.ietf.org/rfc/rfc2616.txt).

14.7 Handling Cookies While Fetching Web
Pages

Credit: Mike Foord, Nikos Kouremenos

Problem
You need to fetch web pages (or other resources from the web) that require you to
handle cookies (e.g., save cookies you receive and also reload and send cookies you
had previously received from the same site).

Solution
The Python 2.4 Standard Library provides a cookielib module exactly for this task.
For Python 2.3, a third-party ClientCookie module works similarly. We can write our
code to ensure usage of the best available cookie-handling module—including none
at all, in which case our program will still run but without saving and resending
cookies. (In some cases, this might still be OK, just maybe slower.) Here is a script to
show how this concept works in practice:

import os.path, urllib2
from urllib2 import urlopen, Request
COOKIEFILE = 'cookies.lwp' # "cookiejar" file for cookie saving/reloading
first try getting the best possible solution, cookielib:
try:
 import cookielib
except ImportError: # no cookielib, try ClientCookie instead
 cookielib = None
 try:
 import ClientCookie
 except ImportError: # nope, no cookies today
 cj = None # so, in particular, no cookie jar
 else: # using ClientCookie, prepare everything
 urlopen = ClientCookie.urlopen
 cj = ClientCookie.LWPCookieJar()
 Request = ClientCookie.Request
else: # we do have cookielib, prepare the jar

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.7 Handling Cookies While Fetching Web Pages | 539

 cj = cookielib.LWPCookieJar()
Now load the cookies, if any, and build+install an opener using them
if cj is not None:
 if os.path.isfile(COOKIEFILE):
 cj.load(COOKIEFILE)
 if cookielib:
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
 urllib2.install_opener(opener)
 else:
 opener = ClientCookie.build_opener(ClientCookie.HTTPCookieProcessor(cj))
 ClientCookie.install_opener(opener)
for example, try a URL that sets a cookie
theurl = 'http://www.diy.co.uk'
txdata = None # or, for POST instead of GET, txdata=urrlib.urlencode(somedict)
txheaders = {'User-agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'}
try:
 req = Request(theurl, txdata, txheaders) # create a request object
 handle = urlopen(req) # and open it
except IOError, e:
 print 'Failed to open "%s".' % theurl
 if hasattr(e, 'code'):
 print 'Error code: %s.' % e.code
else:
 print 'Here are the headers of the page:'
 print handle.info()
you can also use handle.read() to get the page, handle.geturl() to get the
the true URL (could be different from `theurl' if there have been redirects)
if cj is None:
 print "Sorry, no cookie jar, can't show you any cookies today"
else:
 print 'Here are the cookies received so far:'
 for index, cookie in enumerate(cj):
 print index, ': ', cookie
 cj.save(COOKIEFILE) # save the cookies again

Discussion
The third-party module ClientCookie, available for download at http://
wwwsearch.sourceforge.net/ClientCookie/, was so successful that, in Python 2.4, its
functionality has been added to the Python Standard Library—specifically, the
cookie-handling parts in the new module cookielib, the rest in the current version of
urllib2.

So, you do need to be careful if you want your code to work just as well on any 2.4
installation (using the latest and greatest cookielib) or an installation of Python 2.3
with ClientCookie on top. As long as we’re at it, we might as well handle running on
a 2.3 installation that does not have ClientCookie—run anyway, just don’t save and
resend cookies when we lack library code to do so. On some sites, the inability to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 14: Web Programming

handle cookies will just be a bother and perhaps a performance hit due to the loss of
session continuity, but the site will still work. Other sites, of course, will be com-
pletely unusable without cookies.

The recipe’s code is an exercise in the careful management of an idiom that’s an
essential part of making your Python code portable among releases and installations,
while ensuring minimal graceful degradation when third-party modules you’d like to
use just aren’t there. The idiom is known as conditional import and is expressed as
follows:

try:
 import something

except ImportError: # 'something' not available
...code to do without, degrading gracefully...

else: # 'something' IS available, hooray!
...code to run only when something is there...

and then, go on with the rest of your program
...code able to run with or w/o `something'...

The use of “conditional import” is particularly delicate in this recipe because
ClientCookie and cookielib aren’t drop-in replacements for each other—therefore,
careful management is indeed necessary. But, if you study this recipe, you will see
that it is not rocket science—it just requires attention.

One key technique is to make double use of a small number of names as “flags”, with
value None when the object to which they would normally refer is not available. In
this recipe, we do that for cookielib (which refers to the module of that name when
there is one, and otherwise to None) and cj (which refers to a cookie-jar object when
there is any, and otherwise to None). Even better, when feasible, is to assign names
appropriately to refer to the best available object under the circumstances: the recipe
does that for variables urlopen and Request. Note how crucial it is for this purpose
that Python treats all objects as first class: urlopen is a function, Request is a class,
cookielib (if any) a module, cj (if any) an instance object. The distinction, however,
doesn’t matter in the least: the name-object reference concept is exactly the same in
every case, with total uniformity, simplicity, and power.

When either cookielib or ClientCookie is available, the cookies are saved in a file in
cookie jar format (a useful plain-text format that is automatically handled by either
module but can also be examined and modified with text editors and other pro-
grams). If the file already exists when the program runs, cookies are loaded from the
file, ready to be sent back to the appropriate sites.

My reason for developing this code is that I’m developing a cgi-proxy, approx.py
(http://www.voidspace.org.uk/atlantibots/pythonutils.html#cgiproxy), which needs to
be able to handle cookies when feasible. To keep the proxy usable on various ver-
sions of Python, and ensure it degrades gracefully when no cookie-handling library is
available, I needed to develop the carefully managed conditional imports that are
shown in the recipe’s Solution. I decided to share them in this recipe since, besides

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.8 Authenticating with a Proxy for HTTPS Navigation | 541

the importance of cookie handling, conditional imports are such a generally impor-
tant Python idiom. Particularly when installing your code on a server you don’t con-
trol, it is unfortunately quite common to have little say in which version of Python is
running, nor in which third-party extensions are installed—exactly the kind of situa-
tion that requires the conditional import technique to ensure your code does the best
it can under the circumstances.

See Also
Documentation on the cookielib and urllib2 standard library modules in the
Library Reference for Python 2.4; ClientCookie is at http://
wwwsearch.sourceforge.net/ClientCookie/.

14.8 Authenticating with a Proxy for HTTPS
Navigation

Credit: John Nielsen

Problem
You need to use httplib for HTTPS navigation through a proxy that requires basic
authentication, but httplib out of the box supports HTTPS only through proxies
that do not require authentication.

Solution
Unfortunately, it takes a wafer-thin amount of trickery to achieve this recipe’s task.
Here is a script that is just tricky enough:

import httplib, base64, socket
parameters for the script
user = 'proxy_login'; passwd = 'proxy_pass'
host = 'login.yahoo.com'; port = 443
phost = 'proxy_host'; pport = 80
setup basic authentication
user_pass = base64.encodestring(user+':'+passwd)
proxy_authorization = 'Proxy-authorization: Basic '+user_pass+'\r\n'
proxy_connect = 'CONNECT %s:%s HTTP/1.0\r\n' % (host, port)
user_agent = 'User-Agent: python\r\n'
proxy_pieces = proxy_connect+proxy_authorization+user_agent+'\r\n'
connect to the proxy
proxy_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
proxy_socket.connect((phost, pport))
proxy_socket.sendall(proxy_pieces+'\r\n')
response = proxy_socket.recv(8192)
status = response.split()[1]
if status!='200':
 raise IOError, 'Connecting to proxy: status=%s' % status
trivial setup for SSL socket

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 14: Web Programming

ssl = socket.ssl(proxy_socket, None, None)
sock = httplib.FakeSocket(proxy_socket, ssl)
initialize httplib and replace the connection's socket with the SSL one
h = httplib.HTTPConnection('localhost')
h.sock = sock
and finally, use the now-HTTPS httplib connection as you wish
h.request('GET', '/')
r = h.getresponse()
print r.read()

Discussion
HTTPS is essentially HTTP spoken on top of an SSL connection rather than a plain
socket. So, this recipe connects to the proxy with basic authentication at the very
lowest level of Python socket programming, wraps an SSL socket around the proxy
connection thus secured, and finally plays a little trick under httplib’s nose to use
that laboriously constructed SSL socket in place of the plain socket in an
HTTPConnection instance. From that point onwards, you can use the normal httplib
approach as you wish.

See Also
Documentation on the socket and httplib standard library modules in the Library
Reference and Python in a Nutshell.

14.9 Running a Servlet with Jython
Credit: Brian Zhou

Problem
You need to code a servlet using Jython.

Solution
Java (and Jython) are most often deployed server-side, and thus servlets are a typical
way of deploying your code. Jython makes servlets very easy to use. Here is a tiny
“hello world” example servlet:

import java, javax, sys
class hello(javax.servlet.http.HttpServlet):
 def doGet(self, request, response):
 response.setContentType("text/html")
 out = response.getOutputStream()
 print >>out, """<html>
<head><title>Hello World</title></head>
<body>Hello World from Jython Servlet at %s!
</body>
</html>
""" % (java.util.Date(),)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.10 Finding an Internet Explorer Cookie | 543

 out.close()
 return

Discussion
This recipe is no worse than a typical JSP (Java Server Page) (see http://
jywiki.sourceforge.net/index.php?JythonServlet for setup instructions). Compare this
recipe to the equivalent Java code: with Python, you’re finished coding in the same
time it takes to set up the framework in Java. Most of your setup work will be strictly
related to Tomcat or whichever servlet container you use. The Jython-specific work
is limited to copying jython.jar to the WEB-INF/lib subdirectory of your chosen serv-
let context and editing WEB-INF/web.xml to add <servlet> and <servlet-mapping>

tags so that org.python.util.PyServlet serves the *.py <url-pattern>.

The key to this recipe (like most other Jython uses) is that your Jython scripts and
modules can import and use Java packages and classes just as if the latter were
Python code or extensions. In other words, all of the Java libraries that you could use
with Java code are similarly usable with Python (i.e., Jython) code. This example
servlet first uses the standard Java servlet response object to set the resulting page’s
content type (to text/html) and to get the output stream. Afterwards, it can print to
the output stream, since the latter is a Python file-like object. To further show off
your seamless access to the Java libraries, you can also use the Date class of the
java.util package, incidentally demonstrating how it can be printed as a string from
Jython.

See Also
Information on Java servlets at http://java.sun.com/products/servlet/; information on
JythonServlet at http://jywiki.sourceforge.net/index.php?JythonServlet.

14.10 Finding an Internet Explorer Cookie
Credit: Andy McKay

Problem
You need to find a specific IE cookie.

Solution
Cookies that your browser has downloaded contain potentially useful information,
so it’s important to know how to get at them. With Internet Explorer (IE), one
simple approach is to access the registry to find where the cookies are, then read
them as files. Here is a module with the function you need for that purpose:

import re, os, glob
import win32api, win32con
def _getLocation():

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 14: Web Programming

 """ Examines the registry to find the cookie folder IE uses """
 key = r'Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders'
 regkey = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, key, 0,
 win32con.KEY_ALL_ACCESS)
 num = win32api.RegQueryInfoKey(regkey)[1]
 for x in range(num):
 k = win32api.RegEnumValue(regkey, x)
 if k[0] == 'Cookies':
 return k[1]
def _getCookieFiles(location, name):
 """ Rummages through cookie folder, returns filenames including `name'.
 `name' is normally the domain, e.g 'activestate' to get cookies for
 activestate.com (also e.g. for activestate.foo.com, but you can
 filter out such accidental hits later). """
 filemask = os.path.join(location, '*%s*' % name)
 return glob.glob(filemask)
def _findCookie(filenames, cookie_re):
 """ Look through a group of files for a cookie that satisfies a
 given compiled RE, returning first such cookie found, or None. """
 for file in filenames:
 data = open(file, 'r').read()
 m = cookie_re.search(data)
 if m: return m.group(1)
def findIECookie(domain, cookie):
 """ Finds the cookie for a given domain from IE cookie files """
 try:
 l = _getLocation()
 except Exception, err:
 # Print a debug message
 print "Error pulling registry key:", err
 return None
 # Found the key; now find the files and look through them
 f = _getCookieFiles(l, domain)
 if f:
 cookie_re = re.compile('%s\n(.*?)\n' % cookie)
 return _findCookie(f, cookie_re)
 else:
 print "No cookies for domain (%s) found" % domain
 return None
if __name__=='__main__':
 print findIECookie(domain='kuro5hin', cookie='k5-new_session')

Discussion
While Netscape cookies are in a text file, IE keeps cookies as files in a directory, and
you need to access the registry to find which directory that is. To access the Windows
registry, this recipe uses the PyWin32 Windows-specific Python extensions; as an alter-
native, you could use the _winreg module that is part of Python’s standard distribu-
tion for Windows. This recipe’s code has been tested and works on IE 5 and 6.

In the recipe, the _getLocation function accesses the registry and finds and returns
the directory that IE is using for cookie files. The _getCookieFiles function receives

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.11 Generating OPML Files | 545

the directory as an argument and uses standard module glob to return all filenames
in the directory whose names include a particular requested domain name. The
_findCookie function opens and reads all such files in turn, until it finds one whose
contents satisfy a compiled regular expression that the function receives as an argu-
ment. It then returns the substring of the file’s contents corresponding to the first
parenthesized group in the regular expression, or None when no satisfactory file is
found. As the leading underscore in the names indicates, these are all internal func-
tions, used only as implementation details of the only function this module is meant
to expose, namely findIECookie, which uses the other functions to locate and return
the value of a specific cookie for a given domain.

An alternative to this recipe would be to write a Python extension, or use calldll or
ctypes, to access the InternetGetCookie API function in Wininet.DLL, as docu-
mented on MSDN (Microsoft Developer Network).

See Also
The Unofficial Cookie FAQ (http://www.cookiecentral.com/faq/) is chock-full of
information on cookies; documentation for win32api and win32con in PyWin32
(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows API documentation available
from Microsoft (http://msdn.microsoft.com); Mark Hammond and Andy Robinson,
Python Programming on Win32 (O’Reilly); calldll is available at Sam Rushing’s
page (http://www.nightmare.com/~rushing/dynwin/); ctypes is at http://
sourceforge.net/projects/ctypes.

14.11 Generating OPML Files
Credit: Moshe Zadka, Premshree Pillai, Anna Martelli Ravenscroft

Problem
OPML (Outline Processor Markup Language) is a standard file format for sharing
subscription lists used by RSS (Really Simple Syndication) feed readers and aggrega-
tors. You want to share your subscription list, but your blogging site provides only a
FOAF (Friend-Of-A-Friend) page, not one in the standard OPML format.

Solution
Use urllib2 to open and read the FOAF page and xml.dom to parse the data received;
then, output the data in the proper OPML format to a file. For example, LiveJournal
is a popular blogging site that provides FOAF pages; here’s a module with the func-
tions you need to turn those pages into OPML files:

#!/usr/bin/python
import sys

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 14: Web Programming

import urllib2
import HTMLParser
from xml.dom import minidom, Node
def getElements(node, uri, name):
 ''' recursively yield all elements w/given namespace URI and name '''
 if (node.nodeType==Node.ELEMENT_NODE and
 node.namespaceURI==uri and
 node.localName==name):
 yield node
 for node in node.childNodes:
 for node in getElements(node, uri, name):
 yield node
class LinkGetter(HTMLParser.HTMLParser):
 ''' HTML parser subclass which collecs attributes of link tags '''
 def __init__(self):
 HTMLParser.HTMLParser.__init__(self)
 self.links = []
 def handle_starttag(self, tag, attrs):
 if tag == 'link':
 self.links.append(attrs)
def getRSS(page):
 ''' given a `page' URL, returns the HREF to the RSS link '''
 contents = urllib2.urlopen(page)
 lg = LinkGetter()
 try:
 lg.feed(contents.read(1000))
 except HTMLParser.HTMLParserError:
 pass
 links = map(dict, lg.links)
 for link in links:
 if (link.get('rel')=='alternate' and
 link.get('type')=='application/rss+xml'):
 return link.get('href')
def getNicks(doc):
 ''' given an XML document's DOM, `doc', yields a triple of info for
 each contact: nickname, blog URL, RSS URL '''
 for element in getElements(doc, 'http://xmlns.com/foaf/0.1/', 'knows'):
 person, = getElements(element, 'http://xmlns.com/foaf/0.1/', 'Person')
 nick, = getElements(person, 'http://xmlns.com/foaf/0.1/', 'nick')
 text, = nick.childNodes
 nickText = text.toxml()
 blog, = getElements(person, 'http://xmlns.com/foaf/0.1/', 'weblog')
 blogLocation = blog.getAttributeNS(
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', 'resource')
 rss = getRSS(blogLocation)
 if rss:
 yield nickText, blogLocation, rss
def nickToOPMLFragment((nick, blogLocation, rss)):
 ''' given a triple (nickname, blog URL, RSS URL), returns a string
 that's the proper OPML outline tag representing that info '''
 return '''
 <outline text="%(nick)s"
 htmlUrl="%(blogLocation)s"
 type="rss"

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.11 Generating OPML Files | 547

 xmlUrl="%(rss)s"/>
 ''' % dict(nick=nick, blogLocation=blogLocation, rss=rss)
def nicksToOPML(fout, nicks):
 ''' writes to file `fout' the OPML document representing the
 iterable of contact information `nicks' '''
 fout.write('''<?xml version="1.0" encoding="utf-8"?>
 <opml version="1.0">
 <head><title>Subscriptions</title></head>
 <body><outline title="Subscriptions">
 ''')
 for nick in nicks:
 print nick
 fout.write(nickToOPMLFragment(nick))
 fout.write("</outline></body></opml>\n")
def docToOPML(fout, doc):
 ''' writes to file `fout' the OPLM for XML DOM `doc' '''
 nicksToOPML(fout, getNicks(doc))
def convertFOAFToOPML(foaf, opml):
 ''' given URL `foaf' to a FOAF page, writes its OPML equivalent to
 a file named by string `opml' '''
 f = urllib2.urlopen(foaf)
 doc = minidom.parse(f)
 docToOPML(file(opml, 'w'), doc)
def getLJUser(user):
 ''' writes an OPLM file `user'.opml for livejournal's FOAF page '''
 convertFOAFToOPML('http://www.livejournal.com/users/%s/data/foaf' % user,
 user+".opml")
if __name__ == '__main__':
 # example, when this module is run as a main script
 getLJUser('moshez')

Discussion
RSS feeds have become extremely popular for reading news, blogs, wikis, and so on.
OPML is one of the standard file formats used to share subscription lists among RSS
fans. This recipe generates an OPML file that can be opened with any RSS reader.
With an OPML file, you can share your favorite subscriptions with anyone you like,
publish it to the Web, and so on.

getElements is a convenience function that gets written in almost every XML DOM-
processing application. It recursively scans the document, finding nodes that satisfy
certain criteria. This version of getElements is somewhat quick and dirty, but it is
good enough for our purposes. getNicks is where the heart of the parsing brains lie.
It calls getElements to look for “foaf:knows” nodes, and inside those, it looks for the
“foaf:nick” element, which contains the LiveJournal nickname of the user, and uses a
generator to yield the nicknames in this FOAF document.

Note an important idiom used four times in the body of getNicks:

 name, = some iterable

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 14: Web Programming

The key is the comma after name, which turns the left-hand side of this assignment
into a one-item tuple, making the assignment into what’s technically known as an
unpacking assignment. Unpacking assignments are of course very popular in Python
(see recipe 19.4 “Unpacking a Few Items in a Multiple Assignment” for a technique
to make them even more widely applicable) but normally with at least two names on
the left of the assignment, such as:

 aname, another = iterable yielding 2 items

The idiom used in getNicks has exactly the same function, but it demands that the
iterable yield exactly one item (otherwise, Python raises a ValueError exception).
Therefore, the idiom has the same semantics as:

 _templist = some iterable

 if len(_templist) != 1:
 raise ValueError, 'too many values to unpack'
 name = _templist[0]
 del _templist

Obviously, the name, = ... idiom is much cleaner and more compact than this equiva-
lent snippet, which is worth keeping in mind for the next time you need to express
the same semantics.

nicksToOPML, together with its helper function nickToOPMLFragment, generates the
OPML, while docToOPML ties together getNicks and nicksToOPML into a FOAF->OPML
convertor. saveUser is the main function, which actually interacts with the operating
system (accessing the network to get the FOAF, and using a file to save the OPML).

The recipe has a specific function getLJUser(user) to work with the LiveJournal
(http://www.livejournal.com) friends lists. However, the point is that the main
convertFOAFToOPML function is general enough to use for other sites as well. The vari-
ous helper functions can also come in handy in your own different but related tasks.
For example, the getRSS function (with some aid from its helper class LinkGetter)
finds and returns a link to the RSS feed (if one exists) for a given web site.

See Also
About OPML, http://feeds.scripting.com/whatIsOpml; for more on RSS readers, http://
blogspace.com/rss/readers; for FOAF Vocabulary Specification, http://xmlns.com/foaf/
0.1/.

14.12 Aggregating RSS Feeds
Credit: Valentino Volonghi, Peter Cogolo

Problem
You need to aggregate potentially very high numbers of RSS feeds, with top perfor-
mance and scalability.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.12 Aggregating RSS Feeds | 549

Solution
Parsing RSS feeds in Python is best done with Mark Pilgrim’s Universal Feed Parser
from http://www.feedparser.org, but aggregation requires a lot of network activity, in
addition to parsing.

As for any network task demanding high performance, Twisted is a good starting
point. Say that you have in out.py a module that binds a huge list of RSS feed names
to a variable named rss_feed, each feed name represented as a tuple consisting of a
URL and a description (e.g., you can download a module exactly like this from http:/
/xoomer.virgilio.it/dialtone/out.py.). You can then build an aggregator server on top of
that list, as follows:

#!/usr/bin/python
from twisted.internet import reactor, protocol, defer
from twisted.web import client
import feedparser, time, sys, cStringIO
from out import rss_feed as rss_feeds
DEFERRED_GROUPS = 60 # Number of simultaneous connections
INTER_QUERY_TIME = 300 # Max Age (in seconds) of each feed in the cache
TIMEOUT = 30 # Timeout in seconds for the web request
dict cache's structure will be the following: { 'URL': (TIMESTAMP, value) }
cache = { }
class FeederProtocol(object):
 def __init__(self):
 self.parsed = 0
 self.error_list = []
 def isCached(self, site):
 ''' do we have site's feed cached (from not too long ago)? '''
 # how long since we last cached it (if never cached, since Jan 1 1970)
 elapsed_time = time.time() - cache.get(site, (0, 0))[0]
 return elapsed_time < INTER_QUERY_TIME
 def gotError(self, traceback, extra_args):
 ''' an error has occurred, print traceback info then go on '''
 print traceback, extra_args
 self.error_list.append(extra_args)
 def getPageFromMemory(self, data, addr):
 ''' callback for a cached page: ignore data, get feed from cache '''
 return defer.succeed(cache[addr][1])
 def parseFeed(self, feed):
 ''' wrap feedparser.parse to parse a string '''
 try: feed+''
 except TypeError: feed = str(feed)
 return feedparser.parse(cStringIO.StringIO(feed))
 def memoize(self, feed, addr):
 ''' cache result from feedparser.parse, and pass it on '''
 cache[addr] = time.time(), feed
 return feed
 def workOnPage(self, parsed_feed, addr):
 ''' just provide some logged feedback on a channel feed '''
 chan = parsed_feed.get('channel', None)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 14: Web Programming

 if chan:
 print chan.get('title', '(no channel title?)')
 return parsed_feed
 def stopWorking(self, data=None):
 ''' just for testing: we close after parsing a number of feeds.
 Override depending on protocol/interface you use to communicate
 with this RSS aggregator server.
 '''
 print "Closing connection number %d..." % self.parsed
 print "=-"*20
 self.parsed += 1
 print 'Parsed', self.parsed, 'of', self.END_VALUE
 if self.parsed >= self.END_VALUE:
 print "Closing all..."
 if self.error_list:
 print 'Observed', len(self.error_list), 'errors'
 for i in self.error_list:
 print i
 reactor.stop()
 def getPage(self, data, args):
 return client.getPage(args, timeout=TIMEOUT)
 def printStatus(self, data=None):
 print "Starting feed group..."
 def start(self, data=None, standalone=True):
 d = defer.succeed(self.printStatus())
 for feed in data:
 if self.isCached(feed):
 d.addCallback(self.getPageFromMemory, feed)
 d.addErrback(self.gotError, (feed, 'getting from memory'))
 else:
 # not cached, go and get it from the web directly
 d.addCallback(self.getPage, feed)
 d.addErrback(self.gotError, (feed, 'getting'))
 # once gotten, parse the feed and diagnose possible errors
 d.addCallback(self.parseFeed)
 d.addErrback(self.gotError, (feed, 'parsing'))
 # put the parsed structure in the cache and pass it on
 d.addCallback(self.memoize, feed)
 d.addErrback(self.gotError, (feed, 'memoizing'))
 # now one way or another we have the parsed structure, to
 # use or display in whatever way is most appropriate
 d.addCallback(self.workOnPage, feed)
 d.addErrback(self.gotError, (feed, 'working on page'))
 # for testing purposes only, stop working on each feed at once
 if standalone:
 d.addCallback(self.stopWorking)
 d.addErrback(self.gotError, (feed, 'while stopping'))
 if not standalone:
 return d
class FeederFactory(protocol.ClientFactory):
 protocol = FeederProtocol()
 def __init__(self, standalone=False):
 self.feeds = self.getFeeds()
 self.standalone = standalone

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.12 Aggregating RSS Feeds | 551

 self.protocol.factory = self
 self.protocol.END_VALUE = len(self.feeds) # this is just for testing
 if standalone:
 self.start(self.feeds)
 def start(self, addresses):
 # Divide into groups all the feeds to download
 if len(addresses) > DEFERRED_GROUPS:
 url_groups = [[] for x in xrange(DEFERRED_GROUPS)]
 for i, addr in enumerate(addresses):
 url_groups[i%DEFERRED_GROUPS].append(addr[0])
 else:
 url_groups = [[addr[0]] for addr in addresses]
 for group in url_groups:
 if not self.standalone:
 return self.protocol.start(group, self.standalone)
 else:
 self.protocol.start(group, self.standalone)
 def getFeeds(self, where=None):
 # used for a complete refresh of the feeds, or for testing purposes
 if where is None:
 return rss_feeds
 return None
if __name__=="__main__":
 f = FeederFactory(standalone=True)
 reactor.run()

Discussion
RSS is a lightweight XML format designed for sharing headlines, news, blogs, and
other web contents. Mark Pilgrim’s Universal Feed Parser (http://
www.feedparser.org) does a great job of parsing “feeds” that can be in various dia-
lects of RSS format into a uniform memory representation based on Python dictio-
naries. This recipe builds on top of feedparser to provide a full-featured RSS
aggregator.

This recipe is scalable to very high numbers of feeds and is usable in multiclient envi-
ronments. Both characteristics depend essentially on this recipe being built with the
powerful Twisted framework for asynchronous network programming. A simple web
interface built with Nevow (from http://www.nevow.com) is also part of the latest
complete package for this aggregator, which you can download from my blog at
http://vvolonghi.blogspot.com/.

An important characteristic of this recipe’s code is that you can easily set the follow-
ing operating parameters to improve performance:

• Number of parallel connections to use for feed downloading

• Timeout for each feed request

• Maximum age of a feed in the aggregator’s cache

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 14: Web Programming

Being able to set these parameters helps you balance performance, network load, and
load on the machine on which you’re running the aggregator.

See Also
Universal Feed Parser is at http://www.feedparser.org; the latest version of this RSS
aggregator is at http://vvolonghi.blogspot.com/; Twisted is at http://twistedmatrix.com/.

14.13 Turning Data into Web Pages
Through Templates

Credit: Valentino Volonghi

Problem
You need to turn some Python data into web pages based on templates, meaning files
or strings of HTML code in which the data gets suitably inserted.

Solution
Templating with Python can be accomplished in an incredible number of ways. but
my favorite is Nevow.

The Nevow web toolkit works with the Twisted networking framework to provide
excellent templating capabilities to web sites that are coded on the basis of Twisted’s
powerful asynchronous model. For example, here’s one way to render a list of dictio-
naries into a web page according to a template, with Nevow and Twisted:

from twisted.application import service, internet
from nevow import rend, loaders, appserver
dct = [{'name':'Mark', 'surname':'White', 'age':'45'},
 {'name':'Valentino', 'surname':'Volonghi', 'age':'21'},
 {'name':'Peter', 'surname':'Parker', 'age':'Unknown'},
]
class Pg(rend.Page):
 docFactory = loaders.htmlstr("""
 <html><head><title>Names, Surnames and Ages</title></head>
 <body>
 <ul nevow:data="dct" nevow:render="sequence">
 <li nevow:pattern="item" nevow:render="mapping">
 <nevow:slot name="name"/>
 <nevow:slot name="surname"/>
 <nevow:slot name="age"/>

 </body>
 </html>
 """)
 def __init__(self, dct):
 self.data_dct = dct

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.13 Turning Data into Web Pages Through Templates | 553

 rend.Page.__init__(self)
site = appserver.NevowSite(Pg(dct))
application = service.Application("example")
internet.TCPServer(8080, site).setServiceParent(application)

Save this code to nsa.tac. Now, entering at a shell command prompt twistd -noy

nsa.tac serves up the data, formatted into HTML as the template specifies, as a tiny
web site. You can visit the site, at http://localhost:8080, by running a browser on the
same computer where the twistd command is running. On the command window
where twistd is running, you’ll see a lot of information, roughly equivalent to a typi-
cal web server’s log file.

Discussion
This recipe uses Twisted (http://www.twistedmatrix.com) for serving a little web site
built with Nevow (http://nevow.com/). Twisted is a large and powerful framework for
writing all kinds of Python programs that interact with the network (including, of
course, web servers). Nevow is a web application construction kit, normally used in
cooperation with a Twisted server but usable in other ways. For example, you could
write Nevow CGI scripts that can run with any web server. (Unfortunately, CGI
scripts’ performance might prove unsatisfactory for many applications, while
Twisted’s performance and scalability are outstanding.)

A vast range of choices is available for packages you can use to perform templating
with Python. You can look up some of them at http://www.webwareforpython.org/
Papers/Templates/ (which lists a dozen packages suitable for use with the Webware
web development toolkit), and specific ones at http://htmltmpl.sourceforge.net/, http:/
/freespace.virgin.net/hamish.sanderson/htmltemplate.html, http://aspn.activestate.com/
ASPN/Cookbook/Python/Recipe/52305, http://www.alcyone.com/pyos/empy/, http://
www.entrian.com/PyMeld/... and many, many more besides. I definitely don’t claim
to have thoroughly tried each and every one of these dozens of templating systems in
production situations, and I wonder whether anyone can truthfully make such a
claim! However, out of all I have tried, my favorite is Nevow.

Nevow builds web pages by working on the HTML DOM tree. Recipe 14.14 “Ren-
dering Arbitrary Objects with Nevow” shows how you can build such a DOM tree
from within your program by using the stan subsystem of Nevow. This recipe shows
that you can also building a DOM tree from HTML source, known as a template. In
this case, for simplicity, we keep that template source in a string in our code, and
load the DOM for it by calling loaders.htmlstr; more commonly, we keep the tem-
plate source in a separate .html file, and load the DOM for it by calling
loaders.htmlfile.

Examining the HTML string, you will notice it contains, besides standard HTML
tags and attributes, a few attributes and one tag from the 'nevow:' namespace, such
as 'nevow:slot', 'nevow:data' and 'nevow:render'. These additions are in accord
with the HTML standards, and also, in practice, the additions work with all brows-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 14: Web Programming

ers. They amount to Nevow defining its own small supplementary namespace, so
that HTML templates can express directives to Nevow for building a dynamic page
from the template together with data coming from Python code. Note that the
attributes and tags in the 'nevow:' namespace do not remain in the HTML output
from Nevow: you can verify that, as you visit the web page served by this recipe’s
script, by asking your browser to “view source”. Nevertheless, it’s important that
template files are perfectly correct HTML: this means those files can be edited with
all kinds of specialized HTML editor programs! So, like many other templating sys-
tems, Nevow chooses to have correct HTML as its input, as well as (of course) as its
output.

The 'nevow:data' directive defines the source of the data for the page: in this case,
we use the data_dct attribute of the Pg class instance which is building the page. The
'nevow:render' directive defines the method to use for rendering the data into
HTML strings. In this case, we use two standard rendering methods supplied by
Nevow itself: sequence, for rendering a sequence of items, such as a list, one after the
other; and mapping, for rendering items of a mapping, such as a dictionary, based on
the items’ keys appearing as name attributes of nevow:slot tags. More generally, we
could code our own rendering methods in any class that subclasses rend.Page.

After defining the Pg class, the recipe continues by building a site object, then an
application object, then a TCP server on port 8080 using that site and application—
all of this building makes up a common Twisted idiom. The source file nsa.tac into
which you save the code from this recipe is not meant to be run with the usual
python interpreter. Rather, you should run nsa.tac with the twistd command that you
installed as part of Twisted’s own installation procedure: twistd handles all the
startup, daemonization, and logging issues, depending on the flags we pass to it.
That is exactly why, by convention, one should normally use file extension .tac,
rather than .py, for source files that are meant to be run with twistd, rather than
directly with python—to avoid any confusion.

Given the experimental, toy-like nature of this recipe, you should pass the flags -noy,
to ask twistd to run in the foreground and to “log” information to standard output
rather than to some file. An even better idea is to read up on twistd in the Twisted
documentation, to learn about all the options for the flags.

See Also
Twisted is at http://www.twistedmatrix.com; Nevow is at http://nevow.com/.

14.14 Rendering Arbitrary Objects with Nevow
Credit: Valentino Volonghi, Matt Goodall

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.14 Rendering Arbitrary Objects with Nevow | 555

Problem
You’re writing a web application that uses the Twisted networking framework and
the Nevow subsystem for web rendering. You need to be able to render some arbi-
trary Python objects to a web page.

Solution
Interfaces and adapters are the Twisted and Nevow approach to this task. Here is a
toy example web server script to show how they work:

from twisted.application import internet, service
from nevow import appserver, compy, inevow, loaders, rend
from nevow import tags as T
Define some simple classes to be the example's "application data"
class Person(object):
 def __init__(self, firstName, lastName, nickname):
 self.firstName = firstName
 self.lastName = lastName
 self.nickname = nickname
class Bookmark(object):
 def __init__(self, name, url):
 self.name = name
 self.url = url
Adapter subclasses are the right way to join application data to the web:
class PersonView(compy.Adapter):
 """ Render a full view of a Person. """
 __implements__ = inevow.IRenderer
 attrs = 'firstName', 'lastName', 'nickname'
 def rend(self, data):
 return T.div(_class="View person") [
 T.p['Person'],
 T.dl[[(T.dt[attr], T.dd[getattr(self.original, attr)])
 for attr in self.attrs]
]
]
class BookmarkView(compy.Adapter):
 """ Render a full view of a Bookmark. """
 __implements__ = inevow.IRenderer
 attrs = 'name', 'url'
 def rend(self, data):
 return T.div(_class="View bookmark") [
 T.p['Bookmark'],
 T.dl[[(T.dt[attr], T.dd[getattr(self.original, attr)])
 for attr in self.attrs]
]
]
register the rendering adapters (could be done from a config textfile)
compy.registerAdapter(PersonView, Person, inevow.IRenderer)
compy.registerAdapter(BookmarkView, Bookmark, inevow.IRenderer)
some example data instances for the 'application'
objs = [

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 14: Web Programming

 Person('Valentino', 'Volonghi', 'dialtone'),
 Person('Matt', 'Goodall', 'mg'),
 Bookmark('Nevow', 'http://www.nevow.com'),
 Person('Alex', 'Martelli', 'aleax'),
 Bookmark('Alex', 'http://www.aleax.it/'),
 Bookmark('Twisted', 'http://twistedmatrix.com/'),
 Bookmark('Python', 'http://www.python.org'),
]
a simple Page that renders a list of objects
class Page(rend.Page):
 def render_item(self, ctx, data):
 return inevow.IRenderer(data)
 docFactory = loaders.stan(
 T.html[
 T.body[
 T.ul(data=objs, render=rend.sequence)[
 T.li(pattern='item')[render_item],
],
],
]
)
start this very-special-purpose tiny toy webserver:
application = service.Application('irenderer')
httpd = internet.TCPServer(8000, appserver.NevowSite(Page()))
httpd.setServiceParent(application)

Discussion
This recipe’s purpose is to provide an example of how to get Nevow to render
instances of application classes directly to a web page. To supply this example, the
recipe shows two classes, Person and Bookmark, whose instances contain informa-
tion which, one can suppose, is coming from a database, or from a file, or from some
other site on the web, wherever.

A key point is that the application classes do not get altered in any way to allow their
instances to be rendered onto web pages: rather, adaptation is used to allow
instances of such classes to be rendered through separate renderer-adapter classes.

We need two different adapters, one each for Person and Bookmark. We code the two
adapters as classes PersonView and BookmarkView, each inheriting from compy.Adapter

and overriding the rend method.

compy.Adapter is an abstract superclass intended just for this purpose: it accepts as its
constructor argument an object that must be adapted to another interface, and holds
that object as self.original for its subclasses’ benefit. Each subclass asserts that it
implements inevow.IRenderer by listing that interface in its class-level __implements__
attribute.

inevow.IRenderer is an interface that supplies a rend method. The Nevow rendering
pipeline knows about IRenderer and calls the rend method of the interface to serial-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.14 Rendering Arbitrary Objects with Nevow | 557

ize objects to HTML. Objects that implement the interface (on their own behalf or as
adapters of other objects) can directly become part of the rendering pipeline.

The two key statements of this recipe are the two calls to the registerAdapter func-
tion of Nevow’s module compy:

compy.registerAdapter(PersonView, Person, inevow.IRenderer)
compy.registerAdapter(BookmarkView, Bookmark, inevow.IRenderer)

These calls tell Nevow that PersonView is the class to use to adapt any instance of
Person to interface IRenderer, and similarly for BookmarkView and Bookmark. So, when
the IRenderer interface is called with an instance p of Person as its argument, it auto-
matically returns an adapter that is an instance of PersonView with p as its
self.original (and, again, similarly for Bookmark).

Note how accurately this approach distributes appropriate knowledge to the various
parts of the software and minimizes coupling among them while strengthening cohe-
sion within each. Nevow itself has no built-in knowledge of any application class nor
of any specific adapter: nor does it need any such knowledge. Nevow just specifies
the IRenderer interface it needs for rendering and the registerAdapter function used
to inform the framework about adaptation connections. Application-level classes nei-
ther have nor need any knowledge of the framework at all. Each adapter class knows
about the application level class it’s adapting, the interface it’s implementing, and
utilities such as the Adapter base class that the framework supplies (just to factor out
a little repetitive coding that would be needed otherwise), and the tags mechanism.
(The tags mechanism eases dynamic generation of HTML output. However, you
could code adapters to return strings with HTML markup directly, if that suited the
needs of your specific application better than the tags mechanism does.)

Finally, the recipe includes an example Page class which ties everything together—
again, for convenience, using tags to generate the output. Page uses (explicitly) the
rend.sequence renderer provided by Nevow to loop over a sequence and render each
item, and (implicitly) the various adapters, by “casting” each item to the IRenderer

interface. The recipe ends with three lines to build Twisted application and service
objects and to put them together, so that running this recipe’s script with Twisted’s
twistd general-purpose daemon provides a small demonstration one-page web site
running on the local host at port 8000.

A more complete (and complicated) version of this recipe can be found as part of the
Nevow 0.3 distribution, downloadable from http://www.nevow.com, as examples/
irenderer.tac.

See Also
Nevow is at http://www.nevow.com; Twisted is at http://twistedmatrix.com/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558

Chapter 15CHAPTER 15

Distributed Programming

15.0 Introduction
Credit: Jeremy Hylton, Google, Inc.

The recipes in this chapter describe simple techniques for using Python in distrib-
uted systems. Programming distributed systems is a difficult challenge, and recipes
alone won’t even come close to completely solving it. The recipes help you get pro-
grams on different computers talking to each other, so that you can start writing
applications.

Remote Procedure Call (RPC) is an attractive approach to structuring a distributed
system. The details of network communication are exposed through an interface that
looks like normal procedure calls. When you call a function on a remote server, the
RPC system is responsible for all the details of communication. It encodes the argu-
ments so they can be passed over the network to the server, which might use differ-
ent internal representations for the data. It invokes the right function on the remote
machine and waits for a response.

The recipes in this chapter use three different systems that provide RPC interfaces—
Common Object Request Broker Architecture (CORBA), Twisted’s Perspective Bro-
ker (PB), and, in most recipes, XML-RPC. These systems are attractive because they
make it easy to connect programs that can be running on different computers and
might even be written in different languages. CORBA is a rather “heavyweight” pro-
tocol, very rich in functionality, with specialized and dedicated marshaling and trans-
port layers (and much more besides). XML-RPC is a lightweight, simple-to-use
protocol, which uses XML to marshal the call and its associated data, and HTTP for
transport. Being simple and lightweight, XML-RPC is less functionally rich than
CORBA. Both CORBA and XML-RPC are well-established standards, with imple-
mentations available for a wide variety of languages. In particular, XML-RPC is so
simple and widespread that XML-RPC recipes take up half this chapter, a good, if
rough, indication of how often Pythonistas are using it in preference to other distrib-
uted programming approaches.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 559

PB is also “lightweight”, while offering richer functionality than XML-RPC. How-
ever, PB is not a separate standard but a part of the Twisted framework, so PB imple-
mentations are currently limited to what Twisted itself provides and are mostly in
Python. Perspective Broker is unusual among RPC systems because it openly exposes
at application level the fact that network transactions are asynchronous, not synchro-
nous like procedure calls within a single process. Therefore, in PB, the launching of a
call to the remote procedure does not necessarily imply an immediate wait for the
procedure’s results; rather, the “result”s arrive “later” through a callback mecha-
nism (specifically, Twisted’s deferred objects). This asynchronous approach, which
is the conceptual core of the Twisted framework, offers substantial advantages in
terms of performance and scalability of the “result”ing network applications, but it
may take some getting used to. Simon Foster’s approach, shown in recipe, 15.7
“Using Twisted Perspective Broker,” is a simple way to get started exploring Perspec-
tive Broker.

XML-RPC is well supported by the Python Standard Library, with the xmlrpclib

module for writing XML-RPC clients and the SimpleXMLRPCServer module for writing
XML-RPC servers. For Twisted, CORBA, and other RPC standards yet (such as the
emerging SOAP—Simple Object Access Protocol—system), you need to install third-
party extensions before you can get started. The recipes in this chapter include point-
ers to the software you need. Unfortunately, you will not find pointers specifically to
SOAP resources for Python in the recipes: for such pointers, I suggest you check out
http://pywebsvcs.sourceforge.net/.

The Python Standard Library also provides a set of modules for doing the lower-level
work of network programming—socket, select, asyncore, and asynchat. The library
also includes modules for marshaling data and sending it across sockets: struct,
pickle, xdrlib. Chapter 13, Network Programming, includes recipes in which some
of these modules are directly used, and Chapter 7, Persistence and Databases, con-
tains recipes dealing with serialization and marshaling. These lower-level modules, in
turn, provide the plumbing for many other higher-level modules that directly sup-
port a variety of standard network protocols. Jeff Bauer offers recipe 15.9 “Perform-
ing Remote Logins Using telnetlib,” using the telnetlib module to send commands to
remote machines via the Telnet protocol. Telnet is not a very secure protocol, and
thus, except for use within well-protected LANs, has been largely supplanted by
more secure protocols such as SSH (Secure Shell). Peter Cogolo and Anna Martelli
Ravenscroft offer similar functionality to Bauer’s, in recipe 15.10 “Performing
Remote Logins with SSH,” which uses SSH (via the third-party package paramiko)
rather than Telnet.

Six of the recipes, just about half of the chapter, focus on XML-RPC. Rael Dornfest
and Jeremy Hylton demonstrate how to write an XML-RPC client program that
retrieves data from O’Reilly’s Meerkat service. Recipe 15.1 “Making an XML-RPC
Method Call” is only three lines long (including the import statement): indeed, this
extreme conciseness is the recipe’s main appeal.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 15: Distributed Programming

Brian Quinlan and Jeff Bauer contribute two different recipes for constructing XML-
RPC servers. Quinlan, in recipe 15.2 “Serving XML-RPC Requests,” shows how to
use the SimpleXMLRPCServer module from the Python Standard Library to handle
incoming requests. Bauer’s is recipe 15.3 “Using XML-RPC with Medusa.” Medusa,
like Twisted, is a framework for writing asynchronous network programs. In both
cases, the libraries do most of the work; other than a few lines of initialization and
registration, the server looks like normal Python code.

Christop Dietze (with contributions from Brian Quinlan and Jeff Bauer), in recipe
15.4 “Enabling an XML-RPC Server to Be Terminated Remotely,” elaborates on the
XML-RPC server theme by showing how to add the ability that enables remote cli-
ents to terminate the server cleanly. Rune Hansen, in recipe 15.5 “Implementing
SimpleXMLRPCServer Niceties,” shows how to add several minor but useful nice-
ties to your XML-RPC servers.

Peter Arwanitis, in recipe 15.6 “Giving an XML-RPC Server a wxPython GUI,” dem-
onstrates how to implement an XML-RPC server with Twisted and, at the same time,
give your server a GUI, thanks to the wxPython GUI framework.

A strong alternative to XML-based protocols is CORBA, an object-based RPC mech-
anism using its own protocol, IIOP (Internet Inter-Orb Protocol). CORBA is a
mature technology compared to XML-RPC (or, even more, SOAP, which isn’t used
in any of these recipes—apparently, Pythonistas aren’t doing all that much with
SOAP yet). CORBA was introduced in 1991. The Python language binding was offi-
cially approved more recently, in February 2000, and several ORBs (Object Request
Brokers—roughly, CORBA servers) support Python. Duncan Grisby, a researcher at
AT&T Laboratories in Cambridge (U.K.), describes the basics of getting a CORBA
client and server running in recipe 15.8 “Implementing a CORBA Server and Cli-
ent,” which uses omniORB, a free ORB, and the Python binding he wrote for it.

CORBA has a reputation for complexity, but Grisby’s recipe makes it look straight-
forward. More steps are involved in the CORBA client than in the XML-RPC client
example, but they are not difficult. To connect an XML-RPC client to a server, you
just need a URL. To connect a CORBA client to a server, you need a URL—a special
corbaloc URL—and you also need to know the server’s interface. Of course, you
need to know the interface regardless of protocol, but CORBA uses it explicitly. In
general, CORBA offers more features than other distributed programming frame-
works—interfaces, type checking, passing references to objects, and more. CORBA
also supports just about every Python data type as argument or result.

Regardless of the protocols or systems you choose, the recipes in this chapter can
help get you started. Inter-program communication is an important part of building
a distributed system, but it’s just one part. Once you have a client and server work-
ing, you’ll find you have to deal with other interesting, challenging problems—error
detection, concurrency, and security, to name a few. The recipes here won’t solve
those problems, but they will prevent you from getting caught up in unimportant

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.1 Making an XML-RPC Method Call | 561

details of the communication protocols. Rob Riggs in recipe 15.11 “Authenticating
an SSL Client over HTTPS” presents a simple way to use HTTPS (as supported by
the Python Standard Library module httplib) to authenticate SSL clients; Simon Fos-
ter’s previously mentioned Perspective Broker recipe provides a way to implement
one specific but frequent strategy for error detection and handling, namely periodi-
cally trying to reconnect to a server after a timeout or explicitly discovered network
error.

15.1 Making an XML-RPC Method Call
Credit: Rael Dornfest, Jeremy Hylton

Problem
You need to make a method call to an XML-RPC server.

Solution
The xmlrpclib module makes writing XML-RPC clients very easy. For example, we
can use XML-RPC to access O’Reilly’s Meerkat server and get the five most recent
items about Python:

from xmlrpclib import Server
server = Server("http://www.oreillynet.com/meerkat/xml-rpc/server.php")
print server.meerkat.getItems(
 {'search': '[Pp]ython', 'num_items': 5, 'descriptions': 0}
)

Discussion
XML-RPC is a simple, lightweight approach to distributed processing. xmlrpclib,
which makes it easy to write XML-RPC clients in Python, is part of the Python Stan-
dard Library.

To use xmlrpclib, you first instantiate a proxy to the server, calling the ServerProxy

class (also known by the name Server) and passing in the URL to which you want to
connect. Then, on that proxy instance, you can access and call whatever methods the
remote XML-RPC server supplies. In this case, you know that Meerkat supplies a
getItems method, so you call the method of the same name on the server proxy
instance. The proxy relays the call to the server, waits for the server to respond, and
finally returns the call’s results.

This recipe uses O’Reilly’s Meerkat service, intended for syndication of contents
such as news and product announcements. Specifically, the recipe queries Meerkat
for the five most recent items mentioning either “Python” or “python”. If you try this
recipe, be warned that response times from Meerkat are variable, depending on the
quality of your Internet connection, the time of day, and the level of traffic on

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 15: Distributed Programming

the Internet. If the script takes a long time to answer, it doesn’t mean you did some-
thing wrong—it just means you have to be patient!

Using xmlrpclib by passing raw dictionaries, as in this recipe’s code, is quite work-
able but somewhat unPythonic. Here’s an easy alternative that looks nicer:

from xmlrpclib import Server
server = Server("http://www.oreillynet.com/meerkat/xml-rpc/server.php")
class MeerkatQuery(object):
 def __init__(self, search, num_items=5, descriptions=0):
 self.search = search
 self.num_items = num_items
 self.descriptions = descriptions
q = MeerkatQuery("[Pp]ython")
print server.meerkat.getItems(q)

You can package the instance attributes and their default values in several different
ways, but the main point of this variant is that, as the argument to the getItems

method, an instance object with the right attributes works just as well as a dictio-
nary object with the same information packaged as dictionary items.

See Also
The xmlrpclib module is part of the Python Standard Library and is well docu-
mented in its chapter of the Library Reference portion of Python’s online documenta-
tion. Meerkat is at http://www.oreillynet.com/meerkat/.

15.2 Serving XML-RPC Requests
Credit: Brian Quinlan

Problem
You need to implement an XML-RPC server.

Solution
Module SimpleXMLRPCServer, which is part of the Python Standard Library, makes
writing XML-RPC servers reasonably easy. Here’s how you can write an XML-RPC
server:

Server code sxr_server.py
import SimpleXMLRPCServer
class StringFunctions(object):
 def __init__(self):
 # Make all the functions in Python's standard string module
 # available as 'python_string.func_name' for each func_name
 import string
 self.python_string = string
 def _privateFunction(self):
 # This function cannot be called directly through XML-RPC because

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.2 Serving XML-RPC Requests | 563

 # it starts with an underscore character '_', i.e., it's "private"
 return "you'll never get this result on the client"
 def chop_in_half(self, astr):
 return astr[:len(astr)/2]
 def repeat(self, astr, times):
 return astr * times
if __name__=='__main__':
 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("localhost", 8000))
 server.register_instance(StringFunctions())
 server.register_function(lambda astr: '_' + astr, '_string')
 server.serve_forever()

And here is a client script that accesses the server you just wrote:

Client code sxr_client.py
import xmlrpclib
server = xmlrpclib.Server('http://localhost:8000')
print server.chop_in_half('I am a confident guy')
emits: I am a con
print server.repeat('Repetition is the key to learning!\n', 5)
emits 5 lines, all Repetition is the key to learning!
print server._string('<= underscore')
emits _<= underscore
print server.python_string.join(['I', 'like it!'], " don't ")
emits I don't like it!
print server._privateFunction() # this will throw an exception
terminates client script with traceback for xmlrpclib.Fault

Discussion
This recipe demonstrates the creation of a simple XML-RPC server using the
SimpleXMLRPCServer module of the standard Python library. The module contains a
class of the same name that listens for HTTP requests on a specified port and dis-
patches any XML-RPC calls to registered instances or registered functions. This
recipe demonstrates both usages. To create a server, we instantiate the
SimpleXMLRPCServer class, supplying the hostname and port for the server. Then, on
that instance, we call register_instance as many times as needed to make other
instances available as services. In addition, or as an alternative, we call register_

function to make functions similarly available as services. Once we have registered
all the instances and/or all the functions we want to expose, we call the serve_

forever method of the server instance, and our XML-RPC server is active. Yes, it is
really that simple. The only output on the shell prompt window on which you run
the server is one line of log information each time a client accesses the server; the
only way to terminate the server is to send it an interrupt, for example with a Ctrl-C
keystroke.

Registering functions (as opposed to an instance) is necessary when a function name
begins with an underscore (_) or contains characters not allowed in Python identifi-
ers (e.g., accented letters, punctuation marks, etc.). Dotted names (e.g., python_

string.join) are correctly resolved for registered instances.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 15: Distributed Programming

See Also
The SimpleXMLRPCServer module is part of the Python Standard Library and is docu-
mented in its chapter of the Library Reference portion of Python’s online documenta-
tion.

15.3 Using XML-RPC with Medusa
Credit: Jeff Bauer

Problem
You need to establish a lightweight, highly scalable, distributed processing system
and want to use the XML-RPC protocol.

Solution
Package medusa lets you implement lightweight, highly scalable, asynchronous
(event-driven) network servers. An XML-RPC handler is included in the Medusa dis-
tribution. Here is how you can code an XML-RPC server with Medusa:

xmlrpc_server.py
from socket import gethostname
from medusa.xmlrpc_handler import xmlrpc_handler
from medusa.http_server import http_server
from medusa import asyncore
class xmlrpc_server(xmlrpc_handler):
 # initialize and run the server
 def __init__(self, host=None, port=8182):
 if host is None:
 host = gethostname()
 hs = http_server(host, port)
 hs.install_handler(self)
 asyncore.loop()
 # an example of a method to be exposed via the XML-RPC protocol
 def add(self, op1, op2):
 return op1 + op2
 # the infrastructure ("plumbing") to expose methods
 def call(self, method, params):
 print "calling method: %s, params: %s" % (method, params)
 if method == 'add':
 return self.add(*params)
 return "method not found: %s" % method
if __name__ == '__main__':
 server = xmlrpc_server()

And here is a client script that accesses the server you just wrote:

xmlrpc_client.py
from socket import gethostname
from xmlrpclib import Transport, dumps
class xmlrpc_connection(object):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.3 Using XML-RPC with Medusa | 565

 def __init__(self, host=None, port=8182):
 if host is None:
 host = gethostname()
 self.host = "%s:%s" % (host, port)
 self.transport = Transport()
 def remote(self, method, params=()):
 """ Invoke the server with the given method name and parameters.
 The return value is always a tuple. """
 return self.transport.request(self.host, '/RPC2',
 dumps(params, method))
if __name__ == '__main__':
 connection = xmlrpc_connection()
 answer, = connection.remote("add", (40, 2))
 print "The answer is:", answer

Discussion
This recipe demonstrates remote method calls between two machines (or two pro-
cesses, even on the same machine) using the XML-RPC protocol and provides a com-
plete example of working client/server code.

XML-RPC is one of the easiest ways to handle distributed processing tasks. There’s
no messing around with the low-level socket details, nor is it necessary to write an
interface definition. The protocol is platform and language neutral. The XML-RPC
specification can be found at http://www.xml-rpc.com and is well worth studying. It’s
nowhere as functionally rich as heavyweight stuff like CORBA, but, to compensate,
it is much simpler!

To run this recipe’s Solution, you must download the Medusa library from http://
www.nightmare.com (the Python Standard Library includes the asyncore and
asynchat modules, originally from Medusa, but not the other parts of Medusa
required for this recipe). With Medusa, you implement an XML-RPC server by sub-
classing the xmlrpc_handler class and passing an instance of your class to the
install_handler method of an instance of http_server. HTTP is the transport-level
protocol used by the XML-RPC standard, and http_server handles all transport-level
issues on your behalf. You need to provide only the handler part, by customizing
xmlrpc_handler through subclassing and method overriding. Specifically, you must
override the call method, which the Medusa framework calls on your instance with
the name of the XML-RPC method being called, along with its parameters, as argu-
ments. This is exactly what we do in this recipe, in which we expose a single XML-
RPC method named add which accepts two numeric parameters and returns their
sum as the method’s result.

This recipe’s XML-RPC client uses xmlrpclib in a more sophisticated way than rec-
ipe 15.1 “Making an XML-RPC Method Call,” by accessing the Transport class
explicitly. In theory, this approach allows finer-grained control. However, this recipe
does not exert that kind of control, and it’s rarely required in XML-RPC clients that
you actually deploy, anyway.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 15: Distributed Programming

See Also
The xmlrpclib module is part of the Python Standard Library and is documented in a
chapter of the Library Reference portion of Python’s online documentation. Medusa
is at http://www.nightmare.com.

15.4 Enabling an XML-RPC Server to Be
Terminated Remotely

Credit: Christoph Dietze, Brian Quinlan, Jeff Bauer

Problem
You are coding an XML-RPC server, using the Python Standard Library’s
SimpleXMLRPCServer module, and you want to make it possible for a remote client to
cause the XML-RPC server to exit cleanly.

Solution
You have to use your own request-handling loop (instead of the serve_forever

method of SimpleXMLRPCServer) so that you can stop looping when appropriate. For
example:

import SimpleXMLRPCServer
running = True
def finis():
 global running
 running = False
 return 1
server = SimpleXMLRPCServer.SimpleXMLRPCServer(('127.0.0.1', 8000))
server.register_function(finis)
while running:
 server.handle_request()

Discussion
SimpleXMLRPCServer’s serve_forever method, as its name implies, attempts to keep
serving “forever”—that is, it keeps serving until the whole server process is killed.
Sometimes, it’s useful to allow remote clients to request a clean termination of a ser-
vice by remotely calling a server-exposed function, and this recipe demonstrates the
simplest way to allow this functionality.

The finis function (which gets exposed to remote clients via the register_function

call) sets the global variable running to False (and then returns something that is not
None because the XML-RPC protocol cannot deal with the None object). Using the
while running loop, instead of a serve_forever call, then ensures that the server
stops serving and terminates when the variable running becomes false.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.5 Implementing SimpleXMLRPCServer Niceties | 567

If you prefer to subclass SimpleXMLRPCServer, you can obtain a similar effect by over-
riding the serve_forever method: that is, instead of placing the simple while

running: server.handle_request loop inline, you can code, for example (with the
same function finis as in the recipe’s Solution):

class MyServer(SimpleXMLRPCServer.SimpleXMLRPCServer):
 def serve_forever(self):
 while running:
 self.handle_request()
server = MyServer(('127.0.0.1', 8000))
server.register_function(finis)
server.serve_forever()

However, this alternative approach offers no special advantage (unless you have a
fetish for being object oriented for no particular purpose), and, since this alternative
approach is telling a little white lie (by using the name serve_forever for a method
that does not keep serving “forever”!), the simpler approach in the recipe’s Solution
can definitely be recommended.

See Also
The SimpleXMLRPCServer module is part of the Python Standard Library and is docu-
mented in a chapter of the Library Reference portion of Python’s online documen-
tation.

15.5 Implementing SimpleXMLRPCServer
Niceties

Credit: Rune Hansen

Problem
You are coding XML-RPC servers with the Python Standard Library
SimpleXMLRPCServer class and want to ensure you’re using the simple but useful idi-
oms that can ease your coding, or give your servers more flexibility at no substantial
cost to you.

Solution
Here are a few tweaks I generally use, to enhance my servers’ usability, when I’m
developing servers based on SimpleXMLRPCServer:

give the base class a short, readable nickname
from SimpleXMLRPCServer import SimpleXMLRPCServer as BaseServer
class Server(BaseServer):
 def __init__(self, host, port):
 # accept separate hostname and portnumber and group them

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 15: Distributed Programming

 BaseServer.__init__(self, (host, port))
 def server_bind(self):
 # allow fast restart of the server after it's killed
 import socket
 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 BaseServer.server_bind(self)
 allowedClientHosts = '127.0.0.1', '192.168.0.15',
 def verify_request(self, request, client_address):
 # forbid requests except from specific client hosts
 return client_address[0] in self.allowedClientHosts

Discussion
The recipe begins with a statement of the form from module import name as nickname,
a Python idiom that is often handy for importing something under a short and usable
nickname. It’s certainly miles better than having to repeatedly write SimpleXMLRPC-

Server.SimpleXMLRPCServer after a simple import statement, or using the ill-advised
construct from module import *, which mixes up all the namespaces and can often
cause subtle and hard-to-find bugs.

The sole purpose of the __init__ statement of class Server is to accept host and port

as separate parameters and group them into the required tuple. I find myself often
writing such statements with the many Python functions and classes that require this
address tuple grouping (your tastes, of course, may be different).

By default, a server socket belonging to a process that dies is kept busy for quite a
while. Particularly during development, it is handy to kill such a process, edit the
script, and restart immediately. For such an immediate restart to work, you must
ensure the code of your server sets the SO_REUSEADDR option on the relevant socket, as
the recipe’s code does in its overridden method server_bind.

Last but not least, the recipe overrides verify_request in order to apply a simple
check that refuses service except to requests coming from client hosts on a pre-
defined list. This approach doesn’t provide rock-solid security, but nevertheless, it is
potentially useful. Again, it’s particularly useful during development, to help avoid
those cases where some other developer on the same LAN accidentally connects his
client to the server I’m just developing, and we both experience puzzling problems
until we figure out what’s happened!

See Also
The SimpleXMLRPCServer module is part of the Python Standard Library and is
documented in a chapter of the Library Reference portion of Python’s online
documentation.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.6 Giving an XML-RPC Server a wxPython GUI | 569

15.6 Giving an XML-RPC Server a wxPython GUI
Credit: Peter Arwanitis, Alex Martelli

Problem
You are writing an XML-RPC server and want to add a GUI to it, or you’re writing a
GUI application that you want to be able to interact as an XML-RPC server too.

Solution
As long as you use Twisted for the network interaction, and wxPython for the GUI,
this task is reasonably easy, since these packages can cooperate through the
twisted.internet.wxreactor module. You do need to have specific incantations at
the start of your program, as follows:

To use wxPython and Twisted together, do the following, in exact order:
import wx
from twisted.internet import wxreactor
wxreactor.install()
from twisted.internet import reactor
Then, have whatever other imports as may be necessary to your program
from twisted.web import xmlrpc, server
class MyFrame(wx.Frame):
 ''' Main window for this wx application. '''
 def __init__(self, parent, ID, title, pos=wx.DefaultPosition,
 size=(200, 100), style=wx.DEFAULT_FRAME_STYLE):
 wx.Frame.__init__(self, parent, ID, title, pos, size, style)
 wx.EVT_CLOSE(self, self.OnCloseWindow)
 def OnCloseWindow(self, event):
 self.Destroy()
 reactor.stop()
class MyXMLRPCApp(wx.App, xmlrpc.XMLRPC):
 ''' We're a wx Application _AND_ an XML-RPC server too. '''
 def OnInit(self):
 ''' wx-related startup code: builds the GUI. '''
 self.frame = MyFrame(None, -1, 'Hello')
 self.frame.Show(True)
 self.SetTopWindow(self.frame)
 return True
 # methods exposed to XML-RPC clients:
 def xmlrpc_stop(self):
 """ Closes the wx application. """
 self.frame.Close()
 return 'Shutdown initiated'
 def xmlrpc_title(self, x):
 """ Change the wx application's window's caption. """
 self.frame.SetTitle(x)
 return 'Title set to %r' % x
 def xmlrpc_add(self, x, y):
 """ Provide some computational services to clients. """
 return x + y

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 15: Distributed Programming

if __name__ == '__main__':
 # pass False to emit stdout/stderr to shell, not an additional wx window
 app = MyXMLRPCApp(False)
 # Make the wx application twisted-aware
 reactor.registerWxApp(app)
 # Make a XML-RPC Server listening to port 7080
 reactor.listenTCP(7080, server.Site(app))
 # Start both reactor parts (wx MainLoop and XML-RPC server)
 reactor.run()

Discussion
It is often useful to give an XML-RPC server a GUI, for example, to display the cur-
rent status to an operator or administrator. Conversely, it is often useful to give a
GUI application the ability to accept remote requests from other programs, and mak-
ing the application an XML-RPC server is an excellent, simple way to accomplish
that purpose.

Either way, if you use Twisted for the networking part, you’re off to a good start,
because Twisted offers specialized reactor implementations to ease cooperation with
several GUI toolkits. In particular, this recipe shows how a Twisted-based XML-RPC
server can sport a wxPython GUI thanks to the twisted.internet.wxreactor module.

To try this recipe, save the code from the “Solution” as a Python script and start it
from a shell. If you run some kind of “personal firewall” that’s normally set to
impede TCP/IP communication between programs running on your machine, ensure
it’s set to let such communication happen on TCP port 7080. Then, from any interac-
tive Python interpreter session on the same machine, do:

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy('http://localhost:7080')
>>> s.add(23, 42)
65
>>> s.title('Changed Title')
Title set to 'Changed Title'

Observe that the title of the wx application’s window has changed. Now, you can
close the application, either by whatever GUI means you normally use on your plat-
form (it is a totally cross-platform application, after all), or by calling s.stop() from
the same Python interpreter interactive session that we just showed. You can also
run such a client on any other machine, as long as it has open TCP/IP connectivity
on port 7080 with the machine running the server. (In particular, make sure you open
port 7080 on any firewall that would normally block that port, whether the firewall is
on either of the machines, or on any other network apparatus that may lie between
them.)

Both Twisted and wxPython, while already rich and solid frameworks, are still grow-
ing and changing, so it may be important to ensure you have the right releases
installed properly on your machine. This recipe should run on any platform that is
equipped with Python 2.3 or better, wxPython 2.4.2.4 or better, and Twisted 1.3.0

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Using Twisted Perspective Broker | 571

or better. Of course, we don’t have access to every platform in the world, nor to all
future releases of these tools, so we tested the recipe only under Windows/XP, Mac
OS X 10.3.6, and Linux, with Python 2.3 and 2.4, wxPython 2.4.2.4, and some
2.5.x.y releases, and Twisted 1.3.0 specifically.

Since the recipe relies only on published, supported aspects of the various tools, one
can hope that the recipe will also work elsewhere, and will work with future releases
of the tools. However, if this recipe’s approach does not prove satisfactory for your
purposes, you may want to try a different approach based on threads, shown at http://
aspn.activestate.com/ASPN/Cookbook/Python/Recipe/286201.

See Also
Twisted’s home page is http://www.twistedmatrix.com; documentation on Twisted
XML-RPC support is at http://www.twistedmatrix.com/documents/current/howto/
xmlrpc; wxPython’s home page is http://www.wxpython.org.

15.7 Using Twisted Perspective Broker
Credit: Simon Foster

Problem
You want to implement Python clients and servers for some distributed processing
task, without repetitious “boilerplate” code, and with excellent performance and
scalability characteristics.

Solution
Use the Perspective Broker (PB) subsystem of the Twisted framework. A PB server just
subclasses the PB’s Root class and adds remotely callable methods. Here is an exam-
ple of a server script which adds just one remotely callable method, named Pong:

from twisted.spread import pb
from twisted.internet import reactor
PORT = 8992
class Ponger(pb.Root):
 def remote_Pong(self, ball):
 print 'CATCH', ball,
 ball += 1
 print 'THROW', ball
 return ball
reactor.listenTCP(PORT, pb.BrokerFactory(Ponger()))
reactor.run()

We could write an equally trivial script for the client side of the interaction, but let’s
instead have a rather feature-rich PB client, which deals with important issues often
ignored in introductory examples of distributed programming, such as error
handling:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 15: Distributed Programming

from twisted.spread import pb
from twisted.internet import reactor
import sys
PORT = 8992
DELAY = 1
DOG_DELAY = 2
RESTART_DELAY = 5
class Pinger(object):
 def __init__(self, host):
 self.ping = None
 self.host = host
 self.ball = 0
 self._start()
 def _start(self):
 print 'Waiting for Server', self.host
 dfr = pb.getObjectAt(self.host, PORT, 30)
 dfr.addCallbacks(self._gotRemote, self._remoteFail)
 def _gotRemote(self, remote):
 remote.notifyOnDisconnect(self._remoteFail)
 self.remote = remote
 self._ping()
 def _remoteFail(self, __):
 if self.ping:
 print 'ping failed, canceling and restarting'
 self.ping.cancel()
 self.ping = None
 self.restart = reactor.callLater(RESTART_DELAY, self._start)
 def _watchdog(self):
 print 'ping timed out, canceling and restarting'
 self._start()
 def _ping(self):
 self.dog = reactor.callLater(DOG_DELAY, self._watchdog)
 self.ball += 1
 print 'THROW', self.ball,
 dfr = self.remote.callRemote('Pong', self.ball)
 dfr.addCallbacks(self._pong, self._remoteFail)
 def _pong(self, ball):
 self.dog.cancel()
 print 'CATCH', ball
 self.ball = ball
 self.ping = reactor.callLater(DELAY, self._ping)
if __name__ == '__main__':
 if len(sys.argv) != 2:
 print 'Usage: %s serverhost' % sys.argv[0]
 sys.exit(1)
 host = sys.argv[1]
 print 'Ping-pong client to host', host
 Pinger(host)
 reactor.run()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Using Twisted Perspective Broker | 573

Discussion
Twisted is a framework for asynchronous (also known as event-driven) programming
of network clients, servers, proxies, and so on. The asynchronous programming
model (which Twisted implements through the Reactor Design Pattern embodied in
the twisted.internet.reactor module) provides excellent performance and scalabil-
ity characteristics for Twisted-based programs.

Twisted also includes many subsystems that offer your programs ready-to-go net-
working functionality. One of these subsystems, Perspective Broker (PB), is imple-
mented in the twisted.spread.pb module. PB lets you code distributed-programming
clients and servers, with an ease of use that’s most clearly displayed in the server pro-
gram at the start of this recipe’s Solution. In just a few lines of code, the server class
is able to expose remotely callable methods: all it takes is subclassing the Root class
of the pb module and naming each remotely callable method with a prefix of remote_.

Most of the client code in this recipe is concerned with diagnosing and handling pos-
sible problems and errors with the connection to the server. Specifically, if the con-
nection fails for any reason, including a timeout diagnosed by the watchdog timer
that the client sets up each time it pings, the client attempts to reconnect to the
server. If you kill the server, the client keeps trying to reconnect, periodically, until
you restart the server.

Error-handling apart, the client is essentially as simple as the server. In the method
_start, the client calls function getObjectAt of module twisted.spread.pb, which
takes as its arguments the server’s host, a port number, and a “time-out” delay in
seconds. As usual in Python networking, the host can be either a network name,
such as localhost, or a string representing an IP address, such as 127.0.0.1.

If no problems arise, getObjectAt returns an object that proxies for the remote PB
server. The proxy object, in turn, has a callRemote method, which takes as its argu-
ments the method name as a string, followed by any arguments you are passing to
the remote method. callRemote returns a Twisted deferred object, the lynchpin of
Twisted’s style of asynchronous (event-driven) programming. Learning to use
deferreds effectively is the fundamental step in learning to program with Twisted.

A deferred object represents an event that may occur in the future (the success-case)
or may end in failure. Given a deferred, you can add callbacks to it for both success
and failure cases. (You can also chain callbacks, a possibility that this recipe does not
exploit.) When the deferred’s event occurs, Twisted calls your “success-case” call-
back, passing as its argument the “result” of the deferred. Alternatively, if the
deferred ends in failure, Twisted calls your failure-case callback, passing as its argu-
ment a failure object that wraps a Python exception object.

As you see in this recipe, despite deferreds’ potentially rich and vast functionality,
their use is really quite simple in most cases. For example, in the failure cases, the
client in this recipe wants to retry connecting: therefore, method _remoteFail accepts

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 15: Distributed Programming

the failure-object argument with an argument name of “two underscores” (__), a
common Python convention that indicates the argument will be ignored.

See Also
The Twisted web site, at http://www.twistedmatrix.com, has abundant documenta-
tion about all of Twisted’s elements and subsystems, including Perspective Broker
and deferred objects.

15.8 Implementing a CORBA Server and Client
Credit: Duncan Grisby

Problem
You need to implement a CORBA server and client to distribute a processing task,
such as the all-important network-centralized fortune-cookie distribution.

Solution
CORBA is a solid, rich, mature object-oriented RPC protocol, and several CORBA
ORBs offer excellent Python support. This recipe requires multiple files. Here is the
interface definition file, fortune.idl, coded in CORBA’s own IDL (Interface Defini-
tion Language):

module Fortune {
 interface CookieServer {
 string get_cookie();
 };
};

This code is quite readable even if you’ve never seen CORBA’s IDL before: it defines
a module named Fortune, whose only contents is an interface named CookieServer,
whose only contents is a function (method) named get_cookie, which takes no argu-
ments and returns a string. This code says nothing at all about the implementation:
IDL is a language for defining interfaces.

The server script is a simple Python program:

import sys, os
import CORBA, Fortune, Fortune__POA
FORTUNE_PATH = "/usr/games/fortune"
class CookieServer_i(Fortune__POA.CookieServer):
 def get_cookie(self):
 pipe = os.popen(FORTUNE_PATH)
 cookie = pipe.read()
 if pipe.close():
 # An error occurred with the pipe
 cookie = "Oh dear, couldn't get a fortune\n"
 return cookie

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.8 Implementing a CORBA Server and Client | 575

orb = CORBA.ORB_init(sys.argv)
poa = orb.resolve_initial_references("RootPOA")
servant = CookieServer_i()
poa.activate_object(servant)
print orb.object_to_string(servant._this())
see the Discussion session about what this print statement emits
poa._get_the_POAManager().activate()
orb.run()

And here’s a demonstration of client code for this server, using a Python interactive
command shell:

>>> import CORBA, Fortune
>>> orb = CORBA.ORB_init()
>>> o = orb.string_to_object(
... "corbaloc::host.example.com/fortune")
>>> o = o._narrow(Fortune.CookieServer)
>>> print o.get_cookie()

Discussion
CORBA has a reputation for being hard to use, but it is really very easy, especially
with Python. This example shows the complete CORBA implementation of a for-
tune-cookie server and its client. To run this example, you need a Python-compatible
CORBA implementation (i.e., an ORB)—or, if you wish, two such ORBs, since you
can use two different CORBA implementations, one for the client and one for the
server, and let them interoperate with the CORBA IIOP inter-ORB protocol. Several
free CORBA implementations, which fully support Python, are available for you to
download and install. The Python language support is part of the CORBA stan-
dards, so, if a certain ORB supports Python at all, you can code your Python source
for it in just the same way as you can code it for any other compliant ORB, be it free
or commercial. In this recipe, we use the free ORB known as omniORB. With
omniORB, you can use omniORBpy, which lets you develop CORBA applications
from Python.

With most ORBs, you must convert the interface definition coded in IDL into
Python declarations with an IDL compiler. For example, with omniORBpy:

omniidl -bpython fortune.idl

This creates Python modules named Fortune and Fortune__POA, in files Fortune.py
and Fortune_POA.py, to be used by clients and servers, respectively.

In the server, we implement the CookieServer CORBA interface by importing
Fortune__POA and subclassing the CookieServer class that the module exposes. Specif-
ically, in our own subclass, we need to override the get_cookie method (i.e., imple-
ment the methods that the interface asserts we’re implementing). Then, we start
CORBA to get an orb instance, ask the ORB for a POA (Portable Object Adaptor),
instantiate our own interface-implementing object, and pass it to the POA instance’s

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 15: Distributed Programming

activate_object method. Finally, we call the activate method on the POA manager
and the run method on the ORB to start our service.

When you run the server, it prints out a long hex string, such as:

IOR:010000001d00000049444c3a466f7274756e652f436f6f6b69655365727665723

a312e300000000001000000000000005c000000010102000d0000003135382e313234
2e36342e330000f90a07000000666f7274756e6500020000000000000008000000010
0000000545441010000001c0000000100000001000100010000000100010509010100
0100000009010100

Printing this string is the purpose of the object_to_string call that our recipe’s server
performs just before it activates and runs.

You have to pass this string value as the argument of the client’s orb.string_to_

object() call to contact your server. Such long hex strings may not be convenient to
communicate to clients. To remedy this, it’s easy to make your server support a sim-
ple corbaloc URL string, like the one used in the client example, but doing so
involves omniORB-specific code that is not necessarily portable to other ORBs. (See
the omniORBpy manual for details of corbaloc URL support.)

See Also
You can download omniORBpy, including its documentation, from http://
www.omniorb.org/omniORBpy/.

15.9 Performing Remote Logins Using telnetlib
Credit: Jeff Bauer

Problem
You need to send commands to one or more logins that can be on a local machine,
or a remote machine, and the Telnet protocol is acceptable.

Solution
Telnet is one of the oldest protocols in the TCP/IP stack, but it may still be service-
able (at least within an intranet that is well protected against sniffing and spoofing
attacks). In any case, Python’s standard module telnetlib supports Telnet quite
well:

auto_telnet.py - remote control via telnet
import os, sys, telnetlib
from getpass import getpass
class AutoTelnet(object):
 def __init__(self, user_list, cmd_list, **kw):
 # optional parameters are host, timeout in seconds, command
 # prompt to expect from the host on successful logins:
 self.host = kw.get('host', 'localhost')

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.9 Performing Remote Logins Using telnetlib | 577

 self.timeout = kw.get('timeout', 600)
 self.command_prompt = kw.get('command_prompt', "$ ")
 # collect passwords for each user, interactively
 self.passwd = { }
 for user in user_list:
 self.passwd[user] = getpass("Enter user '%s' password: " % user)
 # instantiate Telnet proxy
 self.telnet = telnetlib.Telnet()
 for user in user_list:
 # login with given host and user, and act appropriately
 self.telnet.open(self.host)
 ok = self.action(user, cmd_list)
 if not ok:
 print "Unable to process:", user
 self.telnet.close()
 def action(self, user, cmd_list):
 # wait for a login prompt
 t = self.telnet
 t.write("\n")
 login_prompt = "login: "
 response = t.read_until(login_prompt, 5)
 if login_prompt in response:
 print response
 else:
 return 0
 # supply user and password for login
 t.write("%s\n" % user)
 password_prompt = "Password:"
 response = t.read_until(password_prompt, 3)
 if password_prompt in response:
 print response
 else:
 return 0
 t.write("%s\n" % self.passwd[user])
 # wait for command prompt to indicate successful login
 response = t.read_until(self.command_prompt, 5)
 if self.command_prompt not in response:
 return 0
 # send each command and wait for command prompt after each
 for cmd in cmd_list:
 t.write("%s\n" % cmd)
 response = t.read_until(self.command_prompt, self.timeout)
 if self.command_prompt not in response:
 return 0
 print response
 return 1
if __name__ == '__main__':
 # code which runs as a main script, only
 basename = os.path.splitext(os.path.basename(sys.argv[0]))[0]
 logname = os.environ.get("LOGNAME", os.environ.get("USERNAME"))
 host = 'localhost'
 import getopt
 optlist, user_list = getopt.getopt(sys.argv[1:], 'c:f:h:')
 usage = """

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 15: Distributed Programming

usage: %s [-h host] [-f cmdfile] [-c "command"] user1 user2 ...
 -c command
 -f command file
 -h host (default: '%s')
Example: %s -c "echo $HOME" %s
""" % (basename, host, basename, logname)
 if len(sys.argv) < 2:
 print usage
 sys.exit(1)
 cmd_list = []
 for opt, optarg in optlist:
 if opt == '-f':
 for r in open(optarg):
 if r.rstrip():
 cmd_list.append(r)
 elif opt == '-c':
 command = optarg
 if command[0] == '"' and command[-1] == '"':
 command = command[1:-1]
 cmd_list.append(command)
 elif opt == '-h':
 host = optarg
 autoTelnet = AutoTelnet(user_list, cmd_list, host=host)

Discussion
Python’s telnetlib lets you easily automate access to Telnet servers, even from non-
Unix machines. As a flexible alternative to the popen functions, which only run com-
mands locally as the user that’s running the script, telnetlib, which can work across
an intranet and can login and run commands as different users, is a handy technique
to have in your system administration toolbox.

Production code generally has to be made more robust, but this recipe should be
enough to get you started in the right direction. The recipe’s AutoTelnet class instan-
tiates a single telnetlib.Telnet object and uses that single object in a loop over a list
of users. For each user, the recipe calls the open method of the Telnet instance to
open the connection to the specified host, runs a series of commands in AutoTelnet’s
action method, and finally calls the close method of the Telnet instance to termi-
nate the connection.

AutoTelnet’s action method is where the action is. All operations depend on two
methods of the Telnet instance. The write method takes a single string argument and
writes it to the connection. The read_until method takes two arguments, a string to
wait for and a timeout in seconds, and returns a string with all the characters
received from the connection until the timeout elapsed or the waited-for string
occurred. action’s code uses these two methods to wait for a login prompt and send
the username; wait for a password prompt and send the password; and then, repeat-
edly, wait for a command prompt (typically from a Unix shell at the other end of the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.10 Performing Remote Logins with SSH | 579

connection) and send the commands in the list sequentially (waiting for a command
prompt again after sending each one).

One warning (which applies to any use of Telnet and some other old protocols):
except when transmitting completely public data, not protected by passwords that
might be of interest to intruders of ill will, do not run Telnet (or non-anonymous
FTP, for that matter) on networks on which you are not completely sure that nobody
is packet-sniffing, since these protocols date from an older, more trusting age. These
protocols let passwords and everything else travel in the clear, open to any snooper.
This issue is not Python specific; it applies to any implementation of these protocols,
since it depends on the definition of the protocols themselves. Whether or not you
use Python, be advised: if there is any risk that someone might be packet-sniffing,
use SSH instead, as shown next in recipe 15.10 “Performing Remote Logins with
SSH” so that no password ever travels on the network in the clear, and so that the
connection stream itself gets encrypted.

See Also
Documentation on the standard library module telnetlib in the Library Reference;
Recipe 15.10 “Performing Remote Logins with SSH.”

15.10 Performing Remote Logins with SSH
Credit: Peter Cogolo, Anna Martelli Ravenscroft

Problem
You need to send commands, using the SSH protocol, to one or more logins that can
be on a local machine or a remote machine.

Solution
SSH is a secure replacement for the old Telnet protocol. One way to use SSH from a
Python program is with the third-party paramiko package:

auto_ssh.py - remote control via ssh
import os, sys, paramiko
from getpass import getpass
paramiko.util.log_to_file('auto_ssh.log', 0)
def parse_user(user, default_host, default_port):
 ''' given name[@host[:port]], returns name, host, int(port),
 applying defaults for hose and/or port if necessary
 '''
 if '@' not in user:
 return user, default_host, default_port
 user, host = user.split('@', 1)
 if ':' in host:
 host, port = host.split(':', 1)
 else:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 15: Distributed Programming

 port = default_port
 return user, host, int(port)
def autoSsh(users, cmds, host='localhost', port=22, timeout=5.0,
 maxsize=2000, passwords=None):
 ''' run commands for given users, w/default host, port, and timeout,
 emitting to standard output all given commands and their
 responses (no more than 'maxsize' characters of each response).
 '''
 if passwords is None:
 passwords = { }
 for user in users:
 if user not in passwords:
 passwords[user] = getpass("Enter user '%s' password: " % user)
 for user in users:
 user, host, port = parse_user(user, default_host, default_port)
 try:
 transport = paramiko.Transport((host, port))
 transport.connect(username=user, password=passwords[user])
 channel = transport.open_session()
 if timeout: channel.settimeout(timeout)
 for cmd in cmd_list:
 channel.exec_command(cmd)
 response = channel.recv(max_size)
 print 'CMD %r(%r) -> %s' % (cmd, user, response)
 except Exception, err:
 print "ERR: unable to process %r: %s" % (user, err)
if __name__ == '__main__':
 logname = os.environ.get("LOGNAME", os.environ.get("USERNAME"))
 host = 'localhost'
 port = 22
 usage = """
usage: %s [-h host] [-p port] [-f cmdfile] [-c "command"] user1 user2 ...
 -c command
 -f command file
 -h default host (default: localhost)
 -p default host (default: 22)
Example: %s -c "echo $HOME" %s
same as: %s -c "echo $HOME" %s@localhost:22
""" % (sys.argv[0], sys.argv[0], logname, sys.argv[0], logname)
 import getopt
 optlist, user_list = getopt.getopt(sys.argv[1:], 'c:f:h:p:')
 if not user_list:
 print usage
 sys.exit(1)
 cmd_list = []
 for opt, optarg in optlist:
 if opt == '-f':
 for r in open(optarg, 'rU'):
 if r.rstrip():
 cmd_list.append(r)
 elif opt == '-c':
 command = optarg
 if command[0] == '"' and command[-1] == '"':
 command = command[1:-1]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.10 Performing Remote Logins with SSH | 581

 cmd_list.append(command)
 elif opt == '-h':
 host = optarg
 elif opt == '-p':
 port = optarg
 else:
 print 'unknown option %r' % opt
 print usage
 sys.exit(1)
 autoSsh(user_list, cmd_list, host=host, port=port)

Discussion
The third-party extension paramiko package lets you easily automate access to all
sorts of SSH services, even from non-Unix machines. paramiko even lets you write
your own SSH servers in Python. In this recipe, however, we use paramiko on the cli-
ent side, as a more secure alternative to the similar use of telnetlib shown previ-
ously in recipe 15.9 “Performing Remote Logins Using telnetlib.”

Production code generally has to be made more robust, but this recipe should be
enough to get you started in the right direction. The recipe’s autoSsh function first
ensures it knows passwords for all the users (asking interactively for the passwords of
users it doesn’t know about). Then, it loops over all the users, parsing strings such as
foo@bar:2222 to mean user foo at host bar, port 2222, and defaulting the host and
port values, if necessary.

The loop body relies on two types of objects supplied by paramiko, Transport and
Channel. The transport is constructed by giving it the (host, port) pair and then a
connection is made with a username and password. (Alternatively, depending on the
SSH server, one might connect using a private key, but this recipe uses just a pass-
word.) The channel is obtained from the transport, and the recipe then sets a time-
out (by default, 6 seconds) to ensure that no long-term hanging occurs in case of
problems with an SSH server or the network path to it. Finally, an inner loop over all
commands sends each command, receives a response (up to a maximum length in
bytes, 2000 by default), and prints the command and response.

See Also
paramiko’s home page at http://www.lag.net/~robey/paramiko/; paramiko requires
another third-party extension to Python, the Python Cryptography Toolkit, whose
home page is at http://www.amk.ca/python/code/crypto; docs on SSH at http://
www.openssh.com/, http://www.ucolick.org/~sla/ssh/, http://kimmo.suominen.com/
docs/ssh/; Richard Silverman and Daniel J. Barrett, SSH: The Secure Shell, The Defini-
tive Guide (O’Reilly); recipe 15.9 “Performing Remote Logins Using telnetlib.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 15: Distributed Programming

15.11 Authenticating an SSL Client over HTTPS
Credit: Rob Riggs

Problem
You want your Python application to check SSL client authentication, by delegating,
over HTTPS, to an Apache server that is running mod_ssl.

Solution
The Apache web server has good support for SSL, and we can write a Python script
to exploit that support to authenticate a client. For example:

import httplib
CERT_FILE = '/home/robr/mycert'
PKEY_FILE = '/home/robr/mycert'
HOSTNAME = 'localhost'
conn = httplib.HTTPSConnection(HOSTNAME,
 key_file = PKEY_FILE, cert_file = CERT_FILE)
conn.putrequest('GET', '/ssltest/')
conn.endheaders()
response = conn.getresponse()
print response.read()

Discussion
The Solution code assumes that mycert is a certificate file formatted by PEM (Pri-
vacy-enhanced Electronic Mail), which includes both the public certificate and the
private key. You can keep the public and private keys in separate files: you need to
pass the names of the files in question as the values for the key_file and cert_file

arguments of HTTPSConnection.

SSH, the Secure Shell
The SSH protocol is secure, powerful, and flexible. No password ever travels on the
network in the clear, and the connection stream itself gets encrypted. Besides single
commands (as used in this recipe) and entire interactive shell sessions, SSH allows
secure copying of files in either direction and secure remote tunneling of X11 GUI ses-
sions and other TCP/IP-based network protocols. Moreover, unlike other secure trans-
port-level protocols such as SSL/TLS, SSH does not require certificates signed by some
kind of “central authority”. You can learn more about SSH from the OpenSSH’s web
page at http://www.openssh.com/, Steve Allen’s pages at http://www.ucolick.org/~sla/
ssh/, and Kimmon Suominen’s tutorial at http://kimmo.suominen.com/docs/ssh/—as
well as from Richard Silverman and Daniel J. Barrett, SSH: The Secure Shell, The Defin-
itive Guide (O’Reilly).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.11 Authenticating an SSL Client over HTTPS | 583

To safely perform SSL authentication, you will generally set up your own certifica-
tion authority (CA). You do not want to enable a third-party organization to hand
out all the “keys” to the locks that you put up to protect your security.

The Apache server installation that you use for this authentication needs to be con-
figured to require SSL client authentication with the appropriate CA. My httpd.conf
file contains the stanza:

SSLCACertificatePath /etc/httpd/conf/ssl.crt
SSLCACertificateFile /etc/httpd/conf/ssl.crt/myCA.crt
SSLVerifyClient require
SSLVerifyDepth 2
SSLRequireSSL

The configuration of an Apache server cannot refer to more than one
SSLCACertificateFile. You can put more than one CA certificate in that file, but
doing so grants authentication to any client who has a certificate from any one of the
certificate authorities you accept, which is unlikely to be what you want. Therefore,
this recipe is fully applicable only when you can reasonably set up an Apache server
to accept your own CA as the sole recognized one. In exchange for this modest
inconvenience, however, you do get a handy and robust approach to client authenti-
cation between web-enabled applications, particularly good for SOAP or XML-RPC
implementations, or custom applications that communicate via HTTP/HTTPS.

See Also
Descriptions of SSL and its use with Apache can be found at http://httpd.apache.org/
docs-2.0/ssl/ssl_howto.html and http://www.pseudonym.org/ssl/ssl_cook.html. The httplib

module is part of the Python Standard Library and is documented in a chapter of the
Library Reference portion of Python’s online documentation.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584

Chapter 16CHAPTER 16

Programs About Programs

16.0 Introduction
Credit: Paul F. Dubois, Ph.D., Program for Climate Model Diagnosis and Intercompar-
ison, Lawrence Livermore National Laboratory

This chapter was originally meant to cover mainly topics such as lexing, parsing, and
code generation—the classic issues of programs that are about programs. It turns out,
however, that Pythonistas did not post many recipes about such tasks, focusing more
on highly Python-specific topics such as program introspection, dynamic importing,
and generation of functions by closure. Many of those recipes, we decided, were
more properly located in various other chapters—on shortcuts, debugging, object
oriented programming, algorithms, metaprogramming, and specific areas such as the
handling of text, files, and persistence Therefore, you will find those topics covered
in other chapters. In this chapter, we included only those recipes that are still best
described as programs about programs. Of these, probably the most important one is
that about currying, the creation of new functions by predetermining some argu-
ments of other functions.

This arrangement doesn’t mean that the classic issues aren’t important! Python has
extensive facilities related to lexing and parsing, as well as a large number of user-
contributed modules related to parsing standard languages, which reduces the need
for doing your own programming. If Pythonistas are not using these tools, then, in
this one area, they are doing more work than they need to. Lexing and parsing are
among the most common of programming tasks, and as a result, both are the sub-
ject of much theory and much prior development. Therefore, in these areas more
than most, you will often profit if you take the time to search for solutions before
resorting to writing your own. This Introduction contains a general guide to solving
some common problems in these categories to encourage reusing the wide base of
excellent, solid code and theory in these fields.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 585

Lexing
Lexing is the process of dividing an input stream into meaningful units, known as
tokens, which are then processed. Lexing occurs in tasks such as data processing and
in tools for inspecting and modifying text.

The regular expression facilities in Python are extensive and highly evolved, so your
first consideration for a lexing task is often to determine whether it can be formu-
lated using regular expressions. Also, see the next section about parsers for common
languages and how to lex those languages.

The Python Standard Library tokenize module splits an input stream into Python-
language tokens. Since Python’s tokenization rules are similar to those of many other
languages, this module may often be suitable for other tasks, perhaps with a modest
amount of pre- and/or post-processing around tokenize’s own operations. For more
complex tokenization tasks, Plex, http://nz.cosc.canterbury.ac.nz/~greg/python/Plex/,
can ease your efforts considerably.

At the other end of the lexing complexity spectrum, the built-in string method split

can also be used for many simple cases. For example, consider a file consisting of
colon-separated text fields, with one record per line. You can read a line from the file
as follows:

fields = line.split(':')

This produces a list of the fields. At this point, if you want to eliminate spurious
whitespace at the beginning and ends of the fields, you can remove it:

fields = [f.strip() for f in fields]

For example:

>>> x = "abc :def:ghi : klm\n"
>>> fields = x.split(':')
>>> print fields
['abc ', 'def', 'ghi ', ' klm\n']
>>> print [f.strip() for f in fields]
['abc', 'def', 'ghi', 'klm']

Do not elaborate on this example: do not try to over-enrich simple code to perform
lexing and parsing tasks which are in fact quite hard to perform with generality,
solidity, and good performance, and for which much excellent, reusable code exists.
For parsing typical comma-separated values files, or files using other delimiters,
study the standard Python library module csv. The ScientificPython package, http://
starship.python.net/~hinsen/ScientificPython/, includes a module for reading and writ-
ing with Fortran-like formats, and other such precious I/O modules, in the
Scientific.IO sub-package.

A common “gotcha” for beginners is that, while lexing and other text-parsing tech-
niques can be used to read numerical data from a file, at the end of this stage, the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 16: Programs About Programs

entries are text strings, not numbers. The int and float built-in functions are fre-
quently needed here, to turn each field from a string into a number:

>>> x = "1.2, 2.3, 4, 5.6"
>>> print [float(y.strip()) for y in x.split(',')]
[1.2, 2.2999999999999998, 4.0, 5.5999999999999996]

Parsing
Parsing refers to discovering semantic meaning from a series of tokens according to
the rules of a grammar. Parsing tasks are quite ubiquitous. Programming tools may
attempt to discover information about program texts or to modify such texts to fit a
task. (Python’s introspection capabilities come into play here, as we will discuss
later.) Little languages is the generic name given to application-specific languages
that serve as human-readable forms of computer input. Such languages can vary
from simple lists of commands and arguments to full-blown languages.

The grammar in the previous lexing example was implicit: the data you need is orga-
nized as one line per record with the fields separated by a special character. The
“parser” in that case was supplied by the programmer reading the lines from the file
and applying the simple split method to obtain the information. This sort of input
file can easily grow, leading to requests for a more elaborate form. For example,
users may wish to use comments, blank lines, conditional statements, or alternate
forms. While most such parsing can be handled with simple logic, at some point, it
becomes so complicated that it is much more reliable to use a real grammar.

There is no hard-and-fast way to decide which part of the job is a lexing task and
which belongs to the grammar. For example, comments can often be discarded in
the lexing, but doing so is not wise in a program-transformation tool that must pro-
duce output containing the original comments.

Your strategy for parsing tasks can include:

• Using a parser for that language from the Python Standard Library.

• Using a parser from the user community. You can often find one by visiting the
Vaults of Parnassus site, http://www.vex.net/parnassus/, or by searching the
Python site, http://www.python.org.

• Generating a parser using a parser generator.

• Using Python itself as your input language.

A combination of approaches is often fruitful. For example, a simple parser can turn
input into Python-language statements, which Python then executes in concert with
a supporting package that you supply.

A number of parsers for specific languages exist in the standard library, and more are
out there on the Web, supplied by the user community. In particular, the standard
library includes parsing packages for XML, HTML, SGML, command-line argu-
ments, configuration files, and for Python itself. For the now-ubiquitous task of pars-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 587

ing XML specifically, this cookbook includes a chapter—Chapter 14, specifically
dedicated to XML.

You do not have to parse C to connect C routines to Python. Use SWIG (http://
www.swig.org). Likewise, you do not need a Fortran parser to connect Fortran and
Python. See the Numerical Python web page at http://www.pfdubois.com/numpy/ for
further information. Again, this cookbook includes a chapter, Chapter 17, Extending
and Embedding, which is dedicated to these kind of tasks.

PLY, SPARK, and Other Python Parser Generators
PLY and SPARK are two rich, solid, and mature Python-based parser generators.
That is, they take as their input some statements that describe the grammar to be
parsed and generate the parser for you. To make a useful tool, you must add the
semantic actions to be taken when a certain construct in the grammar is recognized.

PLY (http://systems.cs.uchicago.edu/ply) is a Python implementation of the popular
Unix tool yacc. SPARK (http://pages.cpcc.ucalgary-ca/~aycoch/spart/content.html)
parses a more general set of grammars than yacc. Both tools use Python introspec-
tion, including the idea of placing grammar rules in functions’ docstrings.

Parser generators are one of the many application areas that may have even too many
excellent tools, so that you may end up frustrated by having to pick just one. Besides
SPARK and PLY, other Python tools in this field include TPG (Toy Parser Genera-
tor), DParser, PyParsing, kwParsing (or kyParsing), PyLR, Yapps, PyGgy, mx.Text-
Tools and its SimpleParse frontend—too many to provide more than a bare mention
of each, so, happy googling!

The chief problem in using any of these tools is that you need to educate yourself
about grammars and learn to write them. A novice without any computer science
background will encounter some difficulty except with very simple grammars. A lot
of literature is available to teach you how to use yacc, and most of this knowledge
will help you use SPARK and most of the others just as well.

If you are interested in this area, the penultimate reference is Alfred V. Aho, Ravi
Sethi, and Jeffrey D. Ullman, Compilers (Addison-Wesley), affectionately known as
“the Dragon Book” to generations of computer science majors.*

Using Python Itself as a Little Language
Python itself can be used to create many application-specific languages. By writing
suitable classes, you can rapidly create a program that is easy to get running, yet is
extensible later. Suppose I want a language to describe graphs. Nodes have names,

* I’d even call this book the ultimate reference, were it not for the fact that Donald Knuth continues to promise
that the fifth volume (current ETA, the year 2010) of his epoch-making The Art of Computer Programming
will be about this very subject.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 16: Programs About Programs

and edges connect the nodes. I want a way to input such graphs, so that after read-
ing the input I will have the data structures in Python that I need for any further pro-
cessing. So, for example:

nodes = { }
def getnode(name):
 " Return the node with the given name, creating it if necessary. "
 if name in nodes:
 node = nodes[name]
 else:
 node = nodes[name] = node(name)
 return node
class node(object):
 " A node has a name and a list of edges emanating from it. "
 def __init__(self, name):
 self.name = name
 self.edgelist = []
class edge(object):
 " An edge connects two nodes. "
 def __init__(self, name1, name2):
 self.nodes = getnode(name1), getnode(name2)
 for n in self.nodes:
 n.edgelist.append(self)
 def __repr__(self):
 return self.nodes[0].name + self.nodes[1].name

Using just these simple statements, I can now parse a list of edges that describe a
graph, and afterwards, I will now have data structures that contain all my informa-
tion. Here, I enter a graph with four edges and print the list of edges emanating from
node 'A':

>>> edge('A', 'B')
>>> edge('B', 'C')
>>> edge('C', 'D')
>>> edge('C', 'A')
>>> print getnode('A').edgelist
[AB, CA]

Suppose that I now want a weighted graph. I could easily add a weight=1.0 default
argument to the edge constructor, and the old input would still work. Also, I could
easily add error-checking logic to ensure that edge lists have no duplicates. Further-
more, I already have my node class and can start adding logic to it for any needed
processing purposes, be it directly or by subclassing. I can easily turn the entries in
the dictionary nodes into similarly named variables that are bound to the node
objects. After adding a few more classes corresponding to other input I need, I am
well on my way.

The advantage to this approach is clear. For example, the following is already han-
dled correctly:

edge('A', 'B')
if 'X' in nodes:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 589

 edge('X', 'A')
def triangle(n1, n2, n3):
 edge(n1, n2)
 edge(n2, n3)
 edge(n3, n1)
triangle('A','W','K')
execfile('mygraph.txt') # Read graph from a datafile

So I already have syntactic sugar, user-defined language extensions, and input from
other files. The definitions usually go into a module, and the user simply import
them. Had I written my own language, instead of reusing Python in this little lan-
guage role, such accomplishments might be months away.

Introspection
Python programs have the ability to examine themselves; this set of facilities comes
under the general title of introspection. For example, a Python function object knows
a lot about itself, including the names of its arguments, and the docstring that was
given when it was defined:

>>> def f(a, b):
 " Return the difference of a and b "
 return a-b
...
>>> dir(f)
['__call__', '__class__', '__delattr__', '__dict__', '__doc__',
'__get__', '__getattribute__', '__hash__', '__init__', '__module__',
'__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__str__', 'func_closure', 'func_code', 'func_defaults',
'func_dict', 'func_doc', 'func_globals', 'func_name']
>>> f.func_name
'f'
>>> f.func_doc
'Return the difference of a and b'
>>> f.func_code
<code object f at 0175DDF0, file "<pyshell#18>", line 1>
>>> dir (f.func_code)
['__class__', '__cmp__', '__delattr__', '__doc__',
'__getattribute__', '__hash__', '__init__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__str__', 'co_argcount',
'co_cellvars', 'co_code', 'co_consts', 'co_filename', 'co_firstlineno',
'co_flags', 'co_freevars', 'co_lnotab', 'co_name', 'co_names',
'co_nlocals', 'co_stacksize', 'co_varnames']
>>> f.func_code.co_names
('a', 'b')

SPARK and PLY make an interesting use of introspection. The grammar is entered as
docstrings in the routines that take the semantic actions when those grammar con-
structs are recognized. (Hey, don’t turn your head all the way around like that! Intro-
spection has its limits.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 16: Programs About Programs

Introspection is very popular in the Python community, and you will find many
examples of it in recipes in this book, both in this chapter and elsewhere. Even in this
field, though, always remember the possibility of reuse! Standard library module
inspect has a lot of solid, reusable inspection-related code. It’s all pure Python code,
and you can (and should) study the inspect.py source file in your Python library to
see what “raw” facilities underlie inspect’s elegant high-level functions—indeed, this
suggestion generalizes: studying the standard library’s sources is among the best
things you can do to increment your Python knowledge and skill. But reusing the
standard library’s wealth of modules and packages is still best: any code you don’t
write is code you don’t have to maintain, and solid, heavily tested code such as the
code that you find in the standard library is very likely to have far fewer bugs than
any newly developed code you might write yourself.

Python is the most powerful language that you can still read. The kinds of tasks dis-
cussed in this chapter help to show just how versatile and powerful it really is.

16.1 Verifying Whether a String Represents
a Valid Number

Credit: Gyro Funch, Rogier Steehouder

Problem
You need to check whether a string read from a file or obtained from user input has a
valid numeric format.

Solution
The simplest and most Pythonic approach is to “try and see”:

def is_a_number(s):
 try: float(s)
 except ValueError: return False
 else: return True

Discussion
If you insist, you can also perform this task with a regular expression:

import re
num_re = re.compile(r'^[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE][-+]?[0-9]+)?$')
def is_a_number(s):
 return bool(num_re.match(s))

Having a regular expression to start from may be best if you need to be tolerant of
certain specific variations, or to pick up numeric substrings from the middle of larger
strings. But for the specific task posed as this recipe’s Problem, it’s simplest and best
to “let Python do it!”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.2 Importing a Dynamically Generated Module | 591

See Also
Documentation for the re module and the float built-in module in the Library Refer-
ence and Python in a Nutshell.

16.2 Importing a Dynamically Generated
Module

Credit: Anders Hammarquist

Problem
You need to wrap code in either compiled or source form in a module, possibly add-
ing it to sys.modules as well.

Solution
We build a new module object, optionally add it to sys.modules, and populate it
with an exec statement:

import new
def importCode(code, name, add_to_sys_modules=False):
 """ code can be any object containing code: a string, a file object, or
 a compiled code object. Returns a new module object initialized
 by dynamically importing the given code, and optionally adds it
 to sys.modules under the given name.
 """

module = new.module(name)
 if add_to_sys_modules:
 import sys

sys.modules[name] = module
exec code in module.__dict__

 return module

Discussion
This recipe lets you import a module from code that is dynamically generated or
obtained. My original intent for it was to import a module stored in a database, but it
will work for modules from any source. Thanks to the flexibility of the exec state-
ment, the importCode function can accept code in many forms: a string of source
(which gets implicitly compiled on the fly), a file object (ditto), or a previously com-
piled code object.

The addition of the newly generated module to sys.modules is optional. You
shouldn’t normally do so for such dynamically obtained code, but there are excep-
tions—specifically, when import statements for the module’s name are later exe-
cuted, and it’s important that they retrieve from sys.modules your dynamically

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 16: Programs About Programs

generated module. If you want the sys.modules addition, it’s best to perform it before
the module’s code body executes, just as normal import statements do, in case the
code body relies on that normal behavior (which it usually doesn’t, but it can’t hurt
to be prepared).

Note that the normal Python statement:

import foo

in simple cases (where no hooks, built-in modules, imports from zip files, etc., come
into play!) is essentially equivalent to:

if 'foo' in sys.modules:
 foo = sys.modules['foo']
else:
 foofile = open("/path/to/foo.py") # for some suitable /path/to/...
 foo = importCode(foofile, "foo", 1)

A toy example of using this recipe:

code = """
def testFunc():
 print "spam!"
class testClass(object):
 def testMethod(self):
 print "eggs!"
"""
m = importCode(code, "test")
m.testFunc()
o = m.testClass()
o.testMethod()

See Also
Sections on the import and exec statements in the Language Reference; documenta-
tion on the modules attribute of the sys standard library module and the new module
in the Library Reference; Python in a Nutshell sections about both the language and
library aspects.

16.3 Importing from a Module Whose Name Is
Determined at Runtime

Credit: Jürgen Hermann

Problem
You need to import a name from a module, just as from module import name would do,
but module and name are runtime-computed expressions. This need often arises, for
example, when you want to support user-written plug-ins.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.3 Importing from a Module Whose Name Is Determined at Runtime | 593

Solution
The __import__ built-in function lets you perform this task:

def importName(modulename, name):
 """ Import a named object from a module in the context of this function.
 """
 try:

module = __import__(modulename, globals(), locals(), [name])
 except ImportError:
 return None
 return getattr(module, name)

Discussion
This recipe’s function lets you perform the equivalent of from module import name, in
which either or both module and name are dynamic values (i.e., expressions or vari-
ables) rather than constant strings. For example, this functionality can be used to
implement a plug-in mechanism to extend an application with external modules that
adhere to a common interface.

Some programmers’ instinctive reaction to this task would be to use exec, but this
instinct would be a pretty bad one. The exec statement is too powerful, and therefore
is a last-ditch measure, to be used only when nothing else is available (which is
almost never). It’s just too easy to have horrid bugs and/or security weaknesses
where exec is used. In almost all cases, there are better ways. This recipe shows one
such way for an important problem.

For example, suppose you have, in a file named MyApp/extensions/spam.py, the fol-
lowing code:

class Handler(object):
 def handleSomething(self):
 print "spam!"

and, in a file named MyApp/extensions/eggs.py:

class Handler(object):
 def handleSomething(self):
 print "eggs!"

We must also suppose that the MyApp directory is in a directory on sys.path, and both
it and the extensions subdirectory are identified as Python packages (meaning that
each of them must contain a file, possibly empty, named __init__.py). Then, we can
get and call both implementations with the following code:

for extname in 'spam', 'eggs':
 HandlerClass = importName("MyApp.extensions." + extname, "Handler")
 handler = HandlerClass()
 handler.handleSomething()

It’s possible to remove the constraints about sys.path and __init__.py, and dynami-
cally import from anywhere, with the imp standard module. However, imp is

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 16: Programs About Programs

substantially harder to use than the __import__ built-in function, and you can gener-
ally arrange things to avoid imp’s greater generality and difficulty.

The import pattern implemented by this recipe is used in MoinMoin (http://
moin.sourceforge.net/) to load extensions implementing variations of a common
interface, such as action, macro, and formatter.

See Also
Documentation on the __import__ and getattr built-ins in the Library Reference and
Python in a Nutshell; MoinMoin is available at http://moin.sourceforge.net.

16.4 Associating Parameters with a Function
(Currying)

Credit: Scott David Daniels, Nick Perkins, Alex Martelli, Ben Wolfson, Alex Naanou,
David Abrahams, Tracy Ruggles

Problem
You need to wrap a function (or other callable) to get another callable with fewer for-
mal arguments, keeping given values fixed for the other arguments (i.e., you need to
curry a callable to make another).

Solution
Curry is not just a delightful spice used in Asian cuisine—it’s also an important pro-
gramming technique in Python and other languages:

def curry(f, *a, **kw):
 def curried(*more_a, **more_kw):
 return f(*(a+more_a), **dict(kw, **more_kw))
 return curried

Discussion
Popular in functional programming, currying is a way to bind some of a function’s
arguments and wait for the rest of them to show up later. Currying is named in
honor of Haskell Curry, a mathematician who laid some of the cornerstones in the
theory of formal systems and processes. Some pedants (and it must be grudgingly
admitted they have a point) claim that the technique shown in this recipe should be
called partial application, and that “currying” is something else. But whether they’re
right or wrong, in a book whose title claims it’s a cookbook, the use of curry in a title
was simply irresistible. Besides, the use of the verb to curry that this recipe supports
is the most popular one among programmers.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.4 Associating Parameters with a Function (Currying) | 595

The curry function defined in this recipe is invoked with a callable and some or all of
the arguments to the callable. (Some people like to refer to functions that accept
function objects as arguments, and return new function objects as results, as higher-
order functions.) The curry function returns a closure curried that takes subsequent
parameters as arguments and calls the original with all of those parameters. For
example:

double = curry(operator.mul, 2)
triple = curry(operator.mul, 3)

To implement currying, the choice is among closures, classes with callable instances,
and lambda forms. Closures are simplest and fastest, so that’s what we use in this
recipe.

A typical use of curry is to construct callback functions for GUI operations. When
the operation does not merit a new function name, curry can be useful in creating
these little functions. For example, this can be the case with commands for Tkinter
buttons:

self.button = Button(frame, text='A', command=curry(transcript.append, 'A'))

Recipe 11.2 “Avoiding lambda in Writing Callback Functions” shows a specialized
subset of “curry” functionality intended to produce callables that require no argu-
ments, which are often needed for such GUI-callback usage. However, this recipe’s
curry function is vastly more flexible, without any substantial extra cost in either
complexity or performance.

Currying can also be used interactively to make versions of your functions with
debugging-appropriate defaults, or initial parameters filled in for your current case.
For example, database debugging work might begin by setting:

Connect = curry(ODBC.Connect, dsn='MyDataSet')

Another example of the use of curry in debugging is to wrap methods:

def report(originalFunction, name, *args, **kw):
 print "%s(%s)"%(name, ', '.join(map(repr, args) +
 [k+'='+repr(kw[k]) for k in kw])
 result = originalFunction(*args, **kw)
 if result: print name, '==>', result
 return result
class Sink(object):
 def write(self, text): pass
dest = Sink()
dest.write = curry(report, dest.write, 'write')
print >>dest, 'this', 'is', 1, 'test'

If you are creating a function for regular use, the def fun form of function definition
is more readable and more easily extended. As you can see from the implementa-
tion, no magic happens to specialize the function with the provided parameters.
curry should be used when you feel the code is clearer with its use than without.
Typically, this use will emphasize that you are only providing some pre-fixed param-
eters to a commonly used function, not providing any separate processing.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 16: Programs About Programs

Currying also works well in creating a “lightweight subclass”. You can curry the con-
structor of a class to give the illusion of a subclass:

BlueWindow = curry(Window, background="blue")

BlueWindow.__class__ is still Window, not a subclass, but if you’re changing only
default parameters, not behavior, currying is arguably more appropriate than sub-
classing anyway. And you can still pass additional parameters to the curried con-
structor.

Two decisions must be made when coding a curry implementation, since both posi-
tional and keyword arguments can come in two “waves”—some at currying time,
some more at call time. The two decisions are: do the call-time positional arguments
go before or after the currying-time ones? do the call-time keyword arguments over-
ride currying-time ones, or vice versa? If you study this recipe’s Solution, you can see
I’ve made these decisions in a specific way (the one that is most generally useful):
call-time positional arguments after currying-time ones, call-time keyword argu-
ments overriding currying-time ones. In some circles, this is referred to as left-left par-
tial application. It’s trivial to code other variations, such as right-left partial
application:

def rcurry(f, *a, **kw):
 def curried(*more_a, **more_kw):
 return f(*(more_a+a), **dict(kw, **more_kw))
 return curried

As you can see, despite the grandiose-sounding terms, this is just a matter of concate-
nating more_a+a rather than the reverse; and similarly, for keyword arguments, you
just need to call dict(more_kw, **kw) if you want currying-time keyword arguments
to override call-time ones rather than vice versa.

If you wish, you could have the curried function carry a copy of the original func-
tion’s docstring, or even (easy in Python 2.4, but feasible, with a call to new.function,
even in 2.3—see the sidebar in recipe 20.1 “Getting Fresh Default Values at Each
Function Call”) a name that is somehow derived from the original function. How-
ever, I have chosen not to do so because the original name, and argument descrip-
tions in the docstring, are probably not appropriate for the curried version. The task
of constructing and documenting the actual signature of the curried version is also
feasible (with a liberal application of the helper functions from standard library mod-
ule inspect), but it’s so disproportionate an effort, compared to curry’s delightfully
simple four lines of code (!), that I resolutely refuse to undertake it.

A special case, which may be worth keeping in mind, is when the callable you want
to curry is a Python function (not a bound method, a C-coded function, a callable
class instance, etc.), and all you need to curry is the first parameter. In this case, the
function object’s __get__ special method may be all you need. It takes an arbitrary
argument and returns a bound-method object with the first parameter bound to that
argument. For example:

>>> def f(adj, noun='world'):
... return 'Goodbye, %s %s!' % (adj, noun)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.5 Composing Functions | 597

...
>>> cf = f.__get__('cruel')
>>> print cf()
Goodbye, cruel world!
>>> cf
<bound method ?.f of 'cruel'>
>>> type(cf)
<type 'instancemethod'>
>>> cf.im_func
<function f at 0x402dba04>
>>> cf.im_self
'cruel'

See Also
Recipe 11.2 “Avoiding lambda in Writing Callback Functions” shows a specialized
subset of the curry functionality that is specifically intended for GUI callbacks; docs
for the inspect module and the dict built-in type in the Library Reference and
Python in a Nutshell.

16.5 Composing Functions
Credit: Scott David Daniels

Problem
You need to construct a new function by composing existing functions (i.e., each call
of the new function must call one existing function on its arguments, then another
on the result of the first one).

Solution
Composition is a fundamental operation between functions and yields a new func-
tion as a result. The new function must call one existing function on its arguments,
then another on the result of the first one. For example, a function that, given a
string, returns a copy that is lowercase and does not have leading and trailing blanks,
is the composition of the existing string.lower and string.strip functions. (In this
case, it does not matter in which order the two existing functions are applied, but
generally, it could be important.)

A closure (a nested function returned from another function) is often the best
Pythonic approach to constructing new functions:

def compose(f, g, *args_for_f, **kwargs_for_f):
 ''' compose functions. compose(f, g, x)(y) = f(g(y), x)) '''
 def fg(*args_for_g, **kwargs_for_g):
 return f(g(*args_for_g, **kwargs_for_g), *args_for_f, **kwargs_for_f)
 return fg
def mcompose(f, g, *args_for_f, **kwargs_for_f):
 ''' compose functions. mcompose(f, g, x)(y) = f(*g(y), x)) '''

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 16: Programs About Programs

 def fg(*args_for_g, **kwargs_for_g):
 mid = g(*args_for_g, **kwargs_for_g)
 if not isinstance(mid, tuple):
 mid = (mid,)
 return f(*(mid+args_for_f), **kwargs_for_f)
 return fg

Discussion
The closures in this recipe show two styles of function composition. I separated
mcompose and compose because I think of the two possible forms of function composi-
tion as being quite different, in mathematical terms. In practical terms, the differ-
ence shows only when the second function being composed, g, returns a tuple. The
closure returned by compose passes the result of g as f’s first argument anyway, while
the closure returned by mcompose treats it as a tuple of arguments to pass along. Any
extra arguments provided to either compose or mcompose are treated as extra argu-
ments for f (there is no standard functional behavior to follow here):

compose(f, g, x)(y) = f(g(y), x)
mcompose(f, g, x)(y) = f(*g(y), x)

As in currying (see recipe 16.4 “Associating Parameters with a Function (Curry-
ing)”), this recipe’s functions are for constructing functions from other functions.
Your goal in so doing should be clarity, since no efficiency is gained by using these
functional forms.

Here’s a quick example for interactive use:

parts = compose(' '.join, dir)

When called on a module object, the callable we just bound to name parts gives you
an easy-to-view string that lists the module’s contents.

See Also
Recipe 16.4 “Associating Parameters with a Function (Currying)” for an example of
“curry”ing (i.e., associating parameters with partially evaluated functions).

16.6 Colorizing Python Source Using the Built-in
Tokenizer

Credit: Jürgen Hermann, Mike Brown

Problem
You need to convert Python source code into HTML markup, rendering comments,
keywords, operators, and numeric and string literals in different colors.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.6 Colorizing Python Source Using the Built-in Tokenizer | 599

Solution
tokenize.generate_tokens does most of the work. We just need to loop over all
tokens it finds, to output them with appropriate colorization:

""" MoinMoin - Python Source Parser """
import cgi, sys, cStringIO
import keyword, token, tokenize
Python Source Parser (does highlighting into HTML)
_KEYWORD = token.NT_OFFSET + 1
_TEXT = token.NT_OFFSET + 2
_colors = {
 token.NUMBER: '#0080C0',
 token.OP: '#0000C0',
 token.STRING: '#004080',
 tokenize.COMMENT: '#008000',
 token.NAME: '#000000',
 token.ERRORTOKEN: '#FF8080',
 _KEYWORD: '#C00000',
 _TEXT: '#000000',
}
class Parser(object):
 """ Send colorized Python source HTML to output file (normally stdout).
 """
 def __init__(self, raw, out=sys.stdout):
 """ Store the source text. """
 self.raw = raw.expandtabs().strip()
 self.out = out
 def format(self):
 """ Parse and send the colorized source to output. """
 # Store line offsets in self.lines
 self.lines = [0, 0]
 pos = 0
 while True:
 pos = self.raw.find('\n', pos) + 1
 if not pos: break
 self.lines.append(pos)
 self.lines.append(len(self.raw))
 # Parse the source and write it
 self.pos = 0
 text = cStringIO.StringIO(self.raw)
 self.out.write('<pre>')
 try:
 for token in tokenize.generate_tokens(text.readline):
 # unpack the components of each token
 toktype, toktext, (srow, scol), (erow, ecol), line = token
 if False: # You may enable this for debugging purposes only
 print "type", toktype, token.tok_name[toktype],
 print "text", toktext,
 print "start", srow,scol, "end", erow,ecol, "
"
 # Calculate new positions
 oldpos = self.pos

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 16: Programs About Programs

 newpos = self.lines[srow] + scol
 self.pos = newpos + len(toktext)
 # Handle newlines
 if toktype in (token.NEWLINE, tokenize.NL):
 self.out.write('\n')
 continue
 # Send the original whitespace, if needed
 if newpos > oldpos:
 self.out.write(self.raw[oldpos:newpos])
 # Skip indenting tokens, since they're whitespace-only
 if toktype in (token.INDENT, token.DEDENT):
 self.pos = newpos
 continue
 # Map token type to a color group
 if token.LPAR <= toktype <= token.OP:
 toktype = token.OP
 elif toktype == token.NAME and keyword.iskeyword(toktext):
 toktype = _KEYWORD
 color = _colors.get(toktype, _colors[_TEXT])
 style = ''
 if toktype == token.ERRORTOKEN:
 style = ' style="border: solid 1.5pt #FF0000;"'
 # Send text
 self.out.write('' % (color, style))
 self.out.write(cgi.escape(toktext))
 self.out.write('')
 except tokenize.TokenError, ex:
 msg = ex[0]
 line = ex[1][0]
 self.out.write("<h3>ERROR: %s</h3>%s\n" % (
 msg, self.raw[self.lines[line]:]))
 self.out.write('</pre>')
if __name__ == "__main__":
 print "Formatting..."
 # Open own source
 source = open('python.py').read()
 # Write colorized version to "python.html"
 Parser(source, open('python.html', 'wt')).format()
 # Load HTML page into browser
 import webbrowser
 webbrowser.open("python.html")

Discussion
This code is part of MoinMoin (see http://moin.sourceforge.net/) and shows how to
use the built-in keyword, token, and tokenize modules to scan Python source code
and re-emit it with appropriate color markup but no changes to its original format-
ting (“no changes” is the hard part!).

The Parser class’ constructor saves the multiline string that is the Python source to
colorize, and the file object, which is open for writing, where you want to output the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.6 Colorizing Python Source Using the Built-in Tokenizer | 601

colorized results. Then, the format method prepares a self.lines list that holds the
offset (i.e., the index into the source string, self.raw) of each line’s start.

format then loops over the result of generator tokenize.tokenize, unpacking each
token tuple into items specifying the token type and starting and ending positions in
the source (each expressed as line number and offset within the line). The body of
the loop reconstructs the exact position within the original source code string
self.raw, so it can emit exactly the same whitespace that was present in the original
source. It then picks a color code from the _colors dictionary (which uses HTML
color coding), with help from the keyword standard module to determine whether a
NAME token is actually a Python keyword (to be output in a different color than that
used for ordinary identifiers).

The test code at the bottom of the module formats the module itself and launches a
browser with the result, using the standard Python library module webbrowser to
enable you to see and enjoy the result in your favorite browser.

If you put this recipe’s code into a module, you can then import the module and
reuse its functionality in CGI scripts (using the PATH_TRANSLATED CGI environment
variable to know what file to colorize), command-line tools (taking filenames as
arguments), filters that colorize anything they get from standard input, and so on.
See http://skew.org/~mike/colorize.py for versions that support several of these vari-
ous possibilities.

With small changes, it’s also easy to turn this recipe into an Apache handler, so your
Apache web site can serve colorized .py files. Specifically, if you set up this script as a
handler in Apache, then the file is served up as colorized HTML whenever a visitor
to the site requests a .py file.

For the purpose of using this recipe as an Apache handler, you need to save the script
as colorize.cgi (not .py, lest it confuses Apache), and add, to your .htaccess or
httpd.conf Apache configuration files, the following lines:

AddHandler application/x-python .py
Action application/x-python /full/virtual/path/to/colorize.cgi

Also, make sure you have the Action module enabled in your httpd.conf Apache con-
figuration file.

See Also
Documentation for the webbrowser, token, tokenize, and keyword modules in the
Library Reference and Python in a Nutshell; the colorizer is available at http://purl.net/
wiki/python/MoinMoinColorizer, as part of MoinMoin (http://moin.sourceforge.net),
and, in a somewhat different variant, also at http://skew.org/~mike/colorize.py; the
Apache web server is available and documented at http://httpd.apache.org.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 16: Programs About Programs

16.7 Merging and Splitting Tokens
Credit: Peter Cogolo

Problem
You need to tokenize an input language whose tokens are almost the same as
Python’s, with a few exceptions that need token merging and splitting.

Solution
Standard library module tokenize is very handy; we need to wrap it with a generator
to do the post-processing for a little splitting and merging of tokens. The merging
requires the ability to “peek ahead” in an iterator. We can get that ability by wrap-
ping any iterator into a small dedicated iterator class:

class peek_ahead(object):
 sentinel = object()
 def __init__(self, it):
 self._nit = iter(it).next
 self.preview = None
 self._step()
 def __iter__(self):
 return self
 def next(self):
 result = self._step()
 if result is self.sentinel: raise StopIteration
 else: return result
 def _step(self):
 result = self.preview
 try: self.preview = self._nit()
 except StopIteration: self.preview = self.sentinel
 return result

Armed with this tool, we can easily split and merge tokens. Say, for example, by the
rules of the language we’re lexing, that we must consider each of ':=' and ':+' to be
a single token, but a floating-point token that is a '.' with digits on both sides, such
as '31.17', must be given as a sequence of three tokens, '31', '.', '17' in this case.
Here’s how (using Python 2.4 code with comments on how to change it if you’re
stuck with version 2.3):

import tokenize, cStringIO
in 2.3, also do 'from sets import Set as set'
mergers = {':' : set('=+'), }
def tokens_of(x):
 it = peek_ahead(toktuple[1] for toktuple in
 tokenize.generate_tokens(cStringIO.StringIO(x).readline)
)
 # in 2.3, you need to add brackets [] around the arg to peek_ahead
 for tok in it:
 if it.preview in mergers.get(tok, ()):
 # merge with next token, as required

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.7 Merging and Splitting Tokens | 603

 yield tok+it.next()
 elif tok[:1].isdigit() and '.' in tok:
 # split if digits on BOTH sides of the '.'
 before, after = tok.split('.', 1)
 if after:
 # both sides -> yield as 3 separate tokens
 yield before
 yield '.'
 yield after
 else:
 # nope -> yield as one token
 yield tok
 else:
 # not a merge or split case, just yield the token
 yield tok

Discussion
Here’s an example of use of this recipe’s code:

>>> x = 'p{z:=23, w:+7}: m :+ 23.4'
>>> print ' / '.join(tokens_of(x))
p / { / z / := / 23 / , / w / :+ / 7 / } / : / m / :+ / 23 / . / 4 /

In this recipe, I yield tokens only as substrings of the string I’m lexing, rather than
the whole tuple yielded by tokenize.generate_tokens, including such items as token
position within the overall string (by line and column). If your needs are more
sophisticated than mine, you should simply peek_ahead on whole token tuples (while
I’m simplifying things by picking up just the substring, item 1, out of each token
tuple, by passing to peek_ahead a generator expression), and compute start and end
positions appropriately when splitting or merging. For example, if you’re merging
two adjacent tokens, the overall token has the same start position as the first, and the
same end position as the second, of the two tokens you’re merging.

The peek_ahead iterator wrapper class can often be useful in many kinds of lexing
and parsing tasks, exactly because such tasks are well suited to operating on streams
(which are well represented by iterators) but often require a level of peek-ahead and/
or push-back ability. You can often get by with just one level; if you need more than
one level, consider having your wrapper hold a container of peeked-ahead or pushed-
back tokens. Python 2.4’s collections.deque container implements a double-ended
queue, which is particularly well suited for such tasks. For a more powerful look-
ahead iterator wrapper, see recipe 19.18 “Looking Ahead into an Iterator.”

See Also
Library Reference and Python in a Nutshell sections on the Python Standard Library
modules tokenize and cStringIO; recipe 19.18 “Looking Ahead into an Iterator” for a
more powerful look-ahead iterator wrapper.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 16: Programs About Programs

16.8 Checking Whether a String Has Balanced
Parentheses

Credit: Peter Cogolo

Problem
You need to check whether a certain string has balanced parentheses, but regular
expressions are not powerful enough for this task.

Solution
We want a “true” parser to check a string for balanced parentheses, since parsing
theory proves that a regular expression is not sufficient. Choosing one out of the
many Python parser generators, we’ll use David Beazley’s classic but evergreen PLY:

define token names, and a regular expression per each token
tokens = 'OPEN_PAREN', 'CLOS_PAREN', 'OTHR_CHARS'
t_OPEN_PAREN = r'\('
t_CLOS_PAREN = r'\)'
t_OTHR_CHARS = r'[^()]+' # RE meaning: one or more non-parentheses
def t_error(t): t.skip(1)
make the lexer (AKA tokenizer)
import lex
lexer = lex.lex(optimize=1)
define syntax action-functions, with syntax rules in docstrings
def p_balanced(p):
 ''' balanced : balanced OPEN_PAREN balanced CLOS_PAREN balanced
 | OTHR_CHARS
 | '''
 if len(p) == 1:
 p[0] = ''
 elif len(p) == 2:
 p[0] = p[1]
 else:
 p[0] = p[1]+p[2]+p[3]+p[4]+p[5]
def p_error(p): pass
make the parser (AKA scanner)
import yacc
parser = yacc.yacc()
def has_balanced_parentheses(s):
 if not s: return True
 result = parser.parse(s, lexer=lexer)
 return s == result

Discussion
Here’s an example of use of this recipe’s code:

>> s = 'ba(be, bi(bo, bu))'
>> print s, is_balanced(s)
ba(be, bi(bo, bu)) True

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.8 Checking Whether a String Has Balanced Parentheses | 605

>> s = 'ba(be, bi(bo), bu))'
>> print s, is_balanced(s)
ba(be, bi(bo), bu)) False

The first string has balanced parentheses, but the second one has an extra closed
parenthesis; therefore, its parentheses are not balanced.

“How do I check a string for balanced parentheses?” is a frequently asked question
about regular expressions. Programmers without a computer science background are
often surprised to hear that regular expressions just aren’t powerful enough for this
apparently simple task and a more complete form of grammar is required. (Perl’s reg-
ular expressions plus arbitrary embedded expressions kitchen sink does suffice—which
just proves they aren’t anywhere near “regular” expressions any more!)

For this very simplified parsing problem we’re presenting, any real parser is over-
kill—just loop over the string’s characters, keeping a running count of the number of
open and yet unclosed parentheses encountered at this point, and return False if the
running count ever goes negative or doesn’t go back down to exactly 0 at the end:

def has_bal_par(s):
 op = 0
 for c in s:
 if c=='(':
 op += 1
 elif c==')':
 if op == 0:
 return False
 op -= 1
 return op == 0

However, using a parser when you need to parse is still a better idea, in general, than
hacking up special-purpose code such as this has_bal_par function. As soon as the
problem gets extended a bit (and problems invariably do grow, in real life, in often
unpredictable directions), a real parser can grow gracefully and proportionally with
the problem, while ad hoc code often must be thrown away and completely
rewritten.

All over the web, you can find oodles of Python packages that are suitable for lexing
and parsing tasks. My favorite, out of all of them, is still good old PLY, David Beaz-
ley’s Python Lexx and Yacc, which reproduces the familiar structure of Unix
commands lexx and yacc while taking advantage of Python’s extra power when com-
pared to the C language that those Unix commands support.

You can find PLY at http://www.dabeaz.com/ply/. PLY is a pure Python package:
download it (as a .tgz compressed archive file), decompress and unarchive it (all rea-
sonable archiving tools now support this subtask on all platforms), open a com-
mand shell, cd into the directory into which you unarchived PLY, and run the usual
python setup.py install, with the proper privileges to be able to write into your
Python installation’s site-packages directory (which privileges those are depends on

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 16: Programs About Programs

how you installed Python, and on what platform you’re running). Briefly, install it
just as you would install any other pure Python package.

As you can see from this recipe, PLY is quite easy to use, if you know even just the
fundamentals of lexing and parsing. First, you define your grammar’s tokens—make
a tuple or list of all their names (conventionally uppercase) bound to name tokens at
your module’s top level, define for each token a regular expression bound to name t_

token_name (again at the module’s top level), import lex, and call lex.lex to build
your tokenizer (lexer). Then, define your grammar’s action functions (each of them
carries the relevant syntax rule—production—in its docstring in BNF, Backus-Naur
Form), import yacc, and call yacc.yacc to build your parser (scanner). To parse any
string, call the parse method of your parser with the string as an argument.

All the action is in your grammar’s action functions, as their name implies. Each
action function receives as its single argument p a list of production elements corre-
sponding to the production that has been matched to invoke that function; the
action function’s job is to put into p[0] whatever you need as “the result” of that syn-
tax rule getting matched. In this recipe, we use as results the very strings we have
been matching, so that function is_balanced just needs to check whether the whole
string is matched by the parse operation.

When you run this script the first time, you will see a warning about a shift/reduce
conflict. Don’t worry: as any old hand at yacc can tell you, that’s the yacc equivalent
of a rite of passage. If you want to understand that message in depth, and maybe (if
you’re an ambitious person) even do something about it, open with your favorite
browser the doc/ply.html file in the directory in which you unpacked PLY. That file
contains a rather thorough documentation of PLY. As that file suggests, continue by
studying the contents of the examples directory and then read a textbook about com-
pilers—I suggest Dick Grune and Ceriel J.H. Jacobs, “Parsing Techniques, a Practi-
cal Guide.” The first edition, at the time of this writing, is freely available for
download as a PDF file from http://www.cs.vu.nl/~dick/PTAPG.html, and a second
edition should be available in technical bookstores around the middle of 2005.

See Also
PLY web page at http://www.dabeaz.com/ply/; Dick Grune and Ceriel J.H. Jacobs,
“Parsing Techniques, a Practical Guide,” a PDF, downloadable from http://
www.cs.vu.nl/~dick/PTAPG.html.

16.9 Simulating Enumerations in Python
Credit: Will Ware

Problem
You want to define an enumeration in the spirit of C’s enum type.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.9 Simulating Enumerations in Python | 607

Solution
Python’s introspection facilities let you code a class that implements a version of
enum, even though Python, as a language, does not support the enum construct:

class EnumException(Exception):
 pass
class Enumeration(object):
 def __init__(self, name, enumList, valuesAreUnique=True):
 self.__doc__ = name
 self.lookup = lookup = { }
 self.reverseLookup = reverseLookup = { }
 i = 0
 for x in enumList:
 if type(x) is tuple:
 try:
 x, i = x
 except ValueError:
 raise EnumException, "tuple doesn't have 2 items: %r" % (x,)
 if type(x) is not str:
 raise EnumException, "enum name is not a string: %r" % (x,)
 if type(i) is not int:
 raise EnumException, "enum value is not an integer: %r" % (i,)
 if x in lookup:
 raise EnumException, "enum name is not unique: %r" % (x,)
 if valuesAreUnique and i in reverseLookup:
 raise EnumException, "enum value %r not unique for %r" % (i, x)
 lookup[x] = i
 reverseLookup[i] = x
 i = i + 1

def __getattr__(self, attr):
try: return self.lookup[attr]
except KeyError: raise AttributeError, attr

 def whatis(self, value):
 return self.reverseLookup[value]

Discussion
In the C language, enum lets you declare several named constants, typically with
unique values (although you can also explicitly arrange for a value to be duplicated
under two different names), without necessarily specifying the actual values (except
when you want it to). Despite the similarity in naming, C’s enum and this recipe’s
Enumeration class have little to do with the Python built-in enumerate generator,
which is used to loop on (index, item) pairs given an iterable—an entirely different
issue!

Python has an accepted idiom that’s fine for small numbers of constants:

A, B, C, D = range(4)

However, this idiom doesn’t scale well to large numbers of constants and doesn’t
allow you to specify values for some constants while leaving others to be determined

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 16: Programs About Programs

automatically. This recipe provides for all these niceties and, optionally, also checks
that all values (both the ones explicitly specified and the ones automatically deter-
mined) are unique. Enum values are attributes of an Enumeration class instance
(Volkswagen.BEETLE, Volkswagen.PASSAT, etc.). A further feature, missing in C but
really quite useful, is the ability to go from the value to the corresponding name
inside the enumeration (the name you get can be somewhat arbitrary for those enu-
merations in which you don’t constrain values to be unique).

This recipe’s Enumeration class has an initializer that accepts a string argument to
specify the enumeration’s name and a sequence argument to specify the names of all
values in the enumeration. Each item of the sequence argument can be a string (to
specify that the value named is one more than the last value used) or else a tuple with
two items (the string that is the value’s name, then the value itself, which must be an
integer). The code in this recipe relies heavily on strict type checking to determine
which case applies, but the recipe’s essence would not change by much if the check-
ing was performed in a more lenient way (e.g., with the isinstance built-in function).

Each Enumeration instance has two dict attributes: self.lookup to map names to val-
ues and self.reverselookup to map values back to the corresponding names. The
special method __getattr__ lets you use names with attribute syntax (e.x is mapped
to e.lookup['x']), and the whatis method allows reverse lookups (i.e., find a name
given a value) with similar ease.

Here’s an example of how you can use this Enumeration class:

if __name__ == '__main__':
 import pprint
 Volkswagen = Enumeration("Volkswagen",
 ("JETTA", "RABBIT", "BEETLE", ("THING", 400), "PASSAT", "GOLF",
 ("CABRIO", 700), "EURO_VAN", "CLASSIC_BEETLE", "CLASSIC_VAN"
))
 Insect = Enumeration("Insect",
 ("ANT", "APHID", "BEE", "BEETLE", "BUTTERFLY", "MOTH", "HOUSEFLY",
 "WASP", "CICADA", "GRASSHOPPER", "COCKROACH", "DRAGONFLY"
))
 def whatkind(value, enum):
 return enum.__doc__ + "." + enum.whatis(value)
 class ThingWithKind(object):
 def __init__(self, kind):
 self.kind = kind
 car = ThingWithKind(Volkswagen.BEETLE)
 print whatkind(car.kind, Volkswagen)
emits Volkswagen.BEETLE
 bug = ThingWithKind(Insect.BEETLE)
 print whatkind(bug.kind, Insect)
emits Insect.BEETLE
 print car.__dict__
emits {'kind': 2}
 print bug.__dict__
emits {'kind': 3}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.10 Referring to a List Comprehension While Building It | 609

 pprint.pprint(Volkswagen.__dict__)
 pprint.pprint(Insect.__dict__)
emits dozens of line showing off lookup and reverseLookup dictionaries

Note that the attributes of car and bug don’t include any of the enum machinery
because that machinery is held as class attributes, not as instance attributes. This
means you can generate thousands of car and bug objects with reckless abandon,
never worrying about wasting time or memory on redundant copies of the enum stuff.

See Also
Recipe 6.2 “Defining Constants” shows how to define constants in Python; docu-
mentation on the special method __getattr__ in the Language Reference and Python
in a Nutshell.

16.10 Referring to a List Comprehension While
Building It

Credit: Chris Perkins

Problem
You want to refer, from inside a list comprehension, to the same list object you’re
building. However, the object being built by the list comprehension doesn’t have a
name while you’re building it.

Solution
Internally, the Python interpreter does create a “secret” name that exists only while a
list comprehension is being built. In Python 2.3, that name is usually '_[1]' and
refers to the bound method append of the list object we’re building. We can use this
secret name as a back door to refer to the list object as it gets built. For example, say
we want to build a copy of a list but without duplicates:

>>> L = [1, 2, 2, 3, 3, 3]
>>> [x for x in L if x not in locals()['_[1]'].__self__]
[1, 2, 3]

Python 2.4 uses the same name to indicate the list object being built, rather than the
bound-method access. In the case of nested list comprehensions, inner ones are
named '_[2]', '_[3]', and so on, as nesting goes deeper. Clearly, all of these consid-
erations are best wrapped up into a function:

import inspect
import sys
version_23 = sys.version_info < (2, 4)
def this_list():
 import sys
 d = inspect.currentframe(1).f_locals

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 16: Programs About Programs

 nestlevel = 1
 while '_[%d]' % nestlevel in d: nestlevel += 1
 result = d['_[%d]' % (nestlevel - 1)]
 if version_23: return result.__self__
 else: return result

Using this function, we can make the preceding snippet more readable, as well as
making it work properly in Python 2.4 as well as in version 2.3:

>>> [x for x in L if x not in this_list()]
[1, 2, 3]

Discussion
List comprehensions may look a little like magic, but the bytecode that Python gen-
erates for them is in fact quite mundane: create an empty list, give the empty list’s
bound-method append, a temporary name in the locals dictionary, append items one
at a time, and then delete the name. All of this happens, conceptually, between the
open square bracket ([) and the close square bracket (]), which enclose the list com-
prehension.

The temporary name that Python 2.3 assigns to the bound append method is '_[1]'

(or '_[2]', etc., for nested list comprehensions). This name is deliberately chosen (to
avoid accidental clashes) to not be a syntactically valid Python identifier, so we can-
not refer to the bound method directly, by name. However, we can access it as
locals()[’_[1]’]. Once we have a reference to the bound method object, we just
use the bound method’s __self__ attribute to get at the list object itself. In Python
2.4, the same name refers directly to the list object, rather than to its bound method,
so we skip the last step.

Having a reference to the list object enables us to do all sorts of neat party tricks,
such as performing if tests that involve looking at the items that have already been
added to the list, or even modifying or deleting them. These capabilities are just what
the doctor ordered for finding primes in a “one-liner”, for example: for each odd
number, we need to test whether it is divisible by any prime number less than or
equal to the square root of the number being tested. Since we already have all the
smaller primes stored and, with our new parlor trick, have access to them, this test is
a breeze and requires no auxiliary storage:

import itertools
def primes_less_than(N):
 return [p for p in itertools.chain([2], xrange(3,N,2))
 if 0 not in itertools.imap(
 lambda x: p % x, itertools.takewhile(
 lambda v: v*v <= p, this_list()))]

The list comprehension that’s the whole body of this function primes_less_than,
while long enough not to fit into a single physical line, is all in a single logical line
(indeed, it must be, since any list comprehension is a single expression), and there-
fore qualifies as a “one-liner” if you squint in just the right way.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.11 Automating the py2exe Compilation of Scripts into Windows Executables | 611

This simple prime-finding algorithm is nowhere near as fast as the Sieve of Era-
tosthenes shown in recipe 18.10 “Computing Prime Numbers,” but the ability to fit
the entire algorithm inside a single expression is nevertheless kind of neat. Part of its
neatness comes from the just-in-time evaluation that the functions from standard
library module itertools perform so nicely.

Alas, this neat trick definitely cannot be recommended for production code. While it
works in Python 2.3 and 2.4, it could easily break in future releases, since it depends
on undocumented internals; for the same reason, it’s unlikely to work properly on
other implementations of the Python language, such as Jython or IronPython. So, I
suggest you use it to impress friends, but for any real work, stick to clearer, faster,
and solid good old for loops!

See Also
Documentation for bound methods, lists’ append method, and the itertools mod-
ule in the Library Reference and Python in a Nutshell.

16.11 Automating the py2exe Compilation of
Scripts into Windows Executables

Credit: Alexander Semenov

Problem
You often use py2exe to build Windows .exe files from Python scripts, but you don’t
want to bother writing a setup.py build script for each and every such script.

Solution
distutils is a package in the standard Python library, ready to be imported from
your Python code. py2exe is a third-party extension to distutils for the specific task
of generating Windows executables from Python code: you must download and
install py2exe separately, but once installed, it cooperates smoothly with the stan-
dard distutils. Thanks to these features, you can easily write Python scripts to auto-
mate distutils tasks (including py2exe tasks). For example:

from distutils.core import setup
import sys, os, py2exe
the key trick with our arguments and Python's sys.path
name = sys.argv[1]
sys.argv[1] = 'py2exe'
sys.path.append(os.path.dirname(os.path.abspath(name)))
setup(name=name[:-3], scripts=[name])

Save this as makexe.py in the Tools\Scripts\ folder of your Python installation. (You
should always add this folder to your Windows PATH because it contains many useful

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 16: Programs About Programs

tools.) Now, from a Windows command prompt, you’re able to cd to a directory
where you have placed a script (say C:\MyDir\), and there run, say:

C:\MyDir> makexe.py myscript.py

and (assuming that you have a myscript.py script there, and .py among your Win-
dows executable extensions, with association to the Python interpreter) py2exe pre-
pares all the files you need for distributing your masterpiece (as a Windows
executable and supporting DLLs), neatly arranged in folder c:\MyDir\dist\myscript\.

Discussion
The distutils package is part of the Python Standard Library. It helps you prepare
your Python modules and extensions for distribution, as well as letting you install
such packages as distributed by others. py2exe is a freely downloadable third-party
extension that works on top of distutils to help you build a Windows .exe file (and
a set of supporting DLL files) from a Python-coded program, so that you can distrib-
ute your program in executable form to other Windows PCs that may not have
Python installed; see http://starship.python.net/crew/theller/py2exe/, both to down-
load py2exe and for detailed documentation of this useful tool.

Following the details given in the distutils (and py2exe) documentation, the canoni-
cal way to use distutils (including py2exe) is to write a script, conventionally always
named setup.py, to perform all kinds of distutils tasks on your package. Normally,
you write a setup.py for each package you distribute, placing it in the top directory of
the package (known as the distribution root in distutils terminology).

However, there is nothing mandatory about the convention of writing a setup.py
script per package. distutils and py2exe, after all, are written as modules to be
imported from Python. So, you can, if you so choose, use all the power of Python to
code scripts that help you perform distutils and py2exe tasks in whatever ways you
find most convenient.

This recipe shows how I eliminate the need to write a separate setup.py script for
each Python script that I convert to an executable with py2exe, and related issues
such as the need to keep such scripts in dedicated “distribution root” directories. I
suggest you name this recipe’s script makexe.py, but any name will do, as long as you
avoid naming it py2exe.py (a natural enough temptation). (Naming it py2exe.py
would break the script because the script must import py2exe, and if you named the
script py2exe.py it would “import itself” instead!)

Place this script on any directory on your Windows PATH where you normally keep
executable Python scripts. I suggest you use the Tools\Scripts folder of the Python
distribution, a folder that contains several other useful scripts you’ll want to have
handy (have a look in that folder—it’s worth your time). I’m not going to delve into
the details of how to set and examine your Windows PATH, open a command prompt,
make your Python scripts executable, and so on. Such system administration details

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.12 Binding Main Script and Modules into One Executable on Unix | 613

differ slightly on each version of Windows, and you’ll need to master them for any
Windows version on which you want to perform significant programming, anyway.

Once you have implemented this Solution, you’ll find that making your Python
scripts into Windows executables has become so easy and so fast that soon you’ll be
distributing your neat and useful programs to friends and acquaintances right and
left. You won’t need to convince them to install the Python runtime files before they
can install and run your programs, either! (Of course, in this way they will end up
with what amounts to several copies of the runtime files, if they install several of
your compiled programs—there is little you can do about that.)

See Also
The section “Distributing Python Modules” of the standard Python documentation
set is still incomplete but a good source of information on the distutils package;
Python in a Nutshell covers the essentials of the distutils package; py2exe is at http://
starship.python.net/crew/theller/py2exe/.

16.12 Binding Main Script and Modules
into One Executable on Unix

Credit: Joerg Raedler

Problem
You have a Python application composed of a main script and some additional mod-
ules. You want to bind the script and modules into one executable file, so that no
installation procedure is necessary.

Solution
Prepare the following mixed sh/Python script and save it as file zipheader.unix:

#!/bin/sh
PYTHON=$(which python 2>/dev/null)
if [x ! -x "x$PYTHON"] ; then
 echo "python executable not found - cannot continue!"
 exit 1
fi
exec $PYTHON - $0 $@ << END_OF_PYTHON_CODE
import sys
version = sys.version_info[:2]
if version < (2, 3):
 print 'Sorry, need Python 2.3 or better; %s.%s is too old!' % version
sys.path.insert(0, sys.argv[1])
del sys.argv[0:2]
import main

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 16: Programs About Programs

main.main()
END_OF_PYTHON_CODE

Make sure you have the Python bytecode files for the main script of your application
(file main.pyc, containing a function named main, which starts the application when
called without arguments) and any additional modules your application needs (e.g.,
files spam.pyc and eggs.pyc). Make a zip file out of them all:

$ zip myapp.zip main.pyc spam.pyc eggs.pyc

(If you prefer, you can build the zip file with an auxiliary Python program, of course.)
Next, concatenate the “header” and the zip file, and make the resulting file execut-
able:

$ cat zipheader.unix myapp.zip > myapp
$ chmod +x myapp

That’s all! Your application is now contained in this executable file myapp. When
myapp runs, the shell /bin/sh sets things up and replaces itself with the Python inter-
preter. The Python interpreter reopens the file as a zip file, skipping the “header”
text, and finds all needed modules in the zip file itself.

Discussion
On Windows machines, you would normally use py2exe for similar tasks, as shown
previously in recipe 16.11 “Automating the py2exe Compilation of Scripts into Win-
dows Executables”; on Mac OS X, you would normally use py2app (although this rec-
ipe works just as well on Mac OS X as it does on any other Unix).

This recipe is particularly useful for Linux and other Unix variants that come with
Python installed. By following the steps outlined in this recipe’s Solution, you can
distribute a Python application as a single, self-contained standalone executable file,
which runs on any version of Unix, on any hardware platform—as long as your
Python application does not need any C-coded extension modules beyond the ones
that come with Python itself. When you do need more, you can use Python’s own
distutil package to perform more complicated packaging tasks. But for many sim-
ple Python applications and quite a few that aren’t all that simple, this recipe can be
very useful, since it results in a file that can just be run as is, without needing any
kind of “installation” step!

The key idea of this recipe is to exploit Python’s ability to import modules from a zip
file, while skipping leading text that may precede the zip file itself. Here, as leading
text, we use a small shell script that turns itself into a Python script, and within the
same file continues with the zip file from which everything gets imported. The con-
cept of importing from a zip file is described in recipe 2.9 “Reading Data from zip
Files.”

In the zip file, you may, if you wish, place Python source files (with extension .py), as
well as compiled bytecode files (with extension .pyc); the latter option is often prefer-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.12 Binding Main Script and Modules into One Executable on Unix | 615

able because if you zip up source files, Python compiles them every time you run the
application, slowing your application’s startup. On the other hand, if you zip up
compiled bytecode files, your application may be unable to run with versions of
Python that are newer than the one you used to prepare the bytecode files, since
binary compatibility of bytecode files is not guaranteed across Python releases. The
best approach may be to place both sources and bytecodes in the zip file.

You may also choose to zip up optimized bytecode files (with extension .pyo)—if you
do so, you need to add the flag -O right after the $PYTHON in the shell script in this rec-
ipe’s Solution. Execution speed doesn’t generally change much, but optimized exe-
cution skips assert statements, which may be important to you. Also, if you prepare
the .pyo files by running Python with option -OO, all docstrings are eliminated, which
may slightly reduce your application’s size on disk (although docstrings tend to com-
press well, so that size advantage may be minor).

If you need help in finding all the modules that you need to place in the zip file, see
the modulefinder module in the Python Standard Library. Unfortunately, no real doc-
umentation about it is available at the time of this writing, but just running (in ver-
sion 2.3) something like:

$ python /usr/lib/python2.3/modulefinder.py main.py

should help (you may have to change the change the path to the modulefinder.py
script, depending on your Python installation). With Python 2.4, you can just use the
handy new -m switch:

$ python -mmodulefinder main.py

Python 2.4’s -m switch lets you run as the main script any module that’s on Python’s
sys.path—a very convenient little feature!

See Also
Recipe 16.11 “Automating the py2exe Compilation of Scripts into Windows Execut-
ables”; recipe 2.9 “Reading Data from zip Files”; the sources of modules
modulefinder and zipimport (which are not yet documented in the Library Reference
at the time of writing).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616

Chapter 17CHAPTER 17

Extending and Embedding

17.0 Introduction
Credit: David Beazley, University of Chicago

One of Python’s most powerful features is its ability to be hooked to libraries and
programs written in classic compiled languages such as C, C++, and Fortran. A large
number of Python’s built-in library modules are written as extension modules in C so
that operating system services, networking functions, databases, and other features
can be easily accessed from the interpreter. In addition, a number of application pro-
grammers write extensions in order to use Python as a framework for controlling
large software packages coded in other languages.

The gory details of how Python interfaces with other languages can be found in vari-
ous Python programming books, as well as online documentation at www.python.org
(directory Demo, distributed as part of the Python source distribution, also contains
several useful examples). However, the general approach revolves around the cre-
ation of special wrapper functions that hook into the interpreter. For example, if you
had a C function like this:

 int gcd(int x, int y) {
 int g = y;
 while (x > 0) {
 g = x;
 x = y % x;
 y = g;
 }
 return g;
 }

and you wanted to access it from Python in a module named spam, you’d write some
special wrapper code like this:

 #include "Python.h"
 extern int gcd(int, int);
 PyObject *wrap_gcd(PyObject *self, PyObject *args) {
 int x, y, g;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 617

 if(!PyArg_ParseTuple(args, "ii", &x, &y))
 return NULL;
 g = gcd(x, y);
 return Py_BuildValue("i", g);
 }
 /* List of all functions in the module */
 static PyMethodDef spammethods[] = {
 {"gcd", wrap_gcd, METH_VARARGS },
 { NULL, NULL }
 };
 /* Module initialization function */
 void initspam(void) {
 Py_InitModule("spam", spammethods);
 }

Once this code is compiled into an extension module, you can use the gcd function
just as you would expect. For example:

>>> import spam
>>> spam.gcd(63,56)
7
>>> spam.gcd(71,89)
1

This short example extends in a natural way to larger programming libraries—each
function that you want to access from Python simply gets its own wrapper.

Although writing simple extension functions is fairly straightforward, writing many
wrappers quickly becomes tedious and prone to error if you are building anything of
reasonable complexity. Therefore, a lot of programmers rely on automatic module
building tools to simplify the process. Python is fortunate to have a variety of such
tools, many of which are listed below:

bgen
bgen is a module-building tool that can be found in the Tools directory of a stan-
dard Python distribution. Maintained by Jack Jansen, it is used to generate many
of the extension modules available in the Macintosh version of Python, but it is
not Mac specific.

pyfort
pyfort is a tool developed by Paul Dubois that can be used to build extension
modules for Fortran code. Details are available at the following web page: http://
pyfortran.sourceforge.net.

f2py
f2py is a wrapper generator for creating extensions in Fortran 90/95 that has
been developed by Pearu Peterson. Details are available at http://cens.ioc.ee/
projects/f2py2e/.

SIP
SIP is a C++ module builder developed by Phil Thompson that creates wrappers
for C++ classes. The system has most notably been used to create the PyQt and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 17: Extending and Embedding

PyKDE extension modules. More information can be found at http://
www.thekompany.com/projects/pykde.

WrapPy
WrapPy is another C++ module builder that produces extension modules by
reading C++ header files. It is developed by Greg Couch and is available at http://
www.cgl.ucsf.edu/home/gregc/wrappy/index.html.

Boost Python Library
Boost Python Library, developed by David Abrahams, provides one of the most
powerful and unusual C++ wrapping techniques. Classes are automatically
wrapped into Python extensions by simply writing a few additional C++ classes
that specify information about the extension module. More information is avail-
able at http://www.boost.org/libs/python/doc/.

SWIG
SWIG (Simplified Wrapper and Interface Generator) is an automatic extension-
building tool that reads annotated C and C++ header files and produces exten-
sion modules for Python, Tcl, Perl, and a variety of other high-level languages
such as Scheme, Ruby, Java, OCAML (Objective Caml), and C#. SWIG is able
to wrap a large subset of C++ language features into a Python extension mod-
ule. However, since I developed SWIG, I may be a little biased :-). In any event,
further details are available at http://www.swig.org.

Pyrex
Pyrex is a language for writing Python extension modules, developed by Greg
Ewing. The Pyrex language is a large subset of Python, with semantics slightly
less fluidly dynamic than Python, and the addition of a few language constructs
(particularly optional declarations of types of parameters and variables) that
enables the Pyrex compiler to generate fast C code. Further details are available
at http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/.

Regardless of the approach used to build Python extension modules, certain impor-
tant topics remain somewhat mysterious to many extension programmers. The
recipes in this chapter describe some of the common problems and extension-build-
ing tricks that are rarely covered in the standard documentation or other Python
books. Topics include interacting with threads, returning NULL values, accessing
Python sequences and iterables, creating extension types, and debugging.

One recipe, in particular, highlights an especially important topic: you don’t neces-
sarily have to use other languages (even one as close to Python as Pyrex is) to write
Python extensions to access functionality that’s available through dynamically
loaded libraries (.DLLs on Windows, .sos on Linux, .dylib on Mac OS X, etc.). It
often may be sufficient to use existing third-party general-purpose extensions, such
as the classic calldll or the newer ctypes packages, which enable you to wrap such
dynamic libraries and make their functionality available to your Python programs, by
writing just a little pure Python code.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.1 Implementing a Simple Extension Type | 619

17.1 Implementing a Simple Extension Type
Credit: Alex Martelli

Problem
You want to code and build a C extension type for Python with a minimal amount of
hard work.

Solution
First of all, we need to create a setup.py file to use the distutils package to build and
install our module:

from distutils.core import setup, Extension
setup(name = "elemlist",
 version = "1.0",
 maintainer = "Alex Martelli",
 maintainer_email = "amcx@aleax.it",
 description = "Sample, simple Python extension module",
 ext_modules = [Extension('elemlist',sources=['elemlist.c'])]
)

Then, we need a file elemlist.c with our module’s source code:

#include "Python.h"
/* type-definition and utility-macros */
typedef struct {
 PyObject_HEAD
 PyObject *car, *cdr;
} cons_cell;
staticforward PyTypeObject cons_type;
/* a type-testing macro (we don't actually use it here) */
#define is_cons(v) ((v)->ob_type == &cons_type)
/* utility macros to access car and cdr, as either lvalues or rvalues */
#define carof(v) (((cons_cell*)(v))->car)
#define cdrof(v) (((cons_cell*)(v))->cdr)
/* ctor ("internal" factory-function) and dtor */
static cons_cell*
cons_new(PyObject *car, PyObject *cdr)
{
 cons_cell *cons = PyObject_New(cons_cell, &cons_type);
 if(cons) {
 cons->car = car; Py_INCREF(car); /* INCREF when holding a PyObject */
 cons->cdr = cdr; Py_INCREF(cdr); /* ditto */
 }
 return cons;
}
static void
cons_dealloc(cons_cell* cons)
{
 /* DECREF when releasing previously-held PyObject*'s */
 Py_DECREF(cons->car); Py_DECREF(cons->cdr);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 17: Extending and Embedding

 PyObject_Del(cons);
}
/* A minimal Python type-object */
statichere PyTypeObject cons_type = {
 PyObject_HEAD_INIT(0) /* initialize to 0 to ensure Win32 portability */
 0, /* ob_size */
 "cons", /* tp_name */
 sizeof(cons_cell), /* tp_basicsize */
 0, /* tp_itemsize */
 /* methods */
 (destructor)cons_dealloc, /* tp_dealloc */
 /* implied by ISO C: all zeros thereafter, i.e., no other method */
};
/* module-functions */
static PyObject*
cons(PyObject *self, PyObject *args) /* the exposed factory-function */
{
 PyObject *car, *cdr;
 if(!PyArg_ParseTuple(args, "OO", &car, &cdr))
 return 0;
 return (PyObject*)cons_new(car, cdr);
}
static PyObject*
car(PyObject *self, PyObject *args) /* car-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */
 return 0;
 return Py_BuildValue("O", carof(cons));
}
static PyObject*
cdr(PyObject *self, PyObject *args) /* cdr-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */
 return 0;
 return Py_BuildValue("O", cdrof(cons));
}
static PyObject*
setcar(PyObject *self, PyObject *args) /* car-setter */
{
 PyObject *cons;
 PyObject *value;
 if(!PyArg_ParseTuple(args, "O!O", &cons_type, &cons, &value))
 return 0;
 Py_INCREF(value);
 Py_DECREF(carof(cons));
 carof(cons) = value;
 return Py_BuildValue("");
}
static PyObject*
setcdr(PyObject *self, PyObject *args) /* cdr-setter */
{
 PyObject *cons;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.1 Implementing a Simple Extension Type | 621

 PyObject *value;
 if(!PyArg_ParseTuple(args, "O!O", &cons_type, &cons, &value))
 return 0;
 Py_INCREF(value);
 Py_DECREF(cdrof(cons));
 cdrof(cons) = value;
 return Py_BuildValue("");
}
static PyMethodDef elemlist_module_functions[] = {
 {"cons", cons, METH_VARARGS},
 {"car", car, METH_VARARGS},
 {"cdr", cdr, METH_VARARGS},
 {"setcar", setcar, METH_VARARGS},
 {"setcdr", setcdr, METH_VARARGS},
 {0, 0}
};
/* module entry-point (module-initialization) function */
void
initelemlist(void)
{
 /* Create the module, with its functions */
 PyObject *m = Py_InitModule("elemlist", elemlist_module_functions);
 /* Finish initializing the type-objects */
 cons_type.ob_type = &PyType_Type;
}

Discussion
C-coded Python extension types have an undeserved aura of mystery and difficulty.
Sure, it’s a lot of work to implement every possible feature, but a minimal yet useful
type doesn’t necessarily take all that much effort.

This module is roughly equivalent to the Python-coded module:

def cons(car, cdr): return car, cdr
def car(conscell): return conscell[0]
def cdr(conscell): return conscell[1]
def setcar(conscell, value): conscell[0] = value
def setcdr(conscell, value): conscell[1] = value

except that the C source is about 25 times larger, even excluding comments and
empty lines (and it is not much faster than the Python-coded version, either).

However, the point of this recipe is to demonstrate a minimal C-coded extension
type. I’m not even supplying object methods (except the indispensable destructor)
but, rather, I am providing module-level functions to build cons cells and to read and
write their car and cdr fields. This recipe also shows the utter simplicity of building a
C-coded extension module on any platform, thanks to the distutils package, which
does all of the hard work.

Lisp-savvy readers will have recognized from the names involved that this little
extension offers the core functionality to implement a Lisp-like linked list type—
using some NIL marker (e.g. None), by convention, as the cdr of the last cons-cell of a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 17: Extending and Embedding

list, and otherwise “consing up a list” by having every cdr be another cons-cell. You
might easily constrain the cdr to be either None or another cons-cell, giving up on gen-
erality for a bit of extra error checking.

Because this recipe is meant as an introduction to writing extension modules in C for
Python, here are the instructions for building this extension module, assuming you
have a Windows machine with Python 2.3 and Microsoft Visual C++ 6 (or the free
command-line equivalent that you can download from Microsoft’s site as a part of
their .NET Framework SDK). You can presumably translate mentally to other plat-
forms such as Linux with gcc, Mac OS X with gcc, and so on. On the other hand,
using different C compilers on Windows involves more work, and I’m not going to
cover that here (see http://sebsauvage.net/python/mingw.html).

Here are the steps you should follow to build this recipe’s extension:

1. Make a new directory—for example, C:\Temp\EL.

2. Open a command-prompt window, and go to the new directory.

3. In the new directory, create the files setup.py and elemlist.c with the contents of
the recipe’s text.

4. Run the following at the command prompt (assuming you’ve performed a stan-
dard Python 2.3 installation, so that your python.exe lives in C:\Python23):

<m>C:\Temp\EL> C:\Python23\python setup.py install</m>

This command will result in lots of output, which you should examine to check
for problems. Presumably, all has gone well, and the new elemlist extension
module has been built and installed.

5. Now try the extension by running the following at the DOS prompt:

<m>C:\Temp\EL> C:\Python23\python</m>
(snipped: various greeting messages from Python)

>>> from elemlist import cons, car, cdr
>>> a = cons(1, cons(2, cons(3, ())))
>>> car(cdr(a))
2
>>>

There—your new extension module is installed and ready!

See Also
The Extending and Embedding manual is available as part of the standard Python
documentation set at http://www.python.org/doc/current/ext/ext.html; the section
“Distributing Python Modules” of the standard Python documentation set is still
incomplete, but it’s a reliable source of information on the distutils package.
Python in a Nutshell covers the essentials of extending and embedding and of the
distutils package.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.2 Implementing a Simple Extension Type with Pyrex | 623

17.2 Implementing a Simple Extension Type
with Pyrex

Credit: Alex Martelli

Problem
You want to code and build an extension type for Python with a minimal amount of
hard work.

Solution
The Pyrex language is the simplest and fastest way to build Python extensions. Once
we have Pyrex installed, the next step is to create a setup.py file to use the distutils

package to build and install our module:

from distutils.core import setup, Extension
from Pyrex.Distutils import build_ext
setup(name = "elemlist",
 version = "1.0",
 maintainer = "Alex Martelli",
 maintainer_email = "amcx@aleax.it",
 description = "Simple Python extension module in Pyrex",
 ext_modules = [Extension('elemlist',sources=['elemlist.pyx'])],
 cmdclass = {'build_ext': build_ext},
)

Then, we need a file elemlist.pyx with our module’s source code:

cdef class cons:
 cdef public object car, cdr
 def __init__(self, car, cdr):
 self.car = car
 self.cdr = cdr
 def __repr__(self):
 return 'cons(%r, %r)' % (self.car, self.cdr)

Discussion
Pyrex is a language for writing Python extension modules. It was developed by Greg
Ewing and is freely downloadable and installable. The Pyrex language is a large sub-
set of Python, with the addition of a few language constructs to allow easy genera-
tion of fast C code. In this recipe, the only special Pyrex construct we use is the cdef

statement, which lets us express C-level declarations.

This module is roughly equivalent to the Python-coded module:

class cons(object):
 __slots__ = ('car', 'cdr')
 def __init__(self, car, cdr):
 self.car = car
 self.cdr = cdr

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 17: Extending and Embedding

 def __repr__(self):
 return 'cons(%r, %r)' % (self.car, self.cdr)

As you see, Pyrex code is very similar to Python code. Pyrex code gets compiled into
C, which in turn gets compiled to machine code, while Python code is compiled into
bytecode instead. For such a simple type as cons, the Pyrex version is not much faster
than the Python version, but a pure C version, such as the one that I demonstrated
previously in recipe 17.1 “Implementing a Simple Extension Type,” despite having
25 times as much code, wouldn’t be any faster either.

Building a compiled extension module is just as simple when it’s coded in Pyrex as
when it’s coded directly in C, thanks to the distutils package, which does all of the
hard work. (You need to have Pyrex installed.) When you build a Pyrex-coded mod-
ule, you may get warnings from your C compiler about symbols with names starting
with __pyx or __pyx that are defined but not used, or declared but not defined. Do
not let these warning messages worry you: your C compiler is running with the high-
est possible level of warnings, and the little anomalies it’s warning about are just per-
fectly normal and innocuous artifacts in the C sources that Pyrex automatically
generates. Pyrex is not quite finished yet (the Pyrex version at the time of writing is
0.9.3), so no attention has yet been spent on purely cosmetic warts. (By the time you
read this, a mature version of Pyrex may have been released, with all i’s dotted and
all t’s crossed. Nevertheless, I would recommend Pyrex even if the latest version still
causes numerous warnings.)

See Also
Abundant documentation on Pyrex, as well as examples, can be found in the direc-
tory (and particularly in subdirectories Doc and Demos) where you unpacked Pyrex’s
.tar.gz file; essentially the same documentation can also be read online, starting from
the Pyrex web site at http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/.

Installing Pyrex
To use Pyrex, you need to download and install it (http://nz.cosc.canterbury.ac.nz/
~greg/python/Pyrex/), and you also need to have a C compiler. Pyrex translates your
.pyx source into C source and then uses your C compiler to make from that C source
a machine-code Python extension module (a .pyd file on Windows, a .so file on Linux,
a .dynlib file on the Mac, etc.). Installing Pyrex itself is a snap: unpack the .tar.gz file,
cd with the shell of your choice into the directory thus made, and at the shell prompt
type the usual command to install any Python module: python setup.py install. Just
as for any other Python module, you may need “root” or “administrator” privileges to
install Pyrex, depending on your platform and on the details of your Python installa-
tion. In the directory where you unpacked Pyrex’s .tar.gz archive, you will also find
abundant documentation and examples, particularly in subdirectories Doc and
Demos.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.3 Exposing a C++ Library to Python | 625

17.3 Exposing a C++ Library to Python
Credit: Ralf W. Grosse-Kunstleve, David Abrahams

Problem
You want to use a C++ library in Python. For example, you might have a fast ratio-
nal-numbers library, coded in C++, that you wish to wrap for use from Python.

Solution
Boost, http://www.boost.org, is a large free package with more than 50 fast and solid
C++ libraries. Among those libraries, we find both Boost.Rational, a rational num-
ber library, and Boost.Python, which makes it easy to turn any other C++ library into
a Python extension. So, we simply use the latter to wrap the former:

#include <boost/python.hpp>
#include <boost/rational.hpp>
/* two specific conversion functions: rational to float and to str */
static double
as_float(boost::rational<int> const& self)
{
 return double(self.numerator()) / self.denominator();
}
static boost::python::object
as_str(boost::rational<int> const& self)
{
 using boost::python::str;
 if (self.denominator() == 1) return str(self.numerator());
 return str(self.numerator()) + "/" + str(self.denominator());
}
/* the 'rational' Python extension module, with just one class in it: */
BOOST_PYTHON_MODULE(rational)
{
 boost::python::class_<boost::rational<int> >("int")
 .def(boost::python::init<int, optional<int> >())
 .def("numerator", &boost::rational<int>::numerator)
 .def("denominator", &boost::rational<int>::denominator)
 .def("__float__", as_float)
 .def("__str__", as_str)
 .def(-self)
 .def(self + self)
 .def(self - self)
 .def(self * self)
 .def(self / self)
 .def(self + int())
 .def(self - int())
 .def(self * int())
 .def(self / int())
 .def(int() + self)
 .def(int() - self)
 .def(int() * self)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 17: Extending and Embedding

 .def(int() / self)
 ;
}

Discussion
Once you have built and installed the rational extension shown in this recipe’s Solu-
tion, you can use it to perform simple, natural tasks, such as:

>>> import rational
>>> x = rational.int(1, 3)
>>> y = rational.int(-2, 4)
>>> print "x =", x
x = 1/3
>>> print "y =", y
y = -1/2
>>> print "x+y =", x+y
x+y = -1/6
>>> print "x*2 =", x * 2
x*2 = 2/3
>>> print "3/y =", 3 / y
3/y = -6

Compiling and linking Boost.Python extensions is supported by the Boost.Build tool;
we do not cover that topic here. Extensive documentation is available online at the
Boost site. Such tools as make and SCons are also popular for software compilation
and linking tasks, including tasks that involve Boost.

The Solution’s code shows off a few of Boost.Python’s powerful features. Consider
the snippet:

BOOST_PYTHON_MODULE(rational)
{
 class_<boost::rational<int> >("int")
 ...

The BOOST_PYTHON_MODULE macro takes a module name as a parameter, and a module
body immediately afterwards within braces, and does all that’s needed to make a
module we can import from Python.

The class_ template, instantiated with the boost::rational type as a parameter and
“called” with the string argument "int", does all we need to have as part of our mod-
ule a Python-usable class, named rational.int, each of whose instances wraps an
instance of the boost::rational class. The type boost::rational is itself a template,
and we instantiate that template with int as a parameter, to use int as the type of
each rational number’s numerator and denominator.

If we stopped here, wrapping a C++ class in the class_ template, and exposing the
wrapper without adding any more to it, we’d have a rather empty type available on
the Python side. It would have no constructor (save for the default argument-less
one), no methods, and no attributes. To remedy this, the Solution code continues

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.4 Calling Functions from a Windows DLL | 627

with several .def(...) calls, which are chained: each call enriches the object, and also
returns it, so you can just string such calls one after the other. The methods we add
with all those def calls include a constructor (which uses the init template), then a
couple of ordinary methods that delegate to the methods of the same names in the
wrapped class (accessors to the numerator and denominator parts of a rational num-
ber), and then a couple of type-conversion special methods for which we’ve previ-
ously coded corresponding functions (just before the BOOST_PYTHON_MODULE macro).
Note, in particular, that the implementation of the as_str function is so concise
because it makes full use of Boost.Python’s object interface—it’s almost like writing
Python in C++.

The baker’s dozen of .def(...) calls that begins with:

 .def(-self)

and proceeds all the way to:

 .def(int() / self)

exposes all the arithmetic special methods for our new rational.int class—unary
minus (__neg__), and the four operations, each in three versions—between two
instances of our class, and between such instances and ints on either side (__add__,
__radd__, etc.). The magic is performed using expression templates, a technique origi-
nally developed for optimizing high-performance matrix algebra expressions.
Boost.Python’s use of expression templates has a different purpose, but it certainly
comes in handy anyway!

A comprehensive rational number extension would require more functionality—
comparison operators, __repr__, __hash__, support for pickling, and so on. A more
complete implementation, one that is actively used in applications, can be found at
http://cvs.sourceforge.net/viewcvs.py/cctbx/boost_adaptbx/, in the file rational_ext.cpp.

See Also
Boost’s site is http://www.boost.org; the rational number library Boost.Rational, is at
http://www.boost.org/libs/rational; Boost.Python is at http://www.boost.org/libs/
python.

17.4 Calling Functions from a Windows DLL
Credit: Stefano Spinucci

Problem
You want to avoid writing a Python extension in C, by directly calling from Python
functions that already exist in a Windows DLL.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 17: Extending and Embedding

Solution
The third-party ctypes extension makes this task pretty easy:

from ctypes import windll, c_int, c_string, byref
load 'Ehllapi.dll' (from current dir), and function 'hllapi' from the DLL
Ehllap32 = windll.ehllapi
hllapi = Ehllap32.hllapi
prepare the arguments with types and initial values
h_func = c_int(1)
h_text = c_string('A')
h_len = c_int(1)
h_ret = c_int(999)
call the function
hllapi(byref(h_func), h_text, byref(h_len), byref(h_ret))
print the resulting values of all arguments after the call
print h_func.value, h_text.value, h_len.value, h_ret.value

Discussion
I needed the code in this recipe specifically to call a C function whose prototype is:

void FAR PASCAL hllapi(int FAR *, char FAR *, int FAR *, int FAR *);

from a DLL named Ehllapi.DLL (an implementation of the IBM 3270 HLLAPI for an
Italian 3270 terminal emulator, as it happens). Thomas Heller’s ctypes extension,
found at http://sourceforge.net/projects/ctypes, made the task very easy. In particular,
ctypes makes mincemeat of problems related to representing function arguments
that must belong to a certain C type and possibly get passed “by reference” (i.e., via a
pointer).

In the past, I used another extension, known as calldll, which was (and still is)
available from http://www.nightmare.com/software.html. While once very useful,
calldll cannot rely on some of the modern techniques that ctypes uses internally,
because these possibilities were introduced only in relatively recent versions of
Python. calldll, using a single membuf Python type to represent all possible C types,
tends to be much more cumbersome than ctypes when they are both used to per-
form the same tasks.

Judge for yourself: here is a working calldll version of the same script that I just
showed how to code with ctypes:

import calldll, struct
some helpful auxiliary functions
def myPrintLong(vVar):
 ''' print a long contained in a membuf '''
 print calldll.read_long(vVar.address())
def myPrintString(vVar):
 ''' print a string contained in a membuf '''

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.4 Calling Functions from a Windows DLL | 629

 a = calldll.read_string(vVar.address())
 print a, len(a)
def mySetLong(vMemBuf, vValueToSet):
 ''' set to an unsigned long the value of a membuf with len == 4 '''
 vMemBuf.write(struct.pack('L', vValueToSet))
def mySetString(vMemBuf, vValueToSet):
 ''' set to a string (with \0 terminator) the value of a membuf '''
 pack_format = "%ds" % 1+len(vValueToSet) # +1 for the \0
 string_packed = struct.pack(pack_format, vValueToSet) # pack() adds the \0
 vMemBuf.write(string_packed)
load 'Ehllapi.dll' (from current dir), and function 'hllapi' from the DLL
dll_handle = calldll.load_library ('.\\Ehllapi')
function_address = calldll.get_proc_address (dll_handle, 'HLLAPI')
allocate and init three membufs with the size to hold an unsigned long
Lsize = struct.calcsize('L')
vFunction = calldll.membuf(Lsize)
mySetLong(vFunction, 1)
vTextLen = calldll.membuf(Lsize)
vResult = calldll.membuf(Lsize)
mySetLong(vResult, 1)
allocate a membuf as large as the DLL requires; in this case, space
for 24 x 80 characters + 1 for a \0 terminator
vText = calldll.membuf(1921)
init the text and text-length variables based on string of interest
string_value_to_write = 'A'
mySetString(vText, string_value_to_write)
mySetLong(vTextLen, len(string_value_to_write))
call the function, print the results, and clean up
calldll.call_foreign_function(function_address, 'llll', 'l',
 (vFunction.address(), vText.address(), vTextLen.address(), vResult.address()))
myPrintLong(vResult)
myPrintString(vText)
calldll.free_library(dll_handle)

To be honest, I can’t quite be sure whether all of these gyrations are truly indispens-
able to making this calldll-based version work. Whenever I try to simplify this ver-
sion a bit, something or other always breaks noisily, so I’ve stopped messing with it.
One reason the ctypes-based version is cleaner and simpler is that ctypes has never
given me trouble, so I’ve been encouraged to continue working on that version to
improve it.

See Also
ctypes is at http://sourceforge.net/projects/ctypes; calldll is at http://www.nightmare.com/
software.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 17: Extending and Embedding

17.5 Using SWIG-Generated Modules
in a Multithreaded Environment

Credit: Joe VanAndel, Mark Hammond

Problem
You want to use SWIG-generated modules in a multithreaded environment; there-
fore, the C code in those modules must release the Python global interpreter lock
(see the Introduction to Chapter 9 for more information about the global interpreter
lock).

Solution
Use a typemap for SWIG, written by Mark Hammond, that was posted on
comp.lang.python. It maps Win32 API functions that return BOOL to Python functions
that return None and raise exceptions to diagnose errors. The wrapped function must
set the standard Windows global LastError if it returns FALSE (indicating that it has
detected an error). The wrapping function also automatically releases the Python glo-
bal interpreter lock (GIL) for the duration of the wrapped function’s execution, to
allow free multithreading.

%typedef BOOL BOOLAPI
%typemap(python,except) BOOLAPI {

Py_BEGIN_ALLOW_THREADS
 $function

Py_END_ALLOW_THREADS
 if (!$source) {
 $cleanup
 return PyWin_SetAPIError("$name");
 }
}

Discussion
To use multiple threads effectively, you must release the Python GIL from your C-
coded extension whenever it’s safe to do so. The simplest way to do this with SWIG
is to use an except directive, as shown in the recipe’s typemap. Within the typemap,
you can then use the normal Python C API’s macros Py_BEGIN_ALLOW_THREADS and Py_

END_ALLOW_THREADS (around the call to the wrapped function, indicated by the special
SWIG directive $function) to release the GIL and acquire it again.

Another interesting effect of this simple typemap is that it turns the C-oriented error-
return convention (returning FALSE and setting a global error indicator code) into a
highly Pythonic convention (raising an exception).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.6 Translating a Python Sequence into a C Array with the PySequence_Fast Protocol | 631

See Also
SWIG and its typemaps are documented at http://www.swig.org; Windows API docu-
mentation on LastError is available from the Microsoft MSDN site at http://
msdn.microsoft.com; Chapter 9 for general information on threads and particularly
its Introduction for information on the GIL.

17.6 Translating a Python Sequence into a C
Array with the PySequence_Fast Protocol

Credit: Luther Blissett

Problem
You have an existing C function that takes as an argument a C array of C-level val-
ues (e.g., doubles), and you want to wrap it into a Python-callable C extension that
takes as an argument a Python sequence or iterator.

Solution
The easiest way to accept an arbitrary Python sequence (or any other iterable object)
in the Python C API is with the PySequence_Fast function. It builds and returns a
tuple when needed but returns only its argument (with the reference count incre-
mented) when the argument is already a list or tuple:

#include <Python.h>
/* a preexisting C-level function you want to expose, e.g: */
static double total(double* data, int len)
{
 double total = 0.0;
 int i;
 for(i=0; i<len; ++i)
 total += data[i];
 return total;
}
/* here is how you expose it to Python code: */
static PyObject *totalDoubles(PyObject *self, PyObject *args)
{
 PyObject* seq;
 double *dbar;
 double result;
 int seqlen;
 int i;
 /* get one argument as a sequence */
 if(!PyArg_ParseTuple(args, "O", &seq))
 return 0;

seq = PySequence_Fast(seq, "argument must be iterable");
 if(!seq)
 return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 17: Extending and Embedding

 /* prepare data as an array of doubles */
 seqlen = PySequence_Fast_GET_SIZE(seq);
 dbar = malloc(seqlen*sizeof(double));
 if(!dbar) {
 Py_DECREF(seq);
 return PyErr_NoMemory();
 }
 for(i=0; i < seqlen; i++) {
 PyObject *fitem;
 PyObject *item = PySequence_Fast_GET_ITEM(seq, i);
 if(!item) {
 Py_DECREF(seq);
 free(dbar);
 return 0;
 }
 fitem = PyNumber_Float(item);
 if(!fitem) {
 Py_DECREF(seq);
 free(dbar);
 PyErr_SetString(PyExc_TypeError, "all items must be numbers");
 return 0;
 }
 dbar[i] = PyFloat_AS_DOUBLE(fitem);
 Py_DECREF(fitem);
 }
 /* clean up, compute, and return result */
 Py_DECREF(seq);
 result = total(dbar, seqlen);
 free(dbar);
 return Py_BuildValue("d", result);
}
static PyMethodDef totalMethods[] = {
 {"total", totalDoubles, METH_VARARGS, "Sum a sequence of numbers."},
 {0} /* sentinel */
};
void
inittotal(void)
{
 (void) Py_InitModule("total", totalMethods);
}

Discussion
The two best ways for your C-coded, Python-callable extension functions to accept
generic Python sequences as arguments are PySequence_Fast and PyObject_GetIter.
The latter, which I cover in the next recipe, can often save some memory, but it is
appropriate only when it’s OK for the rest of your C code to get the items one at a
time, without knowing beforehand how many items there will be in total. You often
have preexisting C functions from an existing library that you want to expose to
Python code, and such functions may require C arrays as their input arguments.
Thus, this recipe shows how to build a C array (in this case, an array of double) from
a generic Python sequence (or other iterable) argument, so that you can pass the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.6 Translating a Python Sequence into a C Array with the PySequence_Fast Protocol | 633

array (and the integer that gives the array’s length) to your existing C function (repre-
sented here, purely as an example, by the total function at the start of the recipe).
(In the real world, you would use Python’s built-in function sum for this specific func-
tionality, rather than exposing any existing C function (but this is meant to be just an
example!)

PySequence_Fast takes two arguments: a Python iterable object to be presented as a
sequence, and a string to use as the error message in case the Python object cannot
be presented as a sequence, in which case PySequence_Fast returns 0 (the C null
pointer, NULL, an error indicator). If the Python object is already a list or tuple,
PySequence_Fast returns the same object with the reference count increased by one. If
the Python object is any other kind of sequence (or any iterator, or other iterable),
PySequence_Fast builds and returns a new tuple with all items already in place. In any
case, PySequence_Fast returns an object on which you can call PySequence_Fast_GET_
SIZE to obtain the sequence length (as we do in the recipe, in order to malloc the
appropriate amount of storage for the C array) and PySequence_Fast_GET_ITEM to get
an item given a valid index (an int between 0, included, and the sequence length,
excluded).

The recipe requires quite a bit of care (as is typical of all C-coded Python extensions,
and more generally of any C code) to deal properly with memory issues and error
conditions. For C-coded Python extensions, in particular, it’s imperative that you
know which Python C API functions return new references (which you must
Py_DECREF when you are done with them) and which ones return borrowed refer-
ences (which you must not Py_DECREF when you’re done with them; on the contrary,
you must Py_INCREF such a reference if you want to keep a copy for a longer time). In
this specific case, you have to know the following (by reading the Python documen-
tation):

• PyArg_ParseTuple produces borrowed references.

• PySequence_Fast returns a new reference.

• PySequence_Fast_GET_ITEM returns a borrowed reference.

• PyNumber_Float returns a new reference.

There is method to this madness, even though, as you start your career as a coder of
C API Python extensions, you’ll no doubt have to double-check each case carefully.
Python’s C API strives to return borrowed references (for the sake of the modest per-
formance increase that they afford, by avoiding needless incrementing and decre-
menting of reference counts), when it knows it can always do so safely (i.e., it knows
that the reference it is returning necessarily refers to an already existing object).
However, Python’s C API has to return a new reference when it’s possible (or cer-
tain) that a new object may have to be created.

For example, in the preceding list, PyNumber_Float and PySequence_Fast may be able
to return the same object they were given as an argument, but it’s also quite possible

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 17: Extending and Embedding

that they may have to create a new object for this purpose, to ensure that the
returned object has the correct type. Therefore, these two functions are specified as
always returning new references. PyArg_ParseTuple and PySequence_Fast_GET_ITEM,
on the other hand, always return references to objects that already exist elsewhere (as
items in the arguments’ tuple, or as items in the fast-sequence container, respec-
tively). Therefore, these two functions can afford to return borrowed references and
are thus specified as doing so.

One last note: in this recipe, as soon as we obtain an item from the fast-sequence
container, we immediately try to transform it into a Python float object, and thus we
have to deal with the possibility that the transformation will fail (e.g., if we’re passed
a sequence containing a string, a complex number, etc.). It is most often futile to first
attempt a check (with PyNumber_Check) because the check might succeed, and the
later transformation attempt might fail anyway (e.g., with a complex-number item).
Therefore, it’s better to attempt the transformation and deal with the resulting error,
if any. This approach is yet another case of the common situation in which it’s easier
to get forgiveness than permission!

As usual, the best way to build this extension (assuming e.g., that you’ve saved the
extension’s source code as a file named total.c) is with the distutils package. Place a
file named setup.py in the same directory as the C source:

from distutils.core import setup, Extension
setup(name="total", maintainer="Luther Blissett", maintainer_email=
 "situ@tioni.st", ext_modules=[Extension('total', sources=['total.c'])]
)

then build and install by running:

$ python setup.py install

An appealing aspect of this approach is that it works on any platform, assuming that
you have access to the same C compiler used to build your version of Python, and
permission to write on the site-packages directory where the resulting dynamically
loaded library gets installed.

See Also
The Extending and Embedding manual is available as part of the standard Python
documentation set at http://www.python.org/doc/current/ext/ext.html; documenta-
tion on the Python C API is at http://www.python.org/doc/current/api/api.html; the
section “Distributing Python Modules” in the standard Python documentation set is
still incomplete, but it’s a good source of information on the distutils package;
Python in a Nutshell covers the essentials of extending and embedding, of the Python
C API, and of the distutils package.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.7 Accessing a Python Sequence Item-by-Item with the Iterator Protocol | 635

17.7 Accessing a Python Sequence Item-by-Item
with the Iterator Protocol

Credit: Luther Blissett

Problem
You want to write a Python-callable C extension that takes as an argument a Python
sequence (or other iterable) and accesses it sequentially, one item at a time, requir-
ing no extra storage.

Solution
If you can afford to access the sequence item-by-item, without knowing in advance
the number of items it has, you can often save memory by using PyObject_GetIter

instead of PySequence_Fast:

#include <Python.h>
static PyObject *totalIter(PyObject *self, PyObject *args)
{
 PyObject* seq;
 PyObject* item;
 double result;
 /* get one argument as an iterator */
 if(!PyArg_ParseTuple(args, "O", &seq))
 return 0;

seq = PyObject_GetIter(seq);
 if(!seq)
 return 0;
 /* process data sequentially */
 result = 0.0;
 while((item=PyIter_Next(seq))) {
 PyObject *fitem;
 fitem = PyNumber_Float(item);
 if(!fitem) {
 Py_DECREF(seq);
 Py_DECREF(item);
 PyErr_SetString(PyExc_TypeError, "all items must be numbers");
 return 0;
 }
 result += PyFloat_AS_DOUBLE(fitem);
 Py_DECREF(fitem);
 Py_DECREF(item);
 }
 /* clean up and return result */
 Py_DECREF(seq);
 return Py_BuildValue("d", result);
}
static PyMethodDef totitMethods[] = {
 {"totit", totalIter, METH_VARARGS, "Sum a sequence of numbers."},
 {0} /* sentinel */
};

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 17: Extending and Embedding

void
inittotit(void)
{
 (void) Py_InitModule("totit", totitMethods);
}

Discussion
PyObject_GetIter is appropriate only when it’s OK for the rest of your C code to get
the items one at a time, without knowing in advance the number of items in total.
When this condition is met, PyObject_GetIter gives you roughly the same perfor-
mance as PySequence_Fast (if the input argument is a list or tuple), but it can save
memory allocation, and therefore can run faster, if the input argument is an iterator
or another kind of sequence or iterable. In this recipe’s function, since we are just
summing the items, it is indeed perfectly OK to get them one at a time, and we don’t
need to know in advance the total number; therefore, using PyObject_GetIter is pref-
erable. (In the real world, you would use Python’s built-in function sum for this spe-
cific functionality, rather than coding a dedicated C function, but then, this is meant
to be just an example!)

PyObject_GetIter takes one argument: a Python object from which an iterator is
desired (much like Python’s iter built-in function). It either returns 0, indicating an
error, or an iterator object, on which you can repeatedly call PyIter_Next to get the
next item (or 0, NULL, which does not indicate an error, but rather indicates the end
of the iteration). Both PyObject_GetIter and PyIter_Next return new references, so
we must use Py_DECREF when we’re done with the respective objects.

As usual, the best way to build this extension (assuming that you’ve saved it as a file
named totit.c) is with the distutils package. Place in the same directory as the C
source a file named setup.py such as:

from distutils.core import setup, Extension
setup(name="totit", maintainer="Luther Blissett", maintainer_email=
 "situ@tioni.st", ext_modules=[Extension('totit', sources=['totit.c'])]
)

then build and install by running:

<m>$ python setup.py install</m>

Part of the appeal of this approach is that it works on any platform, assuming that
you have access to the same C compiler used to build your version of Python, and
permission to write on the site-packages directory where the resulting dynamically
loaded library gets installed.

Since Python extensions are often coded in C to maximize performance, it’s interest-
ing to measure performance compared to pure Python code dealing with the same
task. A typical measurement setup might be a script such as the following timon.py:

import timeit, operator
from total import total
from totit import totit

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.7 Accessing a Python Sequence Item-by-Item with the Iterator Protocol | 637

def timo(fn, sq, init):
 T = timeit.Timer('timon.%s(%s)'%(fn,sq), 'import timon\n'+init)
 print ' %5.5s: %5.2f' % (fn, T.timeit(40000))
def totpy(x):
 result = 0.0
 for item in x: result += item
 return result
def totre(x):
 return reduce(operator.add, x, 0.0)
def totsu(x):
 return sum(x, 0.0)
if __name__ == '__main__':
 print 'on lists:'
 for f in 'totre totpy total totit totsu'.split():
 timo(f, 'seq', 'seq=range(2000)')
 print 'on iters:'
 for f in 'totre totpy total totit totsu'.split():
 timo(f, 'g()', 'def g():\n for x in range(2000): yield x')

This script uses the timeit module of the Python Standard Library to measure accu-
rately 40,000 calls to each function on 2,000-item lists and 2,000-item generators.
The timeit.Timer constructor takes two string arguments: first the statement we’re
timing, then the setup statements that run before timing begins. Here, the statement
we’re timing calls functions in this module; therefore, the setup statements must
import this module—which is why we add the import timon at the beginning of the
setup statement string. I have also taken care to make all these functions strictly
comparable, by having them all sum floats (not just ints). This purpose is the rea-
son that I provide the explicit 0.0 initial arguments to built-in functions reduce and
sum.

On my machine, running with the command-line switch -O so that Python can opti-
mize operations a little bit, the timing results on Python 2.3 are:

<m>$ python -O timon.py</m>
on lists:
 totre: 136.04
 totpy: 118.18
 total: 56.61
 totit: 59.66
 totsu: 74.11
on iters:
 totre: 220.86
 totpy: 198.98
 total: 199.72
 totit: 201.70
 totsu: 157.44

As you can see, the most important optimization is to avoid the “attractive nui-
sance” of the reduce built-in function: even a pure Python loop is faster! When we’re
dealing with lists, the special-purpose C-coded extensions presented in the last two
recipes are fastest; but when we’re dealing with generators, the fastest solution is
provided by the built-in function sum. In practice, one would always use sum for this
functionality, rather than bothering to code or expose special-purpose C functions.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 17: Extending and Embedding

See Also
The Extending and Embedding manual is available as part of the standard Python
documentation set at http://www.python.org/doc/current/ext/ext.html; documenta-
tion on the Python C API is at http://www.python.org/doc/current/api/api.html; the
section “Distributing Python Modules” in the standard Python documentation set is
still incomplete but is a good source of information on the distutils package:
Chapter 19 of this book covers iterators and generators in pure Python terms; Python
in a Nutshell covers the essentials of extending and embedding, of the Python C API,
of the distutils package, and of iterators; Python’s Library Reference covers the
timeit module.

17.8 Returning None from a Python-Callable
C Function

Credit: Alex Martelli

Problem
Your C-coded, Python-callable function in an extension module needs to return
nothing in particular (i.e., a Python None), but it must, of course, do so without mess-
ing up reference counts.

Solution
Suppose we need an empty C-coded function, equivalent to Python:

def empty1(*args):
 pass

or, identically:

def empty2(*args):
 return None

Despite the simplicity of the task, there are right and wrong ways to perform it. The
canonical solution is:

static PyObject*
empty3(PyObject* self, PyObject* args)
{
 Py_INCREF(Py_None);
 return Py_None;
}

and the simplest, but still correct way, is:

static PyObject*
empty4(PyObject* self, PyObject* args)
{

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.9 Debugging Dynamically Loaded C Extensions with gdb | 639

return Py_BuildValue("");
}

Discussion
A function written in C for Python often needs to return nothing in particular. In
Python terms, it must return None. Don’t just code return Py_None; from C: that
messes up reference counts! None—the Python object we must explicitly return from
a Python-callable, C-coded function—is a normal Python object, subject to all nor-
mal reference count rules. One of these rules is that each function must Py_INCREF

the Python object it returns.

A bare return Py_None; is a nasty lurking bug—a frequent beginner’s error that
messes up reference counts:

static PyObject*
empty5(PyObject* self, PyObject* args)
{
 return Py_None; /* ***WRONG*** */
}

Either explicitly Py_INCREF the None object you’re returning, or (a simpler approach,
but one that costs a few machine cycles) delegate the work to the handy function
Py_BuildValue, which can be used to handle just about all cases of returning values
from C to Python, offering potential uniformity advantages. To have Py_BuildValue

build a properly incref’d None on your behalf, call it with just one argument, an
empty format string.

In Python 2.4, the C API has gained a new macro just for this purpose. If you’re cod-
ing a C extension that supports only Python 2.4, you can write Py_RETURN_NONE;

instead of the return statement, and the macro takes care of everything for you.

See Also
The Extending and Embedding manual is available as part of the standard Python
documentation set at http://www.python.org/doc/current/ext/ext.html; documenta-
tion on the Python C API is at http://www.python.org/doc/current/api/api.html.

17.9 Debugging Dynamically Loaded
C Extensions with gdb

Credit: Joe VanAndel, Michael Aivazis

Problem
A dynamically loaded C/C++ Python extension is giving you trouble on a Unix or
Unix-like platform, and you want to use the interactive debugger gdb to determine
what’s wrong.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 17: Extending and Embedding

Solution
One way to determine the cause of core dumps or other serious trouble with a C
Python extension is to compile the extension source with -g and then follow these
steps. (You may also want to recompile any other extensions you use, such as
Numeric, with -g, if you hadn’t built them that way in the first place.)

<m>% gdb /usr/bin/python2.1</m>
(gdb) br _PyImport_LoadDynamicModule
(gdb) run # start python
(gdb) cont # repeat until your extension is loaded
(gdb) # you may need an import statement at python's >>> prompt
(gdb) finish # finish loading your extension module
(gdb) br wrap_myfunction # break at the entry point in your code
(gdb) disable 1 # don't break for any more modules being loaded
(gdb) cont # back to Python, run things normally from here

Discussion
If a dynamically loaded C/C++ extension is causing Python to core dump, or caus-
ing some other kind of serious trouble, this recipe can help you determine the root
cause, by demonstrating a technique for debugging your extension using gdb (if you
use Unix or some Unix-like platform, and gdb is your debugger of choice). The over-
all concept generalizes to other debuggers with abilities similar to gdb’s.

The main point of this recipe is that you cannot set a break on your function at the
start, because your function lives in a dynamic library (shared object) that isn’t ini-
tially loaded. However, you can break in the PyImport_LoadDynamicModule function,
and eventually (when your module is finally being loaded) get control at the debug-
ger prompt right after your module is in memory. You are then able, at last, to set the
breakpoints you need.

This technique works. However, if you do this kind of thing often, the process of
stepping through all the modules, as Python loads them at startup, can easily become
tedious. A handier alternative, although more invasive, requires you to modify your
Python sources and rebuild Python from them.

The key idea of this handier alternative is to add a do-nothing function somewhere in
the body of code that Python loads immediately. Specifically, you can edit the
Modules/main.c file, adding one new function:

void Py_DebugTrap(void) { }

In the extension you’re debugging, you can now add a call to Py_DebugTrap() right
where you want to break into the code. The Py_DebugTrap() symbol is immediately
available when you start gdb, because the symbol lives in main.c. So you can immedi-
ately set a breakpoint there, as soon as you are at the gdb prompt, then continue.
This approach even works in parallel under MPI (message passing interface).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.10 Debugging Memory Problems | 641

See Also
The gdb online documentation (just type help at the gdb interactive prompt), man-
ual pages, and online manual (http://www.gnu.org/manual/gdb-4.17/gdb.html).

17.10 Debugging Memory Problems
Credit: Will Ware

Problem
You’re developing C extensions, and you experience memory problems. You suspect
mismanagement of reference counts and want to check whether your C extension
code is correctly managing reference counts.

Solution
To chase these problems in an optimal way, you need to alter Python’s sources and
rebuild Python. Specifically, add the following function in Objects/object.c, immedi-
ately before the _Py_PrintReferences function:

void
_Py_CountReferences(FILE *fp)
{
 int nr, no;
 PyObject *op;
 for (nr = no = 0, op = refchain._ob_next;
 op != &refchain;
 op = op->_ob_next, nr += op->ob_refcnt, no += 1)
 { }
 fprintf(fp, "%d refs (%d), %d objs\n", nr, _Py_RefTotal, no);
}

I place the following macros in my C extensions:

#if defined(Py_DEBUG) || defined(DEBUG)
extern void _Py_CountReferences(FILE*);
#define CURIOUS(x) { fprintf(stderr, __FILE__ ":%d ", __LINE__); x; }
#else
#define CURIOUS(x)
#endif
#define MARKER() CURIOUS(fprintf(stderr, "\n"))
#define DESCRIBE(x) CURIOUS(fprintf(stderr, " " #x "=%d\n", x))
#define DESCRIBE_HEX(x) CURIOUS(fprintf(stderr, " " #x "=%08x\n", x))
#define COUNTREFS() CURIOUS(_Py_CountReferences(stderr))

To debug, I rebuild Python using make OPT="-DPy_DEBUG”, which causes the code
under Py_TRACE_REFS to be built. My own makefile for my extensions uses the same
trick by including these lines:

debug:
 make clean; make OPT="-g -DPy_DEBUG" all
CFLAGS = $(OPT) -fpic -O2 -I/usr/local/include -I/usr/include/python2.3

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 17: Extending and Embedding

Discussion
When I’m developing C extensions and running into memory problems, I find that
the typical cause is mismanagement of reference counts, particularly misuse of
Py_INCREF and Py_DECREF, as well as forgetfulness of the reference-count effects of
functions like Py_BuildValue, PyArg_ParseTuple, and PyTuple/List_SetItem/GetItem.
The Python sources offer help with this problem (search for Py_TRACE_REFS), and
function sys.getrefcounts in the Python Standard Library is also helpful. Neverthe-
less, it’s useful to add this recipe’s function in Objects/object.c just before _Py_Print-

References.

Unlike _Py_PrintReferences, this recipe’s _Py_CountReferences function prints only
the totals of all the refcounts and number of objects in the system, so it can be sensi-
bly called, even in loops that repeat millions of times, while _Py_PrintReferences

would print out way too much stuff to be useful. The information printed by
_Py_CountReferences can help you identify errantly wandering Py_INCREFs and
Py_DECREFs. _Py_CountReferences plays it safe by performing its own counts of
objects references, which it prints side by side with the “official” count of refer-
ences that Python itself maintains (when compiled for debugging) as global vari-
able _Py_RefTotal. Should any discrepancy arise, you know something deeply
wrong is going on.

When I suspect that one of my C-coded functions is responsible for memory prob-
lems, I liberally sprinkle the suspect function with calls to the COUNTREFS macro.
Doing so allows me to keep track of exactly how many references are being created
or destroyed as I go through my function. This information is particularly useful in
tight loops, in which dumb mistakes can cause reference counts to grow ridiculously
fast. Also, reference counts that shrink too fast (because of overzealous use of
Py_DECREF) can cause core dumps because the memory for objects that should still
exist has been reallocated for new objects.

See Also
The only documentation in this case is Python’s own source code. Use the source,
Luke!

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

643

Chapter 18 CHAPTER 18

Algorithms

18.0 Introduction
Credit: Tim Peters, PythonLabs

Algorithm research is what drew me to Python—and I fell in love. It wasn’t love at
first sight, but it was an attraction that grew into infatuation, which grew steadily
into love. And that love shows no signs of fading. Why? I’ve worked in fields push-
ing the state of the art, and, in a paradoxical nutshell, Python code is easy to throw
away!

When you’re trying to solve a problem that may not have been solved before, you
may have some intuitions about how to proceed, but you rarely know in advance
exactly what needs to be done. The only way to proceed is to try things, many
things, everything you can think of, just to see what happens. Python makes such
exploration easier by minimizing the time and pain from conception to code: if your
colleagues are using, for example, C or Java, it’s not unusual for you to try (and dis-
card) six different approaches in Python while they’re still getting the bugs out of
their first attempt.

In addition, you will have naturally grown classes and modules that capture key
parts of the problem domain, simply because you find the need to keep reinventing
them when starting over from scratch. I’ve used many languages in my computer
career, and I know of none more productive than Python for prototyping. Best of all,
while being an expert is often helpful, moderate skill in Python is much easier to
obtain than for many other languages, yet much more productive for research and
prototyping than merely moderate skill in any other language I’ve used. You don’t
have to be an expert to start!

So if you’re in the research business—and every programmer who doesn’t know
everything occasionally is—you’ve got a nearly perfect language in Python. How
then do you develop the intuitions that can generate a myriad of plausible
approaches to try? Experience is the final answer, as we all get better at what we do

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 18: Algorithms

often, but studying the myriad approaches other people have tried develops a firm
base from which to explore. Toward that end, here are the most inspiring algorithm
books I’ve read. They’ll teach you possibilities you may never have discovered on
your own:

John Bentley, Programming Pearls and More Programming Pearls (Addison-Wesley)
Every programmer should read these books from cover to cover for sheer joy.
The chapters are extended versions of a popular column Bentley wrote for the
Communications of the Association for Computing Machinery (CACM). Each
chapter is generally self-contained, covering one or two lovely (and often surpris-
ing, in the “Aha! why didn’t I think of that?!” sense) techniques of real practical
value.

Robert Sedgewick, Algorithms in C++ or Algorithms in C (Addison-Wesley)
These books cover the most important general algorithms, organized by prob-
lem domain, and provide brief but cogent explanations, along with working
code. The books cover the same material; the difference is in which computer
language is used for the code. I recommend the C++ book for Python program-
mers, because idiomatic Python is closer to C++ than to C. Sedgewick’s use of
C++ is generally simple and easily translated to equivalent Python. This is the
first book to reach for when you need to tackle a new area quickly.

Donald Knuth, The Art of Computer Programming, series (Addison-Wesley)
For experts (and those who aspire to expertise), this massive series in progress is
the finest in-depth exposition of the state of the art. Nothing compares to its
unique combination of breadth and depth, rigor, and historical perspective.
Note that these books aren’t meant to be read, they have to be actively studied,
and many valuable insights are scattered in answers to the extensive exercises.
While the books include detailed analysis, there’s virtually no working code,
except for programs written in assembly language for a hypothetical machine of
archaic design (yes, it can be maddeningly obscure). It can be hard going at
times, but few books so richly reward time invested.

To hone your skills, you can practice on an endless source of problems from the
wonderful On-Line Encyclopedia of Integer Sequences, at http://
www.research.att.com/~njas/sequences/Seis.html. When stress-testing upcoming
Python releases, I sometimes pick a sequence at random from its list of sequences
needing more terms and write a program to attempt an extension the sequence.
Sometimes I’m able to extend a sequence that hasn’t been augmented in years, in
large part because Python has so many powerful features for rapid construction of
new algorithms. Then the new terms are contributed to the database, where they
benefit others. Give it a try! You may love it, but even if you hate it, you’ll certainly
find it challenging.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 645

Timing and timeit.py
The first edition of this book contained a lengthy discussion of the difficulties in tim-
ing alternative approaches. Such difficulties include the fact that the resolution of
time.time varies across platforms, and time.clock measures different things on differ-
ent platforms (e.g., process CPU time on Linux systems, wall-clock time on Win-
dows).

It may still be important for some to learn all those details, but Python 2.3 intro-
duced a new timeit module, which captures best practice and is perfectly suited to
timing small programs with a minimum of fuss and pitfalls. Everyone should learn
how to use timeit, and basic usage is very easy to learn.

The simplest use of timeit is to pass one or more Python statements on the com-
mand line. Of course, shell syntax varies across platforms, so you may need to adjust
these statements to the shell you use:

% python timeit.py "100 + 200"
10000000 loops, best of 3: 0.0932 usec per loop
% python timeit.py "100 - 200"
10000000 loops, best of 3: 0.0931 usec per loop

As expected, integer addition and subtraction are just about equally expensive.
(Don’t fall into the trap of attributing any significance to differences as tiny as this
one!) timeit picks the best way of measuring time on your platform and runs your
code in a loop. The module tries a few times first to determine how many iterations
to use in the loop, aiming at a total loop time between 0.2 and 2 seconds. When it
determines a suitable number of iterations for the loop, it then runs the loop three
times, reports the shortest time, and computes the time per loop iteration. The itera-
tions per loop, and number of loops to run, can be forced to specific values with
command-line options. See the Python Library Reference for details. (It’s part of
Python’s online documentation and probably also comes in some handy form with
your version of Python.)

As always, you should keep your machine as quiet as possible when running timing
tests. The primary reason timeit runs three repetitions of the loop and reports the
minimum time is to guard against skewed results due to other machine activity. This
is especially important when running snippets that do very little work, such as the
preceding examples. In such cases, even just one unfortunate interruption can
grossly increase the reported time. Even so, on my quiet machine, snippets that run
this fast can still yield confusing results:

% python timeit.py "100 + 200; 100 - 200"
10000000 loops, best of 3: 0.151 usec per loop
% python timeit.py "100 + 200" "100 - 200"
10000000 loops, best of 3: 0.151 usec per loop

One correct conclusion is that modern Python no longer has a time penalty for writ-
ing two statements on two lines, instead of squashing them together on one line

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 18: Algorithms

separated by a semicolon. Older Pythons generated a SET_LINENO opcode at the start
of each logical line of code, and those opcodes consumed time to execute!

A more puzzling result is that adding and subtracting in one shot took 0.151 usec,
but adding alone and subtracting alone took 0.0932 usec each. Why didn’t we get
2*0.093 = 0.186 usec in the second experiment? The explanation is quite simple:
timeit uses a fast iteration technique and doesn’t try to subtract the iteration over-
head from the reported results. When timing very fast snippets, this can be mildly
disconcerting. Let’s try to measure the overhead by timing a do-nothing statement:

% python timeit.py "pass"
10000000 loops, best of 3: 0.0203 usec per loop

While 0.02 usec is tiny, it’s significant compared to the 0.093 usec reported for an
integer add! Of course this effect diminishes to insignificance when timing more
expensive operations:

% python timeit.py "100**100"
100000 loops, best of 3: 4.04 usec per loop
% python timeit.py "200**200"
100000 loops, best of 3: 9.03 usec per loop
% python timeit.py "100**100" "200**200"
100000 loops, best of 3: 13.1 usec per loop

Large integer exponentiation is much more expensive than adding small integers,
and here the sum of the times for doing 100**100 and 200**200 in isolation is very
close to the time for doing both at once.

The timeit module supports several other command-line options, and a program-
matic interface too, but I’ll defer to the Python Library Reference for that informa-
tion. To start making productive use of timeit, the only other option you need to
know about is the ability to pass “setup” statements on the command line. These
statements execute once, outside the loop containing the code you’re timing. For
example, import statements are often used, as well as code that populates data struc-
tures. For example (assuming a backslash \ is your shell’s way to indicate that a long
logical line continues in the next physical line):

% python timeit.py -s "import random" \
 -s "x=range(100000); random.shuffle(x)" "sorted(x)"
10 loops, best of 3: 152 msec per loop

For each of the three loops, timeit constructed the randomly ordered array just once,
then ran sorted(x) repeatedly inside the loop. This was so expensive that timeit ran
only 10 iterations per loop and changed its reporting units from microseconds to mil-
liseconds. (In Python 2.3, timeit always reported in microseconds, but in version
2.4, it tries to be more helpful by picking the appropriate reporting units.) This is
very different from:

% python timeit.py "import random" \
 "x=range(100000); random.shuffle(x)" "sorted(x)"
10 loops, best of 3: 309 msec per loop

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.1 Removing Duplicates from a Sequence | 647

This snippet timed all the operations: importing random, building the list, randomly
permuting the list, and sorting the list. This preparation code takes longer than sort-
ing does! You may be surprised that we see from the reported times that it took at
least as long to build and shuffle the list as it took to sort it. The first two operations
take O(n) time, but sorting random data takes O(n log n) time; given this, how can
this strange measurement be explained? Why didn’t sorting take longer?

I won’t explain that mystery here but will point out a more significant lesson: timing
code always uncovers mysteries, and a timing tool as easy to use as timeit can be
addictive. So be careful what you measure! Measuring itself will consume more of
your time than you expect. As noted innumerable times by innumerable authors, the
speed of most of your code doesn’t matter at all. Find the 10% that consumes most
of the time before worrying about any of it. When you find the true bottlenecks,
timeit can help you measure the speed of alternatives objectively—and you may be
surprised by what you find.

18.1 Removing Duplicates from a Sequence
Credit: Tim Peters

Problem
You have a sequence that may include duplicates, and you want to remove the dupli-
cates in the fastest possible way, without knowing much about the properties of the
items in the sequence. You do not care about the “or”der of items in the resulting
sequence.

Solution
The key is to try several approaches, fastest first, and use try/except to handle the
failing cases of the faster approaches by falling back to slower approaches. Here’s a
function that implements exactly this strategy:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
def unique(s):
 """ Return a list of the elements in s in arbitrary order, but without
 duplicates. """
 # Try using a set first, because it's the fastest and will usually work

try:
return list(set(s))

except TypeError:
 pass # Move on to the next method
 # Since you can't hash all elements, try sorting, to bring equal items
 # together and then weed them out in a single pass
 t = list(s)
 try:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 18: Algorithms

 t.sort()
 except TypeError:
 del t # Move on to the next method
 else:
 # the sort worked, so we're fine -- do the weeding
 return [x for i, x in enumerate(t) if not i or x != t[i-1]]
 # Brute force is all that's left
 u = []
 for x in s:
 if x not in u:
 u.append(x)
 return u

Discussion
The purpose of this recipe’s unique function is to take a sequence s as an argument
and return a list of the items in s in arbitrary order, but without duplicates. For
example, calling unique([1, 2, 3, 1, 2, 3]) returns an arbitrary permutation of [1,
2, 3], calling unique('abcabc') returns an arbitrary permutation of ['a', 'b', 'c'],
and calling unique(([1, 2], [2, 3], [1, 2])) returns an arbitrary permutation of
[[2, 3], [1, 2]].

The fastest way to remove duplicates from a sequence depends on fairly subtle prop-
erties of the sequence elements, such as whether they’re hashable and whether they
support full comparisons. The unique function shown in this recipe tries three meth-
ods, from fastest to slowest, letting runtime exceptions pick the best method for the
sequence at hand.

For fastest speed, all sequence elements must be hashable. When they are, the unique

function will usually work in linear time (i.e., O(n), or directly proportional to the
number of elements in the input, which is good and highly scalable performance
behavior).

If it turns out that hashing the elements (e.g., using them as dictionary keys, or, as in
this case, set elements) is not possible, the next best situation is when the elements
enjoy a total ordering, meaning that each element can be compared to each other ele-
ment with the < operator. If list(s).sort() doesn’t raise a TypeError, we can assume
that s’ elements can be sorted and therefore enjoy a total ordering. Then unique will
usually work in O(n log(n)) time. Python lists’ sort method is particularly efficient
in the presence of partially ordered data (including, e.g., data with many duplicates),
so the sorting approach may be more effective in Python than elsewhere.

If sorting also turns out to be impossible, the sequence items must at least support
equality testing, or else the very concept of duplicates can’t really be meaningful for
them. In this case, unique works in quadratic time—that is, O(n2), meaning time pro-
portional to the square of the number of elements in the input: not very scalable, but
the least of all evils, given the sequence items’ obviously peculiar nature (assuming
we get all the way to this subcase).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.2 Removing Duplicates from a Sequence While Maintaining Sequence Order | 649

This recipe is a pure example of how algorithm efficiency depends on the strength of
the assumptions you can make about the data. You could split this recipe’s function
into three distinct functions and directly call the one that best meets your needs. In
practice, however, the brute-force method is so slow for large sequences that noth-
ing measurable is lost by simply letting the function as written try the faster methods
first.

If you need to preserve the same order of items in the output sequence as in the input
sequence, see recipe 18.2 “Removing Duplicates from a Sequence While Maintain-
ing Sequence Order.”

See Also
Recipe 18.2 “Removing Duplicates from a Sequence While Maintaining Sequence
Order.”

18.2 Removing Duplicates from a Sequence
While Maintaining Sequence Order

Credit: Alex Martelli

Problem
You have a sequence that may include duplicates, and you want to remove the dupli-
cates in the fastest possible way. Moreover, the output sequence must respect the
item ordering of the input sequence.

Solution
The need to respect the item ordering of the input sequence means that picking
unique items becomes a problem quite different from that explored previously in rec-
ipe 18.1 “Removing Duplicates from a Sequence.” This requirement often arises in
conjunction with a function f that defines an equivalence relation among items: x is
equivalent to y if and only if f(x)==f(y). In this case, the task of removing duplicates
may often be better described as picking the first representative of each resulting
equivalence class. Here is a function to perform this task:

support 2.3 as well as 2.4
try: set
except NameError: from sets import Set as set
f defines an equivalence relation among items of sequence seq, and
f(x) must be hashable for each item x of seq
def uniquer(seq, f=None):
 """ Keeps earliest occurring item of each f-defined equivalence class """
 if f is None: # f's default is the identity function f(x) -> x
 def f(x): return x
 already_seen = set()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 18: Algorithms

 result = []
 for item in seq:
 marker = f(item)

if marker not in already_seen:
already_seen.add(marker)
result.append(item)

 return result

Discussion
The previous recipe 18.1 “Removing Duplicates from a Sequence” is applicable only
if you are not concerned about item ordering or, in other words, if the sequences
involved are meaningful only as the sets of their items, which is often the case. When
sequential order is significant, a different approach is needed.

If the items are hashable, it’s not hard to maintain sequence order, keeping only the
first occurrence of each value. More generally, we may want uniqueness within
equivalence classes, as shown in this recipe’s Solution: the uniquer function accepts
as an argument a function f that must return hashable objects, such that f(x)==f(y)
if and only if items x and y are equivalent. Identity (in the mathematical sense, not in
the Python sense) is used as the default when no argument f is supplied. The added
generality of allowing an f different from the identity function costs no added com-
plication whatsoever.

If you need to keep the last occurrence, rather than the earliest occurrence, of an
item in each equivalence class, the simplest approach is to reverse the input
sequence (or, rather, a copy thereof into a local list, since the input might be immu-
table or at any rate not support reversing), then, after processing with uniquer,
reverse the resulting list:

def uniquer_last(seq, f=None):
 seq = list(seq)
 seq.reverse()
 result = uniquer(seq, f)
 result.reverse()
 return result

In Python 2.4, instead of the first three statements of this version of uniquer_last,
you could use the single statement:

 result = uniquer(reversed(seq), f)

exploiting the new built-in reversed. However, this Python 2.4 version, while mar-
ginally faster, is less general, because it does require seq to be really a sequence, while
the previously shown version (and the uniquer function in the “Solution”) work with
any iterable seq. For example:

 somelines = uniquer_last(open('my.txt'), str.lower)

binds name somelines to the list of unique lines from text file my.txt, considering two
lines equivalent if they’re equal aside from uppercase and lowercase distinctions,
picking the last occurring one from each set of equivalent lines, and preserving the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.2 Removing Duplicates from a Sequence While Maintaining Sequence Order | 651

order of the lines in the file (phew). If you used Python 2.4’s built-in reversed, this
latest snippet would not work, due to reversed’s prerequisites.

If you must deal with nonhashable items, the simplest fallback approach is to use a
set-like container that supports the add method and membership testing without
requiring items to be hashable. Unfortunately, performance will be much worse than
with a real set. Here’s the simplest fallback implementation, which demands of
items nothing but support for equality testing:

def uniquer_with_simplest_fallback(seq, f=None):
 if f is None:
 def f(x): return x
 already_seen = set()
 result = []
 for item in seq:
 marker = f(item)
 try:
 new_marker = marker not in already_seen
 except TypeError:
 class TotallyFakeSet(list):
 add = list.append
 already_seen = TotallyFakeSet(already_seen)
 new_marker = marker not in already_seen
 if new_marker:
 already_seen.add(marker)
 result.append(item)
 return result

A more refined approach would be to use two levels of fallback, the intermediate one
based on sorting, as shown previously in recipe 18.1 “Removing Duplicates from a
Sequence” testing in a sorted list can be performed efficiently by using the Python
Standard Library module bisect.

However, remember that you can often use an f that gives you hashable markers for
nonhashable items. The built-in function repr can often be useful for this purpose.
For example:

lol = [[1, 2], [], [1, 2], [3], [], [3, 4], [1, 2], [], [2, 1]]
print uniquer(lol, repr)
emits: [[1, 2], [], [3], [3, 4], [2, 1]]

While the items of lol are lists, and thus are not hashable, the built-in function repr

produces representations of each of the items as a string, which is hashable. This
enables use of the fast function uniquer. Unfortunately, repr is not useful for non-
hashable items of other types, including dict and set. Because of the workings of
hash-collision resolution, it’s quite possible to have d1==d2 and yet
repr(d1)!=repr(d2) for two dictionaries d1 and d2, depending on the exact sequences
of adds that built each dict. Still, you may be able build your own repr-like function
to work around these issues, depending on the exact nature of your data. Whether
repr can help for instances of a certain user-defined type depends on how accurately
and usefully that specific type defines special method __repr__, which repr calls.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 18: Algorithms

The task of picking one representative item, out of all of those belonging to each
equivalence class, can be generalized. Instead of the simple ideas of implicitly pick-
ing the first such item, or the last such item, we can choose among multiple items in
the same equivalence class via an arbitrary picking function p that considers both the
actual items and their indexes of occurrence. As long as function p can operate pair-
wise, the key idea is just to keep a dictionary that maps the marker of each equiva-
lence class to the index and item of the representative so far picked for that class. At
the end, we reconstruct sequence order by sorting on the indices:

def fancy_unique(seq, f, p):
 """ Keeps "best" item of each f-defined equivalence class, with
 picking function p doing pairwise choice of (index, item) """
 representative = { }
 for index, item in enumerate(seq):
 marker = f(item)
 if marker in representative:
 # It's NOT a problem to rebind index and item within the
 # for loop: the next leg of the loop does not use their binding
 index, item = p((index, item), representative[marker])
 representative[marker] = index, item
 # reconstruct sequence order by sorting on indices
 auxlist = representative.values()
 auxlist.sort()
 return [item for index, item in auxlist]

It’s possible that the picking function cannot operate pairwise, but rather must be
presented with the whole bunch of (index, item) pairs for each equivalence class in
order to pick the best representative of that class (e.g., it may have to get the median
of the items in each class as being the best representative of that class). Then we need
one pass over the sequence to collect the bunches, followed by a pass over the
bunches, to pick the representatives:

def fancier_uniquer(seq, f, p):
 """ Keeps "best" item of each f-defined equivalence class, with
 picking function p choosing appropriate (index, item) for each
 equivalence class from the list of all (index, item) pairs in
 that class """
 bunches = { }
 for index, item in enumerate(seq):
 marker = f(item)
 bunches.setdefault(marker, []).append((index, item))
 auxlist = [p(candidates) for candidates in bunches.values()]
 auxlist.sort()
 return [item for index, item in auxlist]

These fancy approaches that rely on a picking function are useful only for substan-
tial equivalence functions, not for identity, so I removed f’s default value from these
versions.

An example of use for fancy_unique may help. Say we’re given a list of words, and we
need to get a sublist from it, respecting order, such that no two words on the sublist

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.3 Generating Random Samples with Replacement | 653

begin with the same letter. Out of all the words in the “or”iginal list that begin with
each given letter, we need to keep the longest word and, in case of equal lengths, the
word appearing later on the list. This sounds complicated, but with fancy_unique to
help us, it’s really not that bad:

def complicated_choice(words):
 def first_letter(aword):
 return aword[0].lower()
 def prefer((indx1, word1), (indx2, word2)):
 if len(word2) > len(word1):
 return indx2, word2
 return indx1, word1
 return fancy_unique(words, first_letter, prefer)

The prefer nested function within complicated_choice is simplified because it knows
fancy_unique always calls it with indx2<indx1. So, the older indx2, word2 pair must
be returned only when word2 is longer than word1; otherwise, indx1, word1 is always
the proper result. The automatic tuple unpacking in prefer’s signature is debatable,
stylewise, but I like it (it reminds me of SML or Haskell).

Out of all the general programming techniques presented in the various functions of
this recipe, the idea of writing higher-order functions, which organize a computation
and appropriately call back to functions that they receive as arguments, is easily the
most precious and widely applicable concept. This idea is well worth keeping in
mind in several circumstances—not just for old Haskell-heads, because it works just
as well in Python.

See Also
Recipe 18.1 “Removing Duplicates from a Sequence.”

18.3 Generating Random Samples with
Replacement

Credit: Sean Ross

Problem
You need to generate random samples with replacement out of a “population” of
items that are held in a sequence.

Solution
A generator for the purpose is quintessentially simple:

import random
def sample_wr(population, _choose=random.choice):
 while True: yield _choose(population)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 18: Algorithms

Discussion
random.sample lets you do random sampling without replacement, and recipe 18.4
“Generating Random Samples Without Replacement,” which follows, shows a gen-
erator to perform sampling without replacement with excellent memory-consump-
tion characteristics. This recipe provides a generator for sampling with replacement,
which is an even simpler task. Basically all the work gets delegated to random.choice.
The sample_wr generator shown in this recipe is unbounded: used on its own, it will
keep looping forever. To bound the output of an intrinsically unbounded generator,
you can use it in a for statement that at some point executes a break, or use other
techniques shown in recipe 19.2 “Building a List from Any Iterable.”

For example, to make a random string of 50 lowercase ASCII letters:

import itertools
from string import ascii_lowercase
x = ''.join(itertools.slice(sample_wr(ascii_lowercase), 50))

string.ascii_lowercase is exactly the string 'abcdefghijklmnopqrstuvwxyz'. If you
didn’t have the sample_wr generator, the equivalent code might be something like:

from string import ascii_lowercase
from random import choice
x = ''.join([random.choice(ascii_lowercase) for i in xrange(50)])

So, the practical added-value of sample_wr is modest, when compared to other avail-
able building-blocks. It is, however, preferable to have such a fundamental concept
of statistics as sampling with replacement embodied as its own function, rather than
having to implement it with an explicit loop over random.choice each time it is
needed.

See Also
Library Reference and Python in a Nutshell docs for module random.

18.4 Generating Random Samples Without
Replacement

Credit: Raymond Hettinger

Problem
You need to generate random samples without replacement out of a “population”
(the integers between 0 included and some n excluded), and you want better mem-
ory consumption characteristics than random.sample provides.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.4 Generating Random Samples Without Replacement | 655

Solution
A generator for this purpose requires only constant memory and makes a small num-
ber of calls to random.random:

import random
def sample(n, r):
 " Generate r randomly chosen, sorted integers from [0,n) "
 rand = random.random
 pop = n
 for samp in xrange(r, 0, -1):
 cumprob = 1.0
 x = rand()
 while x < cumprob:
 cumprob -= cumprob * samp / pop
 pop -= 1
 yield n-pop-1

Discussion
random.sample(xrange(10), 3) produces output statistically equal to list(sample(10,

3)) using this recipe’s sample. Differently from random.sample(xrange(n), r), this
recipe’s sample(n, r) requires a bounded amount of memory (which does not grow
with either r or n) and is guaranteed to make only r calls to random.random. More-
over, this recipe’s sample yields the r numbers of the sample in sorted order, while
random.sample returns them in random order—which may be insignificant or a cru-
cial advantage one way or the other, depending on your application’s needs. A defi-
nite advantage of random.sample is that its running time is O(r), while this recipe’s
sample function’s running time is O(n).

This recipe was inspired by Knuth’s Algorithm S in Donald E. Knuth, The Art of
Computer Programming, Volume 3, Seminumerical Algorithms, in section 3.4.2. How-
ever, this recipe has one improvement over Knuth’s algorithm: by tracking a cumula-
tive probability for each selection, this recipe eliminates the need to make n calls to
random.random.

A potential major improvement would be to find a direct formula giving the same
result as the inner loop: given x, samp, and pop, compute the index of the first sam-
ple. Finding this formula would reduce the running time to O(r).

See Also
Library Reference and Python in a Nutshell docs about random.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 18: Algorithms

18.5 Memoizing (Caching) the Return Values of
Functions

Credit: Paul Moore, Mitch Chapman, Hannu Kankaanp

Problem
You have a pure function that is often called with the same arguments (particularly a
recursive function) and is slow to compute its results. You want to find a simple way
to gain substantial improvement in performance.

Solution
The key idea behind memoizing is to store a function’s results in a dictionary, keyed
by the arguments that produce each result. This approach makes sense only for a
pure function (i.e., one that yields the same result when called more than once with
the same arguments). It’s easy to memoize a function by hand. For example, using
the recursive Fibonacci function, here is a manually memoized function:

fib_memo = { }
def fib(n):
 if n < 2: return 1
 if n not in fib_memo:
 fib_memo[n] = fib(n-1) + fib(n-2)
 return fib_memo[n]

Having to code the memoization inside each function to be memoized is repetitive
and degrades the function’s readability. An alternative is to encapsulate the memo-
ization mechanics into a closure:

def memoize(fn):
 memo = { }
 def memoizer(*param_tuple, **kwds_dict):
 # can't memoize if there are any named arguments
 if kwds_dict:
 return fn(*param_tuple, **kwds_dict)
 try:
 # try using the memo dict, or else update it
 try:
 return memo[param_tuple]
 except KeyError:
 memo[param_tuple] = result = fn(*param_tuple)
 return result
 except TypeError:
 # some mutable arguments, bypass memoizing
 return fn(*param_tuple)
 # 2.4 only: memoizer.__name__ = fn.__name__
 return memoizer

Using this memoize closure to memoize fib, the function definition becomes obvious,
without caching boilerplate to obscure the algorithm. You must assign the memoize

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.5 Memoizing (Caching) the Return Values of Functions | 657

result to the same name, fib, as the recursive function; otherwise, the recursive calls
bypass the memoizing:

def fib(n):
 if n < 2: return 1
 return fib(n-1) + fib(n-2)
fib = memoize(fib)

This latest snippet shows that memoize is meant to be used exactly as a Python 2.4
decorator, so in Python 2.4, you could use decorator syntax (instead of the explicit
call to memoize):

@memoize
def fib(n):
 if n < 2: return 1
 return fib(n-1) + fib(n-2)

giving exactly the same semantics as the previous snippet.

Discussion
The memoize function is called with just one argument, a function f. It returns a clo-
sure memoizer that acts just like f but memoizes its arguments and result if the actual
arguments to a call are hashable and positional. Calls with mutable or keyword argu-
ments bypass the memoizing. If you’re worried that such bypassing happens too
often, making memoizing counterproductive, you should do a few dry runs that are
representative of your intended production usage, with a closure that’s modified to
collect statistics. Then you can decide whether memoization is worth using for your
specific application. Here’s the modified memoize for this purpose:

def memoize(fn):
 memo = { }
 def memoizer(*param_tuple, **kwds_dict):
 if kwds_dict:
 memoizer.namedargs += 1
 return fn(*param_tuple, **kwds_dict)
 try:
 memoizer.cacheable += 1
 try:
 return memo[param_tuple]
 except KeyError:
 memoizer.misses += 1
 memo[param_tuple] = result = fn(*param_tuple)
 return result
 except TypeError:
 memoizer.cacheable -= 1
 memoizer.noncacheable += 1
 return fn(*param_tuple)
 memoizer.namedargs = memoizer.cacheable = memoizer.noncacheable = 0
 memoizer.misses = 0
 return memoizer

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 18: Algorithms

Functions to be memoized must be pure (i.e., they must have no side effects and
must always return the same value whenever they are called with the same argu-
ments). More significantly, memoize returns a closure that does not memoize calls
that receive mutable arguments, such as len on a list, nor functions that receive
named parameters.

memoize cannot really check the semantics of the functions you wrap. The notions of
same value and same arguments are vaguely defined in many cases, so take care.
memoize does try to field occasional calls with keyword and mutable arguments (with
an interesting mix of checking and try/except), but performance will suffer unless
such cases are rare. This is why it’s worth having around a version of memoize that
keeps counts of the various possibilities, so that you can check their rarity.

See Also
Recipe 20.4 “Caching Attribute Values” applies caching to class instances’ attributes.

18.6 Implementing a FIFO Container
Credit: Sébastien Keim, Alex Martelli, Raymond Hettinger, Jeremy Fincher, Danny
Yoo, Josiah Carlson

Problem
You need a container that allows element insertion and removal, in which the first
element inserted is also the first to be removed (i.e., a first-in first-out, FIFO, queue).

Solution
We can subclass list to implement a Pythonic version of an idea found in Knuth’s
Art of Computer Programming: the frontlist/backlist approach to building a FIFO out
of two one-way linked lists. Here’s how:

class Fifo(list):
 def __init__(self):
 self.back = []
 self.append = self.back.append
 def pop(self):
 if not self:
 self.back.reverse()
 self[:] = self.back
 del self.back[:]
 return super(Fifo, self).pop()

Discussion
Here is a usage example, protected by the usual guard so it runs only when the mod-
ule executes as a main script rather than being imported:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.6 Implementing a FIFO Container | 659

if __name__ == '__main__':
 a = Fifo()
 a.append(10)
 a.append(20)
 print a.pop(),
 a.append(5)
 print a.pop(),
 print a.pop(),
 print
emits: 10 20 5

The key idea in class Fifo is to have an auxiliary backlist, self.back, to which incom-
ing items get appended. Outgoing items get popped from the frontlist, self. Each
time the frontlist is exhausted, it gets replenished with the reversed contents of the
backlist, and the backlist is emptied. The reversing and copying are O(n), where n is
the number of items appended since the “front list” was last empty, but these opera-
tions are performed only once every n times, so the amortized cost of each call to pop

is a constant—that is, O(1).

A simpler way to build a FIFO in Python is no doubt to just use a standard list’s
append and pop(0) methods—something like:

class FifoList(list):
 def pop(self):
 return super(FifoList, self).pop(0)

However, when using a list in this way, we need to keep in mind that pop(0) is O(n),
where n is the current length of the list. O(1) performance can be ensured by building
the FIFO in a slightly less intuitive way, on top of a dictionary:

class FifoDict(dict):
 def __init__(self):
 self.nextin = 0
 self.nextout = 0
 def append(self, data):
 self.nextin += 1
 self[self.nextin] = data
 def pop(self):
 self.nextout += 1
 return dict.pop(self, self.nextout)

In Python 2.4, we also have collections.deque, a double-ended queue type that also
ensures O(1) performance when used as a FIFO (using its append and popleft meth-
ods):

import collections
class FifoDeque(collections.deque):
 pop = collections.deque.popleft

To choose among different implementations of the same interface, such as the vari-
ous Fifo... classes shown in this recipe, the best approach often is to measure their
performance on artificial benchmark examples that provide a reasonable simulation
of the expected load in your application. I ran some such measurements on a some-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 18: Algorithms

what slow laptop, with Python 2.4, using the timeit module from the Python Stan-
dard Library. For a total of 6,000 appends and pops, with a maximum length of
3,000, class Fifo takes about 62 milliseconds, class FifoList about 78, FifoDict

about 137, and FifoDeque about 30. Making the problem exactly ten times bigger, we
see the advantages of O(1) behavior (exhibited by all of these classes except
FifoList). Fifo takes 0.62 seconds, FifoList 3.8, FifoDict 1.4, and FifoDeque 0.29.
Clearly, in Python 2.4, FifoDeque is fastest as well as simplest; if your code has to
support Python 2.3, the Fifo class shown in this recipe’s Solution is best.

See Also
Library Reference and Python in a Nutshell docs for built-ins list and dict; Library
Reference docs on modules collections (Python 2.4 only) and timeit. Python in a
Nutshell’s chapter on optimization; Donald Knuth, The Art Of Computer Program-
ming (exercise 14, section 2.2.1).

18.7 Caching Objects with a FIFO Pruning
Strategy

Credit: David M. Wilson, Raymond Hettinger

Problem
You need to build a mapping to be used as a cache, holding up to a fixed number of
previous entries and automatically discarding older entries.

Solution
A mapping can implement a relatively small number of core methods and rely on
UserDict.DictMixin to provide all the other methods that make up the full official
mapping interface. Here is a mapping class for FIFO caching, implemented with this
“let DictMixin do it” strategy:

import UserDict
class FifoCache(object, UserDict.DictMixin):
 ''' A mapping that remembers the last `num_entries' items that were set '''
 def __init__(self, num_entries, dct=()):
 self.num_entries = num_entries
 self.dct = dict(dct)
 self.lst = []
 def __repr__(self):
 return '%r(%r,%r)' % (
 self.__class__.__name__, self.num_entries, self.dct)
 def copy(self):
 return self.__class__(self.num_entries, self.dct)
 def keys(self):
 return list(self.lst)
 def __getitem__(self, key):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 Caching Objects with a FIFO Pruning Strategy | 661

 return self.dct[key]
 def __setitem__(self, key, value):
 dct = self.dct
 lst = self.lst
 if key in dct:
 lst.remove(key)
 dct[key] = value
 lst.append(key)
 if len(lst) > self.num_entries:
 del dct[lst.pop(0)]
 def __delitem__(self, key):
 self.dct.pop(key)
 self.lst.remove(key)
 # a method explicitly defined only as an optimization
 def __contains__(self, item):
 return item in self.dct
 has_key = __contains__

Discussion
Here is a typical example of usage for this FifoCache class:

if __name__ == '__main__':
 f = FifoCache(num_entries=3)
 f["fly"] = "foo"
 f["moo"] = "two"
 f["bar"] = "baz"
 f["dave"] = "wilson"
 f["age"] = 20
 print f.keys()
 # emits ['bar', 'dave', 'age']

For any case where you might use a dictionary object to cache expensive lookups,
the FifoCache class shown in this recipe might be a safer alternative for use in long-
running applications, whose caches might otherwise consume all system memory if
left unchecked.

Thanks to UserDict.DictMixin, class FifoCache exhibits a full dictionary (i.e., map-
ping) interface: you can substitute an instance of FifoCache wherever you’re using a
dictionary (as long as you do want entries that were set “a long time ago” to drop out
automatically to make space for newer ones).

In Python 2.4, you can get a faster version of FifoCache by setting self.lst to be an
instance of collections.deque rather than a list, and using self.lst.popleft()

where this recipe’s solution uses self.lst.pop(0). Since the deque type does not have
a remove method, you have to implement that with a little auxiliary function:

def remove_from_deque(d, x):
 for i, v in enumerate(d):
 if v == x:
 del d[i]
 return
 raise ValueError, '%r not in %r' % (x, d)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 18: Algorithms

and use remove_from_deque(self.lst, key) where this recipe’s Solution uses
self.list.remove(key). While, as always, you should measure how useful this opti-
mization is in the context of your specific application, it’s likely to be helpful when
num_entries is high, since self.lst.pop(0) on a list self.lst is O(n), while
self.list.popleft() on a deque self.lst is O(1). (remove_from_deque, like
list.remove, is unfortunately and unavoidably O(n)).

FIFO is not the ideal policy for a cache’s decision about what should “fall off”; a bet-
ter one would be LRU (Least Recently Used). You can tweak this class’ policy into
LRU by subclassing and overriding:

class LRUCache(FifoCache):
 def __getitem__(self, key):
 if key in self.dct:
 self.lst.remove(key)
 else:
 raise KeyError
 self.lst.append(key)
 return self.dct[key]

This variant does ensure the use of the LRU policy without much extra code. Unfor-
tunately, it makes every read access quite costly O(n), where n is the number of
entries in the cache at that time), due to the need for the self.lst.remove call. There-
fore, this recipe’s official “Solution” uses the simpler implementation, even though
FIFO is notoriously suboptimal as a cache replacement strategy.

See Also
Library Reference and Python in a Nutshell docs for module UserDict; recipe 5.14
“Enriching the Dictionary Type with Ratings Functionality” also uses
UserDict.DictMixin to round up a mapping interface while coding a minimum of
boilerplate.

18.8 Implementing a Bag (Multiset) Collection
Type

Credit: Raymond Hettinger, Alex Martelli, Matt R

Problem
You need a set-like collection type that lets each element be in the set a number of
times. In other words, you need a collection type of the kind that is known as
multiset in C++ and SQL, and bag in Smalltalk, Objective C, and Haskell’s Edison

module.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.8 Implementing a Bag (Multiset) Collection Type | 663

Solution
We can implement bag as a class. We could restrict the implementation to language
constructs that are present in Python 2.3 or are easy to emulate; however, such
restrictions would give substantial inefficiencies or complications with comparison to
a pure Python 2.4 implementation. So, here is a Python 2.4 implementation, with no
attempt to support Python 2.3:

from operator import itemgetter
from heapq import nlargest
class bag(object):
 def __init__(self, iterable=()):
 # start empty, then add the `iterable' if any
 self._data = { }
 self.update(iterable)
 def update(self, iterable):
 # update from an element->count mapping, or from any iterable
 if isinstance(iterable, dict):
 for elem, n in iterable.iteritems():
 self[elem] += n
 else:
 for elem in iterable:
 self[elem] += 1
 def __contains__(self, elem):
 # delegate membership test
 return elem in self._data
 def __getitem__(self, elem):
 # default all missing items to a count of 0
 return self._data.get(elem, 0)
 def __setitem__(self, elem, n):
 # setting an item to a count of 0 removes the item
 self._data[elem] = n
 if n == 0:
 del self._data[elem]
 def __delitem__(self, elem):
 # delegate to __setitem__ to allow deleting missing items
 self[elem] = 0
 def __len__(self):
 # length is computed on-the-fly
 return sum(self._data.itervalues())
 def __nonzero__(self):
 # avoid truth tests using __len__, as it's relatively slow
 return bool(self._data)
 def __eq__(self, other):
 # a bag can only equal another bag
 if not isinstance(other, bag):
 return False
 return self._data == other._data
 def __ne__(self, other):
 # a bag always differs from any non-bag
 return not (self == other)
 def __hash__(self):
 # a bag can't be a dict key nor an element in a set

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 18: Algorithms

 raise TypeError
 def __repr__(self):
 # typical string-representation
 return '%s(%r)' % (self.__class__.__name__, self._data)
 def copy(self):
 # make and return a shallow copy
 return self.__class__(self._data)
 __copy__ = copy # For the copy module
 def clear(self):
 # remove all items
 self._data.clear()
 def __iter__(self):
 # yield each element the # of times given by its count
 for elem, cnt in self._data.iteritems():
 for i in xrange(cnt):
 yield elem
 def iterunique(self):
 # yield each element only once
 return self._data.iterkeys()
 def itercounts(self):
 # yield element-count pairs
 return self._data.iteritems()
 def mostcommon(self, n=None):
 # return the n (default: all) most common elements, each as an
 # element-count pair, as a list sorted by descending counts
 if n is None:
 return sorted(self.itercounts(), key=itemgetter(1), reverse=True)
 it = enumerate(self.itercounts())
 nl = nlargest(n, ((cnt, i, elem) for (i, (elem, cnt)) in it))
 return [(elem, cnt) for cnt, i, elem in nl]

Discussion
Python offers several useful container classes, including built-in tuples, lists and
dicts, sets (in Python 2.4, sets are built-in; in Python 2.3, they’re in module sets)—
which, unlike bags, can be seen as “holding only one instance” of each of their ele-
ments—and double-ended queues, deques (in Python 2.4 only, in module
collections). This abundance of container classes doesn’t mean there is no use for
yet more. The bag, (i.e., multiset), presented in this recipe, is widely useful, since
counting the numbers of occurrences of different objects is a frequent task useful in
many applications. Rather than coding a bag each time you need such a container
(generally based on a dictionary mapping items to counts), it’s better to design and
code it once, put it among one’s utilities, and lobby for it to become part of the stan-
dard library for a future Python, such as 2.5 (which can be expected sometime in
2006 and will focus on enhancements to the standard library rather than to the core
language).

The API offered by the bag class presented in this recipe is largely based on indexing,
due to the strong analogy between a bag and a mapping of items to counts. For
example:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.8 Implementing a Bag (Multiset) Collection Type | 665

>>> b = bag('banana')
>>> b['a']
3
>>> b['a'] += 1
>>> b['a']
4
>>> del b['a'] # removes all 'a's from the bag
>>> b['a']
0

Items that are not in the bag can also be used as indices, giving a value (i.e., count) of
0; a lot of bag’s convenience comes from this default. A bag also offers several ways to
iterate on it (by unique elements; by elements, each repeated as many times as its
count; by (element, count) pairs); and also supplies a handy method mostcommon to
return (element, count) pairs sorted by descending count (all such pairs, or just the
top n). An example use of mostcommon:

>>> bag(word for line in open('somefile.txt')
... for word in line.split()).mostcommon(5)
[('to', 83), ('for', 71), ('the', 61), ('of', 53), ('and', 52)]

All design choices are tradeoffs. For some applications, it might be more convenient
to have bag’s API closer to set’s rather than to dict’s, with an add method, and
binary operators, for example, to join two bags returning a new one (as list does
with operator + and set does with the “or”, vertical-bar operator |). In most cases,
this would be overkill. After all, “a designer knows he has achieved perfection, not
when there is nothing left to add, but when there is nothing left to take away” (Anto-
ine de Saint-Exupéry). So, for example, to join two bags, getting a new one, without
altering either input bag, code a little function using roughly the same update-based
approach you would use with dicts, as follows:

def bagjoin(b1, b2):
 b = bag(b1)
 b.update(b2)
 return b

Just as would be the case for an analogous function joining dicts, this works, not
only when b1 and b2 are bags, but also when they are other kinds of objects that can
be passed to bag and bag.update—objects such as arbitrary iterables or mappings
(generally dictionaries) from items to counts. Such polymorphism comes at negligi-
ble cost, and it’s well worth preserving.

Although the crucial design choices in this recipe are those about bag’s API, some
implementation choices must be made as well. In this recipe’s code, implementation
choices are oriented towards simplicity. In particular, there is no attempt to allow
this code to run on Python 2.3. This recipe is optimized for Python 2.4 because it is
Python’s current release and is likely to be used soon in lieu of Python 2.3, particu-
larly among Pythonistas who are sensitive to performance issues, given the amount
of highly successful effort that was devoted to optimizing version 2.4’s performance.
If Python 2.3 support was deemed necessary, it would be best implemented sepa-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 18: Algorithms

rately, rather than hobbling the primary 2.4 implementation with inefficiencies or
complications.

See Also
Smalltalk’s Bag class at http://www.gnu.org/software/smalltalk/gst-manual/gst_
49.html; C++'s std::multiset template class at http://gcc.gnu.org/onlinedocs/
libstdc++/latest-doxygen/classstd_1_1multiset.html.

18.9 Simulating the Ternary Operator in Python
Credit: Jürgen Hermann, Alex Martelli, Oliver Steele, Chris Perkins, Brent Burley,
Lloyd Goldwasser, Doug Hudgeon

Problem
You want to express in Python the equivalent of C’s so-called ternary operator ?:—
as in condition?iftrue:iffalse).

Solution
There are many ways to skin a ternary operator. An explicit if/else is most Pythonic,
although slightly verbose:

for i in range(1, 3):
 if i == 1:
 plural = ''
 else:
 plural = 's'
 print "The loop ran %d time%s" % (i, plural)

Indexing is more compact, and therefore useful, if using the iftrue and iffalse

expressions has no side effects:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, ('', 's')[i != 1])

For the specific case of plurals, there’s also a neat variant using slicing:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, "s"[i==1:])

Short-circuited logical expressions can deal correctly with side effects:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, i != 1 and 's' or '')

The output of each of these loops is:

The loop ran 1 time

The loop ran 2 times

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Simulating the Ternary Operator in Python | 667

However, beware: the short-circuit version (which is necessary when either or both
of iftrue and iffalse have side effects) fails if “turned around”:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, i == 1 and '' or 's')

Since '' evaluates as false, the would-be-ternary expression always evaluates to 's',
so that this latest snippet outputs:

The loop ran 1 times

The loop ran 2 times

Therefore, in general, when iftrue and iffalse are unknown at coding time (and
therefore either could have side effects or be false), we need more cumbersome con-
structs, such as:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, (i == 1 and [''] or ['s'])[0])

or:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, (lambda:'', lambda:'s')[i!=1]())

or even weirder variations:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, [i==1 and '', i!=1 and 's'][i!=1])
for i in range(1, 3):
 print "The loop ran %d time%s" % (i,
 (i==1 and (lambda:'') or (lambda:'s'))())

As you can see, good old if/else is starting to look pretty good when compared to
these terse and complicated approaches.

And now for something completely different (for plurals only, again):

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, 's'*(i!=1))

Discussion
Programmers coming to Python from C, C++, or Perl sometimes miss the so-called
ternary operator (?:). The ternary operator is most often used for avoiding a few lines
of code and a temporary variable for simple decisions, such as printing the plural
form of words after a counter, as in this recipe’s examples. In most cases, Python’s
preference for making things clear and explicit at the cost of some conciseness is an
acceptable tradeoff, but one can sympathize with the withdrawal symptoms of ter-
nary-operator addicts.

Nevertheless, 99.44 times out of 100, you’re best off using a plain if/else statement.
If you want your if/else to fit in an expression (so you can use that expression inside
a lambda form, list comprehension, or generator expression), put it inside a named
local function and use that function in the expression. For the remaining 56 cases out

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 18: Algorithms

of 10,000, the idioms in this recipe might be useful. A typical case would be when
you’re transliterating from another language into Python and need to keep program
structure as close as possible to the “or”iginal, as mentioned in recipe 4.19 “Assign-
ing and Testing with One Statement.”

There are several ways to get the ternary operator effect in Python, and this recipe
presents a fair selection of the wide range of possibilities. Indexing and slicing are
nice but don’t apply to cases in which either or both of the iftrue and iffalse

expressions may have side effects. If side effects are an issue, the short-circuiting
nature of and/or can help, but this approach may run into trouble when iftrue and
iffalse might be Python values that evaluate as false. To resolve both the side-effect
and the might-be-false issues, two variants in this recipe mix indexing and function
calling or a lambda form, and two more use even weirder mixtures of lambda and
indexing and short circuiting.

If you’re not worried about side effects, you could overload slicing syntax to express
a ternary operator:

class cond(object):
 def __getitem__(self, sl):
 if sl.start: return sl.stop
 else: return sl.step
cond = cond()

After executing this snippet, you could code the example presented in this recipe’s
Solution as:

for i in range(1, 3):
 print "The loop ran %d time%s" % (i, cond[i==1:'':'s'])

When you slice this cond object, iftrue and iffalse (masquerading as the stop and
step attributes of the slice object) are both evaluated in any case, which is the reason
this syntax is no use if you must worry about side effects. If you must have syntax
sugar, using nullary lambdas may be the least of evils:

def cond(test, when_true, when_false):
 if test:
 return when_true()
 else:
 return when_false()

to be used as, for example, print cond(x%2==0, lambda:x//2, lambda:3*x+1).

Note that the lack of a ternary operator in Python is not due to an oversight: it’s a
deliberate design decision, made after much debate pro and con. Therefore, you can
be sure that Python will never “grow” a ternary operator. For many details about the
various proposed syntax forms for a ternary operation, you can see the rejected PEP
308 at http://www.python.org/peps/pep-0308.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.10 Computing Prime Numbers | 669

See Also
Recipe 4.19 “Assigning and Testing with One Statement.”

18.10 Computing Prime Numbers
Credit: David Eppstein, Tim Peters, Alex Martelli, Wim Stolker, Kazuo Moriwaka,
Hallvard Furuseth, Pierre Denis, Tobias Klausmann, David Lees, Raymond Hettinger

Problem
You need to compute an unbounded sequence of all primes, or the list of all primes
that are less than a certain threshold.

Solution
To compute an unbounded sequence, a generator is the natural Pythonic approach,
and the Sieve of Eratosthenes, using a dictionary as the supporting data structure, is
the natural algorithm to use:

import itertools
def eratosthenes():
 '''Yields the sequence of prime numbers via the Sieve of Eratosthenes.'''
 D = { } # map each composite integer to its first-found prime factor
 for q in itertools.count(2): # q gets 2, 3, 4, 5, ... ad infinitum
 p = D.pop(q, None)
 if p is None:
 # q not a key in D, so q is prime, therefore, yield it
 yield q
 # mark q squared as not-prime (with q as first-found prime factor)
 D[q*q] = q
 else:
 # let x <- smallest (N*p)+q which wasn't yet known to be composite
 # we just learned x is composite, with p first-found prime factor,
 # since p is the first-found prime factor of q -- find and mark it
 x = p + q
 while x in D:
 x += p
 D[x] = p

Discussion
To compute all primes up to a predefined threshold, rather than an unbounded
sequence, it’s reasonable to wonder if it’s possible to use a faster way than good old
Eratosthenes, even in the smart variant shown as the “Solution”. Here is a function
that uses a few speed-favoring tricks, such as a hard-coded tuple of the first few
primes:

def primes_less_than(N):
 # make `primes' a list of known primes < N
 primes = [x for x in (2, 3, 5, 7, 11, 13) if x < N]
 if N <= 17: return primes
 # candidate primes are all odd numbers less than N and over 15,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 18: Algorithms

 # not divisible by the first few known primes, in descending order
 candidates = [x for x in xrange((N-2)|1, 15, -2)
 if x % 3 and x % 5 and x % 7 and x % 11 and x % 13]
 # make `top' the biggest number that we must check for compositeness
 top = int(N ** 0.5)
 while (top+1)*(top+1) <= N:
 top += 1
 # main loop, weeding out non-primes among the remaining candidates
 while True:
 # get the smallest candidate: it must be a prime
 p = candidates.pop()
 primes.append(p)
 if p > top:
 break
 # remove all candidates which are divisible by the newfound prime
 candidates = filter(p.__rmod__, candidates)
 # all remaining candidates are prime, add them (in ascending order)
 candidates.reverse()
 primes.extend(candidates)
 return primes

On a typical small task such as looping over all primes up to 8,192, eratosthenes
(on an oldish 1.2 GHz Athlon PC, with Python 2.4) takes 22 milliseconds, while
primes_less_than takes 9.7; so, the slight trickery and limitations of primes_less_

than can pay for themselves quite handsomely if generating such primes is a bottle-
neck in your program. Be aware, however, that eratosthenes scales better. If you
need all primes up to 199,999, eratosthenes will deliver them in 0.88 seconds, while
primes_less_than takes 0.65.

Since primes_less_than’s little speed-up tricks can help, it’s natural to wonder
whether a perhaps simpler trick can be retrofitted into eratosthenes as well. For
example, we might simply avoid wasting work on a lot of even numbers, concentrat-
ing on odd numbers only, beyond the initial 2. In other words:

def erat2():
 D = { }
 yield 2
 for q in itertools.islice(itertools.count(3), 0, None, 2):
 p = D.pop(q, None)
 if p is None:
 D[q*q] = q
 yield q
 else:
 x = p + q
 while x in D or not (x&1):
 x += p
 D[x] = p

And indeed, erat2 takes 16 milliseconds, versus eratosthenes’ 22, to get primes up to
8,192; 0.49 seconds, versus eratosthenes’ 0.88, to get primes up to 199,999. In other
words, erat2 scales just as well as eratosthenes and is always approximately 25%
faster. Incidentally, if you’re wondering whether it might be even faster to program
at a slightly lower level, with q = 3 to start, a while True as the loop header, and a
q += 2 at the end of the loop, don’t worry—the slightly higher-level approach using

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.11 Formatting Integers as Binary Strings | 671

itertools’ count and islice functions is repeatedly approximately 4% faster. Other
languages may impose a performance penalty for programming with higher abstrac-
tion, Python rewards you for doing that.

You might keep pushing the same idea yet further, avoiding multiples of 3 as well as
even numbers, and so on. However, it would be an exercise in diminishing returns:
greater and greater complication for smaller and smaller gain. It’s better to quit while
we’re ahead!

If you’re into one liners, you might want to study the following:

def primes_oneliner(N):
 aux = { }
 return [aux.setdefault(p, p) for p in range(2, N)
 if 0 not in [p%d for d in aux if p>=d+d]]

Be aware that one liners, even clever ones, are generally anything but speed demons!
primes_oneliner takes 2.9 seconds to complete the same small task (computing
primes up to 8,192) which, eratosthenes does in 22 milliseconds, and primes_less_

than in 9.7—so, you’re slowing things down by 130 to 300 times just for the fun of
using a clever, opaque one liner, which is clearly not a sensible tradeoff. Clever one
liners can be instructive but should almost never be used in production code, not just
because they’re terse and make maintenance harder than straightforward coding
(which is by far the main reason), but also because of the speed penalties they may
entail.

While prime numbers, and number theory more generally, used to be considered
purely theoretical problems, nowadays they have plenty of practical applications,
starting with cryptography.

See Also
To explore both number theory and its applications, the best book is probably Ken-
neth Rosen, Elementary Number Theory and Its Applications (Addison-Wesley); http:/
/www.utm.edu/research/primes/ for more information about prime numbers.

18.11 Formatting Integers as Binary Strings
Credit: Antti Kaihola, Scott David Daniels, W.J. van der Laan

Problem
You need to display non-negative integers in binary form—that is, you need to turn
them into strings made up of the characters '0' and '1'.

Solution
The best approach, assuming you must perform this task on several numbers in the
course of one run of your application, is to first prepare an auxiliary table, for exam-
ple, with an auxiliary function:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 18: Algorithms

def _bytes_to_bits():
 # prepare and return a list of the first 256 int as binary strings
 # start with table of the right length, filled with place-holders
 the_table = 256*[None]
 # we'll repeatedly need to loop on [7, 6, ..., 1, 0], make it once
 bits_per_byte = range(7, -1, -1)
 for n in xrange(256):
 # prepare the nth string: start with a list of 8 place-holders
 bits = 8*[None]
 for i in bits_per_byte:
 # get the i-th bit as a string, shift n right for next bit
 bits[i] = '01'[n&1]
 n >>= 1
 # join up the 8-character string of 0's and 1's into the table
 the_table[n] = ''.join(bits)
 return the_table
rebind function's name to the table, function not needed any more
_bytes_to_bits = _bytes_to_bits()

and then use the auxiliary table to make a fast conversion function that works 8 bits
at a time:

def binary(n):
 # check precondition: only non-negative numbers supported
 assert n>=0
 # prepare the list of substrings 8 bits at a time
 bits = []
 while n:
 bits.append(_bytes_to_bit[n&255])
 n >>= 8
 # we need it left-to-right, thus the reverse
 bits.reverse()
 # strip leading '0's, but ensure at least one is left!
 return ''.join(bits).lstrip('0') or '0'

If you need to perform this task only a very small number of times in the course of
one run of your application, you might instead choose to perform the conversion
directly, bit by bit—it’s easy, although somewhat slow. Just use the same approach
as binary, but 1 bit at a time instead of 8 bits at a time:

def binary_slow(n):
 assert n>=0
 bits = []
 while n:
 bits.append('01'[n&1])
 n >>= 1
 bits.reverse()
 return ''.join(bits) or '0'

Discussion
If you also need to display negative numbers, you can take two different roads. Either
do as the built-in functions hex and oct and prepend a minus sign to negative num-
bers:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.12 Formatting Integers as Strings in Arbitrary Bases | 673

def bin_with_sign(n):
 if n<0: return '-'+binary(-n)
 else: return binary(n)

or use two’s complement notation, but in that case you need to know how many bits
fit in a “word”, because that’s how two’s complement is defined—in terms of fixed-
length words:

def bin_twos_complement(n, bits_per_word=16):
 if n<0: n = (2<<bits_per_word) + n
 return binary(n)

Function binary produces just as many binary digits as each argument needs, avoid-
ing leading '0's (except the single zero digit needed to avoid displaying an empty
string when n is 0). If instead you need to produce a fixed number of binary digits,
you could ensure that at string level, which is particularly easy with Python 2.4:

def bin_fixed(n, bits_per_word=16):
 return bin_twos_complement(n, bits_per_word).rjust(bits_per_word, '0')

but is also quite feasible with Python 2.3 as well:

def bin_fixed_23(n, bits_per_word=16):
 result = bin_twos_complement(n, bits_per_word)
 return (('0'*bits_per_word)+result)[-bits_per_word:]

Alternatively, you could generalize some version of the auxiliary _bytes_to_bits

function used in the “Solution”, which is indeed oriented to producing fixed-length
results. However, using the variable-length version, and a little string manipulation
on top of it for the occasional need for fixed-length results, should be enough.

See Also
Library Reference and Python in a Nutshell docs for built-ins oct and hex; recipe
18.12 “Formatting Integers as Strings in Arbitrary Bases” for displaying integers in an
arbitrary base.

18.12 Formatting Integers as Strings
in Arbitrary Bases

Credit: Moon aka Sun, Raymond Hettinger

Problem
You need to display non-negative integers in arbitrary bases—that is, you need to
turn them into strings made up of “digit” characters (which may include letters for
bases that are > 10).

Solution
A function is clearly the right way to package the “Solution” to this task:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 18: Algorithms

import string
def format(number, radix, digits=string.digits+string.ascii_lowercase):
 """ format the given integer `number' in the given `radix' using the given
 `digits' (default: digits and lowercase ascii letters) """
 if not 2 <= radix <= len(digits):
 raise ValueError, "radix must be in 2..%r, not %r" % (len(digits), radix)
 # build result as a list of “digit”s in natural order (least-significant digit
 # leftmost), at the end flip it around and join it up into a single string
 result = []
 addon = result.append # extract bound-method once
 # compute 'sign' (empty for number>=0) and ensure number >= 0 thereafter
 sign = ''
 if number < 0:
 number = -number
 sign = '-'
 elif number == 0:
 sign = '0'
 _divmod = divmod # access to locals is faster
 while number:
 # like: rdigit = number % radix; number //= radix
 number, rdigit = _divmod(number, radix)
 # append appropriate string for the digit we just found
 addon(digits[rdigit])
 # append sign (if any), flip things around, and join up into a string
 addon(sign)
 result.reverse()
 return ''.join(result)

Discussion
Here is a simple usage example, with the usual guard to let us append the example to
the same module where we define function format. The usage example runs when
the module is run as a main script but not when the module is imported:

if __name__ == '__main__':
 as_str = 'qwertyuioplkjhgfdsazxcvbnm0987654321'
 as_num = 79495849566202193863718934176854772085778985434624775545L
 num = int(as_str, 36)
 assert num == as_num
 res = format(num, 36)
 assert res == as_str

This usage example is designed to be totally quiet when everything works fine, emit-
ting messages only in case of problems.

The code in this recipe is designed with careful attention to both generality and per-
formance. The string of digits used by default is made up of all decimal digits fol-
lowed by lowercase ASCII letters, allowing a radix of up to 36; however, you can
pass any sequence of strings (rather than just a string, to be used as a sequence of
characters), for example to support even larger bases. Performance is vastly
enhanced, with respect to a naive approach to coding, by a few precautions taken in
the code—in decreasing order of importance:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.13 Converting Numbers to Rationals via Farey Fractions | 675

1. Building the result as a list and then using ''.join to create a string containing
all the list items. (The alternative of adding each item to a string, one at a time,
would be much slower than the ''.join approach.)

2. Building the result in natural order (least-significant digit leftmost) and flipping
it around at the end. Inserting each digit at the front as it gets computed would
be slow.

3. Extracting the bound method result.append into a local variable.

4. Giving a local name _divmod to the divmod buit-in.

Items 2 and 3 speed lookups that otherwise would extract a small extra price each
time through the loop because lookup of local variables is measurably faster than
lookup of built-ins and quite a bit faster than compound-name lookups such as
result.append.

Here is an example of how you could use format with “digits” that are not single
characters, but rather longer strings:

digs = [d+'-' for d in
 'zero one two three four five six seven eight nine'.split()]
print format(315, 10, digs).rstrip('-')
emits: three-one-five

See Also
Library Reference and Python in a Nutshell docs for built-ins oct and hex; recipe
18.11 “Formatting Integers as Binary Strings” for displaying integers specifically in
binary.

18.13 Converting Numbers to Rationals
via Farey Fractions

Credit: Scott David Daniels

Problem
You have a number v (of almost any type) and need to find a rational number (in
reduced form) that is as close to v as possible but with a denominator no larger than
a prescribed value.

Solution
Farey fractions, whose crucial properties were studied by Augustin Louis Cauchy, are
an excellent way to find rational approximations of floating-point values:

def farey(v, lim):
 """ No error checking on args. lim = maximum denominator.
 Results are (numerator, denominator); (1, 0) is "infinity".
 """
 if v < 0:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 18: Algorithms

 n, d = farey(-v, lim)
 return -n, d
 z = lim - lim # Get a "0 of the right type" for denominator
 lower, upper = (z, z+1), (z+1, z)
 while True:

mediant = (lower[0] + upper[0]), (lower[1] + upper[1])
 if v * mediant[1] > mediant[0]:
 if lim < mediant[1]:
 return upper
 lower = mediant
 elif v * mediant[1] == mediant[0]:
 if lim >= mediant[1]:
 return mediant
 if lower[1] < upper[1]:
 return lower
 return upper
 else:
 if lim < mediant[1]:
 return lower
 upper = mediant

For example:

import math
print farey(math.pi, 100)
emits: (22, 7)

Discussion
The rationals resulting from the algorithm shown in this recipe are in reduced form
(meaning that numerator and denominator are mutually prime), but the proof,
which was given by Cauchy, is rather subtle (see http://www.cut-the-knot.com/blue/
Farey.html).

You can use farey to compute odds from a probability, such as:

probability = 0.333
n, d = farey(probability, 100)
print "Odds are %d : %d" % (n, d-n)
emits: Odds are 1 : 2

This recipe’s algorithm is ideally suited for reimplementation in a lower-level lan-
guage (e.g., C, or assembly, or, maybe best, Pyrex) if you use it heavily. Since the
code uses only multiplication and addition, it can play optimally to hardware
strengths.

If you are using this recipe in an environment where you call it with a lot of values
near 0.0, 1.0, or 0.5 (or other simple fractions), you may find that the algorithm’s
convergence is too slow. You can improve convergence in a continued fraction style,
by appending to the first if in the farey function:

if v < 0:
...

elif v < 0.5:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.14 Doing Arithmetic with Error Propagation | 677

 n, d = farey((v-v+1)/v, lim) # lim is wrong; decide what you want
 return d, n
elif v > 1:
 intpart = floor(v)
 n, d = farey(v-intpart)
 return n+intpart*d, d
...

James Farey was an English geologist and surveyor who wrote a letter to the Journal
of Science in 1816. In that letter he observed that, while reading a privately pub-
lished list of the decimal equivalents of fractions, he had noticed an interesting fact.
Consider the set of all the fractions with values between 0 and 1, reduced to the low-
est terms, with denominators not exceeding some integer N. Arrange the set in order
of magnitude to get a sequence. For example, for N equal to 5, the Farey sequence is:

0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1

For any three consecutive fractions in this sequence (e.g., A/B, C/D, E/F), the mid-
dle fraction (C/D), called the mediant, is equal to the ratio (A + E)/(B + F). I enjoy
envisioning Mr. Farey sitting up late on a rainy English night, reading tables of deci-
mal expansions of fractions by an oil lamp. Calculation has come a long way since
his day, and I’m pleased to be able to benefit from his work.

See Also
Library Reference and Python in a Nutshell docs for built-in types int and long; http:/
/www.cut-the-knot.org/blue/Farey.shtml for more information about the Farey Series.

18.14 Doing Arithmetic with Error Propagation
Credit: Mario Hilgemeier

Problem
You have numbers coming from measurements affected by known percentual uncer-
tainties, and you want to perform arithmetic on these numbers while tracking the
uncertainty in the results.

Solution
The simplest approach is to code a class that implements arithmetic operators apply-
ing the classical physicists’ error-propagation formulas:

import math
class Measurement(object):
 ''' models a measurement with % uncertainty, provides arithmetic '''
 def __init__(self, val, perc):
 self.val = val # central value
 self.perc = perc # % uncertainty
 self.abs = self.val * self.perc / 100.0 # absolute error

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 18: Algorithms

 def __repr__(self):
 return "Measurement(%r, %r)" % (self.val, self.perc)
 def __str__(self):
 return "%g+-%g%%" % (self.val, self.perc)
 def _addition_result(self, result, other_abs):
 new_perc = 100.0 * (math.hypot(self.abs, other_abs) / result)
 return Measurement(result, new_perc)
 def __add__(self, other):
 result = self.val + other.val
 return self._addition_result(result, other.abs)
 def __sub__(self, other):
 result = self.val - other.val
 return self._addition_result(result, other.abs)
 def _multiplication_result(self, result, other_perc):
 new_perc = math.hypot(self.perc, other_perc)
 return Measurement(result, new_perc)
 def __mul__(self, other):
 result = self.val * other.val
 return self._multiplication_result(result, other.perc)
 def __div__(self, other):
 result = self.val / other.val
 return self._multiplication_result(result, other.perc)

Discussion
Here is a typical example of use for this Measurement class:

m1 = Measurement(100.0, 5.5) # measured value of 100.0 with 5.5% error
m2 = Measurement(50, 2) # measured value of 50.0 with 2% error
print "m1 = ", m1
print "m2 = ", m2
print "m1 + m2 = ", m1 + m2
print "m1 - m2 = ", m1 - m2
print "m1 * m2 = ", m1 * m2
print "m1 / m2 = ", m1 / m2
print "(m1+m2) * (m1-m2) = ", (m1+m2) * (m1-m2)
print "(m1-m2) / (m1+m2) = ", (m1-m2) / (m1+m2)
emits:
m1 = 100+-5.5%
m2 = 50+-2%
m1 + m2 = 150+-3.72678%
m1 - m2 = 50+-11.1803%
m1 * m2 = 5000+-5.85235%
m1 / m2 = 2+-5.85235%
(m1+m2) * (m1-m2) = 7500+-11.7851%
(m1-m2) / (m1+m2) = 0.333333+-11.7851%

What is commonly known as a percentage error is of course best described as a per-
centage of uncertainty. For example, when we state that some measured quantity is
100 with an error of 5.5% (or, equivalently, ± 5.5%), we mean that we know, with a
reasonable level of confidence, that the quantity lies somewhere between 94.5 and
105.5. The error-propagation formulas are somewhat heuristic, rather than rigorous,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.14 Doing Arithmetic with Error Propagation | 679

but they’re quite traditional and have proven over the centuries that they perform
acceptably in most large computations in physics or engineering.

Class Measurement, as shown in this recipe, does not support arithmetic with
floats—only arithmetic between instances of Measurement. For those rare occasions
when I need, in such computations, numbers that are known “exactly”, it is easiest
to input them as “measurements with an error of 0%”. For example, if I have mea-
sured some sphere’s radius as 1 meter +- 3%, I can compute the sphere’s volume
(with the well-known formula, 4/3 pi times the cube of the radius) as follows:

r = Measurement(1, 3)
v = Measurement(4/3.0*math.pi, 0) * r * r * r
print v
emits: 4.18879+-5.19615%

Avoiding accidental operations with floats that are presumed to be exact, but in fact
are not, is quite helpful: this way, when I need to state that a certain number has 0
error, I’m reminded to consider whether things are truly that way. If your applica-
tions are different, so that you do need operations between measurements and exact
floats all over the place, you can insert, as the first line of every one of the arithmetic
special methods, the following statement:

 if isinstance(other, float):
 other = Measurement(other, 0)

Alternatively, you could perform this coercion in a special method named __coerce__,
but that approach is considered obsolete and is discouraged in modern Python. If
you do perform the coercion in the various arithmetic special methods (__add__,
__sub__, etc.), don’t forget to also add the __radd__, etc, equivalents—after all, if
you want to be able to code:

 some_measurement * 2.0

you will no doubt also want to be able to code:

 2.0 * some_measurement

and get exactly the same effects. For this purpose, in Python, your class needs to
define the various __r... versions of the operator special methods. However, I’m not
pursuing this line of reasoning further, because in most cases, you will be best served
by not having the implicit ability to do arithmetic in an automatic way between mea-
surements and floats—much like, with Python 2.4’s decimal module, you can’t
implicitly do arithmetic in an automatic way between decimal numbers and floats.

See Also
Library Reference and Python in a Nutshell docs for module math.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 18: Algorithms

18.15 Summing Numbers with Maximal Accuracy
Credit: Yaroslav Bulatov, Connelly Barnes

Problem
Due to the properties of floating point arithmetic, the simplest loop to sum a list of
numbers (also embodied in the built-in sum function, as well as similar functions
such as add.reduce in add-on modules such as Numeric and numarray) is not maxi-
mally accurate. You wish to minimize such numeric inaccuracy.

Solution
A careful and accurate algorithm, using and progressively accumulating partial sums
(i.e., partials), can reduce inaccuracy:

import math
def sum_with_partials(arr):
 arr = list(arr)
 size = len(arr)
 iters = int(math.ceil(math.log(size) / math.log(2)))
 step = 1
 for itr in xrange(iters):
 for i in xrange(0, size-step, step+step):
 next_i = i+step
 arr[i] += arr[next_i]
 step += step
 return arr[0]

Discussion
Here is an example of the numeric behavior of this sum_with_partials function com-
pared to that of the built-in sum:

if __name__ == '__main__':
 arr = [0.123456789012345]*10000000
 true_answer = arr[0] * len(arr)
 print '"True" result: %r' % true_answer
 sum_result = sum(arr)
 print '"sum" result: %r' % sum_result
 sum_p_resu = sum_with_partials(arr)
 print 'sum_p. result: %r' % sum_p_resu
emits:
"True" result: 1234567.89012345
"sum" result: 1234567.8902233159
sum_p. result: 1234567.89012345

As you can see, in this case, the built-in sum accumulated a relative error of almost 10-

10 after summing 10 million floats all equal to each other (giving less than 11 digits
of accuracy in the result), while sum_with_partials happens to be “perfect” for this
case to within machine precision (15 digits of accuracy). Summing just a million cop-
ies rather than 10 million lowers sum’s relative error only to a bit more than 10-11.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.15 Summing Numbers with Maximal Accuracy | 681

If you know that the input argument arr is a list, and you don’t mind destroying that
list as part of the summation, you can omit from the body of sum_with_partials the
statement:

 arr = list(arr)

and recover a little bit of performance. Without this small enhancement, on one slow
laptop, summing a million floats with the built-in sum takes 360 milliseconds, while
the more accurate function sum_with_partials shown in this recipe takes 1.8 seconds
to perform the same task (a slowdown of five times). In theory, sum_with_partials

should be asymptotically faster than built-in sum if you’re doing unbounded-
precision arithmetic (e.g., with Python’s built-in longs or other unbounded-precision
data types from such add-ons as gmpy, which you can download from http://
gmpy.sourceforge.net). To sum a list of n elements with d digits of precision, in
unbounded-precision exact arithmetic, sum takes O(n(d+logd)) time, while sum_with_

The Trouble with Summations
How come a simple summing loop is less than maximally accurate? The root of the
trouble is that summing two floating-point numbers of very different magnitudes loses
accuracy. For example, suppose we used decimal floating-point numbers with a preci-
sion of four digits: then, summing 1.234 to 123.4 would give 124.6, “losing” 0.034
from the smaller number. Such artefacts are inevitable, as long as we have finite preci-
sion during our computations.

Now, imagine we’re using a simple loop such as:

 total = 0.0
 for number in numbers:
 total += number

to sum a million numbers, all positive and of reasonably similar magnitudes. Built-in
sum internally uses exactly this kind of simple loop. By the time we’ve summed, say, the
first 100,000 numbers, the running total has become much larger than each new num-
ber we’re adding to it. We have thus put ourselves in exactly the situation just shown
to be problematic: after a while, we’re systematically summing floating-point numbers
of very different magnitudes, and thus systematically losing accuracy.

The partials algorithm shown in this recipe works by summing numbers two at a
time—therefore, no major loss of accuracy occurs, since we’re assuming that the num-
bers we start with are of reasonably similar magnitudes. So, after the first pass of the
partials algorithm, we’re left with half as many partials as the amount of numbers we
started with. All the partials are of reasonably similar magnitudes, so we just iterate the
same procedure: at each step, we keep halving the number of partials that are left, until
we’re down to just one number, the grand total, having lost along the way as little accu-
racy as feasible.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 18: Algorithms

partials takes O(nd). However, I have not been able to observe that effect in empiri-
cal measurements.

Most of the time, you probably don’t want to pay the price of slowing down a sum-
mation by five times in order to increase your digits of accuracy from 10 or 11 to 15.
However, for those occasions in which this tradeoff is right for your applications,
and you need to sum millions and millions of floating-point numbers, this recipe
might well prove rather useful to you. Another simple way to increase accuracy, par-
ticularly when your input numbers are not necessarily all of similar magnitude, is to
ensure the small-magnitude ones are summed first. This is particularly easy to code
in Python 2.4, although it’s inevitably O(n log n): just sum(sorted(data, key=abs)).
Finally, if precision is much more important than speed, consider using
decimal.Decimal (which lets you ask for as much precision as you’re willing to wait
for and is part of Python 2.4’s standard library). Or you could use gmpy.mpf (which
also allows any precision you require, may even be faster, but must be downloaded
as part of gmpy from http://gmpy.sourceforge.net.)

See Also
Recipe 18.16 “Simulating Floating Point” shows how to use a bounded-precision
simulation of floating point to estimate the accuracy of algorithms; ftp://
ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z for Douglas M. Priest’s Ph.D. thesis
On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accu-
rate Computations, covering this entire field with depth and rigor; gmpy is at http://
gmpy.sourceforge.net.

18.16 Simulating Floating Point
Credit: Raymond Hettinger

Problem
You need to simulate floating-point arithmetic in software, either to show to stu-
dents the details of the various classic problems with floating point (e.g., representa-
tion error, loss of precision, failure of distributive, commutative, and associative
laws), or to explore the numerical robustness of alternative algorithms.

Solution
We can reproduce every floating-point operation, with explicitly bounded precision,
by coding a Python class that overloads all the special methods used in arithmetic
operators:

prec = 8 # number of decimal digits (must be under 15)
class F(object):
 def __init__(self, value, full=None):
 self.value = float('%.*e' % (prec-1, value))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.16 Simulating Floating Point | 683

 if full is None:
 full = self.value
 self.full = full
 def __str__(self):
 return str(self.value)
 def __repr__(self):
 return "F(%s, %r)" % (self, self.full)
 def error(self):
 ulp = float('1'+('%.4e' % self.value)[-5:]) * 10 ** (1-prec)
 return int(abs(self.value - self.full) / ulp)
 def __coerce__(self, other):
 if not isinstance(other, F):
 return (self, F(other))
 return (self, other)
 def __add__(self, other):
 return F(self.value + other.value, self.full + other.full)
 def __sub__(self, other):
 return F(self.value - other.value, self.full - other.full)
 def __mul__(self, other):
 return F(self.value * other.value, self.full * other.full)
 def __div__(self, other):
 return F(self.value / other.value, self.full / other.full)
 def __neg__(self):
 return F(-self.value, -self.full)
 def __abs__(self):
 return F(abs(self.value), abs(self.full))
 def __pow__(self, other):
 return F(pow(self.value, other.value), pow(self.full, other.full))
 def __cmp__(self, other):
 return cmp(self.value, other.value)

Discussion
The initializer of class F rounds the input value to the given precision (the global con-
stant prec). This rounding produces what is known as representation error because
the result is the nearest possible representable value for the specified number of dig-
its. For instance, at three digits of precision, 3.527104 is stored as 3.53, so the repre-
sentation error is 0.002896.

Since the underlying representation used in this recipe is Python’s ordinary float, the
simulation works only up to 15 digits (the typical limit for double-precision floating
point). If you need more than 15 digits, you can use Python 2.4’s decimal.Decimal

type as the underlying representation. This way, you can get any precision you ask
for, although the computation occurs in decimal rather than in binary. Alternatively,
to get binary floating point with arbitrarily high precision, use the gmpy Python wrap-
per for the GMP (Gnu Multiple Precision) multiple-precision arithmetic library, spe-
cifically the gmpy.mpf type. One way or another, you need change only the two calls
to float in this recipe’s Solution into calls to Python 2.4’s decimal.Decimal, or to
gmpy.mpf (requesting the appropriate number of “digits” or bits), to use class F with
higher precision than 15 digits. gmpy is at http://gmpy.sourceforge.net.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 18: Algorithms

One key use of this recipe is to show to students the classic failure of associative,
commutative, and distributive laws (Knuth, The Art of Computer Programming,
vol. 2, pp. 214–15)—for example:

Show failure of the associative law
u, v, w = F(11111113), F(-11111111), F(7.51111111)
assert (u+v)+w == 9.5111111
assert u+(v+w) == 10
Show failure of the commutative law for addition
assert u+v+w != v+w+u
Show failure of the distributive law
u, v, w = F(20000), F(-6), F(6.0000003)
assert u*v == -120000
assert u*w == 120000.01
assert v+w == .0000003
assert (u*v) + (u*w) == .01
assert u * (v+w) == .006

The other main way to use the code in this recipe is to compare the numerical accu-
racy of different algorithms that compute the same results. For example, we can
compare the following three approaches to computing averages:

def avgsum(data): # Sum all of the elements, then divide
 return sum(data, F(0)) / len(data)
def avgrun(data): # Make small adjustments to a running mean
 m = data[0]
 k = 1
 for x in data[1:]:
 k += 1
 m += (x-m)/k # Recurrence formula for mean
 return m
def avgrun_kahan(data): # Adjustment method with Kahan error correction term
 m = data[0]
 k = 1
 dm = 0
 for x in data[1:]:
 k += 1
 adjm = (x-m)/k - dm
 newm = m + adjm
 dm = (newm - m) - adjm
 m = newm
 return m

Here is a way to exercise these approaches and display their errors:

import random
prec = 5
data = [F(random.random()*10-5) for i in xrange(1000)]
print '%s\t%s\t%s' %('Computed', 'ULP Error', 'Method')
print '%s\t%s\t%s' %('--------', '---------', '------')
for f in avgsum, avgrun, avgrun_kahan:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.17 Computing the Convex Hulls and Diameters of 2D Point Sets | 685

 result = f(data)
 print '%s\t%6d\t\t%s' % (result, result.error(), f.__name__)
print '\n%r\tbaseline average using full precision' % result.full

Here is typical output from this snippet (the exact numbers in play will be different
each time you run it, since what we are summing are random numbers):

Computed ULP Error Method

-------- --------- ------

-0.020086 15 avgsum
-0.020061 9 avgrun
-0.020072 1 avgrun_kahan
-0.020070327734999997 baseline average using full precision

The last example demonstrates how to extract a full-precision floating-point result
from an instance of F, by using the full attribute of the instance. This example is
helpful for running an algorithm to full precision, as a baseline for seeing the effects
of using less precision.

The full-precision result excludes the representation error in the “or”iginal inputs.
For example, with prec = 3 and d = F(3.8761) / F(2.7181), d.full is
1.4264705882352939, the same result as regular division would yield, starting from the
nearest representable values, 3.88 / 2.72. This helpful choice isolates accumulated
floating-point operation errors from the artifacts of the “or”iginal data entry. This
separation is reasonable because real floating-point systems have to start with repre-
sentable constants; however, if the “or”iginal representation error has to be tracked,
you can do so by entering the number twice in the call to F—for example, use
F(2.7181, 2.7181) rather than F(2.7181).

See Also
Recipe 18.15 “Summing Numbers with Maximal Accuracy” for algorithms for accu-
rate sums; gmpy is at http://gmpy.sourceforge.net.

18.17 Computing the Convex Hulls and Diameters
of 2D Point Sets

Credit: David Eppstein, Dinu Gherman

Problem
You have a list of 2D points, represented as pairs (x, y), and need to compute the
convex hull (i.e., upper and lower chains of vertices) and the diameter (the two
points farthest from each other).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 18: Algorithms

Solution
We can easily compute the hulls by the classic Graham’s scan algorithm, with sort-
ing based on coordinates rather than radially. Here is a function to perform this task:

def orientation(p, q, r):
 ''' >0 if p-q-r are clockwise, <0 if counterclockwise, 0 if colinear. '''
 return (q[1]-p[1])*(r[0]-p[0]) - (q[0]-p[0])*(r[1]-p[1])
def hulls(Points):
 ' Graham scan to find upper and lower convex hulls of a set of 2D points '
 U = []
 L = []
 # the natural sort in Python is lexicographical, by coordinate
 Points.sort()
 for p in Points:
 while len(U) > 1 and orientation(U[-2], U[-1], p) <= 0:
 U.pop()
 while len(L) > 1 and orientation(L[-2], L[-1], p) >= 0:
 L.pop()
 U.append(p)
 L.append(p)
 return U, L

Given the hulls, the rotating calipers algorithm provides all pairs of points that are
candidates to be set’s diameter. Here is a function to embody this algorithm:

def rotatingCalipers(Points):
 ''' Given a list of 2d points, finds all ways of sandwiching the points
 between two parallel lines that touch one point each, and yields the
 sequence of pairs of points touched by each pair of lines. '''
 U, L = hulls(Points)
 i = 0
 j = len(L) - 1
 while i < len(U) - 1 or j > 0:
 yield U[i], L[j]
 # if all the way through one side of hull, advance the other side
 if i == len(U) - 1:
 j -= 1
 elif j == 0:
 i += 1
 # still points left on both lists, compare slopes of next hull edges
 # being careful to avoid divide-by-zero in slope calculation
 elif (U[i+1][1]-U[i][1]) * (L[j][0]-L[j-1][0]) > \
 (L[j][1]-L[j-1][1]) * (U[i+1][0]-U[i][0]):
 i += 1
 else: j -= 1

Given all the candidates, we need only to scan for the max on pairwise point-point
distances of candidate pairs of points to get the diameter. Here is a function that per-
forms exactly this task:

def diameter(Points):
 ''' Given a list of 2d points, returns the pair that's farthest apart. '''
 diam, pair = max([((p[0]-q[0])**2 + (p[1]-q[1])**2, (p,q))

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.17 Computing the Convex Hulls and Diameters of 2D Point Sets | 687

 for p,q in rotatingCalipers(Points)])
 return pair

Discussion
As function hulls shows, we can apply Graham’s scan algorithm without needing an
expensive radial sort as a preliminary step: Python’s own built-in sort (which is lexi-
cographical, meaning, in this case, by x coordinate first, and by y coordinate when
the x coordinates of two points coincide) is sufficient.

From hulls, we get the upper and lower convex hulls as distinct lists, which, in turn,
helps in the rotatingCalipers function: that function can maintain separate indices i

and j on the lower and upper hulls and still be sure to yield all pairs of sandwich
boundary points that are candidates to be the set’s diameter. Given the sequence of
candidate pairs, function diameter’s task is quite simple—it boils down to one call to
built-in max on a list comprehension (a generator expression would suffice in Python
2.4) that associates the pairwise point distance to each pair of candidate points. We
use the squared distance, in fact. There’s no reason to compute a costly square root
to get the actual non-squared distance: we’re comparing only distances, and for any
non-negative x and y, x < y and sqrt(x) < sqrt(y) always have identical truth val-
ues. (In practice, however, using math.hypot(p[0]-q[0], p[1]-q[1]) in the list com-
prehension gives us just about the same performance.)

The computations in this recipe take care to handle tricky cases, such as pairs of
points with the same x coordinate, multiple copies of the same point, colinear triples
of points, and slope computations that, if not carefully handled, would produce a
division by zero (i.e., again, pairs of points with the same x coordinate). The set of
unit tests that carefully probe each of these corner cases is far longer than the code in
the recipe itself, which is why it’s not posted on this cookbook.

Some of the formulas become a little simpler and more readable when we represent
points by complex numbers, rather than as pairs of reals:

def orientation(p, q, r):
 return ((q - p) * (r - p).conjugate()).imag
...

 # still points left on both lists, compare slopes of next hull edges
 # being careful to avoid divide-by-zero in slope calculation
 elif ((U[i+1] - U[i]) * (L[j] - L[j-1]).conjugate()).imag > 0:
 i += 1
 else: j -= 1
...

def diameter(Points):
 diam, pair = max([(abs(p-q), (p,q)) for p,q in rotatingCalipers(Points)])
 return pair

If we represent points by complex numbers, of course, we cannot just use
Points.sort() any more because complex numbers cannot be compared. We need
to “pay back” some of the simplification by coding our own sort, such as:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 18: Algorithms

 aux = [(p.real, p.imag) for p in Points]
 aux.sort()
 Points[:] = [complex(*p) for p in aux]
 del aux

or equivalently, in Python 2.4:

 Points.sort(key=lambda p: p.real, p.imag)

Moreover, under the hood, a complex numbers–based version is doing more arith-
metic: finding the real as well as imaginary components in the first and second for-
mula, and doing an unnecessary square root in the third one. Nevertheless,
performance as measured on my machine, despite this extra work, turns out to be
slightly better with this latest snippet than with the “Solution”’s code. The reason
I’ve not made the complex-numbers approach the “official” one, aside from the com-
plication with sorting, is that you should not require familiarity with complex arith-
metic just to understand geometrical computations.

If you’re comfortable with complex numbers, don’t mind the sorting issues, and
have to perform many 2D geometrical computations, you should consider represent-
ing points as complex numbers and check whether this provides a performance
boost, as well as overall simplification to your source code. Among other advan-
tages, representing points as complex numbers lets you use the Numeric package to
hold your data, saving much memory and possibly gaining even more performance,
when compared to the natural alternative of representing points as (x, y) tuples hold-
ing two floats.

See Also
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, 2nd ed. (Springer-Verlag).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

689

Chapter 19 CHAPTER 19

Iterators and Generators

19.0 Introduction
Credit: Raymond Hettinger

Lather, Rinse, Repeat

—Docs for my bottle of shampoo

The Iterator Protocol
After namespaces, iterators and generators emerged as the next “honking great
ideas” in Python. Since their introduction in Python 2.2, they have come to pervade
and unify the language. They encourage a loosely coupled programming style that is
simple to write, easy to read, flexible, and extendable.

Simply put, the iterator protocol has two halves, a producer and a consumer. An iter-
able object says, “I know how to supply data one element at a time,” and the con-
sumer says “please give me data one element at a time and say Stop when you’re
done.”

The producer/consumer connection can appear in a number of guises. The simplest
is where a function or constructor wraps around an iterable object. For example,
sorted(set('simsalabim')) has the set constructor looping over the elements of the
iterable string and a sorted function wrapping around the resulting iterable set
object. replaceable literal

In addition to functions and constructors, regular Python statements can use the in

operator to loop over iterable objects. for line in myfile: print line loops over
lines of an iterable file object. Likewise, if token in sequence loops over elements
of a sequence until it finds a match (or until it reaches the end with no matches).

Both guises of the consumer side of the iterator protocol use the protocol implicitly.
In addition, an explicit form is more flexible but used less often. The iterator object
is saved as a variable, it = iter(mystring). Then, the iterator’s next method is called
to retrieve a data element, elem = it.next(). Such calls are usually wrapped in try/

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 19: Iterators and Generators

except statements to catch the StopIteration exception that the iterator raises when
the data stream is exhausted.

All of these approaches provide the full range of iterator benefits, including loose
coupling and memory friendliness. The loose coupling is evident in the first exam-
ple, where the independently created and maintained sorted function, set data type,
and string objects were readily combined. The memory friendliness derives from the
one-at-a-time structure of the iterator protocol. Programs using iterators are likely to
be less resource intensive and more scalable than their list-based counterparts.

Iterators and Generators
An object that wants to be iterable should implement an __iter__ method, which
returns an iterator object. Ideally, the iterator should be a distinct object from the
iterable, to make it possible to have multiple iterators over the same iterable con-
tainer. There are exceptions to this general recommendation: for example, a sequen-
tial file object does not readily lend itself to multiple iterations; therefore, it is more
appropriate in this case to have the file object be its own iterator rather than return a
separate iterator object; given any file instance f, indeed, iter(f) is f.

Any iterator object must implement a next method and an __iter__ method. The
next method should raise StopIteration when the iteration is complete. Care should
be taken that subsequent calls to next continue to raise StopIteration (once stopped,
it stays stopped). The __iter__ method of an iterator object should always return the
iterator itself (__iter__ is idempotent on iterators). This simplifies client code by
allowing it to treat iterators and iterables the same way (i.e., both return an iterator
in response to the iter function).

To be useful, most iterators have a stored state that enables them to return a new
data element on each call. The previously described responsibilities and the need to
have a stored state both suggest that classes are the way to create iterable objects.
That approach is obvious, explicit, and rarely used (only two recipes in this chapter
make any use of classes).

Instead of writing classes, two alternate approaches dominate. Starting with the
observation that many functions and types both accept iterable inputs and return
iterable outputs, an obvious approach is to link them together in a “pipes and filters”
style to create new tools. For example, def uniq(seq): return sorted(set(seq)) is a
way to create a new tool directly from existing functions and types. Like functional
programming, the resulting code is terse, readable, trivial to debug, and often runs at
the speed of compiled C code. The economy of this approach motivated the creation
of an entire module of iterator building blocks, the itertools module. Indeed, many
of the brilliant, effective recipes in this chapter make frequent use of itertools com-
ponents.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 691

If no combination of building blocks solves the problem, the next best approach is to
write a generator. The recipe 19.1 “Writing a range-like Function with Float Incre-
ments” shows how trivially easy it is to write a generator. By introducing a yield key-
word, the responsibilities of creating an iterator are handled automatically. The
iterator objects obtained by calling a generator are distinct, save their state, have an
idempotent __iter__ method, and have a next method that raises StopIteration

when complete and stays stopped if called again afterwards. Python internally takes
care of all of these details. Because of generators’ compelling simplicity, most of the
recipes in this chapter make use of generators.

Starting with version 2.4, Python continued its evolution toward using iterators
everywhere by introducing generator expressions (genexps for short). Genexps can be
likened to a memory-efficient, scalable form of list comprehensions. Simply by
replacing brackets with parentheses, an expression will yield one element at a time
rather than filling memory all at once. Used correctly (i.e., in a context where they
are consumed immediately, one item at a time), genexps can offer remarkable clarity
and economy: sum(x*x for x in xrange(10)) is a great way to express the sum of the
squares of the first ten natural numbers.

Thinking Out of the Box
Paradoxically, the simpler and more general an idea, the more likely that people will
find extraordinary and unexpected ways of using it. Here is a brief sampling of the
ways that iterators and generators have been pushed to their outer limits.

Observing that the yield keyword has the unique capability of stopping execution,
saving state, and later resuming, it is not surprising that techniques have been discov-
ered for using generators to simulate co-routines and continuations. The core idea is
to implement each routine as a generator and having a dispatch function launch the
routines in orderly succession. Whenever a task switch is needed, the routines yield
back to the dispatcher, which then launches or resumes the next routine by calling
its next method. Small complications are involved for startup, termination, and data
sharing, but they each are solvable without much ado and present fewer challenges
than equivalent thread-based solutions. See recipe 9.8 “Multitasking Cooperatively
Without Threads” for an example.

Observing that some tools can be both producers and consumers, it is natural to
want to stack them together like pipes and filters. While that analogy can lead to use-
ful decoupling, be aware that underlying models are different. Iterators do not run
independently from start to finish; instead, an outermost layer is always in control,
requesting data elements one at a time, so that nothing runs until the outer layer
starts making requests.

When stacking tools together (as in the first example with sorted, set, and a string),
the code takes on the appearance of a functional programming language. The resem-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 19: Iterators and Generators

blance is not shallow: iterators do fulfill some of the promise of lazy languages. So, it
is natural to borrow some of the most successful techniques from those languages,
such as Haskell and SML.

One such technique is to write innermost iterators to yield infinite streams and con-
centrate the control logic in an outermost driver function. For instance, in numerical
programming, write a generator that yields successively better approximations to a
desired result and call it from a function that stops whenever two successive approxi-
mations fall within a tolerance value. Separating the control logic from the calcula-
tion decouples the two, making them easier to write, test, and debug, and makes
them more reusable in other contexts.

Odds and Ends
Here are some instructive snippets. Consider each of them carefully, study how they
work, and you’ll be well on your way towards understanding how best to link itera-
tors together to solve practical problems. Each of the following lines is independent
from the “other”s:

result = dict(enumerate(myseq))
result = set(word for line in page for word in line.split())
def dotproduct(v1, v2): return sum(itertools.imap(operator.mul, v1, v2))
def dotproduct(v1, v2): return sum(x*y for x,y in itertools.izip(v1, v2))
randgen = itertools.starmap(random.random, itertools.repeat(()))
randgen = iter(random.random, -1.0)

The idea for restartable iterators surfaces every so often and then drowns in quick-
sand. sys.stdin is a plain example of an iterable that cannot logically be restarted
unless an entire session is saved in memory. A craving for restartability should be
taken as a cue that a list might well be a more appropriate data structure.

Just because iterators cannot be restarted doesn’t mean they cannot be abandoned in
mid-stream. The lazy, just-in-time style of production is a key feature of iterators.
Take advantage of it. That’s why the for statement supports a break keyword, after
all.

The core itertools and their derivatives (see the recipes in the itertools docs that
are part of the Python Library Reference) all run at nearly the speed of compiled
code. When Python 2.4 introduced a native set data type, I timed it against the pure-
Python version, sets.py, and learned that some of the set logic (intersection, union,
etc.) achieved only a two to one increase in speed. The reason was that sets.py used
itertools, and itertools performance was exceptional. So, when performance is an
issue, consider an itertools solution before turning to more labor-intensive optimi-
zations or native language extensions.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.1 Writing a range-like Function with Float Increments | 693

19.1 Writing a range-like Function with Float
Increments

Credit: Dinu Gherman, Paul Winkler, Stephen Levings

Problem
You need an arithmetic progression, like the built-in xrange but with float values
(xrange works only on integers).

Solution
Although float arithmetic progressions are not available as built-ins, it’s easy to code
a generator to supply them:

import itertools
def frange(start, end=None, inc=1.0):
 "An xrange-like generator which yields float values"
 # imitate range/xrange strange assignment of argument meanings
 if end is None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 assert inc # sanity check
 for i in itertools.count():
 next = start + i * inc
 if (inc>0.0 and next>=end) or (inc<0.0 and next<=end):
 break
 yield next

Discussion
Sadly missing in the Python Standard Library, the generator in this recipe lets you
use arithmetic progressions, similarly to the built-in xrange but with float values.

Many theoretical restrictions apply, but this generator is more useful in practice than
in theory. People who work with floating-point numbers all the time tell many war
stories about billion-dollar projects that failed because someone did not take into
consideration the strange things that modern hardware can do, at times, when com-
paring floating-point numbers. But for pedestrian cases, simple approaches like this
recipe generally work.

This observation by no means implies that you can afford to ignore the fundamen-
tals of numerical analysis, if your programs need to do anything at all with floating-
point numbers! For example, in this recipe, we rely on a single multiplication and
one addition to compute each item, to avoid accumulating error by repeated addi-
tions. Precision would suffer in a potentially dangerous way if we “simplified” the
first statement in the loop body to something like:

 next += inc

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 19: Iterators and Generators

as might appear very tempting, were it not for those numerical analysis consider-
ations.

One variation you may want to consider is based on pre-computing the number of
items that make up the bounded arithmetic progression:

import math
def frange1(start, end=None, inc=1.0):
 if end == None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 nitems = int(math.ceil((end-start)/inc))
 for i in xrange(nitems):
 yield start + i * inc

This frange1 version may or may not be faster than the frange version shown in the
solution; if the speed of this particular generator is crucial to your programs, it’s best
to try both versions and measure resulting times. In my limited benchmarking, on
most of the hardware I have at hand, frange1 does appear to be consistently faster.

Talking about speed—believe it or not, looping with for i in itertools.count() is
measurably faster than apparently obvious lower-level alternatives such as:

 i = 0
 while True:

...loop body unchanged...

 yield next
 i += 1

Do consider using itertools any time you want speed, and you may be in for more
of these pleasant surprises.

If you work with floating-point numbers, you should definitely take a look at Numeric
and other third-party extension packages that make Python such a powerful lan-
guage for floating-point computations. For example, with Numeric, you could code
something like:

import math, Numeric
def frange2(start, end=None, inc=1.0, typecode=None):
 if end == None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 nitems = math.ceil((end-start)/inc)
 return Numeric.arange(nitems) * inc + start

This one is definitely going to be faster than both frange and frange1 if you need to
collect all of the progression’s items into a sequence.

See Also
Documentation for the xrange built-in function, and the itertools and math mod-
ules, in the Library Reference; Numeric Python (http://www.pfdubois.com/numpy/).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.2 Building a List from Any Iterable | 695

19.2 Building a List from Any Iterable
Credit: Tom Good, Steve Alexander

Problem
You have an iterable object x (it might be a sequence or any other kind of object on
which you can iterate, such as an iterator, a file, a dict) and need a list object y,
with the same items as x and in the same order.

Solution
When you know that iterable object x is bounded (so that, e.g., a loop for item in x

would surely terminate), building the list object you require is trivial:

y = list(x)

However, when you know that x is unbounded, or when you are not sure, then you
must ensure termination before you call list. In particular, if you want to make a list
with no more than n items from x, then standard library module itertools’ function
islice does exactly what you need:

import itertools
y = list(itertools.islice(x, N))

Discussion
Python’s generators, iterators, and sundry other iterables, are a wondrous thing, as
this entire chapter strives to point out. The powerful and generic concept of iterable
is a great way to represent all sort of sequences, including unbounded ones, in ways
that can potentially save you huge (and even infinite!) amounts of memory. With the
standard library module itertools, generators you can code yourself, and, in Python
2.4, generator expressions, you can perform many manipulations on completely gen-
eral iterables.

However, once in a while, you need to build a good old-fashioned full-fledged list

object from such a generic iterable. For example, building a list is the simplest way to
sort or reverse the items in the iterable, and lists have many other useful methods you
may want to apply. As long as you know for sure that the iterable is bounded (i.e., has
a finite number of items), just call list with the iterable as the argument, as the
“Solution” points out. In particular, avoid the goofiness of misusing a list compre-
hension such as [i for i in x], when list(x) is faster, cleaner, and more readable!

Calling list won’t help if you’re dealing with an unbounded iterable. The need to
ensure that some iterable x is bounded also arises in many other contexts, besides
that of calling list(x): all “accumulator” functions (sum(x), max(x), etc.) intrinsi-
cally need a bounded-iterable argument, and so does a statement such as for i in x

(unless you have appropriate conditional breaks within the loop’s body), a test such
as if i in x, and so on.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 19: Iterators and Generators

If, as is frequently the case, all you want is to ensure that no more than n items of
iterable x are taken, then itertools.islice, as shown in the “Solution”, does just
what you need. The islice function of the standard library itertools module offers
many other possibilities (essentially equivalent to the various possibilities that slic-
ing offers on sequences), but out of all of them, the simple “truncation” functional-
ity (i.e., take no more than n items) is by far the most frequently used. The
programming language Haskell, from which Python took many of the ideas underly-
ing its list comprehensions and generator expression functionalities, has a built-in
take function to cater to this rather frequent need, and itertools.islice is most
often used as an equivalent to Haskell’s built-in take.

In some cases, you cannot specify a maximum number of items, but you are able to
specify a generic condition that you know will eventually be satisfied by the items of
iterable x and can terminate the proceedings. itertools.takewhile lets you deal with
such cases in a very general way, since it accepts the controlling predicate as a call-
able argument. For example:

y = list(itertools.takewhile((11).__cmp__, x))

binds name y to a new list made up of the sequence of items in iterable x up to, but
not including, the first one that equals 11. (The reason we need to code (11).__cmp__

with parentheses is a somewhat subtle one: if we wrote 11.__cmp__ without parenthe-
ses, Python would parse 11. as a floating-point literal, and the entire construct would
be syntactically invalid. The parentheses are included to force the tokenization we
mean, with 11 as an integer literal and the period indicating an access to its attribute,
in this case, bound method __cmp__.)

For the special and frequent case in which the terminating condition is the equality
of an item to some given value, a useful alternative is to use the two-arguments vari-
ant of the built-in function iter:

y = list(iter(iter(x).next, 11))

Here, the iter(x) call (which is innocuous if x is already an iterator) gives us an
object on which we can surely access callable (bound method) next—which is neces-
sary, because iter in its two-arguments form requires a callable as its first argument.
The second argument is the sentinel value, meaning the value that terminates the iter-
ation as soon as an item equal to it appears. For example, if x were a sequence with
items 1, 6, 3, 5, 7, 11, 2, 9, . . , y would now be the list [1, 6, 3, 5, 7]. (The senti-
nel value itself is excluded: from the beginning, included, to the end, excluded, is the
normal Python convention for just about all loops, implicit or explicit.)

See Also
Library Reference documentation on built-ins list and iter, and module itertools.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.3 Generating the Fibonacci Sequence | 697

19.3 Generating the Fibonacci Sequence
Credit: Tom Good, Leandro Mariano Lopez

Problem
You want an unbounded generator that yields, one item at a time, the entire (infi-
nite) sequence of Fibonacci numbers.

Solution
Generators are particularly suitable for implementing infinite sequences, given their
intrinsically “lazy evaluation” semantics:

def fib():
 ''' Unbounded generator for Fibonacci numbers '''
 x, y = 0, 1
 while True:
 yield x
 x, y = y, x + y
if __name__ == "__main__":
 import itertools
 print list(itertools.islice(fib(), 10))
outputs: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Discussion
Generators make it quite easy to work with unbounded (infinite) sequences. In this
recipe, we show a generator that produces all of the (infinitely many) Fibonacci num-
bers one after the “other”. (If you want the variant in which the sequence starts with
1, 1, 2, . . . , rather than the one, implemented here, which starts with 0, 1, 1, . .
. , just interchange the two statements in the loop’s body.)

It’s worth reflecting on why a generator is so perfectly suitable for implementing an
unbounded sequence and letting you work with it. Syntactically, a generator is “just”
a function containing the keyword yield. When you call a generator, however, the
function body does not yet execute. Rather, calling the generator gives you a special
anonymous iterator object that wraps the function’s body, the function’s local vari-
ables (including arguments, which, for any function, are local variables that happen
to be initialized by the caller), and the current point of execution, which is initially
the start of the function.

When you call this anonymous iterator object’s next method, the function body exe-
cutes up to the next yield statement. yield’s argument is returned as the result of the
iterator’s next method, and the function is “frozen”, with its execution state intact.
When you call next again on the same iterator object, the function “thaws” and con-
tinues from where it left off, again up to the next yield statement.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 19: Iterators and Generators

If the function body “falls off the end”, or executes a return, the iterator object raises
StopIteration to indicate the end of the sequence. But, of course, if the sequence
that the generator is producing is not bounded, the iterator never raises
StopIteration. That’s okay, as long as you don’t rely on such an exception as the
only way to terminate a loop. In this recipe, for example, the anonymous iterator
object is passed as an argument to itertools.islice: as shown in recipe 19.2 “Build-
ing a List from Any Iterable,” islice is the most typical way in which an unbounded
iterator is made finite (truncated at an externally imposed boundary).

The main point to retain is that it’s all right to have infinite sequences represented by
generators, since generators are computed lazily (in other words, each item gets com-
puted just in time, when required), as long as some control structure ensures that
only a finite number of items are required from the generator. The answer to our
curiosity as to why generators are so excellently suitable for this use is in the anony-
mous iterator object which a generator returns when we call it: that anonymous iter-
ator wraps some code (the generator’s function body) and some state (the function’s
local variables, and, crucially, the point at which the function’s execution is to
resume) in just the way that’s most convenient for the computation of most
sequences, be they bounded or unbounded.

Leonardo Pisano (meaning “from Pisa”), most often called Leonardo Bigollo (the
traveler or “the good for nothing”) during his lifetime in the 12th and 13th centu-
ries, and occasionally Leonardo Fibonacci (for his connection to the Bonacci family),
must look down with considerable pride from his place in the mathematicians’
Empyreon. Although his most notable contributions were the introduction of deci-
mal notation (arabic numerals) in the West, and the codification of the rules for dou-
ble-entry bookkeeping, these monumental achievements are not usually connected
to his name. The one that is, however—from the third problem in his Liber Abaci,
which he originally expressed in terms of a rabbit-raising farm—still provides inter-
esting applications for the distant successors of the abacus, modern computers.

See Also
Recipe 19.2 “Building a List from Any Iterable,” shows how to make bounded itera-
tors from unbounded (or “potentially unbounded”) ones.

19.4 Unpacking a Few Items in a Multiple
Assignment

Credit: Brett Cannon, Oren Tirosh, Alex Martelli

Problem
Python’s multiple unpacking assignment is very handy when you are unpacking all
the items from a sequence and binding each to a name. However, you often need to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.4 Unpacking a Few Items in a Multiple Assignment | 699

unpack (and bind to names) only some items from the “front” of a sequence, and
bind another name to “the rest” of the sequence (the part you didn’t unpack).

Solution
A generator provides an elegant solution to this problem:

def peel(iterable, arg_cnt=1):
 """ Yield each of the first arg_cnt items of the iterable, then
 finally an iterator for the rest of the iterable. """
 iterator = iter(iterable)
 for num in xrange(arg_cnt):
 yield iterator.next()
 yield iterator
if __name__ == '__main__':
 t5 = range(1, 6)
 a, b, c = peel(t5, 2)
 print a, b, list(c)
emits: 1 2 [3, 4, 5]

Discussion
Python supports the handy idea of multiple unpacking assignment. Say that t5 is any
sequence of five items. Then, you can code:

a, b, c, d, e = t5

to bind a name to each item of t5.

However, you often do not know (nor care) exactly how many items a certain
sequence t holds: you want to bind (say) two names, one to each of the first two
items, and a third name to “the rest” of t (this requirement does imply that t must
hold at least two items). If you know that t is a “proper” sequence, with support for
slicing, not just an arbitrary iterable, you can code:

a, b = t[:2]
c = t[2:]

but this is nowhere as elegant or handy as the multiple unpacking assignment. More-
over, if you are not certain about the nature of t (i.e., if t can be any iterable, not
necessarily supporting slice syntax), the task becomes more cumbersome:

c = iter(t5)
a = c.next()
b = c.next()

Given these issues, the Python Development mailing list* once discussed a new syn-
tax for generalized multiple unpacking assignment, such that:

a, b, *c = t

* The Python Development mailing list is the list on which all discussion regarding the development of Python
itself is held; see http://mail.python.org/pipermail/python-dev/2002-November/030380.html for this specific
subject.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 19: Iterators and Generators

would perform exactly this task—bind names a and b to the first two items of t and
name c to “the rest”.

I didn’t like the idea of making the Python language bigger by adding this extra func-
tionality to assignment statements, so I came up with this recipe’s generator. This
generator provides this functionality fully and without any need to add any new syn-
tax to Python.

Just one caveat: you must make sure that you pass the arg_cnt argument properly. If
you pass a wrong value for arg_cnt, or if the sequence you pass to peel is shorter
than arg_cnt, you get an exception at runtime. But then, you also get a Python
exception at runtime if you try to perform a multiple assignment and the number of
names you have on the left of the = sign is not identical to the number of items of the
sequence you have on the right. Therefore, this recipe isn’t any different from nor-
mal, multiple unpacking assignment in this respect. If you think it is important to
relax some parts of this requirement, see recipe 19.5 “Automatically Unpacking the
Needed Number of Items.”

See Also
Language Reference and Python in a Nutshell about multiple unpacking assignments;
recipe 19.5 “Automatically Unpacking the Needed Number of Items.

19.5 Automatically Unpacking the Needed
Number of Items

Credit: Sami Hangaslammi, Peter Cogolo

Problem
You want to unpack (and bind to names) some items from the “front” of a sequence
and bind another name to “the rest” of the sequence (the part you didn’t unpack).
You want to obtain the number of items to unpack automatically, based on how
many names are on the left of the = sign in a multiple unpacking assignment.

Solution
The previous approach in recipe 19.4 “Unpacking a Few Items in a Multiple Assign-
ment” is clean and elegant, but you have to “manually” pass the number of items to
unpack. If you’re willing to stoop to a little black magic, peering into stack frames
and bytecodes, you may be able to bypass that requirement:

import inspect, opcode
def how_many_unpacked():
 f = inspect.currentframe().f_back.f_back

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.5 Automatically Unpacking the Needed Number of Items | 701

 if ord(f.f_code.co_code[f.f_lasti]) == opcode.opmap['UNPACK_SEQUENCE']:
 return ord(f.f_code.co_code[f.f_lasti+1])
 raise ValueError, "Must be a generator on RHS of a multiple assignment!"
def unpack(iterable):
 iterator = iter(iterable)
 for num in xrange(how_many_unpacked()-1):
 yield iterator.next()
 yield iterator
if __name__ == '__main__':
 t5 = range(1, 6)
 a, b, c = unpack(t5)
 print a, b, list(c)

Discussion
While arguably spiffy, this recipe is a bit fragile, as you could well expect from a
function relying on introspection on bytecode: while the recipe works in Python 2.3
and 2.4, any future release of Python might easily generate bytecode for a multiple
unpacking assignment in a somewhat different way, and thus break the recipe.

Moreover, as presented, the recipe relies on how_many_unpacked being called specifi-
cally from a generator; if you call it from an ordinary function, it does not work,
since in that case the UNPACK_SEQUENCE bytecode in the caller’s caller happens to fall at
offset f.f_lasti+3 instead of f.f_lasti.

For example, the following code doesn’t work with the recipe’s Solution because
enumfunc is an ordinary function, not a generator:

def enumfunc():
 return xrange(how_many_unpacked())
a, b, c, d, e = enumfunc()

However, the following code does work:

def enumgen():
 for x in xrange(how_many_unpacked()): yield x
a, b, c, d, e = enumgen()

because enumgen is a generator.

In other words, this recipe is a hack—arguably a neat hack (to the point that one of
the editors of this Cookbook successfully lobbied the “other” two and managed to
obtain the recipe’s inclusion in this volume), but, nevertheless, a hack. Therefore,
you probably do not want to use this approach in “production code”, meaning code
that must stay around for a long time and will be maintained across future versions
of Python.

Nevertheless, you could make how_many_unpacked work in both contexts by making it
a little bit more complicated:

def how_many_unpacked():
 f = inspect.currentframe().f_back.f_back
 bytecode = f.f_code.co_code

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 19: Iterators and Generators

 ups_code = opcode.opmap['UNPACK_SEQUENCE']
 if ord(bytecode[f.f_lasti]) == ups_code:
 return ord(bytecode[f.f_lasti+1])
 elif ord(bytecode[f.f_lasti+3]) == ups_code:
 return ord(bytecode[f.f_lasti+4])
 else:
 raise ValueError, "Must be on the RHS of a multiple assignment!"

With this more complicated variant, how_many_unpacked would work when called
from either a generator or an ordinary function. However, I recommend sticking
with the simpler version presented in this recipe’s Solution, and calling how_many_

unpacked only from the given unpack generator, or a few other specific generators.

Even such a limited use can be considered debatable, since most Pythonistas prefer
clarity and simplicity to the risky kind of “convenience” that can be obtained by such
shortcuts. After all, this recipe’s only advantage, in comparison to recipe 19.4
“Unpacking a Few Items in a Multiple Assignment,” is that you save yourself the
trouble of passing to unpack the number of items required, which is nice, but clearly,
not all that crucial.”

See Also
Recipe 19.4 “Unpacking a Few Items in a Multiple Assignment”; Language Refer-
ence and Python in a Nutshell about multiple unpacking assignments; Library Refer-
ence and Python in a Nutshell about library modules inspect and opcode.

19.6 Dividing an Iterable into n Slices of Stride n
Credit: Gyro Funch, Alex Martelli

Problem
You have an iterable p and need to get the n non-overlapping extended slices of stride
n, which, if the iterable was a sequence supporting extended slicing, would be p[0::

n], p[1::n], and so on up to p[n-1::n].

Solution
While extended slicing would return sequences of the same type we start with, it’s
much more sensible to specify a strider function that, instead, solves this problem
by returning a list of lists:

def strider(p, n):
 """ Split an iterable p into a list of n sublists, repeatedly taking
 the next element of p and adding it to the next sublist. Example:
 >>> strider('abcde', 3)
 [['a', 'd'], ['b', 'e'], ['c']]
 In other words, strider's result is equal to:
 [list(p[i::n]) for i in xrange(n)]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.6 Dividing an Iterable into n Slices of Stride n | 703

 if iterable p is a sequence supporting extended-slicing syntax.
 """
 # First, prepare the result, a list of n separate lists
 result = [[] for x in xrange(n)]
 # Loop over the input, appending each item to one of
 # result's lists, in "round robin" fashion
 for i, item in enumerate(p):
 result[i % n].append(item)
 return result

Discussion
The function in this recipe takes an iterable p and pulls it apart into a user-defined
number n of pieces (specifically, function strider returns a list of sublists), distribut-
ing p’s items into what would be the n extended slices of stride n if p were a sequence.

If we were willing to sacrifice generality, forcing argument p to be a sequence sup-
porting extended slicing, rather than a generic iterable, we could use a very different
approach, as the docstring of strider indicates:

def strider1(p, n):
 return [list(p[i::n]) for i in xrange(n)]

Depending on our exact needs, with such a strong constraint on p, we might omit the
list call to make each subsequence into a list, and/or code a generator to avoid con-
suming extra memory to materialize the whole list of results at once:

def strider2(p, n):
 for i in xrange(n):
 yield p[i::n]

or, equivalently:

import itertools
def strider3(p, n):
 return itertools.imap(lambda i: p[i::n], xrange(n))

or, in Python 2.4, with a generator expression:

def strider4(p, n):
 return (p[i::n] for i in xrange(n))

However, none of these alternatives accepts a generic iterable as p—each demands a
full-fledged sequence.

Back to this recipe’s exact specs, the best way to enhance the recipe is to recode it to
avoid low-level fiddling with indices. While doing arithmetic on indices is conceptu-
ally quite simple, it can get messy and indeed is notoriously error prone. We can do
better by a generous application of module itertools from the Python Standard
Library:

import itertools
def strider5(p, n):
 result = [[] for x in itertools.repeat(0, n)]
 resiter = itertools.cycle(result)
 for item, sublist in itertools.izip(p, resiter):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 19: Iterators and Generators

 sublist.append(item)
 return result

This strider5 version uses three functions from module itertools—all of the func-
tions in module itertools return iterable objects, and, as we see in this case, their
results are therefore typically used in for loops. Function repeat yields an object,
repeatedly, a given number of times, and here we use it instead of the built-in func-
tion xxrange to control the list comprehension that builds the initial value for result.
Function cycle takes an iterable object and returns an iterator that walks over that
iterable object repeatedly and cyclically—in other words, cycle performs exactly the
round-robin effect that we need in this recipe. Function izip is essentially like the
built-in function zip, except that it returns an iterator and thus avoids the memory-
consumption overhead that zip incurs by building its whole result list in memory at
once.

This version achieves deep elegance and conceptual simplicity (although you may
need to gain some familiarity with itertools before you agree that this version is
simple!) by foregoing all index arithmetic and leaving all of the handling of the
round-robin issues to itertools.cycle. resiter, per se, is a nonterminating iterator,
but the function deals effortlessly with that. Specifically, since we use resiter

together with p as arguments to izip, termination is assured (assuming, of course,
that p does terminate!) by the semantics of izip, which, just like built-in function
zip, stops iterating as soon as any one of its arguments is exhausted.

See Also
The itertools module is part of the Python Standard Library and is documented in
the Library Reference portion of Python’s online documentation; the Library Refer-
ence and Python in a Nutshell docs about the built-ins zip and xrange, and extended-
form slicing of sequences.

19.7 Looping on a Sequence by Overlapping
Windows

Credit: Peter Cogolo, Steven Bethard, Ian Bicking

Problem
You have an iterable s and need to make another iterable whose items are sublists
(i.e., sliding windows), each of the same given length, over s’ items, with successive
windows overlapping by a specified amount.

Solution
We can combine built-in function iter and function islice from the standard library
module itertools to code a generator to solve our problem:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.7 Looping on a Sequence by Overlapping Windows | 705

import itertools
def windows(iterable, length=2, overlap=0):
 it = iter(iterable)
 results = list(itertools.islice(it, length))
 while len(results) == length:
 yield results
 results = results[length-overlap:]
 results.extend(itertools.islice(it, length-overlap))
 if results:
 yield results
if __name__ == '__main__':
 seq = 'foobarbazer'
 for length in (3, 4):
 for overlap in (0, 1):
 print '%d %d: %s' % (length, overlap,
 map(''.join, windows(seq, length, overlap)))

This module, when run as a main script, emits:

3 0: ['foo', 'bar', 'baz', 'er']

3 1: ['foo', 'oba', 'arb', 'baz', 'zer', 'r']
4 0: ['foob', 'arba', 'zer']
4 1: ['foob', 'barb', 'baze', 'er']

When you know you don’t need any overlap, a fast and concise alternative is avail-
able:

def chop(iterable, length=2):
 return itertools.izip(*(iter(iterable),)*length)

The body of this concise alternative may be a bit confusing until you realize that the
two occurrences of the asterisk (*) there play different roles: the first one is part of a
*args syntax form (passing the elements of a sequence as separate positional
arguments), the second one indicates that a sequence (the Singleton tuple
(iter(iterable),) must be repeated length times.

Discussion
In many cases, we need a sequence of sub-sequences of a given length, and we have
to start with a “flat” iterable. For example, we can build a dictionary with given keys
and values by calling dict with a sequence of two-item sequences—but what if we
start with a “flat” sequence where keys and values just alternate? The function
windows in this recipe meets this need:

the_dict = dict(windows(flat_alternating_keys_and_values))

Or, say we have an iterable whose items are the amounts of sales on each day. To
turn it into an iterable whose items are the amounts of sales in each week (seven
days):

weekly_sales = itertools.imap(sum, windows(daily_sales, 7))

The two use cases just presented are examples of how windows can be useful when
called without overlap (in other words, with an overlap argument of 0, its default

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 19: Iterators and Generators

value), so the alternative chop function also presented in the recipe would be just as
good (and faster). However, overlap is often useful when you deal with iterables that
are signals, or time series. For example, if you have a function average such as:

def average(sequence):
 return sum(sequence)/float(len(sequence))

then you can apply a simple low-pass filter to a signal:

filtered = itertools.imap(average, windows(raw_signal, 5, 2))

or get the moving average daily sales from the iterable of daily sales:

mvavg_daily_sales = itertools.imap(average, windows(daily_sales, 7, 6))

The implementation of the windows generator in this recipe is quite straightforward, if
you’re familiar with itertools.islice (and you should be, if you deal with iter-
ables!). For the first “window”, we must clearly fill list results with the appropriate
number of items (islice does that for us). At each subsequent step, we must throw
away a certain number of items from the “front” of results (we do that conveniently
by list slicing, since results is, indeed, a list) and replenish the same number at the
back (we do that by calling the extend method of results, with islice providing the
needed “new” items). That number, as a little reasoning shows, is exactly that given
by the expression length-overlap. The loop terminates, if ever, only when results

cannot be entirely replenished. (The loop never executes if results cannot even be
filled entirely in the first place.)

When the loop terminates, we may be left with a “tail” in results, a “last window”
that is shorter than length. What to do in that case depends on your application’s
exact needs. The recipe, as given above, just yields the shorter window as the last
item of the generator, which is what we’d probably want in all of the previously men-
tioned use cases. In other cases, we might want to drop the last, too-short window
(just omit the last two statements in function windows as given in the recipe), raise an
exception (when we know that such a situation should never occur), or pad the last
window to the required length with a pad value such as None, by changing the last
two statements in function windows to something like:

 if result:
 result.extend(itertools.repeat(None, length-len(result)))
 yield result

One important implementation detail: function windows, as coded in the recipe,
yields a new list object at each step. It takes some time to generate all of these
objects. In some cases, it may be convenient to the caller to know that each object it
gets is a separate and independent list. Such knowledge enables the caller to store or
modify the objects it gets, without having to make explicit copies. However, none of
the use cases we discussed gets any benefit from this feature. So, you could optimize,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.7 Looping on a Sequence by Overlapping Windows | 707

by yielding the same list object every time. If you want that optimization, just change
the statement:

 results = results[length-overlap:]

into:

 del results[:length-overlap]

If you’re applying this optimization, and you’re using Python 2.4, you should also
consider using the new type collections.deque instead of list. In order to do so, you
need to add the statement:

import collections

at the start of your code, change the only occurrence of list in the recipe into
collections.queue, and further change the updating of results to avoid slicing,
using, instead:

 for i in xrange(length-overlap): results.popleft()

If your windows are long, and if they overlap substantially, using deque instead of
list might give you better performance, since deque is optimized to support adding
and removing items at either end, while lists, being compact arrays in memory, are
inherently slow (specifically, O(n) for a list of length n) when you add or remove
items at the beginning.

When you want windows of some length n that overlap specifically by n-1 items,
function itertools.tee, new in Python 2.4, offers an elegant alternative approach.
Say that you want to look at each item of the iterable, with access to a few neighbor-
ing items and some padding at both ends, so that you get just as many windows as
there are items in the iterable. In Python 2.4, you could then code:

import itertools as IT
def windowed(iterable, pre=1, post=1, padding=None):
 # tee-off one iterator for each index in the window
 copies = IT.tee(iterable, pre + 1 + post)
 pre_copies, copy, post_copies = copies[:pre], copies[pre], copies[pre+1:]
 # iterators before the element have their start filled in with the
 # padding value. no need to slice off the ends, izip will do that.
 pre_copies = [IT.chain(IT.repeat(padding, pre - i), itr)
 for i, itr in enumerate(pre_copies)]
 # iterators after the element have their starts sliced off and their
 # end filled in with the padding value, endlessly repeated.
 post_copies = [IT.chain(IT.islice(itr, i + 1, None), IT.repeat(padding))
 for i, itr in enumerate(post_copies)]
 # zip the elements with their preceding and following elements
 return IT.izip(*(pre_copies + [copy] + post_copies))

For example:

>>> print list(windowed(xrange(4), 1, 2, 'x'))
[('x', 0, 1, 2), (0, 1, 2, 3), (1, 2, 3, 'x'), (2, 3, 'x', 'x')]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 19: Iterators and Generators

If you use Python 2.4 and want this flavor of “sliding windows” over the iterable,
with specified “padding” at both ends, you might prefer this windowed function to the
recipe’s windows generator.

See Also
Library Reference documentation on built-in iter and module itertools.

19.8 Looping Through Multiple Iterables
in Parallel

Credit: Andy McKay, Hamish Lawson, Corey Coughlin

Problem
You need to loop through every item of multiple iterables in parallel, meaning that
you first want to get a tuple with all of the first items of each iterable, next, a tuple
with all of the “second items”, and so forth.

Solution
Say you have two iterables (lists, in this case) such as:

a = ['a1', 'a2', 'a3']
b = ['b1', 'b2']

If you want to loop “in parallel” over them, the most general and effective approach
is:

import itertools
for x, y in itertools.izip(a, b):
 print x, y

This snippet outputs two lines:

a1 b1

a2 b2

Discussion
The most general and effective way to loop “in parallel” over multiple iterables is to
use function izip of standard library module itertools, as shown in the “Solution”.
The built-in function zip is an alternative that is almost as good:

for x, y in zip(a, b):
 print x, y

However, zip has one downside that can hurt your performance if you’re dealing
with long sequences: it builds the list of tuples in memory all at once (preparing and
returning a list), while you need only one tuple at a time for pure looping purposes.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.8 Looping Through Multiple Iterables in Parallel | 709

Both zip and itertools.izip, when you iterate in parallel over iterables of different
lengths, stop as soon as the “shortest” such iterable is exhausted. This approach to
termination is normally what you want. For example, it lets you have one or more
non-terminating iterable in the zipping, as long as at least one of the iterables does
terminate—or (in the case of izip, only) as long as you use some control structure,
such as a conditional break within a for statement, to ensure you always require a
finite number of items and do not loop endlessly.

In some cases, when iterating in parallel over iterables of different lengths, you may
want shorter iterables to be conceptually “padded” with None up to the length of the
longest iterable in the zipping. For this special need, you can use the built-in func-
tion map with a first argument of None:

for x, y in map(None, a, b):
 print x, y

map, like zip, builds and returns a whole list. If that is a problem, you can reproduce
map’s pad with None’s behavior by coding your own generator. Coding your own gen-
erator is also a good approach when you need to pad shorter iterables with some
value that is different from None.

If you need to deal only with specifically two sequences, your iterator’s code can be
quite straightforward and linear:

import itertools
def par_two(a, b, padding_item=None):
 a, b = iter(a), iter(b)
 # first, deal with both iterables via izip until one is exhausted:
 for x in itertools.izip(a, b):
 yield x
 # only one of the following two loops, at most, will execute, since
 # either a or b (or both!) are exhausted at this point:
 for x in a:
 yield x, padding_item
 for x in b:
 yield padding_item, x

Alternatively, you can code a more general function, one that is able to deal with any
number of sequences:

import itertools
def par_loop(padding_item, *sequences):
 iterators = map(iter, sequences)
 num_remaining = len(iterators)
 result = [padding_item] * num_remaining
 while num_remaining:
 for i, it in enumerate(iterators):
 try:
 result[i] = it.next()
 except StopIteration:
 iterators[i] = itertools.repeat(padding_item)
 num_remaining -= 1

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 19: Iterators and Generators

 result[i] = padding_item
 if num_remaining:
 yield tuple(result)

Here’s an example of use for generator par_loop:

print map(''.join, par_loop('x', 'foo', 'zapper', 'ui'))
emits: ['fzu', 'oai', 'opx', 'xpx', 'xex', 'zrx']

Both par_two and par_loop start by calling the built-in function iter on all of their
arguments and thereafter use the resulting iterators. This is important, because the
functions rely on the state that these iterators maintain. The key idea in par_loop is to
keep count of the number of iterators as yet unexhausted, and replace each
exhausted iterator with a nonterminating iterator that yields the padding_item cease-
lessly; num_remaining counts unexhausted iterators, and both the yield statement and
the continuation of the while loop are conditional on some iterators being as yet
unexhausted.

Alternatively, if you know in advance which iterable is the longest one, you can wrap
every other iterable x as itertools.chain(iter(x), itertools.repeat(padding)) and
then call itertools.izip. You can’t do this wrapping on all iterables because the
resulting iterators are nonterminating—if you izip iterators that are all nonterminat-
ing, izip itself cannot terminate! Here, for example, is a version that works as
intended only when the longest (but terminating!) iterable is the very first one:

import itertools
def par_longest_first(padding_item, *sequences):
 iterators = map(iter, sequences)
 for i, it in enumerate(iterators):
 if not i: continue
 iterators[i] = itertools.chain(it, itertools.repeat(padding_item))
 return itertools.izip(iterators)

See Also
The itertools module is part of the Python Standard Library and is documented in
the Library Reference portion of Python’s online documentation; the Library Refer-
ence and Python in a Nutshell docs about built-ins zip, iter, and map.

19.9 Looping Through the Cross-Product of
Multiple Iterables

Credit: Attila Vàsàrhelyi, Raymond Hettinger, Steven Taschuk

Problem
You need to loop through every item of multiple iterables cross-productwise, mean-
ing that you first want to get the first item of the first iterable paired with all the oth-
ers, next, the second item of the first iterable paired with all the others, and so forth.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.9 Looping Through the Cross-Product of Multiple Iterables | 711

Solution
Say you have two iterables (lists, in this case) such as:

a = ['a1', 'a2', 'a3']
b = ['b1', 'b2']

If you want to loop over their cross-product, the simplest approach is often just a
couple of nested for loops:

for x in a:
 for y in b:
 print x, y

This snippet’s output is six lines:

a1 b1

a1 b2

a2 b1

a2 b2

a3 b1

a3 b2

However, in many cases, you’d rather get all items in the “cross-product” of multi-
ple iterables as a single, linear sequence, suitable for using in a single for or for pass-
ing onwards to other sequence manipulation functions, such as those supplied by
itertools. For such needs, you may put the nested fors in a list comprehension:

for x, y in [(x,y) for x in a for y in b]:
 print x, y

Discussion
A list comprehension lets you easily generate (as a single, linear sequence) all the
pairings of several iterables (also known as the cross-product, product set, or Carte-
sian product of these iterables). However, the number of items in such a cross-prod-
uct is the arithmetic product (multiplication) of the lengths of all the iterables
involved, a number that may easily get quite large. A list comprehension, by defini-
tion, builds the entire list at once, which means that it may consume substantial
amounts of memory. Also, you get to start iterating only when the whole cross-prod-
uct list is entirely built.

Python 2.4 offers one obvious way to solve this problem: the newly introduced con-
struct of generator expressions:

for x, y in ((x,y) for x in a for y in b): print x, y

A generator expression looks just like a list comprehension, except that it uses paren-
theses rather than brackets: it returns an iterator, suitable for looping on, rather than
building and returning a list. Thus, a generator expression can save substantial
amounts of memory, if you are iterating over a very long sequence. Also, you start
executing the loop’s body very soon, since each successive element gets generated
iteratively, before each iteration of the loop’s body. If your loop’s body contains
conditional breaks, so that execution terminates as soon as some conditions are met,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 19: Iterators and Generators

using a generator expression rather than a list comprehension can mean a poten-
tially substantial improvement in performance.

If you need to support Python 2.3, and yet you want to achieve the kind of advan-
tages that generator expressions can afford over list comprehensions, the best
approach may be to code your own generator. This is quite simple if you only need
to deal with a known number of sequences, such as two:

def cross_two(a, b):
 for x in a:
 for y in b:
 yield a, b

Dealing with an arbitrary number of sequences is a bit more complicated, but not
terribly so, particularly if we use recursion to help:

def cross_loop(*sequences):
 if sequences:
 for x in sequences[0]:
 for y in cross_loop(sequences[1:]):
 yield (x,) + y
 else:
 yield ()

We can also do it without recursion. It’s not hard if we’re willing to build the entire
result list in memory at once before returning it, just as a list comprehension would:

def cross_list(*sequences):
 result = [[]]
 for seq in sequences:
 result = [sublist+[item] for sublist in result for item in seq]
 return result

Alternatively, you can return map(tuple, result) if you need to ensure that each
item of the sequence you return is a tuple, not a list.

Recursion-free iterative (incremental) generation of the “cross-product” sequence is
also feasible, even though it’s nowhere as simple as either the recursive or the nonin-
cremental versions:

def cross(*sequences):
 # visualize an odometer, with "wheels" displaying "digits"...:
 wheels = map(iter, sequences)
 digits = [it.next() for it in wheels]
 while True:
 yield tuple(digits)
 for i in range(len(digits)-1, -1, -1):
 try:
 digits[i] = wheels[i].next()
 break
 except StopIteration:
 wheels[i] = iter(sequences[i])
 digits[i] = wheels[i].next()
 else:
 break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.10 Reading a Text File by Paragraphs | 713

In Python 2.4, you might express the for statement more clearly as for i in

reversed(range(len(digits))).

To repeat, it is important to remember that all of these solutions should be consid-
ered only if you do have the problem—that is, if and only if you do need to view all
items in the “cross-product” of multiple iterables as a single, linear sequence. Many
cases have no such requirement, and simply coding multiple nested for loops inline
is quite acceptable, simpler, and more readable. In many cases, getting all items in
the “cross-product” as a single sequence is preferable, so it’s worth knowing how to
do that. However, do keep in mind that simplicity is an important virtue, and do not
lose sight of it in pursuit of a cool (but complicated) solution. All the cool tools, con-
structs, and library modules that Python offers exist strictly to serve you, to let you
build and maintain your applications with minimal effort. Don’t go out of your way
to use the new shiny tools if you can solve your application’s problems with less
effort in simpler ways!

See Also
The Library Reference and Python in a Nutshell docs about built-ins iter, enumerate,
map, and (Python 2.4 only) reversed; the Language Reference and Python in a Nut-
shell docs about list comprehensions and (Python 2.4 only) generator expressions.

19.10 Reading a Text File by Paragraphs
Credit: Alex Martelli, Magnus Lie Hetland, Terry Reedy

Problem
You need to read a text file (or any other iterable whose items are lines of text) para-
graph by paragraph, where a “paragraph” is defined as a sequence of nonwhite lines
(i.e., paragraphs are separated by lines made up exclusively of whitespace).

Solution
A generator is quite suitable for bunching up lines this way:

def paragraphs(lines, is_separator=str.isspace, joiner=''.join):
 paragraph = []
 for line in lines:
 if is_separator(line):
 if paragraph:
 yield joiner(paragraph)
 paragraph = []
 else:
 paragraph.append(line)
 if paragraph:
 yield joiner(paragraph)
if __name__ == '__main__':

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 19: Iterators and Generators

 text = 'a first\nparagraph\n\nand a\nsecond one\n\n'
 for p in paragraphs(text.splitlines(True)): print repr(p)

Discussion
Python doesn’t directly support paragraph-oriented file reading, but it’s not hard to
add such functionality. We define a “paragraph” as the string formed by joining a
nonempty sequence of nonseparator lines, separated from any adjoining paragraphs
by nonempty sequences of separator lines. A separator line is one that satisfies the
predicate passed in as argument is_separator. (A predicate is a function whose result
is taken as a logical truth value, and we say a predicate is satisfied when the predicate
returns a result that is true.) By default, a line is a separator if it is made up entirely of
whitespace characters (e.g., space, tab, newline, etc.).

The recipe’s code is quite straightforward. The state of the generator during itera-
tion is entirely held in local variable paragraph, a list to which we append the nonsep-
arator lines that make up the current paragraph. Whenever we meet a separator in
the body of the for statement, we test if paragraph to check whether the list is cur-
rently empty. If the list is empty, we’re already skipping a run of separators and need
do nothing special to handle the current separator line. If the list is not empty, we’ve
just met a separator line that terminates the current paragraph, so we must join up
the list, yield the resulting paragraph string, and then set the list back to empty.

This recipe implements a special case of sequence adaptation by bunching: an under-
lying iterable is “bunched up” into another iterable with “bigger” items. Python’s
generators let you express sequence adaptation tasks very directly and linearly. By
passing as arguments, with reasonable default values, the is_separator predicate,
and the joiner callable that determines what happens to each “bigger item” when
we’re done bunching it up, we achieve a satisfactory amount of generality without
any extra complexity. To see this, consider a snippet such as:

import operator
numbers = [1, 2, 3, 0, 0, 6, 5, 3, 0, 12]
bunch_up = paragraphs
for s in bunch_up(numbers, operator.not_, sum): print 'S', s
for l in bunch_up(numbers, bool, len): print 'L', l

In this snippet, we use the paragraphs generator (under the name of bunch_up, which
is clearer in this context) to get the sums of “runs” of nonzero numbers separated by
runs of zeros, then the lengths of the runs of zeros—applications that, at first sight,
might appear to be quite different from the recipe’s stated purpose. That’s the magic
of abstraction: when appropriately and tastefully applied, it can easily turn the solu-
tion of a problem into a family of solutions for many other apparently unrelated
problems.

An elementary issue, but a crucial one for getting good performance in the “main”
use case of this recipe, is that the paragraphs’ generator builds up each resulting para-
graph as a list of strings, then concatenates all strings in the list with ''.join to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.11 Reading Lines with Continuation Characters | 715

obtain each result it yields. An alternate approach, where a large string is built up as
a string, by repeated application of += or +, is never the right approach in Python: it is
both slow and clumsy. Good Pythonic style absolutely demands that we use a list as
the intermediate accumulator, whenever we are building a long string by concatenat-
ing a number of smaller ones. Python 2.4 has diminished the performance penalty of
the wrong approach. For example, to join a list of 52 one-character strings into a 52-
character string on my machine, Python 2.3 takes 14.2 microseconds with the right
approach, 73.6 with the wrong one; but Python 2.4 takes 12.7 microseconds with
the right approach, 41.6 with the wrong one, so the penalty in this case has
decreased from over five times to over three. Nevertheless, there is no reason to
choose to pay such a performance penalty without any returns, even the lower pen-
alty that Python 2.4 manages to extract!

Python 2.4 offers a new itertools.groupby function that is quite suitable for
sequence-bunching tasks. Using it, we could express the paragraphs’ generator in a
really tight and concise way:

from itertools import groupby
def paragraphs(lines, is_separator=str.isspace, joiner=''.join):
 for separator_group, lineiter in groupby(lines, key=is_separator):
 if not separator_group:
 yield joiner(lineiter)

itertools.groupby, like SQL’s GROUP BY clause, which inspired it, is not exactly triv-
ial use, but it can be quite useful indeed for sequence-bunching tasks once you have
mastered it thoroughly.

See Also
Recipe 19.11 “Reading Lines with Continuation Characters”; Chapter 1 for general
issues about handling text; Chapter 2 for general issues about handling files; recipe
19.21 “Computing a Summary Report with itertools.groupby”; Library Reference
documentation on Python 2.4’s itertools.groupby.

19.11 Reading Lines with Continuation
Characters

Credit: Alex Martelli

Problem
You have a file that includes long logical lines split over two or more physical lines,
with backslashes to indicate that a continuation line follows. You want to process a
sequence of logical lines, “rejoining” those split lines.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 19: Iterators and Generators

Solution
As usual, our first idea for a problem involving sequences should be a generator:

def logical_lines(physical_lines, joiner=''.join):
 logical_line = []
 for line in physical_lines:
 stripped = line.rstrip()
 if stripped.endswith('\\'):
 # a line which continues w/the next physical line
 logical_line.append(stripped[:-1])
 else:
 # a line which does not continue, end of logical line
 logical_line.append(line)
 yield joiner(logical_line)
 logical_line = []
 if logical_line:
 # end of sequence implies end of last logical line
 yield joiner(logical_line)
if __name__=='__main__':
 text = 'some\\\n', 'lines\\\n', 'get\n', 'joined\\\n', 'up\n'
 for line in text:
 print 'P:', repr(line)
 for line in logical_lines(text, ' '.join):
 print 'L:', repr(line)

When run as a main script, this code emits:

<c>P: 'some\\\n'
P: 'lines\\\n'
P: 'get\n'
P: 'joined\\\n'
P: 'up\n'
L: 'some lines get\n'
L: 'joined up\n'</c>

Discussion
This problem is about sequence-bunching, just like the previous recipe 19.10 “Read-
ing a Text File by Paragraphs.” It is therefore not surprising that this recipe, like the
previous, is a generator (with an internal structure quite similar to the one in the
“other” recipe): today, in Python, sequences are often processed most simply and
effectively by means of generators.

In this recipe, the generator can encompass just a small amount of generality with-
out introducing extra complexity. Determining whether a line is a continuation line,
and of how to proceed when it is, is slightly too idiosyncratic to generalize in a sim-
ple and transparent way. I have therefore chosen to code that functionality inline, in
the body of the logical_lines generator, rather than “factoring it out” into separate
callables. Remember, generality is good, but simplicity is even more important.
However, I have kept the simple and transparent generality obtained by passing
the joiner function as an argument, and the snippet of code under the if __name__

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.12 Iterating on a Stream of Data Blocks as a Stream of Lines | 717

= ='__main__' test demonstrates how we may want to use that generality, for exam-
ple, to join continuation lines with a space rather than with an empty string.

If you are certain that the file you’re processing is sufficiently small to fit comfort-
ably in your computer’s memory, with room to spare for processing, and you don’t
need the feature (offered in the version of logical_lines shown in the “Solution”) of
ignoring whitespace to the right of a terminating \\, a solution using a plain function
rather than a generator is simpler than the one shown in this recipe’s Solution:

def logical_lines(physical_lines, joiner=''.join, separator=''):
 return joiner(physical_lines).replace('\\\n', separator).splitlines(True)

In this variant, we join all of the physical lines into one long string, then we replace
the “canceled” line ends (line ends immediately preceded by a backslash) with noth-
ing (or any other separator we’re requested to use), and finally split the resulting long
string back into lines (keeping the line ends—that’s what the True argument to
method splitlines is for). This approach is a very different one from that suggested
in this recipe but possibly worthwhile, if physical_lines is small enough that you can
afford the memory for it. I prefer the “Solution”’s approach because giving semantic
significance to trailing whitespace is a poor user interface design choice.

See Also
Recipe 19.10 “Reading a Text File by Paragraphs”; Perl Cookbook recipe 8.1;
Chapter 1 for general issues about handling text; Chapter 2 for general issues about
handling files.

19.12 Iterating on a Stream of Data Blocks as a
Stream of Lines

Credit: Scott David Daniels, Peter Cogolo

Problem
You want to loop over all lines of a stream, but the stream arrives as a sequence of
data blocks of arbitrary size (e.g., from a network socket).

Solution
We need to code a generator that gets blocks and yields lines:

def ilines(source_iterable, eol='\r\n', out_eol='\n'):
 tail = ''
 for block in source_iterable:
 pieces = (tail+block).split(eol)
 tail = pieces.pop()
 for line in pieces:
 yield line + out_eol
 if tail:
 yield tail

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 19: Iterators and Generators

if __name__ == '__main__':
 s = 'one\r\ntwo\r,\nthree,four,five\r\n,six,\r\nseven\r\nlast'.split(',')
 for line in ilines(s): print repr(line)

When run as a main script, this code emits:

'one\n'

'two\n'
'threefourfive\n'
'six\n'
'seven\n'
'last'

Discussion
Many data sources produce their data in fits and starts—sockets, RSS feeds, the
results of expanding compressed text, and (at its heart) most I/O. The data often
doesn’t arrive at convenient boundaries, but you nevertheless want to consume it in
logical units. For text, the logical units are often lines.

This recipe shows generator ilines, a simple way to consume a source_iterable,
which yields blocks of data, producing an iterator that yields lines of text instead.
ilines is vastly simplified by assuming that lines are separated, on input, by a known
end-of-line (EOL) string—by default '\r\n', which is the standard EOL marker in
most Internet protocols. ilines’ implementation is further simplified by taking a
high-level approach, relying on the split method of Python’s string types to do most
of the work. This basically leaves ilines with the single task of “buffering” data
between successive input blocks, on all occasions when a line starts in one block and
ends in a following one (including those occasions in which block boundaries “split”
an EOL marker).

ilines easily accomplishes its buffering task through its local variable tail, which
starts empty and, at each leg of the loop, holds that which followed the latest EOL
marker seen so far. When tail+block ends with an EOL marker, the expression
(tail+block).split(eol) produces a list whose last item is an empty string (''),
exactly what we need; otherwise, the last item of the list is that which followed the
last EOL, which again is exactly what we need.

Python’s built-in file objects are even more powerful than ilines, since they sup-
port a universal newlines reading mode (mode 'U'), which is able to recognize and
deal with all common EOL markers (even when different markers are mixed within
the same stream!). However, ilines is more flexible, since you may apply it in many
situations where you have a stream of arbitrary blocks of text and want to process it
as a stream of lines, with a known EOL marker.

See Also
Library Reference and Python in a Nutshell docs about built-in file objects;
Chapter 2 for general issues about handling files.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.13 Fetching Large Record Sets from a Database with a Generator | 719

19.13 Fetching Large Record Sets from a
Database with a Generator

Credit: Christopher Prinos

Problem
You want to fetch a result set from a database (using the Python DB API) and easily
iterate over each record in the result set. However, you don’t want to use the DB cur-
sor’s method fetchall: it could consume a lot of memory and would force you to
wait until the whole result set comes back before you can start iterating.

Solution
A generator is the ideal solution to this problem:

def fetchsome(cursor, arraysize=1000):
 ''' A generator that simplifies the use of fetchmany '''
 while True:
 results = cursor.fetchmany(arraysize)
 if not results: break
 for result in results:
 yield result

Discussion
In applications that use the Python DB API, you often see code that goes somewhat
like (where cursor is a DB API cursor object):

cursor.execute('select * from HUGE_TABLE')
for result in cursor.fetchall():
 doSomethingWith(result)

This simple approach is “just” fine, as long as fetchall returns a small result set, but
it does not work very well if the query result is very large. A large result set can take a
long time to return. Also, cursor.fetchall() needs to allocate enough memory to
store the entire result set in memory at once. Further, with this simple approach, the
doSomethingWith function isn’t going to get called until the entire query’s result fin-
ishes coming over from the database to our program.

An alternative approach is to rely on the cursor.fetchone method:

for result in iter(cursor.fetchone, None):
 doSomethingWith(result)

However, this alternative approach does not allow the database to optimize the
fetching process: most databases can exhibit better efficiency when returning multi-
ple records for a single query, rather than returning records one at a time as fetchone

requires.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 19: Iterators and Generators

To let your applications obtain greater efficiency than fetchone allows, without the
risks of unbounded memory consumption and delay connected to the use of
fetchall, Python’s DB API’s cursors also have a fetchmany method. However, the
direct use of fetchmany makes your iterations somewhat more complicated than the
simple for statements such as those just shown. For example:

while True:
 results = cursor.fetchmany(1000)
 if not results: break
 for result in results:
 doSomethingWith(result)

Python’s generators are a great way to encapsulate complicated iteration logic so that
application code can just about always loop with simple for statements. With this
recipe’s fetchsome generator, you get the same efficiencies and safeguards as with the
native use of the fetchmany method in the preceding snippet but with the same
crystal-clear simplicity as in the snippets that used either fetchall or fetchone,
namely:

for result in fetchsome(cursor):
 doSomethingWith(result)

By default, fetchsome fetches up to 1,000 records at a time, but you can change that
number, depending on your requirements. Optimal values can depend on schema,
database type, choice of Python DB API module. In general, you’re best advised to
experiment with a few different values in your specific settings if you need to opti-
mize this specific aspect. (Such experimentation is often a good idea for any optimi-
zation task.)

This recipe is clearly an example of a more general case: a subsequence unbuncher
generator that you can use when you have a sequence of subsequences (each subse-
quence being obtained through some call, and the end of the whole sequence being
indicated by an empty subsequence) and want to flatten it into a simple, linear
sequence of items. You can think of this unbunching task as the reverse of the
sequence-bunching tasks covered earlier in recipe 19.10 “Reading a Text File by
Paragraphs” and recipe 19.11 “Reading Lines with Continuation Characters,” or as a
simpler variant of the sequence-flattening task covered in recipe 4.6 “Flattening a
Nested Sequence.” A generator for unbunching might be:

def unbunch(next_subseq, *args):
 ''' un-bunch a sequence of subsequences into a linear sequence '''
 while True:
 subseq = next_subseq(*args)
 if not subseq: break
 for item in subseq:
 yield item

As you can see, the structure of unbunch is basically identical to that of the recipe’s
fetchsome. Usage would also be just about the same:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.14 Merging Sorted Sequences | 721

for result in unbunch(cursor.fetchmany, 1000):
 doSomethingWith(result)

However, while it is important and instructive to consider this kind of generaliza-
tion, when you’re writing applications you’re often better off using specific genera-
tors that directly deal with your application’s specific needs. In this case, for
example, calling fetchsome(cursor) is more obvious and direct than calling
unbunch(cursor.fetchmany, 1000), and fetchsome usefully hides the usage of
fetchmany as well as the specific choice of 1,000 as the subsequence size to fetch at
each step.

See Also
Recipe 19.10 “Reading a Text File by Paragraphs”; recipe 19.11 “Reading Lines with
Continuation Characters”; recipe 4.6 “Flattening a Nested Sequence”; Python’s DB
API is covered in Chapter 7 and in Python in a Nutshell.

19.14 Merging Sorted Sequences
Credit: Sébastien Keim, Raymond Hettinger, Danny Yoo

Problem
You have several sorted sequences (iterables) and need to iterate on the overall sorted
sequence that results from “merging” these sequences.

Solution
A generator is clearly the right tool for the job, in the general case (i.e., when you
might not have enough memory to comfortably hold all the sequences). Implement-
ing the generator is made easy by the standard library module heapq, which supplies
functions to implement the “heap” approach to priority queues:

import heapq
def merge(*subsequences):
 # prepare a priority queue whose items are pairs of the form
 # (current-value, iterator), one each per (non-empty) subsequence
 heap = []
 for subseq in subsequences:
 iterator = iter(subseq)
 for current_value in iterator:
 # subseq is not empty, therefore add this subseq's pair
 # (current-value, iterator) to the list
 heap.append((current_value, iterator))
 break
 # make the priority queue into a heap
 heapq.heapify(heap)
 while heap:
 # get and yield lowest current value (and corresponding iterator)
 current_value, iterator = heap[0]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 19: Iterators and Generators

 yield current_value
 for current_value in iterator:
 # subseq is not finished, therefore add this subseq's pair
 # (current-value, iterator) back into the priority queue
 heapq.heapreplace(heap, (current_value, iterator))
 break
 else:
 # subseq has been exhausted, therefore remove it from the queue
 heapq.heappop(heap)

Discussion
The need for “merging” sorted subsequences into a larger sorted sequence is reason-
ably frequent. If the amount of data is small enough to fit entirely in memory with-
out problems, then the best approach is to build a list by concatenating all
subsequences, then sort the list:

def smallmerge(*subsequences):
 result = []
 for subseq in subsequences: result.extend(subseq)
 result.sort()
 return result

The sort method of list objects is based on a sophisticated natural merge algorithm,
able to take advantage of existing sorted subsequences in the list you’re sorting;
therefore, this approach is quite fast, as well as simple (and general, since this
approach’s correctness does not depend on all subsequences being already sorted). If
you can choose this approach, it has many other advantages. For example,
smallmerge works fine even if one of the subsequences isn’t perfectly sorted to start
with; and in Python 2.4, you may add a generic keywords argument **kwds to
smallmerge and pass it right along to the result.sort() step, to achieve the flexibil-
ity afforded in that version by the cmp=, key=, and reverse= arguments to list’s sort

method.

However, you sometimes deal with large sequences, which might not comfortably fit
in memory all at the same time (e.g., your sequences might come from files on disk,
or be computed on the fly, item by item, by other generators). When this happens,
this recipe’s generator will enable you to perform your sequence merging while con-
suming a very moderate amount of extra memory (dependent only on the number of
subsequences, not on the number of items in the subsequences).

The recipe’s implementation uses a classic sequence-merging algorithm based on a
priority queue, which, in turn, lets it take advantage of the useful heapq module in
the Python Standard Library. heapq offers functions to implement a priority queue
through the data structure known as a heap.

A heap is any list H such that, for any valid index 0<=i<len(H), H[i]<=H[2*i+1], and
H[i]<=H[2*i+2] (if 2*i+1 and 2*i+2 are also valid indices into H). This heap property is
fast to establish on an arbitrary list (function heapify does that) and very fast to
re-establish after altering or removing the smallest item (and functions heapreplace

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.14 Merging Sorted Sequences | 723

and heappop do that). The smallest item is always H[0] (it’s easy to see that the “heap”
property implies this), and being able to find the smallest item instantly makes heaps
an excellent implementation of priority queues.

In this recipe, we use as items in the “heap” a “pair” (i.e., two-items tuple) for each
subsequence that is not yet exhausted (i.e., each subsequence through which we
have not yet fully iterated). As its first item, each pair has the “current item” in the
corresponding subsequence and, as its second item, an iterator over that subse-
quence. At each iteration step, we yield the smallest “current item”, then we advance
the corresponding iterator and re-establish the “heap” property; when an iterator is
exhausted, we remove the corresponding pair from the “heap” (so that, clearly, we’re
finished when the “heap” is emptied). Note the idiom that we use to advance an iter-
ator by one step, dealing with the possibility that the iterator is exhausted:

for current_value in iterator:
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

...use pair (current_value, iterator)...

 # we break at once as we only wanted the first item of iterator
 break
else:
 # if we get here the break did not execute, so the iterator
 # was empty (exhausted)

deal with the case of iterator being exhausted...

We use this idiom twice in the recipe, although in the first of the two uses we do not
need the else clause since we can simply ignore iterators that are immediately
exhausted (they correspond to empty subsequences, which can be ignored for merg-
ing purposes).

If you find this idiom confusing or tricky (because it uses a for statement whose body
immediately breaks—i.e., a statement that looks like a loop but is not really a loop
because it never executes more than once!), you may prefer a different approach:

try:
 current_value = iterator.next()
except StopIteration:
 # if we get here the iterator was empty (exhausted)
 # deal with the case of iterator being exhausted...

else:
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

use pair (current_value, iterator)...

I slightly prefer the idiom using for; in my view, it gains in clarity by putting the nor-
mal case (i.e., an unexhausted iterator) first and the rare case (an exhausted iterator)
later. A variant of the try/except idiom that has the same property is:

try:
 current_value = iterator.next()
 # if we get here the iterator was not empty, current_value was
 # its first value, and the iterator has been advanced one step

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 19: Iterators and Generators

use pair (current_value, iterator)...

except StopIteration:
 # if we get here the iterator was empty (exhausted)

deal with the case of iterator being exhausted...

However, I somewhat dislike this variant (even though it’s quite OK for the two spe-
cific uses of this recipe) because it crucially depends on the code indicated as “use
pair” never raising a StopIteration exception. As a general principle, it’s best to use
a try clause’s body that is as small as possible—just the smallest fragment that you
do expect to possibly raise the exception you’re catching in the following handlers
(except clauses), not the follow-on code that must execute only if the exception was
not raised. The follow-on code goes in the else clause of the try statement, in prop-
erly defensive Pythonic coding style. In any case, as long as you are fully aware of the
tradeoffs in clarity and defensiveness between these three roughly equivalent idioms,
you’re welcome to develop your own distinctive Pythonic style and, in particular, to
choose freely among them!

If you do choose either of the idioms that explicitly call iterator.next(), a further
“refinement” (i.e., a tiny optimization) is to keep as the second item of each pair,
rather than the iterator object, the bound-method iterator.next directly, ready for
you to call. This optimization is not really tricky at all (it is quite common in Python
to stash away bound methods and other such callables), but it may nevertheless
result in code of somewhat lower readability. Once again, the choice is up to you!

See Also
Chapter 5 for general issues about sorting and recipe 5.7 “Keeping a Sequence
Ordered as Items Are Added” and recipe 5.8 “Getting the First Few Smallest Items
of a Sequence” about heapq specifically; Library Reference and Python in a Nutshell
documentation on module heapq and lists’ sort method; Robert Sedgewick, Algo-
rithms (Addison-Wesley) (heaps are covered starting on p. 178 in the 2d edition);
heapq.py in the Python sources contains an interesting discussion of heaps.

19.15 Generating Permutations, Combinations,
and Selections

Credit: Ulrich Hoffmann, Guy Argo, Danny Yoo, Carl Bray, Doug Zongker, Gagan
Saksena, Robin Houston, Michael Davies

Problem
You need to iterate on the permutations, combinations, or selections of a sequence.
The fundamental rules of combinatorial arithmetic indicate that the length of these
derived sequences are very large even if the starting sequence is of moderate size: for
example, there are over 6 billion permutations of a sequence of length 13. So you
definitely do not want to compute (and keep in memory) all items in a derived
sequence before you start iterating,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.15 Generating Permutations, Combinations, and Selections | 725

Solution
Generators enable you to compute needed objects one by one as you iterate on them.
The loop inevitably takes a long time if there are vast numbers of such objects and
you really need to examine each one. But at least you do not waste memory storing
all of them at once:

def _combinators(_handle, items, n):
 ''' factored-out common structure of all following combinators '''
 if n==0:
 yield []
 return
 for i, item in enumerate(items):
 this_one = [item]
 for cc in _combinators(_handle, _handle(items, i), n-1):
 yield this_one + cc
def combinations(items, n):
 ''' take n distinct items, order matters '''
 def skipIthItem(items, i):
 return items[:i] + items[i+1:]
 return _combinators(skipIthItem, items, n)
def uniqueCombinations(items, n):
 ''' take n distinct items, order is irrelevant '''
 def afterIthItem(items, i):
 return items[i+1:]
 return _combinators(afterIthItem, items, n)
def selections(items, n):
 ''' take n (not necessarily distinct) items, order matters '''
 def keepAllItems(items, i):
 return items
 return _combinators(keepAllItems, items, n)
def permutations(items):
 ''' take all items, order matters '''
 return combinations(items, len(items))
if __name__=="__main__":
 print "Permutations of 'bar'"
 print map(''.join, permutations('bar'))
emits ['bar', 'bra', 'abr', 'arb', 'rba', 'rab']
 print "Combinations of 2 letters from 'bar'"
 print map(''.join, combinations('bar', 2))
emits ['ba', 'br', 'ab', 'ar', 'rb', 'ra']
 print "Unique Combinations of 2 letters from 'bar'"
 print map(''.join, uniqueCombinations('bar', 2))
emits ['ba', 'br', 'ar']
 print "Selections of 2 letters from 'bar'"
 print map(''.join, selections('bar', 2))
emits ['bb', 'ba', 'br', 'ab', 'aa', 'ar', 'rb', 'ra', 'rr']

Discussion
The generators in this recipe accept any sequence as the items argument and always
yield lists of length n, where n is the second argument to the generator (permutations
accepts only one argument, and n is by definition equal to len(items)).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 19: Iterators and Generators

You can modify the recipe so the generators yield tuples (or instances of another
sequence type), instead of lists, by changing two lines of code in _combinators. The
yield [] must become yield () (more generally, this statement must yield the empty
sequence of any sequence type you wish to use), and name this_one must be bound
to the Singleton sequence of any sequence type you wish to use. For example, to
yield tuples, change the statement that assigns to name this_one into:

 this_one = items[i],

(A subtle, often-forgotten point of Python syntax is that the comma identifies the
right side of the assignment as a tuple. Placing parentheses around the right-hand
side would be both insufficient and superfluous.)

Another way to modify this recipe is to have the generators yield sequences of the
same type as argument items. (As long as this type is indeed a sequence: specifically,
it must support slicing, as well as the use of the plus sign, +, for concatenation). If
that is what you want, change the yield of the empty sequence into:

 yield items[:0]

and change the assignment to name this_one into:

 this_one = items[i:i+1]

The definition of distinct items for this recipe’s purposes is: “items that occur at dif-
ferent indices in the input sequence.” If your input sequence has duplicates (i.e., the
same item occurring at multiple indices), none of the functions in this recipe will care
about removing them: rather, all functions will treat the duplicates as “distinct
items” for all purposes.

See Also
Recipe 19.16 “Generating the Partitions of an Integer” for another combinatorics
building block; recipe 18.1 “Removing Duplicates from a Sequence” and recipe 18.2
“Removing Duplicates from a Sequence While Maintaining Sequence Order.”

19.16 Generating the Partitions of an Integer
Credit: David Eppstein, Jan Van lent, George Yoshida

Problem
You want to generate all partitions of a given positive integer, that is, all the ways in
which that integer can be represented as a sum of positive integers (for example, the
partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, and 4).

Solution
A recursive generator offers the simplest approach for this task, as is often the case
with combinatorial computations:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.16 Generating the Partitions of an Integer | 727

def partitions(n):
 # base case of the recursion: zero is the sum of the empty tuple
 if n == 0:
 yield ()
 return
 # modify the partitions of n-1 to form the partitions of n
 for p in partitions(n-1):
 yield (1,) + p
 if p and (len(p) < 2 or p[1] > p[0]):
 yield (p[0] + 1,) + p[1:]

Discussion
Partitions, like permutations, combinations and selections, are among the most basic
primitives of combinatorial arithmetic. In other words, such constructs, besides
being useful on their own, are building blocks for generating other kinds of combina-
torial objects.

This recipe works along classic recursive lines. If you have a partition of a positive
integer n, you can reduce it to a partition of n-1 in a canonical way by subtracting
one from the smallest item in the partition. For example, you can build partitions of
5 from partitions of 6 by such transformation steps as 1+2+3 => 2+3, 2+4 => 1+4, and
so forth. The algorithm in this recipe reverses the process: for each partition p of n-1,
the algorithm finds the partitions of n that would be reduced to p by this canonical
transformation step. Therefore, each partition p of n is output exactly once, at the
step when we are considering the partition p1 of n-1 to which p canonically reduces.

Be warned: the number of partitions of n grows fast when n itself grows. Ramanu-
jan’s upper bound for the number of partitions of a positive integer k is:

 int(exp(pi*sqrt(2.0*k/3.0))/(4.0*k*sqrt(3.0)))

(where names exp, pi and sqrt are all taken from module math, in Python terms). For
example, the number 200 has about 4,100 billion partitions.

This recipe generates each partition as a tuple of integers in ascending order. If it’s
handier for your application to deal with partitions as tuples of integers in descend-
ing order, you need only change the body of the for loop in the recipe to:

 yield p + (1,)
 if p and (len(p) < 2 or p[-2] > p[-1]):
 yield p[:-1] + (p[-1] + 1,)

Creating a new tuple per item in the output stream, as this recipe does, may result in
performance issues, if you’re dealing with a very large n. One way to optimize this
aspect would be to return lists instead of tuples, and specifically to return the same
list object at each step (with the descending-order modification, and append and pop

operations rather than list concatenation):

def partfast(n):
 # base case of the recursion: zero is the sum of the empty tuple
 if n == 0:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 19: Iterators and Generators

 yield []
 return
 # modify the partitions of n-1 to form the partitions of n
 for p in partfast(n-1):
 p.append(1)
 yield p
 p.pop()
 if p and (len(p) < 2 or p[-2] > p[-1]):
 p[-1] += 1
 yield p

This optimization is not worth the bother—not so much because of the modest extra
complication in partfast’s own code, but mostly because yielding the same list
object at each step means that code using partfast must take precautions. For exam-
ple, list(partfast(4)) is a potentially surprising list of five empty sublists, while
list(partitions(4)) is exactly the expected list of the five partitions of the number 4.

On the “other” hand, a different approach using an auxiliary parameter can actually
produce a simplification for the descending-order case:

def partitions_descending(num, lt=num):
 if not num: yield ()
 for i in xrange(min(num, lt), 0, -1):
 for parts in partitions_descending(num-i, i):
 yield (i,) + parts

This code is simpler than the variant given in the recipe and could be made even
clearer in Python 2.4 by changing its outer loop into:

 for i in reversed(xrange(1, min(num, lt)-1)):

See Also
Recipe 19.15 “Generating Permutations, Combinations, and Selections” for more
combinatorics building blocks.

19.17 Duplicating an Iterator
Credit: Heiko Wundram, Raymond Hettinger

Problem
You have an iterator (or other iterable) object x, and need to iterate twice over x’s
sequence of values.

Solution
In Python 2.4, solving this problem is the job of function tee in the standard library
module itertools:

import itertools
x1, x2 = itertools.tee(x)
you can now iterate on x1 and x2 separately

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.17 Duplicating an Iterator | 729

In Python 2.3, you can code tee yourself:

import itertools
def tee(iterable):
 def yield_with_cache(next, cache={ }):
 pop = cache.pop
 for i in itertools.count():
 try:
 yield pop(i)
 except KeyError:
 cache[i] = next()
 yield cache[i]
 it = iter(iterable)
 return yield_with_cache(it.next), yield_with_cache(it.next)

Discussion
The need to iterate repeatedly over the same sequence of values is a reasonably com-
mon one. If you know that the sequence comes from a list, or some other container
that intrinsically lets you iterate over its items repeatedly, then you simply perform
the iteration twice. However, sometimes your sequence may come from a generator,
a sequential file (which might, e.g., wrap a stream of data coming from a network
socket—data that you can read only once), or some other iterator that is not intrinsi-
cally re-iterable. Even then, in some cases, the best approach is the simplest one—
first save the data into a list in memory, then repeatedly iterate over that list:

saved_x = list(x)
for item in saved_x: do_something(item)
for item in saved_x: do_something_else(item)

The simple approach of first saving all data from the iterator into a list is not feasible
for an infinite sequence x, and may not be optimal if x is very large and your separate
iterations over it never get far out-of-step from each other. In these cases, the tee

function shown in this recipe can help. For example, say that the items of x are either
numbers or operators (the latter being represented as strings such as '+', '*', etc.).
Whenever you encounter an operator, you must output the result of applying that
operator to all numbers immediately preceding it (since the last operator). Using tee,
you could code:

def is_operator(item):
 return isinstance(item, str)
def operate(x):
 x1, x2 = tee(iter(x))
 while True:
 for item in x1:
 if is_operator(item): break
 else:
 # we get here when there are no more operators in the input
 # stream, thus the operate function is entirely done
 return
 if item == '+':
 total = 0
 for item in x2:
 if is_operator(item): break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 19: Iterators and Generators

 total += item
 yield total
 elif item == '*':
 total = 1
 for item in x2:
 if is_operator(item): break
 total *= item
 yield total

This kind of “look-ahead” usage is pretty typical of many of the common use cases of
tee. Even in this case, you might choose the alternative approach of accumulating
items in a list:

def operate_with_auxiliary_list(x):
 aux = []
 for item in x:
 if is_operator(item):
 if item == '+':
 yield sum(aux)
 elif item == '*':
 total = 1
 for item in aux:
 total *= item
 yield total
 aux = []
 else:
 aux.append(item)

Having tee available lets you freely choose between these different styles of look-
ahead processing.

Function itertools.tee as implemented in Python 2.4 is faster and more general
than the pure Python version given in this recipe for version 2.3 usage. However, the
pure Python version is quite instructive and deserves study for the sake of the tech-
niques it demonstrates, even if you’re lucky enough to be using Python 2.4 and
therefore don’t need to use this pure Python version of tee.

In the pure Python version of tee, the nested generator yield_with_cache makes use
of the fact (which some consider a “wart” in Python but is actually quite useful) that
the default values of arguments get computed just once, at the time the def state-
ment executes. Thus, both calls to the nested generator in the return statement of
tee implicitly share the same initially empty dict as the value of the cache argument.

itertools.count returns non-negative integers, 0 and up, one at a time. yield_with_
cache uses each of these integers as a key into the cache dictionary. The call to pop(i)

(the argument of the yield statement in the try clause) simultaneously returns and
removes the entry corresponding to key i, if that entry was present—that is, in this
case, if the “other” instance of the generator had already reached that point in the
iteration (and cached the item for our benefit). Otherwise, the except clause exe-
cutes, computes the item (by calling the object bound to name next, which in this
case is the next bound method of an iterator over the iterable object, which tee is
duplicating), and caches the item (for the “other” instance’s future benefit) before
yielding it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.18 Looking Ahead into an Iterator | 731

So, in practice, cache is being used as a FIFO queue. Indeed, were it not for the fact
that we don’t need a pure-Python tee in Python 2.4, we could code an equivalent
implementation of it in Python 2.4 using the new type deque in standard library mod-
ule collections:

import collections
def tee_just_an_example(iterable):
 def yield_with_cache(it, cache=collections.deque):
 while True:
 if cache:
 yield cache.popleft()
 else:
 result = it.next()
 cache.append(result)
 yield result
 it = iter(iterable)
 return yield_with_cache(it), yield_with_cache(it)

This latest version is meant purely as an illustrative example, and therefore, it’s sim-
plified by not using any of the bound-method extraction idioms shown in the ver-
sion in the “Solution” (which is intended for “production” use in Python 2.3).

Once you’ve called tee on an iterator, you should no longer use the original iterator
anywhere else; otherwise, the iterator could advance without the knowledge of the
tee-generated objects, and those objects would then “get out of sync” with the origi-
nal. Be warned that tee requires auxiliary storage that is proportional to how much
the two tee-generated objects get “apart” from each other in their separate iterations.
In general, if one iterator is going to walk over most or all of the data from the origi-
nal before the “other” one starts advancing, you should consider using list instead
of tee. Both of these caveats apply to the itertools.tee function of Python 2.4 just
as well as they apply to the pure Python versions of tee presented in this recipe. One
more caveat: again both for the versions in this recipe, and the itertools.tee func-
tion in Python 2.4, there is no guarantee of thread safety: to access the tee’d iterators
from different threads, you need to guard those iterators with a single lock!

See Also
The itertools module is part of the Python Standard Library and is documented in
the Library Reference portion of Python’s online documentation; recipe 19.2 “Build-
ing a List from Any Iterable” shows how to turn an iterator into a list.

19.18 Looking Ahead into an Iterator
Credit: Steven Bethard, Peter Otten

Problem
You are using an iterator for some task such as parsing, which requires you to be able
to “look ahead” at the next item the iterator is going to yield, without disturbing the
iterator state.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 19: Iterators and Generators

Solution
The best solution is to wrap your original iterator into a suitable class, such as the
following one (Python 2.4-only):

import collections
class peekable(object):
 """ An iterator that supports a peek operation. Example usage:
 >>> p = peekable(range(4))
 >>> p.peek()
 0
 >>> p.next(1)
 [0]
 >>> p.peek(3)
 [1, 2, 3]
 >>> p.next(2)
 [1, 2]
 >>> p.peek(2)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.peek(1)
 [3]
 >>> p.next(2)
 Traceback (most recent call last):
 ...
 StopIteration
 >>> p.next()
 3
 """
 def __init__(self, iterable):
 self._iterable = iter(iterable)
 self._cache = collections.deque()
 def __iter__(self):
 return self
 def _fillcache(self, n):
 if n is None:
 n = 1
 while len(self._cache) < n:
 self._cache.append(self._iterable.next())
 def next(self, n=None):
 self._fillcache(n)
 if n is None:
 result = self._cache.popleft()
 else:
 result = [self._cache.popleft() for i in range(n)]
 return result
 def peek(self, n=None):
 self._fillcache(n)
 if n is None:
 result = self._cache[0]
 else:
 result = [self._cache[i] for i in range(n)]
 return result

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.18 Looking Ahead into an Iterator | 733

Discussion
Many iterator-related tasks, such as parsing, require the ability to “peek ahead”
(once or a few times) into the sequence of items that an iterator is yielding, in a way
that does not alter the iterator’s observable state. One approach is to use the new
Python 2.4 function iterator.tee to get two independent copies of the iterator, one
to be advanced for peeking purposes and the “other” one to be used as the “main”
iterator. It’s actually handier to wrap the incoming iterator once for all, at the start,
with the class peekable presented in this recipe; afterwards, a peek method, which is
safe and effective, can be counted on. A little added sweetener is the ability to call
peek (and, as long as we’re at it, the standard next method too) with a specific num-
ber argument n, to request a list of the next n items of the iterator (without disturb-
ing the iterator’s state when you call peek(n), with iterator state advancement when
you call next(n)—just like for normal calls without arguments to the same methods).

The obvious idea used in this recipe for implementing peekable is to have it keep a
cache of peeked-ahead arguments. Since the cache must grow at the tail and get con-
sumed from the end, a natural choice is to make the cache a collections.deque, a
new type introduced in Python 2.4. However, if you need this code to run under ver-
sion 2.3 as well, make self._cache a list instead—you only need to change method
next’s body a little bit, making it:

 if n is None:
 result = self._cache.pop(0)
 else:
 result, self_cache = self._cache[:n], self._cache[n:]

As long as you’re caching only one or just a few items of lookahead at a time, perfor-
mance won’t suffer much by making self._cache a list rather than a deque.

An interesting characteristic of the peekable class presented in this recipe is that, if
you request too many items from the iterator, you get a StopIteration exception but
that does not throw away the last few values of the iterator. For example, if p is an
instance of peekable with just three items left, when you call p.next(5), you get a
StopIteration exception. You can later call p.next(3) and get the list of the last three
items.

A subtle point is that the n argument to methods peek and next defaults to None, not
to 1. This gives you two distinct ways to peek at a single item: the default way, call-
ing p.peek(), just gives you that item, while calling p.peek(1) gives you a list with
that single item in it. This behavior is quite consistent with the way p.peek behaves
when called with different arguments: any call p.peek(n) with any non-negative inte-
ger n returns a list with n items (or raises StopIteration if p has fewer than n items
left). This approach even supports calls such as p.next(0), which in practice always
returns an empty list [] without advancing the iterator’s state. Typically, you just
call p.peek(), without arguments, and get one look-ahead item without problems.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 19: Iterators and Generators

As an implementation detail, note that the docstring of the class peekable presented
in this recipe is essentially made up of examples of use with expected results. Besides
being faster to write, and arguably to read for an experienced Pythonista, this style of
docstring is perfect for use with the Python Standard Library module doctest.

See Also
collections.deque and doctest in the Python Library Reference (for Python 2.4).

19.19 Simplifying Queue-Consumer Threads
Credit: Jimmy Retzlaff, Paul Moore

Problem
You want to code a consumer thread which gets work requests off a queue one at a
time, processes each work request, and eventually stops, and you want to code it in
the simplest possible way.

Solution
This task is an excellent use case for the good old Sentinel idiom. The producer
thread, when it’s done putting actual work requests on the queue, must finally put a
sentinel value, that is, a value that is different from any possible work request. Sche-
matically, the producer thread will do something like:

for input_item in stuff_needing_work:
 work_request = make_work_request(input_item)
 queue.put(work_request)
queue.put(sentinel)

where sentinel must be a “well-known value”, different from any work_request

object that might be put on the queue in the first phase.

The consumer thread can then exploit the built-in function iter:

for work_request in iter(queue.get, sentinel):
 process_work_request(work_request)
cleanup_and_terminate()

Discussion
Were it not for built-in function iter, the consumer thread would have to use a
slightly less simple and elegant structure, such as:

while True:
 work_request = queue.get()
 if work_request == sentinel:
 break
 process_work_request(work_request)
cleanup_and_terminate()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.20 Running an Iterator in Another Thread | 735

However, the Sentinel idiom is so useful and important that Python directly supports
it with built-in function iter. When you call iter with just one argument, that argu-
ment must be an iterable object, and iter returns an iterator for it. But when you call
iter with two arguments, the first one must be a callable which can be called with-
out arguments, and the second one is an arbitrary value known as the sentinel. In the
two-argument case, iter repeatedly calls the first argument. As long as each call
returns a value !=sentinel, that value becomes an item in the iteration; as soon as a
call returns a value ==sentinel, the iteration stops.

If you had to code this yourself as a generator, you could write:

def iter_sentinel(a_callable, the_sentinel):
 while True:
 item = a_callable()
 if item == the_sentinel: break
 yield item

But the point of this recipe is that you don’t have to code even this simple generator:
just use the power that Python gives you as part of the functionality of the built-in
function iter!

Incidentally, Python offers many ways to make sentinel values—meaning values that
compare equal only to themselves. The simplest and most direct way, and therefore
the one I suggest you always use for this specific purpose, is:

sentinel = object()

See Also
Documentation for iter in the Library Reference and Python in a Nutshell.

19.20 Running an Iterator in Another Thread
Credit: Garth Kidd

Problem
You want to run the code of a generator (or any other iterator) in its own separate
thread, so that the iterator’s code won’t block your main thread even if it contains
time-consuming operations, such as blocking calls to the operating system.

Solution
This task is best tackled by wrapping a subclass of threading.Thread around the iter-
ator:

import sys, threading
class SpawnedGenerator(threading.Thread):
 def __init__(self, iterable, queueSize=0):
 threading.Thread.__init__(self)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 19: Iterators and Generators

 self.iterable = iterable
 self.queueSize = queueSize
 def stop(self):
 "Ask iteration to stop as soon as feasible"
 self.stopRequested = True
 def run(self):
 "Thread.start runs this code in another, new thread"
 put = self.queue.put
 try:
 next = iter(self.iterable).next
 while True:
 # report each result, propagate StopIteration
 put((False, next())
 if self.stopRequested:
 raise StopIteration
 except:
 # report any exception back to main thread and finish
 put((True, sys.exc_info()))
 def execute(self):
 "Yield the results that the “other”, new thread is obtaining"
 self.queue = Queue.Queue(self.queueSize)
 get = self.queue.get
 self.stopRequested = False
 self.start() # executes self.run() in other thread
 while True:
 iterationDone, item = get()
 if iterationDone: break
 yield item
 # propagate any exception (unless it's just a StopIteration)
 exc_type, exc_value, traceback = item
 if not isinstance(exc_type, StopIteration):
 raise exc_type, exc_value, traceback
 def __iter__(self):
 "Return an iterator for our executed self"
 return iter(self.execute())

Discussion
Generators (and other iterators) are a great way to package the logic that controls an
iteration and obtains the next value to feed into a loop’s body. The code of a genera-
tor (and, equivalently, the code of the next method of another kind of iterator) usu-
ally runs in the same thread as the code that’s iterating on it. The “calling” code can
therefore block, each time around the loop, while waiting for the generator’s code to
do its job.

Sometimes, you want to use a generator (or other kind of iterator) in a “non-block-
ing” way, which means you need to arrange things so that the generator’s body runs
in a new, separate thread. This recipe shows a class which supplies exactly this kind
of functionality: this recipe’s SpawnedGenerator class subclasses threading.Thread and
uses Thread’s start/run mechanism to ensure the generator’s body always executes in
a separate thread from that of the calling code.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.21 Computing a Summary Report with itertools.groupby | 737

All communication between the two threads occurs through a single instance of the
Queue.Queue class (held through a local-variable bound method in each of the com-
municating methods: the generator named execute that runs in the calling thread
and the method named run that runs in a separate thread). The “calling” code may
also call method stop on the SpawnedGenerator instance to ask for the iteration to
stop as soon as feasible. Optionally, you may also specify a queue size when you
instantiate SpawnedGenerator, if you want to limit how far ahead of the calling thread
the spawned thread can get.

The main use case for this recipe is for wrapping iterators that make blocking calls to
the operating system (e.g., walking a directory tree), when you need to use such iter-
ators in an application where the “main” thread cannot be allowed to block for a
long time. The typical examples of applications whose main thread must not block
are event-driven applications, a description that applies to applications with a GUI,
as well as to networking applications built on asynchronous frameworks, such as
Twisted or the asyncore module of the Python Standard Library.

See Also
Library Reference and Python in a Nutshell docs about modules threading and
asyncore; Twisted is at http://www.twistedmatrix.com/; Chapter 9 for general issues
about threading; Chapter 11 for general issues about user interfaces; Chapter 13 and
Chapter 14 for general issues about network and web programming, including asyn-
chronous approaches to such programs.

19.21 Computing a Summary Report with
itertools.groupby

Credit: Paul Moore, Raymond Hettinger

Problem
You have a list of data grouped by a key value, typically read from a spreadsheet or
the like, and want to generate a summary of that information for reporting purposes.

Solution
The itertools.groupby function introduced in Python 2.4 helps with this task:

from itertools import groupby
from operator import itemgetter
def summary(data, key=itemgetter(0), field=itemgetter(1)):
 """ Summarise the given data (a sequence of rows), grouped by the
 given key (default: the first item of each row), giving totals
 of the given field (default: the second item of each row).
 The key and field arguments should be functions which, given a
 data record, return the relevant value.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 19: Iterators and Generators

 """
 for k, group in groupby(data, key):
 yield k, sum(field(row) for row in group)
if __name__ == "__main__":
 # Example: given a sequence of sales data for city within region,
 # _sorted on region_, produce a sales report by region
 sales = [('Scotland', 'Edinburgh', 20000),
 ('Scotland', 'Glasgow', 12500),
 ('Wales', 'Cardiff', 29700),
 ('Wales', 'Bangor', 12800),
 ('England', 'London', 90000),
 ('England', 'Manchester', 45600),
 ('England', 'Liverpool', 29700)]
 for region, total in summary(sales, field=itemgetter(2)):
 print "%10s: %d" % (region, total)

Discussion
In many situations, data is available in tabular form, with the information naturally
grouped by a subset of the data values (e.g., recordsets obtained from database quer-
ies and data read from spreadsheets—typically with the csv module of the Python
Standard Library). It is often useful to be able to produce summaries of the detail
data.

The new groupby function (added in Python 2.4 to the itertools module of the
Python Standard Library) is designed exactly for the purpose of handling such
grouped data. It takes as arguments an iterator, whose items are to be thought of as
records, along with a function to extract the key value from each record.
itertools.groupby yields each distinct key from the iterator in turn, each along with
a new iterator that runs through the data values associated with that key.

The groupby function is often used to generate summary totals for a dataset. The
summary function defined in this recipe shows one simple way of doing this. For a
summary report, two extraction functions are required: one function to extract the
key, which is the function that you pass to the groupby function, and another func-
tion to extract the values to be summarized. The recipe uses another innovation of
Python 2.4 for these purposes: the operator.itemgetter higher-order function: called
with an index i as its argument. itemgetter produces a function f such that f(x)

extracts the ith item from x, operating just like an indexing x[i].

The input records must be sorted by the given key; if you’re uncertain about that
condition, you can use groubpy(sorted(data, key=key), key) to ensure it, exploiting
the built-in function sorted, also new in Python 2.4. It’s quite convenient that the
same key-extraction function can be passed to both sorted and groupby in this idiom.
The groupby function itself does not sort its input, which gains extra flexibility that
may come in handy—although most of the time you will want to use groupby only on
sorted data. See recipe 19.10 “Reading a Text File by Paragraphs” for a case in which
it’s quite handy to use groupby on nonsorted data.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.21 Computing a Summary Report with itertools.groupby | 739

For example, if the sales data was in a CSV file sales.csv, the usage example in the
recipe’s if __name__ == ‘__main__’ section might become:

 import csv
 sales = sorted(cvs.reader(open('sales.csv', 'rb')),
 key=itemgetter(1))
 for region, total in summary(sales, field=itemgetter(2)):
 print "%10s: %d" % (region, total)

Overall, this recipe provides a vivid illustration of how the new Python 2.4 features
work well together: in addition to the groupby function, the operator.itemgetter

used to provide field extraction functions, and the potential use of the built-in func-
tion sorted, the recipe also uses a generator expression as the argument to the sum

built-in function. If you need to implement this recipe’s functionality in Python 2.3,
you can start by implementing your own approximate version of groupby, for exam-
ple as follows:

class groupby(dict):
 def __init__(self, seq, key):
 for value in seq:
 k = key(value)
 self.setdefault(k, []).append(value)
 __iter__ = dict.iteritems

This version doesn’t include all the features of Python 2.4’s groupby, but it’s very sim-
ple and may be sufficient for your purposes. Similarly, you can write your own sim-
plified versions of functions itemgetter and sorted, such as:

def itemgetter(i):
 def getter(x): return x[i]
 return getter
def sorted(seq, key):
 aux = [(key(x), i, x) for i, x in enumerate(seq)]
 aux.sort()
 return [x for k, i, x in aux]

As for the generator expression, you can simply use a list comprehension in its
place—just call sum([field(row) for row in group]) where the recipe has the same
call without the additional square brackets, []. Each of these substitutions will cost
a little performance, but, overall, you can build the same functionality in Python 2.3
as you can in version 2.4—the latter just is slicker, simpler, faster, neater!

See Also
itertools.groupy, operator.itemgetter, sorted, and csv in the Library Reference (for
Python 2.4).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740

Chapter 20CHAPTER 20

Descriptors, Decorators,
and Metaclasses

20.0 Introduction
Credit: Raymond Hettinger

I had my power drill slung low on my toolbelt and I said, “Go ahead, honey.
Break something.”

—Tim Allen
on the challenges of figuring out what
to do with a new set of general-purpose tools

This chapter is last because it deals with issues that look or sound difficult, although
they really aren’t. It is about Python’s power tools.

Though easy to use, the power tools can be considered advanced for several reasons.
First, the need for them rarely arises in simple programs. Second, most involve intro-
spection, wrapping, and forwarding techniques available only in a dynamic language
like Python. Third, the tools seem advanced because when you learn them, you also
develop a deep understanding of how Python works internally.

Last, as with the power tools in your garage, it is easy to get carried away and create
a gory mess. Accordingly, to ward off small children, the tools were given scary
names such as descriptors, decorators, and metaclasses (such names as pangalaticgar-
glebaster were considered a bit too long).

Because these tools are so general purpose, it can be a challenge to figure out what to
do with them. Rather that resorting to Tim Allen’s tactics, study the recipes in this
chapter: they will give you all the practice you need. And, as Tim Peters once pointed
out, it can be difficult to devise new uses from scratch, but when a real problem
demands a power tool, you’ll know it when you need it.

Descriptors
The concept of descriptors is easy enough. Whenever an attribute is looked up, an
action takes place. By default, the action is a get, set, or delete. However, someday

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction | 741

you’ll be working on an application with some subtle need and wish that more com-
plex actions could be programmed. Perhaps you would like to create a log entry
every time a certain attribute is accessed. Perhaps you would like to redirect a
method lookup to another method. The solution is to write a function with the
needed action and then specify that it be run whenever the attribute is accessed. An
object with such functions is called a descriptor (just to make it sound harder than it
really is).

While the concept of a descriptor is straightforward, there seems to be no limit to
what can be done with them. Descriptors underlie Python’s implementation of meth-
ods, bound methods, super, property, classmethod, and staticmethod. Learning
about the various applications of descriptors is key to mastering the language.

The recipes in this chapter show how to put descriptors straight to work. However, if
you want the full details behind the descriptor protocol or want to know exactly how
descriptors are used to implement super, property, and the like, see my paper on the
subject at http://users.rcn.com/python/download/Descriptor.htm.

Decorators
Decorators are even simpler than descriptors. Writing myfunc=wrapper(myfunc) was
the common way to modify or log something about another function, which took
place somewhere after myfunc was defined. Starting with Python 2.4, we now write
@wrapper just before the def statement that performs the definition of myfunc. Com-
mon examples include @staticmethod and @classmethod. Unlike Java declarations,
these wrappers are higher-order functions that can modify the original function or
take some other action. Their uses are limitless. Some ideas that have been advanced
include @make_constants for bytecode optimization, @atexit to register a function to
be run before Python exits, @synchronized to automatically add mutual exclusion
locking to a function or method, and @log to create a log entry every time a function
is called. Such wrapper functions are called decorators (not an especially intimidat-
ing name but cryptic enough to ward off evil spirits).

Metaclasses
The concept of a metaclass sounds strange only because it is so familiar. Whenever
you write a class definition, a mechanism uses the name, bases, and class dictionary
to create a class object. For old-style classes that mechanism is types.ClassType. For
new-style classes, the mechanism is just type. The former implements the familiar
actions of a classic class, including attribute lookup and showing the name of the
class when repr is called. The latter adds a few bells and whistles including support
for __slots__ and __getattribute__. If only that mechanism were programmable,
what you could do in Python would be limitless. Well, the mechanism is program-
mable, and, of course, it has an intimidating name, metaclasses.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 20: Descriptors, Decorators, and Metaclasses

The recipes in this chapter show that writing metaclasses can be straightforward.
Most metaclasses subclass type and simply extend or override the desired behavior.
Some are as simple as altering the class dictionary and then forwarding the argu-
ments to type to finish the job.

For instance, say that you would like to automatically generate getter methods for all
the private variables listed in slots. Just define a metaclass M that looks up __slots__

in the mapping, scans for variable names starting with an underscore, creates an
accessor method for each, and adds the new methods to the class dictionary:

class M(type):
 def __new__(cls, name, bases, classdict):
 for attr in classdict.get('__slots__', ()):
 if attr.startswith('_'):
 def getter(self, attr=attr):
 return getattr(self, attr)
 # 2.4 only: getter.__name__ = 'get' + attr[1:]
 classdict['get' + attr[1:]] = getter
 return type.__new__(cls, name, bases, classdict)

Apply the new metaclass to every class where you want automatically created acces-
sor functions:

class Point(object):
 __metaclass__ = M
 __slots__ = ['_x', '_y']

If you now print dir(Point), you will see the two accessor methods as if you had
written them out the long way:

class Point(object):
 __slots__ = ['_x', '_y']
 def getx(self):
 return self._x
 def gety(self):
 return self._y

In both cases, among the output of the print statement, you will see the names
'getx' and 'gety'.

20.1 Getting Fresh Default Values at Each
Function Call

Credit: Sean Ross

Problem
Python computes the default values for a function’s optional arguments just once,
when the function’s def statement executes. However, for some of your functions,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.1 Getting Fresh Default Values at Each Function Call | 743

you’d like to ensure that the default values are fresh ones (i.e., new and independent
copies) each time a function gets called.

Solution
A Python 2.4 decorator offers an elegant solution, and, with a slightly less terse syn-
tax, it’s a solution you can apply in version 2.3 too:

import copy
def freshdefaults(f):
 "a decorator to wrap f and keep its default values fresh between calls"
 fdefaults = f.func_defaults
 def refresher(*args, **kwds):
 f.func_defaults = copy.deepcopy(fdefaults)
 return f(*args, **kwds)
 # in 2.4, only: refresher.__name__ = f.__name__
 return refresher
usage as a decorator, in python 2.4:
@freshdefaults
def packitem(item, pkg=[]):
 pkg.append(item)
 return pkg
usage in python 2.3: after the function definition, explicitly assign:
f = freshdefaults(f)

Discussion
A function’s default values are evaluated once, and only once, at the time the func-
tion is defined (i.e., when the def statement executes). Beginning Python program-
mers are sometimes surprised by this fact; they try to use mutable default values and
yet expect that the values will somehow be regenerated afresh each time they’re
needed.

Recommended Python practice is to not use mutable default values. Instead, you
should use idioms such as:

def packitem(item, pkg=None):
 if pkg is None:
 pkg = []
 pkg.append(item)
 return pkg

The freshdefaults decorator presented in this recipe provides another way to
accomplish the same task. It eliminates the need to set as your default value any-
thing but the value you intend that optional argument to have by default. In particu-
lar, you don’t have to use None as the default value, rather than (say) square brackets
[], as you do in the recommended idiom.

freshdefaults also removes the need to test each argument against the stand-in value
(e.g., None) before assigning the intended value: this could be an important simplifi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 20: Descriptors, Decorators, and Metaclasses

cation in your code, where your functions need to have several optional arguments
with mutable default values, as long as all of those default values can be deep-copied.

On the other hand, the implementation of freshdefaults needs several reasonably
advanced concepts: decorators, closures, function attributes, and deep copying. All
in all, this implementation is no doubt more difficult to explain to beginning Python
programmers than the recommended idiom. Therefore, this recipe cannot really be
recommended to beginners. However, advanced Pythonistas may find it useful.

See Also
Python Language Reference documentation about decorators; Python Language Ref-
erence and Python in a Nutshell documentation about closures and function
attributes; Python Library Reference and Python in a Nutshell documentation about
standard library module copy, specifically function deepcopy.

20.2 Coding Properties as Nested Functions
Credit: Sean Ross, David Niergarth, Holger Krekel

Problem
You want to code properties without cluttering up your class namespace with acces-
sor methods that are not called directly.

Solution
Functions nested within another function are quite handy for this task:

import math
class Rectangle(object):
 def __init__(self, x, y):
 self.y = x
 self.y = y
 def area():
 doc = "Area of the rectangle"
 def fget(self):
 return self.x * self.y
 def fset(self, value):
 ratio = math.sqrt((1.0*value)/self.area)
 self.x *= ratio
 self.y *= ratio
 return locals()
 area = property(**area())

Discussion
The standard idiom used to create a property starts with defining in the class body
several accessor methods (e.g., getter, setter, deleter), often with boilerplate-like
method names such as setThis, getThat, or delTheother. More often than not, such

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.2 Coding Properties as Nested Functions | 745

accessors are not required except inside the property itself; sometimes (rarely) pro-
grammers even remember to del them to clean up the class namespace after building
the property instance.

The idiom suggested in this recipe avoids cluttering up the class namespace at all.
Just write in the class body a function with the same name you intend to give to the

Setting the Name of a Function
If an outer function just returns an inner function (often a closure), the name of the
returned function object is fixed, which can be confusing when the name is shown dur-
ing introspection or debugging:

>>> def make_adder(addend):
... def adder(augend): return augend+addend
... return adder
...
>>> plus100 = make_adder(100)
>>> plus_23 = make_adder(23)
>>> print plus100(1000), plus_23(1000)
1100 1023
>>> print plus100, plus_23
<function adder at 0x386530> <function adder at 0x3825f0>

As you see, the functionality of plus100 and plus_23 is correct (they add 100 and 23 to
their argument, respectively). Confusingly, however, their names are both 'adder',
even though they are different functions. In Python 2.4, you can solve the problem by
setting the __name__ attribute of the inner function right after the end of the inner func-
tion’s def statement, and before the return statement from the outer function:

def make_adder(addend):
 def adder(augend):
 return augend+addend
 adder.__name__ = 'add_%s' % (addend,)
 return adder

With this change in make_adder, the previous snippet would now produce more useful
output:

>>> print plus100, plus_23
<function add_100 at 0x386530> <function add_23 at 0x3825f0>

Unfortunately, in Python 2.3, you cannot assign to the __name__ attribute of a function
object; in that release, the attribute is read-only. If you want to obtain the same effect
in Python 2.3, you must follow a more roundabout route, making and returning a new
function object that differs from the other only in name:

import new
def make_adder(addend):
 def adder(augend): return augend+addend
 return new.function(adder.func_code, adder.func_globals, 'add_%s' %
(addend,),
 adder.func_defaults, adder.func_closure)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 20: Descriptors, Decorators, and Metaclasses

property. Inside that function, define appropriate nested functions, which must be
named exactly fget, fset, fdel, and assign an appropriate docstring named doc.
Have the outer function return a dictionary whose entries have exactly those names,
and no others: returning the locals() dictionary will work, as long as your outer
function has no other local variables at that point. If you do have other names in addi-
tion to the fixed ones, you might want to code your return statement, for example, as:

return sub_dict(locals(), 'doc fget fset fdel'.split())

using the sub_dict function shown in recipe 4.13 “Extracting a Subset of a Dictio-
nary.” Any other way to subset a dictionary will work just as well.

Finally, the call to property uses the ** notation to expand a mapping into named
arguments, and the assignment rebinds the name to the resulting property instance,
so that the class namespace is left pristine.

As you can see from the example in this recipe’s Solution, you don’t have to define
all of the four key names: you may, and should, omit some of them if a particular
property forbids the corresponding operation. In particular, the area function in the
solution does not define fdel because the resulting area attribute must be not delet-
able.

In Python 2.4, you can define a simple custom decorator to make this recipe’s sug-
gested idiom even spiffier:

def nested_property(c):
 return property(**c())

With this little helper at hand, you can replace the explicit assignment of the prop-
erty to the attribute name with the decorator syntax:

 @nested_property
 def area():
 doc = "Area of the rectangle"
 def fget(self):

the area function remains the same

In Python 2.4, having a decorator line @deco right before a def name statement
is equivalent to having, right after the def statement’s body, an assignment name =

deco(name). A mere difference of syntax sugar, but it’s useful: anybody reading the
source code of the class knows up front that the function or method you’re def’ing is
meant to get decorated in a certain way, not to get used exactly as coded. With the
Python 2.3 syntax, somebody reading in haste might possibly miss the assignment
statement that comes after the def.

Returning locals works only if your outer function has no other local variables
besides fget, fset, fdel, and doc. An alternative idiom to avoid this restriction is to
move the call to property inside the outer function:

def area():
 what_is_area = "Area of the rectangle"
 def compute_area(self):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.3 Aliasing Attribute Values | 747

 return self.x * self.y
 def scale_both_sides(self, value):
 ratio = math.sqrt((1.0*value)/self.area)
 self.x *= ratio
 self.y *= ratio
 return property(compute_area, scale_both_sides, None, what_is_area)
area = area()

As you see, this alternative idiom enables us to give different names to the getter and
setter accessors, which is not a big deal because, as mentioned previously, accessors
are often named in uninformative ways such as getThis and setThat anyway. But, if
your opinion differs, you may prefer this idiom, or its slight variant based on having
the outer function return a tuple of values for property’s argument rather than a
dict. In other words, the variant obtained by changing the last two statements of this
latest snippet to:

 return compute_area, scale_both_sides, None, what_is_area
area = property(*area())

See Also
Library Reference and Python in a Nutshell docs on built-in functions property and
locals.

20.3 Aliasing Attribute Values
Credit: Denis S. Otkidach

Problem
You want to use an attribute name as an alias for another one, either just as a default
value (when the attribute was not explicitly set), or with full setting and deleting abil-
ities too.

Solution
Custom descriptors are the right tools for this task:

class DefaultAlias(object):
 ''' unless explicitly assigned, this attribute aliases to another. '''
 def __init__(self, name):
 self.name = name
 def __get__(self, inst, cls):
 if inst is None:
 # attribute accessed on class, return `self' descriptor
 return self
 return getattr(inst, self.name)
class Alias(DefaultAlias):
 ''' this attribute unconditionally aliases to another. '''
 def __set__(self, inst, value):
 setattr(inst, self.name, value)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 20: Descriptors, Decorators, and Metaclasses

 def __delete__(self, inst):
 delattr(inst, self.name)

Discussion
Your class instances sometimes have attributes whose default value must be the same
as the current value of other attributes but may be set and deleted independently. For
such requirements, custom descriptor DefaultAlias, as presented in this recipe’s
Solution, is just the ticket. Here is a toy example:

class Book(object):
 def __init__(self, title, shortTitle=None):
 self.title = title
 if shortTitle is not None:
 self.shortTitle = shortTitle
 shortTitle = DefaultAlias('title')
b = Book('The Life and Opinions of Tristram Shandy, Gent.')
print b.shortTitle
emits: The Life and Opinions of Tristram Shandy, Gent.
b.shortTitle = "Tristram Shandy"
print b.shortTitle
emits: Tristram Shandy
del b.shortTitle
print b.shortTitle
emits: The Life and Opinions of Tristram Shandy, Gent.

DefaultAlias is not what is technically known as a data descriptor class because it has
no __set__ method. In practice, this means that, when we assign a value to an
instance attribute whose name is defined in the class as a DefaultAlias, the instance
records the attribute normally, and the instance attribute shadows the class attribute.
This is exactly what’s happening in this snippet after we explicitly assign to
b.shortTitle—when we del b.shortTitle, we remove the per-instance attribute,
uncovering the per-class one again.

Custom descriptor class Alias is a simple variant of class DefaultAlias, easily
obtained by inheritance. Alias aliases one attribute to another, not just upon
accesses to the attribute’s value (as DefaultAlias would do), but also upon all opera-
tions of value setting and deletion. It easily achieves this by being a “data descriptor”
class, which means that it does have a __set__ method. Therefore, any assignment to
an instance attribute whose name is defined in the class as an Alias gets intercepted
by Alias’ __set__ method. (Alias also defines a __delete__ method, to obtain
exactly the same effect upon attribute deletion.)

Alias can be quite useful when you want to evolve a class, which you made publicly
available in a previous version, to use more appropriate names for methods and
other attributes, while still keeping the old names available for backwards

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.3 Aliasing Attribute Values | 749

compatibility. For this specific use, you may even want a version that emits a warn-
ing when the old name is used:

import warnings
class OldAlias(Alias):
 def _warn(self):
 warnings.warn('use %r, not %r' % (self.name, self.oldname),
 DeprecationWarning, stacklevel=3)
 def __init__(self, name, oldname):
 super(OldAlias, self).__init__(name)
 self.oldname = oldname
 def __get__(self, inst, cls):
 self._warn()
 return super(OldAlias, self).__get__(inst, cls)
 def __set__(self, inst, value):
 self._warn()
 return super(OldAlias, self).__set__(inst, value)
 def __delete__(self, inst):
 self._warn()
 return super(OldAlias, self).__delete__(inst)

Here is a toy example of using OldAlias:

class NiceClass(object):
 def __init__(self, name):
 self.nice_new_name = name
 bad_old_name = OldAlias('nice_new_name', 'bad_old_name')

Old code using this class may still refer to the instance attribute as bad_old_name, pre-
serving backwards compatibility; when that happens, though, a warning message is
presented about the deprecation, encouraging the old code’s author to upgrade the
code to use nice_new_name instead. The normal mechanisms of the warnings module
of the Python Standard Library ensure that, by default, such warnings are output
only once per occurrence and per run of a program, not repeatedly. For example, the
snippet:

x = NiceClass(23)
for y in range(4):
 print x.bad_old_name
 x.bad_old_name += 100

emits:

xxx.py:64: DeprecationWarning: use 'nice_new_name', not 'bad_old_name'
 print x.bad_old_name
23
xxx.py:65: DeprecationWarning: use 'nice_new_name', not 'bad_old_name'
 x.bad_old_name += 100
123
223
323

The warning is printed once per line using the bad old name, not repeated again and
again as the for loop iterates.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 20: Descriptors, Decorators, and Metaclasses

See Also
Custom descriptors are best documented on Raymond Hettinger’s web page: http://
users.rcn.com/python/download/Descriptor.htm; Library Reference and Python in a
Nutshell docs about the warnings module.

20.4 Caching Attribute Values
Credit: Denis S. Otkidach

Problem
You want to be able to compute attribute values, either per instance or per class, on
demand, with automatic caching.

Solution
Custom descriptors are the right tools for this task:

class CachedAttribute(object):
 ''' Computes attribute value and caches it in the instance. '''
 def __init__(self, method, name=None):
 # record the unbound-method and the name
 self.method = method
 self.name = name or method.__name__
 def __get__(self, inst, cls):
 if inst is None:
 # instance attribute accessed on class, return self
 return self
 # compute, cache and return the instance's attribute value
 result = self.method(inst)
 setattr(inst, self.name, result)
 return result
class CachedClassAttribute(CachedAttribute):
 ''' Computes attribute value and caches it in the class. '''
 def __get__(self, inst, cls):
 # just delegate to CachedAttribute, with 'cls' as ``instance''
 return super(CachedClassAttribute, self).__get__(cls, cls)

Discussion
If your class instances have attributes that must be computed on demand but don’t
generally change after they’re first computed, custom descriptor CachedAttribute as
presented in this recipe is just the ticket. Here is a toy example of use (with Python
2.4 syntax):

class MyObject(object):
 def __init__(self, n):
 self.n = n
 @CachedAttribute
 def square(self):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Caching Attribute Values | 751

 return self.n * self.n
m = MyObject(23)
print vars(m) # 'square' not there yet
emits: {'n': 23}
print m.square # ...so it gets computed
emits: 529
print vars(m) # 'square' IS there now
emits: {'square': 529, 'n': 23}
del m.square # flushing the cache
print vars(m) # 'square' removed
emits: {'n': 23}
m.n = 42
print vars(m)
emits: {'n': 42} # still no 'square'
print m.square # ...so gets recomputed
emits: 1764
print vars(m) # 'square' IS there again
emits: {'square': 1764, 'n': 23}

As you see, after the first access to m.square, the square attribute is cached in instance
m, so it will not get recomputed for that instance. If you need to flush the cache, for
example, to change m.n, so that m.square will get recomputed if it is ever accessed
again, just del m.square. Remember, attributes can be removed in Python! To use
this code in Python 2.3, remove the decorator syntax @CachedAttribute and insert
instead an assignment square = CachedAttribute(square) after the end of the def

statement for method square.

Custom descriptor CachedClassAttribute is just a simple variant of CachedAttribute,
easily obtained by inheritance: it computes the value by calling a method on the class
rather than the instance, and it caches the result on the class, too. This may help
when all instances of the class need to see the same cached value.
CachedClassAttribute is mostly meant for cases in which you do not need to flush
the cache because its __get__ method usually wipes away the instance descriptor
itself:

class MyClass(object):
 class_attr = 23
 @CachedClassAttribute
 def square(cls):
 return cls.class_attr * cls.class_attr
x = MyClass()
y = MyClass()
print x.square
emits: 529
print y.square
emits: 529
del MyClass.square
print x.square # raises an AttributeError exception

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752 | Chapter 20: Descriptors, Decorators, and Metaclasses

However, when you do need a cached class attribute with the ability to occasionally
flush it, you can still get it with a little trick. To implement this snippet so it works as
intended, just add the statement:

class MyClass(MyClass): pass

right after the end of the class MyClass statement and before generating any instance
of MyClass. Now, two class objects are named MyClass, a hidden “base” one that
always holds the custom descriptor instance, and an outer “subclass” one that is
used for everything else, including making instances and holding the cached value if
any. Whether this trick is a reasonable one or whether it’s too cute and clever for its
own good, is a judgment call you can make for yourself! Perhaps it would be clearer
to name the base class MyClassBase and use class MyClass(MyClassBase), rather than
use the same name for both classes; the mechanism would work in exactly the same
fashion, since it is not dependent on the names of classes.

See Also
Custom descriptors are best documented at Raymond Hettinger’s web page: http://
users.rcn.com/python/download/Descriptor.htm.

20.5 Using One Method as Accessor
for Multiple Attributes

Credit: Raymond Hettinger

Problem
Python’s built-in property descriptor is quite handy but only as long as you want to
use a separate method as the accessor of each attribute you make into a property. In
certain cases, you prefer to use the same method to access several different attributes,
and property does not support that mode of operation.

Solution
We need to code our own custom descriptor, which gets the attribute name in
__init__, saves it, and passes it on to the accessors. For convenience, we also
provide useful defaults for the various accessors. You can still pass in None explicitly
if you want to forbid certain kinds of access but the default is to allow it freely.

class CommonProperty(object):
 def __init__(self, realname, fget=getattr, fset=setattr, fdel=delattr,
 doc=None):
 self.realname = realname
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
 self.__doc__ = doc or ""

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Using One Method as Accessor for Multiple Attributes | 753

 def __get__(self, obj, objtype=None):
 if obj is None:
 return self
 if self.fget is None:
 raise AttributeError, "can't get attribute"
 return self.fget(obj, self.realname)
 def __set__(self, obj, value):
 if self.fset is None:
 raise AttributeError, "can't set attribute"
 self.fset(obj, self.realname, value)
 def __delete__(self, obj):
 if self.fdel is None:
 raise AttributeError, "can't delete attribute"
 self.fdel(obj, self.realname, value)

Discussion
Here is a simple example of using this CommonProperty custom descriptor:

class Rectangle(object):
 def __init__(self, x, y):
 self._x = x # don't trigger _setSide prematurely
 self.y = y # now trigger it, so area gets computed
 def _setSide(self, attrname, value):
 setattr(self, attrname, value)
 self.area = self._x * self._y
 x = CommonProperty('_x', fset=_setSide, fdel=None)
 y = CommonProperty('_y', fset=_setSide, fdel=None)

The idea of this Rectangle class is that attributes x and y may be freely accessed but
never deleted; when either of these attributes is set, the area attribute must be recom-
puted at once. You could alternatively recompute the area on the fly each time it’s
accessed, using a simple property for the purpose; however, if area is accessed often
and sides are changed rarely, the architecture of this simple example obviously can
be preferable.

In this simple example of CommonProperty use, we just need to be careful on the very
first attribute setting in __init__: if we carelessly used self.x = x, that would trig-
ger the call to _setSide, which, in turn, would try to use self._y before the _y

attribute is set.

Another issue worthy of mention is that if any one or more of the fget, fset, or fdel

arguments to CommonProperty is defaulted, the realname argument must be different
from the attribute name to which the CommonProperty instance is assigned; otherwise,
unbounded recursion would occur on trying the corresponding operation (in prac-
tice, you’d get a RecursionLimitExceeded exception).

See Also
The Library Reference and Python in a Nutshell documentation for built-ins getattr,
setattr, delattr, and property.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 20: Descriptors, Decorators, and Metaclasses

20.6 Adding Functionality to a Class
by Wrapping a Method

Credit: Ken Seehof, Holger Krekel

Problem
You need to add functionality to an existing class, without changing the source code
for that class, and inheritance is not applicable (since it would make a new class,
rather than changing the existing one). Specifically, you need to enrich a method of
the class, adding some extra functionality “around” that of the existing method.

Solution
Adding completely new methods (and other attributes) to an existing class object is
quite simple, since the built-in function setattr does essentially all the work. We
need to “decorate” an existing method to add to its functionality. To achieve this, we
can build the new replacement method as a closure. The best architecture is to define
general-purpose wrapper and unwrapper functions, such as:

import inspect
def wrapfunc(obj, name, processor, avoid_doublewrap=True):
 """ patch obj.<name> so that calling it actually calls, instead,
 processor(original_callable, *args, **kwargs)
 """
 # get the callable at obj.<name>
 call = getattr(obj, name)
 # optionally avoid multiple identical wrappings
 if avoid_doublewrap and getattr(call, 'processor', None) is processor:
 return
 # get underlying function (if any), and anyway def the wrapper closure
 original_callable = getattr(call, 'im_func', call)
 def wrappedfunc(*args, **kwargs):
 return processor(original_callable, *args, **kwargs)
 # set attributes, for future unwrapping and to avoid double-wrapping
 wrappedfunc.original = call
 wrappedfunc.processor = processor
 # 2.4 only: wrappedfunc.__name__ = getattr(call, '__name__', name)
 # rewrap staticmethod and classmethod specifically (iff obj is a class)
 if inspect.isclass(obj):
 if hasattr(call, 'im_self'):
 if call.im_self:
 wrappedfunc = classmethod(wrappedfunc)
 else:
 wrappedfunc = staticmethod(wrappedfunc)
 # finally, install the wrapper closure as requested
 setattr(obj, name, wrappedfunc)
def unwrapfunc(obj, name):
 ''' undo the effects of wrapfunc(obj, name, processor) '''
 setattr(obj, name, getattr(obj, name).original)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.6 Adding Functionality to a Class by Wrapping a Method | 755

This approach to wrapping is carefully coded to work just as well on ordinary func-
tions (when obj is a module) as on methods of all kinds (e.g., bound methods, when
obj is an instance; unbound, class, and static methods, when obj is a class). This
method doesn’t work when obj is a built-in type, though, because built-ins are
immutable.

For example, suppose we want to have “tracing” prints of all that happens whenever
a particular method is called. Using the general-purpose wrapfunc function just
shown, we could code:

def tracing_processor(original_callable, *args, **kwargs):
 r_name = getattr(original_callable, '__name__', '<unknown>')
 r_args = map(repr, args)
 r_args.extend(['%s=%r' % x for x in kwargs.iteritems()])
 print "begin call to %s(%s)" % (r_name, ", ".join(r_args))
 try:
 result = call(*args, **kwargs)
 except:
 print "EXCEPTION in call to %s" %(r_name,)
 raise
 else:
 print "call to %s result: %r" %(r_name, result)
 return result
def add_tracing_prints_to_method(class_object, method_name):
 wrapfunc(class_object, method_name, tracing_processor)

Discussion
This recipe’s task occurs fairly often when you’re trying to modify the behavior of a
standard or third-party Python module, since editing the source of the module itself
is undesirable. In particular, this recipe can be handy for debugging, since the exam-
ple function add_tracing_prints_to_method presented in the “Solution” lets you see
on standard output all details of calls to a method you want to watch, without modi-
fying the library module, and without requiring interactive access to the Python ses-
sion in which the calls occur.

You can also use this recipe’s approach on a larger scale. For example, say that a
library that you imported has a long series of methods that return numeric error
codes. You could wrap each of them inside an enhanced wrapper method, which
raises an exception when the error code from the original method indicates an error
condition. Again, a key issue is not having to modify the library’s own code. How-
ever, methodical application of wrappers when building a subclass is also a way to
avoid repetitious code (i.e., boilerplate). For example, recipe 5.12 “Performing Fre-
quent Membership Tests on a Sequence” and recipe 1.24 “Making Some Strings
Case-Insensitive” might be recoded to take advantage of the general wrapfunc pre-
sented in this recipe.

Particularly when “wrapping on a large scale”, it is important to be able to “unwrap”
methods back to their normal state, which is why this recipe’s Solution also includes

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 20: Descriptors, Decorators, and Metaclasses

an unwrapfunc function. It may also be handy to avoid accidentally wrapping the
same method in the same way twice, which is why wrapfunc supports the optional
parameter avoid_doublewrap, defaulting to True, to avoid such double wrapping.
(Unfortunately, classmethod and staticmethod do not support per-instance
attributes, so the avoidance of double wrapping, as well as the ability to “unwrap”,
cannot be guaranteed in all cases.)

You can wrap the same method multiple times with different processors. However,
unwrapping must proceed last-in, first-out; as coded, this recipe does not support
the ability to remove a wrapper from “somewhere in the middle” of a chain of sev-
eral wrappers. A related limitation of this recipe as coded is that double wrapping is
not detected when another unrelated wrapping occurred in the meantime. (We don’t
even try to detect what we might call “deep double wrapping.”)

If you need “generalized unwrapping”, you can extend unwrap_func to return the pro-
cessor it has removed; then you can obtain generalized unwrapping by unwrapping
all the way, recording a list of the processors that you removed, and then pruning
that list of processors and rewrapping. Similarly, generalized detection of “deep”
double wrapping could be implemented based on this same idea.

Another generalization, to fully support staticmethod and classmethod, is to use a
global dict, rather than per-instance attributes, for the original and processor val-
ues; functions, bound and unbound methods, as well as class methods and static
methods, can all be used as keys into such a dictionary. Doing so obviates the issue
with the inability to set per-instance attributes on class methods and static methods.
However, each of these generalizations can be somewhat complicated, so we are not
pursuing them further here.

Once you have coded some processors with the signature and semantics required by
this recipe’s wrapfunc, you can also use such processors more directly (in cases where
modifying the source is OK) with a Python 2.4 decorator, as follows:

def processedby(processor):
 """ decorator to wrap the processor around a function. """
 def processedfunc(func):
 def wrappedfunc(*args, **kwargs):
 return processor(func, *args, **kwargs)
 return wrappedfunc
 return processedfunc

For example, to wrap this recipe’s tracing_processor around a certain method at the
time the class statement executes, in Python 2.4, you can code:

class SomeClass(object):
 @processedby(tracing_processor)
 def amethod(self, s):
 return 'Hello, ' + s

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.7 Adding Functionality to a Class by Enriching All Methods | 757

See Also
Recipe 5.12 “Performing Frequent Membership Tests on a Sequence” and recipe
1.24 “Making Some Strings Case-Insensitive” provide examples of the methodical
application of wrappers to build a subclass to avoid boilerplate; Library Reference
and Python in a Nutshell docs on built-in functions getattr and setattr and module
inspect.

20.7 Adding Functionality to a Class
by Enriching All Methods

Credit: Stephan Diehl, Robert E. Brewer

Problem
You need to add functionality to an existing class without changing the source code
for that class. Specifically, you need to enrich all methods of the class, adding some
extra functionality “around” that of the existing methods.

Solution
Recipe 20.6 “Adding Functionality to a Class by Wrapping a Method” previously
showed a way to solve this task for one method by writing a closure that builds and
applies a wrapper, exemplified by function add_tracing_prints_to_method in that rec-
ipe’s Solution. This recipe generalizes that one, wrapping methods throughout a
class or hierarchy, directly or via a custom metaclass.

Module inspect lets you easily find all methods of an existing class, so you can sys-
tematically wrap them all:

import inspect
def add_tracing_prints_to_all_methods(class_object):
 for method_name, v in inspect.getmembers(class_object, inspect.ismethod):
 add_tracing_prints_to_method(class_object, method_name)

If you need to ensure that such wrapping applies to all methods of all classes in a
whole hierarchy, the simplest way may be to insert a custom metaclass at the root of
the hierarchy, so that all classes in the hierarchy will get that same metaclass. This
insertion does normally need a minimum of “invasiveness”—placing a single state-
ment

 __metaclass__ = MetaTracer

in the body of that root class. Custom metaclass MetaTracer is, however, quite easy
to write:

class MetaTracer(type):
 def __init__(cls, n, b, d):
 super(MetaTracer, cls).__init__(n, b, d)
 add_tracing_prints_to_all_methods(cls)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 20: Descriptors, Decorators, and Metaclasses

Even such minimal invasiveness sometimes is unacceptable, or you need a more
dynamic way to wrap all methods in a hierarchy. Then, as long as the root class of
the hierarchy is new-style, you can arrange to get function add_tracing_prints_to_

all_methods dynamically called on all classes in the hierarchy:

def add_tracing_prints_to_all_descendants(class_object):
 add_tracing_prints_to_all_methods(class_object)
 for s in class_object.__subclasses__():
 add_tracing_prints_to_all_descendants(s)

The inverse function unwrapfunc, in recipe 20.6 “Adding Functionality to a Class by
Wrapping a Method,” may also be similarly applied to all methods of a class and all
classes of a hierarchy.

Discussion
We could code just about all functionality of such a powerful function as
add_tracing_prints_to_all_descendants in the function’s own body. However, it
would not be a great idea to bunch up such diverse functionality inside a single func-
tion. Instead, we carefully split the functionality among the various separate func-
tions presented in this recipe and previously in recipe 20.6 “Adding Functionality to
a Class by Wrapping a Method.” By this careful factorization, we obtain maximum
reusability without code duplication: we have separate functions to dynamically add
and remove wrapping from a single method, an entire class, and a whole hierarchy of
classes; each of these functions appropriately uses the simpler ones. And for cases in
which we can afford a tiny amount of “invasiveness” and want the convenience of
automatically applying the wrapping to all methods of classes descended from a cer-
tain root, we can use a tiny custom metaclass.

add_tracing_prints_to_all_descendants cannot apply to old-style classes. This limi-
tation is inherent in the old-style object model and is one of the several reasons you
should always use new-style classes in new code you write: classic classes exist only
to ensure compatibility in legacy programs. Besides the problem with classic classes,
however, there’s another issue with the structure of add_tracing_prints_to_all_

descendants: in cases of multiple inheritance, the function will repeatedly visit some
classes.

Since the method-wrapping function is carefully designed to avoid double wrapping,
such multiple visits are not a serious problem, costing just a little avoidable over-
head, which is why the function was acceptable for inclusion in the “Solution”. In
other cases in which we want to operate on all descendants of a certain root class,
however, multiple visits might be unacceptable. Moreover, it is clearly not optimal to
entwine the functionality of getting all descendants with that of applying one partic-
ular operation to each of them. The best idea is clearly to factor out the recursive
structure into a generator, which can avoid duplicating visits with the memo idiom:

def all_descendants(class_object, _memo=None):
 if _memo is None:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Adding a Method to a Class Instance at Runtime | 759

 _memo = { }
 elif class_object in _memo:
 return
 yield class_object
 for subclass in class_object.__subclasses__():
 for descendant in all_descendants(subclass, _memo):
 yield descendant

Adding tracing prints to all descendants now simplifies to:

def add_tracing_prints_to_all_descendants(class_object):
 for c in all_descendants(class_object):
 add_tracing_prints_to_all_methods(c)

In Python, whenever you find yourself with an iteration structure of any complexity,
or recursion, it’s always worthwhile to check whether it’s feasible to factor out the
iterative or recursive control structure into a separate, reusable generator, so that all
iterations of that form can become simple for statements. Such separation of con-
cerns can offer important simplifications and make code more maintainable.

See Also
Recipe 20.6 “Adding Functionality to a Class by Wrapping a Method” for details on
how each method gets wrapped; Library Reference and Python in a Nutshell docs on
module inspect and the __subclasses__ special method of new-style classes.

20.8 Adding a Method to a Class Instance
at Runtime

Credit: Moshe Zadka

Problem
During debugging, you want to identify certain specific instance objects so that print
statements display more information when applied to those specific objects.

Solution
The print statement implicitly calls the special method __str__ of the class of each
object you’re printing. Therefore, to ensure that printing certain objects displays
more information, we need to give those objects new classes whose __str__ special
methods are suitably modified. For example:

def add_method_to_objects_class(object, method, name=None):
 if name is None:
 name = method.func_name
 class newclass(object.__class__):
 pass
 setattr(newclass, name, method)
 object.__class__ = newclass

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 20: Descriptors, Decorators, and Metaclasses

import inspect
def _rich_str(self):
 pieces = []
 for name, value in inspect.getmembers(self):
 # don't display specials
 if name.startswith('__') and name.endswith('__'):
 continue
 # don't display the object's own methods
 if inspect.ismethod(value) and value.im_self is self:
 continue
 pieces.extend((name.ljust(15), '\t', str(value), '\n'))
 return ''.join(pieces)
def set_rich_str(obj, on=True):
 def isrich():
 return getattr(obj.__class__.__str__, 'im_func', None) is _rich_str
 if on:
 if not isrich():
 add_method_to_objects_class(obj, _rich_str, '__str__')
 assert isrich()
 else:
 if not isrich():
 return
 bases = obj.__class__.__bases__
 assert len(bases) == 1
 obj.__class__ = bases[0]
 assert not isrich()

Discussion
Here is a sample use of this recipe’s set_rich_str function, guarded in the usual way:

if __name__ == '__main__': # usual guard for example usage
 class Foo(object):
 def __init__(self, x=23, y=42):
 self.x, self.y = x, y
 f = Foo()
 print f
 # emits: <__main__.Foo object at 0x38f770>
 set_rich_str(f)
 print f
 # emits:
 # x 23
 # y 42
 set_rich_str(f, on=False)
 print f
 # emits: <__main__.Foo object at 0x38f770>

In old versions of Python (and in Python 2.3 and 2.4, for backwards compatibility on
instances of classic classes), intrinsic lookup of special methods (such as the intrinsic
lookup for __str__ in a print statement) started on the instance. In today’s Python,
in the new object model that is recommended for all new code, the intrinsic lookup
starts on the instance’s class, bypassing names set in the instance’s own __dict__.
This innovation has many advantages, but, at a first superficial look, it may also

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.9 Checking Whether Interfaces Are Implemented | 761

seem to have one substantial disadvantage: namely, to make it impossible to solve
this recipe’s Problem in the general case (i.e., for instances that might belong to
either classic or new-style classes).

Fortunately, that superficial impression is not correct, thanks to Python’s power of
introspection and dynamism. This recipe’s function add_method_to_objects_class

shows how to change special methods on a given object obj’s class, without affect-
ing other “sibling” objects (i.e., other instances of the same class as obj’s): very sim-
ply, start by changing the obj’s class—that is, by setting obj.__class__ to a newly
made class object (which inherits from the original class of obj, so that anything we
don’t explicitly modify remains unchanged). Once you’ve done that, you can then
alter the newly made class object to your heart’s contents.

Function _rich_str shows how you can use introspection to display a lot of informa-
tion about a specific instance. Specifically, we display every attribute of the instance
that doesn’t have a special name (starting and ending with two underscores), except
the instances’ own bound methods. Function set_rich_str shows how to set the
__str__ special method of an instance’s class to either “rich” (the _rich_str func-
tion we just mentioned) or “normal” (the __str__ method the object’s original class
is coded to supply). To make the object’s __str__ rich, set_rich_str uses add_

method_to_objects_class to set __str__ to _rich_str. When the object goes back to
“normal”, set_rich_str sets the object’s __class__ back to its original value (which
is preserved as the only base class when the object is set to use _rich_str).

See Also
Recipe 20.6 “Adding Functionality to a Class by Wrapping a Method” and recipe
20.7 “Adding Functionality to a Class by Enriching All Methods” for other cases in
which a class’ methods are modified; documentation on the inspect standard library
module in the Library Reference.

20.9 Checking Whether Interfaces
Are Implemented

Credit: Raymond Hettinger

Problem
You want to ensure that the classes you define implement the interfaces that they
claim to implement.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 20: Descriptors, Decorators, and Metaclasses

Solution
Python does not have a formal concept of “interface”, but we can easily represent
interfaces by means of “skeleton” classes such as:

class IMinimalMapping(object):
 def __getitem__(self, key): pass
 def __setitem__(self, key, value): pass
 def __delitem__(self, key): pass
 def __contains__(self, key): pass
import UserDict
class IFullMapping(IMinimalMapping, UserDict.DictMixin):
 def keys(self): pass
class IMinimalSequence(object):
 def __len__(self): pass
 def __getitem__(self, index): pass
class ICallable(object):
 def __call__(self, *args): pass

We follow the natural convention that any class can represent an interface: the inter-
face is the set of methods and other attributes of the class. We can say that a class C

implements an interface i if C has all the methods and other attributes of i (and, pos-
sibly, additional ones).

We can now define a simple custom metaclass that checks whether classes imple-
ment all the interfaces they claim to implement:

ensure we use the best available 'set' type with name 'set'
try:
 set
except NameError:
 from sets import Set as set
a custom exception class that we raise to signal violations
class InterfaceOmission(TypeError):
 pass
class MetaInterfaceChecker(type):
 ''' the interface-checking custom metaclass '''
 def __init__(cls, classname, bases, classdict):
 super(MetaInterfaceChecker, cls).__init__(classname, bases, classdict)
 cls_defines = set(dir(cls))
 for interface in cls.__implements__:
 itf_requires = set(dir(interface))
 if not itf_requires.issubset(cls_defines):
 raise InterfaceOmission, list(itf_requires - cls_defines)

Any class that uses MetaInterfaceChecker as its metaclass must expose a class
attribute __implements__, an iterable whose items are the interfaces the class claims
to implement. The metaclass checks the claim, raising an InterfaceOmission excep-
tion if the claim is false.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.10 Using _ _new_ _ and _ _init_ _ Appropriately in Custom Metaclasses | 763

Discussion
Here’s an example class using the MetaInterfaceChecker custom metaclass:

class Skidoo(object):
 ''' a mapping which claims to contain all keys, each with a value
 of 23; item setting and deletion are no-ops; you can also call
 an instance with arbitrary positional args, result is 23. '''
 __metaclass__ = MetaInterfaceChecker
 __implements__ = IMinimalMapping, ICallable
 def __getitem__(self, key): return 23
 def __setitem__(self, key, value): pass
 def __delitem__(self, key): pass
 def __contains__(self, key): return True
 def __call__(self, *args): return 23
sk = Skidoo()

Any code dealing with an instance of such a class can choose to check whether it can
rely on certain interfaces:

def use(sk):
 if IMinimalMapping in sk.__implements__:

...code using 'sk[...]' and/or 'x in sk'...

You can, if you want, provide much fancier and more thorough checks, for example
by using functions from standard library module inspect to check that the attributes
being exposed and required are methods with compatible signatures. However, this
simple recipe does show how to automate the simplest kind of checks for interface
compliance.

See Also
Library Reference and Python in a Nutshell docs about module sets, (in Python 2.4
only) the set built-in, custom metaclasses, the inspect module.

20.10 Using _ _new_ _ and _ _init_ _
Appropriately in Custom Metaclasses

Credit: Michele Simionato, Stephan Diehl, Alex Martelli

Problem
You are writing a custom metaclass, and you are not sure which tasks your meta-
class should perform in its __new__ method, and which ones it should perform in its
__init__ method instead.

Solution
Any preliminary processing that your custom metaclass performs on the name,
bases, or dict of the class being built, can affect the way in which the class object gets

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 20: Descriptors, Decorators, and Metaclasses

built only if it occurs in the metaclass’ __new__ method, before your code calls the
metaclass’ superclass’ __new__. For example, that’s the only time when you can use-
fully affect the new class’ __slots__, if any:

class MetaEnsure_foo(type):
 def __new__(mcl, cname, cbases, cdict):
 # ensure instances of the new class can have a '_foo' attribute
 if '__slots__' in cdict and '_foo' not in cdict['__slots__']:
 cdict['__slots__'] = tuple(cdict['__slots__']) + ('_foo',)
 return super(MetaEnsure_foo, mcl).__new__(mcl, cname, cbases, cdict)

Metaclass method __init__ is generally the most appropriate one for any changes
that your custom metaclass makes to the class object after the class object is built—
for example, continuing the example code for metaclass MetaEnsure_foo:

 def __init__(cls, cname, cbases, cdict):
 super(MetaEnsure_foo, cls).__init__(cls, cname, cbases, cdict)
 cls._foo = 23

Discussion
The custom metaclass MetaEnsure_foo performs a definitely “toy” task presented
strictly as an example: if the class object being built defines a __slots__ attribute (to
save memory), MetaEnsure_foo ensures that the class object includes a slot _foo, so
that instances of that class can have an attribute thus named. Further, the custom
metaclass sets an attribute with name _foo and value 23 on each new class object.
The point of the recipe isn’t really this toy task, but rather, a clarification on how
__new__ and __init__ methods of a custom metaclass are best coded, and which
tasks are most appropriate for each.

Whenever you instantiate any class x (whether x is a custom metaclass or an ordi-
nary class) with or without arguments (we can employ the usual Python notation *a,

**k to mean arbitrary positional and named arguments), Python internally performs
the equivalent of the following snippet of code:

 new_thing = X.__new__(X, *a, **k)
 if isinstance(new_thing, X):
 X.__init__(new_thing, *a, **k)

The new_thing thus built and initialized is the result of instantiating x. If x is a cus-
tom metaclass, in particular, this snippet occurs at the end of the execution of a
class statement, and the arguments (all positional) are the name, bases, and dictio-
nary of the new class that is being built.

So, your custom metaclass’ __new__ method is the code that has dibs—it executes
first. That’s the moment in which you can adjust the name, bases, and dictionary
that you receive as arguments, to affect the way the new class object is built. Most
characteristics of the class object, but not all, can also be changed later. An example
of an attribute that you have to set before building the class object is __slots__. Once

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.11 Allowing Chaining of Mutating List Methods | 765

the class object is built, the slots, if any, are defined, and any further change to
__slots__ has no effect.

The custom metaclass in this recipe carefully uses super to delegate work to its
superclass, rather than carelessly calling type.__new__ or type.__init__ directly: the
latter usage would be a subtle mistake, impeding the proper working of multiple
inheritance among metaclasses. Further, this recipe is careful in naming the first
parameters to both methods: cls to mean an ordinary class (the object that is the
first argument to a custom metaclass’ __init__), mcl to mean a metaclass (the object
that is the first argument to a custom metaclass’ __new__). The common usage of
self should be reserved to mean normal instances, not classes nor metaclasses, and
therefore it doesn’t normally occur in the body of a custom metaclass. All of these
names are a matter of mere convention, but using appropriate conventions promotes
clarity, and this use of cls and mcl was blessed by Guido van Rossum himself, albeit
only verbally.

The usage distinction between __new__ and __init__ that this recipe advocates for
custom metaclasses is basically the same criterion that any class should always
follow: use __new__ when you must, only for jobs that cannot be done later; use
__init__ for all jobs that can be left until __init__ time. Following these conven-
tions makes life easiest for anybody who must tweak your custom metaclass or make
it work well in a multiple inheritance situation, and thus enhances the reusability of
your code. __new__ should contain only the essence of your metaclass: stuff that any-
body using your metaclass in any way at all must surely want (or else he wouldn’t be
using your metaclass!) because it’s stuff that’s not easy to tweak, modify, or over-
ride. __init__ is “softer”, so most of what your metaclass is doing to the class
objects you generate, should be there, exactly because it will be easier for reusers to
tweak or avoid.

See Also
Library Reference and Python in a Nutshell docs on built-ins super and __slots__,
and special methods __init__ and __new__.

20.11 Allowing Chaining of Mutating List
Methods

Credit: Stephan Diehl, Alex Martelli

Problem
The methods of the list type that mutate a list object in place—methods such as
append and sort—return None. To call a series of such methods, you therefore need to
use a series of statements. You would like those methods to return self to enable
you to chain a series of calls within a single expression.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

766 | Chapter 20: Descriptors, Decorators, and Metaclasses

Solution
A custom metaclass can offer an elegant approach to this task:

def makeChainable(func):
 ''' wrapp a method returning None into one returning self '''
 def chainableWrapper(self, *args, **kwds):
 func(self, *args, **kwds)
 return self
 # 2.4 only: chainableWrapper.__name__ = func.__name__
 return chainableWrapper
class MetaChainable(type):
 def __new__(mcl, cName, cBases, cDict):
 # get the "real" base class, then wrap its mutators into the cDict
 for base in cBases:
 if not isinstance(base, MetaChainable):
 for mutator in cDict['__mutators__']:
 if mutator not in cDict:
 cDict[mutator] = makeChainable(getattr(base, mutator))
 break
 # delegate the rest to built-in 'type'
 return super(MetaChainable, mcl).__new__(mcl, cName, cBases, cDict)
class Chainable: __metaclass__ = MetaChainable
if __name__ == '__main__':
 # example usage
 class chainablelist(Chainable, list):
 __mutators__ = 'sort reverse append extend insert'.split()
 print ''.join(chainablelist('hello').extend('ciao').sort().reverse())
emits: oolliheca

Discussion
Mutator methods of mutable objects such as lists and dictionaries work in place,
mutating the object they’re called on, and return None. One reason for this behavior
is to avoid confusing programmers who might otherwise think such methods build
and return new objects. Returning None also prevents you from chaining a sequence
of mutator calls, which some Python gurus consider bad style because it can lead to
very dense code that may be hard to read.

Some programmers, however, occasionally prefer the chained-calls, dense-code style.
This style is particularly useful in such contexts as lambda forms and list comprehen-
sions. In these contexts, the ability to perform actions within an expression, rather
than in statements, can be crucial. This recipe shows one way you can tweak muta-
tors’ return values to allow chaining. Using a custom metaclass means the runtime
overhead of introspection is paid only rarely, at class-creation time, rather than
repeatedly. If runtime overhead is not a problem for your application, it may be sim-
pler for you to use a delegating wrapper idiom that was posted to comp.lang.python
by Jacek Generowicz:

class chainable(object):
 def __init__(self, obj):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.12 Using Cooperative Supercalls with Terser Syntax | 767

 self.obj = obj
 def __iter__(self):
 return iter(self.obj)
 def __getattr__(self, name):
 def proxy(*args, **kwds):
 result = getattr(self.obj, name)(*args, **kwds)
 if result is None: return self
 else: return result
 # 2.4 only: proxy.__name__ = name
 return proxy

The use of this wrapper is quite similar to that of classes obtained by the custom
metaclass presented in this recipe’s Solution—for example:

print ''.join(chainable(list('hello')).extend('ciao').sort().reverse())
emits: oolliheca

See Also
Library Reference and Python in a Nutshell docs on built-in type list and special
methods __new__ and __getattr__.

20.12 Using Cooperative Supercalls with Terser
Syntax

Credit: Michele Simionato, Gonçalo Rodrigues

Problem
You like the cooperative style of multiple-inheritance coding supported by the super

built-in, but you wish you could use that style in a more terse and direct way.

Solution
A custom metaclass lets us selectively wrap the methods exposed by a class. Specifi-
cally, if the second argument of a method is named super, then that argument gets
bound to the appropriate instance of the built-in super:

import inspect
def second_arg(func):
 args = inspect.getargspec(func)[0]
 try: return args[1]
 except IndexError: return None
def super_wrapper(cls, func):
 def wrapper(self, *args, **kw):
 return func(self, super(cls, self), *args, **kw)
 # 2.4 only: wrapper.__name__ = func.__name__
 return wrapper
class MetaCooperative(type):
 def __init__(cls, name, bases, dic):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 20: Descriptors, Decorators, and Metaclasses

 super(MetaCooperative, cls).__init__(cls, name, bases, dic)
 for attr_name, func in dic.iteritems():
 if inspect.isfunction(func) and second_arg(func) == "super":
 setattr(cls, attr_name, super_wrapper(cls, func))
class Cooperative:
 __metaclass__ = MetaCooperative

Discussion
Here is a usage example of the custom metaclass presented in this recipe’s Solution,
in a typical toy case of “diamond-shaped” inheritance:

if __name__ == "__main__":
 class B(Cooperative):
 def say(self):
 print "B",
 class C(B):
 def say(self, super):
 super.say()
 print "C",
 class D(B):
 def say(self, super):
 super.say()
 print "D",
 class CD(C, D):
 def say(self, super):
 super.say()
 print '!'
 CD().say()
emits: B D C !

Methods that want to access the super-instance just need to use super as the name of
their second argument; the metaclass then arranges to wrap those methods so that
the super-instance gets synthesized and passed in as the second argument, as needed.

In other words, when a class cls, whose metaclass is MetaCooperative, has methods
whose second argument is named super, then, in those methods, any call of the form
super.something(*args, **kw) is a shortcut for super(cls, self).something(*args,

**kw). This approach avoids the need to pass the class object as an argument to the
built-in super.

Class cls may also perfectly well have other methods that do not follow this conven-
tion, and in those methods, it may use the built-in super in the usual way: all it takes
for any method to be “normal” is to not use super as the name of its second argu-
ment, surely not a major restriction. This recipe offers nicer syntax sugar for the
common case of cooperative supercalls, where the first argument to super is the cur-
rent class—nothing more.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.13 Initializing Instance Attributes Without Using _ _init_ _ | 769

See Also
Library Reference and Python in a Nutshell docs on module inspect and the super

built-in.

20.13 Initializing Instance Attributes Without
Using _ _init_ _

Credit: Dan Perl, Shalabh Chaturvedi

Problem
Your classes need to initialize some instance attributes when they generate new
instances. If you do the initialization, as normal, in the __init__ method of your
classes, then, when anybody subclasses your classes, they must remember to invoke
your classes’ __init__ methods. Your classes often get subclassed by beginners who
forget this elementary requirement, and you’re getting tired of the resulting support
requests. You’d like an approach that beginners subclassing your classes are less
likely to mess up.

Solution
Beginners are unlikely to have heard of the __new__ method, so you can place your
initialization there, instead of in __init__:

a couple of classes that you write:
class super1(object):
 def __new__(cls, *args, **kwargs):
 obj = super(super1, cls).__new__(cls, *args, **kwargs)
 obj.attr1 = []
 return obj
 def __str__(self):
 show_attr = []
 for attr, value in sorted(self.__dict__.iteritems()):
 show_attr.append('%s:%r' % (attr, value))
 return '%s with %s' % (self.__class__.__name__,
 ', '.join(show_attr))
class super2(object):
 def __new__(cls, *args, **kwargs):
 obj = super(super2, cls).__new__(cls, *args, **kwargs)
 obj.attr2 = { }
 return obj
typical beginners' code, inheriting your classes but forgetting to
call its superclasses' __init__ methods
class derived(super1, super2):
 def __init__(self):
 self.attr1.append(111)
 self.attr3 = ()
despite the typical beginner's error, you won't get support calls:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 20: Descriptors, Decorators, and Metaclasses

d = derived()
print d
emits: derived with attr1:[111], attr2:{ }, attr3:()

Discussion
One of Python’s strengths is that it does very little magic behind the curtains—close
to nothing, actually. If you know Python in sufficient depth, you know that essen-
tially all internal mechanisms are clearly documented and exposed. This strength,
however, means that you yourself must do some things that other languages do mag-
ically, such as prefixing self. to methods and attributes of the current object and
explicitly calling the __init__ methods of your superclasses in the __init__ method
of your own class.

Unfortunately, Python beginners, particularly if they first learned from other lan-
guages where they’re used to such implicit and magical behavior, can take some time
adapting to this brave new world where, if you want something done, you do it.
Eventually, they learn. Until they have learned, at times it seems that their favorite
pastime is filling my mailbox with help requests, in tones ranging from the humble to
the arrogant and angry, complaining that “my classes don’t work.” Almost invari-
ably, this complaint means they’re inheriting from my classes, which are meant to
ease such tasks as displaying GUIs and communicating on the Internet, and they
have forgotten to call my classes’ __init__ methods from the __init__ methods of
subclasses they have coded.

To deal with this annoyance, I devised the simple solution shown in this recipe.
Beginners generally don’t know about the __new__ method, and what they don’t
know, they cannot mess up. If they do know enough to override __new__, you can
hope they also know enough to do a properly cooperative supercall using the super

built-in, rather than crudely bypassing your code by directly calling object.__new__.
Well, hope springs eternal, or so they say. Truth be told, my hopes lie in beginners’
total, blissful ignorance about __new__—and this theory seems to work because I
don’t get those kind of help requests any more. The help requests I now receive seem
concerned more with how to actually use my classes, rather than displaying funda-
mental ignorance of Python.

If you work with more advanced but equally perverse beginners, ones quite able to
mess up __new__, you should consider giving your classes a custom metaclass that, in
its __call__ (which executes at class instantiation time), calls a special hidden
method on your classes to enable you to do your initializations anyway. That
approach should hold you in good stead—at least until the beginners start learning
about metaclasses. Of course, “it is impossible to make anything foolproof, because
fools are so ingenious” (Roger Berg). Nevertheless, see recipe 20.14 “Automatic Ini-
tialization of Instance Attributes” for other approaches that avoid __init__ for
attribute initialization needs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.14 Automatic Initialization of Instance Attributes | 771

See Also
Library Reference and Python in a Nutshell documentation on special methods
__init__ and __new__, and built-in super; recipe 20.14 “Automatic Initialization of
Instance Attributes.”

20.14 Automatic Initialization of Instance
Attributes

Credit: Sébastien Keim, Troy Melhase, Peter Cogolo

Problem
You want to set some attributes to constant values, during object initialization, with-
out forcing your subclasses to call your __init__ method.

Solution
For constant values of immutable types, you can just set them in the class. For exam-
ple, instead of the natural looking:

class counter(object):
 def __init__(self):
 self.count = 0
 def increase(self, addend=1):
 self.count += addend

you can code:

class counter(object):
 count = 0
 def increase(self, addend=1):
 self.count += addend

This style works because self.count += addend, when self.count belongs to an
immutable type, is exactly equivalent to self.count = self.count + addend. The first
time this code executes for a particular instance self, self.count is not yet initial-
ized as a per-instance attribute, so the per-class attribute is used, on the right of the
equal sign (=); but the per-instance attribute is nevertheless the one assigned to (on
the left of the sign). Any further use, once the per-instance attribute has been initial-
ized in this way, gets or sets the per-instance attribute.

This style does not work for values of mutable types, such as lists or dictionaries.
Coding this way would then result in all instances of the class sharing the same
mutable-type object as their attribute. However, a custom descriptor works fine:

class auto_attr(object):
 def __init__(self, name, factory, *a, **k):
 self.data = name, factory, a, k
 def __get__(self, obj, clas=None):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 20: Descriptors, Decorators, and Metaclasses

 name, factory, a, k = self.data
 setattr(obj, name, factory(*a, **k))
 return getattr(obj, name)

With class auto_attr at hand, you can now code, for example:

class recorder(object):
 count = 0
 events = auto_attr('events', list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

Discussion
The simple and standard approach of defining constant initial values of attributes by
setting them as class attributes is just fine, as long as we’re talking about constants of
immutable types, such as numbers or strings. In such cases, it does no harm for all
instances of the class to share the same initial-value object for such attributes, and,
when you do such operations as self.count += 1, you intrinsically rebind the spe-
cific, per-instance value of the attribute, without affecting the attributes of other
instances.

However, when you want an attribute to have an initial value of a mutable type, such
as a list or a dictionary, you need a little bit more—such as the auto_attr custom
descriptor type in this recipe. Each instance of auto_attr needs to know to what
attribute name it’s being bound, so we pass that name as the first argument when we
instantiate auto_attr. Then, we have the factory, a callable that will produce the
desired initial value when called (often factory will be a type object, such as list or
dict); and finally optional positional and keyword arguments to be passed when
factory gets called.

The first time you access an attribute named name on a given instance obj, Python
finds in obj’s class the descriptor (an instance of auto_attr) and calls the descriptor’s
method __get__, with obj as an argument. auto_attr’s __get__ calls the factory and
sets the result under the right name as an instance attribute, so that any further
access to the attribute of that name in the instance gets the actual value.

In other words, the descriptor is designed to hide itself when it’s first accessed on
each instance, to get out of the way from further accesses to the attribute of the same
name on that same instance. For this purpose, it’s absolutely crucial that auto_attr is
technically a nondata descriptor class, meaning it doesn’t define a __set__ method.
As a consequence, an attribute of the same name may be set in the instance: the per-
instance attribute overrides (i.e., takes precedence over) the per-class attribute (i.e.,
the instance of a nondata descriptor class).

You can regard this recipe’s approach as “just-in-time generation” of instance
attributes, the first time a certain attribute gets accessed on a certain instance.
Beyond allowing attribute initialization to occur without an __init__ method, this

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.14 Automatic Initialization of Instance Attributes | 773

approach may therefore be useful as an optimization: consider it when each instance
has a potentially large set of attributes, maybe costly to initialize, and most of the
attributes may end up never being accessed on each given instance.

It is somewhat unfortunate that this recipe requires you to pass to auto_attr the
name of the attribute it’s getting bound to; unfortunately, auto_attr has no way to
find out for itself. However, if you’re willing to add a custom metaclass to the mix,
you can fix this little inconvenience, too, as follows:

class smart_attr(object):
 name = None
 def __init__(self, factory, *a, **k):
 self.creation_data = factory, a, k
 def __get__(self, obj, clas=None):
 if self.name is None:
 raise RuntimeError, ("class %r uses a smart_attr, so its "
 "metaclass should be MetaSmart, but is %r instead" %
 (clas, type(clas)))
 factory, a, k = self.creation_data
 setattr(obj, name, factory(*a, **k))
 return getattr(obj, name)
class MetaSmart(type):
 def __new__(mcl, clasname, bases, clasdict):
 # set all names for smart_attr attributes
 for k, v in clasdict.iteritems():
 if isinstance(v, smart_attr):
 v.name = k
 # delegate the rest to the supermetaclass
 return super(MetaSmart, mcl).__new__(mcl, clasname, bases, clasdict)
let's let any class use our custom metaclass by inheriting from smart_object
class smart_object:
 __metaclass__ = MetaSmart

Using this variant, you could code:

class recorder(smart_object):
 count = 0
 events = smart_attr(list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

Once you start considering custom metaclasses, you have more options for this rec-
ipe’s task, automatic initialization of instance attributes. While a custom descriptor
remains the best approach when you do want “just-in-time” generation of initial val-
ues, if you prefer to generate all the initial values at the time the instance is being ini-
tialized, then you can use a simple placeholder instead of smart_attr, and do more
work in the metaclass:

class attr(object):
 def __init__(self, factory, *a, **k):
 self.creation_data = factory, a, k
import inspect
def is_attr(member):

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 20: Descriptors, Decorators, and Metaclasses

 return isinstance(member, attr)
class MetaAuto(type):
 def __call__(cls, *a, **k):
 obj = super(MetaAuto, cls).__call__(*a, **k)
 # set all values for 'attr' attributes
 for n, v in inspect.getmembers(cls, is_attr):
 factory, a, k = v.creation_data
 setattr(obj, n, factory(*a, **k))
 return obj
lets' let any class use our custom metaclass by inheriting from auto_object
class auto_object:
 __metaclass__ = MetaAuto

Code using this more concise variant looks just about the same as with the previous
one:

class recorder(auto_object):
 count = 0
 events = attr(list)
 def record(self, event):
 self.count += 1
 self.events.append((self.count, event))

See Also
Recipe 20.13 “Initializing Instance Attributes Without Using __init__” for another
approach that avoids __init__ for attribute initialization needs; Library Reference
and Python in a Nutshell docs on special method __init__, and built-ins super and
setattr.

20.15 Upgrading Class Instances Automatically
on reload

Credit: Michael Hudson, Peter Cogolo

Problem
You are developing a Python module that defines a class, and you’re trying things
out in the interactive interpreter. Each time you reload the module, you have to
ensure that existing instances are updated to instances of the new, rather than the
old class.

Solution
First, we define a custom metaclass, which ensures its classes keep track of all their
existing instances:

import weakref
class MetaInstanceTracker(type):
 ''' a metaclass which ensures its classes keep track of their instances '''

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.15 Upgrading Class Instances Automatically on reload | 775

 def __init__(cls, name, bases, ns):
 super(MetaInstanceTracker, cls).__init__(name, bases, ns)
 # new class cls starts with no instances
 cls.__instance_refs__ = []
 def __instances__(cls):
 ''' return all instances of cls which are still alive '''
 # get ref and obj for refs that are still alive
 instances = [(r, r()) for r in cls.__instance_refs__ if r() is not None]
 # record the still-alive references back into the class
 cls.__instance_refs__ = [r for (r, o) in instances]
 # return the instances which are still alive
 return [o for (r, o) in instances]
 def __call__(cls, *args, **kw):
 ''' generate an instance, and record it (with a weak reference) '''
 instance = super(MetaInstanceTracker, cls).__call__(*args, **kw)
 # record a ref to the instance before returning the instance
 cls.__instance_refs__.append(weakref.ref(instance))
 return instance
class InstanceTracker:
 ''' any class may subclass this one, to keep track of its instances '''
 __metaclass__ = MetaInstanceTracker

Now, we can subclass MetaInstanceTracker to obtain another custom metaclass,
which, on top of the instance-tracking functionality, implements the auto-upgrading
functionality required by this recipe’s Problem:

import inspect
class MetaAutoReloader(MetaInstanceTracker):
 ''' a metaclass which, when one of its classes is re-built, updates all
 instances and subclasses of the previous version to the new one '''
 def __init__(cls, name, bases, ns):
 # the new class may optionally define an __update__ method
 updater = ns.pop('__update__', None)
 super(MetaInstanceTracker, cls).__init__(name, bases, ns)
 # inspect locals & globals in the stackframe of our caller
 f = inspect.currentframe().f_back
 for d in (f.f_locals, f.f_globals):
 if name in d:
 # found the name as a variable is it the old class
 old_class = d[name]
 if not isinstance(old_class, mcl):
 # no, keep trying
 continue
 # found the old class: update its existing instances
 for instance in old_class.__instances__():
 instance.__class__ = cls
 if updater: updater(instance)
 cls.__instance_refs__.append(weakref.ref(instance))
 # also update the old class's subclasses
 for subclass in old_class.__subclasses__():
 bases = list(subclass.__bases__)
 bases[bases.index(old_class)] = cls
 subclass.__bases__ = tuple(bases)
 break

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

776 | Chapter 20: Descriptors, Decorators, and Metaclasses

 return cls
class AutoReloader:
 ''' any class may subclass this one, to get automatic updates '''
 __metaclass__ = MetaAutoReloader

Here is a usage example:

an 'old class'
class Bar(AutoReloader):
 def __init__(self, what=23):
 self.old_attribute = what
a subclass of the old class
class Baz(Bar):
 pass
instances of the old class & of its subclass
b = Bar()
b2 = Baz()
we rebuild the class (normally via 'reload', but, here, in-line!):
class Bar(AutoReloader):
 def __init__(self, what=42):
 self.new_attribute = what+100
 def __update__(self):
 # compute new attribute from old ones, then delete old ones
 self.new_attribute = self.old_attribute+100
 del self.old_attribute
 def meth(self, arg):
 # add a new method which wasn't in the old class
 print arg, self.new_attribute
if __name__ == '__main__':
 # now b is "upgraded" to the new Bar class, so we can call 'meth':
 b.meth(1)
 # emits: 1 123
 # subclass Baz is also upgraded, both for existing instances...:
 b2.meth(2)
 # emits: 2 123
 # ...and for new ones:
 Baz().meth(3)
 # emits: 3 142

Discussion
You’re probably familiar with the problem this recipe is meant to address. The sce-
nario is that you’re editing a Python module with your favorite text editor. Let’s say
at some point, your module mod.py looks like this:

class Foo(object):
 def meth1(self, arg):
 print arg

In another window, you have an interactive interpreter running to test your code:

>>> import mod
>>> f = mod.Foo()
>>> f.meth1(1)
1

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.15 Upgrading Class Instances Automatically on reload | 777

and it seems to be working. Now you edit mod.py to add another method:

class Foo(object):
 def meth1(self, arg):
 print arg
 def meth2(self, arg):
 print -arg

Head back to the test session:

>>> reload(mod)
module 'mod' from 'mod.pyc'
>>> f.meth2(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'Foo' object has no attribute 'meth2'

Argh! You forgot that f was an instance of the old mod.Foo!

You can do two things about this situation. After reloading, either regenerate the
instance:

>>> f = mod.Foo()
>>> f.meth2(2)
-2

or manually assign to f.__class__:

>>> f.__class__ = mod.Foo
>>> f.meth2(2)
-2

Regenerating works well in simple situations but can become very tedious. Assign-
ing to the class can be automated, which is what this recipe is all about.

Class MetaInstanceTracker is a metaclass that tracks instances of its instances. As
metaclasses go, it isn’t too complicated. New classes of this metatype get an extra
__instance_refs__ class variable (which is used to store weak references to
instances) and an __instances__ class method (which strips out dead references
from the __instance_refs__ list and returns real references to the still live
instances). Each time a class whose metatype is MetaInstanceTracker gets instanti-
ated, a weak reference to the instance is appended to the class’ __instance_refs__

list.

When the definition of a class of metatype MetaAutoReloader executes, the
namespace of the definition is examined to determine whether a class of the same
name already exists. If it does, then it is assumed that this is a class redefinition,
instead of a class definition, and all instances of the old class are updated to the
new class. (MetaAutoReloader inherits from MetaInstanceTracker, so such instances
can easily be found). All direct subclasses, found through the old class’ intrinsic
__subclasses__ class method, then get their __bases__ tuples rebuilt with the same
change.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

778 | Chapter 20: Descriptors, Decorators, and Metaclasses

The new class definition can optionally include a method __update__, whose job is
to update the state (meaning the set of attributes) of each instance, as the instance’s
class transitions from the old version of the class to the new one. The usage example
in this recipe’s Solution presents a case in which one attribute has changed name and
is computed by different rules, as you can tell by observing the way the __init__

methods of the old and new versions are coded; in this case, the job of __update__ is
to compute the new attribute based on the value of the old one, then del the old
attribute for tidiness.

This recipe’s code should probably do more thorough error checking; Net of error-
checking issues, this recipe can also supply some fundamental tools to start solving a
problem that is substantially harder than the one explained in this recipe’s Problem
statement: automatically upgrade classes in a long-running application, without
needing to stop and restart that application.

Doing automatic upgrading in production code is more difficult than doing it during
development because many more issues must be monitored. For example, you may
need a form of locking to ensure the application is in a quiescent state while a num-
ber of classes get upgraded, since you probably don’t want to have the application
answering requests in the middle of the upgrading procedure, with some classes or
instances already upgraded and others still in their old versions. You also often
encounter issues of persistent storage because the application probably needs to
update whatever persistent storage it keeps from old to new versions when it
upgrades classes. And those are just two examples. Nevertheless, the key component
of such on-the-fly upgrading, which has to do with updating instances and sub-
classes of old classes to new ones, can be tackled with the tools shown in this recipe.

See Also
Docs for the built-in function reload in the Library Reference and Python in a Nut-
shell.

20.16 Binding Constants at Compile Time
Credit: Raymond Hettinger, Skip Montanaro

Problem
Runtime lookup of global and built-in names is slower than lookup of local names.
So, you would like to bind constant global and built-in names into local constant
names at compile time.

Solution
To perform this task, we must examine and rewrite bytecodes in the function’s code
object. First, we get three names from the standard library module opcode, so we can

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.16 Binding Constants at Compile Time | 779

operate symbolically on bytecodes, and define two auxiliary functions for bytecode
operations:

from opcode import opmap, HAVE_ARGUMENT, EXTENDED_ARG
globals().update(opmap)
def _insert_constant(value, i, code, constants):
 ''' insert LOAD_CONST for value at code[i:i+3]. Reuse an existing
 constant if values coincide, otherwise append new value to the
 list of constants; return index of the value in constants. '''
 for pos, v in enumerate(constants):
 if v is value: break
 else:
 pos = len(constants)
 constants.append(value)
 code[i] = LOAD_CONST
 code[i+1] = pos & 0xFF
 code[i+2] = pos >> 8
 return pos
def _arg_at(i, code):
 ''' return argument number of the opcode at code[i] '''
 return code[i+1] | (code[i+2] << 8)

Next comes the workhorse, the internal function that does all the binding and fold-
ing work:

def _make_constants(f, builtin_only=False, stoplist=(), verbose=False):
 # bail out at once, innocuously, if we're in Jython, IronPython, etc
 try: co = f.func_code
 except AttributeError: return f
 # we'll modify the bytecodes and consts, so make lists of them
 newcode = map(ord, co.co_code)
 codelen = len(newcode)
 newconsts = list(co.co_consts)
 names = co.co_names
 # Depending on whether we're binding only builtins, or ordinary globals
 # too, we build dictionary 'env' to look up name->value mappings, and we
 # build set 'stoplist' to selectively override and cancel such lookups
 import __builtin__
 env = vars(__builtin__).copy()
 if builtin_only:
 stoplist = set(stoplist)
 stoplist.update(f.func_globals)
 else:
 env.update(f.func_globals)
 # First pass converts global lookups into lookups of constants
 i = 0
 while i < codelen:
 opcode = newcode[i]
 # bail out in difficult cases: optimize common cases only
 if opcode in (EXTENDED_ARG, STORE_GLOBAL):
 return f
 if opcode == LOAD_GLOBAL:
 oparg = _arg_at(i, newcode)
 name = names[oparg]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

780 | Chapter 20: Descriptors, Decorators, and Metaclasses

 if name in env and name not in stoplist:
 # get the constant index to use instead
 pos = _insert_constant(env[name], i, newcode, newconsts)
 if verbose: print '%r -> %r[%d]' % (name, newconsts[pos], pos)
 # move accurately to the next bytecode, skipping arg if any
 i += 1
 if opcode >= HAVE_ARGUMENT:
 i += 2
 # Second pass folds tuples of constants and constant attribute lookups
 i = 0
 while i < codelen:
 newtuple = []
 while newcode[i] == LOAD_CONST:
 oparg = _arg_at(i, newcode)
 newtuple.append(newconsts[oparg])
 i += 3
 opcode = newcode[i]
 if not newtuple:
 i += 1
 if opcode >= HAVE_ARGUMENT:
 i += 2
 continue
 if opcode == LOAD_ATTR:
 obj = newtuple[-1]
 oparg = _arg_at(i, newcode)
 name = names[oparg]
 try:
 value = getattr(obj, name)
 except AttributeError:
 continue
 deletions = 1
 elif opcode == BUILD_TUPLE:
 oparg = _arg_at(i, newcode)
 if oparg != len(newtuple):
 continue
 deletions = len(newtuple)
 value = tuple(newtuple)
 else:
 continue
 reljump = deletions * 3
 newcode[i-reljump] = JUMP_FORWARD
 newcode[i-reljump+1] = (reljump-3) & 0xFF
 newcode[i-reljump+2] = (reljump-3) >> 8
 pos = _insert_constant(value, i, newcode, newconsts)
 if verbose: print "new folded constant: %r[%d]" % (value, pos)
 i += 3
 codestr = ''.join(map(chr, newcode))
 codeobj = type(co)(co.co_argcount, co.co_nlocals, co.co_stacksize,
 co.co_flags, codestr, tuple(newconsts), co.co_names,
 co.co_varnames, co.co_filename, co.co_name,
 co.co_firstlineno, co.co_lnotab, co.co_freevars,
 co.co_cellvars)
 return type(f)(codeobj, f.func_globals, f.func_name, f.func_defaults,
 f.func_closure)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.16 Binding Constants at Compile Time | 781

Finally, we use _make_constants to optimize itself and its auxiliary function, and
define the functions that are meant to be called from outside this module to perform
the optimizations that this module supplies:

optimize thyself!
_insert_constant = _make_constants(_insert_constant)
_make_constants = _make_constants(_make_constants)
import types
@_make_constants
def bind_all(mc, builtin_only=False, stoplist=(), verbose=False):
 """ Recursively apply constant binding to functions in a module or class.
 """
 try:
 d = vars(mc)
 except TypeError:
 return
 for k, v in d.items():
 if type(v) is types.FunctionType:
 newv = _make_constants(v, builtin_only, stoplist, verbose)
 setattr(mc, k, newv)
 elif type(v) in (type, types.ClassType):
 bind_all(v, builtin_only, stoplist, verbose)
@_make_constants
def make_constants(builtin_only=False, stoplist=[], verbose=False):
 """ Call this metadecorator to obtain a decorator which optimizes
 global references by constant binding on a specific function.
 """
 if type(builtin_only) == type(types.FunctionType):
 raise ValueError, 'must CALL, not just MENTION, make_constants'
 return lambda f: _make_constants(f, builtin_only, stoplist, verbose)

Discussion
Assuming you have saved the code in this recipe’s Solution as module optimize.py
somewhere on your Python sys.path, the following example demonstrates how to
use the make_constants decorator with arguments (i.e., metadecorator) to optimize a
function—in this case, a reimplementation of random.sample:

import random
import optimize
@optimize.make_constants(verbose=True)
def sample(population, k):
 " Choose `k' unique random elements from a `population' sequence. "
 if not isinstance(population, (list, tuple, str)):
 raise TypeError('Cannot handle type', type(population))
 n = len(population)
 if not 0 <= k <= n:
 raise ValueError, "sample larger than population"
 result = [None] * k
 pool = list(population)
 for i in xrange(k): # invariant: non-selected at [0,n-i)
 j = int(random.random() * (n-i))
 result[i] = pool[j]

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

782 | Chapter 20: Descriptors, Decorators, and Metaclasses

 pool[j] = pool[n-i-1] # move non-selected item into vacancy
 return result

Importing this module emits the following output. (Some details, such as the
addresses and paths, will, of course, vary.)

'isinstance' -> <built-in function isinstance>[6]

'list' -> <type 'list'>[7]
'tuple' -> <type 'tuple'>[8]
'str' -> <type 'str'>[9]
'TypeError' -> <class exceptions.TypeError at 0x402952cc>[10]
'type' -> <type 'type'>[11]
'len' -> <built-in function len>[12]
'ValueError' -> <class exceptions.ValueError at 0x40295adc>[13]
'list' -> <type 'list'>[7]
'xrange' -> <type 'xrange'>[14]
'int' -> <type 'int'>[15]
'random' -> <module 'random' from '/usr/local/lib/python2.4/random.pyc'>[16]
new folded constant: (<type 'list'>, <type 'tuple'>, <type 'str'>)[17]
new folded constant: <built-in method random of Random object at 0x819853c>[18]

On my machine, with the decorator optimize.make_constants as shown in this snip-
pet, sample(range(1000), 100) takes 287 microseconds; without the decorator (and
thus with the usual bytecode that the Python 2.4 compiler produces), the same oper-
ation takes 333 microseconds. Thus, using the decorator improves performance by
approximately 14% in this example—and it does so while allowing your own func-
tions’ source code to remain pristine, without any optimization-induced obfusca-
tion. On functions making use of more constant names within loops, the
performance benefit of using this recipe’s decorator can be correspondingly greater.

A common and important technique for manual optimization of a Python function,
once that function is shown by profiling to be a bottleneck of program performance,
is to ensure that all global and built-in name lookups are turned into lookups of local
names. In the source of functions that have been thus optimized, you see strange
arguments with default values, such as _len=len, and the body of the function uses
this local name _len to refer to the built-in function len. This kind of optimization is
worthwhile because lookup of local names is much faster than lookup of global and
built-in names. However, functions thus optimized can become cluttered and less
readable. Moreover, optimizing by hand can be tedious and error prone.

This recipe automates this important optimization technique: by just mentioning a
decorator before the def statement, you get all the constant bindings and foldings,
while leaving the function source uncluttered, readable, and maintainable. After
binding globals to constants, the decorator makes a second pass and folds constant
attribute lookups and tuples of constants. Constant attribute lookups often occur
when you use a function or other attribute from an imported module, such as the use
of random.random in the sample function in the example snippet. Tuples of constants
commonly occur in for loops and conditionals using the in operator, such as for x

in ('a', 'b', 'c'). The best way to appreciate the bytecode transformations

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.17 Solving Metaclass Conflicts | 783

performed by the decorator in this recipe is to run “dis.dis(sample)” and view the
disassembly into bytecodes, both with and without the decorator.

If you want to optimize every function and method in a module, you can call
optimize.bind_all(sys.modules[__name__]) as the last instruction in the module’s
body, before the tests. To optimize every method in a class, you can call
optimize.bind_all(theclass) just after the end of the body of the class theclass

statement. Such wholesale optimization is handy (it does not require you to deal
with any details) but generally not the best approach. It’s best to bind, selectively,
only functions whose speed is important. Functions that particularly benefit from
constant-binding optimizations are those that refer to many global and built-in
names, particularly with references in loops.

To ensure that the constant-binding optimizations do not alter the behavior of your
code, apply them only where dynamic updates of globals are not desired (i.e., the
globals do not change). In more dynamic environments, a more conservative
approach is to pass argument builtin_only as True, so that only the built-ins get opti-
mized (built-ins include functions such as len, exceptions such as IndexError, and
such constants as True or False). Alternatively, you can pass a sequence of names as
the stoplist argument, to tell the binding optimization functions to leave unchanged
any reference to those names.

While this recipe is meant for use with Python 2.4, you can also use this approach in
Python 2.3, with a few obvious caveats. In particular, in version 2.3, you cannot use
the new 2.4 @decorator syntax. Therefore, to use in Python 2.3, you’ll have to tweak
the recipe’s code a little, to expose _make_constants directly, without a leading
underscore, and use f=make_constants(f) in your code, right after the end of the
body of the def f statement. However, if you are interested in optimization, you
should consider moving to Python 2.4 anyway: Python 2.4 is very compatible with
Python 2.3, with just a few useful additions, and version 2.4 is generally measurably
faster than Python 2.3.

See Also
Library Reference and Python in a Nutshell docs on the opcode module.

20.17 Solving Metaclass Conflicts
Credit: Michele Simionato, David Mertz, Phillip J. Eby, Alex Martelli, Anna Martelli
Ravenscroft

Problem
You need to multiply inherit from several classes that may come from several meta-
classes, so you need to generate automatically a custom metaclass to solve any possi-
ble metaclass conflicts.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

784 | Chapter 20: Descriptors, Decorators, and Metaclasses

Solution
First of all, given a sequence of metaclasses, we want to filter out “redundant”
ones—those that are already implied by others, being duplicates or superclasses.
This job nicely factors into a general-purpose generator yielding the unique, nonre-
dundant items of an iterable, and a function using inspect.getmro to make the set of
all superclasses of the given classes (since superclasses are redundant):

support 2.3, too
try: set
except NameError: from sets import Set as set
support classic classes, to some extent
import types
def uniques(sequence, skipset):
 for item in sequence:
 if item not in skipset:
 yield item
 skipset.add(item)
import inspect
def remove_redundant(classes):
 redundant = set([types.ClassType]) # turn old-style classes to new
 for c in classes:
 redundant.update(inspect.getmro(c)[1:])
 return tuple(uniques(classes, redundant))

Using the remove_redundant function, we can generate a metaclass that can resolve
metatype conflicts (given a sequence of base classes, and other metaclasses to inject
both before and after those implied by the base classes). It’s important to avoid gen-
erating more than one metaclass to solve the same potential conflicts, so we also
keep a “memoization” mapping:

memoized_metaclasses_map = { }
def _get_noconflict_metaclass(bases, left_metas, right_metas):
 # make tuple of needed metaclasses in specified order
 metas = left_metas + tuple(map(type, bases)) + right_metas
 needed_metas = remove_redundant(metas)
 # return existing confict-solving meta, if any
 try: return memoized_metaclasses_map[needed_metas]
 except KeyError: pass
 # compute, memoize and return needed conflict-solving meta
 if not needed_metas: # whee, a trivial case, happy us
 meta = type
 elif len(needed_metas) == 1: # another trivial case
 meta = needed_metas[0]
 else: # nontrivial, darn, gotta work...
 # ward against non-type root metatypes
 for m in needed_metas:
 if not issubclass(m, type):
 raise TypeError('Non-type root metatype %r' % m)
 metaname = '_' + ''.join([m.__name__ for m in needed_metas])
 meta = classmaker()(metaname, needed_metas, { })
 memoized_metaclasses_map[needed_metas] = meta
 return meta

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.17 Solving Metaclass Conflicts | 785

def classmaker(left_metas=(), right_metas=()):
 def make_class(name, bases, adict):
 metaclass = _get_noconflict_metaclass(bases, left_metas, right_metas)
 return metaclass(name, bases, adict)
 return make_class

The internal _get_noconflict_metaclass function, which returns (and, if needed,
builds) the conflict-resolution metaclass, and the public classmaker closure must be
mutually recursive for a rather subtle reason. If _get_noconflict_metaclass just built
the metaclass with the reasonably common idiom:

 meta = type(metaname, needed_metas, { })

it would work in all ordinary cases, but it might get into trouble when the meta-
classes involved have custom metaclasses themselves! Just like “little fleas have lesser
fleas,” so, potentially, metaclasses can have meta-metaclasses, and so on—fortu-
nately not “ad infinitum,” pace Augustus De Morgan, so the mutual recursion does
eventually terminate.

The recipe offers minimal support for old-style (i.e., classic) classes, with the simple
expedient of initializing the set redundant to contain the metaclass of old-style
classes, types.ClassType. In practice, this recipe imposes automatic conversion to
new-style classes. Trying to offer more support than this for classic classes, which are
after all a mere legacy feature, would be overkill, given the confused and confusing
situation of metaclass use for old-style classes.

In all of our code outside of this noconflict.py module, we will only use
noconflict.classmaker, optionally passing it metaclasses we want to inject, left and
right, to obtain a callable that we can then use just like a metaclass to build new class
objects given names, bases, and dictionary, but with the assurance that metatype
conflicts cannot occur. Phew. Now that was worth it, wasn’t it?!

Discussion
Here is the simplest case in which a metatype conflict can occur: multiply inheriting
from two classes with independent metaclasses. In a pedagogically simplified toy-
level example, that could be, say:

>>> class Meta_A(type): pass
...
>>> class Meta_B(type): pass
...
>>> class A: __metaclass__ = Meta_A
...
>>> class B: __metaclass__ = Meta_B
...
>>> class C(A, B): pass
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Error when calling the metaclass bases
 metaclass conflict: the metaclass of a derived class must be a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

786 | Chapter 20: Descriptors, Decorators, and Metaclasses

(non-strict) subclass of the metaclasses of all its bases
>>>

A class normally inherits its metaclass from its bases, but when the bases have dis-
tinct metaclasses, the metatype constraint that Python expresses so tersely in this
error message applies. So, we need to build a new metaclass, say Meta_C, which inher-
its from both Meta_A and Meta_B. For a demonstration of this need, see the book
that’s so aptly considered the bible of metaclasses: Ira R. Forman and Scott H. Dan-
forth, Putting Metaclasses to Work: A New Dimension in Object-Oriented Program-
ming (Addison-Wesley).

Python does not do magic: it does not automatically create the required Meta_C.
Rather, Python raises a TypeError to ensure that the programmer is aware of the
problem. In simple cases, the programmer can solve the metatype conflict by hand,
as follows:

>>> class Meta_C(Meta_A, Meta_B): pass
>>> class C(A, B): __metaclass__ = Meta_C

In this case, everything works smoothly.

The key point of this recipe is to show an automatic way to resolve metatype con-
flicts, rather than having to do it by hand every time. Having saved all the code from
this recipe’s Solution into noconflict.py somewhere along your Python sys.path, you
can make class C with automatic conflict resolution, as follows:

>>> import noconflict
>>> class C(A, B): __metaclass__ = noconflict.classmaker()

The call to the noconflict.classmaker closure returns a function that, when Python
calls it, obtains the proper metaclass and uses it to build the class object. It cannot
yet return the metaclass itself, but that’s OK—you can assign anything you want to
the __metaclass__ attribute of your class, as long as it’s callable with the (name,
bases, dict) arguments and nicely builds the class object. Once again, Python’s signa-
ture-based polymorphism serves us well and unobtrusively.

Automating the resolution of the metatype conflict has many pluses, even in simple
cases. Thanks to the “memoizing” technique used in noconflict.py, the same conflict-
resolving metaclass is used for any occurrence of a given sequence of conflicting
metaclasses. Moreover, with this approach you may also explicitly inject other meta-
classes, beyond those you get from your base classes, and again you can avoid con-
flicts. Consider:

>>> class D(A): __metaclass__ = Meta_B
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: Error when calling the metaclass bases
 metaclass conflict: the metaclass of a derived class must be a
(non-strict) subclass of the metaclasses of all its bases

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.17 Solving Metaclass Conflicts | 787

This metatype conflict is resolved just as easily as the former one:

>>> class D(A): __metaclass__ = noconflict.classmaker((Meta_B,))

The code presented in this recipe’s Solution takes pains to avoid any subclassing that
is not strictly necessary, and it also uses mutual recursion to avoid any meta-level of
meta-meta-type conflicts. You might never meet higher-order-meta conflicts any-
way, but if you adopt the code presented in this recipe, you need not even worry
about them.

Thanks to David Mertz for help in polishing the original version of the code. This
version has benefited immensely from discussions with Phillip J. Eby. Alex Martelli
and Anna Martelli Ravenscroft did their best to make the recipe’s code and discus-
sion as explicit and understandable as they could. The functionality in this recipe is
not absolutely complete: for example, it supports old-style classes only in a rather
backhanded way, and it does not really cover such exotica as nontype metatype roots
(such as Zope 2’s old ExtensionClass). These limitations are there primarily to keep
this recipe as understandable as possible. You may find a more complete implemen-
tation of metatype conflict resolution at Phillip J. Eby’s PEAK site, http://
peak.telecommunity.com/, in the peak.util.Meta module of the PEAK framework.

See Also
Ira R. Forman and Scott H. Danforth, Putting Metaclasses to Work: A New Dimen-
sion in Object-Oriented Programming (Addison-Wesley); Michele Simionato’s essay,
“Method Resolution Order,” http://www.python.org/2.3/mro.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

789

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
\ (backslash), 5, 58, 717
, (comma), 15
".join (empty string joiner), 9, 33
+ operator, 13
<< operator, 83
#! (shebang), 68
/ (slash), 58
% (string-formatting operator), 7, 13, 37
_ (underscore), 563

Numbers
4Suite package, 464

A
Access, 289
accessing

attributes of instance objects, 230
MySQL database, 310

Active Server Pages (ASP), 526
ActivePython, 326
ActiveX Data Objects (ADO), 162
Adapter Design Pattern, 88
adaptive sorting algorithms, 194
__add__, 232
adding items to sequences while preserving

sortedness, 206
ADO (ActiveX Data Objects), 162

using Microsoft Jet via, 325
algorithms, 643–688

performance issues, 205

antispam system, configuring, 406
Apache

authenticating SSL client over
HTTPS, 582

calculating hits per IP address, 398
calculating rate of client cache hits

on, 400
APIs, cross-platform, file locking using, 103
append method (list objects), 15
applications

message loops, Windows, 382
multithreaded, 372–374
relational database design

inappropriateness for, 289
Win32, message processing with

MsgWaitForMultipleObjects, 381–
384

application-specific languages, 587–589
archiving tree of files into compressed tar

file, 80
*args syntax, 163
arithmetic

binary floating-kpoint, simulation, 693
decimal, 135
floating-point, simulating, 682–685
with error propagation, 677–679

arrays
C, translating Python sequence

into, 631–634
transposing two-dimensional, 161

ASCII characters in text strings, 4
ASP (Active Server Pages), 526
assert, 269
assigning/testing expression results, 180–183

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

790 | Index

asynchat module, 559
asyncore module, 559

performance benefits, 356
atomic operations, 357
attachments, removing from email

messages, 499–501
attributes

adding to classes, 240
checking objects for, 266–269
hiding those supplied by delegate, 247
named, tuple items accessible as, 250–252
restricting setting in classes, 240
settings for

restricting in classes, 240
__setattr__ method, 237

authentication
HTTPS navigation through proxies, 541
remote logins

SSH, 579–581
Telnet, 576–579

SSL client over HTTPS, 582
via POP server, 397

automatic caching, 29, 656
automatic delegation, 248

as alternative to inheritance, 244–247
wrapping by, 246

B
backslash (\), 5, 58, 717
backups, 403

versioning filenames, 105
backwards compatibility

classic classes for new code
development, 282

inheritance in Python, 234
bag (multiset), 662–666
basestring type, 9
Berkeley DB (Berkeley database), persisting

data with, 307–309
big-O analysis and notation, 199
binary data, sending to Windows standard

output, 82
binary files

randomly reading bytes from, 74
sequentially reading bytes from, 59, 66

binary large objects (BLOBs), 290
binary mode versus text mode (files), 59
binary search algorithm, 211
binary strings, formatting integers as, 671–675
binding attributes of instance objects, 230
bisect (binary search), 211

bisect_right function, 211
bits, printing integer as string of, 683
BLOBs (binary large objects), 290

storing in
MySQL, 312
PostgreSQL, 313
SQLite, 315

Borg class, 276
avoiding Singleton Design Pattern

with, 273–277
Borg design nonpattern, alternative to, 275
bound methods, 42

held by objects, pickling, 300–302
maintaining references to without

inhibiting garbage collection, 256
weak references to, 258

bounded precision, 113
bsddb package, 307–309
bsddb3 package, 307–309
building

C extensions, 619–622
with Pyrex, 623–624

classes via metaclasses, 236
dictionaries, 166–169
empty class instance, 254
list comprehensions, 609–611
lists, 7, 151, 155
modules, tools for, 617

__builtin__ module, 188
built-in type, inheriting, 235
bytecodes, multiple, 357
bytes, as distinguished from characters, 1

CRC-64 computation on stream
of, 107–109

extracting from strings, 28
randomly reading from binary file, 74
sequentially reading from binary file, 66
sequentially reading from binary files, 59

bytestrings, 45

C
C extensions

building, 619–622
with Pyrex, 623–624

debugging, 639
C++ library, using in Python, 625–627
C programming language

coding Python extensions, 357
cPickle as built-in module for

storing/retrieving data, 290
(see also cPickle module)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 791

C++ syntax for I/O, 83
caching

attribute values, 750–752
automatic, 29, 656
with FIFO pruning, 660–662

callback functions, avoiding lambda in
writing, 426

candygram module, 372–374
case-insensitive text strings, 52–57
Celsius temperature, converting to other

scales, 235
center method (string objects), 11
CGI (Common Gateway Interface), 341, 527

programs, 341
scripts (see CGI scripts)
testing, 527–530
uploading files with, 532

CGI scripts, 527
handling URLs in, 530–532
using Microsoft Jet via ADO, 325

Chainmap class, 243
ChangeCheckerMixin class, 264
characters, 8

accented, entering in Tkinter widgets, 430
characters method, 468
class

instances, upgrading on reload, 774–778
objects, 230
statement, 230

_ _class_ _ attribute, 255
classes

adding attributes to, 240
chaining dictionary lookups, 242
classic, as legacy feature, 234
creating new instances of, 230
defining through inheritance, 232
finding all methods of, 757
functionality supplying across range

of, 233
instance, changing on the fly, 255
instantiating, 231
restricting attribute setting, 240
saving/restoring with cPickle, 297–300
Singleton, 272
subclassing, 232
(see also metaclasses)

closures, 21
CLSID (globally unique identifier), 411
Cocoa toolkit, building GUI

programmatically, 459–461

code
development, classic classes not

recommended for, 282
maintaining by use of new-style

classes, 235
programming, 235

databases and, 288
reusing through inheritance, 232

code objects
altering in a decorator, 778
extracting from __init__ objects, 300
inserting in dynamically generated

modules, 591
pickling, 302–305

codecs module, printing Unicode characters
to standard output, 48

collecting named items, 178–180
collections.deque

subclassing for ring buffer
implementation, 261

using for FIFO implementations, 659
COM

connecting to running instance of Internet
Explorer, 415

driving ADO and Jet with, 325
driving Microsoft Word with, 102
parsing XML with MSHTML, 483
reading Microsoft Outlook

contacts, 416–418
registering/unregistering DLLs, 412

comma (,), 15
commands

running repeatedly, 131
scheduling, 133

comments, tracing in debug mode, 339–342
Common Gateway Interface (see CGI)
Common Object Request Broker

Architecture (see CORBA)
comparison key (for sorting), 203
composition, 597
compression

of objects, 296
persistence with, 297

computer games, relational database design
inappropriate for, 289

computers, monitoring, 506
concurrent programming, 356
conditionals. disabling while debugging, 333
connecting to running instance of Internet

Explorer, 415

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

792 | Index

_const class, 240
constants, defining, 238
const.py module, 239
containsAny method, 17
containsOnly method, 18
content type, checking via HTTP, 535
converting

among image formats, 434–437
among temperature scales, 235
characters to numeric code, 8
Python source into HTML

markup, 598–601
text strings, 45

to lowercase/uppercase, 26
time zones, 130

cookies
handling while fetching web

pages, 538–541
Internet Explorer, finding, 543–545

__copy__ method, 254
copy module, 148
copy.copy function, 254
copying

mailbox files, 405
objects, 148–150

copy_reg module, extending pickle/cPickle
modules, 302

CORBA (Common Object Request Broker
Architecture), 558, 560

implementing server and client, 574–576
CoreGraphics module, 100
counts method, 201
cPickle module, 290

classes and instances, 297–300
serializing data, 293–296
using compression with, 296
(see also pickling), 300

CRCs (cyclic redundancy checks), 107
CreateMutex function, 381
creating

class instances, 230
share on Windows, 414

cStringIO module, 61, 79
ctypes module, 411
currying, 594–597
cursor objects, 317
custom metaclasses, synchronization

and, 361
cyclic redundancy checks (CRCs), 107

D
daemon processes, forking on Unlx-like

systems, 388–390
daemon threads, 358
data

Excel, accessing with Jython, 330
hierarchical structuring of, 265
saving/retrieving with support for

selecting/searching, 310
serializing

marshal module, 291–293
pickle and cPickle modules, 293–296

database cursors, printing contents
of, 320–323

databases, 288, 307–331
applications providing transaction

support/concurrency control, 290
persistence, compression and, 297
programming issues, 288
relational (see relational databases)

datagram sockets (UDP), 487–489
monitoring network status, 511–513
using for SNTP, 492

date/time, 110–135
calculating

number of holidays, 124–127
number of weekdays, 122
time periods in date range, 120
yesterday/tomorrow, 116

checking for daylight saving time, 129
converting time zones, 130
datetime module, 112
finding date of previous weekday, 118
getting time from server via SNTP

protocol, 491
parsing fuzzy dates, 127
running commands repeatedly, 131
summing song durations, 121
time module, 110–112
timedelta module

timedelta type, 116–119, 121
datetime module, 112, 116, 120

calculating number of weekdays, 123
date/timescheduling commands, 133
dateutil module, 120

automatic holiday lookups, 124
calculating number of weekdays, 123

daylight saving time, checking for, 129

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 793

DB API modules, single parameter passing
style across various, 323–325

db_row (Python Database Row
Module), 320

DDList class, 429
deadlocks, 376

avoiding by nonblocking output and error
streams, 386–388

debug mode, tracing
expressions/comments, 339–342

debugging, 332–354
C extensions, 639
disabling conditions and loops, 333
exception handling, 337–339
garbage collection, 336, 337
property function, 253
starting debugger automatically after

uncaught exception, 345–348
threads in processes, 363
tracebacks, 342–345
unit tests

checking values against, 352–354
running automatically, 348
running simply, 346

decimal module, 113–116, 135–141
decimal numeric data type, 113
decorate-sort-undecorate (DSU), 190
decorators, 740–787

altering code objects in, 778
__deepcopy__ method, 256
def statement, defining methods with, 231
default values/bounds, using with

tkSimpleDialog functions, 427
__delattr__ method, 245
delegation, 233

flexibility of, 246
in proxies, 247–250
(see also automatic delegation)

description attribute, 316
cursors, 321

descriptors, 740–787
design patterns, 269–278

Adapter, 88
Monostate, 276
Null Object, 277–280
object-oriented, 230
Reactor, 570–573
Singleton, 230, 271–277
State, 269–271

Strategy, 270
Template Method, 226, 233

design tools, relational database design in
appropriate for, 289

dict (built-in type), 167
fromkeys classmethod, 176

dictionaries
adding entries to, 165
building, 166–169
chaining lookups, 242
dispatching methods/functions with, 175
enriching type of, with rating

functionality, 222–226
extracting subsets from, 170
finding unions/intersections of, 176
getting values from, 163
inverting, 171
keys in (see dictionary keys)
mapping column names to index

values, 316
sorting, 195
using for search tasks, 190
(see also mappings)

dictionary keys
associating multiple values to, 173
avoiding quoting in dictionary

building, 166
directories

computing relative path, 96
finding files in, 91–96
sharing on Windows, 414
trees (see directory trees)

directory trees
changing file extensions in, 90
walking, 88

dispatching
generators as co-routines, 691
methods via dictionaries, 175

distributed programming, 558–583
error handling in, 571

distutils package, 611
division, true versus truncating, 26
DLLs (dynamic link libraries), Windows

calling functions from, 627–629
registering/unregistering, 411

docstrings, 351
doctest module, 222, 333
DOM (Document Object Model), 464
drag-and-drop reordering, adding to a

Tkinter listbox, 428

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

794 | Index

DSU (decorate-sort-undecorate), 190
sorting lists of objects by their

attributes, 198
sorting lists of strings ignoring case, 196
sorting strings with embedded

numbers, 204
dtuple module, 319
duck typing, 10
dump and dumps functions

marshal module, 291–293
pickle/cPickle modules, 293–296

duplicates, removing from
sequences, 647–653

Dynamic IP protocol (DNS), 519–522
dynamic link libraries (see DLLs)

E
EAFP (easier to ask forgiveness than

permission), 10
email addresses, building whitelist of, from

mailboxes, 406
email messages

blocking duplicates, 408
in Python 2.4, 501–503
logging to disk, 522–524
malformed, 503

POP3 mailboxes, 503, 505
removing attachments from, 499–501

email module, 409
email package, 405

bundling files in MIME messages, 495
embedding Python, 616–642
empty string joiner (".join), 9, 33
encoding

types of, 47
Unicode for XML/HTML, 49
XML, autodetecting, 469–471

enumerate function, 154
enumerations, simulating, 606–609
__eq__ method, adding to Borg class, 274
Erlang’s approach to thread

communication, 373
error handling, 332

EAFP approach, 10
in distributed programming, 571
in Unicode encoding, 50–52
in XML parsing, 477
via exceptions, 337–339

event-driven programming, 356
multithreading compared to, 359

Excel (see Microsoft Excel)
exception handling, 337–339

starting debugger automatically after
uncaught exception, 345–348

within expressions, 185
exec statement, 187, 591

power of, 593
executables, making from scripts

in Windows with p2exe, 611
Unix, 613–615

expand function, 35
expandtabs method, 33
Expat parser (XML), 463
expressions

as distinct from statements, 666, 765
handling exceptions in, 185
tracing in debug mode, 339–342

extend method, 15
extending Python, 616–642
extract_stack function, 340

F
factory functions

closures, 20, 361
metaclasses, 771–774
tuple subclasses, 249

fade-in windows, implementing with
IronPython, 461

Fahrenheit temperature, converting to other
scales, 235

farey fractions, converting numbers to
rationals, 675–677

FeedParser module, 501, 503
fetch data from databases incrementally, 719
Fibonacci sequence, 697
FIFO (first-in, first-out)

pruning, caching with, 660–662
FIFO (first-in, first-out) implementations,

using collections.deque for, 659
file extensions, changing in directory trees, 90
file objects, 87
filenames, versioning, 105
files, 58–109

archiving into compressed tar file, 80
attributes, changing on Windows, 100
backing up, 403

versioning filenames, 105
binary mode versus text mode, 59
bundling in MIME messages, 495–497
C++ approach to I/O, 83

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 795

code portability, 60–62
counting lines in, 69–72
dynamically changing search path, 94
extensions (see file extensions)
finding

in directories, 91–96
on search path, 93

HTTP downloading, resuming, 536
input, rewinding, 84–87
locking

types of locks, 104
with cross-platform API, 103

mailbox, selectively copying, 405
names (see filenames)
objects (see file objects)
OpenOffice.org, extracting text from, 101
OPML, generating, 545–548
PDF (see PDF files)
processing words in, 72
pseudo-files
random-access

input/output, 74
updating, 75

reading, 62–65
by specific line, 68

searching/replacing text in, 67
uploading with CGI, 532
walking directory trees, 88
Word, extracting text from, 102
writing to, 66
zip, 77, 79

filtering
list of FTP sites, 490
text strings for set of characters, 22–25

filter_rdf function, 480
find method, subsequences in sequences, 221
finding

all methods of classes, 757
date of previous weekday, 118
files in directories, 91–96
Internet Explorer cookie, 543–545
subsequences in sequences, 157
unions/intersections of dictionaries, 176

first-class objects, 230
floating point, 113
floating-point

arithmetic, 135
arithmetic, simulating, 682–685

FOAF (Friend-Of-A-Friend), 545
folders (see directories)
foreign exchange rates, monitoring, 144

formatter.AbstractFormatter class, 57
Friend-Of-A-Friend (FOAF), 545
FTP sites, filtering list of, 490
functions

built-in, trying special methods in specific
order, 232

composing, 597
dispatching with dictionaries, 175
executing in parallel on multiple argument

sets, 369–371
I/O bound, 371
polymorphism of, 267
portability, 62

G
Gadfly, 290
garbage collection

cyclic, avoiding, 337
debugging, 336, 337
maintaining references to bound methods

without inhibiting, 256
gc module, 336
generator expressions, 153
generators, 689–739
generic programming, 232
genetic sequencing information, archiving,

relational database design for, 290
get method, 35

dictionary values, 163
extracting subsets from dictionaries, 170
lists and, 153
values from dictionaries, 163

__getattr__ method, 245, 248
__getitem__ method, 161, 202
getItems method, 561, 562
getQualifiedURL function, 531
_getS method, 253
__getstate__ method, 255
GetSubList method, 445
GetText method, 445
getvalue method, 338
GIF images, inline, embedding using

Tkinter, 432
GIL (Global Interpreter Lock), 356

Python C APIs and, 357
Gimp toolkit (GTK), 423
Global Interpreter Lock (see GIL)
globally unique identifier (CSLID), 411
GMP (Gnu Multiple Precision), 683
Graham’s scan algorithm, 686

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

796 | Index

groupby function, 227
_groupkeyfunc function, 227
groupnames function, 227
GTK (Gimp toolkit), 423
GUI toolkits, 423
GUIs

asynchronous I/O, combining with
threads, 439–443

concurrent programming and, 356
Python Cocoa, building

programmatically, 459–461
(see also user interfaces)

gzip module
compressing backup files, 404
using compression with, 296

H
handling exceptions (see exception handling)
__hash__ method, adding to Borg class, 274
Haskell programming language, 153
haystack.count method, 6
heap property, 207
heap, retrieving data in order, 208
heapq module, 207, 209, 364
histogram, 200
HTML

converting documents to text on Unix, 55
encoding Unicode for, 49
mail, sending, 492–495
(see also XML)

htmlentitydefs module, 50
HTTP

checking content type via, 535
monitoring networks with, 511–513

HTTPS navigation, authenticating with proxy
for, 541

I
IDLE (Integrated Development

Environment), 443–445
GUI shell for exploring Python OOP, 232

IDLE tree widget, using in Tkinter, 443–445
idlelib package, 443
image formats, converting among, 434–437
ImageJ, implementing plug-in in Jython, 455
immutability, 239
importing modules, 591–594
inheritance

automatic delegation as
alternative, 244–247

code reuse and, 232

copying objects and, 255
drawbacks, 244
flexibility of delegation and, 246
multiple, 233

supported by super class, 285–287
polymorphism, requirement of, 232

__init__ method, 53, 300
bypassing, 255
calling superclasses that define, 282–285
constructors for class instances, 231
extracting code object of, 281
initializers for class instances, 231
overriding, 255

__init__ methods
automatically initializing instance

variables from, 280–282
initializing instance variables from __init__

methods, 280–282
input files, rewinding, 84–87
input function, 422
instance objects, 230
instances

checking for state changes, 262–265
saving/restoring with cPickle, 297–300

integers, formatting as binary
strings, 671–675

Integrated Development Environment (see
IDLE)

Internet Explorer, connecting to running
instance of, 415

Internet Relay Chat (IRC), 522
intersection method, 178
intertools module, 17
intervals, checking values against in unit

tests, 352–354
introspection, 589

coding and, 285
I/O (input/output)

C++ syntax, 83
operations

I/O-bound functions, 369–371
locking threads, 357

random-access files, 74
sources, accessing while running

GUIs, 439–443
IP addresses, calculating Apache hits

per, 398
IRC (Internet Relay Chat), connecting

to, 522–524
IronPython, implementing fade-in windows

with, 461

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 797

IsExpandable method, 445
isinstance method, 9
islower method, 27
isorted function, 209
isSSL function, 531
istext function, 26
istitle method, 27
isupper method, 27
itemgetter function, 202, 252
iter function, 158
__iter__ method, 62
iterable mappings, 244
iterators, 689–739
iteritems method, 172
itertools module, 17

dictionary building, 167
inverting dictionaries, 171, 172

itertools.ifilter, 17
izip, 167, 171

J
JDBC (Java Database Connectivity),

accessing from Jython
servlet, 327–330

".join (empty string joiner), 9, 33
join method, 6, 14, 363
Jython

extracting data from Excel, 330
implementing ImageJ plug-in, 455
servlets

connecting to JDBC database
from, 327–330

running with, 542
viewing image from URL with, 456

K
Kelvin temperature, converting to other

scales, 235
KeyError exception, 243
keys method, 225
KMai, blocking duplicate email messages, 408
KMP (Knuth-Morris-Pratt algorithm, 221
KnuthMorrisPratt method, 221
**kwds syntax, 163

L
lambda, avoiding in writing callback

functions, 426
LBYL (Look Before You Leap), object

attribute checking, 266

ldap extension, 524
ldap module, 525
LDAP servers, accessing, 524
lexing, 585–586
linecache module, 68
line-termination characters, 59, 64
Linux

measuring memory usage on, 334
user interface toolkits, 423

list comprehensions
accessing substrings and, 28
building, 609–611
dictionary building, 171
quicksort algorithm and, 215
removing/reordering columns in lists of

rows, 160
translating from Haskell to Python, 153

list function, 213
list objects, 15
listboxes, Tkinter

adding drag-and-drop reordering to, 428
supporting multiple values per

row, 445–448
lists

building, 7, 151, 155
items in

appending, 217–220
processing in random order, 204

of rows, removing/reordering
columns, 160

picking items at random from, 184
returning elements of, 153

ljust method (string objects), 11
locale module, 139
localization

processing non-ASCII characters, 43–45
western European alphabets, 4

locals function, 281
lock function, 104
locks, 356
log

Apache files, analyzing, 398
information, storing, 259–262

logging, centralized, 332
logging module, 489
Look Before You Leap (LBYL), object

attribute checking, 266
LookBeforeYouLeap class, 283
loops, disabling while debugging, 333
lower method, 27, 197
__lshift__, 83

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

798 | Index

lstrip method, 12
Luhn algorithm, 143

M
Mac OS, getting user input on, 456
Mac OS X

line-termination characters, 64
PDF files, counting pages in, 99
system information, gathering, 418–421

mailbox files, selectively copying, 405
mailbox modules, 405
mailboxes

building whitelist of email addresses
from, 406

POP3, malformed messages, 503, 505
makefile method, textual data source, 4
maketrans function, 19

string filtering, 23
make_xlat function, 40
malware, 500
mappings, 242

partial, changing into full, 243
marshal module, 290

limitations, 303
serializing data, 291–293
use cases for, 310

Medusa, 560
using with XML-RPC, 564

medusa package, 564
Meerkat service, 561
memoization, 29, 656

implementing __deepcopy__
method, 256

memory
debugging problems, 641
file-based transformations, 4
leaks, investigating, 336
measuring usage on Linux, 334
ring buffers and, 260
saving, implementing tuples as named

items, 252
mergesort algorithm, 194
message loops, 382
message pumps, 382
messages (see email messages)
met method, 284
metaclasses, 236, 740–787

custom, synchronization and, 361
methods

as attributes in Python, 245
bound (see bound methods)

calling other methods on same
instance, 233

copying between Tkinter widgets, 448
defining as instance objects behavior, 231
delegating work to same method in

superclass, 233
dispatching with dictionaries, 175
hiding those supplied by delegate, 247
of classes, finding all, 757
of subclass, overriding superclass

methods, 233
special, of classes, 232
string objects, 6
synchronizing in objects, 359–361
unbound, 42

Microsoft Access (see Access)
Microsoft Excel

data, extracting with Jython, 330
XML, parsing, 475

Microsoft Jet, 289
using via ADO, 325

Microsoft ODBC standard, 289
Microsoft Outlook, reading

contacts, 416–418
Microsoft SQL Server, 290
MIME messages

bundling files in, 495–497
multipart, unpacking, 497–499

MIME (Multipurpose Internet Mail
Extensions), 495

mimetools module, 493
MimeWriter module, 493
mixin class

checking instances for state changes, 262
functionality supplying across range of

classes, 233
using cooperative supercalls, 285

modules
benefits over OOP objects, 230
building, tools for, 617
class definitions, including assignment

statement in, 235
ensuring name is defined in, 187
importing, 591–594
Python search path and, 94
SWIG-generated, 630

money tasks, 135–145
adding machine, Python as, 140–143
checking credit card checksums, 143
foreign exchange rates, monitoring, 144

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 799

formatting decimals as currency, 137–140
performing decimal arithmetic, 135

moneyfmt function, 137
monitoring computers, 506
Monostate Design Pattern, 276
MsgWaitForMultipleObjects

function, 381–384
MSHTML, 483
msvcrt module, 82, 98
MultiListbox.__init__ method, 448
multiple inheritance, 233
multiple_replace function, 39
multiprocess computing, 355
Multipurpose Internet Mail Extensions

(MIME), 495
multitasking, without threads, 378
multithreaded environment, using

SWIG-generated modules in, 630
multithreaded programming, 355–390

deadlocks, 376
main benefit of, 375
race conditions, 376

MySQL, 290
database, accessing, 310
storing BLOBs in, 312

MySQLdb module, 310
storing BLOBs in MySQL, 312

N
named attributes, tuple items accessible

as, 250–252
name_iterablemust, calling groupnames

function on, 227
Network News Transfer Protocol

(NNTP), 486
network ports,

forwarding/redirecting, 513–515
network programming, 485–525

detectng inactive computers, 506–511
Dynamic IP protocol, 519–522
messages, passing with socket

datagrams, 487–489
networks, monitoring with HTTP, 511–513
__new__ method, 252
__new__ staticmethod method, 271
new-style classes, 234
nlargest, 209
NNTP (Network News Transfer

Protocol), 486
nobuffer method, 86
NoNewAttrs class, 240

nsmallest, 209
Null class, 278

see also Null Object Design Pattern
Null Object Design Pattern, 277–280
numbers, converting to rationals, 675–677

O
Object Request Brokers (ORBs), 560
object-oriented design pattern, 230
object-oriented programming (see OOP)
objects

checking for attributes, 266–269
code, pickling, 302–305
compressing generic, 296
copying, 148–150

deep copies, 256
shallow copies, 255

describing creation of, 230
determining whether iterable, 158
docstrings in, 351
file (see file objects)
in Python, 230
lists of, sorting by object’s attribute, 198
making fast copy of, 254
mutating with shelve module, 305–307
referene cycles, 337
state of, 269–271
synchyronizing methods in, 359–361
testing for string-like characteristics, 9
with bound methods of other objects,

pickling, 300–302
ODBC (Open Database Connectivity), 289
old-style classes, 234
once method, overridden by Subclass, 233
OOP (object-oriented programming), 175,

229–287
polymorphism as benefit of, 232
Python implementation of, 229

open, 58
reading from files, 63

Open Database Connectivity (see ODBC)
Openldap C API, 525
OpenOffice.org files, extracting text

from, 101
operations

state-altering, checking objects for
necessary attributes, 266

trying special methods in specific
order, 232

operator module, 143, 252

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

800 | Index

OPML (Outline Processor Markup
Language), 545

files, 545–548
options, copying with geometry methods

between Tkinter widgets, 448
Oracle, 290
ORBs (Object Request Brokers), 560
os module, 55, 58, 401

walking directory trees, 89
os.path module, 404
Outline Processor Markup Language

(OPML), 545
Outlook, reading contacts, 416–418
overriding methods, 232

P
p2exe, making Windows executables from

scripts, 611
parameters, single passing style across DB

API modules, 323–325
parentheses, balanced, checking strings

for, 604–606
parser generators, 587
parser module, 128
parsing, 586

text, 3
XML with MSHTML, 483

passwords
random, 393
somewhat-random, 394–397

PB (Perspective Broker), 558
PDF files, counting pages on Mac OS X, 99
PEM (Privacy-enhanced Electronic Mail), 582
percentage error, 678
performance

adding entries to dictionaries, 166
algorithms and, 205
big-O analysis and notation, 199
comparing isorted function with sorted

function, 209
comparing select method with sort

method, 214
dictionary unions/intersections, 177
enhancing, adding threads to Python

programs, 356
file-based transformations, 4
invert_dict_fast versus invert_dict, 172
multiple string pieces in sequences, 14
multiprocess computing, 356
search paths, changing, 94

sorting and, 192
sorting by object attributes, 200

persistence, 288–307
compression with, 297

Perspective Broker (PB), 558
pickle module, 290, 559

serializing data, 293–296
use cases for, 310
(see also pickling), 300

pickling
code objects, 302–305
objects with bound methods, 300–302

PIL (Python Imaging Library), 434
plain text, 4

converting to Unicode, 45
(see also text)

PLY parser generator, 587
Pmw extension library, 423
polymorphism

as benefit of OOP, 232
Python functions and, 267
signature-based, 232

pop method
extracting subsets from dictionaries, 170
getting values from dictionaries, 164

POP servers, authenticating users, 397
POP3 mailbox, inspecting

interactively, 503–506
popen module, processes, driving

external, 384
popen2 module, capturing output and error

streams, 386–388
poplib module, 503
portability of code, 60–62
portalocker.py module, 104
PostgreSQL, storing BLOBs in, 313
predicates, 18

expanding list items, 157
prime numbers, computing, 669–671
print statement, 422
printf function, 183
printing, database cursor content, 320–323
priority queue, 208
PriorityQueue class, 365
Privacy-enhanced Electronic Mail (PEM), 582
processes, 356

daemon, forking on Unix-like
systems, 388–390

debugging threads in, 363
external, driving with popen, 384
running on Unix-like systems, capturing

output and error streams, 386–388

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 801

processing
international text with Unicode, 43–45
list items in random order, 204
text, 1–57

non-ASCII, 43–45
words in files, 72

procmail, blocking duplicate email
messages, 408

programming code, 288
programming languages, state and behavior

in, 230
programs about programs, 584–615
progress indicators, providing on text

consoles, 424
progressbar class, 425
properties, avoiding boilerplate accessors

for, 252
property function, 252
proxies, special method delegation

in, 247–250
proxy function, 249
proxy, tunneling SSL through, 516–519
proxying, 248
pseudo-files, getting/parsing contents of, 335
psycopg module, 313
pty module, 392
Py-DBAPI (Python DB Application

Programming Interface), 290
PyGTK interface to GTK toolkit, 423
PyGUI API, 423
PyQt, combining GUIs and asynchronous

I/O with threads, 443
Pyrex, building C extensions, 623–624
pysqlite module, 322
Python

as adding machine, 140–143
benefits of simplicity, 229
coding extensions in C, 357
distributions, ActivePython, 326
extending/embedding, 616–642
interface for accessing relational

databases, 290
alternatives to, 290

multithreaded programming, 357
adding threads to programs, 356
(see also multithreaded programming)

OOP features in, 229
power tools, 740–787
printf C function in, 183
programming shortcuts, 146–189
source code, converting into HTML

markup, 598–601

support for multiple paradigns, 230
tree of objects, converting XML document

into, 471–473
(see also Python 2.3; Python 2.4)

Python 2.3
accessing decimal module, 141
interpolating variables in strings, 35
string alignment, padding character in, 11
(see also Python)

Python 2.4
doctest module, using with unittest, 350
DSU support, 197
email messages in, 501–503
email parser in, 500
generator expressions, 171
interpolating variables in strings, 35–38
string alignment, padding character in, 11
(see also Python)

Python Database Row Module (db_row), 320
Python DB Application Programming

Interface, 290
Python Imaging Library (PIL), 434
Pythonwin toolkit, 423
PyWin32 package, 326, 392
PyXML package, 464

Q
Queue class, 357

combining GUIs and asynchronous I/O
with threads, 439

coordinating pool of worker threads, 366
specializing priority values of

threads, 364–366
quicksort algorithm, 192, 213

implementing in three lines of
code, 215–217

Quixote, 527

R
race conditions, 376
random module, items with given

probabilities, 184
Rankine temperature, converting to other

scales, 235
raw_input function, 422
re module

finding subsequences, 221
replacing multiple patterns in strings, 39
string processing, 6

Reactor Design Pattern, 570–573

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

802 | Index

read method, 60, 489
objects pickled to file, returning, 297
reading from files, 63–65

reading
data from zip files, 77
data/text in files, 62–65
Microsoft Outlook contacts, 416–418
text files, specific line in, 68
unbuffered characters from standard

input, 98
readLines method, 60, 63
ref class, 258
reference cycles, 337
referenceError exception, 258
registry, system administration, 392
regular expressions

expanding/compressing tabs in
strings, 34

substring substitutions, 38
relational databases, 289

enterprise software-engineering three-tier
system, 289

hybrid approaches to, 290
implementations from major software

vendors, 289
implentations of, with ODBC

interface, 290
inappropriate for some applications, 289
saving/retrieving data with support for

selecting/searching, 310
relative paths, computing, 96
Remote Procedure Call (RPC), 558
repeat method, inherited by Subclass from

Behave superclass, 233
replace method, 53, 67
__repr__ method, 252
resource module, 335
rfc822 module, 405
ring buffers, 259–262
rjust method (string objects), 11
rotating calipers algorithm, 686
RPC (Remote Procedure Call), 558
rrule.count method, 120
rstrip method, 12
run method, overriding, 358

S
samplesort algorithm, 192
sanitise function, 501
SAX API, checking XML

well-formedness, 465

SAX API (XML parser), 464
SAX parser, merging continuous text events

with, 480–483
scalars, 157
sched module, command scheduling, 133
Schwartzian Transform, 197
scripts

in Windows, running one instance of, 380
spawning editors from, 401

search paths
dynamically changing, 94
finding files in directories, 91–96

searching
for items in sorted sequence, 211
searching/replacing text in files, 67
using dictionaries for, 190

Secure Shell (see SSH)
Secure Socket Layer (SSL), 516
Secure Socket Layer/Transport Layer Security

(SSL/TLS), 518
security, multithreaded programming, 356
seek method, 60

random-access files, 76
select method, 214
select module, 559

capturing output and error streams from
Unix shell command, 386–388

selecting, 190–228
self.something syntax, 231
sequences, 14

accessing item-by-item, 635–638
adding items to while preserving

sortedness, 206
finding subsequences in, 220
flexible access to, 318–320
items in

getting first smallest, 208
selecting nth smallest, 212

lexicographical comparison of, 190
looping over items in, 154
nested, flattening, 157–159
performing membership tests

on, 217–220
removing duplicates from, 647–653
sorted, searching for items in, 211
translating into C array, 631–634

serializing code objects with
sincemarshal, 303

serializing data
marshal module, 291–293
pickle and cPickle modules, 293–296

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 803

serve_forever method, 566
servers, LDAP, 524
servlets, coding with Jython, 542
Set data type, 177
set method, 18
__setattr__ method, 240, 245

attribute settings, 237
setdefault method

adding entries to dictionaries, 165
setdefault method, adding entries to

dictionaries, 165
sets module, 97, 177

finding sets/unions of dictionaries, 177
__setstate__ method, 255
shebang (#!), 68
shelve module, mutating objects

with, 305–307
shortcuts in Python, 146–189
signatures, methods with same, 232
Simple Mail Transfer Protocol (SMTP), 486
Simple Object Access Protocol (SOAP), 559
SimpleXMLRPCServer class, 567
SimpleXMLRPCServer module, 559, 562,

566
Simplified Network Time Protocol

(SNTP), 491
sincemarshal module, 303
Singleton Design Pattern, 230, 271

alternative to, 275
avoiding with Borg class, 273–277

Singletons, 272
s.isdigit method, 6
slash (/), 58
__slots__ method

restricting attribute setting, 241
SMTP (Simple Mail Transfer Protocol), 486
snapshot method, 264
SNTP (Simplified Network Time

Protocol), 491
SOAP (Simple Object Access Protocol), 559
socket module, 486, 559
sort method, 190, 192, 214

lists of strings, 196
sorted function, 197, 215
sorting, 190–228

current state of, 194
dictionaries, 195
history of, in Python, 192
keys/indices based on corresponding

values, 200
list of strings ignoring case, 196

lists of objects by object’s attribute, 198
names and separating them by initials, 226
strings with embedded numbers, 203

_sortkeyfunc function, 227
sound system, on Windows, checking, 410
SPARK parser generator, 587
special methods

class definitions, 232
delegating in proxies, 247–250
operations/built-in functions trying in

specific order, 232
split method, 33

processing words in files, 73
reading from files, 63

splitext function, 404
splitlines method, 32

reading from files, 63
SQL

as emerging database interface
standard, 289

databases, XML representations stored
in, 290

implentations of, 290
SQLite, 290

storing BLOBs in, 315
sqlite.encode, inserting BLOBs in SQLite

databases, 315
SSH (Secure Shell), 582

performing remote logins using, 579–581
SSL clients, authenticating over HTTPS, 582
SSL (Secure Socket Layer), tunneling through

proxy, 516–519
SSL/TLS (Secure Socket Layer/Transport

Layer Security), 518
standard input, reading unbuffered

characters, 98
standard output

printing Unicode to, 48
using printf to output to, 183

start method, 358
State Design Pattern, 269–271
stopwatch, implementing in Tkinter, 437
s.toupper method, 6
Strategy Design Pattern, 270
streams, capturing from Unix shell

command, 386–388
strftime function, 111
string module, 7

string filtering, 23
string-formatting operator (%), 7, 13, 37
StringIO module, 61, 79

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

804 | Index

strings
aligning, 11
checking for balanced

parentheses, 604–606
extracting bytes from, 28
removing whitespace from, 12
sorting while ignoring case, 196
verifying valid numeric format, 590
with embedding numbers, sorting, 203
zip files in, 79
(see also text strings)

strip method, 12
strptime function, 111
strset.translate, 19
struct module, 559
sub method, string substitutions, 38
Subclass class, 233
subclass method, 233
subclass methods, 233
subclassing, 232

Singletons and, 272
substitute method, 38
substrings, accessing, 28–31
sum function, 121
summing numbers with accuracy, 680
super methods

performing superclass delegation, 233
superclass methods, 233
superclasses

calling __init__ method for, 282–285
delegation of, 233
using cooperative, 285–287

SuperMixin class, 287
__slots__ function, 252
superTuple function, 252
SWIG modules, using in multithreaded

environment, 630
Swing, viewing image from URL with, 456
Sybase, 290
synchronizing methods in objects, 359–361
system administration, 391–421
system_profiler command (Mac OS X), 418

T
tabs in strings, expanding/compressing, 32
tar files, compressed, archiving files into, 80
tarfile module, 80
tasks, automatic, checking/modifying on

Windows, 412
tell method, 60

rewinding input files, 87

Telnet, performing remote logins
using, 576–579

temperature scales, converting among, 235
tempfile module, 401
Template Method Design Pattern, 226, 233

queuing, 366
termios module, 98
ternary operator, 666
testing, 332–354

CGI, 527–530
exception handling, 337–339
objects for string-like characteristics, 9
unit tests

checking values against, 352–354
running automatically, 348
running simply, 346

TestThread class, 363
text, 1–57

converting HTML documents to, on
Unix, 55

extracting
from OpenOffice.org files, 101
from Word files, 102

parsing, 3
processing (see text processing)
reading from files, 62–65
searching/replacing in files, 67
sources of, 3
strings (see text strings)

text consoles, providing progress
indicators, 424

text editors, spawning from scripts, 401
text processing, 1–57

basic operations, 3
converting characters to Unicode, 8
by characters, text strings, 7
(see also text; text strings)

text strings, 4–7
aligning, 11
case-insensitive, 52–57
changing indentation of, 31
checking

contents of, 25
endings of, 41
for set of characters, 16–19

converting
between Unicode and plain, 45
to lowercase/uppercase, 26

expanding/compressing tabs in, 32
filtering for set of characters, 22–25
interpolating variables in, 35

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 805

performing substitutions on, 38–41
processing by character, 7
reversing by words or character, 15
substrings (see substrings)
testing for string-like characteristics, 9
translate method, simplifying usage of, 20
trimming space from ends of, 12

textHandler class, 468
theobject.something syntax, 231
There’s More Than One Way To Do It

(TMTOWIDI), 146
Thread class, 358
thread module, 357
thread pools, 366–369
threading module, 357

synchronization constructs in, 358
threads, 356

adding to Python programs to enhance
performance, 356

allocating per-thread storage, 374–377
combining GUIs and asynchronous I/O

with, 439–443
communicating among via Queue

class, 364–366
communicating with, Erland’s approach

to, 373
coordinating by message

passing, 372–374
daemon, 358
GIL, adding to Python programs, 356
locking, 356
multiple, reducing data structures

accessed by, 357
multitasking without, 378
synchronizing, 359–361
terminating, 362–364

time module, 110–112
time (see date/time)
timedelta module, calculating dates, 116
timedelta module (datetime), 116–119, 121
timeit module, 72

measuring performance with, 206
Tix extension library, 423
Tkinter applications

implementing tabbed notebook
for, 451–453

using IDLE tree widget in, 443–445
Tkinter toolkit

adding drag-and-drop reordering to
listbox, 428

as GUI toolkit, 423
implementing stopwatch in, 437

Tkinter widgets
copying geometry methods/options

between, 448
embedding inline GIFs using, 432
entering accented characters in, 430
supporting multiple values per row in

listbox, 445–448
tkSimpleDialog functions, using default

values/bounds with, 427
TMTOWTDI (There’s More Than One Way

To Do It), 146
tokens, 585

merging/splitting, 602–603
toy programs, 288
traceback module, 340
traceback.print_exc function, 338
tracebacks

getting information from while
debugging, 342–345

translate method, 19, 20–26
simplifying usage of, 20
string filtering, 23

try/except statement, using inside
expressions, 185

TTY functions, 392
tty module, 98
TtyFormatter class, 57
tuples, implementing with named

items, 250–252
Twisted, 356
two-dimensional points, computing convex

hull and diameter, 685–688
type checking, 10
TypeError exception, raised by

inspect.getargspec, 284

U
UDP (user datagram protocol), 487
unbound methods, 42
underscore (_), 563
Unicode, 4

converting
characters to, 8
to plain text, 45

encoding
error handling in, 50–52
for XML/HTML, 49

printing to standard output, 48
international text processing 43–45

uniform function, 184
unit testing, 333

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

806 | Index

unit tests
checking values against

intervals, 352–354
running automatically, 348
running simply, 346
using doctest with unittest in Python

2.4, 350
unittest module, using with doctest in Python

2.4, 350
Unix

converting HTML documents to text on
Unix, 55

line-termination characters, 64
making executables from

scripts, 613–615
(see also Unix-like systems)

Unix-like systems
forking daemon processes on, 388–390
wrapper, 391

unpacking assignment, 698–702
updating random-access files, 75
upgrading class instances on

reload, 774–778
upleDescriptor class, 319
upper method, 27
urllib module, 486
urllib2 module, 486
urlopen function, 489
URLs

getting document from, on Web, 489
handling in CGI scripts, 530–532
viewing image from, with Swing and

Jython, 456
user accounts, assigning random

passwords, 393
user datagram protocol (UDP), 487
user input, getting on Mac OS, 456
user interfaces, 422–462

V
variables

in strings, interpolating, 35
module-level (see constants)

W
WCK (Widget Construction Kit), 423
weak references, 256

to bound methods, 258
weakref module, 256, 258, 337
Web, getting document from URL on, 489

web pages, handling cookies while
fetching, 538–541

Web programming, 526–557
web servers, 527
WebWare, 527
whitelists, 406
whitespace, removing from strings, 12
Widget Construction Kit (WCK), 423
Win32 API, multithreading, 381
Win32 applications

message processing with
MsgWaitForMultipleObjects, 381–
384

win32api module, 100
win32com package, 416
Windows

applications message loops, 382
changing file attributes, 100
creating share on, 414
line-termination characters, 64
login, checking/modifying automatic tasks

run at, 412
making executables with p2exe from

scripts, 611
registering/unregistering DLLs on, 411
sound system on, checking, 410
standard output, sending binary data

to, 82
system administration, 392
using MSHTML to parse XML, 483

Windows DLLs, calling functions
from, 627–629

Windows registry, system
administration, 392

_winreg module, 392, 413
winsound module, 410
wrapper, 391
write method, 3

writing to files, 59
writelines method, writing to files, 66
writestr method, reading data from zip

files, 78
writing

callback functions, avoiding lambda
in, 426

to files, 66
wxPython toolkit, 423

designing notebook widget with
panels, 453

wxWidgets C++ library, 423

V413HAV

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 807

X
xdrlib module, 559
XML

accessing structural data in
human-readable form, 290

encoding Unicode for, 49
using MSHTML to parse, 483

XML documents
converting into tree of Python

objects, 471–473
counting tags in, 467
extracting text from, 468
validating, 477

XML processing, 463–484
autodetecting XML encoding, 469–471
checking XML well formedness, 465
eror handling in, 477
filtering elements/attributes of

namespace, 478–480
parsing Microsoft Excel XML, 475
removing whitespace-only text nodes from

DOM node subtree, 474

XML tags, counting number of “element”s in
XML document, 467

XML validation, 466
XMLFilterBase class, 481
XMLGenerator class, 480
XML-RPC, 464, 558

enabling remote termination, 566
method calls to, 561
serving requests to, 562
using with Medusa, 564

xmlrpclib module, 559
xml.sax.saxutils module, 481
xproperty function, 253

Z
zip, 167
zip files

handling inside strings, 79
reading data from, 77

zipfile module, 77
Z-Object Database (ZODB), 290
ZODB (Z-Object Database), 290
Zope, 527

About the Editors

AlexMartelli spent eight years with IBM Research, winning three Outstanding Tech-
nical Achievement Awards. He then spent 13 years as a senior software consultant at
think3 Inc., developing libraries, network protocols, GUI engines, event frame-
works, and web access frontends. He has also taught programming languages,
development methods, and numerical computing at Ferrara University and other
venues. He’s a C++ MVP for Brainbench and a member of the Python Software
Foundation. He currently works as a freelance consultant from his home in Italy.

Alex’s proudest achievement is the publication of two articles in The Bridge World
(January/February 2000) that were hailed as giant steps toward solving issues that
had haunted contract bridge theoreticians for decades.

Anna Martelli Ravenscroft has a background in training and mentoring, particularly
in office technologies. She discovered Python in 2002 and has since used it in various
ways in her work and daily life. She has presented talks on various Python topics at
EuroPython, PyCon, and OSCON, and chaired the Lightning Talks track at several
conferences. Anna lives with her husband, Alex Martelli, and hopes to get through
the red tape necessary for her two children to live with them. Her interests include
reading, blogging, and weight lifting (not all at the same time).

David Ascher is the lead for Python projects at ActiveState, including Komodo,
ActiveState’s integrated development environment written mostly in Python. David
has taught courses about Python for corporations, in universities, and at confer-
ences. He also organized the Python track at the 1999 and 2000 O’Reilly Open
Source Conventions and was the program chair for the 10th International Python
Conference. In addition, he cowrote Learning Python and serves as a director of the
Python Software Foundation. David holds a B.S. in physics and a Ph.D. in cognitive
science, both from Brown University.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Python Cookbook, Second Edition is a springhaas
(Pedetes capensis), also known as a spring hare. Springhaas are not hares at all, but
rather the only member of the family Pedetidae in the order Rodentia. They are not
marsupials, but they are vaguely kangaroo-like, with small front legs, powerful hind
legs designed for hopping, jumping, and leaping, and long, strong, bushy (but not
prehensile) tails they use for balance and as a brace when sitting. They grow to be
about 14 to 18 inches long, with tails as long as their bodies, and can weigh approxi-
mately 8 pounds. Springhaas have rich, glossy, tawny, or golden-reddish coats with
long, soft fur and white underbellies. Their heads are disproportionately large, and

they have long ears (with a flap of skin at the base they can close to prevent sand
from getting inside while they are digging) and large, dark brown eyes.

Springhaas mate throughout the year and have a gestation period of about 78 to 82
days. Females generally give birth to only one baby (which stays with its mother until
it is approximately seven weeks old) per litter but have three or four litters each year.
Babies are born with teeth and are fully furred, with their eyes closed and ears open.

Springhaas are terrestrial and well-adapted for digging, and they tend to spend their
days in the small networks of their burrows and tunnels. They are nocturnal and
primarily herbivorous, feeding on bulbs, roots, grains, and occasionally insects. While
they are foraging, they move about on all fours, but they are able to move 10 to 25 feet
in a single horizontal leap and are capable of quick getaways when frightened.
Although they are often seen foraging in groups in the wild, they do not form an orga-
nized social unit and usually nest alone or in breeding pairs. Springhaas can live up to
15 years in captivity. They are found in Zaire, Kenya, and South Africa, in dry, desert,
or semiarid areas, and they are a favorite and important food source in South Africa.

Darren Kelly was the production editor for Python Cookbook, Second Edition.
Nancy Crumpton copyedited the book. Emily Quill and Claire Cloutier provided
quality control. Nancy Crumpton provided production services and wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is from Animal Creation: Mammalia. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker
5.5.6 by Joe Wizda with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. This colophon was written by Rachel
Wheeler.

	Table of Contents
	Preface
	The Design of the Book
	The Implementation of the Book
	Using the Code from This Book
	Audience
	Organization
	Further Reading
	Conventions Used in This Book
	How to Contact Us
	Safari® Enabled
	Acknowledgments
	David Ascher
	Alex Martelli
	Anna Martelli Ravenscroft

	Text
	1.0 Introduction
	What Is Text?
	Basic Textual Operations
	Sources of Text
	String Basics

	1.1 Processing a String One Character at a Time
	Problem
	Solution
	Discussion
	See Also

	1.2 Converting Between Characters and Numeric Codes
	Problem
	Solution
	Discussion
	See Also

	1.3 Testing Whether an Object Is String-like
	Problem
	Solution
	Discussion
	See Also

	1.4 Aligning Strings
	Problem
	Solution
	Discussion
	See Also

	1.5 Trimming Space from the Ends of a String
	Problem
	Solution
	Discussion
	See Also

	1.6 Combining Strings
	Problem
	Solution
	Discussion
	See Also

	1.7 Reversing a String by Words or Characters
	Problem
	Solution
	Discussion
	See Also

	1.8 Checking Whether a String Contains a Set of Characters
	Problem
	Solution
	Discussion
	See Also

	1.9 Simplifying Usage of Strings’ translate Method
	Problem
	Solution
	Discussion
	See Also

	1.10 Filtering a String for a Set of Characters
	Problem
	Solution
	Discussion
	See Also

	1.11 Checking Whether a String Is Text or Binary
	Problem
	Solution
	Discussion
	See Also

	1.12 Controlling Case
	Problem
	Solution
	Discussion
	See Also

	1.13 Accessing Substrings
	Problem
	Solution
	Discussion
	See Also

	1.14 Changing the Indentation of a Multiline String
	Problem
	Solution
	Discussion
	See Also

	1.15 Expanding and Compressing Tabs
	Problem
	Solution
	Discussion
	See Also

	1.16 Interpolating Variables in a String
	Problem
	Solution
	Discussion
	See Also

	1.17 Interpolating Variables in a String in Python 2.4
	Problem
	Solution
	Discussion
	See Also

	1.18 Replacing Multiple Patterns in a Single Pass
	Problem
	Solution
	Discussion
	See Also

	1.19 Checking a String for Any of Multiple Endings
	Problem
	Solution
	Discussion
	See Also

	1.20 Handling International Text with Unicode
	Problem
	Solution
	Discussion
	See Also

	1.21 Converting Between Unicode and Plain Strings
	Problem
	Solution
	Discussion
	See Also

	1.22 Printing Unicode Characters to Standard Output
	Problem
	Solution
	Discussion
	See Also

	1.23 Encoding Unicode Data for XML and HTML
	Problem
	Solution
	Discussion
	See Also

	1.24 Making Some Strings Case-Insensitive
	Problem
	Solution
	Discussion
	See Also

	1.25 Converting HTML Documents to Text on a Unix Terminal
	Problem
	Solution
	Discussion
	See Also

	Files
	2.0 Introduction
	File Basics
	Portability and Flexibility

	2.1 Reading from a File
	Problem
	Solution
	Discussion
	See Also

	2.2 Writing to a File
	Problem
	Solution
	Discussion
	See Also

	2.3 Searching and Replacing Text in a File
	Problem
	Solution
	Discussion
	See Also

	2.4 Reading a Specific Line from a File
	Problem
	Solution
	Discussion
	See Also

	2.5 Counting Lines in a File
	Problem
	Solution
	Discussion
	See Also

	2.6 Processing Every Word in a File
	Problem
	Solution
	Discussion
	See Also

	2.7 Using Random-Access Input/Output
	Problem
	Solution
	Discussion
	See Also

	2.8 Updating a Random-Access File
	Problem
	Solution
	Discussion
	See Also

	2.9 Reading Data from zip Files
	Problem
	Solution
	Discussion
	See Also

	2.10 Handling a zip File Inside a String
	Problem
	Solution
	Discussion
	See Also

	2.11 Archiving a Tree of Files into a Compressed tar File
	Problem
	Solution
	Discussion
	See Also

	2.12 Sending Binary Data to Standard Output Under Windows
	Problem
	Solution
	Discussion
	See Also

	2.13 Using a C++-like iostream Syntax
	Problem
	Solution
	Discussion
	See Also

	2.14 Rewinding an Input File to the Beginning
	Problem
	Solution
	Discussion
	See Also

	2.15 Adapting a File-like Object to a True File Object
	Problem
	Solution
	Discussion
	See Also

	2.16 Walking Directory Trees
	Problem
	Solution
	Discussion
	See Also

	2.17 Swapping One File Extension for Another Throughout a Directory Tree
	Problem
	Solution
	Discussion
	See Also

	2.18 Finding a File Given a Search Path
	Problem
	Solution
	Discussion
	See Also

	2.19 Finding Files Given a Search Path and�a�Pattern
	Problem
	Solution
	Discussion
	See Also

	2.20 Finding a File on the Python Search Path
	Problem
	Solution
	Discussion
	See Also

	2.21 Dynamically Changing the Python Search Path
	Problem
	Solution
	Discussion
	See Also

	2.22 Computing the Relative Path from One Directory to Another
	Problem
	Solution
	Discussion
	See Also

	2.23 Reading an Unbuffered Character in�a�Cross-Platform�Way
	Problem
	Solution
	Discussion
	See Also

	2.24 Counting Pages of PDF Documents on�Mac�OS�X
	Problem
	Solution
	Discussion
	See Also

	2.25 Changing File Attributes on Windows
	Problem
	Solution
	Discussion
	See Also

	2.26 Extracting Text from OpenOffice.org Documents
	Problem
	Solution
	Discussion
	See Also

	2.27 Extracting Text from Microsoft Word Documents
	Problem
	Solution
	Discussion
	See Also

	2.28 File Locking Using a Cross-Platform API
	Problem
	Solution
	Discussion
	See Also

	2.29 Versioning Filenames
	Problem
	Solution
	Discussion
	See Also

	2.30 Calculating CRC-64 Cyclic Redundancy Checks
	Problem
	Solution
	Discussion
	See Also

	Time and Money
	3.0 Introduction
	The time Module
	Time and Date Objects
	Decimal

	3.1 Calculating Yesterday and Tomorrow
	Problem
	Solution
	Discussion
	See Also

	3.2 Finding Last Friday
	Problem
	Solution
	Discussion
	See Also

	3.3 Calculating Time Periods in a Date Range
	Problem
	Solution
	Discussion
	See Also

	3.4 Summing Durations of Songs
	Problem
	Solution
	Discussion
	See Also

	3.5 Calculating the Number of Weekdays Between Two Dates
	Problem
	Solution
	Discussion
	See Also

	3.6 Looking up Holidays Automatically
	Problem
	Solution
	Discussion
	See Also

	3.7 Fuzzy Parsing of Dates
	Problem
	Solution
	Discussion
	See Also

	3.8 Checking Whether Daylight Saving Time Is Currently in Effect
	Problem
	Solution
	Discussion
	See Also

	3.9 Converting Time Zones
	Problem
	Solution
	Discussion
	See Also

	3.10 Running a Command Repeatedly
	Problem
	Solution
	Discussion
	See Also

	3.11 Scheduling Commands
	Problem
	Solution
	Discussion
	See Also

	3.12 Doing Decimal Arithmetic
	Problem
	Solution
	Discussion
	See Also

	3.13 Formatting Decimals as Currency
	Problem
	Solution
	Discussion
	See Also

	3.14 Using Python as a Simple Adding Machine
	Problem
	Solution
	Discussion
	See Also

	3.15 Checking a Credit Card Checksum
	Problem
	Solution
	Discussion
	See Also

	3.16 Watching Foreign Exchange Rates
	Problem
	Solution
	Discussion
	See Also

	Python Shortcuts
	4.0 Introduction
	4.1 Copying an Object
	Problem
	Solution
	Discussion
	See Also

	4.2 Constructing Lists with List Comprehensions
	Problem
	Solution
	Discussion
	See Also

	4.3 Returning an Element of a List If It Exists
	Problem
	Solution
	Discussion
	See Also

	4.4 Looping over Items and Their Indices in a Sequence
	Problem
	Solution
	Discussion
	See Also

	4.5 Creating Lists of Lists Without Sharing References
	Problem
	Solution
	Discussion
	See Also

	4.6 Flattening a Nested Sequence
	Problem
	Solution
	Discussion
	See Also

	4.7 Removing or Reordering Columns in a List of Rows
	Problem
	Solution
	Discussion
	See Also

	4.8 Transposing Two-Dimensional Arrays
	Problem
	Solution
	Discussion
	See Also

	4.9 Getting a Value from a Dictionary
	Problem
	Solution
	Discussion
	See Also

	4.10 Adding an Entry to a Dictionary
	Problem
	Solution
	Discussion
	See Also

	4.11 Building a Dictionary Without Excessive Quoting
	Problem
	Solution
	Discussion
	See Also

	4.12 Building a Dict from a List of Alternating Keys and Values
	Problem
	Solution
	Discussion
	See Also

	4.13 Extracting a Subset of a Dictionary
	Problem
	Solution
	Discussion
	See Also

	4.14 Inverting a Dictionary
	Problem
	Solution
	Discussion
	See Also

	4.15 Associating Multiple Values with Each Key in a Dictionary
	Problem
	Solution
	Discussion
	See Also

	4.16 Using a Dictionary to Dispatch Methods or�Functions
	Problem
	Solution
	Discussion
	See Also

	4.17 Finding Unions and Intersections of Dictionaries
	Problem
	Solution
	Discussion
	See Also

	4.18 Collecting a Bunch of Named Items
	Problem
	Solution
	Discussion
	See Also

	4.19 Assigning and Testing with One Statement
	Problem
	Solution
	Discussion
	See Also

	4.20 Using printf in Python
	Problem
	Solution
	Discussion
	See Also

	4.21 Randomly Picking Items with Given Probabilities
	Problem
	Solution
	Discussion
	See Also

	4.22 Handling Exceptions Within an Expression
	Problem
	Solution
	Discussion
	See Also

	4.23 Ensuring a Name Is Defined in a Given Module
	Problem
	Solution
	Discussion
	See Also

	Searching and Sorting
	5.0 Introduction
	A Short History of Python Sorting
	Current Sorting

	5.1 Sorting a Dictionary
	Problem
	Solution
	Discussion
	See Also

	5.2 Sorting a List of Strings Case-Insensitively
	Problem
	Solution
	Discussion
	See Also

	5.3 Sorting a List of Objects by an Attribute of�the�Objects
	Problem
	Solution
	Discussion
	See Also

	5.4 Sorting Keys or Indices Based on the Corresponding Values
	Problem
	Solution
	Discussion
	See Also

	5.5 Sorting Strings with Embedded Numbers
	Problem
	Solution
	Discussion
	See Also

	5.6 Processing All of a List’s Items in�Random�Order
	Problem
	Solution
	Discussion
	See Also

	5.7 Keeping a Sequence Ordered as Items Are�Added
	Problem
	Solution
	Discussion
	See Also

	5.8 Getting the First Few Smallest Items of�a�Sequence
	Problem
	Solution
	Discussion
	See Also

	5.9 Looking for Items in a Sorted Sequence
	Problem
	Solution
	Discussion
	See Also

	5.10 Selecting the nth Smallest Element of a Sequence
	Problem
	Solution
	Discussion
	See Also

	5.11 Showing off quicksort in Three Lines
	Problem
	Solution
	Discussion
	See Also

	5.12 Performing Frequent Membership Tests on a Sequence
	Problem
	Solution
	Discussion
	See Also

	5.13 Finding Subsequences
	Problem
	Solution
	Discussion
	See Also

	5.14 Enriching the Dictionary Type with Ratings Functionality
	Problem
	Solution
	Discussion
	See Also

	5.15 Sorting Names and Separating Them by Initials
	Problem
	Solution
	Discussion
	See Also

	Object-Oriented Programming
	6.0 Introduction
	6.1 Converting Among Temperature Scales
	Problem
	Solution
	Discussion
	See Also

	6.2 Defining Constants
	Problem
	Solution
	Discussion
	See Also

	6.3 Restricting Attribute Setting
	Problem
	Solution
	Discussion
	See Also

	6.4 Chaining Dictionary Lookups
	Problem
	Solution
	Discussion
	See Also

	6.5 Delegating Automatically as an Alternative to Inheritance
	Problem
	Solution
	Discussion
	See Also

	6.6 Delegating Special Methods in Proxies
	Problem
	Solution
	Discussion
	See Also

	6.7 Implementing Tuples with Named Items
	Problem
	Solution
	Discussion
	See Also

	6.8 Avoiding Boilerplate Accessors for Properties
	Problem
	Solution
	Discussion
	See Also

	6.9 Making a Fast Copy of an Object
	Problem
	Solution
	Discussion
	See Also

	6.10 Keeping References to Bound Methods Without Inhibiting Garbage Collection
	Problem
	Solution
	Discussion
	See Also

	6.11 Implementing a Ring Buffer
	Problem
	Solution
	Discussion
	See Also

	6.12 Checking an Instance for Any State Changes
	Problem
	Solution
	Discussion
	See Also

	6.13 Checking Whether an Object Has Necessary Attributes
	Problem
	Solution
	Discussion
	See Also

	6.14 Implementing the State Design Pattern
	Problem
	Solution
	Discussion
	See Also

	6.15 Implementing the “Singleton” Design Pattern
	Problem
	Solution
	Discussion
	See Also

	6.16 Avoiding the “Singleton” Design Pattern with the Borg Idiom
	Problem
	Solution
	Discussion
	Borg in action
	Borg, Singleton, or neither?
	Borg odds and ends

	See Also

	6.17 Implementing the Null Object Design Pattern
	Problem
	Solution
	Discussion
	See Also

	6.18 Automatically Initializing Instance Variables from _�_init_�_ Arguments
	Problem
	Solution
	Discussion
	See Also

	6.19 Calling a Superclass _�_init_�_ Method If�It�Exists
	Problem
	Solution
	Discussion
	See Also

	6.20 Using Cooperative Supercalls Concisely and Safely
	Problem
	Solution
	Discussion
	See Also

	Persistence and Databases
	7.0 Introduction
	7.1 Serializing Data Using the marshal Module
	Problem
	Solution
	Discussion
	See Also

	7.2 Serializing Data Using the pickle and cPickle Modules
	Problem
	Solution
	Discussion
	See Also

	7.3 Using Compression with Pickling
	Problem
	Solution
	Discussion
	See Also

	7.4 Using the cPickle Module on Classes and Instances
	Problem
	Solution
	Discussion
	See Also

	7.5 Holding Bound Methods in a Picklable Way
	Problem
	Solution
	Discussion
	See Also

	7.6 Pickling Code Objects
	Problem
	Solution
	Discussion
	See Also

	7.7 Mutating Objects with shelve
	Problem
	Solution
	Discussion
	See Also

	7.8 Using the Berkeley DB Database
	Problem
	Solution
	Discussion
	See Also

	7.9 Accessing a MySQL Database
	Problem
	Solution
	Discussion
	See Also

	7.10 Storing a BLOB in a MySQL Database
	Problem
	Solution
	Discussion
	See Also

	7.11 Storing a BLOB in a PostgreSQL Database
	Problem
	Solution
	Discussion
	See Also

	7.12 Storing a BLOB in a SQLite Database
	Problem
	Solution
	Discussion
	See Also

	7.13 Generating a Dictionary Mapping Field Names to Column Numbers
	Problem
	Solution
	Discussion
	See Also

	7.14 Using dtuple for Flexible Access to Query Results
	Problem
	Solution
	Discussion
	See Also

	7.15 Pretty-Printing the Contents of�Database�Cursors
	Problem
	Solution
	Discussion
	See Also

	7.16 Using a Single Parameter-Passing Style Across Various DB API Modules
	Problem
	Solution
	Discussion
	See Also

	7.17 Using Microsoft Jet via ADO
	Problem
	Solution
	Discussion
	See Also

	7.18 Accessing a JDBC Database from a Jython Servlet
	Problem
	Solution
	Discussion
	See Also

	7.19 Using ODBC to Get Excel Data with Jython
	Problem
	Solution
	Discussion
	See Also

	Debugging and Testing
	8.0 Introduction
	8.1 Disabling Execution of Some Conditionals and Loops
	Problem
	Solution
	Discussion
	See Also

	8.2 Measuring Memory Usage on Linux
	Problem
	Solution
	Discussion
	See Also

	8.3 Debugging the Garbage-Collection Process
	Problem
	Solution
	Discussion
	See Also

	8.4 Trapping and Recording Exceptions
	Problem
	Solution
	Discussion
	See Also

	8.5 Tracing Expressions and Comments in�Debug�Mode
	Problem
	Solution
	Discussion
	See Also

	8.6 Getting More Information from Tracebacks
	Problem
	Solution
	Discussion
	See Also

	8.7 Starting the Debugger Automatically After an Uncaught Exception
	Problem
	Solution
	Discussion
	See Also

	8.8 Running Unit Tests Most Simply
	Problem
	Solution
	Discussion
	See Also

	8.9 Running Unit Tests Automatically
	Problem
	Solution
	Discussion
	See Also

	8.10 Using doctest with unittest in Python 2.4
	Problem
	Solution
	Discussion
	See Also

	8.11 Checking Values Against Intervals in Unit Testing
	Problem
	Solution
	Discussion
	See Also

	Processes, Threads, and Synchronization
	9.0 Introduction
	9.1 Synchronizing All Methods in an Object
	Problem
	Solution
	Discussion
	See Also

	9.2 Terminating a Thread
	Problem
	Solution
	Discussion
	See Also

	9.3 Using a Queue.Queue as a Priority Queue
	Problem
	Solution
	Discussion
	See Also

	9.4 Working with a Thread Pool
	Problem
	Solution
	Discussion
	See Also

	9.5 Executing a Function in Parallel on Multiple Argument Sets
	Problem
	Solution
	Discussion
	See Also

	9.6 Coordinating Threads by Simple Message Passing
	Problem
	Solution
	Discussion
	See Also

	9.7 Storing Per-Thread Information
	Problem
	Solution
	Discussion
	See Also

	9.8 Multitasking Cooperatively Without Threads
	Problem
	Solution
	Discussion
	See Also

	9.9 Determining Whether Another Instance of a Script Is Already Running in Windows
	Problem
	Solution
	Discussion
	See Also

	9.10 Processing Windows Messages Using MsgWaitForMultipleObjects
	Problem
	Solution
	Discussion
	See Also

	9.11 Driving an External Process with popen
	Problem
	Solution
	Discussion
	See Also

	9.12 Capturing the Output and Error Streams from a Unix Shell Command
	Problem
	Solution
	Discussion
	See Also

	9.13 Forking a Daemon Process on Unix
	Problem
	Solution
	Discussion
	See Also

	System Administration
	10.0 Introduction
	10.1 Generating Random Passwords
	Problem
	Solution
	Discussion
	See Also

	10.2 Generating Easily Remembered Somewhat-Random Passwords
	Problem
	Solution
	Discussion
	See Also

	10.3 Authenticating Users by Means of a POP Server
	Problem
	Solution
	Discussion
	See Also

	10.4 Calculating Apache Hits per IP Address
	Problem
	Solution
	Discussion
	See Also

	10.5 Calculating the Rate of Client Cache Hits on Apache
	Problem
	Solution
	Discussion
	See Also

	10.6 Spawning an Editor from a Script
	Problem
	Solution
	Discussion
	See Also

	10.7 Backing Up Files
	Problem
	Solution
	Discussion
	See Also

	10.8 Selectively Copying a Mailbox File
	Problem
	Solution
	Discussion
	See Also

	10.9 Building a Whitelist of Email Addresses From a Mailbox
	Problem
	Solution
	Discussion
	See Also

	10.10 Blocking Duplicate Mails
	Problem
	Solution
	Discussion
	See Also

	10.11 Checking Your Windows Sound System
	Problem
	Solution
	Discussion
	See Also

	10.12 Registering or Unregistering a DLL on�Windows
	Problem
	Solution
	Discussion
	See Also

	10.13 Checking and Modifying the Set of Tasks Windows Automatically Runs at Login
	Problem
	Solution
	Discussion
	See Also

	10.14 Creating a Share on Windows
	Problem
	Solution
	Discussion
	See Also

	10.15 Connecting to an Already Running Instance of Internet Explorer
	Problem
	Solution
	Discussion
	See Also

	10.16 Reading Microsoft Outlook Contacts
	Problem
	Solution
	Discussion
	See Also

	10.17 Gathering Detailed System Information on Mac OS X
	Problem
	Solution
	Discussion
	See Also

	User Interfaces
	11.0 Introduction
	11.1 Showing a Progress Indicator on a Text Console
	Problem
	Solution
	Discussion
	See Also

	11.2 Avoiding lambda in Writing Callback Functions
	Problem
	Solution
	Discussion
	See Also

	11.3 Using Default Values and Bounds with tkSimpleDialog Functions
	Problem
	Solution
	Discussion
	See Also

	11.4 Adding Drag and Drop Reordering to a Tkinter Listbox
	Problem
	Solution
	Discussion
	See Also

	11.5 Entering Accented Characters in Tkinter Widgets
	Problem
	Solution
	Discussion
	See Also

	11.6 Embedding Inline GIFs Using Tkinter
	Problem
	Solution
	Discussion
	See Also

	11.7 Converting Among Image Formats
	Problem
	Solution
	Discussion
	See Also

	11.8 Implementing a Stopwatch in Tkinter
	Problem
	Solution
	Discussion
	See Also

	11.9 Combining GUIs and Asynchronous I/O with Threads
	Problem
	Solution
	Discussion
	See Also

	11.10 Using IDLE’s Tree Widget in Tkinter
	Problem
	Solution
	Discussion
	See Also

	11.11 Supporting Multiple Values per Row in a Tkinter Listbox
	Problem
	Solution
	Discussion
	See Also

	11.12 Copying Geometry Methods and Options Between Tkinter Widgets
	Problem
	Solution
	Discussion
	See Also

	11.13 Implementing a Tabbed Notebook for Tkinter
	Problem
	Solution
	Discussion
	See Also

	11.14 Using a wxPython Notebook with Panels
	Problem
	Solution
	Discussion
	See Also

	11.15 Implementing an ImageJ Plug-in in Jython
	Problem
	Solution
	Discussion
	See Also

	11.16 Viewing an Image from a URL with Swing and Jython
	Problem
	Solution
	Discussion
	See Also

	11.17 Getting User Input on Mac OS
	Problem
	Solution
	Discussion
	See Also

	11.18 Building a Python Cocoa GUI Programmatically
	Problem
	Solution
	Discussion
	See Also

	11.19 Implementing Fade-in Windows with�IronPython
	Problem
	Solution
	Discussion
	See Also

	Processing XML
	12.0 Introduction
	12.1 Checking XML Well-Formedness
	Problem
	Solution
	Discussion
	See Also

	12.2 Counting Tags in a Document
	Problem
	Solution
	Discussion
	See Also

	12.3 Extracting Text from an XML Document
	Problem
	Solution
	Discussion
	See Also

	12.4 Autodetecting XML Encoding
	Problem
	Solution
	Discussion
	See Also

	12.5 Converting an XML Document into a Tree of Python Objects
	Problem
	Solution
	Discussion
	See Also

	12.6 Removing Whitespace-only Text Nodes from an XML DOM Node’s Subtree
	Problem
	Solution
	Discussion
	See Also

	12.7 Parsing Microsoft Excel’s XML
	Problem
	Solution
	Discussion
	See Also

	12.8 Validating XML Documents
	Problem
	Solution
	Discussion
	See Also

	12.9 Filtering Elements and Attributes Belonging to a Given Namespace
	Problem
	Solution
	Discussion
	See Also

	12.10 Merging Continuous Text Events with a SAX Filter
	Problem
	Solution
	Discussion
	See Also

	12.11 Using MSHTML to Parse XML or HTML
	Problem
	Solution
	Discussion
	See Also

	Network Programming
	13.0 Introduction
	13.1 Passing Messages with Socket Datagrams
	Problem
	Solution
	Discussion
	See Also

	13.2 Grabbing a Document from the Web
	Problem
	Solution
	Discussion
	See Also

	13.3 Filtering a List of FTP Sites
	Problem
	Solution
	Discussion
	See Also

	13.4 Getting Time from a Server via the SNTP Protocol
	Problem
	Solution
	Discussion
	See Also

	13.5 Sending HTML Mail
	Problem
	Solution
	Discussion
	See Also

	13.6 Bundling Files in a MIME Message
	Problem
	Solution
	Discussion
	See Also

	13.7 Unpacking a Multipart MIME Message
	Problem
	Solution
	Discussion
	See Also

	13.8 Removing Attachments from an Email Message
	Problem
	Solution
	Discussion
	See Also

	13.9 Fixing Messages Parsed by Python 2.4 email.FeedParser
	Problem
	Solution
	Discussion
	See Also

	13.10 Inspecting a POP3 Mailbox Interactively
	Problem
	Solution
	Discussion
	See Also

	13.11 Detecting Inactive Computers
	Problem
	Solution
	Discussion
	Threaded server
	Asynchronous server

	See Also

	13.12 Monitoring a Network with HTTP
	Problem
	Solution
	Discussion
	See Also

	13.13 Forwarding and Redirecting Network Ports
	Problem
	Solution
	Discussion
	See Also

	13.14 Tunneling SSL Through a Proxy
	Problem
	Solution
	Discussion
	See Also

	13.15 Implementing the Dynamic IP Protocol
	Problem
	Solution
	Discussion
	See Also

	13.16 Connecting to IRC and Logging Messages to Disk
	Problem
	Solution
	Discussion
	See Also

	13.17 Accessing LDAP Servers
	Problem
	Solution
	Discussion
	See Also

	Web Programming
	14.0 Introduction
	14.1 Testing Whether CGI Is Working
	Problem
	Solution
	Discussion
	See Also

	14.2 Handling URLs Within a CGI Script
	Problem
	Solution
	Discussion
	See Also

	14.3 Uploading Files with CGI
	Problem
	Solution
	Discussion
	See Also

	14.4 Checking for a Web Page’s Existence
	Problem
	Solution
	Discussion
	See Also

	14.5 Checking Content Type via HTTP
	Problem
	Solution
	Discussion
	See Also

	14.6 Resuming the HTTP Download of a File
	Problem
	Solution
	Discussion
	See Also

	14.7 Handling Cookies While Fetching Web Pages
	Problem
	Solution
	Discussion
	See Also

	14.8 Authenticating with a Proxy for HTTPS Navigation
	Problem
	Solution
	Discussion
	See Also

	14.9 Running a Servlet with Jython
	Problem
	Solution
	Discussion
	See Also

	14.10 Finding an Internet Explorer Cookie
	Problem
	Solution
	Discussion
	See Also

	14.11 Generating OPML Files
	Problem
	Solution
	Discussion
	See Also

	14.12 Aggregating RSS Feeds
	Problem
	Solution
	Discussion
	See Also

	14.13 Turning Data into Web Pages Through�Templates
	Problem
	Solution
	Discussion
	See Also

	14.14 Rendering Arbitrary Objects with Nevow
	Problem
	Solution
	Discussion
	See Also

	Distributed Programming
	15.0 Introduction
	15.1 Making an XML-RPC Method Call
	Problem
	Solution
	Discussion
	See Also

	15.2 Serving XML-RPC Requests
	Problem
	Solution
	Discussion
	See Also

	15.3 Using XML-RPC with Medusa
	Problem
	Solution
	Discussion
	See Also

	15.4 Enabling an XML-RPC Server to Be Terminated Remotely
	Problem
	Solution
	Discussion
	See Also

	15.5 Implementing SimpleXMLRPCServer Niceties
	Problem
	Solution
	Discussion
	See Also

	15.6 Giving an XML-RPC Server a wxPython GUI
	Problem
	Solution
	Discussion
	See Also

	15.7 Using Twisted Perspective Broker
	Problem
	Solution
	Discussion
	See Also

	15.8 Implementing a CORBA Server and Client
	Problem
	Solution
	Discussion
	See Also

	15.9 Performing Remote Logins Using telnetlib
	Problem
	Solution
	Discussion
	See Also

	15.10 Performing Remote Logins with SSH
	Problem
	Solution
	Discussion
	See Also

	15.11 Authenticating an SSL Client over HTTPS
	Problem
	Solution
	Discussion
	See Also

	Programs About Programs
	16.0 Introduction
	Lexing
	Parsing
	PLY, SPARK, and Other Python Parser Generators
	Using Python Itself as a Little Language
	Introspection

	16.1 Verifying Whether a String Represents a�Valid�Number
	Problem
	Solution
	Discussion
	See Also

	16.2 Importing a Dynamically Generated Module
	Problem
	Solution
	Discussion
	See Also

	16.3 Importing from a Module Whose Name Is Determined at Runtime
	Problem
	Solution
	Discussion
	See Also

	16.4 Associating Parameters with a Function (Currying)
	Problem
	Solution
	Discussion
	See Also

	16.5 Composing Functions
	Problem
	Solution
	Discussion
	See Also

	16.6 Colorizing Python Source Using the Built-in Tokenizer
	Problem
	Solution
	Discussion
	See Also

	16.7 Merging and Splitting Tokens
	Problem
	Solution
	Discussion
	See Also

	16.8 Checking Whether a String Has Balanced Parentheses
	Problem
	Solution
	Discussion
	See Also

	16.9 Simulating Enumerations in Python
	Problem
	Solution
	Discussion
	See Also

	16.10 Referring to a List Comprehension While Building It
	Problem
	Solution
	Discussion
	See Also

	16.11 Automating the py2exe Compilation of Scripts into Windows Executables
	Problem
	Solution
	Discussion
	See Also

	16.12 Binding Main Script and Modules into One Executable on Unix
	Problem
	Solution
	Discussion
	See Also

	Extending and Embedding
	17.0 Introduction
	17.1 Implementing a Simple Extension Type
	Problem
	Solution
	Discussion
	See Also

	17.2 Implementing a Simple Extension Type with Pyrex
	Problem
	Solution
	Discussion
	See Also

	17.3 Exposing a C++ Library to Python
	Problem
	Solution
	Discussion
	See Also

	17.4 Calling Functions from a Windows DLL
	Problem
	Solution
	Discussion
	See Also

	17.5 Using SWIG-Generated Modules in�a�Multithreaded Environment
	Problem
	Solution
	Discussion
	See Also

	17.6 Translating a Python Sequence into a C Array with the PySequence_Fast Protocol
	Problem
	Solution
	Discussion
	See Also

	17.7 Accessing a Python Sequence Item-by-Item with the Iterator Protocol
	Problem
	Solution
	Discussion
	See Also

	17.8 Returning None from a Python-Callable C�Function
	Problem
	Solution
	Discussion
	See Also

	17.9 Debugging Dynamically Loaded C�Extensions with gdb
	Problem
	Solution
	Discussion
	See Also

	17.10 Debugging Memory Problems
	Problem
	Solution
	Discussion
	See Also

	Algorithms
	18.0 Introduction
	Timing and timeit.py

	18.1 Removing Duplicates from a Sequence
	Problem
	Solution
	Discussion
	See Also

	18.2 Removing Duplicates from a Sequence While Maintaining Sequence Order
	Problem
	Solution
	Discussion
	See Also

	18.3 Generating Random Samples with Replacement
	Problem
	Solution
	Discussion
	See Also

	18.4 Generating Random Samples Without Replacement
	Problem
	Solution
	Discussion
	See Also

	18.5 Memoizing (Caching) the Return Values of Functions
	Problem
	Solution
	Discussion
	See Also

	18.6 Implementing a FIFO Container
	Problem
	Solution
	Discussion
	See Also

	18.7 Caching Objects with a FIFO Pruning Strategy
	Problem
	Solution
	Discussion
	See Also

	18.8 Implementing a Bag (Multiset) Collection Type
	Problem
	Solution
	Discussion
	See Also

	18.9 Simulating the Ternary Operator in Python
	Problem
	Solution
	Discussion
	See Also

	18.10 Computing Prime Numbers
	Problem
	Solution
	Discussion
	See Also

	18.11 Formatting Integers as Binary Strings
	Problem
	Solution
	Discussion
	See Also

	18.12 Formatting Integers as Strings in Arbitrary Bases
	Problem
	Solution
	Discussion
	See Also

	18.13 Converting Numbers to Rationals via Farey Fractions
	Problem
	Solution
	Discussion
	See Also

	18.14 Doing Arithmetic with Error Propagation
	Problem
	Solution
	Discussion
	See Also

	18.15 Summing Numbers with Maximal Accuracy
	Problem
	Solution
	Discussion
	See Also

	18.16 Simulating Floating Point
	Problem
	Solution
	Discussion
	See Also

	18.17 Computing the Convex Hulls and Diameters of 2D Point Sets
	Problem
	Solution
	Discussion
	See Also

	Iterators and Generators
	19.0 Introduction
	The Iterator Protocol
	Iterators and Generators
	Thinking Out of the Box
	Odds and Ends

	19.1 Writing a range-like Function with Float Increments
	Problem
	Solution
	Discussion
	See Also

	19.2 Building a List from Any Iterable
	Problem
	Solution
	Discussion
	See Also

	19.3 Generating the Fibonacci Sequence
	Problem
	Solution
	Discussion
	See Also

	19.4 Unpacking a Few Items in a Multiple Assignment
	Problem
	Solution
	Discussion
	See Also

	19.5 Automatically Unpacking the Needed Number of Items
	Problem
	Solution
	Discussion
	See Also

	19.6 Dividing an Iterable into n Slices of Stride n
	Problem
	Solution
	Discussion
	See Also

	19.7 Looping on a Sequence by Overlapping Windows
	Problem
	Solution
	Discussion
	See Also

	19.8 Looping Through Multiple Iterables in Parallel
	Problem
	Solution
	Discussion
	See Also

	19.9 Looping Through the Cross-Product of Multiple Iterables
	Problem
	Solution
	Discussion
	See Also

	19.10 Reading a Text File by Paragraphs
	Problem
	Solution
	Discussion
	See Also

	19.11 Reading Lines with Continuation Characters
	Problem
	Solution
	Discussion
	See Also

	19.12 Iterating on a Stream of Data Blocks as a Stream of Lines
	Problem
	Solution
	Discussion
	See Also

	19.13 Fetching Large Record Sets from a Database with a Generator
	Problem
	Solution
	Discussion
	See Also

	19.14 Merging Sorted Sequences
	Problem
	Solution
	Discussion
	See Also

	19.15 Generating Permutations, Combinations, and Selections
	Problem
	Solution
	Discussion
	See Also

	19.16 Generating the Partitions of an Integer
	Problem
	Solution
	Discussion
	See Also

	19.17 Duplicating an Iterator
	Problem
	Solution
	Discussion
	See Also

	19.18 Looking Ahead into an Iterator
	Problem
	Solution
	Discussion
	See Also

	19.19 Simplifying Queue-Consumer Threads
	Problem
	Solution
	Discussion
	See Also

	19.20 Running an Iterator in Another Thread
	Problem
	Solution
	Discussion
	See Also

	19.21 Computing a Summary Report with itertools.groupby
	Problem
	Solution
	Discussion
	See Also

	Descriptors, Decorators, and Metaclasses
	20.0 Introduction
	Descriptors
	Decorators
	Metaclasses

	20.1 Getting Fresh Default Values at Each Function Call
	Problem
	Solution
	Discussion
	See Also

	20.2 Coding Properties as Nested Functions
	Problem
	Solution
	Discussion
	See Also

	20.3 Aliasing Attribute Values
	Problem
	Solution
	Discussion
	See Also

	20.4 Caching Attribute Values
	Problem
	Solution
	Discussion
	See Also

	20.5 Using One Method as Accessor for Multiple Attributes
	Problem
	Solution
	Discussion
	See Also

	20.6 Adding Functionality to a Class by Wrapping a Method
	Problem
	Solution
	Discussion
	See Also

	20.7 Adding Functionality to a Class by Enriching All Methods
	Problem
	Solution
	Discussion
	See Also

	20.8 Adding a Method to a Class Instance at Runtime
	Problem
	Solution
	Discussion
	See Also

	20.9 Checking Whether Interfaces Are Implemented
	Problem
	Solution
	Discussion
	See Also

	20.10 Using _�_new_�_ and _�_init_�_ Appropriately in Custom Metaclasses
	Problem
	Solution
	Discussion
	See Also

	20.11 Allowing Chaining of Mutating List Methods
	Problem
	Solution
	Discussion
	See Also

	20.12 Using Cooperative Supercalls with Terser Syntax
	Problem
	Solution
	Discussion
	See Also

	20.13 Initializing Instance Attributes Without Using _�_init_�_
	Problem
	Solution
	Discussion
	See Also

	20.14 Automatic Initialization of Instance Attributes
	Problem
	Solution
	Discussion
	See Also

	20.15 Upgrading Class Instances Automatically on reload
	Problem
	Solution
	Discussion
	See Also

	20.16 Binding Constants at Compile Time
	Problem
	Solution
	Discussion
	See Also

	20.17 Solving Metaclass Conflicts
	Problem
	Solution
	Discussion
	See Also

	Index

