
ptg8126863

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

800 East 96th Street, Indianapolis, Indiana, 46240 USA

John Ray
William Ray

SamsTeachYourself

24in

Hours

Xcode® 4

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Sams Teach Yourself Xcode®4 in 24 Hours
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33587-7
ISBN-10: 0-672-33587-5

The Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing June 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Laura Norman

Development
Editor
Keith Cline

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Tim Wright

Proofreader
Chrissy White

Technical Editor
Greg Kettell

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Contents at a Glance

Introduction. 1

HOUR 1 Xcode 4. 3

2 Just Enough Objective-C and Cocoa . 23

3 Understanding the MVC Design Pattern. 57

4 Using Xcode Templates to Create Projects . 71

5 Managing Projects and Resources . 95

6 Using the Xcode Code Source Editor. 117

7 Working with the Xcode 4 Documentation . 145

8 Creating User Interfaces . 165

9 Connecting a GUI to Code . 195

10 Creating iOS Application Workflows with Storyboarding. 215

11 Building and Executing Applications . 251

12 Using Source Control. 279

13 Xcode-Supported Languages. 311

14 Planning for Re-use: Frameworks and Libraries . 329

15 Putting It All Together: Building an OS X Application 355

16 Building an iOS Application . 399

17 Attaching Big Data: Using Core Data in Your Applications 435

18 Test Early, Test Often . 465

19 Getting the Bugs Out . 487

20 Keeping things Organized: Shared Workspaces . 509

21 Advanced: Analyzing Code with Instruments . 533

22 Managing and Provisioning iOS Devices . 549

23 Distributing Your Applications. 567

24 Xcode CLI Utilities . 587

Index . 603

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Table of Contents

Introduction 1

HOUR 1: Xcode 4 . 3
Welcome to Xcode . 3

The Apple Developer Programs . 8

Installing the Xcode Developer Tools. 11

The Nickel Tour . 13

Preparing Your iOS Device (Optional) . 17

Summary . 20

Q&A . 20

Workshop . 21

HOUR 2: Just Enough Objective-C and Cocoa 23

Object-Oriented Programming and Objective-C . 23

What Is Objective-C? . 25

Objective-C Programming Basics . 38

Memory Management and Automatic Reference Counting. 48

What Is Cocoa? . 50

Cocoa Versus Cocoa Touch . 51

Summary . 54

Q&A . 55

Workshop . 55

HOUR 3: Understanding the MVC Design Pattern 57

Development, Design Patterns, and MVC . 57

How Xcode Implements MVC . 60

An MVC Walkthrough . 64

Summary . 68

Q&A . 68

Workshop . 69

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

HOUR 4: Using Xcode Templates to Create Projects 71

Available Project Types . 71

The Project-Creation Process . 83

You’ve Got a Project . 88

Summary . 91

Q&A . 91

Workshop . 92

HOUR 5: Managing Projects and Resources 95

Getting Your Bearings. 95

Managing Project Files . 99

Managing Frameworks and Libraries . 108

Managing Groups . 110

Managing Target Properties . 111

Summary . 114

Q&A . 115

Workshop . 115

HOUR 6: Using the Xcode Source Editor 117

Understanding Editor Basics. 117

Navigating Within and Between Files . 126

Using the Assistant Editor . 131

Correcting Errors and Warnings in the Issue Navigator . 133

Refactoring Code . 135

Using Code Snippets . 138

Summary . 142

Q&A . 142

Workshop . 142

HOUR 7: Working with the Xcode 4 Documentation 145

Overview of Documentation Resources . 145

Configuring the Xcode Documentation Downloads . 148

Understanding the Documentation Resources . 149

Using the Xcode Help Viewer . 155

Table of Contents

v

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Using the Quick Help Assistant. 158

Summary . 161

Q&A . 162

Workshop . 162

HOUR 8: Creating User Interfaces 165

What Is Interface Builder? . 165

The Anatomy of an Interface Builder File . 168

Creating User Interfaces . 174

Working with the IB Layout Tools . 177

Customizing Interface Appearance . 188

Setting Object Identities. 191

Adding Custom Objects to Interface Builder . 192

Summary . 193

Q&A . 193

Workshop . 194

HOUR 9: Connecting a GUI to Code 195

Outlet, Actions, and Properties: A Review. 195

Making Connections to Outlets and Actions . 197

Writing Connection Code with Interface Builder . 205

Summary . 211

Q&A . 212

Workshop . 212

HOUR 10: Creating iOS Application Workflows with Storyboards 215

The Power of Storyboards . 215

Storyboard Terminology . 216

The Anatomy of a Multiscene Project . 218

Making Advanced Segues . 230

A Navigation Storyboard Example . 239

Summary . 248

Q&A . 249

Workshop . 249

vi

Sams Teach Yourself Xcode 4 in 24 Hours

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

HOUR 11: Building and Executing Applications 251

The Language of the Build . 251

Managing Targets . 257

Managing Schemes . 264

Using the iOS Simulator . 271

Summary . 276

Q&A . 277

Workshop . 277

HOUR 12: Using Source Control 279

Using Xcode Snapshots . 279

A Brief Introduction to Source Control Systems . 283

Working with Subversion and Git Repositories . 285

Managing a Project in Source Control . 296

Summary . 307

Q&A . 308

Workshop . 308

HOUR 13: Xcode-Supported Languages 311

Choosing the Right Language . 312

Built-In Languages . 313

Adding Support for Other Languages . 322

Summary . 325

Q&A . 326

Workshop . 326

HOUR 14: Planning for Reuse: Frameworks and Libraries 329

Understanding Frameworks . 329

Deploying a Framework . 348

Reusing Code from Existing C/C++ Libraries . 349

Summary . 352

Q&A . 352

Workshop . 353

Table of Contents

vii

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

HOUR 15: Putting It All Together: Building an OS X Application 355

Getting Started . 356

Creating the Interface . 359

Attaching Code . 364

Inserting Interface Object References into the Code . 369

Tying Things Together. 373

Increasing Functionality with a Framework . 376

Summary . 395

Q&A . 396

Workshop . 396

HOUR 16: Building an iOS Application 399

Assessing What You Already Have . 400

Building from the Template . 403

Adding a Static Library Target . 404

Updating Application Logic and Library Calls for iOS . 414

Summary . 430

Q&A . 431

Workshop . 432

HOUR 17: Attaching Big Data: Using Core Data in Your Applications 435

Introducing Core Data . 435

Using the Xcode Core Data Model Editor . 438

Binding a Data Model to a User Interface . 446

Accessing Data Through Code . 458

Summary . 462

Q&A . 463

Workshop . 463

HOUR 18: Test Early, Test Often 465

Adding Unit Tests to an Existing Application . 466

Implementing Tests for Existing Code . 472

Accessing the Rest of an Application Through the Bundle Loader 480

viii

Sams Teach Yourself Xcode 4 in 24 Hours

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Summary . 483

Q&A . 484

Workshop . 485

HOUR 19: Getting the Bugs Out 487

Getting Started with the Debugger . 488

Proactive Debugging . 493

Working with Breakpoints . 497

Summary . 506

Q&A . 506

Workshop . 507

HOUR 20: Keeping Things Organized: Shared Workspaces 509

Using Workspaces . 510

Creating a Workspace. 515

Adding Projects to the Workspace . 517

Configuring the OS X Project to Work in the Workspace . 519

Configuring the iOS Project to Work in the Workspace . 524

Summary . 530

Q&A . 531

Workshop . 531

HOUR 21: Advanced: Analyzing Code with Instruments 533

The Instruments Interface . 534

Using Instruments . 536

Additional Runs. 541

Collecting Data from Additional Instruments Simultaneously 543

Summary . 545

Q&A . 546

Workshop . 546

HOUR 22: Managing and Provisioning iOS Devices 549

Creating an iOS Distribution Certificate . 550

Creating an App ID . 556

Table of Contents

ix

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

Creating a Distribution Provisioning Profile . 560

Summary . 563

Q&A . 564

Workshop . 565

HOUR 23: Distributing Your Applications 567

Finalizing Your Distribution Build . 568

Configuring an iTunes Connect Application Record . 576

Distributing Your Archived Application . 578

Summary . 583

Q&A . 583

Workshop . 584

HOUR 24: Xcode CLI Utilities 587

Using xcode-select . 588

Using xcodebuilid . 590

Using xcrun . 595

Other Xcode Command-Line Tools . 598

Bigger and Better Command-Line Uses . 599

Summary . 600

Q&A . 600

Workshop . 602

Index 603

x

Sams Teach Yourself Xcode 4 in 24 Hours

ptg8126863

About the Authors

John Ray is currently serving as a Senior Business Analyst and Development Team

Manager for the Ohio State University Office of Research. He has written numerous books

for Macmillan/Sams/Que, including Using TCP/IP: Special Edition, Teach Yourself Dreamweaver

MX in 21 Days, Mac OS X Unleashed, and Teach Yourself iOS 5 Development in 24 Hours. As a

Macintosh user since 1984, he strives to ensure that each project presents the Macintosh

with the equality and depth it deserves. Even technical titles such as Using TCP/IP contain

extensive information about the Macintosh and its applications and have garnered numer-

ous positive reviews for their straightforward approach and accessibility to beginner and

intermediate audiences.

Will Ray is an assistant professor of pediatrics in the Battelle Center for Mathematical

Medicine at Nationwide Children’s Hospital. Trained as a biophysicist in computational

biology and scientific visualization, Dr. Ray’s group is working to bring cutting-edge compu-

tational technology to end users, through simplified user interfaces. He has been developing

training materials and teaching users and programmers to live at the intersection of

Macintosh and UNIX technologies since 1989.

You can visit their Xcode book website at http://teachyourselfxcode.com or follow their

book-related tweets on Twitter at #XcodeIn24.

http://teachyourselfxcode.com

ptg8126863

Dedication

Since Will and I couldn’t agree on dedicating this to his parents or mine, we hereby dedicate this

book to the game #Starhawk. Come play the authors and discuss Xcode in the regularly appearing

“Old-N-Slow” server.

Acknowledgments

Thank you to the group at Sams Publishing—Laura Norman, Keith Cline, Greg Kettell—for

working through the table of content changes, schedule conflicts, and on-the-fly revisions.

You’ve made this book a reality and deciphered many 2 a.m. sentences that were barely

more than random keyboard mashing.

Thanks to everyone around us—family, friends, distant relations, strangers, and pets—for

providing food, ibuprofen, and paying the bills.

ptg8126863

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone number or e-mail address. I will carefully review your comments and share

them with the author and editors who worked on the book.

E-mail: consumer@samspublishing.com

Mail: Greg Wiegand

Editor-in-Chief

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, and errata that might be available for this book.

ptg8126863

This page intentionally left blank

ptg8126863

Introduction

So you’ve decided to write applications for OS X or iOS. You sit down at your Macintosh,

start up Xcode, and… what? Create a project? Create a file? Make a storyboard? Build a

Core Data model? What?

For an operating system that prides itself on being accessible to many, Xcode can appear as

an insurmountable obstacle to an unprepared developer. With an iTunes-like interface, and

more panels, palettes, menus, and buttons than you can count, even a simple Hello World

application can seem daunting. Apple, while diligent in providing documentation, provides

very few resources for developers who understand programming fundamentals but not their

OS X/iOS implementation. That’s where this book comes in.

Xcode offers a range of integrated tools for everything from data modeling to performance

analysis and optimization. Teach Yourself Xcode in 24 Hours takes 24 of the most important

aspects of Xcode development and condenses them down into easily understandable

chunks. To help convey some of the core concepts, you work with real projects for both iOS

and OS X that demonstrate important features such as shared libraries/frameworks, story-

boards, Core Data models, and even hands-on debugger practice.

Xcode 4 represents an entirely redesigned version of Apple’s development suite. Despite

reaching version 4.4 (in beta) during this writing, it has only been in developer’s hands for

slightly more than a year. Unfortunately, this means it is a still a bit rough around the

edges. We point out the issues where we encounter them, but don’t be shy about filing bug

reports with Apple if features don’t quite work as anticipated. With the help of the OS X/iOS

community, Xcode is being improved and enhanced rapidly. Each new release brings more

consistency and reliability to the product.

Our goal for this book is to open Xcode development to programmers who may have previ-

ously eyed the platform with trepidation. A learning curve applies to becoming an Xcode

developer, but once you begin to understand how Apple intends the tools to be used, you’ll

find that OS X and iOS development can be fast and, most important, fun.

Who Should Use This Book?
This book targets individuals who have used programming tools but who are new to the

Xcode development platform. Although no previous development experience is required to

complete the book, an understanding of programming fundamentals is helpful. To be clear,

ptg8126863

even though we provide code samples and an introduction to Objective-C, we do not have

the space in 24 hours to teach the concepts of loops, arrays, and other foundation topics.

In addition, to be successful, we recommend that you spend time reading the Apple devel-

oper documentation and researching the topics presented in this book. A vast amount of

information about OS X/iOS development is available, and it is constantly changing.

Apple’s integrated online documentation system makes it possible to stay up-to-date on

your development knowledge and learn the details of available technologies from the com-

fort of your desktop Mac or iPad.

The material in this book specifically targets Xcode 4.3 and later. If you are running an ear-

lier version, you definitely want to upgrade before moving too far along. In addition, many

lessons are accompanied by project files that include sample code. While opening a project

and clicking Run can be fun, we prefer that you follow along, when possible, and build the

application yourself.

Be sure to download the project files from the book’s website at

http://teachyourselfxcode.com. If you have issues with any projects, view the posts on this

site to see whether a solution has been posted.

In addition to the support website, you can follow along on Twitter. Search for #XcodeIn24

on Twitter to receive official updates and tweets from other readers. Use the hashtag

#XcodeIn24 in your tweets to join the conversation. To send me messages via Twitter, begin

each tweet with @johnemeryray.

Due to the complexity of the topics discussed, some figures in this
book are very detailed and are intended only to provide a high-level view
of concepts. Those figures are representational and not intended to be
read in detail. If you prefer to view these figures on your computer, you
can download them at informit.com/title/9780672335877.

2

Sams Teach Yourself Xcode 4 in 24 Hours

By the
Way

http://teachyourselfxcode.com

ptg8126863

HOUR 1

Xcode 4

What You’ll Learn in This Hour:
. How to download and install Xcode
. Differences from Xcode 3
. The Xcode interface basics
. Benefits of being a paid developer
. What to expect during the first few hours of this book

Do you love using your Mac or iOS device? If so, you can thank Xcode. Xcode is the start-

ing point for nearly all the applications you know and love on your favorite operating sys-

tem. It contains the tools for writing code, developing interfaces, testing performance, and

even submitting your creations to the Mac or iOS App Store for distribution.

This hour walks you through the evolution of Xcode, including the difference between

Xcode 4 and Xcode 3, and the addition of iOS development tools to what was traditionally

a desktop application development environment. You also learn the benefits of joining a

paid developer program, how to install Xcode, and begin to find your way around its user

interface. The hour concludes with the steps you need to take if you want to test code

directly on your own iDevice rather than in a simulator.

Welcome to Xcode
There are many different reasons to learn Xcode. Perhaps you want to develop iOS appli-

cations for the iPhone, iPad, and whatever other devices Apple has up its sleeves. Perhaps

you want to take the desktop route and focus on creating applications that run on your

Mac. Maybe you just want to write some quick utilities in AppleScript. Regardless of what

you’re looking to do, Xcode is the place to do it.

ptg8126863

By the
Way

4 HOUR 1: Xcode 4

Xcode Evolves
Xcode 4 is the start of a new development environment from Apple. For the first

time since the inception of Mac OS X, Apple has dramatically changed the develop-

ment experience. Xcode, when introduced with Mac OS X, was an adaptation of the

NeXTSTEP/OpenStep development tools. These tools were widely heralded as easy to

use and innovative for their object-oriented approach.

Although features have been added over the past decade, the general development

workflow went untouched. In Xcode 4, Apple is attempting to simplify and modern-

ize the developer toolset. This isn’t to say that if you’ve used earlier versions of

Xcode you won’t be able to catch on quickly, but Xcode 4 feels and acts like a new

product.

To learn more about the transition from NeXTSTEP to Mac OS X, and see a side-
by-side comparison of the development process, check out this video presentation
from SecondConf in 2010: http://cdn.secondconf.com/2010/videos/SecondConf-
GeneBacklin-17425.mp4.

Some of the biggest changes between Xcode 3 and Xcode 4 include the following:

. A single-window unified development environment

. Instant-access editors and viewers for code files, interfaces, data models, and

more

. Detailed code analysis and error detection

. Integrated interface builder

. Updated compiler and debugger

. Storyboard interface development for iOS applications

. Workspaces for combining multiple related projects

. Save-as-you go editing

. Integrated source control options, including local Git support

Figure 1.1 shows what an iOS project looks like Xcode 3.2, compared to Xcode 4.2 in

Figure 1.2.

As you read through each hour’s lesson, you’ll see that although the tools are new,

the development fundamentals you use in Xcode are the same as they have always

been. If you have never used Xcode before, I think you’re going to like what you see.

http://cdn.secondconf.com/2010/videos/SecondConf-GeneBacklin-17425.mp4
http://cdn.secondconf.com/2010/videos/SecondConf-GeneBacklin-17425.mp4

ptg8126863

Welcome to Xcodex 5

iOS Versus Mac OS X Development
Xcode, although originally built for desktop application development, is now the

primary method of deploying applications on the iOS mobile platform. While the

skills necessary for writing applications on both iOS and Mac OS X are similar, the

workflow differs significantly. The goal here is to present Xcode in a way that takes

into account all the Apple platforms.

FIGURE 1.1
A simple iOS
project in
Xcode 3.2.

FIGURE 1.2
The same iOS
project in Xcode
4.2.

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

6 HOUR 1: Xcode 4

Let’s take a few minutes to review some of the main differences between Mac OS X

and iOS development.

Frameworks
The Mac OS X frameworks are adapted and improved versions of what was avail-

able in NeXTSTEP and OpenStep. They have been defined and refined over more

than a decade. iOS, in contrast, is a new OS, based on Mac OS X. Although it

includes many of the same frameworks, they are largely “light” versions that do not

offer the same depth of features as their desktop counterpart.

Core Image, for example, provides advanced image-processing capabilities in Mac

OS X. In iOS 5, the Core Image was introduced, but without support for many of the

advanced features of its desktop brethren. The lack of a one-to-one mapping

between the two platforms is a frustration to developers, but with each iteration of

iOS and Mac OS X, the two operating systems grow closer and closer together.

Deployment
As you already know, iOS applications are deployed on an iPhone/iPad, and Mac

OS X applications are deployed on a Mac. Although this might seem obvious, the

implications for developers might not be. First, iOS applications must be run and

debugged in a simulator, as shown in Figure 1.3 (unless separate development hard-

ware is available). Mac applications are developed and debugged directly on your

development machine—no simulator required.

Second, iOS applications, even those that you write for yourself on your own iOS

hardware, are tied to a time-limited development certificate. Without a paid devel-

oper license, iOS developers are limited to using the simulator only. Mac developers

have no such restrictions. You can write a Mac application in Xcode that runs on

any computer at any time.

Interface Development
After Xcode 4 shipped, Apple added an iOS specific feature called storyboarding.

This presents one of biggest advances in iOS GUI development and also one of the

biggest differences between iOS and Mac OS X projects. On the Mac, application

interfaces are created independently of one another. Even though clicking a button

in one window might lead to another window opening, no such relationship is rep-

resented when designing the interface.

iOS storyboards take a more holistic approach to the UI design. Each screen (win-

dow) within an application can be defined, and the transitions and relationships

between them defined visually. Using iOS storyboarding, it is possible to create a

working application UI with almost no code written.

ptg8126863

Welcome to Xcodex 7

Application Access
Another big distinction between iOS and Macintosh applications is the level of

access that you, the developer, have to low-level file system and operating system

internals. On the Mac, developers can do almost anything they want—because they

are free to distribute an app however they please. Software submitted to the Mac

App Store does have to meet a strict set of requirements, but it is a choice, not a

compulsion.

The opposite is true for iOS. To publicly distribute an app for iOS means that your

creation must be a well-behaved citizen of iOS and follow very strict guidelines for

resource usage. Some of these restrictions are forced based on resource limits

(threads, memory, storage), whereas others require you, the developer, to pay atten-

tion to Apple coding guidelines. Using Xcode, for example, you can easily create an

application that accesses information across the iOS file system and that runs indefi-

nitely in the background. You can create it, but Apple is not going to approve it.

Now that you have an idea of what to expect from Xcode, and the differences

between iOS and Mac OS X development, it’s time to begin preparing your develop-

ment environment. Your next step is to determine whether joining a developer pro-

gram is worth your time (and money).

FIGURE 1.3
iOS applications
run in a
simulator; Mac
applications run
directly on
your Mac.

ptg8126863
By the

Way

8 HOUR 1: Xcode 4

The Apple Developer Programs
There are two types of developers: paid and unpaid. For free, you can download the

latest stable Xcode release from the Mac App Store and begin writing applications

that run either on your Mac or in the iOS simulator. You even have access to the full

Xcode documentation and sample projects. You cannot, however, run applications

directly on iOS hardware or submit apps (iOS or Mac) to the App Store.

For hobbyists or individuals wanting to gain experience with iOS development, paid

developer membership offers few advantages. Those who are committed to the

deployment of a product on either iOS or Mac OS X, however, are best served by a

paid membership.

Paid memberships offers early access to iOS and Mac OS X operating system

releases, as well as to beta releases of Xcode. In fact, developers had access to Xcode

4 beta for the better part of a year before it was finally released in 2011. In addition,

being part of a paid developer program grants you access to discussion forums, beta

documentation, Worldwide Developers Conference (WWDC) materials, and in some

cases, direct support from Apple.

Test Before the Rest
Testing products on new pre-release versions of an OS and its development tools
is an important part of a serious developer’s process. With each new release of
iOS and Mac OS X, developers scramble to update applications, fix bugs, and
implement new features. Those who take advantage of the pre-release program,
however, can get their creations on the market day and date with Apple’s latest
and greatest.

The cost of iOS and Mac OS X developer program memberships is currently $99/year

each for an individual or a company. Corporate iOS developers seeking to deploy

iOS applications in house can pay $299/year for a special enterprise-level program.

For a summary of all the current membership levels, visit http://developer.apple.

com/programs/which-program/.

Big or small, free or paid, your venture into Xcode development begins on the Apple

website by registering as an Apple developer.

Registering as a Developer
To start, visit the Apple Developer Registration portal (http://developer.apple.com/

programs/register/) shown in Figure 1.4. If you have an existing Apple ID from

using iTunes, iCloud, or other Apple services, you can to use it for your developer

http://developer.apple.com/programs/which-program/
http://developer.apple.com/programs/which-program/
http://developer.apple.com/programs/register/
http://developer.apple.com/programs/register/

ptg8126863

The Apple Developer Programs 9

account. If not, or if you want a new ID to use solely for development, you have the

option of creating a new Apple ID during the registration process.

FIGURE 1.4
Visit an Apple
developer cen-
ter to begin the
enrollment
process.

Click the Get Started link in the upper right. When the registration starts, decide

whether to create an Apple ID or jump-start registration by choosing to Use an

Existing Apple ID, as shown in Figure 1.5. After making your choice, click Continue.

The registration process walks you through the process of creating a new Apple ID (if

needed) and collects information about your development interests and experience,

as shown in Figure 1.6.

If you choose to create a new ID, Apple verifies your email address by sending you a

clickable link to activate your account.

Joining a Paid Developer Program (Optional)
After you have a registered and activated Apple ID, you can decide to join a paid

program or to continue and use the free developer resources. If you choose to join a

paid program, point your browser to the Developer Program list (http://developer.

apple.com/programs/which-program/), pick the link to the program you want, and

then and click the Enroll link on the subsequent page. After reading the introductory

text, click Continue to begin the enrollment process.

http://developer.apple.com/programs/which-program/
http://developer.apple.com/programs/which-program/

ptg8126863

10 HOUR 1: Xcode 4

When prompted, choose I’m Registered as a Developer with Apple and Would Like

to Enroll in a Paid Apple Developer Program, and then click Continue.

FIGURE 1.5
You use an
Apple ID to
access all the
developer
resources.

FIGURE 1.6
Provide Apple
with information
about your
development
experience.

ptg8126863

Installing the Xcode Developer Tools 11

The registration tool then guides you through applying for the paid programs,

including choosing between the individual and company options, as shown in

Figure 1.7.

FIGURE 1.7
Choose whether
to enroll as a
company or an
individual.

Unlike the free developer membership, the paid developer program does not take

effect immediately. When the iOS developer program started, it took months for new

developers to be approved into the program. Today, it might take hours—be patient.

Installing the Xcode Developer Tools
Downloading the Xcode developer suite is as easy as point and click. Open the App

Store from your Dock, search for Xcode, and download it for free, as shown in Figure

1.8. Sit back while your Mac downloads the large (~3GB) installer. If you prefer not

to use the App Store, or have difficulty with the download, you can also download

the software by going to http://developer.apple.com/, choosing the developer pro-

gram you enrolled in (iOS or Mac), and then logging in to access a direct-download

installer for Xcode.

http://developer.apple.com/

ptg8126863

12 HOUR 1: Xcode 4

FIGURE 1.8
Download Xcode
from the Mac
App Store.

By the
Way If you have the free developer membership and log in to the Dev Center, you see

just a single installer for Xcode. If you’ve become a paid program member, you
might see additional links for different versions of Xcode, iOS, Mac OS X, and
other pre-release software. I recommend, when first starting out, to use the stable
release version of the tools.

When the download completes, you have either an installer (if you downloaded

from the Mac App Store) or a disk image (if you downloaded from the developer

site). Open the disk image, if necessary, and run the installer. You do not have to

change any of the defaults during the installation process, so just read and agree to

the software license and click Continue to proceed through the steps.

Like most applications, Xcode 4.3+ is installed in your Applications folder.

Additional tools are installed within the application bundle itself at the path

/Applications/Xcode.app/Contents/Developer. Inside the Developer folder are

dozens of files and folders containing developer frameworks, source code files, and

additional developer applications. Most of your time will be spent in Xcode (see

Figure 1.9), but you’ll have quick access to the additional developer tools through

the Xcode, Open Developer Tool menu.

ptg8126863

Did You
Know?

The Nickel Tour 13

At the time of this writing, versions of Xcode installed from Apple’s developer por-
tal (as opposed to the Mac App Store) use the path “/Developer/Applications” at
the root level of your hard drive. In other words, if you don’t see Xcode installed in
your main Applications folder, check your drive for a “Developer” folder—if you see
it, you’ll find Xcode within that Applications folder.

The Nickel Tour
If you’re like me, it’s pretty much impossible to install a piece of software and not

immediately start it. To get an idea of what you’re going to encounter in Xcode, let’s

take a few minutes to walk through the basics of the Xcode interface.

Starting Up
Launching Xcode displays a welcome screen (unless you’ve disabled it) that provides

quick access to online resources and common project functions—connecting to

source control repositories, opening projects, and creating new projects. This win-

dow, shown in Figure 1.10, is a convenient way to access your most frequently used

projects without having to delve into any local folders you’ve created.

Creating Projects
Creating a new project (either through the welcome screen or the File menu) dis-

plays a project template selection dialog, as shown in Figure 1.11. This might seem

Xcode FIGURE 1.9
Start Xcode
directly from
Launchpad.

ptg8126863

14 HOUR 1: Xcode 4

FIGURE 1.10
Use the wel-
come screen to
access your
projects, create
new projects, or
view online
resources.

FIGURE 1.11
Navigate the
templates for
iOS and Mac OS
X applications.

like a bold statement to make, but you won’t be creating any applications without

using a template (even if it is an empty application template). The Xcode applica-

tion templates set up properly configured projects for a variety of different develop-

ment scenarios.

ptg8126863

The Nickel Tour 15

After selecting a template, you are guided, wizard style, through a series of dialogs

to configure any additional attributes for your project. Xcode then presents your

workspace, ready for coding.

Navigating the Xcode Workspace
The Xcode 4 workspace looks like a more cluttered version of iTunes; all the develop-

ment tools are contained within a single window. If you’re used to Xcode 3.x, this

will come as a bit of a shock. You have much less flexibility in how you arrange

your tools. However, the consistency in the interface makes it easy to switch between

different editing modes and jump between interface, code, and back without losing

your focus.

Operating System

Category

Template

FIGURE 1.12
Get a quick
start on almost
any type of
project.

On the left side of the project creation screen, you choose the operating system (cur-

rently iOS and Mac OS X), and then select from a number of template categories for

that OS, and finally select an individual template from within the category. For

example, to create a screen saver for Mac OS X, you choose Mac OS X, System Plug-

In, and Screen Saver, as shown in Figure 1.12.

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

16 HOUR 1: Xcode 4

The Xcode IDE consists of five different functional areas, as shown in Figure 1.13.

. Toolbar: Displays project status and provides easy access to common

functions

. Navigator: Manages files, groups, and other information related to your proj-

ect or collection of projects

. Editor: Edits or displays the currently selected project resource, such as a code

file, interface file, or plist (property list)

. Utility: Provides quick access to object inspectors, help, and object/code

palettes

. Debug: Visible during application debugging, the debug area provides console

feedback and debugger output

ToolbarToolbar

NavigatorNavigator

Editor

Debug

UtilityUtility

FIGURE 1.13
The Xcode inter-
face is divided
into five areas.

We delve into each of these areas in depth in subsequent hours, so don’t worry—this

isn’t the last time you’ll hear about them. Xcode can be an overwhelming applica-

tion for someone who is just starting development or who is moving from another

interface development environment (IDE). The toolset is immense, and it is not difficult

to get lost clicking between the hundreds of configuration options available. The

goal of this book is to provide an understanding of Xcode’s major functions and to

give you the background you need to start coding productively. The first half of this

book examines the Xcode tools. The second half reviews specific examples of how

you can use the tools.

ptg8126863

Watch
Out!

Preparing Your iOS Device (Optional) 17

Before I wrap up this first hour’s lesson, I want like to provide a bit of instruction for

those readers who are anxious to begin iOS projects: how to prepare your iDevice for

running your own code.

Preparing Your iOS Device (Optional)
If you’re planning to use Xcode for creating iOS applications (and have joined a

paid iOS developer program), you’ll likely want to run your creations on your actual

device. Although I had been programming for most of my life, seeing my first iOS

app run on my iPhone was an absolute thrill.

Pay to Play
You absolutely must have a paid iOS developer program to run your Xcode projects
on an iDevice. If you try to complete these steps without paying, don’t expect it to
work—but you can still use the iOS simulator.

Like it or not, Apple’s current approach to iOS development is to make absolutely

certain that the development process is controlled—and that groups cannot just dis-

tribute software to anyone they want. The result is a rather confusing process that

ties together information about you, any development team members, and your

application into a provisioning profile.

A development provisioning profile identifies the developer who may install an

application, an ID for the application being developed, and the unique device identi-

fiers for each device that will run the application. This is only for the development

process. When you are ready to distribute an application via the App Store or to a

group of testers (or friends) via ad hoc means, you need to create a separate distribu-

tion profile.

Installing a Development Profile
Apple has dramatically streamlined the process of creating a provisioning profile in

Xcode. To install the development provisioning profile, first make sure that your

device is connected to your computer, and then launch Xcode and follow these steps:

1. When Xcode launches, dismiss any welcome windows that appear.

2. Choose Window, Organizer from the menu. You should see your iDevice listed

in the leftmost column of the Organizer under the Devices section, as shown

in Figure 1.14.

ptg8126863

18 HOUR 1: Xcode 4

FIGURE 1.14
Identify your
device in the
Organizer.

3. Click the device icon to select it, and then click the Use for Development

button.

4. Enter the Apple ID login associated with your paid developer membership

when prompted.

5. In the background, Xcode is adding a unique identity to the iOS developer por-

tal that identifies you and is used to digitally sign any applications you gener-

ate. It also registers your device with Apple so that it can run the software you

create (and beta releases of iOS). If this is the first time you have been through

the process, you are prompted as to whether a development certificate should

be generated, as shown in Figure 1.15. Click Submit Request to continue.

6. Xcode communicates with Apple to create a development profile that is named

Team Provisioning Profile and a unique App ID. This ID identifies a shared

portion of the iOS device keychain that your application will have access to.

Xcode then transparently uploads the profile to your device.

7. To view the details of the profile (and verify it has been installed), expand the

disclosure arrow beside your device name in the Organizer, and then click the

Provisioning Profiles line, shown in Figure 1.16.

ptg8126863

Preparing Your iOS Device (Optional) 19

FIGURE 1.16
Verify that the
device is
installed.

That’s it! Your iDevice is ready to go, and any projects you create can be installed

and executed on your hardware. You learn more about device provisioning in Hour

22, “Managing and Provisioning iOS Devices,” but you probably did not want to

wait that long to run your first app.

FIGURE 1.15
Create a devel-
opment
certificate.

ptg8126863

20 HOUR 1: Xcode 4

Summary
In this hour, you learned about Xcode 4 and its relationship to Xcode 3, including

the primary differences between the two IDEs. You also learned several of the ways

in which development differs between iOS and Mac OS X projects.

You should now be in a position to choose between the paid and unpaid developer

programs. Mac developers can develop and deploy software without paying a cent.

iOS developers, however, are required to be in a paid program to test software on

iDevices. Both types of developers must pay to submit applications to their corre-

sponding App Stores.

Next, you walked through the basics of the Xcode interface. Although the interface

is divided into a few general areas, the use of these areas is consistent regardless of

the task you are completing. You’ll quickly get a sense of where the tools you need

are located based on the five functional sections of the application.

Finally, iOS developers in a paid program were taken through the steps of preparing

their devices to run their project code. Because Xcode provides an iOS simulator, this

is not strictly necessary, but there is something satisfying about seeing your creation

running on your very own iPhone or iPad.

Q&A
Q. If I have older projects created in Xcode 3.2, will they work in Xcode 4?

A. Yes, Xcode 4 will open your old projects, but they will not be upgraded to take

advantage of all the new features of Xcode 4.

Q. Can I join just one paid developer program to get access to betas?

A. Yes and no. Joining the iOS program gets you access to the Xcode betas and

iOS software releases, but not beta releases of Mac OS X. Similarly, the Mac

developer program includes Xcode releases and Mac OS X betas, but not iOS

releases.

Q. Are there any other good reasons to join a paid program?

A. Keep in mind that beta releases are under NDA (nondisclosure agreement),

meaning that you cannot discuss them publicly. Being in a paid developer

program not only lets you try out features before they are publicly available,

but the Apple forums present the only legal opportunity for discussing bugs,

development practices, and exchanging ideas prior to the software’s public

release.

ptg8126863

Workshop 21

Workshop

Quiz
1. iOS and Mac OS X development are identical except for screen size. True or

false?

2. A single paid developer program covers both Mac OS X and iOS. True or false?

3. Can you publish a Mac OS X app without a paid developer membership?

Answers
1. False. iOS development provides a subset of the features of Mac OS X and

includes additional touch-related features not currently found in Mac OS X.

2. False. Both Mac OS X and iOS development have individual paid member-

ships starting at $99.

3. Yes. Although you cannot publish the app to the Mac App Store, you can still

write, compile, and distribute an application on your own. The same, how-

ever, cannot be said for iOS apps.

Activities
1. Download and install the Xcode developer tools using the Mac App Store.

2. Open Xcode and use the welcome screen to create a new project. Using the

new project’s workspace, click through the various functional areas of Xcode.

Quit Xcode and throw away the project folder when finished.

3. If you have joined a paid iOS developer program, follow the steps in

the “Preparing Your iOS Device” section to provision your iDevice for

development.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 2

Just Enough Objective-C and
Cocoa

What You’ll Learn in This Hour:
. What Objective-C is
. The Objective-C terminology
. How to create classes, categories, and protocols
. Basic programming concepts
. The purpose of Cocoa and Cocoa Touch

This hour provides a glimpse of what it means to code for OS X and iOS. Both OS X and

iOS share a common development environment and, with them, a common development

language: Objective-C.

Objective-C provides the syntax and structure for creating applications on Apple plat-

forms. For many, learning Objective-C can be daunting, but with patience, it may quickly

become the favorite choice for many development projects. This hour takes you through

the steps you need to know to be comfortable with Objective-C and also gives you a short

introduction to Cocoa and Cocoa Touch—the frameworks that make Objective-C useful.

Object-Oriented Programming and
Objective-C
To better understand the scope of this hour, take a few minutes to search for Objective-C

or object-oriented programming in your favorite online bookstore. You will find quite a

few books—lengthy books—on these topics. In this book, roughly 20 pages cover what

other books teach in hundreds of pages. Although it is not possible to fully cover

ptg8126863

24 HOUR 2: Just Enough Objective-C and Cocoa

Objective-C and object-oriented development in this single hour, we can make sure

that you understand enough to develop fairly complex apps.

To provide you with the information you need to be successful in OS X and iOS

development, this hour concentrates on fundamentals—the core concepts that are

used in examples in this book and sample projects you’ll find in Apple’s documenta-

tion. The approach in this hour is to introduce you to a programming topic in gen-

eral terms. Before beginning, let’s look a bit closer at Objective-C and object-oriented

programming.

What Is Object-Oriented Programming?
Most people have an idea of what programming is and have even written a simple

program. Everything from setting your TiVo to record a show to configuring a cook-

ing cycle for your microwave is a type of programming. You use data (such as times)

and instructions (like record) to tell your devices to complete a specific task. This cer-

tainly is a long way from developing an application, but in a way the biggest differ-

ence is in the amount of data you can provide and manipulate and the number of

different instructions available to you.

Imperative Development
There are two primary development paradigms. First, imperative programming (a sub-

set of which is called procedural programming) implements a sequence of commands

that should be performed. The application follows the sequence and carries out

activities as directed. Although there might be branches in the sequence or move-

ment back and forth between some of the steps, the flow is from a starting condition

to an ending condition, with all the logic to make things work sitting in the middle.

The problem with imperative programming is that it lends itself to growing, without

structure, into an amorphous blob. Applications gain features when developers tack

on bits of code here and there. Often, instructions that implement a piece of func-

tionality are repeated over and over wherever something needs to take place.

Procedural programming refers to an imperative programming structure that

attempts to avoid repetition by creating functions (or procedures) that can be

reused. This works to some extent, but long-term still frequently results in code

bloat. The benefit of this approach, however, is that it is quite easy to pick up and

learn: You create a series of instructions, the computer follows them.

The Object-Oriented Approach
The other development approach, and what we use in this book, is object-oriented

programming (OOP). OOP uses the same types of instructions as imperative

ptg8126863

What Is Objective-C? 25

development, but structures them in a way that makes your applications easy to

maintain and promotes code reuse whenever possible. In OOP, you create objects

that hold the data that describes something together with the instructions to manip-

ulate that data. Perhaps an example is in order.

Consider a program that enables you to track reminders. With each reminder, you

want to store information about the event that will take place—a name, a time to

sound an alarm, a location, and any additional miscellaneous notes that you might

want to store. In addition, you need to be able to reschedule a reminder’s alarm

time or completely cancel an alarm.

In the imperative approach, you have to write the steps necessary to track all the

reminders, write all the data in the reminders, check every reminder to see whether

an alarm should sound, and so on. It is certainly possible, but just trying to wrap

your mind around everything that the application needs to do could cause some

serious headaches. An object-oriented approach brings some sanity to the situation.

In an object-oriented model, you could implement a reminder as a single object. The

reminder object would know how to store the properties such as the name, location,

and so on. It would implement just enough functionality to sound its own alarm

and reschedule or cancel its alarm. Writing the code, in fact, would be very similar

to writing an imperative program that only has to manage a single reminder. By

encapsulating this functionality into an object, however, we can then create multi-

ple copies of the object within an application and have them each fully capable of

handling separate reminders. No fuss and no messy code.

Another important facet of OOP is inheritance. Suppose you want to create a special

type of reminder for birthdays that includes a list of birthday presents that a person

has requested. Instead of tacking this onto the reminder object, you could create an

entirely new birthday reminder that inherits all the features and properties of a

reminder and then adds in the list of presents and anything else specific to birthdays.

What Is Objective-C?
A few years ago, I would have answered this question with “one of the strangest-

looking languages I’ve ever seen.” Today, I love it (and so will you). Objective-C was

created in the 1980s, and is an extension of the C language. It adds many addi-

tional features to C and, most important, an OOP structure. Objective-C is primarily

used for developing OS X and iOS applications and has attracted a devoted group of

followers who appreciate its capabilities and syntax.

www.allitebooks.com

http://www.allitebooks.org

ptg8126863
By the

Way

26 HOUR 2: Just Enough Objective-C and Cocoa

Objective-C statements are easier to read than other programming languages and

often can be deciphered just by looking at them. For example, consider the follow-

ing line that compares whether the contents of a variable called myName is equal

to John:

[myName isEqualToString:@”John”]

It does not take a very large mental leap to see what is going on in the code snippet.

In traditional C, this might be written as follows:

strcmp(myName,”John”)

The C statement is a bit shorter, but does little to convey what the code is actually

doing. Because Objective-C is implemented as a layer on top of C, it is still fully

compatible with code that is written entirely in C. In fact, Apple has left a bit of

cruft in their SDK that relies on C-language syntax. You’ll encounter this infre-

quently, and it is not difficult to code with when it occurs, but it does take away

from the elegance of Objective-C just a little.

Objective-C is case sensitive. If a program is failing, make sure you aren’t mixing
case somewhere in the code.

The Terminology of Objective-C Development
OOP and Objective-C bring a whole range of terminology that you need to get

accustomed to seeing in this book (and in Apple’s documentation). The more famil-

iar you are with these terms, the easier it is to look for solutions to problems and

interact with other developers. Let’s establish some basic vocabulary now:

. Class: The code, usually consisting of a header/interface file and implementa-

tion file, which defines an object and what it can do.

. Subclass: A class that builds upon another class, adding additional features.

Almost everything you use in your development will be a subclass of some-

thing else, inheriting all the properties and capabilities of its parent class.

. Superclass/parent class: The class that another class inherits from.

. Singleton: A class that is instantiated only once during the lifetime of a pro-

gram. For example, a class to read your device’s orientation is implemented as

a singleton because only one sensor returns tilt information.

. Object/instance: A class that has been invoked and is active in your code.

Classes are the code that makes an object work, whereas an object is the

actual class in action. This is also known as an instance of a class.

ptg8126863

What Is Objective-C? 27

. Instantiation: The process of creating an active object from a class.

. Instance method: A basic piece of program functionality implemented in a

class. For the reminder class, for instance, this might be something like

setAlarm to set the alarm for a given reminder.

. Category: Provide a means of extending a class without modifying the class

code itself.

. Class method: Similar to an instance method, but applicable to all the objects

created from a class. The reminder class, for example, might implement a

method called countReminders that provides a count of all the reminder

objects that have been created. If you are familiar with other OO languages,

you might recognize this as a static method.

. Message: When you want to use a method in an object, you send the object a

message (the name of the method). This process is also referred to as calling

the method.

. Instance variable: A storage place for a piece of information specific to a

class. The name of a reminder, for example, might be stored in an instance

variable. All variables in Objective-C have a specific type that describes the

contents of what they will be holding. Instance variables are rarely accessed

directly and, instead, should be used via properties.

. Variable: A storage location for a piece of information. Unlike instance vari-

ables, a “normal” variable is only accessible in the method where it is defined.

. Parameter: A piece of information that is provided to a method when it is

messaged. If you were to send a reminder object the setAlarm method, you

would presumably need to include the time to set. The time, in this case,

would be a parameter used with the setAlarm method.

. Property: An abstraction of an instance variable that has been configured

using special directives to provide easy access to your code.

. Protocol: Protocols declare methods that can be implemented by a class—

usually to provide functionality needed for an object. A class that implements

a protocol is said to conform to that protocol. This is similar to a Java inter-

face.

. self: A way to refer to an object within its own methods. When an instance

method or property is used in an application, it must be used with a specific

object. If you’re writing code within a class and you want it to access one of its

own methods or properties, you use self to refer to the object.

ptg8126863

Did You
Know?

28 HOUR 2: Just Enough Objective-C and Cocoa

You might be wondering, if almost everything in Objective-C development is a sub-
class of something else, is there some sort of base class that starts this tree of
inheritance? The answer is yes. The NSObject class is the parent to all classes in
Apple’s implementation of Objective-C.

It is important to know that when you develop for iOS and OS X, you’re going to be

taking advantage of hundreds of classes that Apple has already written for you.

Everything from creating onscreen buttons to manipulating dates and writing files is

covered by prebuilt classes. You’ll occasionally want to customize some of the func-

tionality in those classes, but you’ll start out with a toolkit already overflowing with

functionality.

You will spend the majority of your time in Xcode adding Objective-C methods in

class files that Xcode creates for you when you start a project, as shown in Figure

2.1, or that you add after the fact.

Classes

FIGURE 2.1
You’ll create
and modify
classes within
your Xcode
projects.

Right now, we need to get a handle on what these classes actually look like and

what to expect when you begin coding in them.

Header/Interface Files
Creating a class creates two different files: an interface (or header) file (.h) and an

implementation file (.m). The interface file is used to define a list of all the methods

and properties that your class will be using. This is useful for other parts of your pro-

gram, and the Xcode Interface Builder editor itself (which you learn about in Hour 8,

“Creating User Interfaces”) to determine how to access information and features in

your class.

ptg8126863

What Is Objective-C? 29

The implementation file is where you go to write the code that makes everything

defined in the header file work. Let’s review the structure of the very short, and

entirely contrived, interface file in Listing 2.1.

LISTING 2.1 A Sample Interface File
1: #import <UIKit/UIKit.h>

2:

3: @interface myClass : myParent <myProtocol> {

4: NSString *myString;

5: IBOutlet UILabel *myLabel;

6: }

7:

8: +(NSString)myClassMethod:(NSString)aString;

9:

10: -(NSDate)myInstanceMethod:(NSString)aString anotherParameter:(NSURL)aURL;

11:

12: @property (strong, nonatomic) NSString *myString;

13:

14: @end

The #import Directive
1: #import <UIKit/UIKit.h>

First, in line 1, the interface file uses the #import directive to include any other

interface files that our application needs to access. The string <UIKit/UIKit.h> des-

ignates the specific file (in this case, UIKit, which gives an iOS application access to

a vast majority of the iOS user interface classes).

Wait a Sec, What’s a Directive?
Directives are commands that are added to your files that help Xcode and its
associated tools build your application. They do not implement the logic that
makes your app work, but they are necessary for providing information on how
your applications are structured so that Xcode knows how to deal with them.

The @interface Directive and Instance Variables
Line 3 uses the @interface directive to begin a set of lines (enclosed in {} braces) to

describe all the instance variables that your class will be providing:

3: @interface myClass : myParent <myProtocol> {

4: NSString *myString;

5: IBOutlet UILabel *myLabel;

6: }

ptg8126863
By the

Way

Watch
Out!

30 HOUR 2: Just Enough Objective-C and Cocoa

In this example, a variable that contains an object of type NSString named

myString is declared, along with an object of type UILabel that will be referenced

by the variable myLabel. An additional keyword IBOutlet is added to the front of

the UILabel declaration to indicate that this is an object that will be defined in

Interface Builder. You learn more about IBOutlet in Hour 3, “Understanding the

MVC Design Pattern.”

End Correctly
All instance variables, method declaration lines, and property declarations must
end with a semicolon (;).

Notice that line 3 includes a few additional items after the @interface directive:

myClass : myParent <myProtocol>. The first of these is the name that we’re giv-

ing the class that we’re working on. Here, we have decided the class will be called

myClass. The class name is then followed by a colon (:) and a list of the classes that

this class is inheriting from (that is, the parent classes). Finally, the parent classes are

followed by a list of protocols enclosed within angle brackets, <>.

The implementation and interface files for a class usually share the name of the
class. Here, the interface file would be named myClass.h, and the implementation
file myClass.m.

Protocol… What’s a Protocol?
Protocols are a feature of Objective-C that sound complicated but really aren’t.
Sometimes you will come across features that require you to write methods to
support their use—such as providing a list of items to be displayed in a table.
The methods that you need to write are grouped together under a common name;
this is known as a protocol.

Some protocol methods are required, others are optional. It just depends on the
features you need. A class that implements a protocol is said to conform to that
protocol. You learn a little about protocols later this hour.

Defining Methods
Lines 8 and 10 declare two methods that need to be implemented in the class:

8: +(NSString)myClassMethod:(NSString)aString;

9:

10: -(NSDate)myInstanceMethod:(NSString)aString anotherParameter:(NSURL)aURL;

ptg8126863

Did You
Know?

By the
Way

What Is Objective-C? 31

Method declarations (called prototypes) follow a simple structure. They begin with a

+ or -. The + denotes a class method, and - indicates an instance method. Next, the

type of information the method returns is provided in parentheses, followed by the

name of the method itself. If the method takes a parameter, the name is followed by

a colon, the type of information the method is expecting, and the variable name

that the method uses to refer to that information. If multiple parameters are needed,

a short descriptive label is added, followed by another colon, data type, and variable

name. This pattern can repeat for as many parameters as needed.

In the example file, line 8 defines a class method named myClassMethod that

returns an NSString object and accepts an NSString object as a parameter. The

input parameter is made available in a variable called aString.

Line 10 defines an instance method named myInstanceMethod that returns an

NSDate object, also takes an NSString as a parameter, and includes a second

parameter of the type NSURL that will be available to the method via the variable

aURL.

You learn more about an NSString, NSDate, and NSURL a bit later this hour, but
as you might guess, these are objects for storing and manipulating strings, dates,
and URLs, respectively.

You will often see methods that accept or return objects of the type id. This is a
special type in Objective-C that can reference any kind of object and proves useful
if you do not know exactly what you’ll be passing to a method or if you want to be
able to return different types of objects from a single method.

Another common return type for methods is void. When you see void used, it
means that the method returns nothing.

The @property Directive
The final functional piece of the interface file is the addition of @property direc-

tives, demonstrated in line 12:

12: @property (strong, nonatomic) NSString *myString;

The @property directive is used in conjunction with another command @synthe-

size in the implementation file to simplify how you interact with the instance vari-

ables that you have defined in your interface. In essence, defining a property

provides a layer of abstraction on top of an instance variable. Instead of interacting

with a variable directly (and potentially in ways you shouldn’t), you use a property.

ptg8126863

32 HOUR 2: Just Enough Objective-C and Cocoa

In the traditional way to interact with the contents of your instance variables, you

have to use (and write) methods called getters and setters (or accessors and mutators,

if you want to sound a bit more exotic). These methods, as their names suggest, are

created to get and set values in your instance variable objects. For example, an

NSString object, like what we reference with the myString instance variable in line

12, represents text we are storing in our class. If we create an instance of myClass

called myClassObject, how would we access the myString instance variable?

Without using @property and @synthesize or manually writing a getter or setter,

we couldn’t!

What these two important directives do is write the getter and setter for us and give

us a really nice way of using them. The getter is simply the name of the property,

and the setter is the property name with the prefix set. For example, to set

myString, you could use the following:

[myClassObject setMyString:@”Hello World”];

And to retrieve value from the myString, you use this:

theStringInMyObject=[myClassObject myString];

Not too tough, but it is not as easy as it could be. Using @property and synthesize

also allows us to read and write instance variable values just by typing the name of

the object that contains the property, followed by a period, and the name of the

property. This is called dot notation:

myClassObject.myString=@”Hello World”;

theStringInMyObject=myClassObject.mystring;

We make use of this feature nearly everywhere that we need easy access to instance

variables. After we have given this treatment to an instance variable, we almost

always refer to the property rather than the variable itself. That leads us to two final

points that can lead to a ton of confusion.

First, because properties and instance variables are so closely related, Objective-C

makes it possible to implicitly declare an instance variable just by declaring the

property. In other words, line 12

12: @property (strong, nonatomic) NSString *myString;

is all that is actually needed to declare the instance variable myString and its asso-

ciated property; line 4 is entirely optional. You’ll encounter this often in Apple’s proj-

ect templates—a property declaration with no corresponding instance variable

declaration.

ptg8126863

What Is Objective-C? 33

The second extremely important point is that in this discussion we have talked about

properties and instance variables as if they have the same name. In many cases,

that is because they do, but this is not a rule. In fact, some developers use the con-

vention of declaring properties with different names from the instance variables—

often with the instance variable prefixed with an underscore (_). This is performed

by the @synthesize directive in the implementation file, which you learn about

shortly.

Property Attributes
Notice that the property directive includes attributes (here strong and
nonatomic). These directives affect the getter/setter behavior for the property.
These are the attributes you’ll encounter most often:

readwrite (the default) Both a getter and setter are created for the property.

readonly Only a getter method is needed for the property; you may not assign
values.

strong Creates a strong reference to the object referred to by the property. This
ensures that the object will not be released until the property is set to nil. See
“Memory Management and ARC,” later this hour, for more information.

weak Creates a weak reference to the object. This helps avoid issues with
objects that are retained because of circular references.

copy Uses a copy of the object when an assignment is made.

atomic (the default) Ensures that the accessors are thread-safe. Any access to
the object is locked and you are guaranteed clean access to the full object.

nonatomic Much faster than atomic accessors, nonatomic getters/setters can-
not guarantee consistency of the data when multiple threads access a property
simultaneously. Not an issue you are worried about in your project? Use this for
much faster property access.

If you are not sure what to use, strong and atomic are the safest bet. If you are
not worried about multithread access, strong and nonatomic are fine.

Ending the Interface File
To end the interface file, add @end on its own line, as shown on line 14 of the

example file:

14: @end

That’s it for the interface. Although that might seem like quite a bit to digest, it cov-

ers almost everything you’ll see in an interface/header file. Now let’s look at the file

where the actual work gets done: the implementation file.

ptg8126863

34 HOUR 2: Just Enough Objective-C and Cocoa

Implementation Files
After you have defined your instance variables, properties, and methods in your

interface file, you need to do the work of writing code to implement the logic of your

application. The implementation file (.m) holds all the “stuff” that makes your class

work. Let’s take a look at Listing 2.2, a sample skeleton file myClass.m that corre-

sponds to the interface file we have been reviewing.

LISTING 2.2 A Sample Implementation File
1: #import “myClass.h”

2:

3: @implementation myClass

4:

5: @synthesize myLabel;

6:

7: +(NSString)myClassMethod:(NSString)aString {

8: // Implement the Class Method Here!

9: }

10:

11: -(NSString)myInstanceMethod:(NSString)aString anotherParameter:(NSURL)aURL {

12: // Implement the Instance Method Here!

13: }

14:

15: @end

The #import Directive
The #import directive kicks things off in line 1 by importing the interface file associ-

ated with the class:

1: #import “myClass.h”

When you create your projects and classes in Xcode, the interface file is automati-

cally added to the code for you. If any additional interface files need to be imported,

you should add them to the top of your interface file rather than here.

The @implementation Directive
The implementation directive, shown in line 3, tells Xcode what class the file is

going to be implementing. In this case, the file should contain the code to imple-

ment myClass:

3: @implementation myClass

ptg8126863

What Is Objective-C? 35

The @synthesize Directive
In line 5, we use the @synthesize directive to, behind the scenes, generate the code

for the getters and setters of an instance variable:

5: @synthesize myLabel;

Used along with the @property directive, this ensures that we have a straightfor-

ward way to access and modify the contents of our instance variables as described

earlier.

You’ll also remember that we mentioned earlier that property names do not neces-

sarily have to match an instance variable’s name. Although this is not something

that you’ll often want to do yourself, it is something you will encounter in Apple

templates and, perhaps, code examples you find online. The syntax for declaring

that a property be set up with a different name from an instance variable is as

follows:

@synthesize <myPropertyName>=<myInstanceVariableName>

You’ll see this used in Apple’s templates to name the instance variable when a prop-

erty is used to implicitly define the variable. You’ll also often see the specified

instance variable name prefixed with an underscore (_) character. This is just one

additional visual cue to differentiate between referring to a property versus an

instance variable.

If My Properties and Instance Variables Share a Name, How
Do I Know Which I’m Using in My Class Methods?
I’m glad you asked. The default Interface Builder editor code-writing behavior has
been to name properties the same as their instance variable (a behavior that
might change by the time you read this). So, how can you tell is which?

If you’re writing code that instantiates an object and you want to retrieve a prop-
erty that object contains, you write <objectname>.<propertyname> to access it.

That’s fine. But what if you want to access the property from inside the class
where it is defined? Simple: You do exactly the same thing, but use self to refer
to the object, as in self.<propertyname>. If you were to use just the property
name by itself, Xcode has no idea if you mean the property or the instance vari-
able, so it assumes the instance variable.

Implementing Methods
To provide an area to write your code, the implementation file must restate the

method definitions, but instead of ending them with a semicolon (;), a set of curly

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

By the
Way

By the
Way

36 HOUR 2: Just Enough Objective-C and Cocoa

braces, {}, is added at the end, as shown in lines 7–9 and 11–13. All the magic of

your programming takes place between these braces:

7: +(NSString)myClassMethod:(NSString)aString {

8: // Implement the Class Method Here!

9: }

10:

11: -(NSString)myInstanceMethod:(NSString)aString anotherParameter:(NSURL)aURL {

12: // Implement the Instance Method Here!

13: }

You can add a text comment on any line within your class files by prefixing the line
with the // characters. If you want to create a comment that spans multiple lines,
you can begin the comment with the characters /* and end with */.

Ending the Interface File
To end the implementation file, add @end on its own line just like the interface file,

as shown on line 15 of the example:

15: @end

Structure for Free
Even though we’ve just spent quite a bit of time going through the structure of the

interface and implementation files, you rarely (if ever) need to type it all out by

hand. Whenever you add a new class to your Xcode project, the structure of the file

is set up for you; the @interface and @implementation directives and overall file

structure are in place before you write a single line of code. What’s more, you can

do much of the work of declaring properties, instances variables, and methods visu-

ally. Of course, you still need to know how to write code manually, but Xcode 4 goes

a long way toward making sure you don’t have to sweat the details.

The class structure seems simple enough, but where will the coding take place?
When you create a new project, you see quite a few different files staring back at
you. For OS X applications, your application processing starts with a method
applicationDidFinishLaunching in the AppDelegate class. iOS apps begin
processing with application:didFinishLaunchingWithOptions, also in the
AppDelegate class. From there, the application execution typically branches out in
additional classes, such as a view controller. You learn more about view con-
trollers and the design pattern used by Xcode applications in Hour 6, “Using the
Xcode Code Editor.”

ptg8126863

Watch
Out!

What Is Objective-C? 37

Categories and Protocols
In addition to writing classes, you can define functionality through Objective-C’s

categories and protocols. A category enables you to add methods to a class without

subclassing or override a class’s existing methods. This means that you could, for

example, add new methods to Cocoa’s built-in classes, like NSString.

A protocol does not implement functionality, but defines what another class may or

must implement to comply with the protocol. In other words, you can define a proto-

col that enables other classes to interface with your code, which is often done with

objects like the iOS UITable, which expects certain methods to exist in your code so

as to provide it with data. For Java developers, this is similar to the idea of an

interface.

Defining a Category
To define a category, you just decide what class your category is going to add

methods to and what your category is going to be named (presumably based on

the features it provides), and then you create a new interface file using this format:

@interface ClassNameToUpdate (CategoryName)

// Declarations for new (or overridden) methods go here

@end

The implementation file follows:

@implementation ClassNameToUpdate (CategoryName)

// Implementations of new methods go here

@end

The naming conventions for category files are the class name you want to update

plus (+) the name of the category (for example, ClassNameToUpdate+

CategoryName.h and ClassNameToUpdate+CategoryName.m).

After you have created your category, you can import the interface file into your

other classes and code away. Your application will behave as if the original class

now includes the methods you wrote.

No Instance Variables for You!
Note that you can override methods with a category, but you cannot add new
instance variables.

Creating a Protocol
Creating a new protocol is easier than creating a class or a category because you’re

just defining functionality to be implemented elsewhere. To define a new protocol,

ptg8126863

By the
Way

38 HOUR 2: Just Enough Objective-C and Cocoa

create a new interface file with what you want to name your protocol. The contents

of the file should follow this format:

@protocol ANewProtocol <NSObject>

@optional

// Declarations for optional methods

@required

// Declarations for required methods

@end

The <NSObject> denotes the base protocol that this protocol will be based on (simi-

lar to inheriting from a class). Methods that must be implemented to conform to the

protocol are found under the @required directive, and optional ones are under the

@optional directive.

Methods defined without @optional or @required preceding them are assumed
to be required.

Objective-C Programming Basics
We’ve explored the notion of classes, categories, protocols, methods, and instance

variables, but not how to go about making a program do something. So, this section

reviews several key programming tasks that you use to implement your methods:

. Declaring variables

. Allocating and initializing objects

. Using an object’s instance methods

. Making decisions with expressions

. Branching and looping

Declaring Variables
Earlier we documented what instance variables in your interface file will look like,

but we did not really get into the process of how you declare (or define) them (or use

them). Instance variables are also only a small subset of the variables you use in

your projects. Instance variables store information that is available across all the

methods in your class, but they’re not really appropriate for small temporary stor-

age tasks, such as formatting a line of text to output to a user. Most commonly, you

declare several variables at the start of your methods, using them for various calcu-

lations, and then get rid of them when you have finished with them.

ptg8126863

Objective-C Programming Basics 39

Whatever the purpose, you declare your variables using this syntax:

<Type> <Variable Name>;

The type is either a primitive data type or the name of a class that you want to

instantiate and use.

Primitive Data Types
Primitive data types are defined in the C language and are used to hold very basic

values. Common types you’ll encounter include the following:

. int: Integers (whole numbers such as 1, 0, and –99)

. float: Floating-point numbers (numbers with decimal points in them)

. double: Highly precise floating-point numbers that can handle a large num-

ber of digits

For example, to declare an integer variable that will hold a user’s age, you might

enter the following:

int userAge;

After a primitive data type is declared, the variable can be used for assignments and

mathematical operations. The following code, for example, declares two variables,

userAge and userAgeInDays, and then assigns a value to one and calculates the

other:

int userAge;

int userAgeInDays;

userAge=30;

userAgeInDays=userAge*365;

Pretty easy, don’t you think? Primitive data types, however, make up only a very

small number of the types of variables that you use. Most variables you declare are

used to store objects.

Object Data Types and Pointers
Just about everything within your applications is an object. Text strings, for exam-

ple, are instances of the class NSString. Buttons that you display on the screen are

objects of the class UIButton (iOS) or NSButton (OS X). Apple has literally provided

hundreds of different classes that you can use to store and manipulate data.

Unfortunately for us, for a computer to work with an object, it cannot just store it

like a primitive data type. Objects have associated instance variables and methods,

ptg8126863

By the
Way

Did You
Know?

40 HOUR 2: Just Enough Objective-C and Cocoa

making them far more complex. To declare a variable as an object of a specific

class, we must declare the variable as a pointer to an object. A pointer references the

place in memory where the object is stored, rather than a value. To declare a vari-

able as a pointer, prefix the name of the variable with an asterisk. For example, to

declare a variable of type NSString with the intention of holding a user’s name, we

might type this:

NSString *userName;

Once declared, you can use the variable without the asterisk. It is only used in the

declaration to identify the variable as a pointer to the object.

When a variable is a pointer to an object, it is said to reference or point to the
object. This is in contrast to a variable of a primitive data type, which is said to
store the data. Pointers, although largely concealed in basic Cocoa development,
are an important topic to understand. For a quick introduction, watch this video:
http://www.youtube.com/watch?v=7-EppTJK7WQ.

Even after a variable has been declared as a pointer to an object, it still is not ready

to be used. Xcode, at this point, only knows what object you intend the variable to

reference. Before the object actually exists, you must manually prepare the memory

it will use and perform any initial setup required. This is handled via the processes

of allocation and initialization, which we review next.

Allocating and Initializing Objects
Before an object can be used, memory must be allocated and the contents of the

object initialized. This is handled by sending an alloc message to the class that

you’re going to be using, followed by an init message to what is returned by alloc.

The syntax you use is this:

[[<class name> alloc] init];

For example, to declare and create a new instance of UILabel class (used for show-

ing onscreen text labels in iOS), you could use the following code:

UILabel *myLabel;

myLabel=[[UILabel alloc] init];

Once allocated and initialized, the object is ready to use.

We haven’t covered the method messaging syntax in Objective-C, but we do so
shortly. For now, it’s just important to know the pattern for creating objects.

http://www.youtube.com/watch?v=7-EppTJK7WQ

ptg8126863

Did You
Know?

Objective-C Programming Basics 41

Convenience Methods
When we initialized the UILabel instance, we did create a usable object, but it does

not yet have any of the additional information that makes it useful. Properties such

as what the label should say or where it should be shown on the screen have yet to

be set. We would need to use several of the object’s other methods to really make use

of the object.

These configuration steps are sometimes a necessary evil, but Apple classes often

provide a special initialization method called a convenience method. These methods

can be invoked to set up an object with a basic set of properties so that it can be

used almost immediately.

For example, the NSURL class, which is used to work with web addresses, defines a

convenience method called initWithString.

To declare and initialize an NSURL object that points to the website

http://www.teachyourselfxcode.com, we might type the following:

NSURL *xcodeURL;

xcodeURL=[[NSURL alloc] initWithString:@”http://www.teachyourselfxcode.com/”];

Without any additional work, we allocated and initialized a URL with an actual web

address in a single line of code.

In this example, we actually created another object, too: an NSString. By typing
the @ symbol followed by characters in quotes, you allocate and initialize a string.
This feature exists because strings are so commonly used that having to allocate
and initialize them each time you need one would make development quite
cumbersome.

Using Methods and Messaging
You’ve already seen the methods used to allocate and initialize objects, but this is

only a tiny picture of the methods you’ll use in your applications. Let’s start by

reviewing the syntax of methods and messaging.

Messaging Syntax
To send an object a message, give the name of the variable that is referencing the

object followed by the name of the method—all within square brackets. If you’re

using a class method, just provide the name of the class rather than a variable

name:

[<object variable or class name> <method name>];

http://www.teachyourselfxcode.com

ptg8126863

Did You
Know?

42 HOUR 2: Just Enough Objective-C and Cocoa

Things start to look a little more complicated when the method has parameters. A

single parameter method call looks like this:

[<object variable> <method name>:<parameter value>];

Multiple parameters look even more bizarre:

[<object variable> <method name>:<parameter value>

➥additionalParameter:<parameter value>];

An actual example of using a multiple parameter method looks like this:

[userName compare:@”John” options:NSCaseInsensitive];

Here an object userName (presumably an NSString) uses the compare:options

method to compare itself to the string “John” in a non-case-sensitive manner. The

result of this particular method is a Boolean value (true or false), which could be

used as part of an expression to make a decision in your application. (We review

expressions and decision making next.)

A useful predefined value in Objective-C is nil. The nil value indicates a lack of
any value at all. You use nil in some methods that call for a parameter that you
do not have available. A method that receives nil in place of an object can actu-
ally pass messages to nil without creating an error—nil simply returns another
nil as the result.

Nested Messaging
Something that you’ll see when looking at Objective-C code is that the result of a

method is sometimes used directly as a parameter within another method. In some

cases, if the result of a method is an object, a developer sends a message directly to

that result.

In both of these cases, using the results directly avoids the need to create a variable

to hold the results. Want an example that puts all of this together? We’ve got one

for you.

Assume you have two NSString variables, userFirstName and userLastName, that

you want to capitalize and concatenate, storing the results in another NSString

called finalString. To keep this simple, we assume a space is already concatenated

onto the userFirstName variable.

The NSString instance method capitalizedString returns a capitalized string,

and stringByAppendingString takes a second string as a parameter and concate-

nates it onto the string invoking the message. Putting this together (disregarding the

variable declarations), the code looks like this:

ptg8126863

Did You
Know?

Objective-C Programming Basics 43

tempCapitalizedFirstName=[userFirstName capitalizedString];

tempCapitalizedSecondName=[userLastName capitalizedString];

finalString=[tempCapitalizedFirstName

stringByAppendingString:tempCapitalizedSecondName];

Instead of using these temporary variables, however, you could just substitute the

method calls into a single combined line:

finalString=[[userFirstName capitalizedString]

➥stringByAppendingString:[userLastName capitalizedString]];

This can be a powerful way to structure your code, but it can also lead to long and

rather confusing statements. Do what makes you comfortable—both approaches are

equally valid and have the same outcome.

A confession. I have a difficult time referring to using a method as sending a
“message to an object.” Although this is the preferred terminology for OOP, all
we’re really doing is executing an object’s method by providing the name of the
object and the name of the method.

Blocks
Although most of your coding will be within methods, Objective-C also supports the

notion of blocks. Sometimes referred to as a handler block in the Xcode documenta-

tion, these are chunks of code that can be passed as a value when calling a method.

They provide instructions that the method should run when reacting to a certain

event.

For example, imagine a personInformation object with a method called

setDisplayName that defines a format for showing a person’s name. Instead of just

showing the name, however, setDisplayName might use a block to let you define,

programmatically, how the name should be shown:

[personInformation setDisplayName:^(NSString firstName, NSString lastName)

{

// Implement code here to modify the first name and last name

// and display it however you want.

}];

Interesting, isn’t it? You might be used to using anonymous functions in other lan-

guages. It is the same concept, but with a rather (in my opinion) unusual syntax. If

you want to learn more about these unique creatures, read Apple’s “A Short

Practical Guide to Blocks” in the Xcode documentation.

ptg8126863

44 HOUR 2: Just Enough Objective-C and Cocoa

Expressions and Decision Making
For an application to react to user input and process information, it must be capa-

ble of making decisions. Every decision in an app boils down to a yes or no result

based on evaluating a set of tests. These can be as simple as comparing two values,

to something as complex as checking the results of a complicated mathematical cal-

culation. The combination of tests used to make a decision is called an expression.

Using Expressions
If you recall your high school algebra, you’ll be right at home with expressions. An

expression can combine arithmetic, comparison, and logical operations.

A simple numeric comparison checking to see whether a variable userAge is greater

than 30 could be written as follows:

userAge>30

When working with objects, we need to use properties within the object and values

returned from methods to create expressions. To check to see whether a string stored

in an object userName is equal to “John”, we could use this:

[userName compare:@”John”]

Expressions are not limited to the evaluation of a single condition. We could easily

combine the previous two expressions to find a user who is over 30 and named

John:

userAge>30 && [userName compare:@”John”]

Common Expression Syntax
() Groups expressions together, forcing evaluation of the innermost group first

== Tests to see whether two values are equal (for example, userAge==30)

!= Tests to see whether two values are not equal (for example, userAge!=30)

&& Implements a logical AND condition (for example, userAge>30 &&
userAge<40)

|| Implements a logical OR condition (for example, userAge>30 || userAge<10)

! Negates the result of an expression, returning the opposite of the original
result (for example, !(userAge==30) is the same as userAge!=30)

For a complete list of C expression syntax, refer to http://en.wikipedia.org/wiki/
Operators_in_C_and_C%2B%2B.

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

ptg8126863

Objective-C Programming Basics 45

As mentioned repeatedly, you’re going to be spending lots of time working with

complex objects and using the methods within the objects. You cannot make direct

comparisons between objects as you can with simple primitive data types. To suc-

cessfully create expressions for the myriad objects you’ll be using, you must review

each object’s methods and properties.

Making Decisions with if-then-else and switch Statements
Typically, depending on the outcome of the evaluated expression, different code

statements are executed. The most common way of defining these different execu-

tion paths is with an if-then-else statement:

if (<expression>) {

// do this, the expression is true.

} else {

// the expression isn’t true, do this instead!

}

For example, consider the comparison we used earlier to check a userName

NSString variable to see whether its contents were set to a specific name. If we want

to react to that comparison, we might write the following:

If ([userName compare:@”John”]) {

userMessage=@”I like your name”;

} else {

userMessage=@”Your name isn’t John, but I still like it!”;

}

Another approach to implementing different code paths when there are potentially

many different outcomes to an expression is to use a switch statement. A switch

statement checks a variable for a value, and then executes different blocks of code

depending on the value that is found:

switch (<numeric value>) {

case <numeric option 1>:

// The value matches this option

break;

case <numeric option 2>:

// The value matches this option

break;

default:

// None of the options match the number.

}

Applying this to a situation where we might want to check a user’s age (stored in

userAge) for some key milestones and then set an appropriate userMessage string if

they are found, the result might look like this:

switch (userAge) {

case 18:

userMessage=@”Congratulations, you’re an adult!”;

www.allitebooks.com

http://www.allitebooks.org

ptg8126863

By the
Way

46 HOUR 2: Just Enough Objective-C and Cocoa

break;

case 21:

userMessage=@”Congratulations, you can drink champagne!”;

break;

case 50:

userMessage=@”You’re half a century old!”;

break;

default:

userMessage=@”Sorry, there’s nothing special about your age.”;

}

Repetition with Loops
Sometimes you’ll have a situation where you need to repeat several instructions over

and over in your code. Instead of typing the lines repeatedly, you can loop over

them. A loop defines the start and end of several lines of code. As long as the loop is

running, the program executes the lines from top to bottom, and then restarts again

from the top. The loops you use are of two types: count-based and condition-based.

In a count-based loop, the statements are repeated a certain number of times. In a

condition-based loop, an expression determines whether a loop should occur.

The count-based loop you use is called a for loop and has this syntax:

for (<initialization>;<test condition>;<count update>) {

// Do this, over and over!

}

The three unknowns in the for statement syntax are a statement to initialize a

counter to track the number of times the loop has executed, a condition to check to

see whether the loop should continue, and finally, an increment for the counter. An

example of a loop that uses the integer variable count to loop 50 times could be

written as follows:

int count;

for (count=0;count<50;count=count+1) {

// Do this, 50 times!

}

The for loop starts by setting the count variable to 0. The loop then starts and con-

tinues as long as the condition of count<50 remains true. When the loop hits the

bottom curly brace (}) and starts over, the increment operation is carried out and

count is increased by 1.

In C and C-like languages, like Objective-C, integers are usually incremented by
using ++ at the end of the variable name. In other words, rather than using
count=count+1, most often you’ll encounter count++, which does the same thing.
Decrementing works the same way, but with --.

ptg8126863

Objective-C Programming Basics 47

In a condition-based loop, the loop continues while an expression remains true.

There are two variables of this loop type that you’ll encounter, while and do-while:

while (<expression>) {

// Do this, over and over, while the expression is true!

}

and

do {

// Do this, over and over, while the expression is true!

} while (<expression>);

The only difference between these two loops is when the expression is evaluated.

In a standard while loop, the check is done at the beginning of the loop. In the

do-while loop, however, the expression is evaluated at the end of every loop. In

practice, this difference ensures that in a do-while loop the code block is executed

at least once; a while loop might not execute the block at all.

For example, suppose you are asking users to input their names and you want to

keep prompting them until they type John. You might format a do-while loop

like this:

do {

// Get the user’s input in this part of the loop

} while (![userName compare:@”John”]);

The assumption is that the name is stored in a string object called userName.

Because you would not have requested the user’s input when the loop first starts,

you would use a do-while loop to put the test condition at the end. Also, the value

returned by the string compare method has to been negated with the ! operator

because you want to continue looping as long as the comparison of the userName to

“John” isn’t true.

Loops are a very useful part of programming and, along with the decision state-

ments, form the basis for structuring the code within your object methods. They

allow code to branch and extend beyond a linear flow.

Although an all-encompassing picture of programming is beyond the scope of this

book, this should give you some sense of what to expect in the rest of the book. Let’s

now close our Objective-C intro with a topic that causes quite a bit of confusion for

many developers: memory management.

ptg8126863

48 HOUR 2: Just Enough Objective-C and Cocoa

Memory Management and Automatic
Reference Counting
No matter how much memory we have in our Macs or iDevices, applications will

always want more. As a developer, it is important to use memory judiciously so that

our applications have access to the resources we want, when we want them. Proper

memory management is the difference between applications that run smoothly and

applications that crash or grow to use a humungous amount of memory over time.

The Old Way: Retaining and Releasing Objects
Each time you allocate memory for an object, you’re using up memory on your Mac

or iDevice. If you allocate too many objects, you run out of memory, and your appli-

cation crashes or is forced to quit. To avoid a memory problem, keep objects around

long enough to use them only, and then get rid of them.

If you have read some Objective-C books, or even browsed online source code,

chances are you have encountered the retain and release messages (probably

many, many times). These messages, when passed to an object, indicate that the

object is needed or that it is no longer being used (release).

Behind the scenes, the system maintains a retain count to determine when it can get

rid of an object. For example, when an object is first allocated, the retain count is

incremented. Any use of the retain message on the object also increases the count.

The release message, in contrast, decrements the count. As long as the retain count

remains above 0, the object is not removed from memory. When the count reaches

0, the object is considered unused and is removed.

What this looked like in code was that scattered throughout an application you

needed to release any object you allocated. Think about that on a large scale:

applications with hundreds or thousands of objects, manually needing to be

retained or released. If you missed one, memory leaks and application crashes

occurred. If you released an object too soon, more application crashes.

Consider the earlier example of allocating an instance of NSURL:

NSURL *xcodeURL;

xcodeURL=[[NSURL alloc] initWithString:@”http://www.teachyourselfxcode/”];

Suppose that after you allocate and initialize the URL you use it to load a web page.

After the page loads, and you’re done with the object, you need to manually to tell

Xcode that you no longer have a need for it by writing the following:

[xcodeURL release];

ptg8126863
By the

Way

Memory Management and Automatic Reference Counting 49

In Xcode 4, all of that changes. Manually releasing and retaining objects is a thing

of the past, thanks to ARC.

The New Way: ARC
In Xcode 4, Apple implemented a new compiler called LLVM, along with a feature

known as Automatic Reference Counting (ARC). ARC uses a powerful code analyzer to

look at how your objects are allocated and used and then automatically retains and

releases them as needed. When nothing is referencing an object, ARC ensures it is

automatically removed from memory. No more retain or release messages to be

sent, no more phantom crashes and memory leaks; you simply code and it works.

All new projects that you build in Xcode 4 will take advantage of ARC as long as

you click the Use Automatic Reference Counting check box when creating your proj-

ect. ARC is so good at what it does it will not let you write applications that include

release, retain, dealloc, or autorelease. So, how does this translate into your

development process? Just as you would hope: You write the code you need, initialize

and use objects when you want, and when they are no longer referenced by any-

thing else, the memory they occupied is automatically freed. It’s as simple as that.

In certain instances, ARC cannot clean up after an object. Consider an object A
that references an object B. B, in turn, references C, which references D, which
references B again. This is a case of a cyclical reference. The object A can be
completely done using object B, but because there is a circular reference between
B, C, and D, those three objects cannot be released.

To get around this, you could use what are called weak references (remember the
weak attribute for properties?). This isn’t something you’re likely to encounter
often, but you can learn more about it in the “Programming with ARC” reference in
the Apple library.

Of course, it is hyperbole to say that with ARC crashes won’t happen. There are still

plenty of places for even the most experienced developer to make mistakes. Keep in

mind that a typical Objective-C book spends multiple chapters on these topics, so

the goal here is just to give you a starting point that makes the template code and

sample projects seem a bit less foreign to the beginner.

To complete this hour’s lesson, let’s take a quick look at Cocoa—the collection of

frameworks that will make your apps behave like proper OS X or iOS software.

ptg8126863

By the
Way

50 HOUR 2: Just Enough Objective-C and Cocoa

What Is Cocoa?
You’ve learned about the Objective-C language, the basic syntax, and what it looks

like. Objective-C forms the functional skeleton of your applications. It helps you

structure your applications and make logical decisions during the life cycle of your

application, and it enables you to control how and when events will take place.

What Objective-C does not provide, however, is a way to access the core features

that make your Mac and iDevice compelling devices to use.

Consider the following Hello World application:

int main(int argc, char *argv[]) {

printf(“Hello World”);

}

This code is typical of a beginner Hello World application written in C. It compiles

and executes on your Mac and iDevice, but because these platforms rely on Cocoa

for creating interfaces and handling user input and output, this version of Hello

World is close to meaningless. Cocoa is the collection of software frameworks that is

used to build applications and the runtime that those applications are executed

within. Cocoa includes hundreds of classes for managing everything from buttons

and URLs to manipulating photos and performing facial recognition.

Returning to the Hello World example, if we had defined a text label object named

outputLabel within a project, we could set it to read Hello World using Objective-

C and the appropriate class property like this:

[self.outputLabel.text=@”Hello World”];

Seems simple enough, as long as we know that the UILabel object has a text prop-

erty, right?

The Apple Xcode documentation (see Hour 7, “Working with the Xcode 4
Documentation,” for more information) includes a complete reference for every
class available to OS X and iOS. Plenty of sample applications are available
through the documentation system, and many tutorial guides, as well. If you think
there should be a feature available to you through Cocoa, just search the help.
Chances are, you will find it!

One of the most compelling advantages to programming using Cocoa versus plat-

forms is that the Cocoa frameworks are amazingly mature. Cocoa was borne out of

the NeXTSTEP platform—the environment that was used by NeXT computers in the

mid-1980s. In the early 1990s, NeXTSTEP evolved into the cross-platform OpenStep.

Finally, in 1996, Apple purchased NeXT Computer, and over the next decade the

ptg8126863

By the
Way

Cocoa Versus Cocoa Touch 51

NeXTSTEP/OpenStep framework became the de facto standard for Macintosh devel-

opment and was renamed Cocoa. You’ll notice that there are still signs of Cocoa’s

origins in class names that begin with NS.

Cocoa Versus Cocoa Touch
Cocoa is the development framework used for most native OS X applications. iOS,

although based on many of the foundational technologies of OS X, is not quite the

same. Cocoa Touch is heavily customized for a touch interface and working within

the constraints of a handheld system. Desktop application components that would

traditionally require extensive screen real estate have been replaced by simpler mul-

tiple-view components, mouse clicks with “touch up” and “touch down” events.

Cocoa (Mac) applications make use of two important frameworks: AppKit, which

defines how applications present their user interface, process events, and start and

stop; and Foundation, which provides object management and common data types

and operating system interactivity. Cocoa Touch (iOS) applications, like Cocoa, rely

on the Foundation framework, but replace AppKit with UIKit.

Other frameworks, such as Core Graphics and Core Animation, are implemented in

similar ways across both platforms—although iOS implementations are often just a

subset of the features in the OS X framework.

Just because AppKit and UIKit have different names does not mean they’re
entirely dissimilar. As you work with Cocoa and Cocoa Touch, you’ll notice that
frequently objects in UIKit have AppKit counterparts: UIButton/NSButton,
UITextField/NSTextField, and so on.

I strongly recommend reading Apple’s “Cocoa Fundamentals” guide for a full

introduction to this important piece of the OS X/iOS development puzzle:

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

CocoaFundamentals/CocoaFundamentals.pdf.

Data Type Classes
The primitive Cocoa data types made available through the Foundation classes rep-

resent one of the important parts that is shared between iOS/OS X development.

This hour wraps up with a review of some of these objects because I suspect you’ll

encounter them often in your code explorations.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf

ptg8126863

52 HOUR 2: Just Enough Objective-C and Cocoa

Strings (NSString/NSMutableString)
Strings are collections of characters—numbers, letters, and symbols. We use strings

to collect user input and to create and format user output frequently throughout

this book.

As with many of the data type objects you use, there are two string classes:

NSString and NSMutableString. The difference, as the name describes, is that one

of the classes can be used to create strings that can be changed (mutable). An

NSString instance remains static once it is initialized, whereas an NSMutableString

can be changed (lengthened, shortened, replaced, and so on).

Strings are used so frequently in Cocoa Touch applications that you can create and

initialize an NSString using the notation @”<my string value>”. For example, if

you needed to set the text property of an object called myLabel to a new string that

reads Hello World!, you could use the following:

myLabel.text=@”Hello World!”

Strings can also be initialized with the values of other variables, such as integers,

floating-point numbers, and so on.

Arrays (NSArray/NSMutableArray)
A useful category of data type is a collection. Collections enable your applications to

store multiple pieces of information in a single object. An NSArray is an example of

a collection data type that can hold multiple objects, accessed by a numeric index.

You might, for instance, create an array that contains all the user feedback strings

you want to display in an application:

myMessages = [[NSArray alloc] initWithObjects: @”Good Job!”,@”Bad job!”,nil]

A nil value is always used to end the list of objects when initializing an array. To

access the strings, you use the index value. This is the number that represents its

position in the list, starting with 0. To return the Bad job! message, we use the

objectAtIndex method:

[myMessages objectAtIndex: 1]

As with strings, a mutable NSMutableArray class creates an array that can be

changed after it has been created.

Dictionaries (NSDictionary/NSMutableDictionary)
Like arrays, dictionaries are another collection data type, but with an important

difference. Whereas the objects in an array are accessed by a numeric index,

ptg8126863

Cocoa Versus Cocoa Touch 53

dictionaries store information as object/key pairs. The key is an arbitrary string,

whereas the object can be anything you want, such as a string. If the previous array

were to be created as an NSDictionary instead, it might look like this:

myMessages = [[NSDictionary alloc] initwithObjectsAndKeys:@”Good

Job!”,@”positive”,@”Bad

Job!”,@”negative”,nil];

Now, instead of accessing the strings by a numeric index, they can be accessed by

the keys “positive” and “negative” with the objectForKey method, as follows:

[myMessages objectForKey:@”negative”]

Dictionaries are useful because they let you store and access data in abstract ways

rather than in a strict numeric order. Once again, the mutable form of the dictionar-

ies, NSMutableDictionary, can be modified after it has been created.

Numbers (NSNumber/NSDecimalNumber)
We can store strings and collections of objects, but what about numbers? Working

with numbers is a bit different. In general, if you need to work with an integer, you

use the C data type int, and for floating-point numbers, float. You do not need to

worry about classes and methods and object-oriented programming at all.

So, what about the classes that refer to numbers? The purpose of the NSNumber class

is to take a numeric C data type and store it as an NSNumber object. The following

line creates a number object with the value 100:

myNumberObject = [[NSNumber alloc] numberWithInt: 100]

You can then work with the number as an object—adding it to arrays, dictionaries,

and so on. NSDecimalNumber, a subclass of NSNumber, can be used to perform deci-

mal arithmetic on very large numbers, but will be needed only in special cases.

Dates (NSDate)
If you have ever tried to work with a date manually (interpreting a date string in a

program, or even just doing date arithmetic by hand), you know it can be a great

cause of headaches. How many days were there in September? Was this a leap year?

And so on. The NSDate class provides a convenient way to work with dates as an

object.

For example, assume you have a user-provided date (userDate) and want to use it

for a calculation, but only if it is earlier than the current date, in which case, you

want to use that date. Typically, this would be a bunch of nasty comparisons and

ptg8126863

54 HOUR 2: Just Enough Objective-C and Cocoa

assignments. With NSDate, you create a date object with the current date in it (pro-

vided automatically by the init method):

myDate=[[NSDate alloc] init]

And then grab the earlier of the two dates using the earlierDate method:

[myDate earlierDate: userDate]

Obviously, you can perform many other operations, but you can avoid much of the

ugliness of data and time manipulation using NSDate objects.

URLs (NSURL)
URLs are certainly a different type of data from what we’re accustomed to thinking

about, but on an Internet-connected device like the iPhone and iPad, you’ll find

that the ability to manipulate URLs comes in handy. The NSURL class enables

you to manage URLs with ease. For example, suppose you have the URL

http://www.floraphotographs.com/index.html and want to get just the machine

name out of the string. You could create an NSURL object:

MyURL=[[NSURL alloc] initWithString:

@”http://www.floraphotographs.com/index.html”]

Then use the host method to automatically parse the URL and grab the text

www.floraphotographs.com:

[MyURL host]

This will come in handy as you start to create Internet-enabled applications. Of

course, many more data type objects are available, and as mentioned earlier, Apple

provides a ton of documentation to help you find exactly what you’ll need for your

own projects.

Summary
In this hour’s lesson, you learned about object-oriented development and the

Objective-C language. Objective-C will form the structure of your applications and

give you tools to collect and react to user input and other changes. After reading

this hour’s lesson, you should understand how to make classes, instantiate objects,

call methods, create protocols and categories, and use decision and looping state-

ments to create code that implements more complex logic than a simple top-to-

bottom workflow. You should understand memory management and how it works

under the ARC system.

http://www.floraphotographs.com/index.html
www.floraphotographs.com

ptg8126863

Workshop 55

To finish up the hour, you explored a tiny fraction of what Cocoa provides to iOS

and OS X developers. Much more functionality is implemented in the Cocoa frame-

works than can be covered in an entire 24 hours book, but with Apple’s documenta-

tion tools, you’ll be able to find the features you need easily.

Q&A
Q. I’m trying to do XYZ in my iOS project and it doesn’t work. Why does it work

just fine in my OS X project?

A. The frameworks available and features in those frameworks are not identical

between OS X and iOS. Core Image for OS X, for example, includes methods

and default filters that are not available on iOS, despite the framework itself

being available.

Q. Should I use primitive C data types or Objective-C data types?

A. This is usually determined by the methods you’re using and the context of the

development. There is no reason to instantiate an object to store an integer if

all you want to do is some simple math, for example.

Q. Why aren’t Cocoa and Cocoa Touch the same?

A. I suspect that over time they will merge. For many people the biggest hurdle is

coding UIKit on one platform versus AppKit on the other. To that end, you

might want to look into the Chameleon Project (http://chameleonproject.org/)

which offers a clean implementation of UIKit on OS X.

Workshop

Quiz
1. An interface file defines the user interface for an application. True or false?

2. I want to manage my object memory myself. Why should I use ARC?

3. Cocoa Touch and Cocoa are names for exactly the same thing. True or false?

www.allitebooks.com

http://chameleonproject.org/
http://www.allitebooks.org

ptg8126863

56 HOUR 2: Just Enough Objective-C and Cocoa

Answers
1. False. Interface (.h) files describe how code will interface with your class. It

contains instance variables, properties, and method declarations.

2. ARC is built around the idea that Objective-C is very structured and pre-

dictable. By being able to analyze your code at compile time, ARC and LLVM

are able to optimize memory management in a way that mere mortals would

have a difficult time replicating.

3. False. Although similar in features, Cocoa Touch was developed for handheld

touchable devices, not mouse/touchpad-driven desktop applications.

Activities
1. Start Xcode and create a new application project using the OS X or iOS tem-

plates. Review the contents of the classes in the project Xcode Classes folder.

With the information you have read in this hour, you should now be able to

read and navigate the structure of these files.

2. Review the Apple Objective-C documentation found at https://developer.apple.

com/library/mac/documentation/cocoa/conceptual/objectivec/ObjC.pdf.

https://developer.apple.com/library/mac/documentation/cocoa/conceptual/objectivec/ObjC.pdf
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/objectivec/ObjC.pdf

ptg8126863

HOUR 3

Understanding the MVC
Design Pattern

What You’ll Learn in This Hour:
. What a design pattern is
. The goal of the model-view-controller design pattern
. How Xcode implements MVC
. What an MVC application project looks like

If you have programmed within other environments before, chances are you have gotten

used to doing things in a certain way. Xcode and Mac OS X/iOS development is flexible,

but you will find that using a development approach known as model-view-controller

(MVC) will make your projects flow smoothly and make them easier to update in the

future.

This hour explores the MVC approach and discusses why it can be a benefit to your devel-

opment as well as how you can implement it within the Xcode toolset. You learn the

forms a data model may take and how views are created and connected to controllers.

This is a relatively short hour and an easy read, but the concepts introduced will be used

in almost everything you do.

Development, Design Patterns, and MVC
When you start programming, you’ll quickly come to the conclusion that more than one

“correct” way exists to do just about everything. Part of the joy of programming is that it

is a creative process in which you can be as clever as your imagination allows. This does

not mean, however, that adding structure to the development process is a bad idea.

Having a defined and documented structure means that other developers can work with

ptg8126863

By the
Way

58 HOUR 3: Understanding the MVC Design Pattern

your code, projects large and small are easy to navigate, and you can reuse your

best work in multiple applications.

The approach that you will use for many applications in Xcode is a design pattern

known as model-view-controller; it will help you create clean, efficient applications.

What Is a Design Pattern?
A design pattern, in software engineering, is a reusable approach to that can be

used to solve a common problem. That sounds innocuous enough, right? But what

does it mean? It means developers frequently encounter problems while coding, and

over the years, effective approaches have been identified to mitigate these problems.

Dozens of design patterns are in use, many of which you will end up using in your

applications, even if you are unaware of it. For example, object-oriented develop-

ment usually includes a chain-of-responsibility pattern. In this design pattern,

lower-level objects that are asked to perform processing of an item (data, an event,

and so on) can identify which portions they can process, then pass the rest to a

higher-level object, and so on. You see this exact same behavior in Xcode when

dealing with responses to events, and you will likely include similar functionality in

your own classes and subclasses.

If you have been through software engineering classes, chances are you have
been taught many design patterns as “this is how you should be programming.”
That’s fine, but do not assume that no other approaches also work. Programming
is about problem solving, and design patterns develop and evolve as languages
and computer capabilities evolve.

So, what is the problem that the MVC design pattern is going to solve? To under-

stand that, we need to have dinner.

Making Spaghetti
When creating an application that interacts with a user, you must take into account

several things. First, the user interface. You must present something that the user

interacts with: buttons, fields, and so on. Second, handling and reacting to the user

input. Finally, the application must store the information necessary to correctly

react to the user (often in the form of a database).

One approach to incorporating all these pieces is to combine them into a single

class. The code that displays the interface is mixed with the code that implements

the logic and the code that handles data. This can be a straightforward develop-

ment methodology, but it limits the developer in several ways:

ptg8126863

Development, Design Patterns, and MVC 59

. When code is mixed together, it is difficult for multiple developers to work

together because no clear division exists between any of the functional units.

. The interface, application logic, and data are unlikely to be reusable in other

applications because the combination of the three is too specific to the current

project to be useful elsewhere.

. The application is difficult to extend. Adding features requires working around

existing code. The developer must modify the existing code to include new fea-

tures, even if they are unrelated.

. As user interfaces or data storage changes, all the code must be updated, mak-

ing it difficult to scale the application to new technologies.

In short, mixing code, logic, and data leads to a mess. This is known as spaghetti

code and is the exact opposite of what you want for your applications. MVC presents

a solution to this problem.

Structured Application Design with MVC
MVC defines a clean separation between the critical components of our apps. As

implied by the name, MVC defines three parts of an application:

. Model: A model provides the underlying data and methods that provide infor-

mation to the rest of the application. The model does not define how the

application will look or how it will act.

. View: One or more views make up the user interface. A view consists of the

different onscreen widgets (buttons, fields, switches, and so forth) that a user

can interact with.

. Controller: A controller is typically paired with a view. The controller is

responsible for receiving the user’s input and acting accordingly. Controllers

may access and update a view using information from the model and update

the model using the results of user interactions in the view. In short, it bridges

the MVC components.

The logical isolation created between the functional parts of an application, illus-

trated in Figure 3.1, means the code becomes more easily maintainable, reusable,

and extendable—the exact opposite of spaghetti code.

Unfortunately, MVC comes as an afterthought in many application development

environments. A question that I am often asked when suggesting MVC design is,

“How do I do that?” This question does not indicate a misunderstanding of what

MVC is or how it works, but a lack of a clear means of implementing it.

ptg8126863

By the
Way

60 HOUR 3: Understanding the MVC Design Pattern

In Xcode, MVC design is natural. (You could even say forced in most iOS applica-

tions.) As you create new projects and start coding, you are guided into using MVC

design patterns automatically. It actually becomes more difficult to program poorly

than it does to build a well-structured app.

How Xcode Implements MVC
Before you start creating projects and designing your user interfaces, it is important

to get a sense for how Xcode implements MVC. This will help ensure that you are

working with the tools, rather than against them.

Because the MVC design pattern consists of three parts, let’s look at each one, and

then see how they are (or can be) implemented in an Xcode project.

Models
Xcode provides a number of different ways to implement a data model. The simplest

approach is to create a class that accesses and stores information through a series of

setters and getters. You might also use a plist file (property list) to store a series of

key/value pairs.

For applications that have more complex data needs, Core Data can be used. Core

Data provides a persistent data store that can be used to store information in a way

similar to a relational database. You learn more about Core Data in Hour 17,

“Attaching Big Data: Using Core Data in Your Applications.”

Incidentally, Core Data provides a very clean abstraction of the SQLite database
engine. By using Core Data in your application, you gain the speed and power of
SQLite, without needing to worry about writing SQL.

What’s more, Core Data models are created in a way that makes swapping out
their implementation relatively straightforward, thus giving you the flexibility to
change your application’s data model without requiring drastic changes to your
controller.

Controller

ModelView

User action Update

DataUpdate

FIGURE 3.1
The MVC design
pattern isolates
the functional
components of
an app.

ptg8126863

How Xcode Implements MVC 61

Views
Views, although possible to create programmatically, are often designed visually

with the Interface Builder Editor. Views can consist of many different interface ele-

ments: buttons, switches, check boxes, and so on (as shown in Figure 3.2). When

loaded at runtime, views create any number of objects that can implement a basic

level of interactivity on their own (such as a text field opening a keyboard when

touched). Even so, a view is entirely independent of any application logic. This clear

separation is one of the core principles of the MVC approach.

FIGURE 3.2
The Interface
Builder Editor
gives you
access to a
wealth of UI
components.

For the objects in a view to interact with application logic, they require a connection

point to be defined. These connections come in two varieties: outlets and actions. An

outlet defines a path between the code and the view that can be used to read and

write values. An action defines a method in your application that can be triggered

via an event within a view, such as a touch or swipe.

So, how do outlets and actions actually get created? Xcode certainly cannot “guess”

where in your code you want to create a connection; instead, you must define the

outlets and actions that in the corresponding controller. Don’t worry, you learn how

to do this starting Hour 9, “Connecting a GUI to Code.”

ptg8126863

Did You
Know?

62 HOUR 3: Understanding the MVC Design Pattern

Controllers
As you learned, a controller is the “glue” that coordinates the action between a

model and a view. You’ll usually be working with a subclass of UIViewController

on iOS projects, and possibly NSViewControllers in Mac OS X. I say “possibly”

because using a subclass of the NSViewController class provides only a few benefits

to you over a generic subclass of NSObject. In iOS, however, subclassing

UIViewController is necessary because of the support for handling device

orientation.

Whatever your class type, it will handle the interactions with your interface and

establish the connection points for outlets and actions. To accomplish this, two spe-

cial directives, IBAction and IBOutlet, are added to your project’s code. IBAction

and IBOutlet are markers that the Interface Builder Editor recognizes; they serve no

other purpose within Objective-C. You add these directives to the interface files of

your view controller either manually or by using the Interface Builder Editor’s con-

nections to generate the code automatically, as shown in Figure 3.3 (Hour 9).

FIGURE 3.3
The Interface
Builder Editor
helps define
connections to
your code.

Let’s review what this code will ultimately look like through a brief introduction to

IBOutlet and IBAction.

Controllers hold the logic that glues your app together, but they do not have to be
the only place where you implement your functionality. You can develop as many
supporting classes as you need to create your application. In some cases, you will
not need any; in others, you might have dozens. The controller just ties it all
together.

ptg8126863

Did You
Know?

How Xcode Implements MVC 63

IBOutlet

An IBOutlet is added to your controller’s interface (.h) file to enable your code to

talk to objects within views. For example, consider an iOS text label (UILabel) that

you have added to a view. If you want to create an instance variable and property

for the label under the name myLabel within your view controller, you could explic-

itly declare both, or you might use the @property directive alone to implicitly

declare the instance variable and add a corresponding property:

@property (strong, nonatomic) UILabel *myLabel;

This gives your application a place to store the reference to the text label and a

property to access it with, but it still does not provide a way to connect it to the label

in the interface. To do this, you include the IBOutlet keyword as part of the prop-

erty declaration:

@property (strong, nonatomic) IBOutlet UILabel *myLabel;

Once IBOutlet is added, the Interface Builder Editor enables you to visually connect

the view’s label object to the myLabel variable and property. Your code can then use

the property to fully interact with the onscreen label object—changing the label’s

text, calling its methods, and so on.

In some cases, an object may connect to your code by setting your class as its
delegate instead of using an outlet. In doing so, it is requiring your class to imple-
ment certain features that it will use to generate its display. In these cases, your
class must, to work with the object, include a very specific set of methods (called
conforming to a protocol).

If an Interface Builder Editor object requires a delegate, you can still make the
connection visually in the Interface Builder Editor. It’s not harder than using an
outlet, just different.

IBAction

An IBAction is used to “advertise” a method in your code that should be called

when a certain event takes place. For instance, if a button is pushed, or a field

updated, you will probably want your application to take action and react appropri-

ately. When you have written a method that implements your event-driven logic,

you can declare it with IBAction in the controller class interface file (.h), which sub-

sequently exposes it to the Interface Builder Editor.

For instance, a method doCalculation might be declared like this:

-(IBAction)doCalculation:(id)sender;

ptg8126863

64 HOUR 3: Understanding the MVC Design Pattern

The declaration includes a sender parameter with the type of id. This is a generic

type that you can use when you do not know (or need to know) the type of object

you will be working with. By using id, you can write code that does not tie itself to a

specific class, making it easier to adapt to different situations.

When creating a method that will be used as an action (like the doCalculation

example), you can identify and interact with the object that invoked the action

through the sender variable.

There’s Room for All Styles!
You will sometimes write apps that have no separate data model. You will write
apps that create and present their interface through code in the controller. That’s
okay.

Xcode and Apple embrace the MVC design pattern, but that does not mean it fits
in all cases, or that every program requires the overhead of setting up a separate
data model from the controller, and so on. The examples in this book take a few
different approaches. Why were things done this way? To provide a demonstration
of the techniques in the allotted space. Is it the only way to do it? Not at all.

If you are just starting out, do what works, and refine your style over time. If you
are a seasoned developer with a proven process, keep using it. The Xcode tools
and structure are here to help you, not to limit you.

An MVC Walkthrough
To finish this hour, open the Library sample iOS application that is included in the

code downloads for the book (within the Hour 3 folder). This is a simple piece of

software that reads a database of books and displays them in a list, including the

publication year and author, as shown in Figure 3.4.

The Data Model
Open the Library project file and click the Library.xcdatamodeld file in the Project

Navigator (the column on the left side of the Xcode window).

The Core Data Editor appears, as shown in Figure 3.5. Two entities (think database

tables) are represented in the project. The first, Books, describes a book by its title

and a publication year. The second, Authors, describes an author with their first

name, last name, and an email address. The two entities are related to one another

in that a book can have one author, while an author can have written many books.

Xcode (and the operating system) hide the actual implementation of this model

behind the scenes.

ptg8126863

An MVC Walkthrough 65

In code, these entities are accessed via Core Data framework methods and two

NSManagedObject subclasses—essentially, the data is made available through the

classes Books and Authors, which are automatically created for us (and visible in

the Project Navigator).

FIGURE 3.4
The Library
application
accesses a
database of
books and pres-
ents them
through several
different views.

One-to-many relationship

One-to-one relationshipOne-to-one relationship

Table viewTable view

Graph view

FIGURE 3.5
The Core Data
Editor provides
a visual means
of viewing and
designing your
data model.

ptg8126863

Did You
Know?

66 HOUR 3: Understanding the MVC Design Pattern

The Views
To display information, the Library application includes two views: one a simple

text field that lists information, another that displays the information in a table. A

third view (the initial view seen by the user) presents an option of showing the sim-

ple text list, or the pretty table.

Click the Storyboard.storyboard file in the Project Navigator to open the Interface

Builder Editor and display the design, as shown in Figure 3.6.

FIGURE 3.6
In the Interface
Builder Editor,
you design the
Library inter-
faces and add
the basic navi-
gation logic.

The interface design becomes obvious in the Interface Builder Editor. The initial

screen connects to the two information displays—one named Simple and another

named Fancy—using connections created entirely in the Interface Builder Editor.

The Simple view contains a scrolling text field that the controller will insert data

into, and the Fancy view uses a table that also ties to a controller to be populated

with information. Buttons on both the Fancy and Simple views are created to return

the user to the initial screen.

The transitions between the initial view and the Simple and Fancy views are cre-
ated using a feature in Xcode called storyboards. The functionality is defined in the
storyboard rather than coded in a method. As a result, the initial view requires no
code at all, and no corresponding view controller.

Unfortunately, storyboards are currently iOS-only.

ptg8126863

By the
Way

An MVC Walkthrough 67

The Controllers
The simple and fancy views in the storyboard UI design have corresponding view

controllers that tie their interface to the information contained in the data model.

Look to the Project Navigator again. Notice that the project contains two classes,

SimpleViewController and FancyViewController, as shown in Figure 3.7.

FIGURE 3.7
Each view is
supported by
an underlying
controller.

The SimpleViewController includes an outlet for connecting the scrolling text field

and an action for handling the user’s touch of the Dismiss button. It also provides

the logic to read data from data model and populate the text field.

Similarly, the FancyViewController include the logic for reading the data and pop-

ulating a table view—but it does so by being a delegate of the table view rather than

through an outlet. It does, however, include the same action to handle the Dismiss

button.

Feel free to open up the SimpleViewController.h and FancyViewController.h files to
view the outlets, actions, and delegate protocol declarations. The project is for
poking around, so have at it.

ptg8126863

68 HOUR 3: Understanding the MVC Design Pattern

Did You
Know? If you run the application on your system, it, by default, will not have any informa-

tion stored in it. Each time it is run, however, a single book title (STY Xcode 4
Development in 24 Hours) is stored. This happens at application launch in the
AppDelegate.m implementation file.

Summary
In this hour, you learned how to the model-view-controller design pattern prevents

spaghetti code before it starts. The MVC approach separates an application into

three primary components: the model (which provides access to any underlying

data needed for processing), the view (the user’s interface to the application), and

the controller (the glue that ties the model and view together).

Xcode implements MVC through the use of classes representing the data model—

often provided by the iOS/Mac OS X Core Data frameworks. Views are created visu-

ally through the Interface Builder Editor. Controllers are created as subclasses of

UIViewController (iOS) and NSViewController (Mac OS X) and tied to views via

outlets and actions.

Q&A
Q. I have code that I wrote that draws its own UI from scratch. Do I have to use

MVC to port it to the Mac or iOS?

A. No. As mentioned earlier, Xcode is flexible. You can create a window/view

from scratch and draw directly within it. Keep in mind, however, that Mac

and iDevice users expect native interfaces.

Q. Is designing Mac/iOS interfaces the same?

A. No. You use very similar tools, but, for one thing, Mac applications use win-

dows and menus, whereas iOS applications have a single “window” that pres-

ents one or more views. In addition, iOS applications have a different set of UI

elements that work well with touch rather than with mouse/trackpad events.

Q. I’m thinking of writing an application, but I do not seem to need a data
model. What am I doing wrong?

A. Nothing. Use MVC where it makes sense. If your application does not require

a data source, that’s fine.

ptg8126863

Workshop 69

Workshop

Quiz
1. Spaghetti code is an example of a design pattern. True or false?

2. The Interface Builder Editor connects to a controller how?

3. Core Data requires knowledge of SQL to use. True or false?

Answers
1. False. A design pattern provides a solution to a commonly occurring problem.

Spaghetti code is one of the problems that MVC seeks to solve.

2. The Interface Builder Editor connects to outlets (IBOutlet) and actions

(IBAction) that are added to the interface file (.h) of the controller class.

3. False. The underlying storage mechanism is abstracted in Core Data. It might

use SQLite behind the scenes, but it is not something you need to worry about.

Activities
1. Read the “Cocoa Design Patterns” section within the Cocoa Fundamentals Guide

(https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/C

ocoaFundamentals/CocoaFundamentals.pdf). This presents a full background

of the design patterns used in Cocoa, with a focus on MVC.

2. Open the sample application and view the data design. Use the sample code

in the AppDelegate.m implementation file to add additional books and

authors, or additional books for a single author. Consider how you might

go about presenting this data in an iOS application versus an Mac OS X

application.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 4

Using Xcode Templates to
Create Projects

What You’ll Learn in This Hour:
. Xcode project templates
. How to create a new project
. The anatomy of an Xcode project
. Managing project properties

In the past few hours, you have learned how to install Xcode, what Objective-C looks like,

and how the model-view-controller (MVC) development methodology can lead to well-

structured projects. Starting with this hour, it is time to work directly with Xcode.

In this hour, you learn about the Xcode project templates and how to create and test an

application using the templates. One of the best things about the Xcode templates is that

they provide a starting point for a variety of different applications. Before deciding to rein-

vent the wheel, take a look at the available Xcode templates and consider using one of

them as your starting point; it might save you hours of coding.

Available Project Types
In Hour 1, “Xcode 4,” you learned that project templates in Xcode are divided between iOS

and OS X applications. This division is more than superficial. Creating an iOS project sets

up the compiler, target platforms, interface, and controllers for an iDevice deployment.

Similarly, a OS X project contains project resources that are just as specific to the Mac. In

other words, don’t plan on creating a new project with the idea it will be “truly” cross-

platform.

ptg8126863

72 HOUR 4: Using Xcode Templates to Create Projects

iOS and OS X: Where the Paths Cross
You can create common classes to be shared between OS X and iOS, but your
implementation is constrained to the intersection of Cocoa and Cocoa Touch.
Opportunities for code reuse are improving, but don’t plan on a large overlap
between iOS and Mac projects.

Let’s begin by exploring many of the different types of projects templates in Xcode.

Apple changes these somewhat frequently, so do not be surprised if the names don’t

quite match up. The basic functionality, however, seems to be consistent between

Xcode releases.

iOS Project Templates
We start with the iOS project rather than Mac project templates because, frankly,

they are more interesting. They provide starting points across a wide variety of dif-

ferent application interface styles. The Mac templates, in contrast, are more basic

and require you, the developer, to determine what the final product will look like.

The iOS templates are divided into three categories: Application, Framework &

Library, and Other. Within each category are a number of templates, as follows:

. Application

Master-Detail Application

OpenGL Game

Page-Based Application

Tabbed Application

Single View Application

Utility Application

Empty Application

. Framework & Library

Cocoa Touch Static Library

. Other

Empty

In this hour, we walk through each category and each template type within. As

you’ll see, chances are your time will be spent with Application projects more than

anything else.

Watch
Out!

ptg8126863

Available Project Types 73

By the
WaySelecting iOS or OS X in the project creation screen shows all available templates

for that platform. Choosing the individual categories under the platform filters the
choices appropriately.

Master-Detail Application
The first template, called the Master-Detail template (and previously known as the

Split View template), creates an iPad or iPhone application that displays hierarchi-

cal information and enables users to drill down to more detailed items, ultimately

displaying a screen containing a detailed description of what they have selected.

An app that catalogs flowers, for example, might let the user pick a geographic

region, and then display a screen listing species in that area, and then finally show

details on the chosen species. Figure 4.1 shows an example of the Master-Detail

application template in use.

FIGURE 4.1
Use the Master-
Detail template
to show
structured
information.

A unique feature of this template is that you can use it to build universal applica-

tions for iPhones and iPads, even though the interface differs strikingly between

these devices.

OpenGL Game
iOS (like OS X and many other operating systems) uses OpenGL for creating interac-

tive 3D scenes. To get a quick start on creating your own OpenGL masterpiece, you

can use the OpenGL Game template. The default template implements an OpenGL

ES drawing context with a few 3D objects, and a timer that can be used to check for

updates and apply them to the scene. Figure 4.2 shows the OpenGL template and its

default scene of floating blocks.

ptg8126863
By the

Way

74 HOUR 4: Using Xcode Templates to Create Projects

Although the template is referred to as a Game template, nothing stops you from
using for any 3D application you want to implement. The basic pieces are all in
place; that is, you can use the drawing context and a timer in any type of applica-
tion. You just need to provide code to process user input and control the OpenGL
scene accordingly.

Page-Based Application
The Page-Based Application template emulates a book (similar to iBooks), with a

familiar 3D page-turning effect, as shown in Figure 4.3. Although available for both

iPhone and iPad (and universal) deployment, the effect and user experience is far

superior on the iPad.

Although this template might seem like a no-brainer for creating interactive iOS

books, you should choose it only if you need to build a digital book that offers more

interactivity than possible with iBooks Author. Yes, the Page-Based Application tem-

plate looks like a book, but it has all the features of a typical iOS app at its disposal.

If you need that, great. If not, you might find it harder to maintain your content

and that your development takes longer than if you just use the Apple digital iBooks

content-creation tool.

FIGURE 4.2
The OpenGL
template is a
starting point
for your own 3D
iOS creations.

ptg8126863

Did You
Know?

Available Project Types 75

Single View Application
The Single View Application template is the most “generic” of the iOS templates and

your likely starting point for applications for which you want to develop your own

interface. As its name suggests, this template provides a single empty view when the

application starts.

Tabbed Application
Applications that provide different functions (for example, a conversion app that

has conversions for measurements distance, volume, and temperature) can provide

different “areas” within a single piece of software by adopting the tabbed applica-

tion template. In this template, a tab bar (a bar with icons on it) displays at the bot-

tom of the iOS device screen, as shown in Figure 4.4.

Using the tabs, a user can navigate between different views within the application,

giving you (and them) plenty of space to work in.

Tabbed applications are more common on the iPhone than on the iPad because of
the smaller amount of screen real estate available. If you’re creating a universal
application that uses a tabbed interface on the iPhone, you might want to con-
sider a different UI for iPad users.

FIGURE 4.3
Use the page-
based template
to create inter-
active linear
content.

ptg8126863

76 HOUR 4: Using Xcode Templates to Create Projects

Utility Application
Utility applications are simple applications with a primary content view and a sec-

ondary view (often reserved for configuration). The iPhone version of the Utility

Application template provides a single blank view with an information button (i)

that triggers a flipping effect on the screen to transition to the secondary view.

When finished with the secondary view, the user can touch a Done button to return

to the primary, as shown in Figure 4.5. iPad users do not get the flipping effect and

instead access the secondary view via a button and a popover displayed on the

primary view.

You should use this template for applications that provide their functionality within

a single view but that might also require some setup. Timers, clocks, weather

widgets—simple content-consumption apps—are prime examples of applications

that fit this template structure.

Empty Application
The Empty Application template is a properly configured iOS template with

absolutely no UI in place, nor any code to support a UI. If you want to build an app

from the ground up, this is the proper starting place.

FIGURE 4.4
Tabbed applica-
tions separate
functional areas
of the app.

ptg8126863

Available Project Types 77

Cocoa Touch Static Library
In the Framework & Library category of templates, you find the Cocoa Touch Static

Library. Using this template, you can build your own code library for use in other

projects or distribution to other developers.

Creating a library is different from creating and sharing a class. A class is the raw

code that implements functionality. A library is compiled code that implements

functionality. If you develop a new handwriting-recognition engine that you want to

share with other developers (without giving them access to your code), you do this

by using the Cocoa Touch Static Library template.

Empty
The final iOS template (located in the Other category) is named Empty and does

nothing except create an empty project structure that you can fill with code. The

empty template does not include any code or files beyond the project folder. You’ll

not likely ever want to use this, but it is there if you do.

OS X Project Templates
OS X projects are divided into five different categories: Application, Framework &

Library, Application Plug-In, System Plug-In, and Other. Unlike for iOS, you can

develop software that integrates much deeper into OS X, so you’ll find a greater

FIGURE 4.5
Quickly transi-
tion to and from
a primary and
secondary view
with a utility
application.

ptg8126863

78 HOUR 4: Using Xcode Templates to Create Projects

breadth of project templates here, but they are less fully developed than the iOS

application templates.

. Application

Cocoa Application

Cocoa-AppleScript Application

Command Line Tool

. Framework & Library

Cocoa Framework

Cocoa Library

Bundle

XPC Service

C/C++ Library

STL C++ Library

. Application Plug-In

Automator Action

Address Book Action Plug-In

Installer Plug-In

Quartz Composer Plug-In

. System Plug-In

Generic Kernel Extension

Image Unit Plug-In

IOKit Driver

Preference Pane

Quick Look Plug-In

Screen Saver

Spotlight Importer

Sync Schema

. Other

Empty

External Build System

ptg8126863

By the
Way

Available Project Types 79

If you are learning to program and want to write some simple C/C++/Objective-C
code without dealing with complexities of Cocoa, pay close attention to the
Command Line Tool template. This gives you what you need to start programming
with minimal overhead.

Cocoa Application
The Cocoa Application template delivers a bare-bones window-based application

that can cover two scenarios: applications that present their functionality in a win-

dow (a calendar, for example), and applications where the user works within a doc-

ument window, as shown in Figure 4.6.

FIGURE 4.6
Quickly set up a
skeleton app
that functions
from a single
window or many
document
windows.

The template does not handle the process of creating files or providing any features

beyond displaying one or more windows; it just sets up the basic methods and UI for

your app. Consider this the equivalent of the Single View iOS application template.

Cocoa-AppleScript Application
If you’re an experienced AppleScript application developer, you can develop full Mac

applications using AppleScript rather than Objective-C. You still use the Cocoa

classes, but you do not need to learn a whole new language. Aside from the lan-

guage, this template is identical to the Cocoa Application template.

ptg8126863

By the
Way

80 HOUR 4: Using Xcode Templates to Create Projects

To get started with AppleScript Xcode development, visit
http://www.macosxautomation.com/applescript/develop/index.html for
more information. Hour 13, “Xcode-Supported Languages,” includes more
information about using other languages in Xcode.

Command Line Tool
Developers coming from a UNIX background may be used to creating a main()

function and coding from there. In addition, if you’re in the progress of learning

basic development skills, chances are you are not worried about building user inter-

faces or using the MVC design. In these cases, the Command Line Tool template

may be exactly what is needed.

This template enables you to choose a base language, and then sets up a main()

function and lets you code from there. Your application runs via the command line

and produces output in text. Sometimes simple is all you need or want.

Cocoa Framework
The Cocoa Framework project type is the first of the OS X Framework & Library proj-

ect templates. This template is used to create a framework, a collection of independ-

ent but shared resources. Frameworks usually consist of one or more libraries and

can include multimedia, interface objects, and more.

To learn more about frameworks and the role they serve in OS X, be sure to read
the document “Framework Programming Guide” in the Apple Xcode documenta-
tion. Hour 7, “Working with the Xcode Documentation,” discusses the documenta-
tion system.

Cocoa Library
Use the Cocoa Library framework to create a distributable binary library that pro-

vides a common set of functions to other applications. Libraries can be used as

standalone tools or combined with other related libraries and resources to form a

framework.

Bundle
Bundles are similar to frameworks (and libraries) in that they encapsulate function-

ality and resources. Rather than provide those features to arbitrary applications,

however, they are written to extend existing applications. You can build OS X soft-

By the
Way

http://www.macosxautomation.com/applescript/develop/index.html

ptg8126863

Available Project Types 81

ware to accept bundles to extend and enhance features. To create a bundle, you can

start with this template, but you also need information about the bundle architec-

ture required by the software you want to extend. In other words, you need devel-

oper documentation for the software you’re enhancing before you start building a

bundle.

XPC Services
XPC services are used by OS X applications to implement interprocess communica-

tions. They act as small, standalone helpers that enable two or more independent

(but related) processes to communicate safely. With this go-between established,

applications can be safely extended or broken into smaller components that only

expose system resources to the parts of the app that need it. A browser, for example,

might communicate with its plug-ins via an XPC service, removing the ability for a

plug-in to directly affect the browser in a negative way.

Use the XPC Service template to set up a project for building a new service for your

application.

C/C++ Library
The C/C++ Library is the same as a Cocoa Library, but it is developed for use with

C/C++.

STL C++ Library
The STL C++ Library uses the C++ Standard Template Library (a variation of the C++

Standard Library). Learn more about STL C++ at http://en.wikipedia.org/wiki/

Standard_Template_Library.

Automator Action
The Automator Action template starts off the Application Plug-In template category.

This template is used to create a new action for use with the Automator OS X

automation/scripting system. The template includes the required Automator

input/output method and an empty UI that displays within the Automator work-

flow.

Address Book Action Plug-In
Address Book Actions extend the OS X Address Book application by providing cus-

tom functions that you can apply to entries. The plug-in template creates a sample

action that uses the OS X speech synthesizer to speak information about a selected

contact.

http://en.wikipedia.org/wiki/Standard_Template_Library
http://en.wikipedia.org/wiki/Standard_Template_Library

ptg8126863

82 HOUR 4: Using Xcode Templates to Create Projects

Installer Plug-In
Applications that use the OS X installer can customize the GUI of the system

installer by writing installer plug-ins. This template does not provide any functional-

ity, but it does include method stubs and an empty interface for designing your own

installer plug-in.

Quartz Composer Plug-In
Quartz is a graphical rendering environment that enables developers to layer pro-

cessing modules (creating what is called a composition) to visualize data, without

having to write code. Quartz plug-ins are custom processing modules that you can

add to a composition. This template provides no example, but it implements all the

method stubs that you’ll need to complete.

Generic Kernel Extension
Need to extend the core system-level functionality of OS X? Use this template to cre-

ate a dynamically loadable extension for the Darwin kernel. Few development

efforts require creating kernel extensions, so it is unlikely that you’ll use this often.

Image Unit Plug-In
Core Image is a framework for OS X (and also iOS 5+) that enables advanced image

manipulation through the application of nondestructive filters called an image unit.

This template enables you to create your own Core Image filters that can be loaded

and applied in other applications. (It contains a sample filter implementation by

default.)

IOKit Driver
Use the IOKit Driver template to get a start on developing drivers for communicat-

ing with external hardware. Like kernel extensions, this is highly specialized and

rarely needed by most developers.

Preference Pane
To create a program that presents itself through the OS X System Preferences appli-

cation, use the Preference Pane template. Preference panes are typically just used for

configuration and control of another service. Unlike iOS preferences, however, they

are complete applications themselves. The default template provides an empty slate

and UI for development.

ptg8126863

The Project-Creation Process 83

Quick Look Plug-In
Quick Look makes it possible for a user to quickly preview the contents of a file from

within the Finder, Mail, and other enabled applications. You can extend Quick Look

capabilities beyond the built-in file types by creating a Quick Look plug-in. This

template includes empty method stubs for building your own plug-in to preview files

of your choosing.

Screen Saver
Don’t like the built-in OS X screen savers? Build your own with the Screen Saver

template. Unfortunately, the template does not provide sample code beyond method

stubs, so you’ll be starting from scratch in your implementation.

Spotlight Importer
You can extend Spotlight, much as you can Quick Look, to handle new types of

content. By creating a Spotlight Importer, you can enable the OS X system to intelli-

gently index files that normally would be ignored or not provide useful information.

The Spotlight Importer template sets up the methods you need to do so.

Empty
Like the iOS Empty template, the OS X template contains absolutely nothing. This is

your starting point for a project where you want to determine all the details (not

Xcode).

External Build System
This template, like the Empty template, is a starting point for just about anything.

The only difference is that the External Build System template is configured for a

command-line build system (such as make). Many of us started development by cre-

ating C applications that built with Makefiles. This is where we go to relive the

old days.

The Project-Creation Process
Creating a project in Xcode follows a wizard/assistant-like process that walks you

through a set of screens to configure how the template is applied. With all the differ-

ent template types and options that can be used with each template, your projects

can inherit hundreds of possible starting points.

ptg8126863

By the
Way

84 HOUR 4: Using Xcode Templates to Create Projects

Obviously, we cannot cover all of these in a meaningful way, but we walk through

the creation of an iOS project and discuss the most common template options you’ll

encounter. Why an iOS project? Because the iOS templates include almost all the

same configuration options of Mac templates, plus a few that are unique to iOS.

When you create a new project in Xcode, all the source files contain a copyright
message at the top with your name, date, and company. Xcode grabs this informa-
tion from the My Card identified in Address Book. If you haven’t properly set this
card, the text in your files will be wrong.

Be sure to start Address Book and choose Card, Go to My Card to see your cur-
rent contact data. Choose Card, Make This My Card while browsing a contact to
choose a new card as your personal card.

Choosing the Template
To begin creating a new project, use either the Create New Xcode Project button in

the Xcode welcome window, or choose File, New, New Project after starting Xcode.

Figure 4.7 shows the template selection screen.

FIGURE 4.7
Choose your
platform, cate-
gory, and then
a project
template.

Use the column on the left to choose your deployment OS, the category, and finally

the individual template that you want to use. Click the Next button in the lower-

right corner of the template screen when happy with your selection.

ptg8126863

The Project-Creation Process 85

Configuring the Template
After choosing the template, you are prompted for a product name, identifier, and a

variety of other values, as shown in Figure 4.8. Let’s start by working through the

basic naming conventions, and then look at the other possible options you might

encounter.

Product Naming
The product name is the name of your application, and the company identifier is

the domain name, in reverse order, of the organization or individual producing the

app (Apple’s convention, not mine). Together, these two values make up something

called the bundle identifier, which uniquely identifies your application among all

other apps.

For example, assume I am creating an app called Welcome. This becomes the prod-

uct name. I own the domain teachyourselfxcode.com, so I enter com.teachyourselfx-

code as the company identifier. The final bundle identifier for the application

becomes com.teachyourselfxcode.Welcome. If you do not own a domain name, you

can just use the default identifier for your initial development.

FIGURE 4.8
Choose the
options to
customize your
template.

The class prefix is an arbitrary string that is appended onto the start of the filenames

in an Xcode application template. Apple has traditionally automatically assigned

ptg8126863

86 HOUR 4: Using Xcode Templates to Create Projects

the product name as the prefix, but changed this in recent versions of Xcode. Leave

this blank or provide any value you want.

Additional Attributes
After setting the naming conventions to be used by your application and classes,

you still have several possible settings to choose from. Many of these cannot be reset

after the fact, so make sure you pick what you need:

. App Store Category: This sets the primary category that your application will

be offered under in the Mac App Store if you choose to publish it there. (OS X

only)

. Create Document-Based Application: Includes code in the template for basic

handling of document windows and document creation. You must still write

the load/save code yourself, but the method stubs are all in place if you check

this check box. (OS X only)

. Document Extension: In document-based applications, you use this to define

the file extension that your application’s documents will be saved with. (OS X

only)

. Device Family: Unlike when creating a OS X application, iOS apps must tar-

get a specific device. Use the device family attribute to create projects for

iPhone or iPad. You can also create universal projects that include resources

for both devices. (iOS only)

. Include Unit Tests: Unit tests are short coded tests that, when run, verify that

your code is working the way it should be. You learn more about unit tests in

Hour 18, “Test Early, Test Often.” Until you’re ready to use them, leave this

box unchecked. (OS X and iOS)

. Include Spotlight Importer: When this check box is checked, your project

includes the method stubs for a Spotlight Importer for your application’s docu-

ments. Remember, there is also an Importer project template, so you can

always build one later. (OS X only)

. Use Automatic Reference Counting: Switches the project to use ARC (auto-

matic reference counting). Apple prefers that new projects include automatic

reference counting, instead of relying on garbage collection (OS X) or manual

reference counting (OS X/iOS). (OS X and iOS)

. Use Core Data: When this box is checked, this option includes a Core Data

data model and the framework for accessing it. Core Data is a built-in rela-

tional database engine that applications can use if they have complex data

requirements.

ptg8126863

The Project-Creation Process 87

. Use Storyboard: Like ARC, it is probably best to check this option in your iOS

apps. Storyboard is a new method for designing and storing interfaces and

interface transitions and is considered the future of iOS interface development.

You learn to use the storyboarding tools in Hour 8, “Creating User Interfaces.”

(iOS only)

When satisfied with your settings, click Next.

Saving the Template
Xcode prompts for a save location for the project, as shown in Figure 4.9. Navigate

to an appropriate location on your drive and then click Create. Xcode makes a

folder with the name of the project and places all the associated template files

within that folder.

FIGURE 4.9
Choose your
save location.

Notice the availability of a Source Control check box when choosing where to save

your project. This helps you track versions of files in your project, see changes

between versions, and restore earlier files if needed. You learn more about source

control in Hour 12, “Using Source Control.”

ptg8126863

88 HOUR 4: Using Xcode Templates to Create Projects

You’ve Got a Project
Okay, so you’ve got a project… now what? The answer to that question is provided

over the next few hours. For now, though, let’s take a look at what you should see

after creating a project.

Project Files
First, after walking through the template configuration and choosing a save loca-

tion, you arrive in the main Xcode workspace. On the left side of the Xcode inter-

face, you see the project Navigator and all the files associated with your project, as

shown in Figure 4.10.

FIGURE 4.10
Xcode displays
your project
files and
resources in
the Navigator.

One thing you want to be aware of is that the representation of the project in Xcode

is not a mirror of what was been created in your file system. The folders (called

groups) are logical divisions of content. They are used for organization within the

project and do not influence the project’s actual folder structure.

If you browse to the location on your disk where the project is stored, you see a top-

level project folder that contains a file with the extension .xcodeproj, as shown in

Figure 4.11. This is the file you need to open to return to your project workspace after

exiting Xcode.

You’ll also notice another folder (also named after the project) within your main

project folder. This contains all the class and supporting files for the project.

Additional folders might also be visible for supporting localization (en.lproj for

English projects, for example) and for resources you manually add to the project.

ptg8126863

You’ve Got a Project 89

Project Configuration
To review your project configuration, click the top-level icon in the project Navigator

in Xcode. To the right of the Navigator, make sure the application icon under

Targets is selected, and then click the Summary tab. Doing so displays a summary of

how the project is configured, as shown in Figure 4.12.

FIGURE 4.11
Don’t expect to
see the same
folder structure
shown in Xcode
in your actual
project
directory.

FIGURE 4.12
Review your
project
summary.

The project configuration contains information that describes how your project will

work and look. Settings such as deployment target (operating system version), icons,

and even (on OS X) which capabilities the application is going to have.

ptg8126863

90 HOUR 4: Using Xcode Templates to Create Projects

Building the Template
Even if you haven’t written any code, the templates Apple provides will compile and

(unless completely empty) run. To run and view the output of an application, click

the Run button in the upper-right corner. OS X applications will run, just as you

expect. iOS applications will run in a simulator, as shown in Figure 4.13.

Build and Run

Stop

FIGURE 4.13
Click Run to
build and run an
application.

To stop an application that is executing, click the Xcode Stop button. You learn more

about building applications and the simulator in Hour 11, “Building an

Application,” but this should give you enough information to get started exploring

live examples of the Xcode templates.

Customizing the Xcode Templates
The Xcode templates are actually project files that you can open and edit to cus-
tomize with your own code and resources. To do this, you must first make a copy
of the project template you want to change. OS X projects are located in
/Applications/Xcode.app/Contents/Developer/Library/Xcode/Templates/Project
Templates/Mac. You can find iOS templates at /Applications/Xcode.app/
Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/
Templates/Project Templates.

ptg8126863

Q&A 91

After changing the template, do not copy the updated template back overtop the
factory-installed templates. Instead, create the folder structure Developer/Xcode/
Templates/Category within the Library folder in your home directory. The Category
can be anything you want to help categorize your templates (Applications, Games,
or so on). Place the updated project templates inside these folders, and Xcode
will immediately recognize them.

Summary
Developers often approach a problem with the mindset of “I’m going to build this

from scratch.” This, however, is rarely needed when working with Xcode. In this

hour, you learned about the project-creation process, which templates are available,

and how you can configure them for both iOS and OS X platforms. Although you

are most likely interested in creating applications, Xcode provides starting points for

libraries and frameworks, command-line utilities, image filters, and even screen

savers.

After a project is created, we reviewed “what happens next”: A project workspace

opens, and the project files are stored on your hard drive. You can now review your

project configuration and even build and run the project to get a sense for what the

template has provided. Obviously, you want to expand the project beyond just creat-

ing a template, so keep on reading.

Q&A
Q. The templates I’m seeing don’t exactly match what you’ve listed here.

Why not?

A. Apple continually tweaks and updates the templates included with Xcode.

The functionality usually remains very similar, but don’t be surprised to see

template names change over time.

Q. Are templates my only starting point?

A. Absolutely not. Dozens of sample projects are provided in the Xcode documen-

tation (see Hour 7) that you can use for experimentation or adapt to your own

use. I encourage you to use these samples as a means of exploring Xcode and

Objective-C.

ptg8126863

92 HOUR 4: Using Xcode Templates to Create Projects

Q. What options do you recommend selecting when creating new projects?

A. For beginning developers, I recommend making sure that ARC is enabled,

Storyboarding (for iOS) is selected, a single (iPad/iPhone) device is chosen, and

that Document-Based Application, Unit Tests, and Source Control are disabled.

This results in a project that uses the latest technologies and does not include

any extra cruft that will just get in the way.

Workshop

Quiz
1. What type of template provides a means of browsing hierarchically arranged

information on iOS?

2. The OS X and iOS projects have a great deal in common. True or false?

3. You cannot build and run a project immediately after creating it from a tem-

plate. True or false?

Answers
1. The Master-Detail template creates unique interfaces on both iPhone and iPad

devices that enable a user to drill down through information to ever-increas-

ing details.

2. True and false. Although the skills and many libraries needed to develop for

OS X and iOS are very similar (true), the user interaction in an application

dictates very different starting points and application resources (false).

3. False. The templates, in most cases, will create a perfectly valid project that

will build and execute. It may not do much, but it does give you a quick way

to start experimenting with functionality without performing any additional

setup.

ptg8126863

93Workshop

Activities
1. Walk through the creation of one or two projects (for OS X and iOS) using the

application templates. Review the Xcode workspace that is created and com-

pare it to the project folders saved on your disk.

2. Create and run an iOS application using one of the available templates.

Notice that the application runs within the iOS simulator. Although this is

covered in a later hour, test the simulator and get a feel for how it compares

to a real iOS device.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 5

Managing Projects and
Resources

What You’ll Learn in This Hour:
. How to find your way around a project
. The file templates available in Xcode
. Ways to add new files and resources
. Where to add frameworks and libraries
. How to manage target properties

In the preceding hour, you learned how to create projects in Xcode using the built-in proj-

ect templates. That’s a good start, but without the ability to add new classes and resources

to your creation, you limit what you could potentially create.

This hour explores how you can add new files, resources, and frameworks to your project.

You also learn how to manage the files that make up your project, how to create groups,

and even how to configure some of the basic target properties that define how the applica-

tions your project creates appear and function. When you have finished, you can create

projects with 1 or 100 classes; it’s up to you.

Getting Your Bearings
After you have created or opened a project in Xcode, the interface displays an iTunes-like

window that you use for everything from writing code to designing your application inter-

faces. We briefly discussed the important parts of the interface (shown in Figure 5.1) in the

first hour, but let’s review them now as a refresher.

ptg8126863

By the
Way

96 HOUR 5: Managing Projects and Resources

. Toolbar: Displays project status and provides easy access to common

functions

. Navigator: Manages files, groups, and other information related to your

project or collection of projects

. Editor: Edits or displays the currently selected project resource, such as a code

file, interface file, or property list (plist)

. Utility: Provides quick access to object inspectors, help, and object/code

palettes

. Debug: Visible during application debugging, the debug area provides console

feedback and debugger output

By default, the Utility area is hidden. You can toggle its visibility using the third but-

ton in the View area of the toolbar. Likewise, you can hide and show the Navigator

using the first view button. The middle button reveals a fifth area, the Debug area.

The debugger is displayed below the editor automatically when needed. In this hour,

we focus on the Navigator (and a bit on the Editor). The next hour is devoted to

using the Editor in depth.

If you ever find that your display seems completely different from what you expect,
use the View menu on the Xcode menu bar to show the toolbar, Navigator, or any
other pieces that have gone missing. Of course, you can use this in reverse as
well—hiding pieces of the interface that are getting in your way.

ToolbarToolbar

NavigatorNavigator

Editor

Debug

UtilityUtility

FIGURE 5.1
Xcode’s single
window is
divided into five
functional
areas.

ptg8126863

Getting Your Bearings 97

Navigating a Project
The Navigator can operate in many different modes, from navigating your project

files to reviewing search results and error messages. You change modes by using the

icons immediately above the Navigator area. The folder icon shows the project

Navigator and is the where you will spend most of your time.

The project Navigator displays a top-level icon representing (and named after) your

project; this is the project group. You can use the disclosure arrow in front of the

project group to open and show the files and groups that make up your application.

Let’s take a look at the project Navigator for a project named Sample created using

the Mac OS X Cocoa Application template (others will be very similar.) Figure 5.2

shows the project Navigator for Sample.

FIGURE 5.2
Your project is
defined by the
contents of the
project
Navigator.

Within the project group are three subgroups that you will find useful:

. Project Code: Named after the project, this folder contains the code for the

class files and resources that you add to your project. As you learn in the next

hour, classes group together application features that complement one

another. Most of your development will be within a file located here. If you dig

a bit further, you’ll find a Supporting Files group within the project code folder.

This contains files that, although necessary for your application to work cor-

rectly, are rarely edited by hand.

. Frameworks: Frameworks are the core code and resource libraries that give

your application a certain level of functionality. By default, Xcode includes the

basic frameworks for you, but if you want to add special features, you might

need an additional framework. We walk through the process of adding frame-

works in a few minutes.

ptg8126863

By the
Way

98 HOUR 5: Managing Projects and Resources

. Products: Anything produced by Xcode is included here (typically, the exe-

cutable application).

As mentioned in the preceding hour, the folder divisions shown in the project

Navigator are logical groupings; they do not directly correspond to a folder structure

on your hard drive. In a few minutes, you learn how to create new groups to help

organize your projects in a way that makes sense to you.

If Xcode cannot find a file that it expects to be part of a project, that file is high-
lighted in red in the Xcode interface. This might happen if you accidentally use the
Finder to delete a file from the project folder. It also occurs when Xcode knows
that an application file will be created by a project but the application has not
been generated yet. In this case, you can safely ignore the red .app file within the
Products group.

Finding Your Way with Filtering
A project with two or three files is easy to work with visually, but large projects can

have dozens of classes and resources and become unwieldy. To help manage the

cruft, you can use the Navigator filter.

At the bottom of the Navigator area is a small toolbar, shown in Figure 5.3, that

you can use to filter or adjust what is currently being displayed. In the project

Navigator, for example, you can enter text in the Search field to only display project

resources (groups or files) that match. You can also use the icons to the right of the

field to limit the results to recent files or files that have not been saved (the clock

and pen/paper icons, respectively). The box-shaped icon is used with source control,

discussed in Hour 12, “Using Source Control.”

Recent Files

Unsaved Files

Filters by name

Files under Source Control

FIGURE 5.3
Filter files in the
Xcode project
Navigator.

The filtering options are contextual; they change based on what is currently being

displayed in the Navigator. Be sure to take advantage of Xcode’s extensive tooltips to

explore the interface as you encounter new areas and features.

ptg8126863

Managing Project Files 99

Managing Project Files
Even though the Apple Xcode templates give you a great starting point for your

development, eventually you will need to add additional code files to supplement

the base project. This portion of the lesson describes how to add and remove files

from your project.

Adding Template-Based Files
Much as Xcode can create projects with a base amount of functionality, it an also

add new class files (or other useful files) to your project that already have method

stubs or other features built in.

Using the File Template Wizard
To add a new template-based file to a project, follow these steps:

1. Highlight the group you want to add the file to (usually the project code

group).

2. Choose File, New or click the + button located at the bottom-left corner of the

Navigator.

In an interface similar to the project templates, Xcode prompts you, as shown

in Figure 5.4, for the category and type of file that you want to add to the

project.

FIGURE 5.4
Choose the type
of file to add.

ptg8126863

100 HOUR 5: Managing Projects and Resources

To learn how to add arbitrary resources to a project (such as images), skip

ahead to the “Adding External Resources” section.

Unlike project templates, file templates are more focused and contain a few

method stubs to help you get started with your implementation. Let’s review a

few of the templates that are available under the Cocoa Touch/Cocoa cate-

gories for iOS and Mac OS X, respectively. Like projects, these are subject to

change at Apple’s whim:

. Objective-C class: Adds a new generic class implementation and interface file

to the project. You can choose the name for the class and what it should be a

subclass of—NSObject being the topmost level object that you can subclass.

. Objective-C category: Creates a new category in your project. Categories, as

you learned in Hour 2, “Just Enough Objective-C and Cocoa,” extend the func-

tionality of a class and all its subclasses. Using this template, you can name

the category and choose which class it extends.

. Objective-C protocol: A protocol file defines a set of methods that a class

must implement to “conform” to a protocol. In other words, this is a means of

providing forced consistency between classes. Again, refer to Hour 2 for more

details. This template adds a single empty protocol file to your project.

. Objective-C test case class: Adds a class to your project that is used to imple-

ment unit tests. The class template contains a sample method, but you need

to add the SenTestingKit framework to your project before you can compile it.

Learn more about how to add a framework in the “Managing Frameworks

and Libraries” section, later this hour.

. Objective-C extension: Similar to a category, extensions anonymously extend

the features of a class. Use this template to create a new extension by provid-

ing a name and the class to be extended.

I See More Templates. What Are They?
These templates listed here are the ones you will likely use for the vast majority
of your development, but others are available under the other categories:

C and C++ Within the C and C++ category, for example, are simple C/C++ and
header file templates. If you choose one of these, you end up with a largely empty
file added to your project.

User Interface In the User Interface category, choose from a variety of UI docu-
ments that can use used to add new interface features to your application. The

ptg8126863

Managing Project Files 101

iOS templates, while similar to the Mac OS X options, are superseded by the sto-
ryboard file and shouldn’t be used in new applications. It is also useful to note
that any of the interface templates can be built from scratch in seconds within the
Interface Builder editor (Hour 8, “Creating User Interfaces”).

Core Data The Core Data templates are added to projects that want to use Mac
OS X/iOS’s internal relational database system.

Resources In the Resources category, choose from a variety of generic file types
that can be added as file resources in your project. Plists, rich text files, and so
on are contained here.

Other Finally, the Other category contains templates for empty (yes, completely
empty) files, shell scripts, and assembly language files. It is unlikely that you will
need these templates often.

3. After picking your template, click Next.

You are then prompted for the name of the class, category, or protocol that

you are creating. If you choose to make a subclass of a UIViewController (iOS

only), you also have the option to add a corresponding NIB interface file and

target it for the iPad, as shown in Figure 5.5.

4. Assuming you are using storyboarding, you do not want (or need) either of

these options. Click Next to continue.

FIGURE 5.5
Set the options
for the code
template that
you are
creating.

ptg8126863

102 HOUR 5: Managing Projects and Resources

5. Choose where the new files will be stored.

Typically, this is inside the main project code directory (as shown in Figure

5.6). In some instances, however, you might want to add the files to one of

the localization directories within the project or into an arbitrary directory.

Remember that this is an actual directory, not an Xcode group.

6. To set the Xcode group, use the Group pop-up menu near the bottom of the

dialog box. You should also make sure that the appropriate targets are

checked.

The targets are the products that are produced by building the application. For

example, you might have an iOS project with individual targets for the iPad

and iPhone. You do not necessarily want a new interface file for the iPhone to

be included with the iPad target, or vice versa.

FIGURE 5.6
Choose where
to create
the file.

7. When satisfied with your choices, click Create.

Notice that the new files are immediately visible within the project Navigator, as

shown in Figure 5.7.

ptg8126863

By the
Way

By the
Way

Managing Project Files 103

If your new files do not show up in the groups that you expect, you can move them
after the fact. Just click and drag the file icons within the project Navigator to
move them to and from any group.

Using the File Template Library
Not satisfied with one perfectly acceptable way of adding files to your project?

Neither was Apple. If you prefer to have an always-visible collection of file tem-

plates at your disposal, you can use the File Template Library to add your files. To

make this tool visible within the Utility area of Xcode, choose View, Utilities, Show

File Template Library (Control+Option+Command+1). The File Template Library

appears in the lower right of the Utility area, as shown in Figure 5.8.

To increase (or decrease) the size of the File Template Library (or any other panel),
just click and drag up and down on the top border of the panel.

You can also switch the File Template Library between icon and list (the default)
view using the buttons in the upper-right corner. The icon view fits more onto the
screen but does not provide a description of the template.

To add a file from the library to your project, scroll through the library to find the

file you want (you can filter the list with the field at the bottom of the pane), and

then click and drag the icon in the library to the project Navigator. When you

release your mouse button, you are prompted to name the file (or class), choose a

save location, and pick the targets that will use the file, as shown in Figure 5.9.

FIGURE 5.7
The files are
added to the
project
Navigator.

ptg8126863

104 HOUR 5: Managing Projects and Resources

Notice that the file library does not (currently) present the full multistep wizard for

configuring the template. Unfortunately, this means that you might end up with

files you do not want. For example, the UIViewController template for iOS automati-

cally adds a NIB file for an iOS interface—even if your project is using a storyboard.

Icon View
List View

FileTemplate Library

FIGURE 5.8
The File
Template Library
is visible in the
Utility area.

FIGURE 5.9
Complete the
details to add
file to your
project.

ptg8126863

By the
Way

Managing Project Files 105

If you target a project group when dragging your template, the files are automati-
cally added to the group. As always, you can drag and rearrange the files later.

Adding General Files
Many applications require sound or image files that you integrate into your devel-

opment. Obviously, Xcode cannot help you “create” these files with a template, so

you must add them by hand. To do this, just click and drag the file from its location

in the Finder into the project code group in Xcode. You are prompted to copy the

files. If you are not sharing files between multiple projects, make sure the Copy

check box is selected so that Xcode can put the files where they need to go within

your project directory and that the appropriate targets that will use the files are

selected, as shown in Figure 5.10.

FIGURE 5.10
Copy the files to
the project.

When you add new files in this method, notice that you have the option of creating

folder references or groups for the files. If you choose to create a folder reference, the

project creates a link to the folder on your drive (the folder itself is not copied). If

you create a group, Xcode automatically creates a new logical group that contains

the files.

ptg8126863

By the
Way

106 HOUR 5: Managing Projects and Resources

You can add any type of file using this method, including your own code files. Just
keep in mind that adding the template-based files buys you a head start in coding
with method stubs and properly formatted class files.

Renaming Files
To rename a file within the project Navigator, click to select the file in the Navigator

and then press Return or move your mouse back and forth over the name. The

name changes to an editable field, as shown in Figure 5.11. Enter your changes, and

then click off of the file to save them.

FIGURE 5.11
Change the
name of any
project file.

Be aware that changing a filename in the navigator will change the filename on

your hard disk. If the file is referenced from any other files or lines of code, you also

need to update them. To change the name of a class or other object and have it

automatically propagated throughout your project, look at the refactoring features

discussed in the next hour’s lesson.

Removing Files
If you have added something to Xcode that you decide you do not want, you can

delete it easily. To remove a file or resource from your project, just select it within the

project Navigator and then press the Delete key. Xcode gives you the option to delete

any references to the file from the project and move the file to the trash or just to

delete the references (see Figure 5.12).

ptg8126863

Managing Project Files 107

If you choose to delete references, the file itself remains but is no longer visible in

the project.

Locating Your Files in the Finder
When working in Xcode, it is sometimes helpful to be able to quickly jump to a file

in the finder—perhaps to open it in another application, get some information

about it, or in the case of an Xcode “product,” find where your compiled application

has been saved.

To jump to any file that you can see in the project Navigator, right-click it, and then

choose Show in Finder, as shown in Figure 5.13.

FIGURE 5.12
Delete the files
(or just their
references).

FIGURE 5.13
Show your files
in the Finder.

Remember that if you want to delete or rename a file, you should do so directly in

Xcode; otherwise, the Xcode project Navigator gets out of sync with the files that are

actually stored on your disk.

ptg8126863

108 HOUR 5: Managing Projects and Resources

Managing Frameworks and Libraries
Frameworks are bundles of files (libraries, headers, and other resources) that you

can use to add functionality to your projects. Projects that you create from templates

already include the base frameworks that you need, but you’ll likely want to add

more as you use new Cocoa or Cocoa Touch features.

Adding Frameworks and Libraries to a Project
To add a framework (or library), follow these steps:

1. Select the top-level project group in the project Navigator, and then the appli-

cation icon in the Targets section that appears in the column to the right of

the Navigator.

2. Make sure the Summary tab is highlighted at the top of the Editor area.

3. Scroll down the summary until you find the section called Linked Frameworks

and Libraries. Click the + button below the list.

A list of all available frameworks and libraries appropriate to your project

appears, as shown in Figure 5.14.

FIGURE 5.14
Choose a frame-
work or library
to add.

Select the item you want, and then click Add.

ptg8126863

Did You
Know?

Managing Frameworks and Libraries 109

The framework now appears in both the Summary area and within the project

Navigator. You must drag it to the Frameworks group in your project. This is not

necessary for the project to work, but it keeps things neat and orderly (and that’s a

good thing).

If you know the location of your framework/library and/or it isn’t in the list, you
can click Add Other to browse your drive and choose from another location.

Finding the Framework Headers
To successfully use a framework (or library), you need to include its header (interface

file) within the class code that needs to access the framework’s methods. For a

library, you must know exactly where the headers are located—but for a framework,

the headers are included directly in the framework itself. You can expand any

framework to examine its header files, as shown in Figure 5.15.

FIGURE 5.15
Explore the
headers
included in a
framework.

A top-level header file—named after the framework itself—includes all the other

header files in the framework, and it is what you want to include in your code using

this naming convention:

#import <Framework/Framework.h>

For example, if you need to include the UIKit framework for iOS manually (it is

included automatically, by the way), you use the following:

#import <UIKit/UIKit.h>

ptg8126863

110 HOUR 5: Managing Projects and Resources

Removing Frameworks and Libraries
Removing a framework is just like removing any other file from your project. Just

select the icon in the project manager and press the Delete key on your keyboard. Be

sure to only delete the reference, not the actual files. Even if you do not need a frame-

work today, that doesn’t mean you won’t want to include it somewhere tomorrow.

Managing Groups
You have already learned one way to add groups to the project navigator by drag-

ging an existing Finder folder into the Navigator, but you can also add them directly

without leaving Xcode.

Adding Groups
There are two different ways to create a group: either by grouping a set of existing

files or by creating a new empty group. To add a new empty group, right-click in the

project Navigator and choose New Group. A group, labeled New Group is then

added to the project. You can rename it as described in the “Renaming Files” sec-

tion, earlier in this hour.

If you are adding a group to collect a set of existing files, you can do it all at one

time by selecting the files in the Navigator and right-clicking and choosing New

Group from Selection, as shown in Figure 5.16.

FIGURE 5.16
Collect existing
files into a new
group.

ptg8126863

Did You
Know?

By the
Way

Managing Target Properties 111

On Mac OS X, you can select noncontiguous ranges of files by holding Command

and clicking the filename. You cannot, however, make a new group out of files that

are already contained within different groups—you need to drag the files to a com-

mon level first.

If you’re a more menu-centric user, you can access these functions by choosing
File, New.

After creating your groups, add your files to them by clicking and dragging. Because

this is just a logical view of the files, you can even arrange the individual files in the

order you want—they are not forced into any particular sequence.

Removing Groups
If you create too many groups and decide you do not want them, just select a group

and press the Delete button. If you choose a group with files, you are prompted with

the standard Xcode file-deletion confirmation. If you choose to delete an empty

group, it disappears silently.

Managing Target Properties
To finish this hour’s lesson, let’s focus on something a bit different: the properties

that describe a target. A target is the application that your project produces. I some-

times refer to these as project properties, but because technically a project can have

multiple targets, that is not quite the reality. I bring this up now because you access

these through the project Navigator.

In this book and most simple development, a project almost always has a single
target, so equating a project and a target is not unusual.

Basic Properties
By default, your target is going to contain lots of settings for building an applica-

tion—and you’re not going to need to change them. We talk about build settings

more throughout the book, but there are several settings that affect how your project

is built that you will need to access early on.

For iOS applications, this includes icons, launch images, supported device orienta-

tions, and so on. Mac OS X applications have similar settings, including a list of the

ptg8126863

112 HOUR 5: Managing Projects and Resources

attributes your software needs to run. So, where is this stored and edited? The

answer is the target plist file.

This file, found in a project’s Supporting Files folder, is created automatically when

you start a new project or add a new target, and is prefixed with the project/target

name and ends in Info.plist. Although you can edit the values directly in the plist

file, Xcode provides an easier approach, as follows:

Within the project Navigator, click the top-level project icon (a blue document icon).

After selecting this, you can pick the target to focus on (usually just one) from the

column beside the Navigator. Once you have chosen this, the Editor area refreshes

to display several tabs across the top, as shown in Figure 5.17.

FIGURE 5.17
Set your target
properties.

In the first, Summary, you can set many of the target plist options visually. The sec-

ond, Info, provides direct access to the plist file contents without any digging around

to file the plist file itself. We get to the others later; they contain settings that you

probably will not need to modify for most day-to-day development.

Some of the properties you’ll encounter are as follows:

. Version/Build: The version number of your application

. Deployment Target: The OS version you are building for

ptg8126863

Managing Target Properties 113

. Devices: Which devices will run the software (iOS only)

. Identifier: The unique identifier for your application (added when the project

is created)

. Main interface: The file that contains your primary application interface

. Supported Device Orientations: Which iDevice orientations your app will

support running in (iOS only)

. App Icon(s): The icons to associate with your application

. Launch images: The images to show while launching your app (iOS only)

. Entitlements: Access rights that your application can ask for during execution

(access to iCloud, network services, and so on)

Setting an Application Icon
Although we cannot go through every target property that exists (the Apple docu-

mentation system you learn about in Hour 7, “Working with the Xcode

Documentation,” more than suffices for giving you every esoteric detail), we cover

the one example that every application needs: an icon.

For iOS devices, there are currently four different sizes of icons that you might need:

iPhone – Non-Retina display – 57x57 pixels

iPhone – Retina display – 114x114 pixels

iPad – Non-Retina display – 72x72 pixels

iPad – Retina display – 144x144 pixels

For Mac OS X, you should start with an icon sized at 1024x1024 pixels, although

you can also include smaller sizes in your project.

To set an icon, create a PNG file of the appropriate dimensions. iOS icons should not

have rounded corners or any visual effects. (iOS automatically adds the glossy look

for you.) Just drag the icon file from the Finder into the appropriate image well, as

shown in Figure 5.18. “Regular” display icons are named as Icon.png, and Retina

display icons are named Icon@2x.png.

ptg8126863

Did You
Know?

114 HOUR 5: Managing Projects and Resources

The @2x naming convention is used in iOS to support the Retina display. In fact, if
an application is running on a device with a Retina display and is asked to display
an image, it automatically substitutes (if available) an image resource with the
same name and the suffix @2x. This enables developers to support Retina dis-
plays without changing any code in their applications. I suspect that when Retina
displays are added to the Mac line, the same conventions will apply.

Again, this is just meant to provide you with a starting point for configuring some

of the attributes that define how your project targets will look and function. Dozens

of additional options do not even display in the simple summary interface, so

explore when you have a chance.

Summary
In this hour, you learned how to add new files to your project and how the file tem-

plates can give you a better starting point in your coding than simply adding a new

file. You also learned how to manage files and resources in your projects, and how

to create new groups to logically arrange your code in a way that makes sense.

FIGURE 5.18
Add an icon to
your application.

ptg8126863

Workshop 115

Although these things might seem like simple steps, they are critical to working

effectively on a project. Getting files in and out of Xcode is not as simple as working

in the project folder in the Finder, so knowing how to manage your project and get

to the resources you need is a useful skill as we move forward.

Q&A
Q. The file templates I’m seeing don’t exactly match what you’ve listed here.

Why not?

A. Like project templates, the file templates may change over time. I suspect

Apple will change the iOS interface templates given the advent of Storyboard,

for example.

Q. What happens to the source files if I delete a reference to them?

A. Not a thing. The reference is just a link to the files. If you delete a reference

accidentally, you can find the original file within the project directory and

drag it back into the project Navigator.

Q. What other options, besides icon settings, are available for targets?

A. This depends on the OS you are deploying on, and is a moving target (no pun

intended). If you are interested in which attributes of a target can be con-

trolled by their plist, you want to search the Apple documentation for a full

reference.

Workshop

Quiz
1. What file template is used to define a set of methods that other classes (should

they choose to adopt it) must implement?

2. Deleting a file reference deletes the file. True or false?

3. The maximum size for a Mac OS X icon is 512x512 pixels. True or false?

ptg8126863

116 HOUR 5: Managing Projects and Resources

Answers
1. The protocol template. Protocols define a standard collection of methods. To

conform to a protocol, a class must implement those methods.

2. False. Deleting a file reference does not change the file on the disk.

3. False. The maximum Mac OS X icon size is 1024x1024. I suspect that this will

increase to 2048x2048 when Retina displays become common across the Mac

lineup.

Activities
1. Walk through the creation of a project and use it to test the activities described

in this hour. Add and remove a class, add a new external resource, add and

remove a group, and add a new framework.

2. Create an application using one of the available templates. Use the target

properties to set an icon, and then view the icon in the iOS simulator (iOS

apps) or the Finder (Mac OS X).

ptg8126863

HOUR 6

Using the Xcode Source
Editor

What You’ll Learn in This Hour:
. Xcode Source Editor basics
. How to use autoformatting features
. The use of pragma marks to identify different pieces of code
. Ways to find and correct errors before your app even runs
. How to refactor existing code

Over the past few hours, you have learned how to create projects, add files, add frame-

works, and do much of the work necessary to successfully build you own application proj-

ects. What we have not touched on, however, is the Xcode Source Editor itself, which you

use to edit, unsurprisingly, source code. You’ve got your project and files; now how about

editing them?

This hour walks through the different Source Editor features—from automatic code com-

pletion to code refactoring. You learn how the Source Editor can help you write clean, well-

formatted code and even identify problems before you even try to run your application.

Even if you have played around with editing files already, you’re still likely to find a few

undiscovered tricks in this hour.

Understanding Editor Basics
Let’s be serious: If you’re learning how to program in Xcode, you know how to edit a text

file. I am not going to bore you with details on how to move your cursor or copy and

paste. The Xcode Source Editor works just like any text editor, with several additions that

may make your life easier. To follow along with this hour’s lesson, create a new project

ptg8126863

118 HOUR 6: Using the Xcode Source Editor

called HelloXcode using the Mac OS X Cocoa Application template and the config-

uration shown in Figure 6.1. We’ll edit this so that it displays a simple message

(Hello Xcode) in the application’s window. Nothing earth shattering, but you’ll find

it handy to keep this open so that you can test the tools as you read.

FIGURE 6.1
Create a new
Mac OS X
Cocoa
application.

To edit code in Xcode, use the Project Navigator to find the file you want to work on,

and then click the filename. The editable contents of the file are shown in the Editor

area of the Xcode interface. For our sample application, click the AppDelegate.m file,

as shown in Figure 6.2.

Code Completion
Using the Source Editor, start entering the following text to implement the

applicationDidFinishLaunching method. Start a new line immediately following

the existing comment “Insert code here to initialize your application.” Update the

method as shown in Listing 6.1.

LISTING 6.1 A Short Sample Mac OS X Application
1: - (void)applicationDidFinishLaunching:(NSNotification *)aNotification

2: {

3: // Insert code here to initialize your application

4: NSTextField *myMessage;

5: NSTextField *myUnusedMessage;

6: myMessage=[[NSTextField alloc] init];

ptg8126863

Understanding Editor Basics 119

LISTING 6.1 Continued
7: myMessage.font=[NSFont systemFontOfSize:72.0];

8: myMessage.stringValue=@”Hello Xcode”;

9: myMessage.textColor=[NSColor blueColor];

10: myMessage.editable=NO;

11: [self.window setContentView:myMessage];

12: }

FIGURE 6.2
Choose a file
to edit.

As you enter the code, notice that when you are typing a method or class name that

Xcode recognizes, a pop-up dialog appears near your cursor, as shown in Figure 6.3.

Here, the systemFontOfSize method is being typed, and Xcode is presenting poten-

tial options for autocompletion as I type.

To choose an autocompletion value, use the arrow keys to highlight the value you

want to use, and then press Return to insert it into your code. You can also press

Escape to make the pop-up disappear.

If you are completing a method name, chances are that you need to provide param-

eters as well. (In the case of systemFontOfSize, it is a floating-point value that

describes the size of the text.) You can again use the arrow keys to move between the

parameter fields and enter the values you want, or you can just press Tab to skip

from parameter to parameter.

ptg8126863

By the
Way

120 HOUR 6: Using the Xcode Source Editor

If you have already finished typing (or autocompleted) a line in your code and dis-
cover that it is not what you want, you can click anywhere within the line and then
choose Editor, Show Completions (Control+Spacebar) or press Escape. Doing so
displays the autocomplete pop-up dialog with all the potential matches wherever
your cursor is located—as if the rest of the line does not exist.

You can adjust the code completion options in the Xcode preferences within the
Text Editing section.

Auto-Indentation
Clean code is easier to read and easier to maintain, and Xcode works behind the

scenes to keep your code nicely formatted through auto-indention. As you program,

Xcode automatically indents lines so that they fall either directly under the previous

line or as appropriate to the structure of the statements you are writing.

Code within conditional blocks and loops, for example, are indented farther than

surrounding code to visually show that they are a cohesive block. This has no effect

on execution, but it can make reading through a source code file much easier than if

each line’s code starts at the first character.

You can control the logic for the Xcode auto-indentation system using the Text

Editing panel of the application preferences (Xcode, Preferences) and the

Indentation button within that, as shown in Figure 6.4.

FIGURE 6.3
Xcode autocom-
pletes recog-
nized methods,
classes, and
symbols.

ptg8126863

By the
Way

Understanding Editor Basics 121

A nice feature of Xcode is that indentation isn’t just applied while you’re typing and

then lost. Although you can certainly move your code around and make it into a

mess, you can always apply the indentation rules again, as follows:

1. Within the sample project, add tabs and spaces in front of some of the lines in

applicationDidFinishLaunching.

2. Delete the indentation from some of the lines, as well.

3. After you have made the method sufficiently ugly in appearance, select the

lines of code.

4. Choose Editor, Structure, Re-Indent (Control+I).

Xcode reformats the code, and all is well again, as shown in Figure 6.5.

You can access the Structure menu by right-clicking directly in the Xcode Source
Editor. This can be a useful menu to access while editing, so the faster you can
get to it, the better.

FIGURE 6.4
Configure the
Xcode indenta-
tion logic.

ptg8126863

122 HOUR 6: Using the Xcode Source Editor

Balancing Delimiters
Indentation may be “just for looks,” but delimiters are not. Properly balanced

delimiters are the difference between code that works the way you want and code

that seems to have a mind of its own. When coding in Objective-C, you work with

three primary types of block delimiters:

() Parentheses for function calls

[] Square brackets for Objective-C messaging

{} Curly brackets for logical programming blocks

Each time you type one of these delimiters, you need another matching one added

to your code. If you happen to miss one or put one in the wrong place, chances are

your code won’t run. Worse yet, it might run and not do what you expect.

To help you keep track of where your delimiters are (or aren’t) balanced, Xcode

automatically highlights the first delimiter when you type the second (or move the

cursor to the immediate right of the second delimiter).

For example, return to the sample method that you wrote earlier

(applicationDidFinishLaunching), position your text entry cursor immediately

before the right curly bracket, }, at the end of the method. Next, press the right

arrow to move the text cursor to the right of the curly bracket. As you do this, notice

FIGURE 6.5
Before and after
applying the
indentation
logic.

ptg8126863

By the
Way

Understanding Editor Basics 123

that the left curly bracket, {, at the start of the method is briefly highlighted. This

same behavior occurs with parentheses and square brackets, too.

To select all of the code that is contained within a set of delimiters, right-click within

the code, and then choose Structure, Balance Delimiter (also available from the

Editor menu), as shown in Figure 6.6.

FIGURE 6.6
Select the code
between two
delimiters.

When you are entering your code, Xcode automatically inserts matching curly and
square brackets when you type the first bracket. In other words, if you type {,
Xcode automatically adds a corresponding } for you. You can disable this behavior
in the Xcode Text Editing preferences (Xcode, Preferences, Text Editing, Editing).

Code Folding
Working in conjunction with your code delimiters and the logical blocks/methods

you define in your code, Xcode’s code-folding features let you focus on editing a spe-

cific piece of code and hide the rest. To the immediate right of your Editor is the gut-

ter, which typically holds line numbers (enabled in Xcode’s Text Editing preferences)

and error/warning icons. The very right side of the gutter is the code-folding ribbon.

By clicking in the ribbon, you can fold (collapse) your methods and functions and

comment blocks.

ptg8126863

By the
Way

124 HOUR 6: Using the Xcode Source Editor

For example, view the code in the applicationDidFinishLaunching method. Click

immediately to the left of the method in the code-folding ribbon. The code collapses

and is replaced with an ellipsis (…), as shown in Figure 6.7. You can expand the

code again by double-clicking the ellipsis or by using the disclosure arrow that

appears in the ribbon.

Code-folding Ribbon

FIGURE 6.7
Collapse your
code to improve
your focus.

To help identify what blocks of your code can be collapsed, Xcode lightly shades
the code folding ribbon. Blocks within blocks are successively darker in color.
Hovering your mouse over a shaded portion of the code-folding ribbon highlights
the relevant block within Xcode.

You can quickly collapse all comment blocks (text between /* and */) and

function/methods using the Editor, Code Folding menu.

The Other Bits
As with any application, some settings and options (although useful to some) do not

warrant a full discussion. The Xcode Source Editor has a number of other features

that might come in handy but that do not necessarily pertain to the editing

process itself.

What follows are a few configuration tweaks and editing functions that you might

want to use in your projects.

Line Numbers
To enable or disable the display of line numbers beside your code, use the Line

Numbers check box accessed within the Text Editing section of Xcode preferences.

ptg8126863

Understanding Editor Basics 125

Line numbers are a great help when debugging code or describing your code to

other developers.

Edit All in Scope
If you’ve ever written a function or method only to smack yourself in the head and

say, “I should have named that variable something else,” you will love the Edit All

in Scope feature. To simultaneously change all the instances of a variable name

within a method, select the variable name, and then choose Editor, Edit All in Scope

(Control+Command+E). Each instance of the variable highlights, and all update as

you edit one, as shown in Figure 6.8.

FIGURE 6.8
Quickly change
symbol names
using Edit All
in Scope.

Shift, Move, or Comment
The Structure contextual menu (also accessible from the Editor menu) contains com-

mands for shifting (indenting/outdenting) your code left or right, moving it up or

down, or commenting it out. Use these functions to quickly act on a selection of

lines, rather than changing each one individually.

Hide/Show Invisibles
There’s more to your code than you can see. To get a glimpse at how the code is for-

matted (tabs/spaces/return characters) or check for any gremlins that may have

crept into your code from pasting from other applications, use the Editor, Show

Invisibles command. This displays all normally invisible characters directly within

your code listing. To hide the characters, choose Editor, Hide Invisibles.

ptg8126863

126 HOUR 6: Using the Xcode Source Editor

Syntax Coloring
Normally, Xcode colors your code based on the type of file you are editing. You can

override the chosen syntax-highlighting scheme by choosing Editor, Syntax Coloring

from the menu. You can also change the syntax colors entirely using the Xcode

Fonts & Colors preferences, shown in Figure 6.9.

FIGURE 6.9
Change the syn-
tax color rules
to suit your
sensibilities.

Navigating Within and Between Files
Now that you know the basic code-editing features provided by Xcode, we can turn

our attention to some of the features that simplify working with multiple files. Except

in the most rudimentary development, your projects will consist of multiple source

files with multiple methods spread between them. Becoming efficient and jumping

between these files is a skill that becomes increasingly valuable as your applications

increase in scale.

This section examines some of the tools you can use when working with multiple

files (or very large individual files).

Tabbed Editing
Tabbed editing is just like tabbed browsing in your favorite web browser. Using

tabbed editing, you can have many files open simultaneously and switch between

them by clicking tabs at the top of the Editor area.

ptg8126863

Navigating Within and Between Files 127

To create a new tab, choose File, New, New Tab (Command+T). A new tab appears

with the contents of the file you are currently editing. You can switch the contents of

the tab to whatever you want by clicking a file in the Project Navigator. You can

repeat this process to create as many tabs as you want, with whatever file contents

to want, as shown in Figure 6.10.

Tabs Close Tabs FIGURE 6.10
Keep multiple
editors open
simultaneously
with tabs.

To close a tab, click the X that is displayed on the left side of the tab when hovering

over it with your mouse. As with all files in Xcode, the files you edit in tabs are auto-

matically saved when you close them; you do not have to explicitly use the Save

command.

The Jump Bar
When editing a file, you might have noticed that above the Editor area is a visual

path to the file you are editing and several buttons. This is collectively known as the

jump bar. Clicking any portion of the path reveals a pop-up menu for quickly jump-

ing to other files in same location, as shown in Figure 6.11. The last segment (on the

right) of the jump bar is special: You can click it to view and jump between the sym-

bols (methods, properties, and so on) within the file you are currently editing.

Related Files

Backward/Forward

File Path Symbols FIGURE 6.11
Quickly navigate
your project
hierarchy.

To the left of the path are forward and back arrows. The arrows move back and forth

between files that you have been editing—just like pages you visit in a web browser.

Finally, to the left of the arrows is the Related Files button.

Use the Related Files button to show a pop-up menu of categorized files such as

recently opened or unsaved. This menu even displays files that are just referenced

(even if just included or imported) in the file currently open in the Source Editor.

Figure 6.12 shows the contents of the menu when editing the application delegate

file for an empty iOS application.

ptg8126863

128 HOUR 6: Using the Xcode Source Editor

The Symbol Navigator
The easiest way to find a method or property within a source code file is to use the

Symbol Navigator, opened by clicking the icon to the immediate right of the Project

Navigator. This view, shown in Figure 6.13, enables you to expand your project

classes to show all the methods, properties, and variables that are defined. Choosing

an item from the list jumps to and highlights the relevant line in your source code.

FIGURE 6.12
Find files that
are referenced
by, or directly/
indirectly related
to the file you
are editing.

Symbol Navigator

FIGURE 6.13
The Symbol
Navigator is a
quick way to
jump between
methods and
properties.

ptg8126863

Navigating Within and Between Files 129

For example, with the HelloXcode project open, switch to the Symbol Navigator and

expand the AppDelegate item. This is the only object used in this application. Next,

find and select applicationDidFinishLaunching from the list that is displayed.

Xcode jumps to the finds and select the line where the method begins.

The Search Navigator
Searching for text anywhere in your project is trivial using the Search Navigator. To

access this search feature, click the magnifying glass icon in the icon bar above the

Navigator. A Search field displays at the top of the Navigator area, into which you

can enter whatever you want to find. As you type, a drop-down menu appears, as

shown in Figure 6.14, that shows potential options for refining your search. Choose

one of the options or press Return to perform a non-case-sensitive search of the text

you enter.

Search Navigator

FIGURE 6.14
Use the Search
Navigator to find
text in your
project.

The search results display below the Search field, along with a snippet of the file con-

taining the text you were looking for, as shown in Figure 6.15. Clicking a search

result opens the corresponding file in the Source Editor and jumps to the line con-

taining your search string.

To make things even more interesting, you can use the Filter field at the bottom of

the Search Navigator to filter your search results by a secondary term. You can also

click the Find label at the top of the Search Navigator to switch to a Replace mode,

enabling you to perform projectwide find and replace.

ptg8126863

130 HOUR 6: Using the Xcode Source Editor

FIGURE 6.15
Search results
are displayed
along with the
context of the
match.

By the
Way If you’re looking for a string within a file you are actively editing, choose Edit, Find,

Find (Command+F) to open a more traditional Find field at the top of the Source
Editor. This gives you quick access to find (or find/replace) within a given file,
rather than across the entire project.

Pragma Marks
Sometimes navigating code by symbols or with a search is not very efficient. To help

denote important pieces of code in plain English, you can insert a #pragma mark

directive. Pragma marks do not add any features to your application; instead, they

create logical sections within your code. These sections are then are displayed, with

the rest of the code symbols, when you click the last item in the visual path above

the Editor area.

There are two common types of pragma marks:

#pragma mark -

and

#pragma mark <label name>

The first inserts a horizontal line in the symbol menu; the second inserts an arbi-

trary label name. You can use both together to add a section heading to your code.

For example, to add a section called Methods for starting and stopping the

application followed by a horizontal line, you can enter the following:

#pragma mark Methods for starting and stopping the application

#pragma mark -

ptg8126863

By the
Way

Using the Assistant Editor 131

After the pragma mark has been added to your code and saved, the symbol menu

updates accordingly, as shown in Figure 6.16. Choosing a pragma mark from the

Symbol menu jumps to that portion of the code.

FIGURE 6.16
Use pragma
marks to add
logical delim-
iters to your
code.

Using the Assistant Editor
As you work with Xcode projects, you will quickly realize that most program func-

tionality comes from editing one of two related files: an implementation file (.m

extension) and an interface file (.h extension). You’ll also learn that when you make

changes to one of these two files, you’ll often need to make changes to the other. You

will see a similar pattern emerge when you start editing GUIs in Xcode.

Xcode simplifies this back-and-forth editing with the Assistant Editor mode. The

Assistant Editor (or just called Assistant in Apple documentation) automatically

looks at the file you have opened for editing and opens, right beside it (or under it, if

you prefer), the related file that you also need to work on, as shown in Figure 6.17.

To switch between Standard and Assistant Editor modes, you use the first and second

buttons, respectively, in the Editor section of the Xcode toolbar.

In the upper-right corner of the Assistant Editor’s jump bar, notice a + icon and an
X icon. The + icon adds another Assistant Editor to your screen; the X icon closes
the current Assistant Editor.

ptg8126863

By the
Way

132 HOUR 6: Using the Xcode Source Editor

Choosing the Assistant File
When you are using the Assistant Editor, it sometimes chooses a file that it thinks

you want to edit but that really is not what you had in mind. To view all the

Assistant’s recommended options, click the Assistant Editor icon (a little suit and

bowtie) displayed in the jump bar located at the top of the Assistant Editor view.

This displays a menu of all the related files that the Assistant Editor has identified,

sorted by type, as shown in Figure 6.18.

Changing the Assistant Editor Layout
As you can see, the Assistant Editor occupies more than a little bit of screen space. If

you are coding on a MacBook Air (which I love), you’ll find that you need to hide

the Navigator/Utility areas to make the full Assistant Editor work.

To change how the Assistant Editor displays in the Xcode interface, choose View,

Assistant Editor, as shown in Figure 6.19. From there, you can choose how the

Assistant Editor is added to the display and what will happen if multiple Assistant

Editors are in use.

To set up shortcuts for when the Assistant Editor (or tabs) are used, open the
Xcode general preferences (Xcode, Preferences, General). You have several
options to fine-tune how you invoke the special editing modes of Xcode.

Standard Mode

Assistant Editor Mode

Add Assistant

Close Assistant

FIGURE 6.17
Xcode opens
the file related
to what you are
working on.

ptg8126863

Correcting Errors and Warnings in the Issue Navigator 133

Correcting Errors and Warnings in the
Issue Navigator
As you write your code, Xcode is sitting in the background judging you, but do not

take it personally—it only wants to help. Xcode analyzes your code and detects

issues that might be (or are) problems and displays warnings and errors before you

ever click the Run button.

Error Types
You can receive three general types of feedback from Xcode when it analyzes your

application: errors, warnings, and logic problems. Warnings are potential problems

that might cause your application to misbehave; a yellow caution sign warns you of

FIGURE 6.18
Choose a differ-
ent file to edit.

FIGURE 6.19
Configure how
the Assistant
Editors will
appear in the
display.

ptg8126863

By the
Way

134 HOUR 6: Using the Xcode Source Editor

these. Errors, however, are complete showstoppers. You cannot run your application

if you have an error. The symbol for an error, appropriately enough, is a red stop

sign.

Logic problems, found by the Xcode analyze process, are shown as a blue badge. All

of these bugs, across all your files, are consolidated in the Issue Navigator. The Issue

Navigator displays automatically if problems are found during a build or analyze

process. You can also open it directly by clicking the exclamation point icon (on the

toolbar above the Navigator area).

For example, the method applicationDidFinishLaunching that you wrote earlier

contains an unused variable (myUnusedMessage). This is highlighted with a yellow

exclamation point in the Issue Navigator (Unused Entity Issue), as shown in

Figure 6.20.

Issue Navigator

FIGURE 6.20
Use the Issue
Navigator to
browse all your
project’s poten-
tial problems.

Logic problems must be detected by choosing Product, Analyze from the menu bar.
Warnings and errors are shown immediately as you code.

Jumping to an Error
To jump to an error in your code, just click it in the Issue Navigator. The correspon-

ding code is opened, and the error message is visible directly after the line that

caused the problem. To remove the warning from the sample method, just delete the

line NSTextField *myUnusedMessage; to empty the Issue Navigator.

ptg8126863
By the

Way

By the
Way

Refactoring Code 135

If you are in the middle of editing a file that contains errors, you’ll see the errors
immediately displayed onscreen—so no need to jump back and forth to the Issue
Navigator. You can also quickly cycle through your errors using the forward and
backward arrows found at the rightmost side of the window, directly above the
Editor area. These controls are visible only if errors are present, however.

Fixing Errors to Find Others
With the warning message still visible in the applicationDidFinishLaunching

method (add the code line back in, if you need to), try adding a line of complete

garbage into the code. Pay attention to what happens when you click off of the line.

What you will see is that the new code is flagged as an error (red stop sign), but the

original warning has disappeared. This brings up an important point: Sometimes

not all errors or warnings are detected and displayed in the Issue Navigator or in a

source file. You might find, after fixing a line or two, that new and previously unde-

tected errors appear. Conversely, you’ll also occasionally see false errors that disap-

pear when you correct others.

To control which issues are visible (hiding warnings, for example), choose Editor,
Issues from the menu bar.

Refactoring Code
Earlier in this hour, you learned how to use Edit All in Scope to change the name of

a variable within a method. But what happens if you need to make a more massive

change, such as changing the name of a class? Making changes like this is called

refactoring and can involve a ridiculous amount of work given the amount of code

that needs to be touched, filenames that need to change, and so on. If you find

yourself in this situation, however, Xcode offers refactoring features to help get you

out of a jam.

To access the refactoring tools, choose Edit, Refactor from the menu bar or right-click

in your code to use the Refactor contextual menu item.

Renaming
To rename a symbol across your entire project, including any files named after that

symbol, follow these steps:

ptg8126863

136 HOUR 6: Using the Xcode Source Editor

1. Select the symbol in your project.

2. Choose Edit, Refactor, Rename from the menu bar.

You are prompted for the new name, and whether to rename any associated

files, as shown in Figure 6.21.

FIGURE 6.21
Rename a sym-
bol (variable,
class, method,
etc. across your
project).

3. After you have made your naming choice, click Preview to show the files that

will be changed and the differences between the original and new versions, as

shown in Figure 6.22.

From this window, you can choose which files to change (check or uncheck the

boxes in front of their names) and even edit the code directly in the compari-

son views.

4. Click Save to make the changes across the entire project.

The remaining refactoring options work in a similar way, but with different effects.

Extracting
If you find that you have written code for a method but that code would be better

suited in its own method or function that is called by the current method, you can

use the Extract function. Simply select the code you want to move out of the current

method, and then choose Edit, Refactor, Extract.

ptg8126863

Watch
Out!

Refactoring Code 137

You are prompted for the new function or method name, then presented with a pre-

view of the change. Xcode automatically analyzes the code to determine what

parameters are necessary for the new method, and even includes the method/func-

tion call in your original method.

Double-Check Xcode’s Work!
Be sure to double-check the methods that Xcode creates when using the Extract
feature. I have had mixed results with its ability to correctly parse the method
parameters.

Creating Superclasses
Sometimes, when writing a class, you might discover that it would have made more

sense for the class you’re building to be a subclass of a larger superclass. To quickly

create a superclass, select the class name, and then choose Edit, Refactor, Create

Superclass, and, again, follow the onscreen prompts to name and save the new

class file.

Moving Up/Down
After creating a superclass (or if you already have one), it might make sense to

move some of the variables or methods from your current class into the superclass.

Conversely, you might have a superclass symbol that make more sense being

FIGURE 6.22
Confirm the
changes that
will be made.

ptg8126863

By the
Way

138 HOUR 6: Using the Xcode Source Editor

contained in one of its subclasses. Use the Edit, Refactor, Move Up/Down functions to

move a variable/method into a class’s superclass or a superclass’s variable/method

into a subclass.

Encapsulating
When you use the Edit, Refactor, Encapsulate action on an instance variable, it

creates explicit getters and setters for that variable. In most cases, however, the

@property/@synthesize combination should be enough to handle setting up your

accessors.

If you need a refresher on instance variables, classes, setters, getters, and so on,
refer back to Hour 2, “Just Enough Objective-C and Cocoa.” These are important
concepts to understand, so be sure you have got a good grip on the basics before
moving on.

Using Code Snippets
When you are writing code, you will often find yourself typing statements that are

very similar to one another: catch-try blocks, if-then statements, switch state-

ments, and so on. Instead of having to remember the syntax of each of these com-

mon code sequences, you can make use of the built-in Xcode Code Snippet Library.

You can access the Code Snippet Library from the Xcode Source Editor by choosing

View, Utilities, Show Code Snippet Library, or by pressing

Control+Option+Command+2. The library appears in the Utility area and is repre-

sented by the {} icon, as shown in Figure 6.23.

Viewing Snippets
To view what a snippet contains, click its entry in the library. A popover window

appears displaying the contents of the snippet, as shown in Figure 6.24.

Notice that certain parts of the snippet are highlighted in gray. These represent por-

tions of the code that you need to provide. When a snippet is inserted into your

code, you can use the Tab key to jump between these areas. Click the Done button

when viewing the snippet code to hide the popover.

ptg8126863

Using Code Snippets 139

Inserting Snippets
To insert a code snippet into your class files, just drag and drop from the Code

Snippet Library into your code. Wherever your cursor points, the snippet is inserted,

exactly as if you had typed the code yourself.

Code Snippet Library

FIGURE 6.23
The Code
Snippet Library
contains snip-
pets of useful
code.

FIGURE 6.24
View the con-
tents of a
snippet.

ptg8126863

140 HOUR 6: Using the Xcode Source Editor

Adding Snippets
Not only can you use the existing snippets to help code, but when you write useful

code sequences of your own, you can add them to the Code Snippet Library as user-

defined snippets. To do this, follow these steps:

1. Select the code in the Source Editor that you want to turn into a snippet.

2. Make sure the Code Snippet Library is visible (Control+Option+Command+2).

3. Click and drag from the selected text to the Code Snippet Library, as shown in

Figure 6.25.

FIGURE 6.25
Drag the code
to the Code
Snippet Library.

The text is added to the library under the title My Code Snippet, as shown in

Figure 6.26.

FIGURE 6.26
The new snippet
is visible in the
library.

ptg8126863

By the
Way

Using Code Snippets 141

Because the default name is not very descriptive, you will probably want to edit it to

reflect its purpose.

Editing Snippets
To edit a snippet you have defined, follow these steps:

1. Click it in the library so that the popover appears displaying its code.

2. Click the Edit button in the lower-left corner. Figure 6.27 shows a snippet in

edit mode.

FIGURE 6.27
Edit the snippet
and the informa-
tion stored
about the
snippet.

3. Use the fields in the Source Editor to set a title and summary for the snippet

and define the platform and development language the snippet applies to.

4. Enter a shortcut that can be typed to automatically insert the snippet and the

different areas (scopes) within a typical source file where the completion short-

cut should be active.

5. Click Done to save the snippet.

To remove a snippet from the library, just click once to select it in the Code
Snippet Library and then press the Delete key on your keyboard.

ptg8126863

142 HOUR 6: Using the Xcode Source Editor

Summary
In this hour, you learned how to use the Xcode Source Editor for more than just typ-

ing text. We looked at special features like automatic code completion, auto-inden-

tation, and code folding. You also learned how the Assistant Editor mode makes

working on multiple related files a pain-free process.

In addition to the Source Editor itself, you explored the tools for identifying and cor-

recting errors in your code, for searching and replacing text across your entire proj-

ect, and for refactoring existing code. Although it is technically true that you can

develop an application using any text editor you want, using Xcode gets you best-of-

breed tools that are specific to the language and methodology of the Apple develop-

ment platform.

Q&A
Q. I really hate editing files in a huge window. Can I break out into just a single

window per file?

A. Yes. Just double-click the file in the Navigator to open a new window with all

features disabled except the Source Editor. You can turn this into a single-click

in the Xcode preferences if you prefer.

Q. I’m confused. What is a symbol?

A. Think of a symbol as anything you’ve named within your code. Typically, this

means variables/properties—but it can also be method names, class names,

and so on.

Q. Xcode keeps autocompleting methods that I don’t want. What do I do?

A. Unless you press Tab or the arrow keys, Xcode will not autocomplete at all.

You can either just keep typing and enter the full name yourself, or you can

disable autocompletion in the Text Editing area of the Xcode preferences.

Workshop

Quiz
1. I use a MacBook for my development. How will I ever get the Assistant Editor

to fit on my screen?

ptg8126863

143Workshop

2. Besides the Assistant Editor, you can only have a single file open at once. True

or false?

3. It is impossible to easily rename a class after creating it. True or false?

Answers
1. Learn to use the View buttons on the Xcode toolbar. If you disable the Project

Navigator and Utility area, you’ll find that the Assistant Editor fits quite nicely

on your screen.

2. False. Using the tabbed editing feature, you can open as many files simultane-

ously as you want, using the tabs below the Xcode toolbar to switch between

them.

3. False. The Rename refactoring tool simplifies the process of changing a class

name after the fact.

Activities
1. Using the sample project you created this hour, walk through the different fea-

tures of the Source Editor and Assistant Editor. Try your hand at Edit All in

Scope and refactoring.

2. Create errors your HelloXcode application by duplicating lines or methods in

the AppDelegate class files. Add a few lines with arbitrary text for good meas-

ure. Note where and when Xcode detects the errors. Does it find all the erro-

neous lines at once, or does it present one error, which, when fixed, shows

another, and so on? Get used to this behavior; it is rare you’ll write perfect

code, and knowing how Xcode presents errors and warnings is a big help

when things do not work right.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 7

Working with the Xcode 4
Documentation

What You’ll Learn in This Hour:
. The different parts of the Xcode documentation system
. How to configure automatic documentation updates
. Ways to search and browse the developer documentation
. How the Research Assistant can help you as you code
. How to access sample projects referenced in the Apple documentation

A discussion that I frequently have with prospective developers is what they need to know

to be successful. Is the sign of a good developer someone who can recite all the classes

available in a language? Is it someone who can tell you the order of parameters in all the

methods in a given application programming interface (API)? No. A good developer might be

able to do those things, but in practice, memorization is much less valuable than applied

logic skills.

Good developers can easily move between different programming languages because they

understand the logic of development. All they need is a proper reference and an under-

standing of a language’s syntax, and the platform becomes meaningless. Xcode provides

nearly all the documentation and examples you need to learn Objective-C and Cocoa—all

accessible within its interface. This hour introduces you to the documentation tools and

how you can use them to master Mac OS X and iOS development.

Overview of Documentation Resources
Apple makes their developer documentation available in a variety of different formats

and through several different mechanisms. Which you use depends on what you are try-

ing to do and what resources you have at your disposal.

ptg8126863

By the
Way

146 HOUR 7: Working with the Xcode 4 Documentation

Web-Based Documentation
If you want to learn about Xcode on the go, the web-based version of the documen-

tation might be the most useful. You can access either the Mac or iOS documenta-

tion from the developer resources URL at http://developer.apple.com/resources/.

If you view the online documentation on your iPad, it is even formatted for the

device like a native app (see Figure 7.1). This makes using the iPad as your docu-

mentation consumption device particularly appealing if you can set one up near

your development station.

FIGURE 7.1
Browsing the
Apple documen-
tation on the
iPad enables
special tablet
formatting.

If you want to read without an Internet connection, most of the developer docu-
ments include a PDF link in the upper-right corner (or upper-left corner on mobile
devices). Use this link in mobile Safari to download the document, and then open
it in iBooks for an always-available copy of whatever you’re interested in.

Xcode Help Viewer
The Xcode Help viewer, shown in Figure 7.2, provides a convenient browser-like

interface to the documentation, but with features that go above and beyond Safari.

(We take an in-depth look at its use in a few minutes.)

http://developer.apple.com/resources/

ptg8126863

Did You
Know?

Overview of Documentation Resources 147

To access the Xcode Help, you can either open the Xcode Organizer (the last tab on

the right within the Organizer window), or choose Help, Xcode Help from the

menu bar.

Notice the several help resources under the Xcode Help menu. These are just
shortcuts to different documents within the Xcode Help system. If you want to
access help, it doesn’t really matter which you choose; you can navigate all of the
Help system after the viewer opens.

Quick Help
The final form of developer documentation comes in the form of Xcode’s Quick Help

system. Quick Help is not meant to replace the primary Help system but acts as a

quick reference while coding. Shown in Figure 7.3, you can invoke Quick Help at

any time in the coding process; it provides links to the full documentation if needed.

FIGURE 7.2
The Xcode Help
viewer provides
all available
documentation
within a conven-
ient interface.

ptg8126863

148 HOUR 7: Working with the Xcode 4 Documentation

Configuring the Xcode Documentation
Downloads
As you might have noticed, operating systems do not remain static. Roughly once a

year, Apple issues major releases to iOS and Mac OS X, with more than a few

interim releases in-between. As the operating system changes, so does the documen-

tation you need to effectively develop for it. To keep things up-to-date, Xcode pro-

vides a documentation system that updates as needed by downloading docset files

that include all the documentation for a given operating system release.

To configure your Xcode documentation downloads, choose Xcode, Preferences from

the menu, and then click the Downloads icon on the Preferences toolbar. In the

Documentation pane, shown in Figure 7.4, click the Check For and Install Updates

Automatically check box. As long as this is selected, Xcode periodically connects to

Apple servers and automatically updates your local documentation. Also notice that

additional documentation sets may be listed for different versions of the operating

system. If you intend to target earlier OS releases, keeping a copy of the appropriate

documentation on hand can prove helpful.

Click the Install button beside any of the listed items to download and automati-

cally include it in any future updates.

FIGURE 7.3
Quick Help
brings help
directly to the
coding
process—
no need to
lift a finger.

ptg8126863

Did You
Know?

Understanding the Documentation Resources 149

Each documentation set can take up several hundred megabytes of space. If this
is an issue, you might want to keep only the most recent sets installed on your
computer.

In the lower-right corner of the documentation list are + and – buttons. By clicking

the + button, you can enter a URL for a third-party docset file that you want to

add to Xcode. For example, the third-party iOS PDF library FastPdfKit (http://www.

fastpdfkit.com/), provides their developer documentation in the form of a docset. If

you use a third-party tool in your projects, check to see whether a docset is provided

and add it to Xcode for integrated help.

Understanding the Documentation
Resources
It would be easy to point you to the developer documentation resources and say

“have at it.” But, as a beginning Xcode developer, your first impression might not be

a positive one. The Apple developer documentation is full of information in many

different forms. If your first experience with the library is stumbling across a docu-

ment that is so terse and outdated that it dissuades you from ever using documenta-

tion again, we’ve done you a great disservice.

Before diving into the documentation viewer, let’s quickly review the types of docu-

ments found in a docset and what to expect from them. Note that these are listed

FIGURE 7.4
Choose the
documentation
sets to down-
load and keep
updated.

http://www.fastpdfkit.com/
http://www.fastpdfkit.com/

ptg8126863

Watch
Out!

Did You
Know?

150 HOUR 7: Working with the Xcode 4 Documentation

here in alphabetic order (as Apple does), which most certainly will bear little sem-

blance to their usefulness to a developer.

Not all docsets have all the following document types. This does not necessarily
mean that similar sorts of information are not available in other places. For exam-
ple, the iOS How-To documents, which are not included for Mac OS X, are very
similar to the Guide document type.

Articles
Articles are short, focused content on a very specific topic. For example, the article

“Using Phusion Passenger as a Ruby on Rails Server” describes how to install a Ruby

on Rails server—hardly a topic for a Mac OS X reference guide, but still useful

enough that Apple chose to include it. Articles may be stories about technology,

applications of technology, or individual developers who have used Mac OS X or iOS

in interesting ways.

These are more useful for casual reading than fir learning how to program, so do

not expect to spend much time browsing articles and finding answers to your

questions.

This Just In: Outdated Information!
Articles are one of the areas of the developer documentation that Apple does not
update as frequently as they should. The article on Phusion Passenger, in fact,
was written to target the Leopard operating system, but is included in the core
Lion docset. Although the information contained in the article might still be accu-
rate, you may want to look for online resources to supplement what is described
in an article.

Coding How-Tos
Currently unique to the iOS docsets, the coding how-tos, shown in Figure 7.5, provide

access to answers to common coding questions, such as “How do I display data from

a website?” Each question is linked to a short code sample of how to solve a particu-

lar problem.

In general, the coding how-tos are most useful for tracking down a topic and finding

more information than they are for answering practical questions. Although it is

unlikely that the exact question you want answered will be covered in a how-to,

chances are you can find references to class documentation that points you in the

right direction.

ptg8126863

Understanding the Documentation Resources 151

Getting Started
Getting Started documents are short descriptions of a broad topic area, such as

“Audio and View,” that contain links to prerequisite information and links to coding

guides for implementing a particular technology. These are good documents to find

all the resources and gain the background you need to implement features such as

cryptography, iCloud, and so on with your projects.

If you are looking for a class reference or coding examples, Getting Started docu-

ments are a bit too high level. You’ll want to look through the Guides or Reference

documents to get to the nitty-gritty.

Guides
Guides are similar to Getting Started documents, but they contain more targeted

links to technical information and less introductory content. A view controller guide,

for example, provides technical information on how view controllers work and links

to sample code and class references. Browse the docset guides when you know

exactly what topic you need information on but are not sure of the class names

associated with it.

FIGURE 7.5
Coding how-tos
present informa-
tion as a series
of questions
and answers.

ptg8126863

By the
Way

152 HOUR 7: Working with the Xcode 4 Documentation

Reference
Reference documents are the lifeblood of the developer. These are the class and

framework references that provide method names, input and output parameters,

code samples, and a full technical description of how, when, where, and why a par-

ticularly piece of code is needed, as shown in Figure 7.6. References also document

when particular pieces of code have been deprecated or when they should not be

used in conjunction with other features.

FIGURE 7.6
References pro-
vide the details
needed to code
successfully.

Reference documents contain many cross-reference links to other documents that

you’ll find helpful. When method parameters call for constants that are defined else-

where, for example, you see a link to the list of constants. As you browse reference

documents, it is not uncommon to find that you have jumped between several differ-

ence references while looking up the information you need.

If you view the developer documentation in a browser, returning to an earlier docu-
ment is just a matter of clicking the Back button. As you learn shortly, the Xcode
Help view works in much the same way, making it easy to cope with all the inter-
linked documents you traverse in your research.

ptg8126863

Understanding the Documentation Resources 153

Release Notes
Release notes describe the changes and new features added to the OS release

described by a docset. These documents are a must-read if you’ve implemented a

technology in an earlier version of your software and are intending to update the

application for a new version of the Apple OS. With iOS especially, it is not unusual

for applications that access advanced features to require updates to work correctly

when the operating system updates. The release note documentation presents these

changes clearly and provides links to the reference documents where detailed infor-

mation can be found.

Sample Code
When browsing any one of the types of documents available in the developer docu-

mentation, you might encounter links to sample code. These aren’t just links to text

documents full of Objective-C; they’re links to actual project files that you can open

and explore in Xcode. The sample code included with Xcode covers a vast array of

topics and presents examples of some of the most useful coding scenarios that you

are likely to encounter.

When you happen upon a sample code link, clicking it opens a description of the

sample project, as shown in Figure 7.7.

FIGURE 7.7
Sample code is
available for a
wide range of
topics and is
presented as a
ready-to-go
Xcode project.

ptg8126863

Did You
Know?

154 HOUR 7: Working with the Xcode 4 Documentation

To use the sample when accessing docs directly from Xcode, click the Open Project

button and, when prompted, provide a save location for the project files. Xcode

opens the project within the IDE, and you can run or edit it immediately.

If you are using a web browser to access sample code (shown in Figure 7.7), you
will see a Download Sample Code button, and the project will be downloaded to
your Downloads folder. You must locate and open the project file manually.

Technical Notes
Technical notes are short help documents that describe how to troubleshoot or imple-

ment a given technology in a very specific situation. “Troubleshooting Push

Notifications,” for example, is an available technical note for iOS and Mac OS X

developers that helps identify why notifications may not be working as expected.

Although technical notes are helpful, their day-to-day benefit is limited. They are

useful only in very specific circumstances—and have little information that applies

to general development.

Technical Q&As
A technical Q&A is similar to a technical note but is presented as a single question

and answer. Again, the question (and corresponding answer) is applicable in only a

very specific circumstance, and (I say this cynically) never one that applies to me.

It’s likely that the only time you’ll end up reading a technical note or Q&A is when

it is returned as the result of a document search. Browsing these two document cate-

gories can lead to some interesting discoveries, but is not very useful for learning

development.

Xcode Tasks
I’m not sure why this resource type exists on its own, but it does. Xcode tasks are

essentially Getting Started guides for tasks related to Xcode but that do not necessar-

ily take place within the application. The current Xcode tasks available in the iOS

and Mac OS X docsets are related to provisioning your iDevices and

managing/preparing applications for submission to the App Store. Not much to see

here, folks.

ptg8126863

Using the Xcode Help Viewer 155

Video
Rarely included in Apple’s documentation are how-to videos. When you encounter a

video, take an opportunity to watch it. I find Apple’s video tutorials useful, easy to

watch, and quick to deliver information. Unfortunately, they are few and far

between. If you are seeking more video content, I recommend that you visit the

online developer portals and watch the Worldwide Developers Conference (WWDC) ses-

sion videos. These are highly technical and provide a solid introduction to many

important development topics.

Using the Xcode Help Viewer
The Xcode Help viewer, as mentioned earlier, works much like Safari for browsing

documentation, but includes several additional features to make navigating the

available information much easier.

To open the Xcode documentation, choose Help, Xcode Help from the menu bar. The

Help system launches, as shown in Figure 7.8.

Browse Jump bar
Related
Content

Search Navigation

FIGURE 7.8
Browse or
search the
available help
documents.

ptg8126863

By the
Way

By the
Way

156 HOUR 7: Working with the Xcode 4 Documentation

Browsing the Library
If you do not know exactly what you’re looking for, sometimes the best option is to

just browse. Click the eye icon to browse all the available documentation. Browsing

starts at the top of each docset, with the docsets listed in the left column—called the

Navigator. Expanding a docset lists the topics and individual documents within,

enabling you to select and view a file or to drill down further to lower-level topics.

When a document or topic area is clicked, the corresponding content is shown on

the right side of the window—just like when you choose a file and open its editor in

Xcode.

If you aren’t sure what document you want, you can click a topic area, or even the
top-level docset to view a different organization of information. The top-level view
of a topic or docset includes a description of what you will find in that area, along
with an organization of the docset documents by resource type, topic, and
framework.

When you have arrived at a document that interests you, you can read and navi-

gate within the document using the blue links. You can also move forward and

backward between documents using the arrow buttons located above the content—

just as with a web browser.

Just to the left of the arrows is a button showing two short dashed lines. This is a

drop-down menu that provides easy access to related content. Unfortunately, that is

not quite what it sounds like. The related content (which you might validly assume

a cross-reference to other classes) is actually just “attachments” referenced in the

document. If sample code or a PDF of the document is available, you can access it

by clicking it in the related content menu.

To quickly move between documents in a topic area, or even sections within an
individual document, use the jump bar, which shows the path to the document you
are actively viewing and is located directly above the content area.

Adding Bookmarks
The Help view is much like a browser in that you can add bookmarks for later read-

ing. To create a bookmark, right-click either an item in the Navigator or click the

content itself, and then choose Add Bookmark for Current Page from the contextual

menu. You can access all your documentation bookmarks by clicking the book icon

at the top of the Navigator, as shown in Figure 7.9.

ptg8126863

Using the Xcode Help Viewer 157

To delete a bookmark, make sure it is selected in the Navigator, and then press the

Delete button on your keyboard. You receive no confirmation that it’s going to be

removed, so make sure you are deleting the reference you want, not a bookmark to

some esoteric class that took two hours to find.

Searching the Library
Browsing is great for exploring, but not that useful for finding references on exact

topics—like class method names or individual properties. To search the Xcode docu-

mentation, click the magnifying glass, and then type into the Search field. You can

enter class, method, or property names, or just type in a concept that you’re inter-

ested in. As you type, Xcode begins returning results below the Search field, as

shown in Figure 7.10.

Search results resources are divided into groups, including Reference (API documen-

tation), System Guides/Tool Guides (explanatory/tutorial text), and Sample Code

(example Xcode projects).

Bookmarks

Add Bookmark

FIGURE 7.9
Bookmark com-
monly used help
documents.

ptg8126863

Did You
Know?

158 HOUR 7: Working with the Xcode 4 Documentation

You can fine-tune your search criteria by clicking the magnifying glass located
within the Search field. This displays a pop-up menu with selections for limiting
your search to specific document sets and reviewing recently completed searches.

Using the Quick Help Assistant
One of the fastest and easiest ways to get help while coding is through the Xcode

Quick Help assistant. Instead of searching help for a particular topic, Quick Help

integrates directly with the code editor and can be used to directly reference a topic

as you program.

Accessing Quick Help
Open the assistant by holding down Option and clicking a symbol in Xcode (for

example, a class name or method name) or choose Help, Quick Help. A small win-

dow opens with basic information about the symbol and links to other documenta-

tion resources.

Search

FIGURE 7.10
Search to find
specific topics
quickly.

ptg8126863

Using the Quick Help Assistant 159

For example, consider the following line that allocates and initializes a string with

the contents of an integer variable:

myString=[[NSString alloc] initWithFormat:@”%d”,myValue];

In this sample, there is a class (NSString) and two methods (alloc and

initWithFormat). To get information about the initWithFormat: method, hold

down Option, and then click initWithFormat:. The Quick Help popover appears,

as shown in Figure 7.11.

FIGURE 7.11
Open the Quick
Help assistant
directly within
your code
stream.

Interpreting Quick Help Results
Quick Help displays context-sensitive information related to your code in up to eight

different sections. What you see depends on the type of symbol you have selected. A

class property, for example, does not have a return type, but a class method does:

. Abstract: A description of the feature that the class, method, or other symbol

provides

. Availability: The versions of the operating system where the feature is

available

ptg8126863

160 HOUR 7: Working with the Xcode 4 Documentation

. Declaration: The structure of a method or definition of a data type

. Parameters: The required or option information that can be provided to

a method

. Return Value: What information will be returned by a method when it

completes

. Declared In: The file that defines the selected symbol

. Reference: The official reference documentation for the system

. Related API: Other methods within the same class as your selected method

. Related Documents: Additional documentation that references the selected

symbol

. Sample Code: Sample code files that include examples of class/method/

property use

To open the full Xcode documentation for the symbol, click the book icon in the

upper-right corner. You can also click any of the hyperlinks in Quick Help results to

jump to a specific piece of documentation or code.

Activating the Quick Help Inspector
Quick Help is fast, but it can be even faster, and possibly answer your questions

before you even have them. By turning on the Quick Help Inspector, you can dis-

play help information all the time. Xcode actually displays context-aware help for

whatever you’re typing, as you type it.

To display the Quick Help Inspector, activate the Utility area of the Xcode window

using the third (rightmost) View button. Next, click the show Quick Help Inspector

icon (wavy lines in a dark square), located in the Utility area, as shown in Figure

7.12. Quick Help automatically displays a reference for whatever code your text-

entry cursor is located in.

Although Quick Help and the Quick Help Inspector do not offer the depth of infor-

mation contained in the main Xcode documentation, they do give you the primary

details needed to correctly implement the code you’re working on. As you can see,

memorizing documentation is not a requirement in Xcode. (Save your brain cells for

something more important—like your anniversary date.)

ptg8126863

Summary 161

Summary
Documentation can make or break a developer. You can visualize a breakthrough

algorithm in your mind, but without the means of turning the idea into code, it

might never see the light of day. Thankfully, Apple provides a wide range of devel-

oper documentation resources that you can access from your browser, iPad, or

directly within the Xcode development suite.

In this hour’s lesson, you explored the documentation resources available, what

they are used for, and which offer the greatest benefit for typical development. You

learned how to configure Xcode’s docset download facility, and how to browse,

search, and bookmark resources—even access sample projects—all within the Xcode

help viewer.

For on-the-fly help, we discussed how to invoke the Xcode Quick Help feature and

display always-on information with the Quick Help Inspector. In short, if you need

help coding in Xcode, you should now know where to find it.

FIGURE 7.12
View Quick Help
wherever you
are, for what-
ever you’re
coding.

ptg8126863

162 HOUR 7: Working with the Xcode 4 Documentation

Q&A
Q. Can I access the developer documentation through any browser, or only

in Safari?

A. You can access the documentation in any browser you want. Only browsers

that identify themselves as Mobile Safari on the iPad see the iPad-specific

view, however.

Q. Can I access earlier iOS/Mac OS documentation releases through my
browser?

A. No. Only the latest release is available through your web browser. You can

access earlier versions by downloading the appropriate docsets in Xcode.

Q. I’m searching for a document, but I keep returning results for versions of
iOS/Mac OS X that I do not want. What do I do?

A. Click the magnifying glass within the help viewer Search field and choose

Show Find Options. A small configuration area that appears below the field

enables you to choose which docsets are searched.

Workshop

Quiz
1. iOS and Mac OS X documentation is combined in a single docset. True or

false?

2. Do the Guide documents contain detailed information about implementing a

particular technology?

3. The Quick Help system is only available when coding for iOS. True or false?

Answers
1. False. Each iOS release and Mac OS X release has its own docset.

2. No. Guides provide links to technical documents, but rarely contain techni-

cal/implementation details themselves.

3. False. The Quick Help and Quick Help Inspector work across all project types

to bring you instant information with no searching.

ptg8126863

Workshop 163

Activities
1. Configure your Xcode docset downloads so that the latest version of the iOS

and Mac OS X documentation is downloaded as well as the previous release.

2. Open an Xcode project and activate the Quick Help Inspector. Try writing a

line or two of code (feel free to use the example from this hour’s lesson) and

watch what happens. Use the links within the Quick Help to open and access

detailed documentation in the Xcode help viewer.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 8

Creating User Interfaces

What You’ll Learn in This Hour:
. What the Interface Builder editor does and what makes it special
. The differences between XIB and storyboard files
. How to create user interfaces using the Object Library
. The use of Auto Layout features in OS X
. How to instantiate any object in an Interface Builder document

Over the past few hours, you’ve become familiar with the core Xcode functions, including

project management and coding features. Although these are certainly important skills for

becoming a successful developer, there’s nothing quite like building your application inter-

face and seeing it come alive on the screen.

In this hour, we introduce the Interface Builder editor. Interface Builder provides a visual

approach to application interface design, but behind the scenes, it does much, much

more. As you read through this hour, keep in mind that Interface Builder is integral to the

OS X/iOS application development workflow. You’re going to be seeing a lot more of it

through the rest of the book.

What Is Interface Builder?
Let’s get it out of the way up front: Yes, the Interface Builder editor (or IB for short) does

help you create interfaces for your applications, but it isn’t a just a drawing tool for GUIs;

it helps you symbolically build application functionality without writing code. This trans-

lates to fewer bugs, less development time, and easier-to-maintain projects.

ptg8126863

166 HOUR 8: Creating User Interfaces

Originally a standalone application, it is now integrated into Xcode 4. In this hour,

we focus on navigating through Interface Builder’s components. We also spend time

with it over the next 2 hours—getting to know how it ties back to your code files and

its iOS-specific features.

The Interface Builder Approach
Using Xcode and the Cocoa toolset, you can program OS X and iOS interfaces by

hand—instantiating interface objects, defining where they appear on the screen, set-

ting attributes for the objects, and, finally, making them visible. Over the years,

there have been many different approaches to graphical interface builders. One of

the most common implementations is to enable the user to “draw” an interface, but

behind the scenes create the code that generates that interface. Any tweaks require

the code to be edited by hand—hardly an acceptable situation.

Another tactic is to maintain the interface definition symbolically but to attach the

code that implements functionality directly to interface elements. This, unfortu-

nately, means that if you want to change your interface, or swap functionality from

one UI element to another, you have to move the code as well.

Interface Builder works differently. Rather than autogenerating interface code or

tying source listings directly to interface elements, IB builds live objects that connect

to your application code through simple links called connections. Want to change

how a feature of your app is triggered? Just change the connection. As you learn a

bit later, changing how your application works with the objects you create in

Interface Builder is, quite literally, a matter of connecting or reconnecting the dots

as you see fit.

Beyond the UI
Something that isn’t immediately obvious to many developers is that Interface

Builder isn’t just for interfaces. In fact, you can use it to instantiate any object that

you want, even your custom classes. When your interface file is loaded, OS X and

iOS create instances of any objects described in the file (or scene).

As long as you provide a connection to your object (which you learn about in the

next hour), you can create these instances exactly as if you had allocated and ini-

tialized them in code. Why is this valuable? Because it saves time and simplifies

development. Need an instance of a controller to manage your interface? Add a

controller object. The more complex your applications become, the more you’ll

appreciate the code you don’t have to write.

ptg8126863

What Is Interface Builder? 167

Interface Builder XIB Versus Storyboard
One of the most confusing aspects of writing about the Interface Builder editor is

that it works a bit differently between OS X and iOS applications.

In an OS X application, your work in Interface Builder results in an XML file called

an XIB or (for legacy reasons) NIB file, containing a hierarchy of objects. Your appli-

cation delegate loads the XIB file and becomes what is called the File’s Owner for the

objects in the XIB file. Other classes can load additional XIB files to further build the

application interface, becoming the File’s Owner for whatever objects they load. This

parent-children relationship is clearly denoted in Interface Builder and makes it easy

for interface objects to connect to the classes that instantiated them.

Unlike OS X applications that lend themselves to being built up from multiple com-

ponents (multiple windows, palettes, etc.), iOS applications focus on a single, full-

screen interface. That interface may certainly go through transitions from one

appearance to another, but the application only presents a single “face” at a time.

Storyboards provide a way of defining multiple scenes within a single file: a story-

board file. When an application starts, it loads a default storyboard file and scene.

The objects within that scene are instantiated, just like a XIB file. Using code or

point-and-click connections (which you learn about in Hour 10, “Creating iOS

Application Workflows with Storyboards”), you can transition to other scenes and

so on.

Unlike a XIB, a storyboard does not have a File’s Owner object that it can reference.

Instead, each scene must define a view controller class (that is, a class that will

manage the objects in the scene). You can certainly add view controllers to your OS

X XIB files and develop in a manner similar to iOS, but Apple forces a more struc-

tured approach with the storyboard approach.

Where It All Begins
By default, OS X application projects are set to load their initial interface from
MainMenu.xib. iOS projects load the storyboard from MainStoryboard.storyboard
or from MainStoryboard_iPad.storyboard and MainStoryboard_iPhone.storyboard
for universal projects.

You can change this behavior by selecting the top-level project group in the Project
Navigator, selecting your application target, then using the Main Interface or
Main Storyboard fields in the Summary area to choose a new file, as shown in
Figure 8.1.

ptg8126863

Watch
Out!

168 HOUR 8: Creating User Interfaces

In addition, you can load XIB files and storyboards dynamically throughout your
application. This is often accomplished in OS X with the NSViewController
instance method initWithNibName:bundle, and in iOS with the UIStoryboard
class method storyboardWithName:bundle.

Storyboards Are the Way to Go
iOS applications can still be built using XIB files if you uncheck Use Storyboard
when creating a new project. I suspect Apple will eventually drop support for XIB
files in iOS, so I recommend avoiding new non-storyboard projects.

The Anatomy of an Interface
Builder File
What do XIB files and storyboard files look like in IB? Let’s start with a XIB file.

Open the Hour 8 Projects folder and double-click the file MainMenu.xib to open

Interface Builder and display a sample XIB file. The contents of the file are shown in

the IB editor, as shown in Figure 8.2.

The default interface file

FIGURE 8.1
Set the inter-
face file loaded
when the appli-
cation starts.

ptg8126863

The Anatomy of an Interface Builder File 169

The objects represented within the interface are visible in the dock (the column

along the left side of the Editor area). The icons are divided into a top portion

(called the placeholder objects), and a bottom portion (called the interface objects).

To make this a big clearer, click and drag the right side of the dock to show the

Document Outline (or choose Editor, Show Document Outline). The Document

Outline is a much easier to understand view of the objects in the XIB (or storyboard)

file. From here on, that’s the view we show (see Figure 8.3).

Placeholder Objects
In this sample XIB file, three placeholder icons are visible: File’s Owner, First

Responder, and Application. These are special icons used to represent unique objects

in our application and these will be present in all XIB files that you work with.

. File’s Owner: The File’s Owner icon denotes the object that loads the XIB file

in your running application. This is the object that effectively instantiates all

the other objects described in the XIB file. For example, you may have an

interface defined in myInterface.xib, which is loaded by an object you’ve writ-

ten called myInterfaceController. In this case, the File’s Owner would

represent the myInterfaceController object. You learn more about the rela-

tionship between interfaces and code in Hour 9, “Connecting a GUI to Code.”

. First Responder: The First Responder icon denotes the object currently in con-

trol and interacting with the user. A text field that the user is typing into, for

example, is the First Responder until the user moves to another field or control.

Dock

File’s
Owner First

Responder
First
Responder

Editor areaEditor Area

Application

Interface
Objects

FIGURE 8.2
An XIB file’s
objects are
represented
by icons.

ptg8126863

Did You
Know?

170 HOUR 8: Creating User Interfaces

. Application: The Application icon denotes the shared Application object

(NSApplication, a global singleton) within your XIB. This object provides the

main event loop and manages windows and menus for your application.

Document
Outline

File’s Owner

First Responder

Editor areaEditor Area

Application

Interface
Objects

FIGURE 8.3
The Document
Outline view
within the
Interface Builder
editor.

Interface Objects
Below the placeholder objects are the interface objects. By default, a Main Menu

object, which defines the contents of the menu bar, and a single Window object are

included in the OS X Cocoa application template.

For the OS X application template, you’ll also see two non-UI objects included with
the interface objects. The Font Manager object handles application fonts, and the
App Delegate object represents the application delegate class within your project.

Many objects are hierarchical in nature. This means that as you add objects to your

interface, they will be contained within other objects—views within windows, buttons

within views, and so on. You can use the disclosure arrow located to the left of any

object to expand it in the Document Outline, as shown in Figure 8.4.

ptg8126863
By the

Way

The Anatomy of an Interface Builder File 171

At their most basic level, all interface objects are subclasses of NSView (OS X) or
UIView (iOS). A view is a rectangular region that can contain content and respond
to user events. All the controls (buttons, fields, and so on) that you’ll add to a
view are, in fact, subclasses of a view. This isn’t necessarily something you need
to be worried about, except that you’ll be encountering documentation that refers
to buttons and other interface elements referred to as subviews and the views
that contain them as superviews.

Just keep in the back of your mind that pretty much everything you see on the
screen can be considered a “view” and the terminology will seem a little less
alien.

Working with the Object Icons
The Document Outline (and Interface Builder dock) show icons for objects in your

application, but what good are they? Aside from presenting a nice list, do the icons

provide any functionality?

Absolutely. The icons give you a visual means of referring to the objects they repre-

sent. You interact with the icons by dragging to and from them to create the connec-

tions that drive your application’s features.

FIGURE 8.4
Expand objects
to view the
other objects it
contains.

ptg8126863

172 HOUR 8: Creating User Interfaces

Consider an onscreen control, such as a button, that needs to be able to trigger an

action in your code. By dragging from the button to the File’s Owner icon, you can

create a connection from the GUI element you’ve drawn to a method you’ve written

in the object that loaded the XIB file.

We go through two hands-on examples in the next hour so that you can get a feel

for how this works on both OS X and iOS projects.

The Storyboard Differences
Now that you’ve seen what a XIB file looks like, return to your Projects folder for this

hour and open the file MainStoryboard.storyboard. This is the default storyboard file

for the iOS Single View Application type. When loaded, the Interface Builder editor

is a bit different, as shown in Figure 8.5, than it was with the XIB file.

First Responder

View Controller

FIGURE 8.5
Storyboard files
appear a bit
differently in
Interface
Builder.

First, the icon dock isn’t available in storyboard files. This makes sense because the

storyboard can grow to have many different scenes (more on this in Hour 10), and

trying to interpret what was what would get seriously confusing. Second, there are

only two placeholder icons, and they are displayed both in the Document Outline

and in a bar underneath the iOS application view.

ptg8126863

The Anatomy of an Interface Builder File 173

By default, any storyboard scene contains two objects:

. First Responder: A placeholder, just like the First Responder in OS X XIB files.

. View Controller: Represents the object that is responsible for handling your

interface events. In a vanilla iOS application, this is just the ViewController

class.

Unlike OS X XIB files where the objects that make up the interface sat outside of the

noninterface objects, here the interface objects sit inside the View Controller object.

Expand the View Controller object by clicking the disclosure arrow in front of its

name. You will see a third object appear: View (visible in Figure 8.5). This is the view

that will be controlled by the View Controller object. You build your interfaces

within a view, as demonstrated by a completed storyboard in Figure 8.6.

FIGURE 8.6
You build your
interfaces in the
view controller’s
view.

Guided Structure
You should be seeing at this point that iOS development guides your application
structure in a much more rigid manner than OS X development. In an OS X applica-
tion, your interface can be handled by the class that loaded it, or by entirely sepa-
rate classes that you instantiate in your XIB file. (We discuss adding arbitrary
objects representing any class later this hour.) You can add as many windows as
you want and, basically, create a complete mess if that’s your thing.

ptg8126863

In iOS applications, it is certainly possible to create a mess, but the storyboard
files are structured so that you must have a ViewController class that manages
a view. You build your interface starting from the view, and if additional displays
are necessary (read “multiple scenes”), they too will have a view controller and
a view.

Creating User Interfaces
You’ve seen the default state of a OS X application interface and an iOS interface,

but how do we go from that to an application interface that works? Figure 8.7 shows

a simple functional application UI that you work with in the next hour.

174 HOUR 8: Creating User Interfaces

FIGURE 8.7
From nothing,
to something.

In this section, we explore how interfaces are created with the Interface Builder edi-

tor. In other words, it’s time for the fun stuff.

If you haven’t already, open the MainMenu.xib file or MainStoryboard.storyboard

file included in this hour’s Projects folder. Use the Document Outline to open select

and display a window (or an iOS view) in the editor.

The Object Library
Everything that you add to a view, from buttons and images to web content, comes

from the Object Library. You can view the library by choosing View, Utilities, Show

Object Library from the menu bar (Control+Option+Command+3). If it isn’t already

visible, the Utility area of the Xcode interface opens, and Object Library is displayed

ptg8126863

Did You
Know?Using view buttons at the top of the library, you can switch between list and icon

views of the available objects. You can also focus in on specific UI elements using
the pop-up menu above the library listing. If you know the name of an object but
can’t locate it in the list, use the Filter field at the bottom of the library to quickly
find it, or the pop-up menu at the top of the list to limit what is shown to specific
subset of objects.

Creating User Interfaces 175

in the lower-right. Make sure that the Objects item is selected in the pop-up menu at

the top of the library so that all available options are visible.

Libraries, Libraries, Everywhere!
Xcode has more than one library. The Object Library contains the UI elements
you’ll be adding in Interface Builder, but there are also File Template, Code
Snippet, and Media libraries that you can activate by clicking the icons immedi-
ately above the library area.

If you find yourself staring at a library that doesn’t seem to show what you’re
expecting, click the cube icon above the library, or reselect the object library from
the menu to make sure you’re in the right place.

When you click and hover over an element in the library, a popover is displayed

with a description of how the object can be used in the interface, as shown in Figure

8.8. This provides a convenient way of exploring your UI options without having to

open the Xcode documentation.

Watch
Out!

FIGURE 8.8
Learn about the
objects you can
add to your XIB
or storyboard
file.

ptg8126863

176 HOUR 8: Creating User Interfaces

Adding and Removing UI Objects
To add an object to a view, click and drag from the library to the view. For example,

find the label object in the Object Library and drag it into the center of the OS X

window’s views or into the iOS storyboard scene’s view. The label should appear in

your UI and read Label. Double-click the label and type Hello World. The text will

update, as shown in Figure 8.9, just as you would expect.

FIGURE 8.9
Add objects by
dragging them
into your OS X
or iOS views.

With that simple action, you’ve written a Hello World application. Try dragging

other objects from the Object Library into the view (buttons, text fields, and so on).

With few exceptions, the objects should appear and behave just the way you expect.

To remove an object from the view, click to select it, and then press the Delete key. If

you find it difficult to target an object directly in the user interface, select it from the

Document Outline instead.

In storyboard files, the +/- magnifying glasses in the lower right of the Editor area
will zoom in and out on your interface for fine-tuning a scene. This proves useful
when creating storyboards with multiple scenes. Unfortunately, you cannot edit a
scene when zoomed out, so Apple provides the = button to quickly jump back and
forth between a 100% view and your last chosen zoom setting.

OS X XIB files get an entirely different menu in the lower-right corner for arranging
and managing the UI spacing and sizing. More on that later.

By the
Way

ptg8126863

Did You
Know?

Working with the IB Layout Tools 177

Not all objects are UI objects. Some objects (controllers for other objects, for
instance) have no onscreen representation. These objects are dragged from the
Object Library directly into the Document Outline area, where they are added to a
scene (storyboard) or object list (XIB).

Working with the IB Layout Tools
Instead of relying on your visual acuity to position objects in a view, Apple has

included some useful tools for fine-tuning your layout. If you’ve ever used a drawing

program like OmniGraffle or Adobe Illustrator, you’ll find many of these familiar.

Guides
As you drag objects in a view, you’ll notice guides appearing to help with the lay-

out. These blue dotted lines are displayed to align objects along the margins of the

view, to the centers of other objects in the view, and to the baseline of the fonts used

in the labels and object titles, as shown in Figure 8.10.

GuidesGuides

FIGURE 8.10
Use the guides
to help position
your objects.

As an added bonus, guides automatically appear to indicate the approximate spac-

ing requirements of Apple interface guidelines. If you’re not sure why it is showing

you a particular margin guide, it is likely that your object is in a position that

Interface Builder considers “appropriate” for something of that type and size.

ptg8126863

Did You
Know?

178 HOUR 8: Creating User Interfaces

Did You
Know?

Selection
Handles

FIGURE 8.11
Use the handles
to resize your
objects.

You can manually add your own guides by selecting a view and choosing Editor,
Add Horizontal Guide or by choosing Editor, Add Vertical Guide.

Selection Handles
In addition to the layout guides, most objects include selection handles to stretch an

object either horizontally, vertically, or both. Using the small boxes that appear

alongside an object when it is selected, just click and drag to change its size, as

demonstrated in Figure 8.11.

Some objects constrain how you can resize them; this preserves a level of consistency

within the application interfaces.

OS X windows work a bit differently. To resize windows, use the gray border that
Xcode adds around their onscreen display in the Interface Builder editor. Also, be
aware that clicking the X in the upper-left corner of the window border closes it,
but the Window object is still part of the XIB file. Double-clicking it in the document
outline opens it again.

ptg8126863

Did You
Know?

Working with the IB Layout Tools 179

Alignment
To quickly align several objects within a view, select them by clicking and dragging

a selection rectangle around them or by holding down the Shift key, and then

choose Editor, Align and an appropriate alignment type from the menu.

For example, try dragging several buttons into your view, placing them in a variety

of different positions. To align them based on their horizontal center (a line that

runs vertically through each button’s center), select the buttons, and then choose

Editor, Align, Horizontal Centers. Figure 8.12 shows the before and after results.

Before After

FIGURE 8.12
Use the Align
menu to quickly
align a group of
items to an
edge or center.

OS X developers can get even faster access to alignment features using the Align

pop-up menu in the lower-right corner of the editor.

To fine-tune an object’s position within a view, select it, and then use the arrow
keys to position it left, right, up, or down, 1 pixel at a time.

The Size Inspector
Another tool that you may want to use for controlling your layout is the Size

Inspector. Interface Builder has a number of “inspectors” for examining the

ptg8126863

180 HOUR 8: Creating User Interfaces

attributes of an object. As the name implies, the Size Inspector provides information

about sizes, but also position and alignment. To open the Size Inspector, first select

the object (or objects) that you want to work with, and then click the ruler icon at

the top of the Utility area in Xcode. Alternatively, choose View, Utilities, Show Size

Inspector or press Option+Command+5. Figure 8.13 shows the OS X version of the

inspector.

Size InspectorFIGURE 8.13
The Size
Inspector
enables you to
adjust the size
and position of
one or more
objects.

At the top of the inspector is a Control section, which enables you to choose between

different sizes of a given UI control. Next, in the View section, you can change the

size and position of the object by changing the coordinates in the Height/Width and

X/Y fields. You can also view the coordinates of a specific portion of an object by

clicking one of the black dots in the size and grid to indicate where the reading

should come from.

Within the Size and Position settings, notice a drop-down menu where you can
choose between Frame Rectangle and Layout Rectangle. These two settings are
usually very similar, but there is a slight difference. The frame values represent the
exact area an object occupies onscreen, whereas the layout values take into
account spacing around the object.

When an object is selected, press the Option button to quickly get a read on the
distances (in view coordinates, starting at 0,0 in the upper left) between the edges
of an object and the view it is within.

By the
Way

By the
Way

ptg8126863

Working with the IB Layout Tools 181

Auto Layout and Content Hugging and Compression
By default, OS X applications now enable a feature called Auto Layout. This makes

it possible for application controls to dynamically adjust their sizing as their views

change size (most often from a user resizing a window). We look at the Auto Layout

features in a few minutes.

If you prefer to disable Auto Layout in your application and instead use the autosiz-

ing features available in iOS applications, open the File Inspector for the XIB file

(Option+Command+1) and uncheck the Use Auto Layout check box, as shown in

Figure 8.14.

File Inspector

Disable Auto Layout

FIGURE 8.14
Disable Auto
Layout to use
the same auto-
sizing features
as iOS.

Autosizing
The autosizing settings of the Size Inspector determine how controls resize/reposition

themselves when a window (OS X) changes sizes or a device (iOS) changes

orientation.

This deceptively simple “square in a square” interface provides everything you need

to tell Interface Builder where to anchor your controls and in which directions (hori-

zontally or vertically) they can stretch.

To understand how this works, imagine that the inner square represents one of your

interface elements and the outer square is the view that contains the element. The

lines between the inner and outer square are the anchors. When clicked, they toggle

ptg8126863

182 HOUR 8: Creating User Interfaces

between solid and dashed lines. Solid lines are anchors that are set. This means that

those distances will be maintained when the interface changes size.

Horizontal resizing

Anchors

Vertial resizing

FIGURE 8.15
The autosizing
settings control
anchor and size
properties for
any onscreen
object.

Within the inner square are two double-headed arrows, representing horizontal and

vertical resizing. Clicking these arrows toggles between solid and dashed lines. Solid

arrows indicate that the item is allowed to resize horizontally, vertically, or both.

For example, to create a button that stays in the center of the screen and

grows/shrinks proportionally when the view changes sizes, follow these steps using

the MainStoryboard.storyboard file:

1. Add a button to the center of the view.

2. Open the Size Inspector (Option+Command+5).

3. Remove any existing anchors around the edges of the center box.

4. Click the horizontal arrowed line in the center of the box to enable horizontal

resizing, as shown in Figure 8.16.

If you need a more “visual” means of understanding the autosizing controls, just
look to the right of the two squares. The rectangle to the right shows an animated
preview of what will happen to your control (represented as a red rectangle) when
the view changes size around it. The easiest way to understand the relationship
between anchors, resizing, and view size/orientation is to configure the
anchors/resize arrows and then watch the preview to see the effect.

Did You
Know?

ptg8126863

Working with the IB Layout Tools 183

The Auto Layout System
While the guides, Size Inspector, and other tools are helpful for laying out inter-

faces—even interfaces that can adapt to view changes—OS X applications can take

advantage of a new powerful tool for managing layouts: the Auto Layout system.

Auto layouts are OS X only and are enabled by default on new projects. Review the

previous section, “Auto Layout and Content Hugging and Compression,” for more

information on enabling or disabling auto layouts.

Understanding Constraints
Auto Layout works by building a series of constraints for your onscreen objects. The

constraints define distances between objects and how flexible these relationships are.

For example, try adding a button to the window in MainMenu.xib; make sure it is

located toward the top-left side of the view. Notice that parallel to the button in the

object hierarchy a new Constraints entry shows up, as shown in Figure 8.17.

Within the Constraints object are two constraints: horizontal space and vertical

space constraint. The horizontal constraint states that the left side of the button will

be a certain number of points from the left edge of the view. The vertical constraint

is the distance from the top of the view to the top of the button. What constraints

are added depend on where the object is in relation to its containing view.

FIGURE 8.16
Create a button
that floats in
the center of
the screen and
resizes horizon-
tally when the
view changes
size.

ptg8126863

Did You
Know?

184 HOUR 8: Creating User Interfaces

Constraints, however, are more than just entries that tie an object to the view it is

within. They can be flexible, ensuring that an object maintains at least or at most a

certain distance from another object, or even that two objects, when resized, main-

tain the same distance between one another.

Constraints that set a specific size or distance between objects are called pinning. The

flexibility (or inflexibility of a constraint) is managed by configuring a relationship.

Alignment of objects is also listed as a constraint, but is managed using the align-
ment tools you’ve already seen.

Setting Constraints and Relationships
Let’s look at an example of two buttons that are located a set distance (150 points)

from either side of a window that will grow farther apart or closer together when the

window is resized but won’t allow themselves to be any closer than 75 points apart.

To do this, begin by adding your buttons:

1. If you already have a push button added to a window in the MainWindow.xib

file, you’re in good shape. If not, add one now. Position the button along the

left side of the window.

2. Repeat this for a second button, positioning it along the right side of the win-

dow. Use the guides to align the baseline of each button’s label.

FIGURE 8.17
The Constraints
object repre-
sents the
positioning
relationships
within a view.

ptg8126863

Working with the IB Layout Tools 185

Xcode should automatically create constraints for the first button that tie it to the

top of the left side and top of the view (or center of the view, if centered vertically).

The second button will be tied to the baseline of the first button and the right side of

the view, as shown in Figure 8.18.

FIGURE 8.18
Four constraints
should exist for
the two buttons.

Now, adjust the two buttons so that they are located 150 points from the sides of

the view:

1. Select the Horizontal Space constraint for the first button within the

Constraints object in Document Outline.

2. Open the Attributes Inspector (Option+Command+4). Here you can define the

constraint relationship.

Because we want the button to be exactly 150 points from the side of the view,

the Constant field is set to 150, and the Relation pop-up is set to Equal, as

shown in Figure 8.19. The other settings are left at their defaults.

3. Repeat this set for the other button’s horizontal constraint. They will now be

located exactly 150 points from the edges of the view.

ptg8126863

Did You
Know?

186 HOUR 8: Creating User Interfaces

The final thing you must do is tell the interface that no matter how it is resized, the

buttons should never be closer together than 75 points. This involves creating and

configuring a new relationship:

1. Select both buttons. (Click to select one and then hold Shift and click to select

the other.)

2. Use the middle icon of the layout button at the bottom of the editor (or the

Editor, Pin menu) to choose Horizontal Spacing. This creates a constraint that

manages the spacing between the two buttons.

3. Select this constraint and then open the Attributes Inspector

(Option+Command+4). This time set the relation to Greater Than or Equal,

meaning the horizontal spacing will always be equal to or larger than the

provided value.

4. Set the constant to 75, meaning the buttons will be at least 75 points apart at

all times, as shown in Figure 8.20.

You can now test your constraints by resizing the window in the Interface Builder

editor. Notice that the buttons go apart as expected, but limit the window from

shrinking to a size that would violate the 75-point horizontal-spacing constraint.

When defining the constraint relationships in the Attributes Inspector, you may
have noticed a Priority slider and a Standard check box. The Priority slider deter-
mines how “strong” the constraint relationship is. There may, for example, be
instances when multiple constraints must be evaluated against one another.

FIGURE 8.19
Set constraints
to tie your
objects to
the view.

ptg8126863

Did You
Know?

Working with the IB Layout Tools 187

The priority setting determines the importance of any given constraint. A value of
1000 is a constraint that is required. If you move the Constraint slider, Xcode
shows a description of what to expect at a given constraint priority.

The Standard check box lets Xcode use its internal database of spacing to set the
recommended space between two objects. This, in many cases, is preferred
because it ensures a consistent interface.

Flexible relation Align menu

Pin menu

Apply Constraints menu

FIGURE 8.20
Create a flexible
constraint.

Content Hugging and Content Compression Resistance
Earlier in the hour, you learned that the Content Hugging and Compression

Resistance settings in the Size Inspector (refer to Figure 8.14) are related to Auto

Layout. So, where do these tie in?

When inspecting an object that is within an Auto Layout XIB, these settings control

how closely the sides of an object “hug” the content in the object and how much the

content can be compressed or clipped. A button, for example, can expand horizon-

tally (so horizontal hugging is a low priority) but shouldn’t grow vertically (making

vertical hugging a very high priority). Similarly, the content (the button label)

should not be compressed or clipped at all, so the content compression resistance set-

tings for both horizontal and vertical compression should be very high priority.

You will not often need to adjust these settings beyond their defaults, which Interface

Builder adds for you.

ptg8126863

188 HOUR 8: Creating User Interfaces

Wait… There’s More
There is far more to the Auto Layout system than can be described in an hour. Be
sure to explore the Pin menu to see the different types of constraints that you can
put in place. Width/height constraints enforce a given width or height on an
object. Equal width/height constraints ensure multiple objects maintain an equal
width or height. The leading/trailing space pinnings tie the left side of an object to
the left side of its parent view (leading), or the right side of an object to the right
side of its parent view (trailing).

Review Apple’s documentation, starting with “Cocoa Auto Layout Guide,” for more
information.

Customizing Interface Appearance
How your interface appears to the end user isn’t just a combination of control sizes

and positions. For many kinds of objects, there are literally dozens of different attrib-

utes that you can adjust. Although you could certainly configure things such as col-

ors and fonts in your code, it is easier to just use the tools included in the Interface

Builder editor.

Using the Attributes Inspector
The most common place you’ll tweak the way your interface objects appear is

through the Attributes Inspector, available by clicking the slider icon at the top of

the Utility area. You can also choose View, Utilities, Show Attributes Inspector

(Option+Command+4) if the Utility area isn’t currently visible. Let’s run through a

quick example to see how this works.

Open the MainStoryboard.storyboard file and add a label to your view. Select the

label and then open the Attributes Inspector, shown in Figure 8.21.

The top portion of the Attributes Inspector contains attributes for the specific object.

In the case of the text object, this includes settings such as font, size, color, and

alignment—everything you’d expect to find for editing text. Try changing a few of

the settings and see what happens to the label. You should be able to easily set its

size, color, and font.

In the lower portion of the inspector are additional inherited attributes. Remember

that onscreen elements are a subclass of a view? This means that many of the stan-

dard view attributes are also available for the object and for your tinkering enjoy-

ment (and, for OS X, NSControl attributes). In many cases, you’ll want to leave

these alone, but settings such as background and transparency can come in handy.

ptg8126863

By the
Way

Customizing Interface Appearance 189

OS X UI objects behave a bit differently from most iOS objects. When you are
working with iOS objects in the Document Outline, they are represented as just a
single configurable object. A button is a button, end of story. OS X objects, how-
ever, are very often a hierarchy of objects, each with its own attributes to be con-
figured. A table view, for example, expands to show objects for each column. You
might use the top-level table view object to choose whether column headings are
visible, but then drill down to a column to choose whether clicking its heading
results in the table contents sorting.

The attributes you change in Interface Builder are simply properties of the object’s
class. To help identify what an attribute does, use the documentation tool in
Xcode to look up the object’s class and review the descriptions of its properties.
Don’t spend your time trying to memorize these—there’s no point in filling your
head with this minutia.

Simulating the Interface
At any point in time during the construction of your interface, you can test the lay-

out without having to build the full project. To test the interface, choose Editor,

Simulate Document. After a few seconds, the interface appears in the Cocoa

Attributes Inspector FIGURE 8.21
To change how
an object looks
and behaves,
select it, and
then open the
Attributes
Inspector.

Did You
Know?

ptg8126863

Watch
Out!

190 HOUR 8: Creating User Interfaces

Simulator. You can resize windows, click controls, and generally give your interface

design a workout.

Less Than Meets the Eye
When you use the Simulate Document command, only the interface code is being
run. Nothing that you may have written in the code editor is included. Therefore,
you can simulate interfaces even before you’ve written a single line of supporting
code or if your code has errors. However, it also means that if your code modifies
the display in any way, you won’t see those changes onscreen.

Unfortunately, you lose the ability to simulate the interface with iOS storyboards. If

you’re developing an iOS application, you must run the application code if you

want to see an interface. You learn more about the iOS simulation tool and its role

in testing in Hour 11, “Building and Executing Applications.” That said, one of the

biggest reasons to test an iOS interface is to see how it performs under rotation

events. You can do this in the storyboard by selecting the View Controller object and

opening the Attributes Inspector (Option+Command+4). Use the Orientation setting

under Simulated Metrics to force a scene to be visible in Landscape mode, as shown

in Figure 8.22. This does take into account all settings made within the Size

Inspector and re-lays out the display as needed.

Set Interface OrientationFIGURE 8.22
Simulate
Landscape iOS
views without
leaving the
Interface Builder
editor.

When you simulate an OS X Cocoa application interface, it starts the Cocoa
Simulator. This is nothing more than a XIB simulator and has nothing in common
with the iOS simulator that you’ll learn about in Hour 11. The iOS simulator runs
your full iOS apps without an iOS device present.

Did You
Know?

ptg8126863

By the
Way

Setting Object Identities 191

Setting Object Identities
As we finish this introduction to Interface Builder, we would be remiss if we didn’t

introduce one more feature: the Identity Inspector. As you drag objects into the inter-

face, you’re creating instances of classes that already exist (buttons, labels, and so

on). Often, however, you’ll build custom classes that also need to be referenced in

Interface Builder. In these cases, you need to help Interface Builder out by identify-

ing the subclass it should use.

For example, suppose we create a subclass of the standard button class that we

name ourFancyButtonClass. We might drag a button into Interface Builder to rep-

resent our fancy button, but when the XIB or storyboard file loads, it just creates the

same old UIButton.

To fix the problem, we select the button we’ve added to the view, open the Identity

Inspector by choosing Tools, Identity Inspector (Option+Command+3), and then use

the drop-down menu/field to enter the class that we really want instantiated at run-

time (see Figure 8.23).

Custom ClassCustom Label

Identity Inspector FIGURE 8.23
If you’re using a
custom class,
you need to
manually set
the identity of
your objects
in Interface
Builder.

You’ll use this often to set the class that implements an iOS scene’s view con-
troller. You use the Document Outline to select the View Controller object in the
scene, then within the Identity Inspector, set the custom class to the name of the
class in your project that implements your view controller behavior.

ptg8126863

192 HOUR 8: Creating User Interfaces

Did You
Know?

FIGURE 8.24
The Object item
can represent
any class
instance you
want.

Use the Identity Inspector’s Label field to set a custom label that will be used in
the display of the object in the Document Outline. For complex interfaces, this can
help you tell dozens of similarly named objects from one another.

Adding Custom Objects to Interface
Builder
To add an instance of an entirely custom/arbitrary object, search the Object Library

for the Object item, as shown in Figure 8.24. You can drag this into your storyboard

or XIB file Document Outline to instantiate any object you want.

Once this is visible in the Document Outline, open the Identity Inspector

(Option+Command+3), type or choose the class in your application that this object

should be an instance of, exactly as you saw in Figure 8.23.

When adding objects for your custom classes to the Document Outline, be sure to

choose the objects that best represent your class. The generic “object” shown in

Figure 8.24 can represent anything, but provides the fewest features to the rest of

the objects in Interface Builder. A View Controller object, for example, would be a

better representation of a custom subclass of NSViewController (OS X) or

UIViewController (iOS) and would be your best choice for representing a custom

view controller.

ptg8126863

193Q&A

Inspectors Here, There, and Everywhere!
Several other inspectors that relate to the objects you use in Interface Builder
have not been discussed this hour. The Connections Inspector helps connect
interfaces to code and is the focus of the next hour. The Bindings Inspector
enables you to connect OS X (not iOS) interfaces directly to data and is the topic
of Hour 17, “Attaching Big Data: Using Core Data in Your Applications.”

Unfortunately, the View Effects Inspector, which enables you to apply visual effects
to a view, is beyond the scope of this book. You can learn more about the View
Effects Inspector in the Xcode document “Interface Builder User Guide” in the
section “Attaching Graphical Effects in Mac OS X.”

Summary
This hour covered Interface Builder and the tools it provides for building rich graphi-

cal interfaces for your applications. You learned how to navigate the IB editor win-

dow and access the interface objects from the Object Library. Using the various

inspector tools within Interface Builder, you reviewed how to customize the look and

feel of the onscreen controls and their layout.

There are some significant differences to how XIB and storyboard documents look in

Interface Builder, but the basic process for editing and managing the documents is

the same. Hour 9 shows how these interfaces, be they iOS or OS X, are connected

back to code; and Hour 10 focuses on what makes storyboards truly unique and

powerful.

Q&A
Q. Why do I keep seeing things referred to as NIB files?

A. The origins of Interface Builder trace back to the NeXT Computer, which made

use of NIB files. These files, in fact, still bore the same name when Mac OS X

was released. In recent years, however, Apple has renamed the files to have

the XIB extension—unfortunately, habits (and documentation) rarely change,

so they are still commonly called NIB files.

Q. Some of the objects in the Interface Builder Library cannot be added to my
view. What gives?

A. Not all of the library objects are interface objects. Some represent objects that

provide functionality to your application. These are added directly to the

object list in the Document Outline.

ptg8126863

194 HOUR 8: Creating User Interfaces

Q. I’m using control XYZ on OS X but don’t see it on iOS.

A. Although there are many similarities between OS X and iOS development,

many differences also exist. The UI controls, while performing similar func-

tions across both platforms, are often implemented by very different objects.

Search for generic terms instead of using specific class names.

Workshop

Quiz
1. Simulating an interface from IB also compiles the project’s code in Xcode. True

or false?

2. What is a constraint relationship?

3. It is impossible to represent custom classes in Interface Builder. Yes or no?

Answers
1. False. Simulating the interface does not use the project code at all. As a result,

the interface will not perform any coded logic that may be assigned.

2. A constraint relationship defines how an interface element relates to another

element, such as a distance that should be maintained between them.

3. No. Using the Identity Inspector, you can set the class that should be instanti-

ated for any object represented in Interface Builder.

Activities
1. Practice using the interface layout tools on the MainMenu.xib file or

MainStoryboard.storyboard file. Add each available interface object to your

view, and then review the Attributes Inspector for that object. If an attribute

doesn’t make sense, remember that you can review documentation for the

class to identify the role of each of its properties.

2. Read the Xcode “Interface Builder User Guide.” This document can be helpful

to get a sense for where various features and settings are tucked within the

myriad of interface builder menus and inspectors.

ptg8126863

HOUR 9

Connecting a GUI to Code

What You’ll Learn in This Hour:
. The code that supports outlets, properties, and actions
. How to use the Connections Inspector
. The process for making outlet and action connections
. How Xcode can generate connection code for you

After the preceding hour’s lesson, you know how to make an interface. But how do you

make it do something? As mentioned previously, connecting an interface to code is just a

matter of “connecting the dots.” In this hour, you learn how to do just that: take an graph-

ical user interface (GUI) and connect it to the code that makes it into a functional applica-

tion. You also learn how to automatically create the outlets and actions in your code that

make these connections possible.

Outlet, Actions, and Properties: A Review
Although covered in previous hours, let’s quickly review the purpose of outlets and

actions, how they relate to properties, and the additional code that you must write when

creating an outlet or an action.

Outlets and Properties
An outlet connects a property to an interface object. For example, if you had created a

field in the Interface Builder editor intending that it would be used to collect a user’s

name, you might want to create an outlet for it in your controller’s interface file (.h) called

userName. Using this outlet and the corresponding property, you could then access or

change the contents of the field:

@property (strong, nonatomic) IBOutlet UITextField *userName;

ptg8126863
Did You

Know?

196 HOUR 9: Connecting a GUI to Code

A property also requires a corresponding @synthesize line be added to the start of

your implementation file to create the property’s accessors. (This can also define the

name of the instance variable that the property references.)

For example, to synthesize accessors for the userName property and set its instance

variable name to _userName, I could add this line to my controller’s implementation

file (.m) file:

@synthesize userName=_userName;

Finally, in your controller’s cleanup method, you also need to add code that removes

the property’s reference to your object, freeing it to be removed from memory:

[self setUserName:nil];

As you can see, not much code is involved, but interfaces can be complex, and the

number of outlets (and corresponding properties) you need in your code will likely

be much more than you see in the simple examples in this book. These things add

up quickly, so the more code you can have Xcode write for you, the better (more on

that in a minute).

Advanced development projects can take advantage of IBOutletCollections
rather than IBOutlets. These are simply an NSArray that enables us to reference
all of a particular type of object simultaneously. For a tutorial on how this can be
used with iOS switches, visit http://useyourloaf.com/blog/2011/3/28/interface-
builder-outlet-collections.html.

Actions
An action is a method within your code that is called when an event takes place.

Certain objects, such as buttons and switches, can trigger actions when a user inter-

acts with them through an event (such as clicking or, in iOS, touching) When you

define actions in your code, Interface Builder can make them available to the

onscreen objects.

To define an action, doCalculation, that is triggered from my UI, I could add this

to my controller’s interface file (.h):

-(IBAction)doCalculation:(id)sender;

Obviously, for the action, there must be a real method implementation in the con-

troller’s implementation (.m) file. But presumably that is why you want to be a

developer: to write code that actually does something.

http://useyourloaf.com/blog/2011/3/28/interface-builder-outlet-collections.html
http://useyourloaf.com/blog/2011/3/28/interface-builder-outlet-collections.html

ptg8126863

Making Connections to Outlets and Actions 197

Let Xcode Do It for You
Now that outlets and actions and properties synthesize, and all this interrelated

“stuff” are fresh in your mind, let’s get to the point.

We all want to concentrate on writing code that does interesting things. Managing

properties, outlets, synthesize statements, and keeping track of the syntax of it all is

busy-work, and Xcode will do it for us. Using the Interface Builder editor’s

Connections Inspector and the Xcode Assistant Editor, you can create your outlets,

properties, instance variables, cleanup calls, and method stubs—with only a drag

and a drop.

This hour contains two tutorials. In the first, you connect to outlets and actions that

are already defined to your controller class’s interface (.h) file. In the second, you use

the Interface Builder Editor to write the outlet and action code automatically. The

best way to see how both of these processes work is to walk through the steps of

making the connections with an actual application, so that’s exactly what we do

next.

Making Connections to Outlets
and Actions
For the first tutorial, we use the OS X project named Disconnected contained within

the Hour 9 OS X Projects folder. Open the folder and double-click the

Disconnected.xcodeproj file to open the project in Xcode, as shown in Figure 9.1.

FIGURE 9.1
To begin, open
the project in
Xcode.

ptg8126863

198 HOUR 9: Connecting a GUI to Code

After the project is loaded, expand the project code group (Disconnected) and click

the MainMenu.xib file. This contains the window and view that this application dis-

plays as its interface. Xcode refreshes and displays the objects in the Interface

Builder Editor, as shown in Figure 9.2.

FIGURE 9.2
The Interface
Builder Editor
displays the
scene and
corresponding
interface for the
application.

Implementation Overview
The interface contains four interactive elements: a button bar (called a segmented

control), a push button, an output label (a text field), and a web view (an integrated

web browser component). Together, these controls interface with application code to

enable a user to pick a flower color, click the Get Flower button, and then display the

chosen color in the static text field along with a matching flower photo fetched from

the website http://www.floraphotographs.com. Figure 9.3 shows the final result.

Right now, the application does nothing. The interface is not connected to any appli-

cation code, so it is hardly more than a pretty picture. To make it work, we must cre-

ate connections to outlets and actions that have been defined using IBOutlet and

IBAction in the application controller’s interface file (Controller.h).

Identifying the Outlets and Actions
For the Disconnected app to function, we need to create connections to the prede-

fined outlets and actions. Let’s step through each of the outlets and actions as I’ve

named them in the code:

. colorChoice: An outlet created for the segmented control in order to access

the color the user has selected

http://www.floraphotographs.com

ptg8126863

Making Connections to Outlets and Actions 199

. chosenColor: An outlet for the label that will be updated by getFlower to

show the name of the chosen color

. flowerView: An outlet for the web view that will be updated by getFlower to

show the image

. getFlower: An action that retrieves a flower from the Web, displays it, and

updates a static text field label with the chosen color

FIGURE 9.3
The finished
application
enables a user
to choose a
color and have
a flower image
returned that
matches that
color.

Now that we know what object is connecting to what outlet, it’s time to go ahead

and make some connections. Make sure that the Interface Builder Editor is open and

that you can see as much of the application interface on your screen as possible.

Creating Connections to Outlets
To create a connection from an interface item to an outlet, Control-drag from the

controller object’s icon in the Document Outline to either the visual representation of

the object in the view or in the Document Outline. Try this with the segmented

control:

1. Pressing Control, click and drag from the object named Controller in the

Document Outline.

2. Drag to the onscreen image of the segmented control.

ptg8126863

By the
Way

200 HOUR 9: Connecting a GUI to Code

A line will appear as you drag, enabling you to easily point to the object that

you want to use for the connection, as shown in Figure 9.4.

FIGURE 9.4
Control-drag
from the con-
troller object to
the segmented
control.

3. Release the mouse button after pointing to the segmented control.

The available connections are shown in a pop-up menu (see Figure 9.5).

4. Pick colorChoice to make your connection.

FIGURE 9.5
Choose from
the outlets
available for the
targeted object.

Interface Builder knows what type of object is allowed to connect to a given outlet,
so it displays only the outlets appropriate for the connection you are trying to
make.

Repeat this process for the static text field with the text Your Color, connecting it to

the chosenColor outlet, and the web view, connecting to flowerView.

ptg8126863

Making Connections to Outlets and Actions 201

Connecting to Actions
Connecting to actions is a bit different. An object’s events trigger actions (methods)

in your code. So, the connection direction reverses; you connect from the object

invoking an event to the view controller of its scene.

Although it is possible to Control-drag and create a connection in the same manner

you did with outlets, this is not recommended for iOS apps. Many objects have more

than a single possible event associated with them (putting your find down on a but-

ton versus picking it up, for example). In OS X development, objects typically con-

nect to an action via a single selector (a named method), so the process is more

straightforward.

To create your connection, select the object that will be connecting to the action and

open the Connections Inspector by clicking the arrow icon at the top of the Xcode

Utility area. You can also show the inspector by choosing View, Utilities, Show

Connections Inspector (or by pressing Option+Command+6).

The Connections Inspector, shown in Figure 9.6, shows a list of the events that the

object, or, in the case of an NSButton, a selector under Sent Actions. Beside the event

(or selector) is an open circle. To connect to an action in your code, click and drag

from one of these circles to the controller object in the Document Outline.

Connections
Inspector

FIGURE 9.6
Use the
Connections
Inspector to
view existing
connections
and to make
new ones.

ptg8126863

202 HOUR 9: Connecting a GUI to Code

For example, to connect the Get Flower button to the getFlower method, follow

these steps:

1. Select the button.

2. Open the Connections Inspector (Option+Command+6).

3. Drag from the circle beside the Sent Action selector to the Controller object, as

demonstrated in Figure 9.7.

FIGURE 9.7
Drag from the
selector or
event to the
controller.

4. When prompted, choose the getFlower action, shown in Figure 9.8.

FIGURE 9.8
Choose the
action you want
the interface
element to
invoke.

ptg8126863

Did You
Know?

Making Connections to Outlets and Actions 203

Repeat this same process for the segmented control, connecting its selector to the

same getFlower action. This adds functionality so that when users update their

color selection, a new flower is grabbed without users having to click the Get Flower

button.

After a connection has been made, the inspector updates to show the event and the

action that it calls, as shown in Figure 9.9. If you click other already-connected

objects, you’ll notice that the Connections Inspector shows their connections to out-

lets and actions (under the Referencing Outlets section).

FIGURE 9.9
The
Connections
Inspector
updates to
show the
actions and
outlets that an
object refer-
ences (here, the
controller).

Well done! You have just linked an interface to the code that supports it. Click Run

on the Xcode toolbar to build and run the application.

Prebuilt Actions
Although most of your connections in Interface Builder will be between objects and
outlets and actions you have defined in your code, certain objects implement built-
in actions that do not require you to write a single line of code. These are listed in
the Connections Inspector as received actions.

The web view, for example, implements actions, including goForward and goBack.
Using these actions, you could add basic navigation functionality to a web view by
dragging from a button’s event or selector directly to the web view object (rather
than dragging to the controller itself). As described previously, you are prompted
for the action to connect to, but this time, it isn’t an action you have had to code
yourself.

The Accessibility sections within the Connections Inspector are used for creating
applications accessible to those with special needs. Unfortunately, developing for
accessibility is beyond the scope of this book, but you’ll find plenty of information
available by searching for “accessibility” in the Xcode documentation.

ptg8126863

By the
Way

204 HOUR 9: Connecting a GUI to Code

Editing Connections with the Quick Inspector
One of the errors that I commonly make when connecting my interfaces is creating

a connection that I didn’t intend. A bit of overzealous dragging, and suddenly your

interface is wired up incorrectly and won’t work. To review the connections that are

in place, you select an object and use the Connections Inspector discussed previ-

ously, or you can open the Quick Inspector by right-clicking any object in the

Interface Builder editor or Document Outline. This opens a floating window that

contains all the outlets and actions either referenced or received by the object, as

shown in Figure 9.10.

FIGURE 9.10
Right-click to
quickly inspect
any object
connections.

Besides viewing the connections that are in place, you can remove a connection by

clicking the X next to a connected object (see Figure 9.10). You can even create new

connections using the same “click and drag from the circle to an object” approach

that you performed with the Connections Inspector. Click the X in the upper-left cor-

ner of the window to close the Quick Inspector.

Clicking an object, such as a button, shows you all the connections related to that
object, but it does not show you everything you have connected in the Interface
Builder editor. Because almost all the connections you create will go to and from a
view’s controller, choosing it and then opening the inspector (or the Quick
Inspector) will give you a more complete picture of what connections you have
made.

ptg8126863

Writing Connection Code with Interface Builder 205

Writing Connection Code with
Interface Builder
You have now created connections from user interface objects to the corresponding

outlets and actions that have already been defined in code. But how did those outlet

and action definitions get written? You could certainly have coded them by hand,

as described earlier this hour. But why do that when Xcode will do all the setup

for you?

Although it is impossible for Xcode to write your application, it will create the

instance variables and properties for your app’s interface objects, as well as “stubs”

of the methods your interface will trigger. All you need to do is drag and drop the

Interface Builder objects into your source code files. Using this feature is completely

optional, but it does help save time and avoid syntax errors. To demonstrate this

process, we re-create the exact same application, but this time for the iPhone or

iPad. We start with a defined interface, but no outlets, actions, or connections. After

a bit of clicking and dragging, we have a full app.

Open the Hour 9 projects folder, choose either the iPad or iPhone project folders, and

then drill down to the Disconnected project within. Double-click the

Disconnected.xcodeproj file to open the project in Xcode. Again, expand the project

code group (Disconnected), but this time, click the MainStoryboard.storyboard file.

Interface Builder updates and shows the scene for the application, as shown in

Figure 9.11.

FIGURE 9.11
The scene
for the iOS
version of the
application is
displayed.

ptg8126863

By the
Way

206 HOUR 9: Connecting a GUI to Code

Implementation Overview
As with the previous tutorial, you are working with an interface that consists of a

segmented button bar, a push button, text label, and a web view. This time, how-

ever, instead of just connecting to predefined outlets and actions, you actually create

the outlets and actions from scratch. The project you have just opened is based on

the Single View iOS application template and has had no code added to the classes;

only a basic interface has been created in the storyboard.

Identifying the Outlets and Actions
In this exercise, we create outlets and actions that are identical to the ones that we

used for connections earlier. To recap, we have three outlets:

. colorChoice: The segmented control

. chosenColor: The label

. flowerView: The web view

And we have a single action:

. getFlower: Triggered by the button Get Flower and by touching the seg-

mented control

I recommend creating a list of your XIB/storyboard objects and their correspon-
ding properties and actions during the planning phase of your development. This
will keep you on track and help make sure that you wire your interfaces correctly
as you work through your implementation.

Creating Outlets
To create our outlets, we need to be able to drag from the Interface Builder editor to

the area of the code where we want to add an outlet or an action. In other words,

we need to be able to see the ViewController.h file at the same time we see the view

that we are connecting. This is where the Assistant Editor feature of Xcode comes in

very handy.

With the MainStoryboard.storyboard visible in the Interface Builder editor, click the

Assistant Editor button (the middle button in the Editor section of the toolbar). The

ViewController.h file automatically opens to the right of the interface because Xcode

knows that is the file that you need to work with while editing the view.

ptg8126863

By the
Way

Writing Connection Code with Interface Builder 207

How Does Xcode Know Which File Goes with the UI?
Xcode knows the class ViewController is the view controller class responsible
for controlling the view. This relationship is established by selecting the View
Controller object in the Document Outline and then using the Interface Builder
Identity Inspector to choose which class implements the controller.

If you’re on a MacBook, you’re likely to find your workspace a bit cramped. To con-
serve space, use the leftmost and rightmost “view” buttons on the toolbar to dis-
able the Navigation and Utility areas of the Xcode window. You can also use the
disclosure arrow in the lower-left corner of Interface Builder editor itself to toggle
the Document Outline off.

Start by connecting the segmented control we created for choosing a color. Recall

that we want this to be represented by an instance variable and corresponding prop-

erty called colorChoice. When this is in place, we repeat the process for the

remaining outlets:

1. Control-drag from the segmented control or its icon in the Document Outline.

Drag all the way into the source editor for ViewController.h, releasing the

mouse button when your cursor is just under the @interface line. As you

drag, you see a visual indication of what Xcode is planning to insert when

you release the button, as shown in Figure 9.12.

FIGURE 9.12
Xcode indicates
where it will
insert code.

ptg8126863

208 HOUR 9: Connecting a GUI to Code

2. When you release the mouse button, you are prompted to define an outlet. Be

sure that the Connection menu is set to Outlet, storage is Strong, and the type

is set to UISegmentedControl, because that’s what the object is. Finally, spec-

ify the name you want to use for the instance variable and property

(colorChoice), and then click Connect, as shown in Figure 9.13.

FIGURE 9.13
Define your
outlet.

3. When you click Connect, Xcode automatically inserts the proper @property

directive with IBOutlet, @synthesize directive (in ViewController.m), and

cleanup code (also in ViewController.m). What’s more, it has made the connec-

tion between the outlet you just defined, and the code itself. If you want to ver-

ify this, just check the Connections Inspector or right-click the field to open the

Quick Inspector, as you learned earlier this hour.

Repeat the process for the text label, dragging from it to just below the @property

line that was inserted. This time choose UILabel as the type and chosenColor as the

name of the outlet. And now do this one more time for the web view: Drag from it to

below the last @property line. Use UIWebView as the type and flowerView as the

name of the outlet.

You’ve just made all the outlets, properties, and connections for the user interface.

Now let’s see how to go about creating and connecting the action.

Creating Actions
Adding the action and making the connection between the button (Get Flower) and

the action follows the exact same pattern as the outlets you just added. The only

ptg8126863

Writing Connection Code with Interface Builder 209

difference is that actions are usually defined after properties in an interface file, so

you just drag to a slightly different location:

So, to add the action and make the connection between the button and the action,

follow these steps:

1. Control-drag from the button in the view to the area of the interface file

(ViewController.h) just below the three @property directives that you added.

Again, as you drag, you see Xcode provide visual feedback about where it is

going to insert code. Release the mouse button when you’ve targeted the line

where you want the action code to be inserted.

2. As with the outlets, you are prompted to configure the connection, as demon-

strated in Figure 9.14. This time, be sure to choose Action as the connection

type; otherwise, Xcode tries to insert another outlet.

3. Set the name to getFlower (the method name chosen earlier).

4. Be sure that the Event pop-up menu is set to Touch Up Inside to configure the

event that will trigger the action.

5. Leave the rest of the fields set to their defaults and click Connect.

FIGURE 9.14
Create the
action.

That’s it. You have just set up your action. You still need to implement the logic, but

the Get Flower button will now trigger the getFlower method. You’ll even find a stub

for this method in the ViewController.m file.

As a final step in finishing up the UI connections, use the technique you practiced

in the first tutorial to connect the Value Changed or Touch Up Inside event for the

ptg8126863

210 HOUR 9: Connecting a GUI to Code

segmented control to the getFlower action you’ve created. Because the action is

already defined, you need to drag from the Connections Inspector to the View

Controller object; don’t redefine the method in your code. Making this connection is

optional, but it does enable touches in the segmented control to retrieve a new

flower image.

Implementing the getFlower Logic
To make this a fully functional application, you need to implement the getFlower

method in ViewController.m. Open this file in the source editor, and edit the stub

method to match the code in Listing 9.1.

LISTING 9.1 A Possible getFlower Implementation
-(IBAction)getFlower:(id)sender {

NSString *outputHTML;

NSString *color;

NSString *colorVal;

int colorNum;

colorNum=colorChoice.selectedSegmentIndex;

switch (colorNum) {

case 0:

color=@”Red”;

colorVal=@”red”;

break;

case 1:

color=@”Blue”;

colorVal=@”blue”;

break;

case 2:

color=@”Yellow”;

colorVal=@”yellow”;

break;

case 3:

color=@”Green”;

colorVal=@”green”;

break;

}

chosenColor.text=[[NSString alloc] initWithFormat:@”%@”,color];

outputHTML=[[NSString alloc] initWithFormat:@”<body style=’margin:

0px; padding: 0px’><img height=’1200’

src=’http://www.floraphotographs.com/showrandom.php?color=%@’></body>”

,colorVal];

[flowerView loadHTMLString:outputHTML baseURL:nil];

}

ptg8126863

Watch
Out!

Summary 211

Type Without Line Breaks
To get the code to fit on the page, the outputHTML initialization and assignment
line was broken across several lines in this listing. When entering this code, you
must type it as a single line.

Run the application and test the interface. It should work exactly as planned, as

shown in Figure 9.15.

FIGURE 9.15
The working
Disconnected
iPhone app.

Summary
This was a very hands-on hour that walked you through the process of connecting

objects to outlets and actions. First, you practiced using predefined outlets and

actions. You learned how to use the Connections Inspector to target specific events

for an object, and how to use it to see the existing connections that are already in

place. You also practiced using the Xcode tools to create outlets and actions from

scratch. Using the Assistant Editor, you built new outlets and properties and wired

them to your interface without having to type a single line of code.

You will use these processes in nearly every project that you create, so being comfort-

able with them is a key piece of being a successful Xcode developer. Keep practicing,

and you’ll find that making connections from Interface Builder quickly becomes sec-

ond nature.

ptg8126863

212 HOUR 9: Connecting a GUI to Code

Q&A
Q. I keep seeing references to segues in the Connections Inspector. What are

they?

A. Segues are used in iOS to transition from one scene to another. Revisit Hour 8,

“Creating User Interfaces,” for more information.

Q. Is there a way to make all of my connections from one place?

A. Absolutely. The Connections Inspector can be your one-stop-shop for all your

outlet and action connections. Instead of dragging from objects in the UI

design to your interface (.h) file, you can use the Connections Inspector’s New

Referencing Outlet connection as the starting point for dragging into the inter-

face file, thereby creating a new outlet or action.

Q. How do I know what objects support what events and actions?

A. Read the documentation. Over time, you’ll start to recognize that similar con-

trols support similar actions and events. The only way to learn what the

options are, however, is to experiment with using the controls and read the

documentation for their classes.

Workshop

Quiz
1. The Assistant Editor is not useful when you are creating outlets and actions.

True or false?

2. Are the events supported by controls shared between iOS and OS X?

3. A single UI object can trigger actions. True or false?

ptg8126863

Workshop 213

Answers
1. False. The Assistant Editor enables you to insert outlets and actions by drag-

ging from your interface into the corresponding controller code file.

2. No. Use the Connections Inspector to see what events (actions) your controls

support. iOS tends to have many more possible events per UI control than

OS X.

3. False. You can create connections to an action from any number of UI objects.

Activities
1. Complete the tutorials provided within this hour’s lesson, and then review the

connections using the Connections Inspector. Try to remove a connection.

What happens, if anything, to the underlying code? Next, try to delete the

underlying code for an outlet. Does it also delete the UI connection?

2. Create a new project (OS X or iOS) and begin exploring the different UI objects

that are available. Add each to a storyboard/XIB file, and then use the

Connections Inspector to see what types of events (actions) they can receive

or act on. Feel free to use the provided apps as a starting point for this

exploration.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 10

Creating iOS Application
Workflows with Storyboards

What You’ll Learn in This Hour:
. How to create multiple scenes in the storyboard
. The use of segues to transition between scenes
. Ways to share data between scenes
. How to build applications with navigation and tab bar controllers

In the preceding hour, you learned how to connect an iOS application UI to code. This

took place within a single scene, which is good for simple apps, but limiting for serious

development. In this hour, we break through the single-scene limit and introduce the abil-

ity to create applications with multiple scenes—in other words, multiple view controllers

and multiple views.

You learn how to create new scenes and the new view controller classes needed to back

them up. You also explore how to visually define your transitions between scenes and trig-

ger them automatically, or programmatically. Because it is easier to understand these con-

cepts by using them, this hour ends with some hands-on practice for multiscene

development.

The Power of Storyboards
Over the past few hours, you have learned how the Interface Builder editor can create

interfaces and connect them to code. What you haven’t seen, however, is how iOS applica-

tions can use storyboarding to develop their entire workflow.

Many iOS apps lend themselves to a single-view approach—which is all you have seen

so far in the storyboard examples. It is rare to download an app that doesn’t have

ptg8126863

216 HOUR 10: Creating iOS Application Workflows with Storyboards

configuration screens, help screens, or other displays of information that go beyond

the initial view that is loaded at runtime.

To use features like these in your apps, you must create multiple scenes in your sto-

ryboard file. Recall that a scene is defined by the presence of a view controller and a

view. Imagine how much functionality you could introduce with unlimited scenes

(views and view controllers). With the iOS project storyboard, that’s exactly what

you can do.

Not only that, but you can literally “draw” the connections between different scenes.

Want to display an information screen if the user touches a Help button? Just drag

from your button to a new scene. It “just works.” Figure 10.1 shows a multiscene

application design with segues.

FIGURE 10.1
A multiscene
application
design.

Storyboard Terminology
Before we head into the specifics of multiscene development, you should learn a few

terms. Several of these terms you have learned previously but might not have really

had to think about the until now include

. View controller: A class that manages the user’s interactions with their

iDevice interface.

. View: The visual layout that a user sees onscreen.

ptg8126863

Storyboard Terminology 217

. Scene: A unique combination of view controller and view. Imagine you’re

building an image-editing application. You may choose to develop scenes for

selecting files to edit, another scene for implementing the editor, another for

applying filters, and so on.

. Segue: A segue is a transition between scenes, often with a visual transition

effect applied. There are multiple different types of segues available depending

on the type of view controller you’re using.

. Modal Views: A modal view is one that is displayed over top of an original

view when user interactions are required. A segue to a modal view is segue

you’ll make most often.

. Relationship: A “segue” of sorts for certain types of view controllers, such as

the tab bar controller. Relationships are created between buttons on a master

“tab bar” that display independent scenes when touched.

. Storyboard: The file that contains the scene, segue, and relationship defini-

tions for your project.

You need to create new class files to support the requirement for multiple view con-

trollers. If you need a quick refresher on adding new files to Xcode, see Hour 5,

“Managing Files in Xcode.” Other than that, the only prerequisite is the ability to

Control-drag—something you should be very good at after Hour 9, “Connecting a

GUI to Code.”

The storyboard concepts in this hour require a bit of supporting code, so skim-
ming is not recommended.

A Different Perspective
You have just read about the different pieces that you need to know to create a
multiscene application, but this doesn’t necessarily help you conceptualize what
Apple’s “storyboarding” concept is trying to achieve.

Think of it this way: A storyboard provides an area where you can sketch out, visu-
ally, your application’s visual design and workflow. Each scene is a different
screen that your user will encounter. Each segue is a transition between scenes.
If you’re the type of person who thinks visually, you’ll find that with a little practice,
you can go from a paper sketch of an application’s operation and design to a
working prototype in the Xcode storyboard very, very quickly.

Watch
Out!

ptg8126863

218 HOUR 10: Creating iOS Application Workflows with Storyboards

The Anatomy of a Multiscene Project
To create an application with multiple scenes and segues, you must first know how

to add new view controller and view pairings to your project. For each of these, you

also need supporting class files where you can code up the logic for your additional

scenes. To give you a better idea of how this works, let’s use a typical iOS Single View

Application template as a starting point. Feel free to follow along with an empty iOS

project if you want—but we build a simple (but complete) example of a multiscene

application at the end of the hour.

The Single View Application template has a single view controller and a single view—

in other words, a single scene. This doesn’t mean, however, that we’re stuck with that

configuration. You can expand a single-view application to support as many scenes

as you want; the template just provides a convenient starting point.

Adding Additional Scenes to a Storyboard
To add a new scene to a storyboard, follow these steps:

1. Open the project’s storyboard file (often MainStoryboard.storyboard) in the

Interface Builder editor.

2. Make sure the Object Library (Control+Option+Command+3) is visible and

type view controller in the Search field to show the view controller objects

that are available, as shown in Figure 10.2.

Add a View
Controller

FIGURE 10.2
Find the view
controller
objects in the
Object Library.

ptg8126863

By the
Way

The Anatomy of a Multiscene Project 219

3. Drag the View Controller object into an empty portion of the Editor area.

The view controller adds itself, with a corresponding view, to your storyboard,

and just like that, you’ll have a new scene, as shown in Figure 10.3.

You can drag the new view around in the storyboard editor to position it somewhere

convenient.

FIGURE 10.3
Adding a
new view
controller/view
creates a new
scene.

If you find it difficult to grab and drag the new view around in the editor, use the
object bar beneath it. It provides a convenient handle for moving the object
around.

Naming Scenes
After adding a new scene to a project, you’ll notice there’s a bit of a problem brewing

in the Document Outline (Editor, Show Document Outline). By default, each scene is

named based on its view controller class. By default, Single View Application tem-

plates include a view controller class called ViewController, so the Document

Outline shows the default scene as View Controller Scene. Once we add a new scene,

it doesn’t have a view controller class assigned yet, so it also appears as View

Controller Scene. Add another, and the scene also appears as View Controller

Scene…and so on.

ptg8126863

By the
Way

220 HOUR 10: Creating iOS Application Workflows with Storyboards

To deal with the ambiguity, you have two options: First, you can add and assign view

controller classes to the new scenes; the scenes adopt the name of the class. This is

necessary anyway, but sometimes its nicer to have a plain English name for a scene

that can be anything we want without it reflecting the underlying code (John’s

Awesome Image Editor Scene makes a horrible name for a view controller class).

This brings us to the second approach: applying your own name to the scene. To

label a scene using any arbitrary string you want, select its view controller in the

Document Outline, and then open the Identity Inspector and expand the Identity

section, as shown in Figure 10.4. Use the Label field to enter a name for the scene.

Xcode automatically tacks Scene onto the end, so there’s no need to add that.

Set a Label for the
View Controller

FIGURE 10.4
Label the view
controller to
help differenti-
ate between
scenes.

Adding Supporting View Controller Subclasses
After establishing the new scenes in your storyboard, you need to couple them to

actual code. In the iOS Single View Application template, the initial view’s view con-

troller is already configured to be an instance of the ViewController class—imple-

mented by editing the ViewController.h and ViewController.m files. You need to

create similar files to support any new scenes that are added.

If you’re just adding a scene that displays static content (such as a Help or About
page), you do not need to add a custom subclass. You can use the default class
assigned to the scene, UIViewController, but you won’t be able to add any inter-
activity.

ptg8126863

The Anatomy of a Multiscene Project 221

To add a new subclass of UIViewController to your project, make sure that the

Project Navigator is visible (Command+1), and then click the + icon at the bottom-

left corner of the window. When prompted, choose the iOS Cocoa Touch template

category, click the Objective-C class icon, and then click Next.

You are asked to name your class. Name it something that differentiates it from

other view controllers in your project. EditorViewController is better than

ViewControllerTwo, for example. Choose a subclass of UIViewController, as

shown in Figure 10.5. If you’re creating the controller for use in an iPad project,

check the Targeted for iPad check box, and then click Next.

FIGURE 10.5
Choose the
UIViewController

subclass.

Finally, you’re prompted for where to save your new class. Use the group pop-up

menu at the bottom of the dialog to choose your main project code group, and then

click Create. Your new class is added to the project and ready for coding—but it still

isn’t connected to the scene you defined.

To associate a scene’s view controller with the UIViewController subclass, shift your

attention back to the Interface Builder editor. Within the Document Outline, select

the view controller line for the new scene, and then open the Identity Inspector

(Option+Command+3). In the Custom Class section, use the drop-down menu to

select the name of the class you just created (such as EditorViewController), as

shown in Figure 10.6.

ptg8126863

222 HOUR 10: Creating iOS Application Workflows with Storyboards

After the view controller is assigned to a class, you can develop in the new scene

exactly in the same way you developed the initial scene—but the code will go in

your new view controller’s class. This takes us most of the way to creating a multi-

scene application, but the two scenes are still completely independent. If you

develop for the new scene, it’s essentially like developing a new application; there is

no way for the scenes to exchange data and no way to transition between them.

Sharing Properties and Methods
As you add multiple view controllers (and any other classes) to your project, there’s

a good chance they need to display and exchange information. For your classes to

“know about each other” programmatically, they need to import one another’s

interface files. For example, if MyEditorClass needs to access properties and meth-

ods in MyGraphicsClass, MyEditorClass.h includes #import “MyGraphicsClass.h”

at its start.

Simple enough, right? Unfortunately, it isn’t always that easy. If both classes need

access to one another, and both try to import the interface file from the other class,

you’ll most likely end up with an error because the import lines have just created a

reference loop. One class references the other, which references the other, which ref-

erences the other, and so on.

To deal with this situation, you must change your code around a bit and make use

of the @class directive. @class enables an interface file to reference another class

FIGURE 10.6
Associate the
view controller
with the new
class.

ptg8126863

The Anatomy of a Multiscene Project 223

without creating a loop. Using the hypothetical MyGraphicsClass and

MyEditorClass as examples of classes that both need to reference one another, the

references could be added like this:

1. In MyEditorClass.h, add #import “MyGraphicsClass.h”. One half of the two

references can be implemented with just an #import; nothing special needs to

happen.

2. In MyGraphicsClass.h, add @class MyEditorClass; after the existing

#import lines.

3. In MyGraphicsClass.m, add the #import “MyEditorClass.h” line after the

existing #import lines.

The first #import is performed normally, but to get around the circular reference,

the second class’s #import moves to the implementation file, and a @class directive

is added to the second class’s interface file. This may seem convoluted, but it works.

After you have created your new scenes, assigned the view controller classes, and

added the appropriate references between classes, you’re ready to create segues—the

mechanism that enables you to transition from scene to scene.

Creating a Segue
Creating a segue between scenes uses the same Control-drag mechanism that you

saw in Hour 9 for making connections between an object and an outlet. For exam-

ple, consider a two-scene storyboard where you want to add a button to the initial

scene that, when clicked, transitions to the Second Scene. To create this segue, you

Control-drag from the button to the second scene’s view controller (targeting either

the visual representation of the scene itself or the view controller line in the

Document Outline), as shown in Figure 10.7.

When you release your mouse button, a Storyboard Segues box appears, as shown

in Figure 10.8. Here you can choose the style of segue that you’re creating—most

likely Modal. A total of five potential options may appear:

. Modal: Transition to another scene for the purposes of completing a task.

When finished, we dismiss the scene, and it transitions back to the original

view. This is the primary segue we will be using.

. Push: Create a chain of scenes where the user can move forward or back. This

is used with navigation view controllers.

ptg8126863

224 HOUR 10: Creating iOS Application Workflows with Storyboards

. Replace (iPad only): Replace the current scene with another. This is used in

some specialized iPad view controllers. This is used with a popular iPad view

controller called the “split-view controller.”

. Popover (iPad only): Displays the scene in a pop-up “window” over top of the

current view.

. Custom: Used for programming a custom transition between scenes.

FIGURE 10.7
Control-drag
from the object
to the new
scene’s view
controller.

FIGURE 10.8
Choose the
segue style to
create.

ptg8126863

Did You
Know?

The Anatomy of a Multiscene Project 225

For most projects, you’ll want to choose a modal transition—which is what we use

here. The other segues are used in very specific conditions, some of which we cover

later this hour.

You can create a segue that is not attached to any particular UI element by
Control-dragging from one scene’s view controller to another. This creates a segue
that you can trigger, in your code, from a gesture or other event.

Configuring a Segue
Once the segue is added to your project, you see a line added to the Editor area that

visually ties your two scenes together. You can rearrange the individual scenes

within the editor to create a layout that maps how the application will flow. This

layout is solely for your benefit; it doesn’t change how the application will operate.

Notice, as well, a representation of it in your Document Outline. The scene that ini-

tiates a segue shows a new line in the outline: Segue from <origin> to <destination>.

Selecting the segue line gives you the opportunity to configure its style, transition

type, identifier, and presentation (iPad only), as shown in Figure 10.9.

FIGURE 10.9
Configure each
segue you add.

The identifier is an arbitrary string that you can use to trigger a segue manually or

to identify which segue is underway programmatically (if you have multiple segues

configured). Even if you do not plan to use multiple segues, it is a good idea to name

this something meaningful (toEditor, toGameView, and so on).

ptg8126863

Watch
Out!

226 HOUR 10: Creating iOS Application Workflows with Storyboards

The transition type is a visual animation that is played as iOS moves from one

scene to another. You have four possible options:

. Cover vertical: The new scene slides up over the old scene.

. Flip horizontal: The view flips around horizontally, revealing the new scene

on the “back.”

. Cross dissolve: The old scene fades out while the new scene fades in.

. Partial curl: The old scene “curls up” like a piece of paper, revealing the new

scene underneath.

On the iPad, you can also set a presentation attribute. This determines how the new

modal view is displayed on the screen. The iPad has more screen real estate than an

iPhone, so it can do things a little differently. You can choose from four possible

presentation styles:

. Form sheet: Sizes the scene smaller than the screen (regardless of orientation),

showing the original scene behind it. This, for all intents and purposes, is the

iPad equivalent of a “window.”

. Page sheet: Sizes the scene so that it is presented in the portrait format.

. Full screen: Sizes the view so that covers the full screen.

. Current context: Uses the same style display as the scene that is displaying it.

Match Your Styles with Suitable Transitions
Not all styles are compatible with all transitions. A page curl, for example, cannot
take place on a form sheet that does not completely fill the screen. Attempting to
use an incompatible combination will result in a crash. So, if you have chosen a
bad pair, you’ll find out pretty quickly (or you could review the documentation for
the transition/style you plan to use).

After setting the identifier, style, transition, and presentation for a segue, you’re

ready to use it. Without the developer writing any code, an application that has fol-

lowed these steps can now present two fully interactive views and transition between

them. What it cannot do, however, is interact with them programmatically. In addi-

tion, once you transition from one view to another, you cannot transition back. For

that, you need some code. Let’s take a look at how you can create and trigger modal

ptg8126863

The Anatomy of a Multiscene Project 227

segues programmatically, and, perhaps most important, dismiss a modal segue

when you have finished using it.

Controlling Modal Segues Manually
Although it is easy to create segues with a single Control-drag, you need to interact

with them manually in several situations. If you create a modal segue between view

controllers that you want to trigger manually, for example, you need to know how

to initiate it in code. When a user is done with the task in another scene, he also

needs a mechanism to dismiss the modal scene and transition back to the original

scene. Let’s handle these scenarios now.

Starting the Segue
First, to transition to an scene using a segue that you have defined in your story-

board but don’t want to be triggered automatically, you use the UIViewController

instance method performSegueWithIdentifier:sender. For example, within your

initial view controller, you can initiate a segue with the identifier toMyGame using

the following line:

[self performSegueWithIdentifier:@”toMyGame” sender:self];

That’s it! As soon as the line is executed, the segue starts and the transition occurs.

The sender parameter should be set to the object that initiated the segue (it doesn’t

matter what that object is)—it is made available as a property during the segue if

your code needs to determine what object started the process.

Dismissing a Modal Scene
When you execute a modal segue (either automatically or manually), there’s one

teensy problem: There is no way back to your original scene. After users have fin-

ished interacting with your view, you’ll probably want to provide them with a

means of getting back to where they started. At present, there is no facility in modal

segues to allow for this, so you must turn to code. The UIViewController method

dismissViewControllerAnimated:completion can be used in either the view con-

troller that displayed the modal scene or the modal scene’s view controller to transi-

tion back to the original scene:

[self dismissViewControllerAnimated:YES completion:nil];

The completion block is an optional block of code that is executed when the transi-

tion has completed. After you have dismissed a scene presented modally, control is

returned to the original scene, and users can interact with it as they normally

would.

ptg8126863

228 HOUR 10: Creating iOS Application Workflows with Storyboards

Passing Data Between Scenes
You know how to create and display scenes, but one very critical piece of the puzzle

is missing: the ability to share information between the different scenes in an appli-

cation. Right now, they act as entirely independent applications—which is perfectly

fine if that is your intention, but chances are, you want an integrated user experi-

ence. Let’s make that happen.

The most straightforward way for any class to exchange information with any other

is through properties and methods that it exposes in its interface file. The only trou-

ble with this is that we need to be able to get an instance of one scene’s view con-

troller from another, and, at present, when using a segue we create visually, these

are not entirely obvious.

The prepareForSegue:sender Method
One way to get references to the view controllers in a segue is by implementing the

prepareForSegue:sender method. This method is automatically called on the initi-

ating view controller when a segue is about to take place away from it. It returns an

instance of UIStoryboardSegue and the object that initiated the segue. The

UIStoryboard object contains the properties sourceViewController and

destinationViewController, representing the view controller starting the segue

(the source) and the view controller about to be displayed (the destination).

Listing 10.1 shows a simple implementation of this approach. In this example, the

code transitions from an initial view controller (an instance of ViewController) to

a new view controller, which is an instance of a hypothetical

EditorViewController class.

LISTING 10.1 Use prepareForSegue:sender to Grab the View
Controllers
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {

ViewController *startingViewController;

EditorViewController *destinationViewController;

startingViewController=(ViewController *)segue.sourceViewController;

destinationViewController=

(EditorViewController *)segue.destinationViewController;

}

First, the method declares two variables to reference the source and destination con-

trollers. Then they are assigned to typecast versions of the source and destination

properties returned by the UIStoryboardSegue object.

ptg8126863

The Anatomy of a Multiscene Project 229

Once there is a reference to the destination view controller, however, you can set

and access properties on it—even changing the presentation and transition styles

before it is displayed. If it is assigned to an instance variable/property, it can be

accessed anywhere within the source view controller.

What if you want the destination view controller to send information back to the

source? In this case, only the source can communicate with the destination because

that’s where the prepareForSegue:sender method is implemented. One option is to

create a property on the destination controller that stores a reference to the source

controller. Another approach is to use built-in properties of UIViewController that

make working with modally presented scenes easy easy easy.

It’s Not Just for Getting the Controllers
The prepareForSegue:sender isn’t just for getting the view controllers involved in
a segue. It can also be used to make decisions during a segue. Because a scene
can define multiple different segues, you may need to know which segue is hap-
pening and react accordingly. To do this, use the UIStoryboardSegue property
identifier to get the identifier string you set for the segue:

if ([segue.identifier isEqualToString:@”myAwesomeSegue”]) {

// Do something unique for this segue

}

The Easy Way
The prepareForSegue:sender gives us a generic way to work with any segue that is

taking place in an application, but it doesn’t always represent the easiest way to get

a handle on the view controllers involved. For modal segues, the UIViewController

class gives us properties that make it easy to reference the source and destination

view controllers: presentingViewController and presentedViewController.

In other words, you can reference the original (source) view controller within

a view controller that has just been displayed by accessing

self.presentingViewController. Similarly, you can get a reference to the

destination view controller from the original controller with

self.presentedViewController. It’s as easy as that. For example, assume that

the original view controller is an instance of the class ViewController and that

the destination view controller is an instance of EditorViewController.

From the EditorViewController, you can access properties in the original view

controller with the following syntax:

((ViewController *)self.presentingViewController).<property>

ptg8126863

Did You
Know?

230 HOUR 10: Creating iOS Application Workflows with Storyboards

And within the original view controller, you can manipulate properties in the desti-

nation view controller with this:

((EditorViewController *)self.presentedViewController).<property>

The parentheses with the class name is necessary to typecast the

presentingViewController/presentedViewController properties to the right

object types. Without this notation, Xcode would not know what types of view con-

trollers these were, and we wouldn’t be able to access their properties.

Making Advanced Segues
Segues can do more than just link two scenes together: They can work with special-

ized iOS view controllers to add advanced functionality to applications. In this sec-

tion, we review how segues work with two common types of iOS controllers:

navigation controllers and tab bar controllers.

Storyboarding Navigation Controllers
The navigation controller (UINavigationController) class presents a series of scenes

that represent hierarchical information. In other words, one scene presents a high-

level view of a topic, a second scene drills down further, a third scene even further,

and so on. For example, the iPhone version of the Contacts application presents a list

of contact groups. Touching a group opens a list of contacts within that group.

Touching an individual contact displays details on that person, as shown in Figure

10.10. At any point in time, a user can back out of a level of detail and return to the

previous level—or jump all the way to the starting point, called the root.

Managing this transition between scenes is the navigation controller. It creates a

“stack” of view controllers. The root view controller is at the bottom. As a user navi-

gates deeper into the scenes, each successive view controller is pushed on the stack,

with the current scene’s view controller at the very top. To return to a previous level,

the navigation controller pops the topmost controller off the stack and returns to the

one below it.

The terminology of push and pop is used to describe navigation controllers
throughout the iOS documentation. You’ll even be showing new scenes under a
navigation controller by using the push segue.

ptg8126863

Making Advanced Segues 231

Navigation Bars, Items, and Bar Button Items
In addition to managing the stack of view controllers, the navigation controller

manages a navigation bar (UINavigationBar). A navigation bar is populated from

an instance of a navigation item (UINavigationItem) that is added to each scene

that falls under the navigation controller.

By default, the navigation item for a scene contains a title for that scene and a Back

button. The Back button is added as a bar button item (UIBarButtonItem) within

the navigation item. You can even drag additional bar button items into the navi-

gation item to add your own custom buttons to the navigation bar that is displayed

for that scene.

I fully expect that if you have made it through that description, you’re getting a bit

worried about having to manually handle all of those different objects (and that’s

why doing this in code is not trivial). Don’t fear. Interface Builder makes it painless,

and after you see how each scene is constructed, you’ll have no problem working

with all these objects in your apps.

Using Navigation Controllers with Storyboards
Adding a navigation controller to a storyboard is very similar to adding a view con-

troller. It looks a bit different, but the process is the same. Let’s assume you’re start-

ing with a Single View Application template. Now, just follow these steps:

FIGURE 10.10
Navigation
controllers are
prevalent
in iOS.

ptg8126863

232 HOUR 10: Creating iOS Application Workflows with Storyboards

1. Establish the code files for one or more view controller subclasses to handle the

user’s interactions within a given navigation controller scene. This is the same

as any other scene.

2. Open the application storyboard file in the Interface Builder editor.

3. If you want your entire application to fall under the navigation controller,

select the view controller in the default view and delete it. (Remove the corre-

sponding ViewController.m and .h files, as well.) This removes the default

scene.

4. Drag an instance of the Navigation Controller object from the Object Library

into the Document Outline or the Editor area. This adds what appears to be

two scenes to your project, as shown in Figure 10.11.

FIGURE 10.11
Add a naviga-
tion controller to
your project.

The scene labeled Navigation Controller Scene represents the navigation controller. It

is just a placeholder for the object that is going to control all the scenes that fall

underneath it. Although you won’t want to change much about the controller, you

can use the Attributes Inspector to customize its appearance slightly (choosing a

color scene/tint, for example, if you want).

The navigation controller is connected via a relationship to a table view controller

scene called Root View Controller. This is the scene where you begin your editing.

Although Apple initially gives you a table view controller (UITableViewController)

as your Root View Controller scene, you can replace it with anything you want,

including a simple view controller (UIViewController). Whatever scene you present

will have the navigation bar at the top, and you’ll be able to use a push segue to

transition to another scene.

ptg8126863

Making Advanced Segues 233

Setting the Navigation Bar Item Attributes
To change the title in the navigation bar, just double-click and start editing, or select

the navigation item in the scene and open the Attributes Inspector

(Option+Command+4), as shown in Figure 10.12.

FIGURE 10.12
Customize the
Navigation Item
for the scene.

You can change three attributes:

. Title: The title string that is shown at the top of the view

. Prompt: A line of text that provides instruction to the user (if needed) and is

shown above the title

. Back button: The text that appears in the Back button of the next scene

Yes, you can edit the text of the button that appears in a scene you don’t even have

yet. By default, when you transition from one navigation controller scene to another,

the “title” of the previous scene shows up as the title of the Back button in the next

scene. Sometimes, however, the title may be long, or not necessarily appropriate. In

these cases, you can set the Back button attribute to whatever string you want, and if

the user drills down to the next scene, that text is displayed in the button that takes

you back to the scene.

Editing Back button text does one additional thing: Because iOS can no longer use its

default behavior to create a Back button, it creates a new custom bar button item

within the navigation item that contains the title you wanted. You can customize

this bar button item even more—changing its color and appearance using the

Attributes Inspector.

So far, there is only a single scene under the navigation controller, so the Back but-

ton would never be displayed. Let’s see how you can chain together multiple scenes

to create the drill-down hierarchy that navigation controllers are known for.

ptg8126863

234 HOUR 10: Creating iOS Application Workflows with Storyboards

Adding Additional Navigation Scenes with Push Segues
To add an additional scene to the navigation hierarchy, we follow the exact same

process as adding a new modally presented scene to an application, as follows:

1. Establish the Root View Controller scene to be whatever you want, and include

a control that will start the segue. If you want to trigger the segue manually,

you don’t need anything extra—you’ll be connecting view controller to view

controller.

2. Drag a new view controller instance into the Document Outline or Editor area.

This creates a new empty scene with no navigation bar, no navigation item,

just an empty scene.

3. Control-drag from the object that you want to trigger the segue to the new

scene’s view controller.

4. When prompted for a segue type, choose Push.

You’ll see a new segue line added to the originating scene, as well as bunch of

changes to the scene you just connected. The new scene shows the navigation bar

and automatically has its own navigation item added and displayed. You can cus-

tomize the title and Back button, add additional bar button items, the works.

What’s even more important to realize is that you can keep doing this. You can add

additional push segues—even branch from multiple segues to follow different paths,

as shown in Figure 10.13. Xcode keeps track of everything for you.

Sharing Data Between Navigation Controller Scenes
Wondering how to share data between all the different scenes in a navigation con-
troller-based application? The navigation controller instance itself provides a per-
fect place to share data. By creating and using a subclass of the
UINavigationController, we can access this class using the
parentViewController attribute from any of the scenes we create.

Understanding Tab Bar Controllers
The second type of view controller covered this hour is the tab bar controller

(UITabBarController). Tab bar controllers, like navigation controllers, are promi-

nently featured in a wide range of iOS applications. As the name implies, a tab bar

controller presents a series of tabs at the bottom of the screen—represented as icons

and text—that can be touched to switch between scenes. Each scene represents a dif-

ferent function in the application, or a unique way of viewing the application’s

information.

ptg8126863

Making Advanced Segues 235

The Phone application on the iPhone, for example, presents different ways of sorting

your calls using a tab bar controller, as shown in Figure 10.14.

FIGURE 10.13
Create as many
push segues as
you need (even
branches).

FIGURE 10.14
A tab bar con-
troller switches
between unique
scenes.

ptg8126863

Watch
Out!

236 HOUR 10: Creating iOS Application Workflows with Storyboards

Tab Bars and Tab Bar Items
Like a navigation controller, the tab bar controller handles everything for you.

When you touch a button to transition between scenes, it just works. You do not

have to worry about programmatically handling tab bar events or manually switch-

ing between view controllers. The similarity doesn’t end there.

A tab bar controller also contains a UITabBar—a UI element that resembles a tool-

bar, but in appearance only. Any scene that is presented with the tab bar controller

inherits this navigation bar within its scene.

The scenes presented by a tab bar controller must contain a tab bar item

(UITabBarItem) that has a title, an image, and if desired, a badge (a little red circle

with a number in it).

The Unused Tabbed Template
Before you start building tab-based applications, I want to point out that Apple
includes an iOS application template called the Tabbed Application. This template
creates an application with two sample tabs already added, and a two view con-
troller subclasses set up and associated with each tab. It also makes absolutely
no sense (to me) to use.

This template may get you up and running a few seconds faster than adding a tab
bar controller to a storyboard, but for production projects, it has a fatal flaw: Apple
has associated two view controllers with the two default tabs in the application
and named them FirstViewController and SecondViewController. There’s
nothing wrong with this for learning exercises, but in a real application, you want
to name these in a way that reflects their actual use (MovieListViewController,
TheaterListViewController, and so on). You could certainly rename all of their
references in Xcode, but by the time you did that, it would have been faster to just
add and associate your own tab bar controller and view controller subclasses.

Using Tab Bar Controllers with Storyboards
To add a tab bar controller to an application, start with the Single View Application

template. If you do not want the initial scene to segue into the tab bar controller,

just delete the initial scene by removing its view controller, and then delete the cor-

responding ViewController interface and implementation files. When your story-

board is in the state you want, drag an instance of the Tab Bar Controller object

from the Object Library into the Document Outline or the Editor area. This adds a

controller and two sample tab bar scenes to the view, as shown in Figure 10.15.

The Tab Bar Controller scene represents the UITabBarController object that coordi-

nates all the scene transitions. Within it is a Tab Bar object that you can customize

slightly with Interface Builder, changing the color.

ptg8126863

Did You
Know?

Making Advanced Segues 237

From the tab bar controller are two “relationship” connections to the two scenes that

the tab bar will display. The scenes can be differentiated by the name of the tab bar

button that is added to them: Item 1 and Item 2, by default.

Even though all the tab bar item buttons are shown in the Tab Bar Controller
scene, they are actually part of the each individual scene. To change the tab bar
buttons, you must edit the tab bar item added to a scene. The controller scene is
left alone.

Setting the Tab Bar Item Attributes
To edit the tab bar item (UITabBarItem) that is displayed for any scene, open that

scene’s view controller and select the tab bar item within the Document Outline

area, and then open the Attributes Inspector (Option+Command+4), as shown in

Figure 10.16.

Using the Tab Bar Item settings section, you can set a value to be displayed in the

tab bar item badge. Typically, you want to set this via tab bar item’s badgeValue

property (an NSString) in code. You can also use the Identifier pop-up menu to

choose from over a dozen predefined tab bar icons and labels. If you choose to use a

predefined icon/label, you cannot customize it further because Apple wants these to

remain constant throughout iOS.

FIGURE 10.15
Adding a tab bar
controller adds
two default
scenes to the
application.

ptg8126863

238 HOUR 10: Creating iOS Application Workflows with Storyboards

To set your own image and title, use the Bar Item settings section. The Title field sets

the label for the tab bar item, and the Image drop-down associates an image

resource from your project for the item.

That’s everything you need to configure a scene for a tab bar controller. But what if

you want to add additional scenes to the tab bar? We tackle that now, and as you’ll

see, it’s even easier than adding a scene to a navigation controller.

Adding Additional Tab Bar Scenes
Unlike other segues that we’ve looked at, a tab bar has a clearly defined item (the

tab bar item) that triggers a change in scene. The scene transition isn’t even called a

segue—it is a “relationship” between the tab bar controller and a scene.

To create a new scene, tab bar item, and the relationship between the controller and

scene, start by adding a new view controller to the storyboard, as follows:

1. Drag a new view controller instance into the Document Outline or Editor area.

2. Control-drag from the Tab Bar Controller object to the new scene’s view con-

troller in the Document Outline.

3. When prompted, choose Relationship - viewControllers, as shown in

Figure 10.17.

FIGURE 10.16
Customize each
scene’s tab bar
item.

ptg8126863

A Navigation Storyboard Example 239

Creating the relationship does everything we need—it automatically adds a tab bar

item to the new scene, ready to be configured. We can keep doing this to create as

many tabs and scenes as we need in the tab bar.

Sharing Data Between Tab Bar Scenes
Like the navigation controller, a tab bar controller presents us with an easy oppor-
tunity to share information. Create a tab bar controller (UITabBarController)
subclass that is assigned as the identity of the tab bar controller. Add properties
to the subclass that represent the data we want to share, then access those prop-
erties through the parentViewController property in each scene.

A Navigation Storyboard Example
To conclude this hour, we create an application that gives us a chance to practice

the skills discussed in this hour, and several of those introduced in the preceding two

hours. We build an application, LetsNavigate, that presents a series of three scenes

through a navigation controller (see Figure 10.18). Within each scene, we show a

Push button that increments a counter and then transitions to the next scene. The

counter is stored in a custom subclass of the navigation controller. In other words,

this provides both an example of building a navigation-based UI and of using the

navigation controller to manage a property that all the scenes can access.

FIGURE 10.17
Create a
relationship
between
controllers.

ptg8126863

240 HOUR 10: Creating iOS Application Workflows with Storyboards

Implementation Overview
We start with a Single View application template, remove the initial scene and view

controller, and then add a navigation controller and two custom classes—one a sub-

class of a navigation controller that will enable each scene in the application to

share information, the other a subclass of a view controller that will handle user

interactions in the scenes.

We will remove the default table view root scene added with the navigation con-

troller and add three additional scenes. A Push button is included in each scene’s

view with an action method to increment a counter—as well as a segue from that

button to the next scene.

Setting Up the Project
Create a new Single View iPhone project called LetsNavigate. Before doing anything

else, clean up the project so we only have the things that we need. Start by selecting

the ViewController class files (ViewController.h and ViewController.m) and press-

ing the Delete key. When prompted, choose to move the files to the trash, not just

the references.

Next, click the MainStoryboard.storyboard file and then select the View Controller

line in the Document Outline area (Editor, Show Document Outline) and again press

Delete. The scene disappears. We now have the perfect starting point for our app.

Adding the Navigation Controller and Generic View
Controller Classes
We need two additional classes added to the project. The first, a subclass of

UINavigationController manages our push count property and is named

CountingNavigationController. The second, a subclass of UIViewController,

FIGURE 10.18
Building multi-
scene naviga-
tion controller
example.

ptg8126863

A Navigation Storyboard Example 241

is named GenericViewController and handles incrementing the push count as well

as displaying the count in each scene. To add these classes, follow these steps:

1. Click the + button at the bottom-left corner of the Project Navigator.

2. Choose the iOS Cocoa Touch category and the Objective-C class, and then

click Next.

3. Name the new subclass CountingNavigationController (you will have to

type the class name in), set it to be a subclass of UINavigationController,

and click Next.

4. On the last setup screen, choose your main project code group from the Group

pop-up menu, and then click Create.

5. Repeat this process to create a new UIViewController subclass named

GenericViewController. Make sure you choose the right subclass for each of

the new classes; otherwise, you’ll have difficulty later on.

Adding the Navigation Controller
To add the navigation controller, follow these steps:

1. Open the MainStoryboard.storyboard in the Interface Builder editor.

2. Display the Object Library (Control+Option+Command+3) and drag a

Navigation Controller object into an empty area of the Interface Builder editor

(or into the Document Outline area).

Your project will now show a Navigation Controller Scene and a Root View

Controller Scene.

3. The Root View Controller scene is, by default, a table view controller-based

scene. We don’t want this, so select the table view controller in the Document

Outline and press Delete. The scene disappears.

4. Now, concentrate on the Navigation Controller scene. We want to associate

this controller with our CountingNavigationController class, so select the

Navigation Controller line in the Document Outline and open the Identity

Inspector (Option+Command+3).

5. From the class drop-down menu, choose CountingNavigationController.

Done.

Now let’s add the three additional scenes we need and associate them with the

generic view controller class we created.

ptg8126863

242 HOUR 10: Creating iOS Application Workflows with Storyboards

Adding Additional Scenes and Associating the View Controller
With the storyboard still open, drag three instances of the View Controller object

from the Object Library into the Editor area or the Document Outline. In a few min-

utes, these will be connected to the Navigation Controller scene to form a series of

scenes to create a managed application workflow.

After adding the additional scenes, you want to do two things to each of them. First,

set the identity of each scene’s view controller. In this case, one view controller class

is handling all of them, so the identity is set to GenericViewController. Next, it’s a

good idea to set a label for each view controller so that the scene has a friendlier

name. To do so, follow these steps:

1. Start by selecting the first (whichever you decide is “first” is fine) scene’s View

Controller object and opening the Identity Inspector (Option+Command+3).

2. Use the Class drop-down menu to pick the GenericViewController.

3. Still within the Identity Inspector, set the Label field to First.

4. Move to one of the other scenes you added, select its view controller line, set its

class to GenericViewController, and the label to Second.

5. Repeat the process for the last scene as well—setting its custom class and a

label of Third.

When finished, your Document Outline should look like Figure 10.19.

Planning the Variables and Connections
I’m intentionally trying to keep these projects light so that there isn’t a great deal of

information that needs to be stored or actions that have to be defined. The

CountingNavigationController will have a single property, pushCount, that con-

tains the number of times we have pushed a new scene into view using the naviga-

tion controller.

The GenericViewController class will have a single property called countLabel

that references a label in the UI displaying the current count of pushes. It will also

have an action method named incrementCount that will increase the pushCount

property in the CountingNavigationController by one.

ptg8126863

A Navigation Storyboard Example 243

Creating the Push Segues
To build a segue for the navigation controller, we need something to trigger it.

Within the storyboard editor, add a button (UIButton) labeled Push to the First

Scene and Second Scene, but not the Third Scene. Why not the Third? Because it is

the last scene that can be displayed, there’s nothing after it to segue to.

Now, Control-drag from the navigation controller (either in the Document Outline

or in the Editor area) to the First Scene. When prompted for a segue, choose

Relationship – Root View Controller. This sets the First Scene as the scene that is ini-

tially displayed by the navigation controller.

Next, Control-drag from the button in the First Scene to the Second Scene’s view con-

troller line in the Document Outline, or target the scene directly in the editor. When

prompted for the segue type, choose Push, as shown in Figure 10.20. A new segue

line, Segue from UIButton to Second, is added to the First Scene in the Document

Outline, and the Second Scene inherits the navigation controller’s navigation bar

and gains a navigation item in its view.

Repeat this process, creating a push segue from the Second Scene’s button to the

Third Scene. Your Interface Builder editor should now contain a fully realized navi-

gation controller sequence. Click and drag each scene in the view to arrange it in a

way the makes sense to you. Figure 10.21 shows my interconnected views.

FIGURE 10.19
Your final
Document
Outline includes
a navigation
controller and
three scenes—
order is not
important.

ptg8126863

244 HOUR 10: Creating iOS Application Workflows with Storyboards

Creating the Interface
By adding the scenes and buttons, you have really just built most of the interface.

The final steps are customizing the title of the navigation item in each scene and

adding an output label to display the push count.

Begin by going through each of the scenes—First, Second, And Third—and double-

clicking the center of the navigation bar that now appears at the top of each view.

FIGURE 10.20
Create a push
segue.

FIGURE 10.21
Connect all of
your views via
segues.

ptg8126863

A Navigation Storyboard Example 245

Title the first view First Scene, the second Second Scene, and the third… wait for

it… Third Scene.

Finally, to each of the scenes add a label (UILabel) near the top that reads Push

Count: and a second label (the output label) with the default text of 0 (and a large,

center aligned font, if you want) to the center of each view.

Figure 10.22 shows the final interface design.

FIGURE 10.22
The final layout
of the naviga-
tion application.

Creating and Connecting the Outlets and Actions
There is only one outlet and one action that need to be defined in this project—but

they need to be connected several times. The outlet—a connection to the label dis-

playing the push count (countLabel)—will be connected to each of the three scenes.

The action, incrementCount, will only need to be connected to the button in the

First Scene and Second Scene.

Position your display in the Interface Builder editor so that the First Scene is visible

(or just use the Document Outline), click its push count label, and then switch to the

Assistant Editor mode.

Adding the Outlet
Control-drag from the label in the center of the First Scene to the just below the

@interface line in GenericViewController.h. When prompted, create a new outlet

named countLabel.

ptg8126863

246 HOUR 10: Creating iOS Application Workflows with Storyboards

That created the outlet and the connection from the First Scene; now you need to

connect it to the other two scenes. Control-drag from the Second Scene’s push count

label and target the countLabel property you just created. The entire line will high-

light, as shown in Figure 10.23, showing you are making a connection to an exist-

ing outlet. Repeat this for the Third Scene, connecting its push count label to the

same property.

FIGURE 10.23
Create the out-
let, and then
connect the
other scenes’
labels.

Adding the Action
Adding and connecting the action works in much the same way. Start by Control-

dragging from the First Scene’s button to just below the property definition in

GenericViewController.h. When prompted, create a new action named

incrementCount.

Switch to the second view controller and Control-drag from its button to the existing

incrementCount action. You’ve just made all the connections we need.

Implementing the Application Logic
Most of our work is now behind us. To finish the tutorial, we first need to set up the

pushCount property in the CountingNavigationController class so that it can keep

track of the number of times we have pushed a new scene in the application.

ptg8126863

A Navigation Storyboard Example 247

Adding the Push Count Property
Open the CountingNavigationController.h interface file and add a property defini-

tion for an integer named pushCount below the @interface line:

@property (nonatomic) int pushCount;

Next, open the CountingNavigationController.m file and add a corresponding

@synthesize statement below the existing @implementation line:

@synthesize pushCount;

That’s all we need to do to implement the custom CountingNavigationController

class. Because it is a subclass of a UINavigationController, it already performs all

the navigation controller tasks we need, and now it stores a pushCount property, too.

To access this property from the GenericViewController class that is handling the

content for all the scenes in the application, we need to import the custom naviga-

tion controller’s interface file in GenericViewController.h. Add this line following the

existing #import statement:

#import “CountingNavigationController.h”

We’re all set to finish our implementation, which is just a matter of adding the logic

to GenericViewController that increments the counter and makes sure it is dis-

played on the screen when a new scene is pushed into view.

Incrementing and Displaying the Counter
To increment the counter in GenericViewController.m, we use the

parentViewController property to access the pushCount property. The

parentViewController, as you have learned, is automatically set to the Navigation

Controller object within any scene managed by the navigation controller.

We need to typecast the parentViewController to our custom class of

CountingNavigationController, but the full implementation is just a single line.

Implement incrementCount as shown in Listing 10.2.

LISTING 10.2 The incrementCount Implementation
- (IBAction)incrementCount:(id)sender {

((CountingNavigationController *)self.parentViewController).pushCount++;

}

The final step is to update the display to show the current count. Because pushing

the button increments the push count and pushes a new scene into view, the

incrementCount action is not necessarily the best place for this logic to fall. In fact,

ptg8126863

248 HOUR 10: Creating iOS Application Workflows with Storyboards

it won’t always be accurate because the count could be updated in another view

and then the Back button used to “pop” back to the original view, which would now

be showing an invalid count.

To get around this, we just add the display logic to the viewWillAppear:animated

method. This method is called right before a view is displayed onscreen (regardless

of whether it is through a segue or by a user touching the Back button), so it is a

perfect place to update the label. Add the code in Listing 10.3 to the

GenericViewController.m file.

LISTING 10.3 Update the Display in viewWillAppear:animated
1: -(void)viewWillAppear:(BOOL)animated {

2: NSString *pushText;

3: pushText=[[NSString alloc] initWithFormat:@”%d”,

4: ((CountingNavigationController *)

5: self.parentViewController).pushCount];

6: self.countLabel.text=pushText;

7: }

Line 2 declares a new string, pushText, that will contain a string representation of

the counter. Line 3 allocates and initializes this string using the NSString

initWithFormat method. The %d format string is replaced by the contents of the

pushCount property, accessed using the same approach as in the incrementCount

method.

In the last step, line 6, the countLabel is updated with the pushText string.

Building the Application
Run the application and test the navigation controller. Use the button to push new

scenes on to the navigation controller stack, and then pop them back off with the

Back button functionality that we get for free. The push count stays in sync through

all the different scenes because we now have a central class

(CountingViewController) managing our shared property for us.

Summary
The topics this hour introduced—multiple scenes and segues—are very important

aspects of iOS development that can take your apps from being simple single-view

“utility”-style programs to full-featured software. You learned how to visually and

programmatically create modal segues and handle interactions between scenes.

ptg8126863

249Workshop

In addition, the hour explored two new view controller classes. The first, the naviga-

tion controller, displays a sequence of scenes that are displayed one after the other—

and are often used to “drill down” into detailed information about something. The

second, the tab bar controller, is used to create applications with a single unifying

bar at the bottom that can be used to switch between different scenes. The integra-

tion of these controllers with storyboard scenes and segues is a elegant and powerful

feature of Xcode and iOS.

Q&A
Q. Why doesn’t iOS just provide windows?

A. Can you imagine managing windows with just your fingers? The iOS interface

is designed to be touched. It is not meant to model a typical desktop applica-

tion environment, which was built around the mouse.

Q. Can I mix and match scenes and segues?

A. Yes and no. You cannot use a push segue without a navigation controller, nor

create a working tab bar application without a tab bar controller. You can,

however, implement a navigation controller that is used in conjunction with a

tab bar controller, or display a modal segue that transitions to a navigation

controller-managed series of scenes and so on.

Q. What if I want to share information between scenes that do not have a cen-
tral controller class?

A. The fact that the tab bar controller and navigation controller have a nice

place to implement shared properties is great, but not necessary. You can

always create a custom singleton class in your application and reference it in

other classes that need to exchange data.

Workshop

Quiz
1. Navigation controllers and tab bar controllers require extensive coding with

the Storyboard feature. True or false?

2. All presentation and transition styles are compatible with one another. True

or false?

ptg8126863

250 HOUR 10: Creating iOS Application Workflows with Storyboards

3. There is no easy way to share data between scenes in a tab bar or navigation-

based application. True or false?

Answers
1. False. The Xcode storyboard makes it possible to add these features almost

entirely with drag-and-drop simplicity.

2. False. Some transitions will not work with some presentation styles. You can

find the full guidelines in the developer documentation.

3. False. These controllers have a central controller class that offers a great place

to share information between scene’s view controllers.

Activities
1. Using the iOS Single View Application template, practice the storyboarding

techniques described in this hour—from simple modal segues to navigation

controllers and tab bar controllers.

2. Use the iOS Single View Application template (for the iPad) to test the different

modal presentation styles available on Apple’s tablet platform.

ptg8126863

HOUR 11

Building and Executing
Applications

What You’ll Learn in This Hour:
. The terminology of the Xcode build tools
. How to create new project targets
. The types of per-target build settings you can modify
. The purpose and management of schemes
. How to use the iOS simulator to test iOS apps

Nothing is quite as grand as creating an application and running it for the first time. To

run an application, however, Xcode must take into account how to compile the applica-

tion, what dependencies (if any) it has, how to run it, whether to include debugging infor-

mation, and many, many more possible variables. It is no exaggeration to say that an

entire 24-hours book could be dedicated to tweaking and configuring the dozens of possi-

ble build settings Xcode presents us with.

In this hour, we take a step back and review the different components of the build system,

what they are used for, ways they can be modified, and how it all ties together. This is not

the most exciting hour in the book, but you’ll thank yourself for learning the “language of

the build” sooner rather than later.

The Language of the Build
Building a project usually produces an executable or a library. This seems simple enough,

and is the ultimate outcome of most development projects. What lies beneath the surface,

however, is anything but simple.

ptg8126863

By the
Way

252 HOUR 11: Building and Executing Applications

If you’ve been building sample code as you have read through the first several

hours, you have likely been clicking the Run button and viewing the results, as

shown in Figure 11.1. There is certainly nothing wrong with this; in fact, we encour-

age it. As you start to customize projects, however, you need to understand the ter-

minology of the Xcode build system. What’s a build configuration? An action? A

scheme? Let’s start this lesson by reviewing the many terms you’ll encounter when

you start delving deeper into the build process.

Run Build SettingsFIGURE 11.1
Clicking Run is
simple. The
Xcode build
system is not.

This hour introduces many of the build-related options in Xcode, but it should not
be considered comprehensive. Read Apple’s Xcode Build System Guide for a com-
plete reference to everything build related.

Targets
Targets are a collection of instructions that define how to build a project. Typically, a

target is a framework or an application, but it can also be tests or other actions that

are carried out against your project’s code. Projects usually start with a single target

(an application), but you can add others easily. You might, for example, start an iOS

application with a single iPhone target, but later add an iPad target for a larger,

ptg8126863

The Language of the Build 253

more complex version of the app. You might also use a target to create a version of

an application for a particular version of the OS.

To view the targets configured for your project, click the topmost project icon in the

Project Navigator. The targets are listed in the column to the right of the navigation

area, as shown in Figure 11.2.

Targets

FIGURE 11.2
View the targets
associated with
your project.

Products
The files that are generated by following the build instructions in a target are called

products. As you would expect, products are usually applications, libraries, or frame-

works. In its initial state, a project has no completed products but, because of the tar-

get rules, knows the products that it will be producing.

You can look at the products that have been created (or are waiting to be built) by

looking in the Products logical group within the Project Navigator, as shown in

Figure 11.3.

Products that have not yet been created are highlighted with a red label. Those that

are already built show in black. To find the actual files represented by a target (such

as an executable), you can right-click the target and choose Show In Finder from the

contextual menu.

ptg8126863

Watch
Out!

Did You
Know?

254 HOUR 11: Building and Executing Applications

Build Actions
A build action is what you are executing when you click the Run button on the

Xcode toolbar. It builds the target (or targets), and then performs one or more prede-

fined actions on them. The Run build action, for example, builds your target and

launches it in OS X or installs it on an iOS device (or in the iOS simulator) and

attaches a debugger to the process.

Five predefined build actions are configured for each project you create. The first

step of each of these actions is to build one or more targets (You learn how it knows

which targets shortly.)

The first step of any build action is to build the target. This makes “build” itself
an informal and implied (but very important) build action.

. Run: The Run build action launches the application in OS X or installs the

iOS application on a device or in the iOS simulator. A debugger process is

attached to the running application for tracing/tracking its behavior. You

learn more about debugging in Hour 19, “Getting the Bugs Out: Debugging

with LLDB and GDB.”

Debugging with Run
Pay close attention to what I’m saying here about the Run build action. In its
default configuration, it is intended for debugging an application, not simulating
the application in a final release scenario. Applications that are built for debug-
ging include symbol information that makes it possible to track/change variable
contents on-the-fly and view the application’s flow in relation to the source code in
real time.

Products

FIGURE 11.3
Xcode lists the
products that
will be created
by your targets
within the
Products group.

ptg8126863

The Language of the Build 255

. Test: The Test build action is used to build and run any unit tests that you’ve

created along with your project. Unit tests are pieces of code that execute the

core functions of your application to verify that the proper results are being

returned. This ensures that as you build your application out you do not intro-

duce changes that break working code (a condition known as a regression).

You learn about creating unit tests in Hour 18, “Test Early, Test Often.”

. Profile: The Profile action is used in conjunction with an Xcode tool called

Instruments. Instruments can analyze your running application for perform-

ance issues, memory leaks, and other problems that may not be detectable

through simple debugging efforts. We walk through some of the basics of

Instruments in Hour 21, “Advanced: Analyzing Code with Instruments.”

. Analyze: The Analyze action performs a static analysis of your code, detecting

logic issues that would not stop an application from building but might pre-

vent it from running correctly.

. Archive: The Archive action creates a distribution-ready version of the appli-

cation for uploading to the App Store or distributing to product testers. By

default, it does not include any debugging information or unit tests that were

initially added to the project. You can fine-tune the archive settings to deliver

exactly the target or targets you intend to submit.

You can execute any of the build actions from the Product menu, or most of the

actions (Archive being the exception) by clicking and holding on the Run button, as

shown in Figure 11.4.

FIGURE 11.4
Choose the
build action to
execute by click-
ing and holding
the Run button.

Build Configuration
As mentioned, you can build applications with debugging information using the

Run build action or prepare an application that is devoid of any debugging symbols

ptg8126863

256 HOUR 11: Building and Executing Applications

using the Archive build action. This brings up a question: How do these different

actions build differently? The answer is that they use a different build configuration.

Two build configurations are created with each project you create: a debug configu-

ration and a release configuration. As their names suggest, one builds your project

with debugging information included; the other doesn’t. The build actions use one

or the other build configuration, depending on what it is trying to accomplish.

You can verify these build configurations as follows:

1. Click the project-level icon in the Project Navigator.

2. Select the project icon in the column that appears to the right of the

Navigator.

3. Click the Info tab in the top of the Editor area, as shown in Figure 11.5.

Build ConfigurationsFIGURE 11.5
Each project
includes a
debug and
release build
configuration.

For most development projects, debug and release are all you need.

Schemes
If you are feeling an abundance of information overload by now, I don’t blame you.

Understanding how all the different pieces of the build system fit together can be like

trying to solve a 5,000-piece puzzle of the sky on a clear day. That said, I introduce

just one more component this hour: schemes.

ptg8126863

Managing Targets 257

FIGURE 11.6
The Scheme
menu is directly
to the right of
the Stop button
(shown here in
unclicked/clicked
states).

In reality, what you’re seeing in the Scheme pop-up is not the name of your project

but the name of a scheme that has been defined for your project. A scheme ties all

the concepts that you have just learned about together. A scheme determines what

targets will be built, what the various build actions will do when they are executed,

and what build configuration are used for a given build action.

When you create a project, a scheme is automatically created and named for the

project’s target. It provides the default functionality that ties each of the build

actions to the targe so that clicking Run will do what you expect.

Managing Targets
Although targets and schemes are not something you will change frequently (you

see some examples in the later hours of this book), I wanted to give you an opportu-

nity to start exploring these features on your own. In the earlier hours, you saw how

to configure icons, launch images, and set entitlements for applications. What you

were doing, in fact, was configuring your target. At that point in time, there was

only a single target to look at, so it appeared that your settings were for a project. In

actuality, however, they were for the target.

Creating a New Target
Creating a new target is nearly identical to creating a new project, but it occurs with

an existing project. Click the topmost project icon in the Project Navigator, and then

If you have been building and running applications over the past few hours, you’ve

seen your project name along with a destination for running the code (My Mac, iOS

Device, iPhone Simulator, iPad Simulator) show up in a Scheme pop-up menu

directly to the right of the Stop button, as shown in Figure 11.6.

ptg8126863

Did You
Know?

258 HOUR 11: Building and Executing Applications

click the Add Target button that appears at the bottom of the Editor area, as shown

in Figure 11.7.

Add Target

FIGURE 11.7
Clicking to add
a new target.

You are then guided through the exact same project-creation assistant that you

learned about in Hour 4, “Creating Projects with Xcode Templates.” The result? A

single project that contains two targets, and two sets of files for each of the targets,

as shown in Figure 11.8.

To delete a target, just select it and press the Delete key. This removes the target,
but it does not remove the target’s files or any schemes that were defined for the
target.

Managing Files Between Targets
A point of confusion with multiple targets is “which file belongs to which target.” For

targets to be useful, they should be able to share some files but not others. We look

at one way to do this in the next section, but before we get there, I want to introduce

the Target Membership tool, found within the File Inspector (Option+Command+1).

With a file selected in the Project Navigator, you can open the File Inspector and

expand the Target Membership section to show all your possible targets for the proj-

ect, as shown in Figure 11.9.

ptg8126863

Managing Targets 259

Use the check boxes beside each target to determine whether the file is to be used

when creating that target (or not).

A second
target

FIGURE 11.8
A single project
with multiple
targets.

Choose your Targets

FIGURE 11.9
Associate a file
with one or
more targets.

ptg8126863

260 HOUR 11: Building and Executing Applications

A Targeted Case Study
When you add a new target to a project, it essentially creates another new project,

with all the supporting files, inside your existing project. This is not necessarily what

you want, so do not assume this default behavior is the way it “has to be.” To see a

simple example of a multitarget project that makes a bit more sense, open the

Bullseye project included in the Hour 11 Projects folder. This is a very simple iOS

project that, when a button is clicked, displays I’m SD (on an iPhone) and I’m HD

(on an iPad), as shown in Figure 11.10.

iPhone Target

iPad TargetiPad Target

FIGURE 11.10
A simple appli-
cation that will
make millions.

What makes this application unique is that it, like many iOS applications on the

App Store, is not universal. There are both Bullseye HD and Bullseye targets within

the project, shown in Figure 11.11. These create two distinct executables, one for the

iPad and one for the iPhone.

To set up this project, I just created a basic iPhone app that worked the way I wanted

it to, and then I added a new target. Using the project-creation assistant, I configured

the new target to be iPad-specific. Xcode automatically added the new target in a

group called Bullseye HD in my project. Even though the projects create separate

executables, I wanted them to share the ViewController class that I developed for

the original iPhone application (dramatically cutting down on my development

time).

ptg8126863

Managing Targets 261

Unfortunately, because Xcode automatically adds all the files into the target that

would be required for a brand new project, I needed to make two minor modifica-

tions. First, I deleted the ViewController class files that were added to the Bullseye

HD group. Next, I dragged (from a Finder window) the existing iPhone Bullseye

ViewController class files into the Bullseye HD group and told Xcode to add the

files to the Bullseye HD target, and that it shouldn’t create a new copy of the files, as

shown in Figure 11.12.

Remember, you can set which files are associated with which target by selecting
the file in the Project Navigator and using the File Inspector
(Control+Command+1). Just expand the Target Membership section, click the
check box by each target the file should be considered a part of, and you are
done.

I could also add the ViewController.m implementation file to the Compile Sources
section of the Build Phase settings to accomplish the same thing.

For groups of files I can easily find in the Finder, however, I find this approach
easier.

As a final step, I edited the iPad version of the Mainstoryboard.storyboard file and

created connections to the outlets and actions I had already defined in the iPhone

version of the ViewController class. The end result? Two targets that have unique

storyboards, share a ViewController class, and create two distinct executables.

FIGURE 11.11
Multiple targets
for multiple
devices.

Did You
Know?

ptg8126863

262 HOUR 11: Building and Executing Applications

I can now execute my build actions on whichever target I want because the appro-

priate schemes were automatically added for each of the targets, as shown in

Figure 11.13.

FIGURE 11.12
Choose the tar-
get to associate
with your files.

FIGURE 11.13
Choose the
scheme that
corresponds to
the target you
want to build.

Target Build Settings, Phases, and Rules
Recall that a target defines the rules for a build. Therefore, for each target you cre-

ate, you can modify how the build process is carried out. To do this, make sure the

project icon is selected in the Navigator, and then choose the target you want to

ptg8126863

Managing Targets 263

configure. The tabs at the top of the Editor area give you control over the build

process for that specific target. The summary, as you have seen before, gives you

easy access to basic settings, such as icons, supported device orientations, and

resource requirements. The Info tab presents the information in a less friendly, but

more inclusive manner—providing the opportunity to configure any of the dozens of

possible project plist options that might apply to your application.

Build Settings
The more interesting settings are found under the Build Settings, Build Phases, and

Build Rules tabs. The Build Settings tab, shown in Figure 11.14, makes it possible to

choose things such as the base SDK for your project, the compiler being used, the

permissions used for deployment, and much, much more. This is not a playground,

so I highly recommend reviewing Apple’s build documentation before touching any-

thing here.

FIGURE 11.14
The Build
Settings tab
contains dozens
of options and
tweaks for your
target’s build
process.

Build Phases
The Build Phases tab is essentially a list of steps, from top to bottom, of what hap-

pens during a build. For example, looking at the Bullseye Build Phases in Figure

11.15, you can see that the source code files will be compiled (Compile Sources), the

resulting binaries will be linked with the necessary iOS frameworks included in the

project (Link Binary with Libraries), and then the necessary resources will be copied

into the executable (Copy Bundle Resources). The first step, Target Dependencies, is

empty because this project is not dependent on anything else. If you need for

ptg8126863

264 HOUR 11: Building and Executing Applications

If the default phases are not enough, you can even add additional build phases

using the Add Build Phase button in the bottom-right of the Editor area.

Build Rules
The final tab, Build Rules, is shown in Figure 11.16. This tab describes how certain

types of files are handled when encountered during the build process. Rarely will

you need to add any rules to this section, unless you are doing very specialized

development.

Managing Schemes
Now that you understand how a project can have multiple targets, and how each

target defines its own build rules, it is time to explore the glue that ties everything

together: schemes. To view the schemes that are installed for a given project, click

the left side of the Scheme pop-menu on the Xcode toolbar and choose Manage

Schemes, as shown in Figure 11.17. You can also find this option under the Product

menu. Use the Bullseye project to see these settings for yourself.

another target to be built first (a library, for example), you can add it to this list by

clicking the + icon at the bottom of the Target Dependencies section.

FIGURE 11.15
Customize each
step of the build
process.

ptg8126863

Managing Schemes 265

Because there are two targets in Bullseye (and the Autocreate Schemes check box is

checked), you’ll see two schemes: Bullseye and Bullseye HD. These define what hap-

pens when a build action is performed on the respective targets. Highlight the

Bullseye scheme and click the Edit button to open the Scheme Editor.

Editing Schemes
The Scheme Editor provides a list of the build actions, including the action that is

included (by default) with all other actions: Build. To edit a build action’s settings,

click the action in the left column. The right side of the window updates to display

the options for that particular action. We start with the Build action and briefly

cover what you can expect within each of the sections.

FIGURE 11.16
Fine-tune how
the build
process deals
with different
files it
encounters.

FIGURE 11.17
Manage the
schemes that
are attached to
your project.

ptg8126863

Did You
Know?

By the
Way

266 HOUR 11: Building and Executing Applications

If you expand the actions in the left column by clicking the disclosure arrow, you
can also edit pre-actions and post-actions. These are scripts (or email) that are
executed before (pre) and/or (post) after the Build action. This isn’t something
you’ll do often, but the capability is present should you need it.

Build
The Build action itself is used to define the targets that are built when each of the

build actions are run. In Figure 11.18 you can see that only the Bullseye target is

built when the Bullseye scheme’s build actions are executed. If I wanted, I could click

the + button at the bottom of the list of targets and add the Bullseye HD target, as

well. This would enable me to build both applications simultaneously.

Add Build Target

FIGURE 11.18
The build action
settings.

You can only run (debug) one application at a time, regardless of how many targets
you build during the Run build action.

Run
Within the Run build action settings, shown in Figure 11.19, you can choose whether

Run launches a debug or release version of your application, what executable (if

ptg8126863

Managing Schemes 267

You can also use the other tabs within this section (Arguments, Options, and

Diagnostics) to choose arguments and environment variables that will be passed to

the application when it launches, set simulated location services, and activate addi-

tional debugging and logging settings.

Test
The Test build action settings, shown in Figure 11.20, set the build configuration to

use (debug or release) when the Test action is executed, the debugger to use, and

any unit tests that should be executed. There are no unit tests associated with the

Bullseye project, so this configuration is mostly empty. You learn all about unit tests

later in Hour 18.

By default, the Test action uses the Run action’s arguments and environment vari-

ables, but you can also set them independently in the Arguments tab of the

configuration.

FIGURE 11.19
The Run build
action settings.

there are multiples) should actually be executed, and whether the application is

launched automatically.

ptg8126863

268 HOUR 11: Building and Executing Applications

Profile
Recall that the Profile build action uses the Xcode Instruments tool to run tests

against your running application. Use these settings, shown in Figure 11.21, to

choose between a release or debug build configuration, which executable to launch,

and which instrument (if you want to set a default) should be started when profiling

begins. Again, the Arguments tab can override arguments and environment vari-

ables used during execution.

Analyze
The easiest of the build actions to configure, the Analyze action, shown in Figure

11.22, offers a choice between the release and debug build configurations. No other

settings are required.

Archive
Last but not least, the Archive build action creates a “production-ready” version of

your app that is ready to be submitted to the App Store. You can use this action’s

settings (see Figure 11.23) to set Archive to use a debug build configuration (but this

really wouldn’t make much sense), set a name for the archive it produces, and,

finally, whether the Xcode Organizer launches when the action finishes, showing

the archive.

FIGURE 11.20
The Test build
action settings.

ptg8126863

Managing Schemes 269

FIGURE 11.21
The Profile build
action settings.

FIGURE 11.22
The Analyze
build action
settings.

ptg8126863

270 HOUR 11: Building and Executing Applications

Adding New Schemes
In many cases, the default build setup (schemes, targets, and so on) that Xcode

establishes for you when you create a project are all that you’ll need. If you do

decide you want to create a custom scheme, however, you can do that easily, as

follows:

1. From the left side of the Scheme pop-up menu on the Xcode toolbar, choose

Manage Schemes (or choose the menu item with that same name from the

Product menu).

2. On the Manage Scheme screen, click + to add a new scheme.

3. You are prompted to name the scheme and choose a default target, as shown

in Figure 11.24. Provide the requested values, and then click OK.

A new scheme appears in the Manage Scheme list, ready to be modified as described

earlier.

To remove a Scheme you’ve added, select it in the management list and click the –

button.

FIGURE 11.23
The Archive
build action
settings.

ptg8126863
Did You

Know?

Using the iOS Simulator 271

FIGURE 11.24
Add a new
scheme to your
project.

If you accidentally remove one of the autocreated schemes in the Manage
Scheme window, just click the Autocreate Schemes Now button to automatically
re-create it.

Using the iOS Simulator
The final topic we cover in this hour relates to what happens after you’ve chosen to

build and run your application. If you are building for the Mac, you use the applica-

tion exactly as you would any other. But what about for iOS apps? The answer is the

iOS simulator. This tool, shown in Figure 11.25, is where you’ll spend a great deal of

your time after clicking Run in an iOS Xcode project.

Despite its fancy appearance, the iOS simulator is not a perfect iDevice. It cannot

simulate complex multitouch events or provide readings from some sensors (gyro-

scope, accelerometer, and so on). The closest it comes on these counts is the ability to

rotate to test landscape interfaces and a simple “shake” motion simulation. That

said, for most apps, it has enough features to be a valuable part of your develop-

ment process.

ptg8126863
Watch

Out!

272 HOUR 11: Building and Executing Applications

FIGURE 11.25
The iOS simula-
tor includes a
stripped-down
version of
Apple’s
standard
iOS apps.

Simulation Versus Real-World Performance
One thing that you absolutely cannot count on in the simulator is that your simu-
lated app performance will resemble your real app performance. The simulator
tends to run silky smooth, whereas real apps might have more limited resources
and not behave as nicely. Be sure to occasionally test on a physical device so that
you know your expectations are in line with reality.

Launching Applications in the Simulator
To launch an application in the simulator, open the project in Xcode, make sure

that the right side of the Scheme pop-up menu is set to the iPhone Simulator or iPad

Simulator, and then click Run. After a few seconds, the simulator launches and the

application displays. You can test this using the HelloSimulator project (available in

both iPhone- and iPad-specific versions) included in this hour’s Projects folder.

Once up and running, the HelloSimulator app should display a simple line of text

and an image (see Figure 11.26).

When an application is running, you can interact with it using your mouse as if it

were your fingertip. Click buttons, drag sliders, and so on. If you click into a field

where input is expected, the onscreen keyboard displays. You can “type” using your

Mac keyboard or by clicking the onscreen keyboard buttons. The iOS copy and paste

ptg8126863

By the
Way

Did You
Know?

Using the iOS Simulator 273

services are also simulated by clicking and holding on text until the familiar loupe

magnifier appears.

FIGURE 11.26
Click Run in
Xcode to launch
and run your
application in
the simulator.

Clicking the virtual Home button (or choosing Hardware, Home from the menu)

exits the application but does not quit the debugger in Xcode. To completely stop

execution, click the Stop button on the Xcode toolbar.

Launching an application in the simulator installs it in the simulator, just like
installing an app on a real device. When you exit the app, it is still present on the
simulator until you manually delete it.

To remove an installed application from the simulator, click and hold its icon until it
starts “wiggling,” and then click the X that appears in the upper-left corner. In
other words, remove apps from the simulator in the exact same way as you
remove them from a physical device.

To quickly reset the simulator back to a clean slate, choose Reset Content and
Settings from the iOS Simulator menu.

By default, your application will display on a simulated non-Retina screen. To
switch to a different simulated device, choose from the options in the Hardware,
Device menu.

ptg8126863

274 HOUR 11: Building and Executing Applications

Generating Multitouch Events
Even though you have only a single pointer, you can simulate simple multitouch

events, such as two-finger pulls and pinches, by holding down Option when your

cursor is over the simulator screen. Two circles, representing fingertips, are drawn

and can be controlled with your mouse or trackpad. To simulate a touch event, click

and drag while continuing to hold down Option. Figure 11.27 shows the pinch

gesture.

FIGURE 11.27
Simulate simple
multitouch with
the Option key.

Try this using the HelloSimulator app. You should be able to use the simulator’s mul-

titouch capabilities to shrink or expand the onscreen text and image.

Rotating the Simulated Device
To simulate a rotation on your virtual device, choose Rotate Right or Rotate Left from

the Hardware menu (see Figure 11.28). You can use this to rotate the simulator win-

dow through all four possible orientations and view the results onscreen.

Again, test this with HelloSimulator. The app reacts to the rotation events and ori-

ents the text properly.

ptg8126863

Using the iOS Simulator 275

FIGURE 11.28
Rotate the inter-
face through the
possible orien-
tations.

Simulating Other Conditions
You want to test against a few other esoteric conditions in the simulator. Using the

Hardware menu, you can access these additional features:

. Device: Choose from the iPhone, iPhone Retina display, and iPad devices to

simulate your application on each.

. Version: Check to see how your app behaves on earlier versions of the iOS.

This option enables you to choose from many of the recent versions of the iOS.

Note that you need to use the Xcode Component options (located in the

Downloads section of the Xcode Preferences) to install simulator files for earlier

iOS releases.

. Shake Gesture: Simulate a quick shake of the device.

. Lock: Simulates the condition of a locked device. Because a user can lock an

iPhone or iPad while an application is running, some developers choose to

have their programs react uniquely to this situation.

. Simulate Memory Warning: Triggers an application’s low-memory event.

Useful for testing to make sure your application exits gracefully if resources

run low.

ptg8126863

276 HOUR 11: Building and Executing Applications

. Toggle In-Call Status Bar: When a call is active and an application is started,

an additional line appears at the top of the screen (Touch to Return to Call).

This option simulates that line.

. Simulate Hardware Keyboard: Simulates a connected keyboard (just use your

Mac keyboard).

. TV Out: Displays a window that will show the contents of the device’s TV out

signal. We do not use this feature in this book.

Test a few of these out on the HelloSimulator application. Figure 11.29 shows the

application’s reaction to a simulated memory warning.

FIGURE 11.29
The simulator
can react to a
variety of differ-
ent simulated
conditions.

Summary
It’s always difficult for me to try to define the vocabulary for a system when a large

number of the terms start the same way: build, build actions, build phases, build

configurations, build rules, and so on. The Xcode build system is not something that

can be mastered in a single sitting. This hour’s lesson provided an introduction to

the terms you’ll encounter when reading about the build system, the role of targets

and target build settings, the purpose of build actions, and the use of schemes to tie

everything together. You should have a sense of how all of these things work

ptg8126863

Workshop 277

together to produce your Xcode products, but don’t worry if it’s all a bit overwhelm-

ing. Many of these options will never need changed, and we revisit them with some

examples later in the book.

As a final step, you also learned about the iOS simulator as a tool for testing and

debugging iOS applications—a critical piece of the iOS build/run workflow that is

not necessary for native OS X apps.

Q&A
Q. I built a release copy of my OS X application. Where can I find it?

A. To find any of your projects products, just right-click the target and choose

Show in Finder.

Q. My sample projects have always included multiple targets. Why do yours
only have one?

A. You have likely been including the unit tests during your project-creation step.

There’s absolutely nothing wrong with this. I tend to leave the unit tests out in

early tutorials to avoid any unnecessary clutter.

Q. Can I develop a full application for iOS without ever testing it on a device?

A. You certainly can, but I do not recommend it. The iOS simulator is good, but it

is not a replacement for a real device. You’ll be missing most hardware events,

a sense of the true execution speed/performance, and a full real-world test of

your UI. In Hour 1, “Xcode 4,” you learned about basic iOS device provision-

ing for development, and you will learn even more in Hour 22, “Managing

and Provisioning iOS Devices.”

Workshop

Quiz
1. What does a target do?

2. A project only has one scheme. True or false?

3. The iOS simulator cannot respond to rotation events. True or false?

ptg8126863

278 HOUR 11: Building and Executing Applications

Answers
1. A target defines a product that your project will build. It does this by tying

files to build settings, phases, and rules.

2. False. By default, a project has one scheme for every defined target. You can,

however, define as many schemes as you need for your particular project.

3. False and true. The simulator can handle simple rotation, such as entering

landscape mode, but it cannot simulate complex rotations or acceleration that

would be useful for testing accelerometer or gyroscope-driven applications.

Activities
1. Following the steps described in the “A Targeted Case Study” section earlier,

and what you’ve learned in the previous hours, create a simple “Hello World”

OS X or iOS application that includes two related but distinct targets. One

might generate Hello World, whereas the other states Hello Earth, for

example.

2. Use the Xcode iOS project templates, or a sample project found in the Xcode

documentation, to test the iOS simulator. Be sure to test both iPhone and iPad

modes of the simulator, and see what happens when you run an iPhone app

in the iPad mode.

ptg8126863

HOUR 12

Using Source Control

What You’ll Learn in This Hour:
. The source control features offered in Xcode
. How to create and restore project snapshots
. The language of source control systems
. How to connect to remote Subversion and Git repositories
. The tools available for working with Subversion and Git

As projects grow larger, it becomes more and more important to keep track of the changes

that you make and be able to identify modifications to your code. A change can some-

times cause unintended behaviors that, without a good way to audit your coding, might

be difficult to track down. This is especially true for projects where one or more people

need to access and modify the same project.

The answer to this problem is to use source control—a term that refers to a system that

keeps track of changes to source code files. Xcode offers a number of source control

options, from creating simple project snapshots, to integration with two of the most popu-

lar source control systems currently available: Subversion and Git. This hour’s lesson walks

through these options and helps you get started using the tools Xcode provides.

Using Xcode Snapshots
If you’re planning to make many changes to your code and you’re not quite sure you’ll

like the outcome, you might want to take advantage of the Xcode “snapshot” feature. A

code snapshot is, in essence, a copy of all your source code at a particular moment in

time. If you do not like changes you have made, you can revert to an earlier snapshot.

Snapshots are also helpful because they show what has changed between multiple ver-

sions of an application.

ptg8126863

Did You
Know?

280 HOUR 12: Using Source Control

Snapshots are a limited form of source control. Later in this hour, you learn about

the full source control features offered in Xcode and how to take advantage of them.

For many small projects, however, snapshots are likely all you will need.

Creating Snapshots
To take a snapshot of an open project, choose File, Create Snapshot. You are

prompted for a name of the snapshot and a description, as shown in Figure 12.1.

Provide appropriate input, and then click Create Snapshot. That’s all there is to it.

FIGURE 12.1
Create a snap-
shot of your
project at any
point in time.

Viewing and Restoring Snapshots
To view (and possibly restore) an available snapshot, choose File, Restore Snapshot.

The snapshot viewer displays available snapshots for the project. Choose one and

then click Restore, as demonstrated in Figure 12.2. Don’t worry. Xcode won’t restore

just yet; you still have a chancel to cancel.

Notice that at the top of the snapshot selection list you can choose from All
Snapshots or just User Created Snapshots. Xcode can automatically generate
some snapshots for you (more on that in a minute), so if you want to see only the
snapshots you have created, click the User Created Snapshots button.

ptg8126863

Using Xcode Snapshots 281

The display updates to show the files that changed between your current code and

the chosen snapshot. Clicking a filename shows the snapshot code on the left and

the current code on the right—highlighting changes between the different versions

of code, as shown in Figure 12.3.

FIGURE 12.2
Choose the
snapshot to
(potentially)
restore.

FIGURE 12.3
Use a snapshot
to figure out
what changes
you have made
among different
versions of your
application.

ptg8126863

282 HOUR 12: Using Source Control

If, after viewing the changes, you still want to restore to the selected snapshot, make

sure the files you want to restore are checked in the file list and then click the

Restore button. Click Cancel to exit the snapshot viewer without making any

changes.

Managing and Exporting Snapshots
You can manage all your project’s snapshots as well as export a snapshot as a new

copy of your project by accessing the Projects section of the Organizer. Open the

Organizer using the Organizer button on the far right of the Xcode toolbar, or by

choosing Window, Organizer from the menu. Click the Projects icon to switch to the

Projects section.

Projects are listed down the left side of the window, as shown in Figure 12.4. Clicking

a project shows the snapshots associated with it. You can select individual snapshots

and click the Delete Snapshot button to remove it, or the Export snapshot button to

export all the files into a new folder of your choosing.

FIGURE 12.4
Manage and
export your
snapshots.

Xcode Auto Snapshots
Xcode can (and will) automatically take snapshots for you when you complete an

action that makes changes across all (or many) of your files, such as a find and

replace. To control this behavior, choose File, Project Settings, and then click the

Snapshots check box in the dialog that appears, as shown in Figure 12.5. You can

also use the Snapshots Location field to choose where project snapshots are saved.

ptg8126863

A Brief Introduction to Source Control Systems 283

A Brief Introduction to Source
Control Systems
Snapshots are a great way to keep copies of your projects as you make enhance-

ments or bug fixes. However, they pale in comparison to the features provided by a

dedicated source control system. For the rest of this hour, we look at features in

Xcode that, although similar to snapshots, go far beyond this simple functionality.

Xcode includes support for two popular version control systems: Subversion, also

known as SVN (http://subversion.apache.org/), and Git (http://git-scm.com/). Like

any version control system, the purpose of these products is the same, but the imple-

mentation in Xcode is different enough to be confusing. Before trying to use Xcode

with SVN or Git, you need a bit of background in the philosophy and terminology of

each system.

Repositories and Working Copies
Both Git and Subversion can provide server-based repositories. These act as very

lightweight file servers that include the files for a project, along with a log of all the

changes that have been made over the life of the project.

To edit code that is stored in a repository, you create what is called a working copy

from all, or a portion of, the repository. The working copy is a local copy of a project

that is edited on your computer (often pulled from a Git or SVN repository). The ini-

tial creation of a working copy is called a checkout in SVN terminology and a clone

in Git terminology.

FIGURE 12.5
Enable or
disable auto
snapshots.

http://subversion.apache.org/
http://git-scm.com/

ptg8126863

284 HOUR 12: Using Source Control

A checkout creates a copy of the code in an SVN repository along with the infor-
mation SVN needs to track your changes. A clone of a Git repository, however, cre-
ates a full local Git repository that is no longer reliant on a server at all. The local
repository contains a “remote” entry that links back to the originating server, but
you do not have to use it if you don’t want to.

Committing Changes
One of the biggest differences between your use of Git and SVN in Xcode is saving

changes to your code. You edit your projects exactly as you always have, editing the

working copies of your code. When you decide you want to save a change to the

repository, you execute a commit action. The commit notes the change and gives

you an opportunity to annotate the change, as well.

In Subversion, a commit stores the updated file back to the repository immediately.

In Git, however, your local copy is the repository, so nothing is updated on the

remote repository. To push your changes back to a network repository, you must

execute a Push command, as discussed later in this hour.

Downloading Changes
As you commit and, in the case of Git, push changes to a central repository, you’ll

also want to download changes that other users have added to the repository. To do

this, you execute an Update command on the SVN repositories and a Pull on Git

repositories. In either operation, if there are conflicts with the code occur in your

working copy, you are given the opportunity to reconcile the conflicting code.

Branching and Merging
Developers often need to maintain a release version of a product while working on

new features. The base/release version of a project in Git/SVN is the trunk. New ver-

sions of the trunk are developed in branches off of the trunk or off of another

branch. In Subversion, you work on branches in a new working copy of your code.

Git maintains a single working copy and enables you to switch branches at will.

When changes are complete, and a branched version is ready to become the release

version, it is merged with another branch (or the trunk) to create a unified code

base. Conflicts are dealt with, and then the finished code is committed to the reposi-

tory and pushed (with Git) to the remote server, if desired.

Did You
Know?

ptg8126863

By the
Way

Working with Subversion and Git Repositories 285

You might, in your SVN/Git travels, encounter references to the term tags. Tags
are simply named copies of a repository. You might maintain a tagged copy of
each release of your software (version 1.0, version 2.0, and so on).

These are the basic operations that you learn about in the rest this hour. We cover

just the tools necessary to make this work in Xcode. Entire books are written about

using Git and Subversion, and the feature set exposed in Xcode is much smaller

than what is available from the CLI. If you’re interested in learning more about

these tools, I highly recommend reading the resources on their respective websites.

If you want to experiment with server-hosted Git/Subversion repositories, sign up
for an account at Beanstalk (http://beanstalkapp.com/), Assembla (https://www.
assembla.com/), or Github (https://github.com/). The first two sites offer low-cost
(and trial) accounts with access to both Subversion and Git. The third option
(Github) provides free Git repositories for open source projects and low-cost
options for private Git repositories.

Working with Subversion and Git
Repositories
Xcode’s integration of Subversion and Git features directly into the UI make working

with these systems quite simple, even if you have never touched a version control

system before. In fact Xcode even enables you to create local Git repositories that

you can use to track your own changes on a project or share, via a file server, with

other individuals working on a project.

In this part of the hour, we create a local repository, and then cover the process

needed to connect to remote SVN or Git servers. Because these topics do not neces-

sarily flow together as well as I would like, do not feel bad about jumping around to

find the information relevant to you.

Finding the Elusive Source Control Settings
Xcode’s source control features are generally easy to use but are spread out
through the application in a way that does not seem very intuitive. In general, you
should focus your attention on two places if you are looking for something: the
Organizer’s Repositories area and the Source Control submenu under the File
menu.

Did You
Know?

Watch
Out!

http://beanstalkapp.com/
https://www.assembla.com/
https://www.assembla.com/
https://github.com/

ptg8126863

286 HOUR 12: Using Source Control

Creating Local GIT Repositories
If you’re a small developer with a good backup system and only a few people work-

ing on a project, you can probably do just fine with a locally hosted Git repository

that Xcode can create for you when you start your project.

To create a project that includes its own Git repository, follow these steps:

1. Begin the project-creation process, as you learned in Hour 4, “Using Xcode

Templates to Create Projects.”

2. When prompted to save the project, be sure the Source Control check box is

checked, as shown in Figure 12.6.

FIGURE 12.6
Make sure you
have checked
the option to
use source
control.

3. Click Create. The project is created and opened.

Within the main project group in the Project Navigator, you’ll see a status icon,

probably M, as demonstrated in Figure 12.7. This shows the status of the project’s

source control and demonstrates that your new project is within a repository. You

learn more about the source control status icons in the section “Managing a Project

in Source Control,” later this hour.

ptg8126863

Working with Subversion and Git Repositories 287

If you want to start working with files in your repository, skip ahead to the

“Managing a Project in Source Control” section. If you think you would like to con-

nect your new repository to a Git server, read the upcoming section “Loading a

Project into a Repository.”

Connecting to Remote Repositories
If you have already established a hosted repository outside of Xcode, you can con-

nect Xcode to the repository by walking through a simple setup assistant. This

enables Xcode to download and work with copies of the stored code—or upload new

code to the server. You manage access to your repositories through the Xcode

Organizer’s Repositories section (Window, Organizer), as shown in Figure 12.8.

To add a new repository, follow these steps:

1. Click the + button in the lower-left corner of the Repository view within the

Organizer, as shown in Figure 12.8.

2. When prompted, add a name for the repository and the URL that describes its

location, as shown in Figure 12.9. This information is available from your

repository provider (and is usually displayed front and center when a reposi-

tory is created).

3. The repository type is autodetected, but if it isn’t, use the Type pop-up menu to

choose between Subversion and Git.

4. Click Next to continue.

Source Control
Badge

FIGURE 12.7
A source control
icon appears in
your main
project group.

ptg8126863

288 HOUR 12: Using Source Control

5. If prompted for authentication information, enter it in the dialog box shown

in Figure 12.10 and then click OK.

Repositories

Add Repository

FIGURE 12.8
Use the
Organizer to
manage your
repositories.

FIGURE 12.9
Enter the infor-
mation for the
new repository.

ptg8126863

Did You
Know?

Working with Subversion and Git Repositories 289

6. Subversion repositories may prompt for additional information—the paths to

the Trunk, Branches, and Tags directories, as shown in Figure 12.11. Enter

these if you have them. These are special folders within the repository and are

not necessary for creating your connection.

FIGURE 12.10
Provide authen-
tication
information
if requested.

FIGURE 12.11
Enter the paths
for Subversion
repository
directories.

7. Click Add, and the repository is added to the repository list within the

Organizer. Selecting the repository enables you to review the type of the reposi-

tory and its configuration information at the top of the organizer.

As you work with the repository setup assistant, notice the little green, yellow, or
red indicators by some of the fields you fill in. These indicate, in real time, whether
Xcode has been successful in creating a connection. Yellow or green is usually
good. Red means you are probably entering the information incorrectly.

ptg8126863

By the
Way

290 HOUR 12: Using Source Control

The Xcode welcome screen includes an option to connect to a repository. This
actually starts the Checkout or Clone Repository function (also accessible from
the Organizer). Instead of just creating a link to a remote repository, it also gives
you the option of checking out (Subversion) or cloning the repository (Git) once the
connection is in place. The assistant, despite serving largely the same function,
collects your information in a different manner than the standard repository setup.

My preference is to just set up the repository (as done here) and then use the
other available tools for a clone or checkout. This approach gives you more control
and a more consistent interface.

Some Connection Advice
Subversion and Git are not insignificant tools; there are plenty of things that can-
not be covered in this hour. I would, however, like to cover two important pieces of
information you may find helpful.

First, Git repositories authenticate you by a Secure Shell (SSH) key. You’ll do this
through whatever interface is provided for your server before connecting with
Xcode. You can create a new key for your OS X account using the this command
and following the prompts that display:

ssh-keygen -t rsa -C “email@youremailaddress.com”

When finished, your public key is stored in the file ~/.ssh/id_rsa.pub. This is the
file (or the contents of the file) that the Git repository needs you to provide before
updating.

Second, Xcode’s Subversion interface has an annoying tendency to fail because it
automatically accepts an SSL certificate on the hosting provider. To correct this,
initiate a checkout of the repository from the OS X command line using the com-
mand svn co <your repository URL>, like this:

$ svn co https://yourrepositoryurl

Error validating server certificate for ‘https://yourrepositoryurl:443’:

- The certificate is not issued by a trusted authority. Use the

fingerprint to validate the certificate manually!

Certificate information:

- Hostname: yourrepositoryurl

- Valid: from Tue, 28 Jun 2011 00:00:00 GMT until Wed, 27 Jun 2012

23:59:59 GMT

- Issuer: InCommon, Internet2, US

- Fingerprint: e8:36:95:15:7a:a0:05:b9:1d:c2:bc:c0:fd:dd:78:7d:98:bb:da:31

(R)eject, accept (t)emporarily or accept (p)ermanently? p

When prompted, accept the certificate, cancel the checkout, and then retry your
connection in Xcode. It should work.

ptg8126863

Working with Subversion and Git Repositories 291

Loading a Project into a Repository
After creating a repository and connecting to it, you either want to pull code from it

or add code to it. If you already have a project in the repository and want to down-

load a working copy of it, skip ahead to the “Creating a Working Copy” section.

If you’re still reading, you want to add code to the repository, right? In that case,

there are a number of different approaches you can take. Regardless of whether

you’re using Subversion or Git, you can create a working copy of the repository and

copy your existing project folder into it, and then commit those changes back to the

repository. That said, there are methods specific to both Git and Subversion that

might make getting your first code files in a bit easier.

Subversion
Subversion repositories have a special import tool to simplify the import process. To

populate a subversion repository for the first time, follow these steps:

1. Open the Organizer and switch to the Repositories view.

2. Expand the SVN repository that you want to perform your initial upload to.

3. Select the Trunk folder, as shown in Figure 12.12.

FIGURE 12.12
Select the trunk
to import your
initial code
files.

4. Click the Import button in the lower-right corner of the window.

5. When prompted, choose your project folder, as shown in Figure 12.13.

6. Enter a comment for your initial upload to the repository, as shown in

Figure 12.14, and then click Import.

ptg8126863

292 HOUR 12: Using Source Control

Your project is then imported into the Trunk directory. Be aware that depending on

how large the project is, this can take quite some time. Xcode provides almost zero

feedback during this process, so be patient. Figure 12.15 shows a project, ImageHop,

showing up under the Trunk directory after a successful import.

FIGURE 12.13
Choose the proj-
ect to import.

FIGURE 12.14
Enter a com-
ment for the
import.

ptg8126863

Did You
Know?

By the
Way

Working with Subversion and Git Repositories 293

Subversion repositories typically have Trunk, Branches, and Tags directories
located under the Root directory. If your repository doesn’t have these, you can
select the Root folder, and then click the New Directory button at the bottom of
the Organizer window to add these directories. Once added, click the icon for the
repository within the list on the left side of the organizer and make sure the paths
(usually just trunk, branches, and tags) are filled in for each of these locations.

Git
For Git projects, you need to either copy your project into a local Git working copy,

or if you have already set your project up under local Git source control, you can

push the entire project to a repository very quickly.

Git repositories are self-contained. So, instead of pushing a local Git project into a

repository you define in Xcode, you instead “tell” your local Git project about the

presence of a remote Git repository and provide it with the information it needs to

access it. Your repository can then automatically push to the remote server.

When you create a working copy of a Git repository from a remote server, the infor-
mation we are about to enter is transferred along with it. So your local copy, even
if you move it to a completely different machine, always knows how to connect to
the repository it came from.

FIGURE 12.15
After the import
is complete, the
project folder
should be
visible.

ptg8126863

294 HOUR 12: Using Source Control

To configure a remote repository for a local Git-based project, follow these steps:

1. Open the Organizer and switch to the Repositories view. All your local reposi-

tories are listed.

2. Expand the repository you want to work with and click the Remotes folder

within it.

3. Click the Add Remote button at the bottom of the Organizer window.

4. When prompted, enter the name and location for the remote repository, as

shown in Figure 12.16.

5. Click Create.

FIGURE 12.16
Enter the name
and location
string for the
repository.

6. Close the Organizer and switch back to your project.

7. From the File menu, choose Source Control, Push.

8. When prompted, choose the repository you configured and then click Push, as

shown in Figure 12.17.

Your project is pushed to the remote Git repository. You have effectively just con-

verted your local Git project into one that is connected to a hosted Git repository.

ptg8126863

Working with Subversion and Git Repositories 295

Creating a Working Copy
Before you can start working with code that is under source control, you need to create

a working copy. For Git projects, you may have already done exactly that by creating

a local repository. The local repository is your working copy and can be connected

back to a hosted repository using the steps described in the previous section.

Subversion users always, after having created an initial import, need to create a

working copy to use in Xcode. Regardless of the route you took to get here, this sec-

tion walks through the steps of using one of your defined repositories to create a

working copy of a project that you can then use in Xcode:

1. Open the Organizer and switch to the Repositories view.

2. For Git repositories, click in the column on the right to select the name of the

repository. For Subversion repositories, expand the repository by clicking the

disclosure arrow, and then click the Trunk, Branches, or Tags directory within,

depending on where the code you want to check out is located.

3. The content area to the right of the repositories list refreshes to show the possi-

ble directories that you can check out (Subversion) or clone (Git), as shown in

Figure 12.18.

4. Select the directory and click the Checkout button (Subversion) or Clone button

(Git) at the bottom of the Organizer.

5. When prompted, enter a name to use for saving the working copy.

FIGURE 12.17
Click Push to
upload your
changes.

ptg8126863

Did You
Know?

296 HOUR 12: Using Source Control

Xcode downloads the code and prompts you whether to open the project and begin

working. The working copy is shown with a blue folder under its repository in the

Organizer.

When you create a Git working copy by cloning a repository, the working copy
shows up with its own repository entry in the Organizer, not under the original
remote repository. It is still aware of the remote repository, but not reliant on it.

I have had limited success when I tell Xcode to open a project immediately after
checkout. I find that checking out the project then opening it from the Finder is
more reliable than just waiting for Xcode to decide whether it wants to behave.

Managing a Project in Source Control
Once you have a project under source control, you work just as you normally would,

but you now have some additional options at your disposal. You’ll also notice some

changes in how the files display in the Project Navigator. In this, the last part of the

hour, we review many of the common activities you will perform with your

Subversion or Git repository.

FIGURE 12.18
Locate the code
directory that
you want to
check out or
clone.

By the
Way

ptg8126863

Did You
Know?

Managing a Project in Source Control 297

Status Codes
When working with a project that is under source control (that is, your working

copy), you’ll notice that a number of badges appear beside the files listed in your

Project Navigator, as shown in Figure 12.19.

Source Control
Badges

FIGURE 12.19
The Project
Navigator now
contains badges
indicating
source control
status.

Table 12.1 lists the badges you might encounter, as provided by Apple.

TABLE 12.1 Badges You Might Encounter

Symbol Meaning

M Locally modified file

U Updated in repository

A Locally added

D Locally deleted

I Ignored

R Replaced in the repository

– The contents of the folder have mixed status; display the contents to
see individual status

? Not under source control

You can click the tiny repository icon (shaped like a filing cabinet drawer) at the
bottom of the Project Navigator to filter your Project Navigator files to show only
the files that have an updated source control status.

ptg8126863

By the
Way

298 HOUR 12: Using Source Control

Commits and Pushes
The most common type of change you need to make when working with source con-

trol is a commit. A commit is used to add a finished collection of code to the reposi-

tory. You might, for example, perform a commit at the end of every day or commit

any changes you have made after you have tested them thoroughly.

To perform a commit, follow these steps:

1. Choose File, Source Control, Commit.

2. The Commit dialog appears, as shown in Figure 12.20.

FIGURE 12.20
Commit the
check files to
the repository.

3. Click to check the check boxes beside each of the modified or added files that

you want to commit.

4. Enter a message to describe your changes in the text area at the bottom of the

dialog.

5. Click Commit to commit your changes to the repository.

You might want to commit only related files at the same time—not everything all at
once. This gives you an opportunity to document your changes more fully than
applying a single commit comment to every changed file in your project.

ptg8126863

Managing a Project in Source Control 299

After you have completed a commit on Subversion, you’re done. Your file is sent

back to the hosted repository. With Git, however, your changes are sent to the server

only after you execute a Push command. To push your changes, select File, Source

Control, Push from the menu. After a few seconds, you should see a list of the possi-

ble remote destinations you can choose from, as shown in Figure 12.21. Choose

the destination and then click Push. Your changes are transmitted to the remote

repository.

FIGURE 12.21
Choose where
the files should
be pushed.

Don’t Commit (Everything)!
You do not have to commit files just because they have been modified. You can
discard your changes within the Project Navigator, or from the commit screen by
right-clicking the file and choosing Discard Changes from the Source Control menu.
Using this same menu, you can also choose to ignore files that you do not want to
commit or manage in your repository or commit a selection of files immediately.

Updates and Pulls
While you’re making changes to your project in your local working copy, others

might do the same in their copy, committing changes back to the repository. The end

result: Your version of the project might become out of sync with the central reposi-

tory. This is not a problem. In fact, it’s a guaranteed outcome of a distributed source

control system.

ptg8126863

Did You
Know?

300 HOUR 12: Using Source Control

To update your working copy of a project to the latest version held in a repository,

you use the Update command (Subversion) or Pull command (Git). Strangely, only

the Pull command is available from the File, Source Control menu, whereas Update

is available under the contextual menu. To keep things consistent, I recommend

these steps:

1. Go to the Organizer’s Repositories area

2. Select the blue folder (the working copy) of the project you want to

update/pull.

3. Click the Update or Pull button that appears below the content area of the

screen, as shown in Figure 12.22.

Pull (or Update)

FIGURE 12.22
Click the
Update or Pull
button (shown
here) to get
your code in
sync.

During a commit, update, or branch merge, you might get a warning about conflict-
ing changes in your code. If this is the case, you are given a UI to correct any con-
flicts before proceeding. Conflicts occur when there is not a clear path to merge
heavy changes across a file—often when two people have modified the same
method in the same file.

ptg8126863

Managing a Project in Source Control 301

Viewing Revisions
Using source control enables you to go back through your code and see what

changed and when. You can get a quick view of all the commits that have been

made to a repository, working copy, or any directory of a repository by selecting it in

the Organizer, as shown in Figure 12.23.

FIGURE 12.23
Use the
Organizer to get
a quick view of
the history of
your changes.

You can even expand each item in the history and can click the View Changes but-

ton to see the changes that have been made to a specific file. As you browse the his-

tory, you’ll notice that the names associated with changes are not necessarily

helpful. To make reviewing the history easier on the eyes (and brain), Apple allows

you to tie source control users to individuals in your OS X Contacts application. To

do this, just click the silhouette of a person in the history. A popover appears, as

shown in Figure 12.24.

Use the popover to enter the pertinent information about the person, or click Choose

Card to pick a card from your contacts.

Using the Version Editor
In addition to the Organizer, you can also view the changes that have been made to

a file through the Version editor in the main Xcode interface. This works on the cur-

rent file you have selected, so it is a bit easier to target and identify individual

changes.

ptg8126863

302 HOUR 12: Using Source Control

To display the Version editor, click the third icon in the Editor section of the Xcode

toolbar. The screen refreshes to show one of three modes (Comparison, Blame, and

Log), controlled by the three icons in the lower-right corner, as shown in Figure

12.25. Here, the Log mode is visible.

In the Log mode, a chronological list of changes is shown to the right of the current

file. Clicking the arrow beside each entry displays the changes.

The Blame mode is similar to the Log mode, but displays the change entries next to

the code that was changed, as shown in Figure 12.26. Click the gear icon beside

each name to show a popover with the full details about the change, and then click

the arrow within the popover to view the changes.

The final view, Comparison mode, shown in Figure 12.27, displays revisions side by

side in the Editor area.

Use the pop-up file paths under each side of the view to choose the revision you

want to see. Alternatively, you can click the clock icon to show a Time Machine-like

view of both files. In this view (visible in Figure 12.27), you can use the arrows on

either side of the black bar to position the point in time you want to display on

either side.

FIGURE 12.24
Choose a per-
son to tie to
the repository
changes

ptg8126863

Managing a Project in Source Control 303

Comparison Log

Blame

Version Editor FIGURE 12.25
Use the Version
editor to target
changes to a
specific file.

FIGURE 12.26
Blame mode
makes it easy
to assign blame
to your team.

ptg8126863

304 HOUR 12: Using Source Control

What’s Missing?
Do you notice something missing from this discussion? Like the ability to revert to
a previous version of a file? That’s because this feature is not yet integrated into
Xcode. If you need to revert to a previous commit, you either view the differences
between the files and copy and paste or drop to the command line and issue
Git/Subversion commands directly.

Learn more about how to do this in Git at http://book.git-scm.com/4_undoing_in_
git_-_reset,_checkout_and_revert.html and in Subversion at http://svnbook.
red-bean.com/nightly/en/svn.tour.cycle.html#svn.tour.cycle.revert.

Branches and Merges
When writing code, you’ll finally reach a point (I hope) where you are ready to

release a product. At that point, you will likely want to create a new branch of your

code that will contain any future work (feature additions, for example). You can still

continue to work on the existing copy for bug fixes and so on, but the new branch

represents your next release.

Creating Branches
To create a branch in Subversion or Git, follow these steps. (Apple has made the

process mostly identical regardless of your repository choice).

Set File Revision Set File Revision

FIGURE 12.27
Use the
Comparison
view to see
changes
side-by-side.

http://book.git-scm.com/4_undoing_in_git_-_reset,_checkout_and_revert.html
http://book.git-scm.com/4_undoing_in_git_-_reset,_checkout_and_revert.html
http://svnbook.red-bean.com/nightly/en/svn.tour.cycle.html#svn.tour.cycle.revert
http://svnbook.red-bean.com/nightly/en/svn.tour.cycle.html#svn.tour.cycle.revert

ptg8126863

Managing a Project in Source Control 305

1. Open the Organizer and switch to the Repositories view.

2. Navigate to the Branches folder within the repository where you want to cre-

ate a branch.

3. Click the Add Branch button at the bottom of the window.

4. Provide a name for the branch and choose a starting point (an existing

branch, or the trunk copy of your code) to copy, as shown in Figure 12.28.

5. In Subversion, this is committed back to the repository immediately, so enter a

message to go with the branch action.

6. Choose whether to check out the branch and make a new working copy. In

Git, this option is called Automatically Switch to This Branch because instead

of creating a new working copy, it switches the existing working copy to the

code contained in the branch.

7. Click Create.

FIGURE 12.28
Create a new
branch.

Xcode now churns away for a while and, if you have chosen to create a new working

copy or switch branches, opens the new branch ready for editing. You then work

within the branch until you reach a point where you are ready to merge it back to

your main code base, such as a new release. At that point, you perform a merge.

ptg8126863

306 HOUR 12: Using Source Control

Did You
Know?

FIGURE 12.29
Choose the
branch to merge
with your code.

Although Subversion allows you to check out multiple working copies from any
branch you want like, Git makes it very simple to switch between branches on-the-
fly. To switch your Git working copy to a new branch, choose the working copy
folder within the Xcode Organizer Repositories view, and then click the Switch
Branch button in the lower-right corner of the window. You are prompted for the
branch you want to switch to, and then Xcode makes the switch and opens the
branch for editing.

Performing Merges
To merge a branch back to another branch or to the trunk of your repository, first

open a working copy of the code that you want to merge into. This would be your

first release, the trunk, or the branch you used to make the branch you’re currently

working on. Now, with the project open, follow these steps:

1. View the project in the main Xcode workspace (not the Organizer).

2. Choose File, Source Control, Merge.

3. Pick the branch that you are merging with your code, as shown in

Figure 12.29.

ptg8126863

Summary 307

Work through each file listed on the left side of the display. Using the buttons at the

bottom of the screen, choose whether to use the code from the file on the right or the

file on the left. When satisfied with your selections, click the Merge button to merge

the changes into your repository. You should then perform a commit (and a push, in

Git) to sync the merge to the remote source control servers.

Summary
In this hour, you learned how to use the different source control options in Xcode.

Snapshots, the easiest to employ, can be used on any project at any time and create

a view of your code at a specific point in time. You can even export a snapshot to a

new project if you choose to split your development at some point. In addition to

snapshots, Xcode integrates access to Subversion and Git repositories, including local

Git repositories that require no additional servers. Using these options, you can eas-

ily work with teams to collaboratively code. Although a few options are missing,

and the interface is not as consistent as I would like, the Xcode source control tools

do provide most of the features you need to manage large, distributed projects.

Xcode merges the branches together, identifying any conflicting code along with

way, as shown in Figure 12.30. At this point, you must resolve any conflicts before

proceeding.

FIGURE 12.30
Fix any conflicts
in your files.

ptg8126863

308 HOUR 12: Using Source Control

Q&A
Q. Aren’t snapshots just as good as using Git or Subversion?

A. If they fulfill the source control need you have, absolutely. Git and Subversion

are useful for projects with multiple developers and multiple branches. These

tools also put source control front and center, making you aware of the status

of your source files at all times.

Q. Why doesn’t Xcode provide the ability to revert to a previous revision within
a repository?

A. I wish I knew. You can right-click a changed source file and copy the differ-

ences from one file to another, but as of the time of this writing, reverts are

still not possible.

Q. Source control sounds like a hassle. Should I bother?

A. I recommend working with a local Git repository. If you see value in this,

expand your horizons by looking at a hosted repository in the future.

Workshop

Quiz
1. Snapshots are implemented using Subversion. True or false?

2. Using the Versions editor, you can easily revert to an earlier copy of a file

under source control. Yes or no?

3. How do you upload a local Git repository to a remote server?

Answers
1. Snapshots are a feature of Xcode outside of Subversion or Git.

2. No. You can view the differences between files, but not revert. This is currently

not a feature provided with Xcode, but can be handled by using the

Subversion and Git tools directly at the command line.

3. Use the Organizer to redefine a remote for the repository, and then use the

File, Source Control, Push command to push the existing code base into the

remote.

ptg8126863

309Workshop

Activities
1. Create a project and experiment with the various source control options. Use

the snapshot feature to create and restore snapshots. Use a local Git repository

to create branches, merges, resolve conflicts, and so on.

2. Sign up for a Subversion or Git repository at one of the hosting providers men-

tioned in this hour. Practice connecting to the repository in Xcode and import-

ing projects and creating working copies.

ptg8126863

This page intentionally left blank

ptg8126863

By the
Way

HOUR 13

Xcode-Supported Languages

What You’ll Learn in This Hour:
. The strengths and weaknesses of different language options under Xcode
. How to choose and use the right language
. How to add third-party language templates to Xcode

Xcode ships with built-in support for projects written in C, C++, Objective-C, and

AppleScript. However, you might want to use one of the many other available program-

ming languages, and it is quite convenient to stick with one development environment for

all your programming projects. Thankfully, although Xcode has clearly been optimized for

Apple’s Objective-C programming language, it is also easily extendable for other pro-

gramming languages. In fact, if you can provide Xcode with an external program that

understands your favorite language and does the right thing when handed a file contain-

ing code in it, you can adapt Xcode to any language that can be written in a text file.

This hour provides an overview of the built-in languages and some other popular lan-

guages that Xcode can be used for, such as Perl, Python, and Ruby. You also learn how to

install and use third-party language templates that can extend Xcode capabilities, and

you learn how to adapt external build components if these are not already easily

available.

Why might you want to use anything other than Objective-C? As good
as Objective-C is, most languages have specific tasks for which they’re
particularly well suited. Objective-C happens to be particularly well
suited for many Cocoa and general OS X tasks due to the underlying
libraries, but it is a fairly general-purpose language. Other languages
are particularly well suited for graphics programming, processing text
files, and doing math. Still others are particularly good for quick and
easily adaptable utilities for the command line, for interfacing with
databases, or for generating web content.

ptg8126863

By the
Way

Sometimes the decision to use a different language stems from the availability of
existing code. Millions of lines of scientific algorithms were written in Fortran, and
if you can use them instead of rewriting them, you can save years of development
effort. The same goes for business algorithms and Pascal (or COBOL). I hope I
never, ever, have to write another line of COBOL in my life; but if you need to,
Xcode can do that, too.

Choosing the Right Language
The right language for solving a problem depends on of a number of things (for

example, the language’s base capabilities, your familiarity with it, and the pre-

existing code or libraries that are available to perform specific tasks). The right lan-

guage for processing a text file and extracting simple strings that match a pattern is

unlikely to be the same as the language that’s right for writing a video game, and

neither is probably the right language for constructing a web interface to a

database.

If you’re familiar with (or fluent in) only a single language, you’re stuck using that

language as a hammer, with every programming project necessarily looking like a

nail to you. Most people get good enough with that big hammer that they can work

well enough this way for years, despite the accompanying frustration and ineffi-

ciency. Take the time to learn the capabilities of different languages, find out what

libraries are already written for it to handle complex tasks, and spend some time

working with the one that seems most appropriate for each project you undertake.

The effort and time you invest in learning new languages will be quickly repaid

when you start realizing that you can write in just five lines (with one of your shiny

new languages) the five pages you would have had to write to solve a problem with

your big old hammer.

Xcode syntax checking and Xcode support for compiling and debugging in a lan-
guage are independent of each other. Xcode actually knows at least a little bit
about the syntax of a large number of languages (and even beyond languages, for-
mal formats for text files). For example, Xcode understands HTML syntax, but has
no idea what to do with it. This means that out of the box you could use it for
editing HTML files and get syntax highlighting and other convenient editing fea-
tures, but you could not do anything with the HTML pages you edit in it.

If you configure an external build system project, however, you can explain to
Xcode that it should use Safari to display the HTML. Figures 13.1 and 13.2 show
the build system configuration and the result of running a project containing an
HTML file and an image using this configuration. You’ll learn more about how to
configure external build system components later in this hour.

312 HOUR 13: Xcode-Supported Languages

By the
Way

ptg8126863

Built-In Languages 313

As mentioned previously, you can use Xcode for languages that it does not natively

support (including those already installed in the system, such as Perl, Python, and

Ruby). In addition, you can download other languages and use Xcode for them. As

long as the language is installed on your system, you can use Xcode to build your

project.

Built-In Languages

C
C is, quite likely, the most important programming language in existence. It is the

language on which UNIX was built, on which the Internet was built, and on which

countless end-user applications have been developed for the past 30+ years. Your

Mac, Linux, the Internet, none of them would be the same without C. (Microsoft

probably even uses it somewhere.) When they weren’t programming in Assembler,

FIGURE 13.1
A build system
configuration
that uses Safari
to display an
HTML page.

FIGURE 13.2
The result of
using this con-
figuration to run
a project con-
taining an HTML
file and an
image.

ptg8126863

Did You
Know?

314 HOUR 13: Xcode-Supported Languages

or directly in machine code, the gods programmed in C. Compared to other modern

languages, C is much less forgiving, much more terse, and generally much more ill

tempered. However, it is about as close to programming on the bare metal as you

can get while still using a well-supported language with good library support for

everything from numeric calculations to graphics.

C doesn’t hold your hand. If you write an assignment statement that reads the

value of an integer and you accidentally give it a variable holding a string rather

than an integer to read from, C is happy to assume that you know exactly what

you’re doing and grabs the memory contents from the string and interprets them as

though they had been stored as an integer. If you try to store a 4-byte value in a

1-byte container, C happily stores the first byte in the target and the next 3 bytes

over the top of whatever happened to be in memory after that location. If you’re not

extremely careful about how you write your code, C will bite you. And although

that kind of behavior sounds a lot like a misfeature, it is also some of the stuff that

has made C so powerful and pervasive over the years. If you know what you’re

doing, you can store a pile of different variables containing arbitrary data in mem-

ory and then dance around that memory accessing it and writing to it using pure

pointer math, without ever referencing the variables directly. Because C operates just

barely above the assembly/machine-code level, you can make optimizations such as

aligning array storage so that it fits the physical indexing and addressing schema of

the RAM in your machine. If speed is important, these kinds of tweaks can speed

memory access up by an order of magnitude.

Learn C. Unless you really need to squeeze every last bit of performance out of
your machine, you are unlikely to actually need to use it on a regular basis, but
the skills and discipline you develop will significantly improve your programming in
practically any other language. It will also prove useful if you need to glue together
C++ code, with which the Internet is riddled, and Objective-C code. As the lowest-
common-denominator (but better standardized than either), C is better at talking
to both of these higher-level languages than either are at talking to each other.

The canonical reference book for C is The C Programming Language, although
most programmers know it only by the names of its authors, Kernighan and
Ritchie. Although not a particularly long book, it is such a definitive reference that
much of the standard C language functionality was designed so that it worked the
way that this book says it should, rather than the book being written to match the
language. Get it. It’s good.

ptg8126863

Did You
Know?

Built-In Languages 315

By the
WayBest Uses

C is best used for programs that require speed or brute strength or those that
require intricate memory manipulations. C is particularly ill suited for processing
text, but it handles large volumes of binary data effortlessly.

C++
C++ was one of two early attempts to bring the concept of object-oriented program-

ming to the C language. It is powerful, but in many respects is overly complex.

Although the entire C language was defined and stabilized at only a few pages of

parser code quite early in its life, C++ has undergone several rather convulsive revi-

sions, the most recent occurring in 2011. This complexity has not prevented it from

being used for an amazing variety of software, and in fact has probably facilitated

C++’s application to the wide range of tasks where it has been used. However, it is a

source of some annoyance for many programmers; after all, it is reasonably easy to

begin to program in C++, but quite difficult to master it sufficiently to be sure that

one has chosen the best solution from the options available.

One of the most controversial features of C++ is that it lets you get away with things

that it probably should not. C++ can deal with both the procedural and object ori-

ented. In fact, it can deal with both paradigms in the same code, in the same proj-

ect. This mixing and matching is great if you’re writing for yourself and just need

something that works. You can attack the problem in whatever fashion fits your

thinking at the moment. It is a real problem for maintenance and reuse, though,

because it is often quite difficult to tell what’s going on without a deep study of the

code.

Get a C++ book. Unless you plan to develop cross-platform applications that need
to compile on Linux and other UNIX platforms, you are probably going to be doing
more of your real-work programming in Apple’s preferred Objective-C. You want to
be able to reference C++ constructs and occasionally tweak code that you collect
from open source repositories or other C++ developers, so a good reference to
the language is going to prove really helpful, but you probably do not need to
invest the effort to actually master the language. The definitive reference for C++
is The C++ Programming Language by Bjarne Stroustrup.

ptg8126863

By the
Way

316 HOUR 13: Xcode-Supported Languages

Best Uses
C++ is best used for large programs that require many interrelated, cooperating
parts. Its multiple-inheritance object model enables quite sophisticated class
development, but its complexity means that it is poorly suited for small or infre-
quent programming tasks where a programmer might not develop and maintain
mastery.

If you need to make pre-existing C++ code work in an Objective-C project, look into
Objective-C++, which is compiler front-end that enables you to combine C++ and
Objective-C syntax in the same file.

Objective-C
Objective-C was the other early attempt to objectify C, but it stayed largely hidden

from public view until it was adopted as the platform for building the NeXT operat-

ing system. Now it is Apple’s workhorse object-oriented language. Its syntax differs

slightly from the C++ syntax, with C++ tending toward slightly more “talky” and

Objective-C tending toward slightly more terse.

Originally inspired by the object messaging model from SmallTalk, Objective-C lacks

a number of the complex class-inheritance mechanisms that are present in C++,

and it omits some classical object-oriented paradigms, such as class variables, pri-

vate methods, and operator overloading. C++-style namespaces are also missing. In

return, Objective-C implements its object model using messages and adds reflectivity

(or introspection)—that is, the ability for a program to observe and modify itself,

which enables numerous convenient features that are not possible with languages

that strictly segregate executable code and data. For example, Objective-C enables

the creation of weakly typed objects that can be queried at runtime to determine

what messages they can respond to, enabling a single class definition to operate

across a plethora of data types without needing masses of per-case code.

The power of messages combined with reflectivity should not be mistaken to be as

simple as those two words appear. Instead of calling functions or calling methods,

Objective-C sends messages. This is not just a semantic distinction. If your program

that “calls functions” tries to call a function that does not exist, the program has no

idea what to do next. The function it is supposed to be running in is not there, so it

breaks. If Objective-C sends a message, and nothing is listening, well, the message

gets lost, but unless you’ve decided to trap that behavior and act on it, that’s no rea-

son to bring everything to a screeching halt. The message paradigm and the associ-

ated code-is-data reflectivity allow Objective-C programs to defer to runtime many

decisions that would have to be compiled-in in C++ or C. Learning to take advan-

tage of this flexibility takes some unlearning for old C/C++ programmers, and a bit

ptg8126863By the
Way

Did You
Know?

Built-In Languages 317

of time to sink in, but once mastered, it enables code elegance that cannot be

accomplished in many other languages.

You need Objective-C books, and to use Objective-C productively on the Mac or
iOS device, Cocoa books. There’s no way around it. Hour 2, “Just Enough
Objective-C and Cocoa,” introduces you to the language; but for complex projects,
you should invest in a book or two.

Unfortunately, because Apple is both the primary developer and primary user of
Objective-C, there are few original, definitive works such as are available for C and
C++. The best current reference is Aaron Hillegass’s Objective-C Programming: The
Big Nerd Ranch Guide.

You can also read through Apple’s documentation, starting with: http://
developer.apple.com/library/mac/#referencelibrary/GettingStarted/
Learning_Objective-C_A_Primer/_index.html.

And more good resources are available from http://cocoadevcentral.com/d/learn_
objectivec/ - where you can also learn a bit about the Cocoa libraries, which are
almost inextricably linked with Objective-C on Apple systems.

Best Uses
Objective-C is an almost absolute requirement for Cocoa programming, and is
clearly the preferred choice for development under OS X. Implemented as a light-
weight layer on top of C, it has most of C’s strengths, while providing useful frame-
works that make things like text processing less painful.

AppleScript
AppleScript is Apple’s ridiculously useful but incredibly poorly promoted scripting

language, useful for everything from renaming a bunch of files in a directory to

tying together numerous large commercial applications into a single-click workflow

for processing data. AppleScript has access to many components of the Cocoa user

interface (for example, file-picking dialogs) and to any functionality that any Mac

application exposes through an Apple Events interface.

AppleScript enables users to construct a script that, for example, can ask for a direc-

tory, collect the files from the directory, launch Photoshop and apply croppings and

preprogrammed manipulations and filters to each of the files, change their resolu-

tions to a standard size, make thumbnails of all of them, create an HTML page con-

taining the thumbnails and link it to the modified versions, and finally package the

whole thing up and upload it to deploy on a web server. As a scripting language, all

of this functionality can be developed incrementally, and because the “work” is

done by external applications, all you really need to put in the AppleScript is the

http://developer.apple.com/library/mac/#referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/_index.html
http://developer.apple.com/library/mac/#referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/_index.html
http://developer.apple.com/library/mac/#referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/_index.html
http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/

ptg8126863

318 HOUR 13: Xcode-Supported Languages

smarts necessary to talk to the applications and pass the results around between

them.

Although the ever-present AppleScript Editor application is limited to building fairly

simple scripts that are entirely self-contained, Xcode enables the development of

integrated AppleScript/Objective-C/Cocoa applications, letting you leverage the

strength of each environment to deal with the tasks in which it excels. It currently

seems easiest to retrieve the AppleScript dictionary from a program using the

AppleScript Editor, as shown in Figure 13.3. After you’ve identified the features you

want to use in your Cocoa-AppleScript application, you can create a project in

Xcode (Cocoa-AppleScript Application, under the Applications group) and add your

AppleScript calls. The default project that’s created by the template is a little less

helpful than many of Apple’s other default templates, in that it does not call your

attention to the correct wrapper section for adding your code with a commented

block and appropriate message receiver.

To get started, you can try adding a listener method for

applicationDidFinishLaunching between the demarcated initialization and

cleanup blocks. Figure 13.4 shows a simple example that opens a Finder dialog for

you to pick a folder and then sends the files in the folder off to Photoshop to build

them into a contact sheet. Because the point of using the Cocoa-AppleScript mecha-

nism was to leverage the Cocoa features, you probably actually want to build some

interface functionality in to the NIB file and catch messages from that, instead of

running straight from the launch as this example does.

FIGURE 13.3
Using the
AppleScript
Editor to
retrieve the
AppleScript dic-
tionary from a
program.

ptg8126863

By the
Way

Did You
Know?

Built-In Languages 319

Although AppleScript is enormously useful, it seems like Apple and the application
vendors both enjoy fiddling with it enough that what works today often needs
tweaked tomorrow. The tweaks usually are not too difficult, but given the fre-
quency of changes to the application interfaces, and seemingly to Apple’s end of
things as well, you are better off using the documentation on your system than
relying on any printed reference. Between the developer documentation available
in Xcode and the documentation every application provides through its AppleScript
dictionary, you should be good to go.

Best Uses
AppleScript is application glue. It is best used for coordinating and connecting
functions from the Finder and other OS X applications. It has severely limited func-
tionality for any type of data processing or manipulation within itself.

Java
Java is the darling of the modern and trendy object-oriented programming crowd,

and as an incredibly verbose language with numerous features to protect the pro-

grammer from carelessness, it generally annoys old-school C programmers to no

end, while simultaneously amusing more modern programmers who think the C

programmers are silly for liking to walk uphill to school, both ways.

FIGURE 13.4
AppleScript can
accomplish
complex behav-
iors (such as
prompting user
input through a
file-browser dia-
log and such as
feeding entire
folders of files
through an
application-
processing
pipeline) with
very few lines
of code.

ptg8126863

By the
Way

Did You
Know?

320 HOUR 13: Xcode-Supported Languages

Java has the quite interesting feature that, at least theoretically, you can write your

application once in Java and then run it, without modification, on any platform

that has a Java Virtual Machine (JVM). There is, admittedly, some performance

penalty induced by the requirement that the JVM has to sit between the program

and your real hardware, but the intention is that the extreme portability of the lan-

guage makes the performance hit worth it. The intentions and theories are, perhaps,

a bit optimistic. Practically every Java application you can find on the Internet is

distributed with special versions for each operating system because things are not

quite identical enough. Practically every Java application also feels like it is running

on a machine that is 10 years older than the rest of the software on your system.

Originally envisioned as a way to deploy software interfaces over a network (actu-

ally not the Internet), Java was quickly adopted as a way to deliver write-once, run-

anywhere software from a web server and run it within a web browser. As such, it

has a significantly enhanced set of security features to help prevent a malicious

remote server from negatively affecting a client computer that is running its code.

Some of these security features also induce impediments that are peculiar to Java.

For example, the JVM operates in a restricted memory region, and it is entirely pos-

sible (and quite common) for Java programs to run out of memory within the JVM,

even though the computer’s RAM is mostly free. Java was also quickly adopted as

the object-oriented training language of preference for a great many university com-

puter science programs. This has fostered the development of quite a large library of

utility applications written in Java, so it is a useful language to have around for the

purpose of avoiding reinventing the wheel. Unfortunately, this is also probably a

significant factor in the dismal performance of many Java applications, as many of

the programmers who have worked in the language are still at the stage in their

careers where paradigm overrides practicality and so they write like they were

taught, instead of using the “dirty tricks” that experienced programmers use to

squeeze performance out of code.

Even Apple doesn’t think you should use Xcode for Java projects. It is “sup-
ported,” but not well. Apple recommends Eclipse (http://www.eclipse.org/),
NetBeans (http://www.netbeans.org/), or JetBrains IntelliJ IDEA (http://www.
jetbrains.com/idea/) as better IDEs for large Java projects.

Best Uses
Java is best used for developing small cross-platform applications, especially
those that run within web browsers. It places severe limitations on program mem-
ory, and its performance might cause users to feel that their machines are
sluggish.

http://www.eclipse.org/
http://www.netbeans.org/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

ptg8126863

Built-In Languages 321

Perl
Perl is Larry Wall’s Pathologically Eclectic Rubbish Lister (or, Practical Extraction and

Report Language, if you prefer). Its overwhelmingly most significant feature is its

treatment of regular expressions. Regular expressions are a way of describing pat-

terns in strings and the allowable variation in the patterns. If you’re familiar with

wildcards at the command line, you’re familiar with a very primitive form of regu-

lar expression. The type of regular expressions that Perl supports can model much

more complex patterns in data.

Combined with a C-like syntax for general utility programming, Perl makes for a

very convenient language for processing text files, finding patterns within them,

and acting on the pieces of the patterns. For example, a Perl program to read an

HTML document and extract all the links to image files would, if you were feeling

verbose, take three lines of code. If you wanted to download all the image files, as

well, that would add one more. Perl’s regular expression engine is so powerful that it

is even possible to (easily) write a regular expression to grade math problems. And it

only takes three lines!

Don’t believe me? Put the following code in a file named grademath.pl and make

the file executable. (Kudos to Tim Conrow of comp.misc.lang.perl for pointing me to

this solution more than a decade ago.)

#!/usr/bin/perl

use re “eval”;

print $ARGV[0] =~ m@(\d+)\s*([+*%-])\s*(\d+)\s*=\s*(??{eval “$1 $2 $3”})@ ?

“pass\n” : “fail\n”;

Run it from the command line like this:

ray% ./grademath.pl “6 + 5 = 19”

fail

ray% ./grademath.pl “6 + 5 = 11”

pass

ray% ./grademath.pl “3 * 9 = 27”

pass

Perl’s great strength, its regular expression engine, is also probably its greatest weak-

ness. In addition to complex regular expressions looking much like the result of

your cat taking a nap on your keyboard, if you spend much time working in Perl,

everything starts to look like a problem to be beaten with a clever application of

regular expressions. A surprising lot of tasks can be addressed that way, but some-

times it is good to take a step back and see whether that graphical adventure game

you’re writing might be better written in something that doesn’t believe that the

whole world is made of text.

ptg8126863

By the
Way

Did You
Know?

322 HOUR 13: Xcode-Supported Languages

Xcode supports Perl syntax highlighting, but because Perl is an interpreted rather
than compiled language, there’s nothing to “build” for a Perl script. You could, if
you wanted, set up an external build system rule to run the script from the com-
mand line when you click Run. However, Perl scripts are more often useful from
the command line, with data piped in or with files and arguments provided at a
shell prompt.

Get yourself a copy of the Camel book, otherwise known as Programming Perl. It
is the definitive reference and will ease you on your way to appreciating the won-
ders of regular expressions.

Best Uses
Perl is ideally suited for processing textual data, breaking it into manageable
chunks, and manipulating those chunks. It is not a particularly high-performance
language, but the rapidity with which sophisticated processing procedures can be
developed often more than offsets what Perl lacks in speed. Perl is almost never
the right language for working with binary data.

Adding Support for Other Languages
In addition to being useful for languages that are “all there” but that just need spe-

cial consideration in the way that their projects are set up, such as Perl, Xcode can

be extended using third-party add-ons. These add-ons can supplement Xcode capa-

bilities with anything from additional templates and appropriately customized build

settings to completely new compilers for languages that the default Xcode is not

even aware of. Two of the most popular languages supported by third-party add-ons

for Xcode are Python and Ruby. Add-ons for other languages, such as Fortran and

COBOL, are available, but functional updates to them usually lag considerably

behind Xcode releases.

Python
Python is one of a new breed of languages that manage to combine quite high-level

language constructs and direct execution without (obvious) compilation with signifi-

cant performance. Python is object oriented without being too talky, and has both a

large following of loyal users and an amazing collection of utility libraries.

Among Python’s other admirable traits, complex math (in both senses of the word)

is quite easy to implement. Matrices, for example, can be first-class objects, letting

you write canonical algebraic notation to perform matrix manipulation, instead of

requiring that you write two pages of nested for loops, as would be required in

ptg8126863

By the
Way

Adding Support for Other Languages 323

C-derived languages. This flexibility is a result of the ease of extending Python’s

default classes and overloading Python operators.

Python’s syntax is generally C-like, with some notable exceptions, the most signifi-

cant of which is that it does not use any type of block delimiter to demarcate the

code blocks under the control of, for example, conditional expressions. Instead,

Python uses indentation. Whether this is a good thing or a bad thing is the subject

of an ongoing battle of epic proportions in online discussion groups. Regardless of

whether it is good or bad, however, this feature of Python absolutely requires a

Python-aware editor for development.

Xcode understands Python syntax as shipped, but can additionally be extended by

the inclusion of useful project templates. Available from https://github.com/chenhait-

eng/Python-Project-Template-for-Xcode-4, these templates provide preconfigured

default projects for both the Apple-provided system Python and for MacPython

(http://wiki.python.org/moin/MacPython) if you have that version installed. Both

templates available at the link can be installed in either ~/Library/Developer/

Xcode/Templates/ for your personal use, or in /Applications/Xcode.app/Contents/

Developer/Library/Xcode/Templates/Project Templates/Mac/Other/ to make them

available systemwide. When selected as an Other project type for a new project, both

configure an external build system build, with most of the required trivia filled in.

That bit of fine print that flashed by when you were clicking through to create your
Python project after installing these templates said that you needed to edit the
build scheme to run your script and that there were instructions in a ReadMe file
in the Supporting Files directory.

The brief summary is that you need to select Edit Scheme from the Product menu,
and then edit the properties for the Run phase. Under the Info tab, the Executable
needs to be set to the same Python path as is configured for the external build
system. The Debugger should be set to None. Under the Arguments tab, turn on
Base Expansions for your target, and add a new item to Arguments Passed on
Launch. Fill this argument in with $(SOURCE_ROOT)/targetname/ followed by the
name of the Python file that should be executed when you click Run.

Best Uses
Python is extremely well suited for use in scientific and mathematical applications,
especially those where its SciPy and NumPy libraries bring in highly optimized
solutions to common mathematical tasks. Fortran programmers are likely to find
Python appealing. In other contexts where libraries are available to support a
given task, Python’s implementations tend to be quite good. Python’s lack of block
delimiters make it nightmarish to use if the code is transported back and forth
between different developers with editors that mix tabs and spaces.

Did You
Know?

http://wiki.python.org/moin/MacPython
https://github.com/chenhaiteng/Python-Project-Template-for-Xcode-4
https://github.com/chenhaiteng/Python-Project-Template-for-Xcode-4

ptg8126863

Did You
Know?

324 HOUR 13: Xcode-Supported Languages

Ruby
Ruby is another modern, high-performance, high-level language. Like Python, it has

a dedicated following of loyal users and a number of useful libraries. It is also an

object-oriented language, although it is simultaneously more thoroughly object

oriented in its general approach and less pushy about being object oriented in

actual use.

Like Objective-C, Ruby is reflective, enabling dynamic metaprogramming and modi-

fication at runtime. Unlike Python, which supports private methods that are truly

private, Ruby exposes every class method to running programs, enabling full sub-

classing of any class, and thereby overriding and replacement of class methods.

In Ruby, everything is an object. Everything. Classes are objects, variables are

objects, even (what look like static) numbers are objects. Combined with reflection,

this means that you can do things like ask the number 5 what methods it supports.

Seriously. If you put the command 5.public_methods; in a Ruby file, what you’re

doing is asking the numeral 5 what methods it understands. And if you really want,

you can extend the methods and teach 5 new tricks.

Another significant feature of Ruby, although it sounds silly to say, is that Ruby

somehow inspires the creation of clean code. Where Perl frequently looks like ran-

dom noise, and Python starts to all run together with its lack of block delimiters,

Ruby code just somehow looks neat and tidy. I have no idea why, but I’m not the

only person to have observed this. Give it a try, and I bet you’ll agree with me.

Xcode understands Ruby syntax as shipped, but it can also be extended to support

full Cocoa-Ruby application types by adding a (semi) third-party add-on. This par-

ticular add-on is a bit peculiar because Apple actually supports its development and

ships its framework with Lion, but for some reason they currently make the shipped

version of the framework private, thereby disabling Xcode software builds against it.

By installing the MacRuby package available from http://www.macruby.org/, you

give yourself not only a usable Cocoa-Ruby framework, but also add a new Cocoa-

Ruby application type to Xcode’s list of application projects that you can create. Like

the Cocoa-AppleScript project, the default Cocoa-Ruby project creates a Ruby-pow-

ered Cocoa application underlying a NIB-based UI.

You should study Ruby for a bit to see whether some of its unique features might
be magic bullets to solve your programming problems. Although far too varied to
begin to detail here, Ruby provides access to some very powerful programming
constructs, with surprisingly simple invocation. For example, it is quite easy to tie
a Ruby program to a SQL database, such that whenever you manipulate variables
in the program it changes values in the database, and vice versa. It is also quite

http://www.macruby.org/

ptg8126863

By the
Way

Summary 325

easy to pass chunks of code around as anonymous functions, to let other bits of
code execute them elsewhere. This might not sound like it is very useful, but
when you manage to wrap your head around the idea, it opens up whole new
worlds for code cleanliness and clarity.

If you like Python, there is a good chance you won’t like Ruby. If you like Ruby,
there is a good chance you won’t like Python. Try them both, and then stick with
the one you find most comfortable.

Best Uses
Ruby is well suited for numerous general-programming tasks, and with its Cocoa
interface, you can use it to develop high-quality OS X applications. Where Ruby
libraries fit a particular task, they tend to be quite well thought out and well writ-
ten (like with Python).

Other “Unsupported” Languages
The configuration and build steps for the Perl and Python languages are prototypi-

cal of what you must do to use Xcode for development in any language that it does

not natively know how to compile. As demonstrated by this hour’s very first exam-

ple, using Xcode on HTML, “running” what you’ve written doesn’t even have to

mean running it in the sense of executing it as a program. As long as you can con-

figure the external build system with an appropriate build tool and arguments, and

configure the scheme executable and arguments correctly, Xcode really can become

a code-editing and code-maintenance tool from which you can automatically

deliver your project files into any external application.

Summary
This hour covered the general characteristics and flavor of the main languages sup-

ported by Xcode and some other languages that can be supported either through

the external build system paradigm or through the addition of third-party compo-

nents. You learned some of the strengths and weaknesses of each language and the

types of uses that each is best suited for. Keep these in mind when you reach Hour

15, “Putting It All Together: Building a Mac OS Application,” and start to think

about putting everything into practice to build a complete working application.

The language you choose should be guided by both the capabilities and suitability

of the language for the task at hand and by how comfortable you are in the lan-

guage (or how interested you are in learning it). You can complete nearly any

ptg8126863

326 HOUR 13: Xcode-Supported Languages

programming task with practically any programming language, although the effort

required will probably differ significantly. Most people, however, will gladly take a

lot of fun learning over a little bit of drudgery.

Q&A
Q. Do the external build system build tool and the scheme run executable

really have to be the same?

A. No. These actually serve two different purposes. The build tool is actually

intended to transform your files into something that’s ready to run, and the

executable in the Run component of the scheme is what’s supposed to be used

to run your program after it has been built. This difference is somewhat

nonobvious in these examples because the external build system has been

used on scripting languages that are executed directly, rather than “built”

before running.

Q. Are these all the languages that can be used in Xcode?

A. Heavens no. They aren’t even all the ones that Xcode knows syntax for.

Q. Is JavaScript the same thing as Java?

A. Not even close. JavaScript is a completely different language that uses some of

the same keywords as Java. It was originally intended as a lightweight, quick-

to-implement scripting language for adding in-web-browser functionality.

Exactly why it was renamed from LiveScript to JavaScript remains shrouded in

some controversy, but the naming has certainly caused some confusion. And

yes, Xcode knows JavaScript syntax, too.

Workshop

Quiz
1. What are the best references for learning about Objective-C?

2. Order the languages discussed from slowest to fastest in terms of how quickly

they could multiply every element in a matrix by 2.

3. Which language will cause you the most headaches if you’re careless?

ptg8126863

Workshop 327

Answers
1. Apple’s developer and online documentation.

2. This is a trick question. For a straightforward implementation, the order is

AppleScript or Java, Perl, Python and Ruby tied, C++, Objective-C, and C.

However, remember that Python has some real smarts built around things like

matrices as first-class objects. This lets you write A*2 to multiply matrix A by

scalar 2. The underlying implementation can split that task across cores, so

this can yield speeds far beyond what C’s closer-to-the-metal implementation

can do looping iteratively through the whole matrix on one CPU core.

3. C, or perhaps Perl, depending on your version of careless. C causes headaches

because it is unrelentingly literal. Perl causes headaches because it is overly

helpful but not overly careful itself.

Activities
1. Update the template for the Cocoa-AppleScript project so that it includes

default cases to catch applicationDidFinishLaunching and awakeFromNib

messages.

2. Build a new external build system project that supports sh/bash shell scripts.

This will prove useful to you when you start building more-complex projects

where some steps of the build process require running a script to move or

modify files within the project.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 14

Planning for Reuse:
Frameworks and Libraries

What You’ll Learn in This Hour:
. The purpose of libraries and frameworks
. The difference between libraries, frameworks, and just plain code
. How to build static libraries and frameworks
. How to deploy a framework so that it can be shared with other programmers

or applications
. How to adapt library code from other sources

This hour begins a series of four lessons that put everything you have learned together

into common development tasks in Xcode 4. Hold tight. These hours might take a bit

longer than an hour because you can put the pieces together in so many different ways.

In the end, you want to make sure you have chosen the best combination for the develop-

ment project you have planned.

This hour starts by introducing the role of libraries and frameworks in development, walks

you through building a static library and a reusable framework, and then illustrates how

you can adopt library code from libraries developed on other platforms into Xcode.

Understanding Frameworks
Frameworks and libraries are both ways of packaging compiled copies of reusable code so

that it can be used in multiple projects. Frameworks are primarily used for dynamic compo-

nents—that is, components that are not built in to the software when it is compiled, but

rather are loaded in each time it is run. Libraries can be either dynamic (loaded at runtime)

or static (included in the compiled application when it is built), though Apple discourages

the use of bare dynamic libraries, and instead prefers them to be packaged into frameworks.

ptg8126863

330 HOUR 14: Planning for Reuse: Frameworks and Libraries

If you’re already familiar with the idea of dynamic libraries, you can think of frame-
works as a more completely featured version of the dynamic library idea. Whereas
dynamic libraries package only executable routines and associated symbols, and
are instantiated as a single versioned file, a single framework can encapsulate
any number of independent dynamic library files, all the header files that define
the routines for the dynamic libraries, and also associated resource files such as
images, documentation files, or other data used by the libraries.

If you are not familiar with dynamic libraries, you probably do not really need to
worry about writing your own frameworks for a while anyway. You’re welcome to
keep reading, but if this reusable components business is confusing, don’t worry;
when you need it, it’ll all make sense.

Static libraries are used to dump their object contents directly into your project, as

though the source is there, when you build your project. The necessary objects are

linked, the necessary executable modules are copied into your application, and it all

gets collected together in a single executable file where all the necessary pieces (and

if your compiler is good, none of the unnecessary pieces) are included.

You can think of the difference between static and dynamic libraries as much like

the difference between DVDs and streaming copies of a movie. You link the static

library at compile time, which includes its executable object code into your applica-

tion. You buy the DVD, which becomes part of your personal collection. If you move

the application, the compiled-in executable components copy with it. If you move

apartments, you take the DVD with you. If you copy the application, you duplicate

the compiled-in executable components, thereby using disk space to store the same

thing twice. If your friend wants to own a copy of the DVD, he buys his own copy,

and the two of you now have two physical copies between you. If the static library

gets updated and a new version becomes available with new features, your applica-

tion doesn’t know anything about this and keeps on using the compiled-in code it

has always been using. If you want the new features, you recompile the application.

If the studio releases a new version of the DVD, you’re stuck with the old one you

already own. If you want the new one, you buy another copy.

However, if you bought a streaming copy of the movie from the iTunes Store, you do

not get a copy of the movie until (and only while) you’re watching it. This is like

using a dynamic library. Your application knows that it can use the library, but it

doesn’t actually have the executable code on hand. When you launch the applica-

tion, it has to load the content, just like you have to download the movie to watch

it. When you move apartments, you do not take a copy of the movie; you just

download it again when you want to watch it again. When you run your applica-

tion a second time, it has to load the dynamic library all over again. When your

friend wants a copy of the movie, she gets pointed to the very same downloadable

By the
Way

ptg8126863

Did You
Know?

Understanding Frameworks 331

content that you use. When you duplicate your program, it doesn’t duplicate the

dynamic library, the new copy just also knows where to ask to use the library at

runtime. When the studio updates the movie in iTunes to correct some damaged

footage, you see the updated version automatically the next time you watch it.

When the dynamic library is updated to fix a bug or function more efficiently, those

changes are automatically available to your application when it loads the updated

dynamic library the next time it runs.

Making the Choice
If a routine in your project could also be useful in some other project, placing that

routine in either a framework or a static library is a way to let you maintain the

reusable routine independent of either project, while making sure that it can be used

in both.

If the routines that you’re considering putting into a framework really do not have

any use outside your current project, it is often pointless, and usually actually coun-

terproductive, to put them into libraries or frameworks.

If the reusable bits are going to be completely finished and never need updated,

putting them into a static library makes sense.

If the reusable bits might need to be updated often, especially if they need to be

updated without recompiling the entire application project, a framework is appro-

priate—this is even true if the bits are not really all that reusable.

If the code has a significant memory footprint, and multiple programs might need

to use that code at the same time (multiple different programs or multiple running

copies of the same program), a framework is appropriate because every running

program shares access to the same loaded instance of a framework.

However, if you want to use the same reusable code bits in both a Mac OS X appli-

cation and an iOS application, you may want to target a static library. Apple

doesn’t allow the use of third-party frameworks on iOS devices yet, so if you use

framework-specific features when building the OS X version, you’ll have additional

work to do when adapting those routines to a static library for your iOS deployment.

There is also a new automagic way to deal with code/data reusability with Xcode
4. Workspaces, covered in Hour 20, “Keeping Things Organized: Shared
Workspaces,” promise to automatically address issues of code and data reuse
across multiple projects, simply by maintaining those projects within a single
shared workspace environment.

ptg8126863

By the
Way

332 HOUR 14: Planning for Reuse: Frameworks and Libraries

Unfortunately, although this will undoubtedly become a much more streamlined
and convenient way to handle reusable components as Xcode continues to
mature, a) some of the workspace features are not quite ready for prime time,
and b) workspaces are an Xcode-specific feature. In contrast, libraries and frame-
works are uses and adaptations of standard software development/distribution
mechanisms that are almost universal. So, the workspace-specific mechanisms
limit your ability to share your work with users of other development environments
on OS X or on other platforms such as Linux.

For example, consider developing a video game. If your game uses physics, it is

probably important to you that your game and its physics run as fast as possible. If

you’re just developing one video game, forget libraries; compiling the physics code

directly into your game makes the most sense. It’ll start faster, and the optimizer will

be able to reject unused portions of the code, appropriately defer execution, unwrap

loops, and so on more efficiently.

If you’re developing a suite of games all based around the same physics engine,

consider using a static library that gets linked with all your games. You lose a little

bit of efficiency because some optimizer tricks cannot be applied to the library when

it is compiled independent of the final applications, but the linker will still do its

best to eliminate unused bits. If your physics code is finished, though, and you’re

never going to touch it again, and no one else will need to either, a single static

library that just gets linked to each of the games makes life easy and nearly maxi-

mizes performance.

However, if you’re developing a game or a suite of games, all of which use the same

communication engine to facilitate network play, and you’re continuously updating

the communication engine as you think of new tricks to optimize the communica-

tions stream, using a dynamic library in a framework makes good sense. You lose a

bit of efficiency because each time the game starts it has to load the dynamic

library, figure out what symbols are where, and coordinate all of that with your

existing program, and optimization cannot make nearly as much an improvement

in execution speed. However, you get the significant benefit of being able to tweak

the communications code and deploy new variations on it under your game, or all

of your games, just by recompiling the framework, without having to rebuild your

game or games.

An amazing amount of bad advice exists on the Internet regarding using frame-
works. In addition to everyone and his brother recommending that you put oodles
of code that has no business being in a framework into frameworks, Internet pro-
gramming mavens have another favorite chestnut that many of them seem quite
eager to offer: embedded frameworks.

Did You
Know?

ptg8126863

Understanding Frameworks 333

They just love embedded frameworks. Embedded frameworks are frameworks that
you build and then include inside your application bundle so that your application
always uses its own, self-contained private copy of the framework that is always
exactly the version it expects and is always exactly where it expects it to be. This
provides quite a lot of convenience, and in fact you learn how to set up a frame-
work for this purpose in this hour of the book.

Stop and think about this for a minute, though. If the purpose of a framework is to
encapsulate reusable, independently updatable routines, is it really a big advan-
tage to hide it privately inside an application bundle, where it cannot be reused
and where it cannot be updated? Usually, the answer is no. In fact, usually the
answer is that if an embedded framework will work, linking the code directly as a
part of your application works better.

Embedded frameworks are really best used for situations where you either want to
distribute the framework conveniently bundled inside your application and then let
the application install it for systemwide usage or when it’s impossible to properly
install the framework in /Library/Frameworks/ because of system security issues.
They also prove useful when you are co-developing a piece of software and a sup-
port framework for it, because embedded frameworks limit the amount of trouble
that errors or test code in the framework can cause for the rest of the system
(because their effect is limited to the application bundle that contains them).
Other than those situations, however, embedded frameworks are usually the lazy
way of accomplishing something that could better be done some other way.

Making a Static Library
Making a static library is much like making most other projects in Xcode. In short,

you tell Xcode that you want to build a project, select Static Library as the type of

project to build, add some code, and build away. You can then include the result as

a component in other projects that need to use the routines you have built within

the library. The only real trick to this process is that you also need to specify the

parts of the library that should be exposed to programs that want to use the library.

Internal parts of the library (bits that the library requires for functionality but that

the applications that use the library shouldn’t be fiddling with) need to be declared

to be private to the library (peculiarly, Apple uses the term project for these), and bits

that need to be available for the external application’s use need to be declared pub-

lic. The following section walks you through the process of building a static library

for a simple library that provides a doubly linked list class.

To build a static library, follow these steps:

1. Tell Xcode that you want to create a new project by selecting File, New, New

Project from the menu.

ptg8126863

334 HOUR 14: Planning for Reuse: Frameworks and Libraries

2. Select the Framework & Library collection from the left pane and the Cocoa

Library item from the right pane, as shown in Figure 14.1.

FIGURE 14.1
Creating a new
Cocoa Library
project.

3. Decide on a product name and provide a company identifier.

You should decide on a uniform company identifier and use it for all of your

work, but it doesn’t much matter what that identifier is as long as it is likely to

be unique. As mentioned previously, Apple recommends a reverse-domain-

name string for your company specifier. For your own personal use, any arbi-

trary string is fine.

4. For the project name, choose something meaningful related to the functional-

ity of the library you’re building.

We are building a doubly linked list library, so I am calling my project Lists.

The value you supply here also gets used for the default class name in the gen-

erated project files, so it is probably best to avoid spaces, although you can

modify this value in the files if it turns out you prefer to have your classes

named something else.

5. Unless you have a good reason to do otherwise, fill in the rest of the dialog box

as shown in Figure 14.2.

6. Select Static for the type. After all, although you can build a dynamic library

this way, there’s little point; frameworks do it better.

ptg8126863

Understanding Frameworks 335

7. Turn on Use Automatic Reference Counting.

Unless you really want to manage freeing all allocated memory yourself, just

let Automatic Reference Counting deal with freeing memory whenever the last

reference to an object is removed.

8. Turn on Include Unit Tests.

This is up to you. I prefer to include them in case I want to use them later. You

might consider them as extraneous to the project.

9. Finally, navigate to where you want to store the project and create it.

Leave the Source Control box checked, as shown in Figure 14.3, to create a local ver-

sion-control repository for the project, unless you want to exclusively connect the

project to a remote version control server. If you leave it on, you can enable both

local and remote version control. So unless disk space is seriously tight, leaving local

version control turned on does not hurt.

Xcode populates your project with a collection of directories and likely culprits that

your project may depend on. You land in a full Xcode project window, as shown in

Figure 14.4, with two targets in the Navigator panel (your library and its test suite),

several tabs of useful details (some of which you might want to customize in the

main Editor area), and compact interfaces to some likely utility functions you might

need in the Utilities.

FIGURE 14.2
Choosing
options for your
project.

ptg8126863

336 HOUR 14: Planning for Reuse: Frameworks and Libraries

FIGURE 14.3
Navigating to
where you
would like to
store your
project.

FIGURE 14.4
Your Xcode
project window.

Note that you have a library (starting with lib and ending in .a) and a test suite that

appear under Products in the Navigator panel. They are both red because neither

has been successfully built yet. Under the Build Settings tab, you can modify the

intended deployment directory (although this value is overridden by another setting

in the Xcode Preferences Locations tab, discussed in more detail later in this hour), as

well as numerous other configurable settings that affect details of the way that your

target is built.

Under the Build Settings tab are more configuration options for your project. In this

panel, shown in Figure 14.5, you can configure deployments for other versions of the

ptg8126863

Understanding Frameworks 337

operating system, set up multi-architecture builds, and adjust several features of the

debugging system.

FIGURE 14.5
The Build
Settings panel.

Pay attention to the Optimization Level setting. Setting this to more optimized levels

can make a significant difference in how fast your program runs. It is not uncom-

mon to see speedups of 3x or more when optimization is turned on. However, opti-

mizing compilers are tricky things. In addition to just eliminating wasted space in

your executable, they can also figure out certain situations where your code would

have been more efficient if written somewhat differently, and they’ll use their more

efficient version for building if optimization is turned on. This can lead to quite

bizarre effects when debugging because what you see in the debugger is your code,

but what is running is the optimized version.

When debugging optimized software, you will often see the program seemingly

ignoring simple explicit statements and internally producing values that are entirely

inconsistent with the logic of the code as you have written it. This is not an error, but

rather an instance of the compiler recognizing, for example, that it would have been

much more efficient if you had compared i to 6 instead of incrementing i and com-

paring it to 7. This behavior is doubly confusing when you’re building libraries

because they are often dissociated from the code that will eventually use them,

which makes debugging more difficult.

Listing 14.1 shows the prepopulated contents of the .h file.

ptg8126863

338 HOUR 14: Planning for Reuse: Frameworks and Libraries

LISTING 14.1 Prepopulated Contents of a default .h File
//

// Lists.h

// Lists

//

// Created by William Ray on 1/28/12.

// Copyright (c) 2012 SGF. All rights reserved.

//

#import <Foundation/Foundation.h>

@interface Lists : NSObject

@end

Listing 14.2 shows the prepopulated contents of the .m file.

LISTING 14.2 Prepopulated Contents of a default .m File
//

// Lists.m

// Lists

//

// Created by William Ray on 1/28/12.

// Copyright (c) 2012 SGF. All rights reserved.

//

#import “Lists.h”

@implementation Lists

- (id)init

{

self = [super init];

if (self) {

// Initialization code here.

}

return self;

}

@end

Add your header code to the .h file by clicking in the Navigator and editing it in the

Editor (in my case, that’s Lists.h) and add your implementation code into the .m file

(my Lists.m). Click the Run button, and you should be rewarded with a successful

build, as shown in Figure 14.6. Note that my libLists.a product has now turned

black, indicating a clean build.

Select the library (*.a) product and look at the File Inspector in the Utilities. You’ll

see, under Identity and Type, shown in Figure 14.7, that the build has placed your

library in a fairly bizarre directory. This library is what you need to distribute to

ptg8126863

Understanding Frameworks 339

other people to let them use your code or to place in your /usr/local/lib directory if

you want other projects of yours to be able to link against it. You can click the small

arrow next to the path to reveal the file in the finder and then copy it somewhere

more obvious, or you can change your Xcode preferences to control this behavior.

FIGURE 14.6
A successful
build.

FIGURE 14.7
Identity and
Type in the
Utilities panel
shows where
your library has
been placed.

ptg8126863

340 HOUR 14: Planning for Reuse: Frameworks and Libraries

Open your Xcode preferences and go to the Locations tab. On the pane that appears,

shown in Figure 14.8, you’ll see that derived data (things like the .a file you built) is

going to go into the Default directory, which is buried in ~/Library/Developer/Xcode/

DerivedData/. You can change that Default value to Relative, in which case it

switches to using a DerivedData directory within your Project directory, or you can

change the value to Custom, which lets you specify an explicit path. The Relative set-

ting is a bit more sane than the Default setting.

FIGURE 14.8
Under the
Locations tab in
the Xcode pref-
erences, you
can change the
default loca-
tions for the
derived data, as
well as for snap-
shots and
archives.

You have another option, too, hidden under the Advanced button. This button

brings up another dialog, shown in Figure 14.9, where you can set the build location

to either the default or the locations specified by targets. The Locations Specified by

Targets setting generates a behavior that is probably more like what you were

expecting. It creates Debug (or other appropriate target) directories within the Project

directory and puts the output files there, as shown in Figure 14.10. This is essentially

the behavior you have come to expect from earlier versions of Xcode.

FIGURE 14.9
Clicking the
Advanced but-
ton for the
derived data
brings up this
dialog to set the
build location to
either the
default or loca-
tions specified
by targets.

ptg8126863
By the

Way

Understanding Frameworks 341

Consider this an Xcode bug. If you change the Build Location option to Locations
Specified by Targets in the dialog shown in Figure 14.9, and then look at the dia-
log shown in Figure 14.8, it’ll look exactly the same. This dialog does not update
to reflect the fact that the files now are not going to land in the Default directory.

If you want to validate that your library does what its supposed to do, and do a bit

of debugging without writing a proper application around it, you can use the Unit

Test testing suite that Xcode has already begun to populate for you. Under the Tests

directory, you have another .h file and .m file. These are supposed to be used for

building unit tests so that you can continually monitor the functionality of your

code as you build it (as covered in detail in Hour 18, “Test Early, Test Often”), but

they are also useful for quick-and-dirty debugging.

As shown in Figure 14.11, add some simple calls to your library functions and add

diagnostics with NSLog(). Select Test from the Product menu, and the code you have

added will be run, linked against your library. This can give you a rapid readout of

functionality without you ever needing to write a main() routine.

Making a Framework
To make a framework, you follow much the same process as when making a static

library. The biggest difference, other than telling Xcode that you are building a

FIGURE 14.10
After you select
Locations
Specified by
Targets, the out-
put files are
stored in direc-
tories within
the Project
directory.

ptg8126863

342 HOUR 14: Planning for Reuse: Frameworks and Libraries

To build a framework, follow these steps:

1. Tell Xcode that you want to create a new project by selecting File, New, New

Project from menu.

2. Select the Framework & Library collection from the left pane and the Cocoa

Framework item from the right pane, as shown in Figure 14.12.

3. Fill in your project name and company identifier as was done for a library

and leave the Automatic Reference Counting and Unit Tests options turned

on.

4. Pick a place to put it.

5. Again, leave the Git repository turned on.

You are then presented with a prepopulated Navigator panel with much the

same content as was present for your library, and similar build options in the

main Editor panel.

FIGURE 14.11
Showing a suc-
cessful test run
generated by
adding some
simple calls to
the library,
adding diagnos-
tics with
NSLog() and
running Test
from the
Product menu.

framework, is that you can include noncode components inside frameworks. Because

frameworks are really directory structures like any other bundle, they can contain

not just the compiled executable code, but also the header files defining the routine

interfaces, image files, and other components that the library, or applications using

the library, might need. Setting up these additional components requires a few steps

beyond what a static library requires.

ptg8126863

Did You
Know?

Understanding Frameworks 343

6. Fill in your .m and .h files.

7. The same content as you used for your library will do, although you probably

want to use a different class name, just to reduce confusion.

Here comes a big difference between frameworks and libraries.

If additional resources would be convenient for your code to carry around with it,
such as images it will use in NIB files, you can drag them into the Navigator and
drop them in the Supporting Files folder that’s with your framework implementa-
tion and header files now. Any data files that would be good to keep with your
code after it has been distributed can be included here, either directly in the
Supporting Files folder or in a directory structure of your choosing beneath it.

After you drop the items, tell the resulting dialog that you want to copy the items
and to create groups for Folders. Make sure that any target that might need
access to the files is selected before clicking Finish.

With the library, all you got was the output .a file and the header .h file that you
wrote for it. Frameworks are bundles of related resources, and the files you add
are included in your framework when it is built.

8. Fill in your test suite, too.

9. Build your project by selecting Build from the Product menu, and then test it

by selecting Test from the Product menu.

If you have your build configuration set to Debug in your build scheme (see

Hour 19), everything will probably work just fine. However, if you have your build

FIGURE 14.12
Selecting
the Cocoa
Framework item
to start a frame-
work project.

ptg8126863

By the
Way

344 HOUR 14: Planning for Reuse: Frameworks and Libraries

When you look in the Build directory, shown in Figure 14.14, you see the source of

the trouble. Under the ListsToo.framework directory, there are proper Versions and

Resources directories, but no Headers directory. Things trying to use this framework

cannot find them because the directory and the headers it is supposed to contain are

missing.

To fix this, follow these steps:

1. Select your project in the Navigator.

2. Display the Build Phases tab in the main Editor panel.

Here, you find a section called Copy Headers, conveniently denoted as having

no items.

FIGURE 14.13
Sometimes
Xcode produces
correct output
from your test
routine even
while complain-
ing that it can-
not find the
header files
that it needs to
compile.

configuration set to Release, you are likely to get an error when your test suite tries

to #import your framework header file. This is due to a subtle difference in how the

compiler looks for header files when it is using frameworks as compared to when it

is using libraries. Specifically, frameworks are supposed to carry their headers

around with them, and for some reason, Xcode does not default to copying the

headers into the build directory.

Consider this another Xcode bug. Sometimes, for reasons I don’t understand,
Xcode will produce correct output from your test routine, as shown in Figure
14.13, and simultaneously complain that it cannot find the header file that it
needs to compile.

ptg8126863

Understanding Frameworks 345

FIGURE 14.14
The Build direc-
tory for this
framework is
missing the
Headers
directory.

3. Open the Copy Headers section so that you can see the Public, Private, and

Project headers subsections and the + button beneath them, as shown in

Figure 14.15.

4. Click the + button.

You are then presented with a dialog like that in Figure 14.16.

FIGURE 14.15
Under the Build
Phases tab of
the Navigator
panel, you can
copy the miss-
ing header files.

ptg8126863

346 HOUR 14: Planning for Reuse: Frameworks and Libraries

5. Select your .h header file and click Add.

Annoyingly, you’ll find that the .h file lands in the Project headers section, as

shown in Figure 14.17. This is not helpful. Project headers are, semi-intuitively,

private to the project and are not exported. Private headers are, counterintu-

itively, private to the project but will be exported, although they cannot be

used by external applications. Public headers are exported and are available

for use by external code. This is where you want your .h file to go.

FIGURE 14.17
The header file
gets copied to
the Projects
section.

FIGURE 14.16
Select the
header file that
you want to
copy from this
dialog that
appears after
clicking the +
button.

ptg8126863

Deploying a Framework 347

6. Select your header .h file where it has landed in the Projects section and drag

it to the Public section so that your configuration looks like Figure 14.18.

FIGURE 14.18
The header file
has now been
moved from the
Projects section
to the Public
section.

7. Select your framework in the Navigator again and use the Project menu to

build it.

Your Build directory should change to include a Headers directory within the

Versions section and a link to it from the top level of the Framework directory, as

shown in Figure 14.19. Now if you go back and run your tests, they can find your

header files correctly.

FIGURE 14.19
After building,
the Build direc-
tory includes a
Headers direc-
tory within the
Versions section
and a link to it
from the top
level of the
Framework
directory.

ptg8126863

348 HOUR 14: Planning for Reuse: Frameworks and Libraries

Deploying a Framework
You learn how to include your framework in applications that you write in Hour 15,

“Putting It All Together: Building a Mac OS Application,” but sometimes the point of

a framework is just to have the framework. If you need to share the framework, or

test it in place in /Libraries/Frameworks/, the easiest way to do this is to archive

your framework project, as follows:

1. Under the Product menu, select Archive. This creates an archive of your proj-

ect and opens the Organizer.

2. Select your project from the archives, as shown in Figure 14.20, and then click

the Share button. A dialog like that in Figure 14.21 opens.

FIGURE 14.21
Clicking the
Share button
brings up this
dialog, where
you can select
the Built
Products option.

FIGURE 14.20
Selecting your
project from the
Archives in the
Organizer.

ptg8126863

Reusing Code from Existing C/C++ Libraries 349

3. Select the Built Products option, click Next, and give it some place to save the

archive.

It creates a folder in that location, and if you check the contents of the folder, you’ll

see that it is a complete copy of your framework, ready to be copied into /Library/

Frameworks/ or ~/Library/Frameworks/.

Reusing Code from Existing
C/C++ Libraries
Most existing C and C++ libraries can be built using Xcode with little difficulty.

These traditional libraries are simply collections of concatenated object files, and

Xcode can compile and concatenate them using simple project templates designed

for this task. Figure 14.22 shows the result of attempting to build a simple C pro-

gram that is trying to call three functions (libfunc1(), 2, and 3) that are not

defined within it. Not only does the Editor window flag the implicit declarations of

these functions when the program tries to call them, but the error messages high-

light the fact that there are no definitions that it can find for libfunc1(), lib-

func2(), and libfunc3().

FIGURE 14.22
Showing what
happens when
trying to build a
simple C pro-
gram that calls
functions that
are not defined
in it.

ptg8126863

350 HOUR 14: Planning for Reuse: Frameworks and Libraries

To remedy this, follow these steps:

1. Create a new project, selecting the C/C++ Library project template.

2. Add C language files and define your functions in them.

3. Add a header file with prototypes for your functions.

Listings 14.3 and 14.4 show a very simple header file defining libfunc1(),

libfunc2(), and libfunc3(), and the entire contents of the C file defining

libfunc1(). There are two additional, almost identical C files defining

libfunc2() and libfunc3() that are not shown.

LISTING 14.3 Header File Defining libfunc1(), libfunc2(), and
libfunc3()

//

// libstaticC.h

// StaticC

//

// Created by William Ray on 1/28/12.

// Copyright (c) 2012 SGF. All rights reserved.

//

#ifndef StaticC_libstaticC_h

#define StaticC_libstaticC_h

int libfunc1(int);

int libfunc2(int);

int libfunc3(int);

#endif

LISTING 14.4 Contents of the C File Defining libfunc1()
//

// libfile1.c

// StaticC

//

// Created by William Ray on 1/28/12.

// Copyright (c) 2012 SGF. All rights reserved.

//

#include “libstaticC.h”

int libfunc1(int inval)

{

return inval * 3;

}

The libfile2.c and libfile3.c files contain essentially identical code, with the

appropriate function definitions.

ptg8126863

Non-Xcode build systems usually aggregate object files using a program called ar,
called from within a file named Makefile. Use a text editor (the Xcode Editor will
do) to look in the Makefile for a line that starts with ar. It should contain a bunch
of files ending in .o, and one that starts with lib and ends with .a. That line is
responsible for creating the library archive. Collect all the .c files that correspond
to those .o files and add them to your C/C++ library project. The output from the
build will be an equivalent .a file to that built by the Makefile.

7. In the dialog that opens after you drop the .h and .a files, select the option to

copy items into the destination group’s folder.

Copying the files does require you to copy the library again if you update it,

but if you do not tell it to copy the files, Xcode instead inserts dependencies on

the full paths to the library and header. With full paths, if you move between

machines or otherwise try to build in a new location, Xcode cannot locate the

files at that full path, and your build will fail.

After you have copied the library and header file over, you should get a clean build

from your C language application.

By the
Way

Reusing Code from Existing C/C++ Libraries 351

4. Build the project by selecting Build under the Product menu. The three.c files

are compiled into .o files and aggregated into a single .a file. This .a file is

your C language library.

5. Open the project that failed in Figure 14.22 and position its Xcode window

behind the project where you built the static library.

6. Then drag the .a file and the .h file over into the Project directory of the failed

application, as shown in Figure 14.23.

FIGURE 14.23
Adding the
static library
containing func-
tions that the
failed C project
needs.

ptg8126863

Did You
Know?

352 HOUR 14: Planning for Reuse: Frameworks and Libraries

Although it is quite easy to compile C and C++ libraries using Xcode, and quite
easy to use them in C and C++ programs written in Xcode, it is a bit of a trick to
call C++ library functions in application code written in Objective-C. The most
straightforward solution is to write C language interface code to sit between the
Objective-C application and the C++ library. Objective-C can speak to a C library
easily enough, and the C++ code can be induced to generate a C-compatible call-
ing interface by including extern C in front of function declarations. A more ele-
gant but somewhat more involved solution is discussed at http://www.philjordan.
eu/article/strategies-for-using-c++-in-objective-c-projects.

Summary
Libraries and frameworks are an excellent way to both compartmentalize your code

and facilitate reusing it for other projects. In this hour, you learned the differences

between libraries, which are single-file collections of compiled code, and frame-

works, which are special bundles that can contain libraries and additional resources

such as image or data files, localization strings, and documentation. You learned

how to make the decision between building a library or a framework or just compil-

ing your code straight into your application. You also learned how to build your

reusable code into a library and into a framework and how to test the results with-

out writing a large application to use the functions and how to package the library

up to deploy on other systems or share with other users and programmers. You also

learned how to construct and use Xcode library targets for building C and C++

libraries out of code that others provide for libraries in these languages.

Q&A
Q. What runs faster, bare code in an application, that code in a library, or that

code in a framework?

A. Everything else being the same, code compiled directly in an application is at

least fractionally faster than any of the other options.

Q. I’m looking at some open source software, and it builds and then uses a
dynamic library. Should I use a dynamic Cocoa library or a framework?

A. Really, you can do either, although the framework option is cleaner if you are

willing to do the little bit of extra work to set it up, beyond the “just drag in

the files” procedure necessary for the plain dynamic library.

http://www.philjordan.eu/article/strategies-for-using-c++-in-objective-c-projects
http://www.philjordan.eu/article/strategies-for-using-c++-in-objective-c-projects

ptg8126863

Workshop 353

Q. Is passing around void pointers like you did in your linked list really kosher?

A. Well, it’s cheap. If you’re comfortable with C-style typecasting, it is a conven-

ient way to abstract a library interface, such as for a linked list, so that it

doesn’t matter what data type it is actually working with. If you are not com-

fortable with C-style typecasting, this way lie monsters.

Workshop

Quiz
1. Is there ever a good reason to use an embedded framework?

2. Where does Xcode store by default the components that it is building for your

project?

3. Why does software that you’re trying to build, using your new framework

complain that it cannot find the header files?

Answers
1. Yes, there are several, although most of them are fairly specific cases where,

for example, you need to be able to rebuild part of your application without

rebuilding it all (such as for a plug-in system). Where frameworks really shine,

though, is for sharing your libraries with others by putting it in /Library/

Frameworks/.

2. In a DerivedData directory buried in ~/Library/Developer/Xcode/.

3. Because you still need to add a Copy Headers build phase to your project and

tell it which headers to add to the framework Headers directory.

Activities
1. Download the project for the Doubly Linked List Framework from

http://teachyourselfxcode.com/ and build it.

2. Add the code necessary to implement the rest of the doubly linked list func-

tionality. Add error checking on returned values.

3. Add testing code to the test suite to make sure that your new functionality pro-

duces the expected results.

http://teachyourselfxcode.com/

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 15

Putting It All Together:
Building an OS X Application

What You’ll Learn in This Hour:
. How to use a shared framework in your project
. How to add a second view component with a controller independent from the

application delegate
. How to incorporate an embedded framework project into your application to

accommodate interproject dependencies

So far in this book, you’ve learned all about the Xcode interface and how to use it to con-

struct the necessary component pieces of an OS X application. In this hour, you refresh

what you’ve learned about the interface and the tools for building components, while

going through the process of building a complete Objective-C-based Cocoa application.

The application we build in this hour is kind of like a very simple Etch A Sketch. It takes X

and Y coordinate values as input, plots the points and draws lines between them in a

graphical view, and lists the coordinates that you’ve entered in a browser. This hour does

not cover every possible functionality, but by the time you have finished, you should have

a good idea of how to add features like editing the points list in the doodle or connecting

it up to more interesting sources of coordinate data than just what you can enter from the

keyboard.

Like Hour 14, “Planning for Reuse: Frameworks and Libraries,” this hour is a bit longer

than some of the others. This is partly because what you have already learned is some-

what involved and requires a thorough walkthrough here. And, it is partly because even

though Xcode keeps getting better and better, Apple still needs to smooth out some rough

spots. After all, it doesn’t take wandering too far off the path to end up with an applica-

tion that looks all right but works all wrong.

ptg8126863

Did You
Know?

356 HOUR 15: Putting It All Together: Building an OS X Application

The best way to work through this hour is to download the associated source code
from http://teachyourselfxcode/ and follow along using the source code provided
in the Hour 15 directory. We want to focus on the Xcode features that you need to
know about and use, and not dilute that information with details that are purely
about Objective-C or Cocoa. So, this book shows only the portions of the code
directly relevant to how you’re working with Xcode in the project.

Getting Started
Let’s start at the very beginning:

1. Launch Xcode, and then choose File, New, New Project to create a new project.

The familiar new project dialog opens, as shown in Figure 15.1. Because we’re

building an Objective-C/Cocoa application, select the Cocoa Application tem-

plate and click Next.

2. In the next dialog, shown in Figure 15.2, fill in your application name, com-

pany name, and a class prefix.

The company name is covered in an earlier hour. The class prefix should be a

few capital letters, and by prepending it onto all of your class names and

methods, it is used to disambiguate between the SuperAwesomeClass that you

wrote and the decidedly less-super-awesome SuperAwesomeClass that some

other guy coincidentally named his class, as well. Apple uses NS (from

NextStep) as the prefix for all of their class and method names. You can use

your initials; how likely is it that the guy who stole your class name also has

the same initials as you? Unless you have a good reason not to, use the same

class prefix in all your work. That way, you can readily recall it, and you will

not have to try to remember what prefix went with what class, and you can

always easily identify your class methods among the other calls in the code

you write.

Although the class prefix is a great way to distinguish your classes and methods
among many with possibly similar names, Xcode does nothing to actually enforce
adherence to this suggestion, and in fact, at least as currently as Xcode 4.2.1,
the only thing it does with the class prefix you specify is prepend the names of
the very first class implementation. It appears to then promptly forget that the
setting exists.

By the
Way

http://teachyourselfxcode/

ptg8126863

Getting Started 357

I’m naming my application BeeLine, and I have chosen SGF for my class pre-

fix. Unless you plan to submit your application to the Apple App Store, you

can leave the App Store category set to None.

3. Leave the Create Document-Based Application check box unchecked (because

we build a single-window application in this hour). A document-based appli-

cation is the type that, similar to Preview, opens multiple independent win-

dows, each containing a different document, and each using the same menu

and control structure.

FIGURE 15.1
Selecting the
Cocoa
Application
template.

FIGURE 15.2
Setting options,
including class
prefix.

ptg8126863

358 HOUR 15: Putting It All Together: Building an OS X Application

4. Uncheck (if it is checked) the Use Core Data check box. Our demo application

does not use Core Data, although we extend it to use Core Data for storage in

Hour 17, “Attaching Big Data: Using Core Data in Your Applications.”

5. Select Automatic Reference Counting and also select Unit Tests, if not already

selected.

6. Click Next, find a good place to store your project, select the option to create a

local Git repository, and then click Create. After a few moments as things are

set up on disk, the main Xcode interface opens. You’re now ready to roll.

Figure 15.3 shows the almost-default configuration of the interface after it launches.

I dragged a PNG image of one of my bees into the App Icon box. I used a PNG with

a transparent background so that the bee shows in the shape of the bee, instead of

as a square with a bee in it.

FIGURE 15.3
The default
interface with
the App Icon
filled in.

Because we’re just starting, the rest of the configurable information in the Editor

area can be left alone. Once your app is famous and it is time to release version 2,

this is where you return to update things such as the version setting. We also leave

the Entitlements section alone. The Entitlements section is where you can configure

settings to restrict your application to a “sandbox,” limiting its access to other appli-

cations and peripherals on the computer, and where you can configure access and

limitations to iCloud-based data storage.

ptg8126863

By the
Way

Creating the Interface 359

If you browse the groups and files with which Xcode has populated the Navigator,

you’ll see that it has created an Application Delegate class prepended with the class

prefix you specified, as well as a default NIB file for your interface, the required

main.m file, some unit-test skeleton code, and the basic plist files needed to get up

and running. If you were to build and run your application at this point, it actually

would run successfully, but it would not do much interesting.

Unless you plan to adopt test-driven development, which we cover in Hour 18, “Test

Early, Test Often,” the first thing you need to do is create the elements of your user

interface. Of course, you can change these later if you decide that they’re not quite

what you need. Unlike traditional programming environments, however, where you

start with some sort of “main” routine and insert code to tell it which routines to

call, with Cocoa, you start with an interface and you tell the interface elements

which methods to invoke.

Creating the Interface
Select the NIB file, and the Interface Builder editor will load in the Editor area. Front

and center is a mostly blank window with a graph-paper background, and along

the left is a dock with a few less-than-helpful shapes. The shapes in the dock are

representatives and proxies for certain elements of your code and for elements of

your user interface. They’re necessary because you connect things in the interface

with things in the code by Control-dragging from elements in one onto the other.

From top to bottom, the items that appear in the default Interface Builder editor

dock are a wireframe cube, solid red cube, and default application icon that repre-

sent the file’s owner, first responder, and the application, respectively.

These are followed by a sort of pull-down menu icon that represents the applica-

tion’s default menu, a window-like icon that represents the main window, and two

transparent blue cubes, the first a proxy for the application delegate, and the second

representing the Font Manager. We do not use the Font Manager in this project.

At the top of the Interface Builder editor, you see the menu for your application, and

if you hover your cursor over items in the Interface Builder editor dock, they identify

themselves for you, as shown in Figure 15.4.

Note the tiny dot to the left of the Main Menu proxy in the dock in Figure 15.4.
This dot indicates that that interface element is currently displayed. You have to
use the X (close) icon on an item that is displayed to hide it again.

ptg8126863

360 HOUR 15: Putting It All Together: Building an OS X Application

If you click the next proxy down, the Window proxy, it opens in the Interface

Builder editor window, as well, as shown in Figure 15.5. If you previously had one of

the menus dropped from the menu bar, as I did in Figure 15.4, you need to click its

title in the menu bar again to close it; otherwise, it will be open and might hide the

application window you’re trying to edit.

FIGURE 15.4
To find out what
the items are in
the Interface
Builder editor
dock, hover your
cursor over
them.

FIGURE 15.5
The Window
proxy also
opens in the
Interface Builder
editor.

Now that you have the window displayed and ready to edit, you can start adding

interface elements, as follows:

1. In the Utilities, click the little box icon, shown in Figure 15.6, to show the

Object Library.

ptg8126863

Creating the Interface 361

2. We use a custom view in this project, so scroll down the Objects list until you

see the Custom View item. Drag an instance of it into your interface. If you

choose Layout Views from the Object Library drop-down list, you can find the

Custom View somewhat more easily.

3. Position it in the interface as shown in Figure 15.7, and drop it there.

FIGURE 15.6
When you click
the box icon,
the Object
Library displays.

FIGURE 15.7
Position the
Custom View
item in your
interface.

4. Drag the lower-right corner down to size it appropriately within the window, as

shown in Figure 15.8. I am making mine 320x320.

ptg8126863
By the

Way

362 HOUR 15: Putting It All Together: Building an OS X Application

Do not worry about ultimate precision in placing items in this view. The automatic
guides and the notifier indicating the size are useful, but you can configure exact
pixel-positioning values from a different panel in the Utilities. We look at that one
when Xcode messes up the size on one of our text fields, later in this hour.

5. Now we need two Text Field and two Label controls, a Push Button control,

and a Browser data view. You can find the Text Field, Label, and Push Button

controls under Controls in the Object Library drop-down, and you can find

Browser under Data Views. Find each of these and drag them in to the inter-

face and position them as shown in Figure 15.9.

6. Select your first text field, and find the Attributes Inspector in the Utilities (also

shown in Figure 15.9). The Attributes Inspector icon, if not obvious, looks a bit

like a superhero’s utility belt. Use View, Utilities, Show Attributes Inspector as

an easy way to make it visible.

7. In the Text Field area, enter a value into the Title field. While you are in this

area, you can also assign text alignment, text color, and other properties for

the text to be displayed.

When you press Return with your value in the Title field of the Text Field area

in the Attributes Inspector, the Interface Builder updates its version of the text

field to match the value. You might think that you should probably be able to

edit this value directly in the Interface Builder editor itself. After all, you can

click in the text field and enter a value. You probably should be right.

FIGURE 15.8
Sizing the
custom view.

ptg8126863

Creating the Interface 363

Unfortunately, however, at least some of the time, if you try this, you’ll either

end up editing the Text Field Cell rather than the text field itself, or you’ll edit

the Text Field properly, but Xcode will decide to shrink your text field to fit

your default value. Figure 15.10 shows the difference in the Interface Builder

highlighting when you have accidentally selected the Text Field Cell, and

Figure 15.11 shows what happens if Xcode shrinks your text field to match

your default value.

FIGURE 15.9
Adding two text
fields, two
labels, a push
button, and a
browser to the
interface.

FIGURE 15.10
At least some
of the time,
when you click
the text field in
the Interface
Builder editor,
you end up edit-
ing the Text
Field Cell rather
than the Text
Field.

ptg8126863

364 HOUR 15: Putting It All Together: Building an OS X Application

If Xcode messes up your nice layout like this (or if you need to apply finer control to

your interface layout than you can accomplish by drag and drop), you can fix it

using the Size Inspector, by clicking the icon in Utilities that looks a little bit like a

Band-Aid (or by choosing View, Utilities, Show Size Inspector), as shown in Figure

15.12. Once in the Size Inspector, you can adjust the width of the field that Xcode

accidentally shrunk to match the size of the remaining correct field.

FIGURE 15.11
Xcode often
automatically
shrinks your
text field to fit
your default
value when you
edit the Text
Field directly in
the Interface
Builder editor.

FIGURE 15.12
In the Size
Inspector, you
can adjust the
width of the text
field that Xcode
previously
adjusted.

Attaching Code
Now it is time to start building and assigning functionality to the interface elements.

Because Cocoa interface components serve as the initiators of most of the functional-

ity in Cocoa applications, you attach this functionality by creating Objective-C

classes for each interface component that has complex functionality. For BeeLine,

we start with the custom view, as follows:

ptg8126863

Attaching Code 365

1. In the Utilities, click the icon for the File Template Library, as shown in Figure

15.13. Somewhat surprisingly, it looks a bit like a file icon. You can also make

this easier by choosing OS X from the File Template drop-down.

FIGURE 15.13
Opening the File
Template
Library.

2. Scroll down in the list of file templates until you find the Objective-C class tem-

plate, and drag a copy of it over into the Navigator.

3. Drop it in the main application group, beneath your application proxy, as

shown in Figure 15.14.

FIGURE 15.14
Dragging the
Objective-C
class template
to the main
application.

4. A dialog pops up, as shown in Figure 15.15, in which you assign a name

under which to save your file, the group in which to assign it, and the targets

to which it belongs. I named my class QuartzGrough.

ptg8126863

Did You
Know?

366 HOUR 15: Putting It All Together: Building an OS X Application

If you’re paying attention, you’ve just caught me ignoring the “always use your
unique private class prefix” mantra that I suggested you adhere to earlier. Partly
I’m doing this because you’re going to meet lots of lazy code where that naming
best practice hasn’t been obeyed, so you ought to get some experience seeing
the mishmash, and partly I’m doing this because Xcode has some nice tools for
helping you fix this kind of sloppiness (which you learn how to use later).

5. Select the .h file for your class in the Navigator. It will open for editing in the

main Editor area. By default, it is going to #import Foundation.h, and it will

declare an NSObject class. We’re going to attach this class to our custom view,

so we need the class declaration to match.

6. To find out the appropriate class, select your NIB file in the Navigator, click

the Window proxy in the Interface Builder editor dock if it is not already visi-

ble, and then select Custom View on the main window of the interface.

7. Now go to the Utilities and click the Identity Inspector icon, as shown in

Figure 15.16. This icon looks a little bit like an application window. In the

Class field under Custom Class, you’ll see that the custom view is specifically

an NSView (also shown in Figure 15.16). Or, choose View, Utilities, Show

Identity Inspector.

8. Use the Navigator to return to editing your new class .h file, and change the

NSObject declaration for the class to an NSView declaration.

9. Also change the #import to load Cocoa.h rather than Foundation.h, as shown

in Figure 15.17.

10. Switch back to editing the NIB file and select Custom View again.

FIGURE 15.15
Assigning a
name, group,
and targets to
the file that you
just dragged in
to the main
application.

ptg8126863

Attaching Code 367

11. Bring up the Identity Inspector in the Utilities. Remember that the Custom

View region is an NSView, and you’ve just declared your class to inherit from

NSView, so you can use your class to run the custom view.

12. To attach the custom view to your class, change the class for the custom view

so that it uses your class rather than the default NSView. Click in the Class

field under Custom Class and find your new class in the list. Select it, as

shown in Figure 15.18, and you should see the custom view change name to

match the class you’re writing.

FIGURE 15.16
In the Identity
Inspector, we
see that the
custom view is
an NSView.

FIGURE 15.17
We have
changed the
NSObject decla-
ration to NSView
and the
Foundation.h
#import to
Cocoa.h.

ptg8126863

368 HOUR 15: Putting It All Together: Building an OS X Application

Build and run your application, and you should see a surprisingly functional repli-

cate of the interface you just designed. The menus are there, you can edit text in the

text fields, and the button “clicks.” Of course, nothing happens when you click the

button because you have not written the code to add functionality yet. But, quite a

lot of your application is already working, and all via just for a couple lines of code

and dragging some icons around.

Despite everything that’s going right with your application so far, if you try to resize

your application’s window, you’ll see that some issues are still left to address, as

shown in Figure 15.19. Specifically, the interface components are where they belong

at the default window size, but they do not move and scale appropriately when you

resize the window.

FIGURE 15.18
Changing the
default NSView
class to our
custom class.

FIGURE 15.19
Interface com-
ponents are not
where they
should be if
we resize the
window.

ptg8126863

Inserting Interface Object References into the Code 369

So, return to the Size Inspector in the Utilities, and under the View heading, adjust

the autosizing parameters as appropriate for where you’ve positioned your interface

elements.

With where I positioned my X and Y coordinate text fields I want them to stay glued

at a fixed distance from the right side of the window and at a fixed distance from

the top of the window. I do not want them to resize, just move with the window

boundaries. This configuration is applied to both my X and Y coordinate text fields

in Figure 15.20, and the result on the interface is shown. You should apply similar

settings to the other interface elements so that they behave more appropriately.

FIGURE 15.20
After we adjust
settings in the
Size Inspector,
the text fields
stay a fixed
distance from
the window
boundaries.

Inserting Interface Object References
into the Code
Now that we have the class types in agreement between our new class and the cus-

tom view, it’s time to give the code a handle on the interface object:

1. Select the NIB file in the Navigator to open your interface in the Interface

Builder editor once again.

2. Click the Assistant Editor icon in the top icon bar of the main Xcode interface.

You can find the Assistant Editor icon in the group of three editor icons at the

top right; it looks either like a butler’s shirt or one of those gigantic pay-per-

view binoculars that line scenic vistas at tourist traps. The source editor opens

beside the Interface Builder editor. Both are cramped in the central main Editor

area in Xcode, so you might want to hide the Navigator and Utilities to win

some extra room to work. Alternatively, choose View, Assistant Editor, Show

Assistant Editor.

ptg8126863

370 HOUR 15: Putting It All Together: Building an OS X Application

In the source editor, you should see the header file for your application dele-

gate. This is where you need to declare the (in-code) objects that will corre-

spond to the interface objects you have created in the Interface Builder editor.

You can do this by writing all the associated code yourself, but it is much eas-

ier to simply Control-drag your interface elements into the application dele-

gate header file, positioning them after the @property declaration for the

window.

3. Add a #import “QuartzGrough.h” line, and a @class QuartzGrough; line

following it, after any other #import statements in the app delegate header.

4. Starting with the QuartzGrough view, Control-drag each of the interface com-

ponents from the interface into the application delegate header file in the

Assistant Editor.

Figure 15.21 shows the beginning of this process for the QuartzGrough view.

To help you remember which interface component you’re working with, as

you drag, a blue line connects the interface component you’re connecting and

your current drop target. After you drop the connection into the .h file, a mini-

dialog opens, requesting additional details, as shown in Figure 15.22. For the

view, we’re creating an outlet, which is to say an element from which data

can be read and written. I’m calling it myGroughGraph. The QuartzGrough

type is assigned by default.

5. Leave Storage set to Strong unless you know when and why not to.

6. After you have the details filled in correctly, click Connect. An @property for

your new outlet will appear in the header file.

FIGURE 15.21
You can declare
interface
objects in code
by Control-
dragging to the
appropriate
interface
component.

ptg8126863

Did You
Know?

Inserting Interface Object References into the Code 371

7. Unless you want to do something fancy, the default functionality of the

NSTextFields in your text fields will suffice, so just Control-drag those over to

the application delegate header without creating new classes for them. Figure

15.23 shows the settings I used for one of my text fields. The other one is the

same, except it is named YCoord.

FIGURE 15.22
Providing Xcode
additional
details for the
interface object
code.

FIGURE 15.23
For the X and Y
coordinate
boxes, the
default
NSTextField

should be fine.

Pay attention when selecting the text fields. Just like when you entered default val-
ues for the text fields, it is easy to end up selecting the NSTextFieldCell rather
than the NSTextField. If this happens to you, you’ll see something similar to
Figure 15.24 when you drop the connection in the header. The highlighting around
the text field in the interface is distinctly different, and if you’re paying attention
you’ll see that the outlet dialog also reflects that you’re creating a connection for
the wrong type.

We’re going to ignore the browser for now and come back to create a connec-

tion for that later, so the last thing you need to connect is the button. The but-

ton interface object differs from the view and the text fields, in that it is a

direct-acting object that needs to invoke a method immediately when you click

it, rather than a passive object that simply sets or displays the contents of a

variable.

8. Control-drag and drop the button into the header, as you have for the view

and text field elements.

ptg8126863

372 HOUR 15: Putting It All Together: Building an OS X Application

9. In the mini-dialog that appears, you need to change the Connection type

from Outlet to Action and specify a name, as shown in Figure 15.25.

The name you provide corresponds to the message that the button will send to

the application delegate when the button is clicked, so I’m calling my action

plotPoint.

10. Click Connect. Note that it creates the declaration for an instance method of

type IBAction in the application delegate header.

FIGURE 15.24
Be careful when
selecting the
text fields,
because you
could end up
selecting the
NSTextField

Cell rather
than the
NSTextField.

FIGURE 15.25
When setting up
the button,
choose the
Action connec-
tion type and
name it what-
ever message
you want to
appear when
the button is
clicked.

11. Select the implementation (.m) file for the application delegate in the

Navigator.

You will see that a number of @synthesize directives have been added at the

top to match the outlets you declared in the header. At the bottom of the file,

you see that Xcode has inserted a default method implementation for your

action.

ptg8126863

Tying Things Together 373

12. To finally achieve some not-so-instant gratification that all this clicking and

twiddling is actually doing something, add an NSLog() call as something for

the plotPoint action to do. It is not quite plotting a point, but it will be gratify-

ing to see that clicking the button actually can do something other than make

the button turn blue. The code added to the plotPoint action, the BeeLine

interface during a button click, and the resulting output in the Debug area are

shown in Figure 15.26. Houston, we have click-off.

FIGURE 15.26
With the addi-
tion of NSLog()
to the code,
when we click
the button, it
not only turns
blue, but also
provides output
that we have
clicked the
button.

Tying Things Together
Now we want to make our main interface actually do something with the interface

components that it knows about. Right now, the application delegate knows the con-

tents of the text fields and knows that the View area belongs to a QuartzGrough

named myGroughGraph.

To communicate these values from the application delegate into our QuartzGrough,

and invoke a method there when the push button is clicked, we need additional

code. In QuartzGrough.h, we need to declare some properties that can move

Cartesian coordinates in and out of myGroughGraph and a method that can

be called to ask myGroughGraph to take action. We can do that that by adding

ptg8126863

Did You
Know?

374 HOUR 15: Putting It All Together: Building an OS X Application

properties to QuartzGrough named anX and anY, and an instance method

plotUpdate. In QuartzGrough.m, we need to implement that function so that it can

do something when asked. Finally, in the application delegate, within the IBAction

method for the button, we need to collect the values from the text fields and assign

these values into our QuartzGrough variables, and then we need to set up a call to

ask the QuartzGrough method to do something. The code snippets for each of these

steps are shown in Listings 15.1, 15.2, and 15.3, respectively.

LISTING 15.1 The Header Additions That Enable External Code to
Communicate with a QuartzGrough Instance
@property (assign) float anX;

@property (assign) float anY;

- (void) plotUpdate;

In Listing 15.1, you can see that I’ve added anX and anY properties, but that I
immediately assign those into other variables in Listing 15.2. Although some addi-
tional code is necessary to make this design completely useful, I’m doing this to
separate the “interface” to the QuartzGrough from the internal variables it uses
for calculations. I only want anX and anY to function as an interface that other
classes can write data into and that QuartzGrough can read data from. I assign
these into internal instance variables normX and normY as soon as plotUpdate
gets them, to free up the interface.

LISTING 15.2 An Implementation of the plotUpdate Method
-(void) plotUpdate

{

normX = anX + 1.0;

normY = anY + 1.0;

[self update];

}

To use these interface variables and methods, the application delegate communi-

cates with the QuartzGrough instance by setting the anX and anY instance variables

in the QuartzGrough and then sending a message to the QuartzGrough’s

plotUpdate method.

ptg8126863

Tying Things Together 375

LISTING 15.3 The App Delegate Code Necessary to Communicate
Coordinates and a Request to Plot to the QuartzGrough
- (IBAction)plotPoint:(id)sender

{

myGroughGraph.anX = [[xCoord stringValue] floatValue];

myGroughGraph.anY = [[yCoord stringValue] floatValue];

[myGroughGraph plotUpdate];

}

Once again, it is time to test the application. So, click Run. When the interface

opens, type some values into the text fields and click the Add button. As shown in

Figure 15.27, the Debug area output demonstrates that the application delegate is

receiving the button-click and reporting it (“Add was clicked”), and it is then imme-

diately calling the QuartzGrough method in myGroughGraph (AnX = …). My vari-

ables appear to be arriving in the QuartzGrough intact, as the values it is reporting

are what I entered.

FIGURE 15.27
Testing shows
that the vari-
ables are work-
ing correctly, as
the values
agree with what
was entered.

Without detailing the rest of the code here (you can find a copy in the Hour 15 (V1)

subdirectory of the code available at http://teachyourselfxcode/), if you add

graphics-drawing code to the GroughGraph.m implementation, and call it from

plotUpdate, you’ll actually have a program that takes user input from you and

plots it in the view, as shown in Figure 15.28. Okay, so it is not quite App Store mate-

rial yet, but when you stop to consider just how much functionality this represents,

and how few lines of code are required to produce the results, it is really quite

impressive.

http://teachyourselfxcode/

ptg8126863

376 HOUR 15: Putting It All Together: Building an OS X Application

Increasing Functionality with a
Framework
Plotting a point at some coordinates we specify is neat, but just one point in the dis-

play gets kind of boring. What we have at the moment is essentially a view and a

controller, with no underlying model to hold data. To enhance functionality, we

need a storage mechanism for the data we enter. It should support adding items and

traversing through an ordered list of items from start to finish. Functions to insert

and delete items would probably be nice, too. We could write a custom class for that

model right here in our code, but coincidentally, in the last hour we built a frame-

work that supplies a linked list class, and it provides exactly the sort of functionality

we need.

Adding a framework to a project so that you can use its functionality is fairly simple

(although, again, Apple has not quite yet pulled all the loose ends together in

Xcode, so it is not as simple as it could be), but you can accomplish this in a couple

of different ways, and the process differs depending on what kind of framework

you have.

Adding a Shared Framework
If your framework is a shared framework (that is, one that is available for all

installed software to use; for example, in /Library/Frameworks), the process for

adding it to your project begins in the Summary tab for your project. I previously

installed the doubly linked list we created in Hour 14 as a shared library in

/Library/Frameworks as the framework ListsToo.framework.

FIGURE 15.28
Our application
can now draw
some graphics.

ptg8126863

Increasing Functionality with a Framework 377

To add a shared framework, follow these steps:

1. To add ListsToo.framework to the BeeLine project, select the top-level Project

icon in the Navigator.

2. Select your application from the Targets list in the Editor area.

3. Click the Summary tab. Beneath the version and icon details for your applica-

tion target, you’ll see a Linked Frameworks and Libraries section with a + icon

beneath it to add items.

4. Click the +, as shown in Figure 15.29. A dialog opens, like that shown in

Figure 15.30.

FIGURE 15.29
Clicking the + to
add our shared
framework to
the project.

FIGURE 15.30
In the dialog
that appears,
click the Add
Other button.

ptg8126863

378 HOUR 15: Putting It All Together: Building an OS X Application

Unfortunately, frameworks that are not either default Apple frameworks or ones
that are actually present in your project will not show up in the list, so instead of
being able to simply select from this list, you must navigate to where your frame-
work is located.

5. Click the Add Other button. When you do so, a file-browser dialog opens.

Again, unfortunately, Apple has made the /Library folder hidden by default,

so you cannot easily browse to it.

6. Press Command-Shift-G to open a path-entry field.

7. Type /Library/Frameworks into the Go to the folder: field, and then click Go,

as shown in Figure 15.31.

Did You
Know?

FIGURE 15.31
After typing
Command-
Shift-G, enter
the path to
your shared
framework.

8. Navigate to and select the ListsToo.framework from the file browser.

9. Click Open.

If you’ve done everything right, back in the Summary tab, you’ll find ListsToo.frame-

work has been added to the list of Linked Frameworks and Libraries

Next, we need to connect the functionality from ListsToo into our application code.

This is quite easy. Just add an #import for <ListsToo/ListsToo.h> to the

ptg8126863

Increasing Functionality with a Framework 379

GroughGraph.h header file, and all the exposed method interfaces in ListsToo

become available to BeeLine. A simple declaration of a pointer to a ListsToo object

at the top of the GroughGraph.m implementation, and Beeline now has a handle to

ListsToo that can be populated by a ListsToo instance.

To utilize this instance, we just need to treat it as we previously did for testing

ListsToo in its testing module. We need to create objects that store our data, in this

case X and Y coordinates for Cartesian points, acquire pointers to those objects, and

populate the ListsToo item void* storage with these pointers.

Listing 15.4 shows the code necessary to start using the ListsToo framework for stor-

ing the pair of values from our X and Y text fields each time we click the Add but-

ton. The only real complication beyond what you saw when implementing ListsToo

in Hour 14 is that we cannot initialize the first ListsToo item until after we have

received our first Add click.

To accomplish this delay, I added a Boolean-valued “plotting” variable to

QuartzGrough that is initialized to false when an instance is created. The

plotUpdate method (which eventually is invoked when Add is clicked) checks that

variable, and if it has not yet been flipped to true, it initializes the ListsToo list with

the incoming X and Y values, and then flips the plotting variable to true.

Subsequent clicks on Add (and calls to plotUpdate) find “plotting” to be true and

append to the ListsToo list instead of initializing it.

Figure 15.32 shows the result after entering two different pairs of values and clicking

Add twice. Note that you now see output from the ListsToo walkList method in the

Debug area, as well, and that it is reporting that we have a list with two items in it.

LISTING 15.4 Enabling QuartzGrough.m to Use the ListsToo Framework
typedef struct myPointType myPointType;

struct myPointType {

float myX;

float myY;

};

ListsToo *pointsList;

bool plotting = false;

-(void) plotUpdate

{

void(^pointsPrinter)(void*) = ^(void* toPrint)

{

NSLog(@”point at %f, %f”,((myPointType*)toPrint)->myX - 1.0,

((myPointType*)toPrint)->myY - 1.0);

};

normX = anX + 1.0;

ptg8126863

Did You
Know?

380 HOUR 15: Putting It All Together: Building an OS X Application

LISTING 15.4 Continued
normY = anY + 1.0;

myPointType *aPoint = malloc(sizeof(myPointType));

aPoint->myX = normX;

aPoint->myY = normY;

if(!plotting)

{

plotting = true;

pointsList = [[BetterList alloc] initDLList: aPoint];

}

else

{

[pointsList append:aPoint];

}

[self update];

[pointsList walkList:pointsPrinter];

}

FIGURE 15.32
Here we have
entered two dif-
ferent pairs of
values and
clicked Add
twice.

A little detail here might slip by you. Don’t let it. We’re using the walkList
method. While implementing the ListsToo framework, we used it for debugging out-
put, but methods that take anonymous code blocks like this are quite powerful,
and certainly aren’t limited to simple debugging output. You can use the walkList
method for just about anything where you need to iterate over the entire list and
do something with each item.

BeeLine is still only plotting one of the points, but that’s only because the

QuartzGrough drawRect method does not know anything about the list of points

yet. It’s still working from the current normX and normY variables that are passed in

ptg8126863

Increasing Functionality with a Framework 381

from the text fields. If we update the drawRect code as shown in Listing 15.5,

fancier things will happen, as shown in Figure 15.33.

FIGURE 15.33
After updating
the drawRect
code, we now
have four dots
in this instance.

In Listing 15.5, you see that you can update the drawing code to plot all points in

the pointsList by just using the ListsToo walkList iterator and handing it an

anonymous block that renders the points. Note that this is a fairly subtle change to

the code. Where before drawRect used a single invocation of doaPoint, sending the

current values of normX and normY, we now build a strikingly similar invocation of

doaPoint into an anonymous code block, and we hand that block off to the ListsToo

walkList method. When the list iterates over itself, it calls our anonymous block for

each point for us (quite a convenience). We’re invoking doaPoint one extra time

after traversing the entire list of points, using a different point radius, just to provide

some visual context to our point display.

LISTING 15.5 Using the ListsToo walkList Iterator and Handing It an
Anonymous Block
- (void) drawRect : (NSRect) dirtyRect

{

CGContextRef context = (CGContextRef)[[NSGraphicsContext currentContext]

➥graphicsPort];

NSRect r = [self bounds] ;

int margin = 5;

[[NSColor whiteColor] set];

[NSBezierPath fillRect:r];

ptg8126863

382 HOUR 15: Putting It All Together: Building an OS X Application

LISTING 15.5 Continued
CGContextSetShadow(context, CGSizeMake(3.0f, -3.0f), 2.0f);

CGContextSetRGBStrokeColor(context, 0.0, 0.0, 0.0, 1.0);

CGContextSetLineCap(context,kCGLineCapRound);

if (plotting)

{

void(^pointsDrawer)(void*) = ^(void* toDraw)

{

[self doaPoint:context margin:margin

atX:((myPointType*)toDraw)->myX

atY:((myPointType*)toDraw)->myY

ptSize:5];

};

[pointsList walkList:pointsDrawer];

[self doaPoint:context margin:margin

atX:normX

atY:normY

ptSize:10];

}

}

Just a few more lines of code and you can have BeeLine drawing lines between the

points, as well. If you want to experiment with the project at this stage, you can

find a copy in the Hour 15 (V2) subdirectory of the code available at

http://teachyourselfxcode.com/.

Adding a Second View
Right now, you have an application with an underlying data model (an instance of

ListsToo) that holds and manipulates a list of points, a view (our QuartzGrough sub-

class of NSView) that plots those points, and a controller instantiated in your appli-

cation delegate. When you built the interface, however, you included a browser

component that we have not yet discussed. The browser component is there to pro-

vide a second view of the model, but it still needs to be connected.

As was the case for the QuartzGrough, connecting this view requires a fair amount

of flipping between items in the Interface Builder editor. We do it slightly differently

this time, however. When we connected the QuartzGrough, we only intended for it

to be used as a display for the data, and it was our only view in the application.

Therefore, subclassing the NSView in QuartzGrough and connecting it through the

application delegate was an adequate solution. For our new view, we want to

develop additional interaction functionality beyond using it as a simple display, and

adding that code to the app delegate would be inelegant. So for this interface com-

ponent, we create a separate delegate class and that requires a few more steps.

http://teachyourselfxcode.com/

ptg8126863

Increasing Functionality with a Framework 383

Just as you did with the QuartzGrough, you first need to add a class to handle the

view, as follows:

1. Follow the same steps you used to create the QuartzGrough header and imple-

mentation files and create a new PointsBrowser class.

2. Select your NIB file in the Navigator. Because interface elements are connected

to code by Control-dragging, we need a representative for our new class in the

Interface Builder editor, but there isn’t one provided by default.

3. Reveal the Utilities if they’re hidden, and select the Object Library (again, the

little box) icon.

4. Find the object proxy for an NSObject; it looks like the other blue proxy object

box icons that are in the Interface Builder editor dock.

5. Drag it over to the dock, as shown in Figure 15.34.

FIGURE 15.34
Adding the
NSObject proxy
to the Interface
Builder editor
dock.

6. Leaving that proxy icon selected in the dock, select the Identity Inspector in the

Utilities, and find the new class you just created, as shown in Figure 15.35.

7. Control-drag from the Browser component in the interface and drop it onto the

new proxy you just created in the Interface Builder editor dock. In the tiny dia-

log that appears, indicate that this connection is for a delegate.

Back in your app delegate, you need to add appropriate @properties and

@synthesize lines to the header and implementation, but these need to be

created for your PointsBrowser delegate object, not for the NSBrowser it

represents.

ptg8126863

By the
Way

384 HOUR 15: Putting It All Together: Building an OS X Application

8. Open the NIB file in the Editor area, and open the Assistant Editor window.

The app delegate header should open beside the Interface Builder editor.

9. Control-drag the blue-box proxy icon for your PointsBrowser class over to

the app delegate header and drop it below your other @properties directive

lines.

10. The familiar connection-property dialog pops up, where you provide a name

and optionally set the storage type. In this case, either weak or strong storage

is fine. I named the property ptsBrowser and set the storage type to strong.

Although a much better topic for an Objective-C book, a weak storage type indi-
cates that the Automatic Reference Counting (ARC) memory-cleanup magic should
treat this property as owned by some other object than the application delegate.
The strong type indicates that the app delegate is the owner. Because the pro-
gram cannot run after the application delegate is deallocated, it really doesn’t
matter whether ARC thinks that something else owns the browser object. If, how-
ever, you were attaching the browser to, for example, a window that might close,
while another window adopted the same browser, the weak storage would let you
manage the allocation and deallocation of the browser separately from the cre-
ation and destruction of the windows.

11. While you’re looking at the app delegate header, add an #import for the

header for your new class (#import “PointsBrowser.h”).

12. Also add the class to the @class directive for the App delegate.

FIGURE 15.35
Finding the
new class in
the Identity
Inspector while
selecting the
proxy icon in
the dock.

ptg8126863

Increasing Functionality with a Framework 385

13. Right-click the proxy icon for the PointsBrowser class in the Interface Builder

editor dock.

14. In the heads-up dialog (HUD) that appears, click and drag from the open cir-

cle in the New Referencing Outlet line up to the app delegate proxy in the

dock, as shown in Figure 15.36.

FIGURE 15.36
Clicking and
dragging the
New
Referencing
Outlet to the
app delegate
proxy in the
HUD.

15. Another HUD appears. In it, select the name of the property you just added to

the app delegate for this object (in this case, ptsBrowser).

Finally, you need to set up the outlet connection between the NSBrowser and

the PointsBrowser delegate itself.

16. With the Interface Builder editor and the Assistant Editor still open, click in the

jump bar above the display of the app delegate header and navigate your way

to the PointsBrowser.h header.

17. Control-click and drag from the NSBrowser component in the interface into

the PointsBrowser.h header to create an outlet connection.

18. Give the outlet a name and choose a storage type. (I chose _aBrowser and

strong storage.)

ptg8126863

386 HOUR 15: Putting It All Together: Building an OS X Application

After all of this fiddling, which is certainly more involved than what we did to

get the NSView working, but which also gives us more flexibility, we are finally

ready to start connecting data and actions to our browser.

19. Use the Navigator to open the PointsBrowser.m implementation file.

20. Scroll down to just above the @end directive and define a new IBAction

method as shown in Listing 15.6. This method explicitly declares an Interface

Builder action type that we can then connect things to using the Interface

Builder editor.

LISTING 15.6 Declaring a Method with an IBAction Type Makes It
Available as a Connectable Action Method in the Interface Builder Editor
- (IBAction) rowSelected: (id)sender

{

NSBrowserCell *cell = [_aBrowser selectedCellInColumn: 0];

NSLog(@”ptsBrowser: selected <%@> at %d”,cell.stringValue,

[cell.representedObject intValue]);

}

21. Navigate to the PointsBrowser.h header and add the declaration for the

rowSelected method so that it can be called by other classes.

22. Select the NIB file in the Navigator and return to the Interface Builder editor.

23. Right-click the proxy for PointsBrowser in the Interface Builder editor dock.

You’ll see that you now have an available Received Action for the new

rowSelected IBAction you just created.

24. Click in the empty circle in the rowSelected line.

25. Drag a connection to the browser component of the interface and drop the

connection there.

The code necessary to actually program the behavior of the NSBrowser requires

more Cocoa expertise than possible to cover in this book. However, if you want to

experiment further, you can find a copy in the Hour 15 (V3) subdirectory of the code

available at http://teachyourselfxcode/. When you run it, you’ll find that the

NSBrowser populates itself with points as you add them, as shown in Figure 15.37,

and the Debug area properly reports selections from the NSBrowser, as shown in

Figure 15.38.

http://teachyourselfxcode/

ptg8126863

Increasing Functionality with a Framework 387

One thing to pay attention to in the sample code is how the PointsBrowser class
gets access to the ListsToo instance being used by the QuartzGrough. Although
not the most elegant solution, the app delegate has access to both the
myGroughGraph instance of QuartzGrough, and the ptsBrowser instance of
PointsBrowser. By adding a bare pointer to a ListsToo object in the
PointsBrowser class, and exposing an instance method to set this pointer to an
already extant ListsToo object, we enable the app delegate to extract the pointer
of myGroughGraph’s ListsToo object (myGroughGraph->pointsList) and send
that into ptsBrowser for its use.

From a code-elegance perspective, it is probably better if the app delegate itself
owns pointsList and hands that variable off to both the graphical view and the
browser view. Hindsight is the mother of refactoring!

FIGURE 15.37
NSBrowser has
been pro-
grammed to
populate itself
with points as
you add them.

FIGURE 15.38
Debug output
reports the cor-
rect points from
the NSBroswer.

Did You
Know?

ptg8126863

388 HOUR 15: Putting It All Together: Building an OS X Application

Switching to an Embedded Framework
Using shared frameworks is great when a systemwide one is in place to do what you

want to do. However, using shared frameworks places a lot of restrictions on what

you can do. For example, you cannot conveniently distribute your application to

anyone who doesn’t have your shared framework installed. Nor can you conve-

niently edit the functionality of the framework if it does not do exactly what you

want. If you have access to the framework project, as in this case, you can insert the

framework project within your application project as a subproject, and then set it up

to incorporate the built framework within the application bundle so that it is always

available with your application when you distribute it.

For this example, I use a version of the ListsToo framework we built previously,

renamed here to BetterList. To add BetterList to the BeeLine project, I deleted ListsToo

from the BeeLine project and opened a Finder window so that I could see the

BetterList project. You can find a copy of the files for starting at this point in the

Hour 15 (V4) subdirectory of the code available at http://teachyourselfxcode/. I’ve

already made all the in-code changes to BeeLine to reference the BetterList class

rather than the ListsToo class. To add BetterList as an embedded framework, follow

these steps:

1. Open the BeeLine project in Xcode.

2. Switch to the Finder and navigate to the directory that contains the

BetterLists.xcodeproj project file.

3. Position this Finder window so that you can see the Navigator for the BeeLine

Xcode project behind it.

4. Drag the BetterList project into the BeeLine project and drop it immediately

beneath the BeeLine project, as shown in Figure 15.39. It should appear as an

indented blue project group, beneath the BeeLine project group.

5. Under the File menu, click Project Settings and change the derived data loca-

tion. Unless you know exactly what you’re doing, click the Advanced button

and change the build location to Locations Specified by Targets, as shown in

Figure 15.40.

I expect that in future versions of Xcode the default derived data location

option will become much more useful. For now, though, it induces one more

layer of confusion with Xcode as to where you should look for header files and

libraries, and life is much easier if you simply let the projects assert control.

http://teachyourselfxcode/

ptg8126863

Increasing Functionality with a Framework 389

Linking up this embedded framework is a bit more involved than linking to a

shared framework. For one thing, we want changes to the BetterList frame-

work to automatically appear for the BeeLine application, so the BeeLine proj-

ect needs to know that it should try to rebuild the BetterList framework if that

framework needs rebuilt. To accomplish this, we need to configure the depend-

encies portion of the build process to indicate the dependency between BeeLine

and BetterList.

6. Select the BeeLine project in the Navigator and the BeeLine target in the Editor

area.

7. Display the Build Phases tab at the top of the Editor area.

FIGURE 15.39
Inserting a
framework
project into the
current project

FIGURE 15.40
Changing the
derived data
location to
Locations
Specified by
Targets makes
it easier for your
project to find
header files and
libraries.

ptg8126863

By the
Way

390 HOUR 15: Putting It All Together: Building an OS X Application

8. Open the Target Dependencies item if it is not already open, and then click

the + icon (Add Items button) for dependencies, as shown in Figure 15.41.

FIGURE 15.41
Including our
framework proj-
ect, BetterList,
as a depend-
ency for our
BeeLine project.

9. A drop-down dialog appears. Select the BetterList framework.

10. Click Add.

If you cannot select the framework under BetterList, or if it doesn’t appear, or if
the BetterList.xcodeproj group in the Navigator appears as just a single line with
no group-reveal triangle, it is because you have the BetterList project open some-
where else (for example, in another Xcode window). Close it and just work with it
from within this project. Likewise, if you have BetterList open from within this proj-
ect, and you also try to open it by double-clicking its icon in the Finder, Xcode will
say unpleasant things. Best to only open each project in one place at a time.

Next, you need to add a new build phase.

11. Still in the Build Phases tab of the Editor area for the BeeLine target, click the

large + icon above New Build Phase at the bottom of the editor.

12. A pop-up menu appears. Select the Add Copy Files option, as shown in Figure

15.42.

13. A new build phase group, titled Copy Files, appears at the bottom of the list of

build phases. Click the + icon in it to add files.

14. In the dialog that appears, navigate to the BetterList.framework in the

BetterList products group, select it, and click Add.

ptg8126863

Increasing Functionality with a Framework 391

15. Back in the Copy Files build phase, change the destination to Frameworks.

When you have finished, the new build phase should appear as shown in

Figure 15.43.

FIGURE 15.42
Adding a new
Build Phase
that copies
files.

FIGURE 15.43
A new build
phase that
copies files to
the BetterList
framework has
been success-
fully added.

16. Now, click the disclosure triangle for the Copy Files phase to collapse the list

under it.

17. Then click and drag the Copy Files phase up until it is just beneath the Target

Dependencies phase, as shown in Figure 15.44.

ptg8126863

392 HOUR 15: Putting It All Together: Building an OS X Application

18. Drop the Copy Files phase there.

You still need to tell BeeLine that it needs to link with the BetterList frame-

work. You might think that you could open the Link Binary with Libraries

phase and just add BetterList from there. However, you currently have about

even odds that although the BetterList.framework appeared under the

Workspace when you added it to the Copy Files phase it won’t appear there if

you click Add for the Link phase. This is probably an Xcode bug.

19. To work around an apparent bug in the Link section of the build phases,

return to the Summary tab for the BeeLine target. Clicking + to add

BetterList.framework to the Linked Frameworks and Libraries group, may or

may not work here, either. Instead, open the Products group under BetterLists

in the Navigator and drag the BetterLists.framework from the Project

Navigator into the Editor area. Locate the Linked Frameworks and Libraries

group in the Editor area and drop the BetterLists.framework under

Cocoa.framework. If you go back and check the build phases, you’ll find that

it’s been added to the correct group there, too.

A tiny bit of additional configuration needs to be completed, and you’ll be

back up and running, only now using an embedded framework that you can

edit conveniently and directly in your main project and that itself gets inserted

into your application bundle so that everything gets copied when you distrib-

ute your application.

20. Select the BetterList project in the Navigator, and the BetterList framework

target in the Editor area.

21. Open the build phases for the BetterList framework target.

FIGURE 15.44
Moving the Copy
Files build
phase to just
below the Target
Dependencies
phase.

ptg8126863

By the
Way

Increasing Functionality with a Framework 393

22. Verify that the BetterList.h file is in the public headers group, or add it back if

it has disappeared. You can do this as was shown in Hour 14, or if Xcode is

feeling particularly helpful, you can drag it straight from the Navigator into

the Public header group.

Whether Xcode lets you drag files from the Navigator into the Editor area currently
(with Xcode 4.2.1) seems to be a bit hit-and-miss. If you target your click on the
name of the thing you are trying to drag, instead of its icon, you (again with Xcode
4.2.1) maximize your chances of success.

At this point, you should be able to run BeeLine again, and it should function

as before. Even better, if you go into BetterList.m and comment out those

annoying NSLog() lines that report the beginning and end of a walkList

traversal, and then click Run for BeeLine, it rebuilds BetterList for you, before

building Beeline, with results as shown in Figure 15.45.

FIGURE 15.45
Now clicking
Run for BeeLine
also rebuilds
BetterList
before rebuild-
ing BeeLine.

Finally, just to wrap up, if you want to distribute your application (and who

doesn’t), you need to make one more tweak, this time to the BetterLists build

configuration. When Xcode runs your application, it applies some magic to

make the embedded framework functional, no matter where the framework

ptg8126863

394 HOUR 15: Putting It All Together: Building an OS X Application

itself specifies that it should be installed. If you try to run your BeeLine appli-

cation from the Finder at this point, however, it complains that it cannot find

the required framework. This behavior seems peculiar, because the complaint

you’ll get is actually generated by the framework, regarding its installation

location. Your app is in fact finding the framework where it thinks it belongs,

and is then being directed to where the framework isn’t, by the framework

itself. It seems that the entire world outside of Apple thinks that this ought to

be a bug, whereas Apple thinks that this is perfectly logical. I’m a big fan of

Apple, but I vote with the rest of the world on this one: I cannot think of any

reason that the framework, which the application has clearly already found,

cannot run in place without modification. Apple disagrees, so we have one

more thing to do: We need to inform BetterList that it is expected to live

within an application instead of in the default shared library location.

23. Select the BetterLists subproject in the Navigator, and the BetterList framework

target in the Editor area. Open the BetterList framework’s build settings. Select

the All option and dig around for the installation directory value. If it helps,

you can use the Search field with a search such as “directory” to limit the dis-

played options.

24. The Installation Directory option for BetterLists will, by default, be set to

/Library/Frameworks. Double-click the /Library/Frameworks value, and

(depending seemingly on the phase of the moon) you will either be able to

edit it directly in place or a small editor dialog will appear where you can

change the value.

25. Change the installation directory from its current value, which probably will

not appear as literally /Library/Frameworks in the editor dialog, but instead as

a macro-substitution variable that expands to /Library/Frameworks in use, to

@execution_path/../Frameworks, as shown in Figure 15.46.

This directive is a “magic value” that tells the framework that it is okay to

look for itself in a Frameworks directory that is in parallel to the path of any

executable that is trying to use it.

Also pay attention to values of the Deployment Location, Deployment

Postprocessing, and Skip Install options. These values interact in some com-

pletely nonintuitive ways, but thankfully, to make things work the way you

want them to work, they should all be set to No.

26. Make the setting change to the installation directory and click Done. Then,

because Xcode currently displays some difficulty in getting this setting to actu-

ally stick the first time it is set, select the BeeLine project in the Navigator, and

ptg8126863

Summary 395

then reselect the BetterList project and the build settings for the BetterList

target again, and verify that the installation directory really shows up as

@execution_path/../Frameworks. If it does not, just repeat the previous steps

to set it, until Xcode finally gives in.

FIGURE 15.46
Changing the
Installation
Directory option
so that the
framework
knows to look
for itself in a
directory paral-
lel to the path
of any exe-
cutable that it
tries to use.

27. Reselect the BeeLine project and choose Product, Build For, Build For Running

from the menu. Back in the Finder, you’ll find your BeeLine application in the

Release subdirectory of the build directory that is in parallel to the

BeeLine.xcodeproj file. Launching it in the Finder should now give you the

same experience as running it within Xcode (although all those annoying log

messages are now going into your console logs).

Summary
In this hour, you practiced the skills you learned in previous hours, putting them all

together to build a working OS X application. You learned how to build a single-

window, single-view application, and then updated it with a second view with an

independent controller. You also learned how to use shared frameworks and how to

embed frameworks for those times when you need to edit and test the framework at

the same time as the application. Keep the workflow you practiced in this hour in

mind as you work through the following hours in the book. Being able to construct a

working OS X application is a prerequisite for each of them.

ptg8126863

396 HOUR 15: Putting It All Together: Building an OS X Application

Q&A
Q. Could the NSView component of the interface be handled by an independent

controller, as was done for the NSBrowser?

A. Yes. In fact, that is the preferred way to do things. Many OS X applications,

however, are built with the controller for one or more views embedded in the

application delegate. That does not mean that this is a good way to do things,

but it was important for you to see both styles (and you get to fix it in the

next hour, when you convert this OS X application into an iOS app).

Q. Is a project limited to building one executable application?

A. No. You can incorporate subprojects for additional applications using the

same method we used for incorporating the embedded framework, or you can

just add additional targets to your existing project. Subprojects have the con-

venience that they carry around their own individual build environments and

can be worked on independently from the main project. Additional targets,

however, handle code completion and argument checking better (although

this advantage is possibly due to a bug in the symbol processing for subpro-

jects) and can be better controlled for compiling subsets of executables by

using schemes.

Workshop

Quiz
1. Why does the framework subproject you just included in your application

refuse to let you access its contents?

2. Where can you find your finished .app application?

3. Where do your NSLog() messages go when you’re running your application

from the Finder rather than in Xcode?

ptg8126863

Workshop 397

Answers
1. Because you still have the framework project open in another, independent

Xcode window.

2. If you set the project to use derived-data directories as specified by targets,

you’ll find a build directory inside your project directory, and your application

will be in either the Debug or Release subdirectory of this build directory. If

you left the derived-data location at the default, your application is in a

pseudo-randomly named subdirectory of

~/Library/Developer/Xcode/DerivedData/. If you want to find it, try reading

the final lines of the most recent build entry in the Log Navigator tab of the

Navigator.

3. They are sent to the system console device. You can browse these logs using

the Console.app application in /Applications/Utilities.

Activities
1. Modify the PointsBrowser class so that when an item is selected in the

NSBrowser the list insertion point is moved from the end of the list to after the

selected item.

2. Refactor the code so that the QuartzGrough does not own the point list model,

but instead receives it from its parent.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 16

Building an iOS Application

What You’ll Learn in This Hour:
. How to set up a project to build an application that can run on the iPhone,

iPod touch, and iPad
. How to add a Cocoa Touch static library target to an existing framework

project, to enable its use on iOS
. The kinds of things to watch out for when porting code between OS X and iOS
. How to implement singleton classes to handle data passing between different

controllers in your iOS MVC schema

In this hour, you rebuild the OS X application that you built in the preceding hour into a

universal iOS application. Because OS X and iOS are converging, this gets easier with

every new release of OS X, iOS, and Xcode, but for a number of reasons it is still not as

seamless a process as one might hope, as follows:

. UI manipulability: At the most basic, iOS devices require some adjustments to pro-

gramming simply because of the practical difference in the iOS/Cocoa Touch and

OS X/Cocoa user interfaces. For example, if your program responds to users hover-

ing their cursor over an interface element in your OS X application, you must find

an alternative for this for your iOS application because iOS does not have a cursor

to hover.

. Library differences: Annoyingly, differences at the library level must also be

addressed, differences beyond those required by differing hardware. These are pri-

marily the result of iOS using different, simplified libraries to replace some function-

ality that’s available in OS X, requiring that you rewrite some method calls for iOS.

. UI element availability: There are also some differences in the suite of standard

user interface elements available on iOS. So, if you have used elements that are

unique to OS X/Cocoa, you must replace those and change your underlying code to

support the iOS elements available.

ptg8126863

400 HOUR 16: Building an iOS Application

. MVC design constraints: In addition, developing for iOS requires you to

adhere to the model-view-controller (MVC) design pattern much more closely

than does OS X. Whereas it is not at all uncommon for the application dele-

gate to end up carrying around the majority of the functionality in small OS

X applications, in iOS applications the app delegate’s job is solely manage-

ment of the application life cycle, and functionality is embedded in or below

view controllers that are responsible for instantiating each scene or “full-

screen” display.

. User expectations: Finally, although not a strict requirement for porting an

application to iOS, users of iPhones, iPods, and iPads have high expectations

for interactivity in their iOS applications. So, you will probably want to build

new features to provide natural navigation and interaction via familiar iOS

gestures.

Because good iOS interface design and appropriate use of iOS technologies is a bet-

ter subject for a standalone book, this hour focuses on the changes necessary to port

the functionality of a OS X application to the iOS environment. We leave the deci-

sions about how to wrap additional and appropriate iOS functionality into the

application up to your creative genius.

Assessing What You Already Have
When adapting an OS X application to iOS, you must first consider the pieces that

you have in your OS X application and determine how they might work best work

under iOS. You need to perform this analysis for both your interface and your

underlying driving logic.

In the case of your application’s UI, your main window, if you have one, probably

needs an entire iOS scene devoted to it. If you have dialogs in your OS X applica-

tion, they probably need individual dedicated scenes. If your main interface com-

bines both display elements and UI elements, you might need to split those off into

separate iOS scenes.

You also need to consider the possible routes that a user can take through your

application interface. In OS X, you are probably used to designing free-form user

experiences where users can open multiple windows and wander as they choose

between them. With the exception of a few special cases where users need to be

taken linearly through a complete series of steps to complete some task, it is gener-

ally considered bad practice to put users on rails and only allow one path through

your OS X interface. In iOS, however, your users are limited to a single scene at a

time, and can only switch between that scene and the specific other scenes that you

ptg8126863

Assessing What You Already Have 401

enable the interface to guide them to. In iOS, it is just as bad form to give them too

many options as it is to guide them too carefully in OS X.

You also need to carefully study your application logic. You will likely have logic

and data that you must split out of the application delegate and move into either

an appropriate controller or model component. You also might need to break up

some of your view logic. If you have previously instantiated what are really two

independent views in the same OS X window by conflating their code under the

same controller, you might be sharing data between them through that shared par-

ent controller in a fashion that cannot be easily replicated when you split the views

apart in iOS.

Looking at BeeLine from Hour 15, “Putting It All Together: Building an OS X

Application,” we have a window that contains a graphics subview and an

NSBrowser subview that are displaying the same data and user-entry text fields and

a button. For purely screen-space reasons, an iOS version, especially an iPhone ver-

sion, will probably need to have the graphics subview and NSBrowser subview split

onto separate scenes.

Because we were working in the direction of connecting the NSBrowser functionality

with the user-input functionality (to support changing the insertion point in our list

of points and deleting points from the list), keeping the coordinate-entry text fields

together with the NSBrowser component makes sense. We also previously used the

app delegate as the controller for the graphics subview, and because we did this, we

could get away with passing data between the graphics subview and the NSBrowser

using the app delegate as an intermediate.

For iOS, both of these things must change. The controller for the graphics view must

be pulled out as a separate class. The pointsList data, which previously was

owned by the graphics subview and was communicated to the NSBrowser by the

app delegate, must be managed by a separate class and some additional magic

invented to communicate it to both controllers that need to use the data. (We

accomplish this using a design pattern known as a singleton, discussed in more

detail later in this hour.)

Finally, looking carefully at the interface elements available in iOS, we can see that

the NSBrowser class that we used for listing points in the OS X version is not avail-

able in iOS. So, we need to replace that component. Although not hierarchical, the

iOS-compatible TableView class is a reasonable substitute. If we had extended

BeeLine to support multiple lists of points using the NSBrowser to select among the

list hierarchy, we would need to invent some functionality here because iOS does not

provide a similar hierarchy browser class.

ptg8126863

By the
Way

402 HOUR 16: Building an iOS Application

In addition, we have been using our BetterList framework to provide the underlying

data model, and Apple currently reserves dynamically linked frameworks for them-

selves in iOS, requiring that application authors use statically linked libraries

instead. So, we need to create a static version of BetterList to support our iOS

application.

All together, for our iOS conversion, we need to do the following:

1. Create an iOS application with two scenes.

2. Update our BetterList framework to create a static library for iOS and incorpo-

rate it into our iOS app.

3. Update our application logic to support iOS-specific library calls.

4. Create a singleton class to hold our point list data and pass it between the

scenes.

5. Replace the NSBrowser support logic with TableView support logic.

6. Populate the primary scene with our graphics view.

7. Populate the secondary scene with a TableView (to replace our NSBrowser

view), and with the X and Y coordinate input boxes.

8. Connect the UI elements in the primary and secondary scenes with the appli-

cation logic.

9. Add UI tweaks to support iOS features such as rotation.

Throughout the rest of this hour, we walk through the steps necessary to complete

each of these items. However, because you are now getting more experience with the

specific actions required to perform these steps, you will find in this hour just gen-

eral instructions for activities with which you are already familiar. If you need to

refresh your memory on specific tasks, refer back to Hour 14, where each step is

explained in greater detail.

Hour 4, “Using Xcode Templates to Create Projects,” covered the various iOS
design patterns (types) that Xcode supports. Remember, though, that you are not
locked into just one design. Your application can incorporate aspects of different
types as necessary or desired. For example, it is entirely possible to have a
tabbed application with one tab presenting a master-detail view of some data,
enabling the user to select from a list of items and peruse high-level details, and
another tab presenting a page-based opportunity to browse through the contents
of the selected item in depth. If you need to review the various design types avail-
able, see Hour 4.

ptg8126863

Building from the Template 403

Building from the Template
To re-implement BeeLine, we need a main view for the graph, and we need a sec-

ondary view where the user can add data and interact with the list of points. We

build this using a Utility Application template. To get started, follow these steps:

1. Create a new project in Xcode. Under iOS, select Application and choose the

Utility Application template, as shown in Figure 16.1.

FIGURE 16.1
Selecting
the Utility
Application tem-
plate from the
iOS choices.

2. Fill in the details for your project as shown in Figure 16.2. So that we can use

the same application on both iPhone and iPad devices, make sure that the

Device Family setting is Universal. Select Use Storyboard and Automatic

Reference Counting. We won’t be using Core Data with iBLine, so leave that

option un-checked (although if you think you might need to add Core Data

support at a later date, selecting this and working around the extra code it

adds until you need it is much easier than gluing in the bits you need in the

future). As a matter of principle, check the Include Unit Tests check box.

FIGURE 16.2
Choosing
options for
the project.

ptg8126863

Did You
Know?

404 HOUR 16: Building an iOS Application

3. Click Next, choose a place to store your project, and click Finish.

After working for a few moments, Xcode presents you with your bare Utility

Application template. As shown in Figure 16.3, you are already provided with

header and implementation files for the application delegate and with view con-

trollers for both the main view and the “flipside” view. In the Editor section of the

interface, you can configure numerous options for device features you want to sup-

port, such as what rotations your application needs to know about and standard

things like application icons.

FIGURE 16.3
Xcode provides
header and
implementation
files for the
application dele-
gate, as well as
for the main
and flipside
view controllers.

Adding a Static Library Target
Now that you have your basic application project created from the template, it’s

time to add a Cocoa Touch-compatible static library to the BetterList framework

project we’ve been using. To do this, follow these steps:

A really careful programmer would have realized that BetterList needed some
tweaks and worked on them before even bothering to start on the iBLine project.
If you’re like me, though, you will inevitably end up in the situation we have set up
here, where you have a new project started and another that you need to incorpo-
rate that requires additional editing. I have left the major steps in this order to
show you the few extra things you need to do to succeed if you find yourself in
this situation.

1. Close your iBLine project and open your BetterList project.

ptg8126863

Adding a Static Library Target 405

Only Open Projects Once
Closing iBLine isn’t strictly necessary, but Xcode currently gets confused some-
times when you have a project open directly and it is also included as a sub-proj-
ect in another open project. To avoid situations where Xcode cannot decide which
open project is really in control of a file, it is safer to have one open project and
to make sure any others that have potentially overlapping content are closed.

2. Select the BetterList project in the Navigator and again in the Editor area.

Click the Add Target button (+) at the bottom of the Editor area, as shown in

Figure 16.4.

FIGURE 16.4
Adding a target.

3. In the dialog that appears, select the Framework & Library option in the iOS

section of the project templates. The Cocoa Touch Static Library template is

currently the only option available. Select it, and then click Next.

4. Choose a name for your static library target. It would be nice if you could just

re-use BetterList here so that your BetterList project could create both a

BetterList.framework framework distribution and a libBetterList.a static library,

but Xcode does not let you use an identical base name, even thought it is

going to add prefixes and suffixes that would make them distinct for the

actual targets. Because Xcode prepends lib to the name provided here, I’m not

adding that myself. Instead, as shown in Figure 16.6, I call the new target

BetterListlib.

ptg8126863

406 HOUR 16: Building an iOS Application

5. Uncheck the Include Unit Tests check box. Unless something new and different

is going to happen that is unique to your new library, the unit tests of logic

already instantiated in the framework should suffice to make sure that the

BetterList functionality remains stable.

6. Make sure that the project to which you want to add the target is selected, and

then click Finish.

Xcode populates your project with a new target and with new header and

implementation files to implement your target. Because the new target in this

FIGURE 16.5
Selecting the
Cocoa Touch
Static Library
template.

FIGURE 16.6
Choosing
options for
the target.

ptg8126863

Adding a Static Library Target 407

case is just a differently stored version of our existing functionality, we do not

need any new implementation files. We just need to convince Xcode to build a

static library target with our existing one.

7. Open the new group that Xcode has created for BetterListlib in the Navigator,

and select the new implementation and header files. Right-click and select

Delete, as shown in Figure 16.7. When prompted, tell Xcode to go ahead and

delete the files from disk.

FIGURE 16.7
Deleting the
new implemen-
tation and
header files for
BetterListlib.

8. Select your original BetterList.m implementation file in the Navigator and

reveal the Utilities area. Under the Target Membership heading, you’ll find the

BetterList framework (toolbox icon) check box already selected. Check the

check box beside your new target BetterListlib (Acropolis-looking classical

architecture icon), too, as shown in Figure 16.8.

9. Select your original BetterList.h header file from the Navigator, and likewise, in

the Utilities, select it as a target member for BetterListlib. After doing so,

change its membership setting from (the default) Project header to Public, as

shown in Figure 16.9.

ptg8126863

408 HOUR 16: Building an iOS Application

10. From the Product menu, choose Edit Scheme and, from the pop-up at the top

of the dialog, switch to editing the BetterListlib scheme. Under the Build

options, uncheck the Test build phase, as shown in Figure 16.10.

11. Display the Run options for the BetterListlib scheme, and under the info tab,

switch the build configuration to Release, as shown in Figure 16.11, and then

close the Scheme Editor.

12. (Optional) From the file menu, choose Project Settings, and then click the

Advanced button to set the derived data location to Locations Specified by

Targets.

FIGURE 16.8
Adding
BetterList.m
as a target
member for
BetterListlib.

FIGURE 16.9
Adding
BetterList.h
as a target
member for
BetterListlib and
setting its
membership
to Public.

ptg8126863

By the
Way

Adding a Static Library Target 409

Everything can be completed with the default directories selected for the derived
data location, but in the interim as Apple works out some of the kinks with proj-
ects, automatically finding the right paths for dependency data in subprojects, it is
often, especially in small projects, much easier to be explicit with these settings
rather than to rely on the sometimes-flakey automatic settings.

FIGURE 16.10
Deselecting the
Test build phase
for BetterListlib.

FIGURE 16.11
Setting the build
configuration for
the BetterListlib
scheme to
Release.

ptg8126863

By the
Way

410 HOUR 16: Building an iOS Application

13. Back at the main Xcode window, from the Scheme pop-up menu on the tool-

bar select BetterListlib, iOS Device, as shown in Figure 16.12.

FIGURE 16.12
Setting
BetterListlib
to test iOS
device
architecture.

14. From the Product menu, choose Build For, Build for Running.

You should be rewarded with a Build Succeeded notification, and if you check

your BetterList directory in the Finder, you should find that its build subdirec-

tory has now been populated with a Release-iphoneos subdirectory. In that

subdirectory, you should find your static library (libBetterListlib.a) and a distri-

bution hierarchy for the header, /usr/local/include/BetterList.h, as shown in

Figure 16.13. If you do not see these things, check your steps and try again.

FIGURE 16.13
The static
library and
header file
should appear
in a Release-
iphoneos sub-
directory of your
BetterList
directory in
the Finder.

If things are not working out quite as expected at this point, the information avail-
able from the Log Navigator (little speech-bubble icon) under the Navigator can be
invaluable. The most probable source of difficulty, if you’re getting a Build
Succeeded notification and aren’t seeing any errors, is Xcode putting the file some-
where other than where you wanted it. If you look at the detailed log entries for the
last steps of your build process, you can usually identify the trouble and either cor-
rect it or, as is often easier, just move the files somewhere more useful by hand.

ptg8126863

Adding a Static Library Target 411

After you have succeeded in getting the BetterList project to build a libBetterListlib.a

static library, it is time to incorporate it into iBLine. To do so, follow these steps:

1. Close the BetterList project. If you don’t, you’ll drive yourself nuts when it adds

itself to iBLine but you can’t interact with its components.

2. From the Finder (or from the File menu in Xcode), open the iBLine project.

3. Select the iBLine project in the Navigator and right-click it. Choose Add Files

to iBLine from the pop-up menu that appears, as shown in Figure 16.14.

FIGURE 16.14
Getting ready to
add files to the
iBLine project

4. In the file selection dialog that opens, navigate to wherever your BetterList

project is located. Just in case you’re a bit disorganized and work in multiple

locations, you might want to expand the folders under it to make sure that

you’re really looking at the directory that contains the static library you just

built. Select the BetterList.xcodeproj file and make sure it is going to be added

to the iBLine target, as shown in Figure 16.15. Click the Add button.

5. The BetterList.xcodeproj project should now show up as a subproject of the

iBLine project in the Navigator. Select the iBLine project in the Navigator and

select the iBLine target in the Editor area. Open the tab for the iBLine build

phases. Using either the + buttons at the bottom of each build section listing,

or dragging the files from the Navigator area, add BetterListlib as a target

dependency, and libBetterListlib.a to the list of libraries for linking, as shown

in Figure 16.16.

ptg8126863

412 HOUR 16: Building an iOS Application

Remember that the BetterList project is now a child of both your original BeeLine
OS X application and your iBLine iOS application. This is convenient from the point
of view of making sure that when you add functionality to BetterList in either it’s
available to both. However, it can cause problems if you do something to
BetterList in one that breaks functionality in the other, because you won’t find out
about this until you have the other project open in Xcode, and if that’s six months
in the future, you are likely to have forgotten exactly what you changed.

FIGURE 16.15
Selecting the
BetterList.xcode
proj file to add
to the iBLine
target.

FIGURE 16.16
Updating the
BetterList.xcode
proj project
by adding
BetterListlib as
a target depend-
ency and
libBetterListlib.a
to the list of
libraries to be
linked.

By the
Way

ptg8126863

Adding a Static Library Target 413

It is also difficult to work on both BeeLine and iBLine at the same time with this
configuration because only one of them can actually have the BetterList project
open at a time. Whichever of the BeeLine and iBLine projects is opened second
will complain about “project integrity” because it cannot open BetterList itself.
Because of this, if you were to complete all your BetterList functionality and
wouldn’t be touching it again, it would be better to just include the finished static
library and header rather than the project. Alternatively, you could configure both
BeeLine and iBLine to be peers within the same workspace (which you learn more
about this in Hour 20, “Keeping things Organized: Shared Workspaces”), so that
you could fiddle with BetterList from either of them without confusing Xcode when
you open the other project.

To wrap things up so that the code in your iBLine project can find the headers

defining the functionality available in BetterList, you need to complete one

more step. (This will probably change as Xcode matures and the workspace

functionality improves.)

6. Display the Build Settings tab for the iBLine target and choose to show all the

settings. Look for the Search Paths section. You can use the search function to

search for “header” or “path” to make things easier. Find the line for Header

Search Paths. If you’re not going to install your BetterList.h header in its

intended final /usr/local/include location, you must configure the header

search path so that the compiler can find it. The correct setting for the header

search paths depends on where you put your BetterList directory.

In my case, I have a Framework_Stuff directory parallel to my applications directory

SGFApps. My BeeLine and iBLine project directories are in the SGFApps directory,

and the BetterList directory is in the Framework_Stuff directory. Therefore, I added a

line to header search paths that contains ${SRCROOT}/../../Framework_Stuff/

BetterList/build/Release-iphoneos. That is to say, include headers from a path

starting in the current source directory, go up two levels (to the SGFApps directory,

and then to the one above it), then back down into the Framework_Stuff directory,

the BetterList directory under it, and the build directory and Release-iphoneos direc-

tories that we previously identified as where the BetterList project was storing the

finished libBetterListlib.a static library. Your configuration should look similar to

that shown in Figure 16.17.

If you select your iBLine scheme and iPhone simulator from the Xcode toolbar and

run your iBLine project now, you should be greeted by not only a Build Succeeded

notification but also by an onscreen iPhone running your app. The front side dis-

plays a blank view with an Info button icon (little italic i). You can flip this to the

ptg8126863

414 HOUR 16: Building an iOS Application

alternative view, which has a title bar and a Done button, which flips back to the

main view, as shown in Figures 16.18 and 16.19. If you have gotten this far, you’re

all set to start building your logic and connecting it to the interface.

FIGURE 16.17
Adding a header
search path so
that the iBLine
project can find
the headers in
BetterLists.

FIGURE 16.18
The front view
with the Info
button in the
iPhone
simulator.

FIGURE 16.19
The alternative
view with a title
bar and a Done
button in the
iPhone
simulator.

Updating Application Logic and Library
Calls for iOS
There are surprisingly few modifications that must be performed in the application

logic in BeeLine to make it work under iOS. However, OS X and iOS are still too

ptg8126863

By the
Way

Updating Application Logic and Library Calls for iOS 415

distant for this to be a simple single-click process. As a result, you must dig through

your application logic by hand and find places where library routines differ or

where differences in iOS require a modification of approach. The specific issues that

you need to deal with for any given application are sufficiently diverse that you

really need a book on Cocoa Touch and additional references for Objective-C to

complete this process for a general application.

For the purposes of converting BeeLine into iBLine, we just hit some of the highlights

that are typical of the issues you’ll encounter with other applications. The full source

for iBLine, appropriately converted for iOS, is available in the Hour 16 folder of the

book source files, available from http://teachyourselfxcode.com/.

BeeLine’s QuartzGrough class translates rather directly into a graph-drawing class

for iOS. In iBLine, I call the analogous class iGrough. Some of the specific differ-

ences are as follows:

. Because we need to break out the Model component more cleanly for our

data, iGrough is not going to own the BetterList instance, as was done in

QuartzGrough.

. QuartzGrough was an NSView and used NSPoints and [self size:[self

bounds]] to identify the current drawing region. It also used NSColors and

filled a filled NSBezierPath to draw the graph background. iGrough is a

UIView and doesn’t know about NSPoints, NSColors, or filled

NSBezierPaths. It also doesn’t respond to a bounds message. Instead,

iGrough needs to use CGPoints, a CGColorSpace, and a CGContextFillRect.

Note that the Core Graphics CG* routines and variables are C language functions
and structs rather than Objective-C methods and objects. Keeping this in mind
often helps when trying to figure out what the appropriate translation is between
some of the analogous-but-not-identical OS X and iOS functionality.

. The UIView context vertical axis is reversed compared to the NSView context

vertical axis. In the UIView, the 0,0 origin is at the upper left rather than the

NSView location of the lower left. As a result, we need to invert the Y coordi-

nate of our plot to cause it to draw right-side up.

. In BeeLine, the application delegate set the QuartzGrough anX and anY

instance variables and then invoked the QuartzGrough instance method

plotUpdate directly in response to the user clicking the Add button. This will

not work for iBLine for two reasons: First, because the Add button will be in a

different scene (the flipped view), invoking the iGrough plotting routine when

Add is clicked doesn’t make any sense; we want the graphics to be plotted

http://teachyourselfxcode.com/

ptg8126863

By the
Way

416 HOUR 16: Building an iOS Application

when the view flips back to the main view, not when Add is clicked. Second,

because the Add button belongs to the FlipsideViewController, and the

FlipsideViewController is a peer of the MainViewController, rather than

its parent, we do not have convenient access to the iGrough instance variables

from any method that the Add button can invoke. Part of this problem we

alleviate by changing the QuartzGrough plotUpdate method into a

sendPoints method in iGrough and passing in the whole list of points to be

plotted. The other part of the problem we overcome by implementing a single-

ton class to facilitate communication between the FlipsideViewController

and the MainViewController.

See the provided code in the Hour 16 folder for this book, for specific code
changes to address these and other issues in converting QuartzGrough into
iGrough.

Creating a Singleton to Hold Data and Share It
Between Scenes
Singleton classes are an extremely powerful design pattern that seem to generate an

unwarranted amount of confusion, especially given that they are actually exceed-

ingly straightforward in implementation. A singleton class is simply a class that

only allows an individual instance of itself to exist at any time. You can use such a

class to provide access to single-copy hardware devices, such as the accelerometer in

the iOS devices (and Apple uses the singleton design pattern for similar purposes

extensively), but it can also be used to provide a way to communicate shared data

and resources between other (potentially peer) classes.

No matter which class instantiates the singleton first, a single instance of it comes

into being, and every other class that attempts to instantiate it just gets back a refer-

ence to the same already-instantiated copy. As a result, any data that that one copy

contains is available to all the classes that have (attempted to) instantiate the sin-

gleton, and with appropriate setter and getter methods, each class that needs to

communicate via the singleton can store data into it and retrieve data out of it.

To pass our BetterList around so that it can be stored into by methods in the

FlipsideViewController, and accessed by methods in the MainViewController

and the iGrough view, we create a singleton to carry around a BetterList, and each

class that needs to access the BetterList can do so by addressing it through the sin-

gleton. Our singleton class, named DataPhile, has a header file (DataPhile.h) that

contains the code shown in Listing 16.1.

ptg8126863

Updating Application Logic and Library Calls for iOS 417

LISTING 16.1 Header File DataPhile.h for the DataPhile
Singleton Class
#import “BetterList.h”

typedef struct myPointType myPointType;

struct myPointType {

float myX;

float myY;

};

@interface DataPhile : NSObject

+ (id)getSharedDataPhile;

+ (BetterList*)setupPointsList: (void*) theThing;

- (NSMutableArray*) getDataPhileArray;

- (BetterList*)getPointsList;

@end

DataPhile also has an implementation file (DataPhile.m) that contains the code in

Listing 16.2.

LISTING 16.2 Implementation File for DataPhile.m for the DataPhile
Singleton Class
#import “DataPhile.h”

@implementation DataPhile

static id dataPhile = nil;

static NSMutableArray *points;

static BetterList *pointsList = nil;

+ (void)initialize

{

if(self == [DataPhile class])

{

dataPhile = [[self alloc] init];

points = [NSMutableArray arrayWithCapacity:1];

}

}

+ (id)getSharedDataPhile

{

return dataPhile;

}

+ (BetterList*)setupPointsList: (void*) theThing

{

pointsList = [[BetterList alloc] initDLList: theThing];

return pointsList;

}

ptg8126863

Did You
Know?

418 HOUR 16: Building an iOS Application

LISTING 16.2 Continued
- (NSMutableArray*)getDataPhileArray

{

return points;

}

- (BetterList*)getPointsList

{

return pointsList;

}

@end

You might at first find the logic behind the class methods confusing, but it will

quickly become second nature after you discover how useful this pattern is for coor-

dinating between your views without needing to pass lengthy lists of always-the-

same parameters around explicitly. The first thing to note is the class method

initialize. The initialize class method is invoked once, and only once, during

the first attempt to invoke an instance of the class. Inside initialize, we set the

class variable dataPhile to the return of our instance allocation and init proce-

dure, and the class variable points to an NSMutableArray initialized to be large

enough to contain a single item.

The astute reader will wonder why I’m talking about setting “class variables” when
Objective-C ostensibly does not provide class variables. While technically true that
Objective-C lacks a specific class variable idiom, that doesn’t mean that it is
impossible to use the existing functionality to implement something that works
like a class variable. The static global variables dataPhile, points, and
pointsList can only be set through class methods in DataPhile, and their con-
tents are available (identically) to any instance (although we can only have one
instance here). Because it looks like a duck, walks like a duck, and quacks like a
duck, I’m calling it a class variable as shorthand.

The assignments in initialize are wrapped in a conditional that checks whether
self is actually a literal DataPhile class. This is boilerplate. The initialize
method is invoked once, regardless of whether it is the class or a derived class
that is instanced first. If for some reason I want to do something different if a
derived class is instanced first, I can catch that with this conditional. Because I
have no derived classes for DataPhile, the conditional is completely redundant,
and I’ve left it in the code only as a reminder in case I need it for something later.

The next features worthy of mention are the class methods getSharedDataPhile

and setupPointsList:

Did You
Know?

ptg8126863

Updating Application Logic and Library Calls for iOS 419

. getSharedDataPhile does nothing more than return the value of the

dataPhile “class” variable. Because this is a static global value settable only

by the initialize method, any class that messages DataPhile’s

getSharedDataPhile method is going to get exactly the same response: a ref-

erence to the single instance of DataPhile that was created when the ini-

tialize method was called for the class.

. The setupPointsList class method is used to fill in the pointList “class”

variable. It doesn’t strictly need to be a class method because the pointsList

is global and there is only going to be one instance of the DataPhile class,

but in the service of self-documenting code, there’s an elegance to having

methods that affect class variables be class methods.

Finally, we have a pair of instance methods, getDataPhileArray, and

getPointsList, that retrieve the “class” variables points and pointsList. These

do not strictly need to be instance methods, and there’s at least one coherent argu-

ment to be made for making them class methods instead, that being that they inter-

act with class variables and therefore are more transparent as class methods.

However, a counterargument can be made that code looks cleaner if the routines

that use your singleton retrieve an instance of your singleton class (always the same

instance) and then retrieve values from the instance instead of always talking to the

class itself. Maintaining getSharedDataPhile as a class method remains sensible

here because it makes it explicit in the application code that the DataPhile

instance is singular and belongs to the class rather than a unique instance created

by the application code that is using it.

Finally, note that we’ve moved the definition of myPointType into the DataPhile.h

header. This is purely for convenience. Every class that needs to access the points

from our BetterList is going to need to include the DataPhile.h header, so moving

that definition here, instead of keeping it with iGrough, keeps things neater.

All together, it takes much more effort to describe the singleton pattern than to use

it. This might be its one negative aspect. After singletons stop looking peculiar and

you become fluent with them, you’ll likely start seeing many situations where they

could make your life easier. If you’re like most programmers, you’ll probably find

more places where they look like they might fit than are actually good places to use

them. An application that is using singletons to store all of its data is probably

doing something wrong or is likely to have areas where its functionality could be

significantly expanded if it weren’t limited to single-instance copies of data. Beware

of painting yourself into a corner by overusing singletons, but don’t be afraid to use

them judiciously if passing values between the components of your application

would just add redundancy to your code.

ptg8126863

420 HOUR 16: Building an iOS Application

Swapping iOS Components for OS X Components
This bit is a little tricky. Both the NSBrowser and the TableView are very powerful

classes with many options, and neither the display nor the options translate directly

between them. With the NSBrowser for BeeLine, we could subclass the NSBrowser

class, set the interface element to be a member of our subclass, and add methods to

populate it to that subclass. This is not how UITableViews are used. UITableViews

are simply UITableViews, and they self-populate themselves with data by being

linked, rather than subclassed into, a class that contains specifically named meth-

ods, and they achieve added functionality by specification of a delegate.

To attach a class to a UITableView as its data source, the class needs to implement

specific instance methods. A minimalist set includes a numberOfSelectionsInTable

View method and tableView:numberOfRowsInSection and tableView:cellFor

RowAtIndexPath methods. The UITableView also needs a delegate containing at a

minimum a tableView:didSelectRowAtIndexPath method in which to implement

some action when a tableView row is selected. The Hour 16 folder of this book’s

source files contains the minimal code necessary to support a TableView embedded

in the FlipsideViewController. In a more complex application, where a

UITableView could be afforded a scene of its own, it is better to create an independ-

ent class to serve as the UITableView data source and delegate. With the two-scene

Utility Application template, however, using the FlipsideViewController is easier.

Populating the Primary Scene
Now that our code is in place, we can get on with building the UI and connecting

all the pieces. Although you do not have to write all the code before adding the UI

components, you might find doing so easier because if you do build the UI first,

you’ll end up repeatedly going back and forth between the Interface Builder and the

code. When you add interface elements, they often need code to support them. If the

code is not already present, you must write it and then return to the Interface

Builder and try to remember what you want to connect it to. By putting the code in

place first, you can then place interface elements and immediately connect them

with their appropriate classes without having to constantly flip back and forth.

ptg8126863

Updating Application Logic and Library Calls for iOS 421

Because we’re replicating the BeeLine project, the first thing we need to add to the

main scene is a view area where we can plot our data. Doing this requires much the

same sequence of actions with which you’re becoming familiar in Interface Builder:

1. Select the MainStoryboard_iPhone.storyboard in the navigator and maneuver

the storyboard editor area until you can see the entire main view controller.

2. Open the Utilities area and show the Object Library.

3. Find the View item (a UIView) and drag it onto the Main View Controller

scene in the storyboard, as shown in Figure 16.20.

FIGURE 16.20
Dragging the
View item into
in the Main
View Controller
scene in the
storyboard.

4. Resize the View item you have placed to suit your preferences, and then show

the Identity Inspector in the Utilities area and change the class for the View

item from the original UIView class to our UIView-derived iGrough class, as

shown in Figure 16.21.

ptg8126863

422 HOUR 16: Building an iOS Application

Populating the Secondary Scene
Populating the secondary scene with the rest of the UI elements is no more difficult:

1. Move the storyboard view until the FlipsideViewController scene is fully visible

in the Editor area.

2. Drag in a pair of text fields for the X and Y coordinate entries and a pair of

labels.

We did not need to change the default color of the labels in BeeLine because

the default OS X application background is light gray and the default label

color is black. Unfortunately, the default iOS background is dark gray, while

the default label color remains black (note to Apple: that’s not insanely great),

so you must change it.

3. Select both of your labels in Interface Builder by clicking on the first one and

Option-clicking the second. Then show the Attributes Inspector in the Utilities.

Near the bottom of the Label fields, you’ll see a Text Color pop-up. Click it.

FIGURE 16.21
Changing the
class for the
View to our
iGrough class.

ptg8126863

Did You
Know?

Updating Application Logic and Library Calls for iOS 423

Don’t click and hold. A standard color picker will appear. Select the color you

want for your text, as shown in Figure 16.22. Notice that your labels change

color as you adjust the setting in the color picker, although they remain tinted

with your highlight color until you click elsewhere in Interface Builder to

deselect the labels.

Text Color Field

FIGURE 16.22
Selecting color
for the text.

4. Complete the interface by adding a Round Rect Button for the Add function

and a TableView to display the list of points, as shown in Figure 16.23.

We are just filling out the iPhone interface components here. Setting up the iPad
interface follows an identical procedure, the only difference being that you need to
select the MainStoryBoard_iPad.storyboard to begin working on it.

Finally, it is time to connect the code functionality and the interface elements to

complete our iOS application.

ptg8126863

424 HOUR 16: Building an iOS Application

You will find most of this familiar from the procedure we followed to build the OS X

application. As usual, though, Xcode provides more than one way to approach the

problem, so we use a slight variation from the previous method. To connect the user

interface components, follow these steps:

1. Select the MainStoryboard_iPhone.storyboard in the Navigator and open the

Scene List sidebar. (If it’s not open, the right-pointing triangle at the bottom of

the Interface Builder opens it.)

2. In the Main View Controller Scene group in the sidebar, reveal the contents of

the main view controller, and then reveal the contents of the view contained

in it.

3. Click the Assistant Editor button on the toolbar. If your Assistant Editor mode

is set to Automatic, the MainViewController header file should appear in the

Assistant Editor. If it does not, navigate to that file using the jump bar.

4. Control-click the iGrough in the sidebar (which peculiarly is only named

Grough in the sidebar list, despite being properly an iGrough) and drag a

connection from it over to the MainViewController header, as shown in

Figure 16.24. Drop it below the last @property declaration and above

the @end.

FIGURE 16.23
Finishing the
interface
with an Add
button and a
TableView to
display the list
of points.

ptg8126863

Updating Application Logic and Library Calls for iOS 425

5. Create an outlet connection and name it. As shown in Figure 16.25, I’m using

aGroughGraph, carried over from the BeeLine implementation.

FIGURE 16.24
Connecting the
iGrough in the
sidebar list to
between the
last @property
and to the @end
in the MainView
Controller.h.

FIGURE 16.25
Creating an out-
let connection
and naming it.

6. Switch to FlipsideViewController. Select it in its sidebar group and expand

it and also expand the view within it. If you need to manually point the

Assistant Editor to the FlipsideViewController header, do so now.

7. Create outlets for both text fields by Control-clicking and dragging from each

into the FlipsideViewController header. Name them xCoord and yCoord as

previously done in BeeLine. Also create an action for the button. As you’re pro-

ceeding, things should look like Figure 16.26.

ptg8126863

426 HOUR 16: Building an iOS Application

8. When it comes time to configure the action for the button, you’ll find that you

have an additional configuration parameter for the event that’s not available

for OS X applications. iOS, of course, lacks a cursor. As a result, traditional OS

X events like MouseDown and MouseUp cannot be completely replicated, and

probably shouldn’t mean the same things in iOS even if they could. Instead,

they’re replaced by “touch” events. The most intuitively appropriate of the

available options, for most button operations, is the Touch Up Inside option,

so select this, as shown in Figure 16.27, for your button action.

FIGURE 16.26
Creating outlets
for the text
fields and an
action for the
button.

FIGURE 16.27
Configuring the
action for the
button to be a
Touch Up Inside
event.

9. Control-drag an outlet for the UITableView into the FlipsideViewController

header. Configure it as shown in Figure 16.28.

ptg8126863

Updating Application Logic and Library Calls for iOS 427

10. Now hide the Assistant Editor and show just the main Interface Builder editor

again. Position the storyboard so that you can see the entire

FlipsideViewController.

11. Control-click the UITableView in the Interface Builder. A Heads Up Display

(HUD) dialog appears with some available fields that you probably haven’t

seen before. Control-click the open outlet for the dataSource and drag and

drop on the FlipsideViewController proxy in the dock beneath the scene,

as shown in Figure 16.29. This tells Interface Builder and Xcode to use the

canonically named methods found in the FlipsideViewController to pro-

vide data for the table.

FIGURE 16.28
Configuring a
UITableView

outlet into the
FlipsideView

Controller.

FIGURE 16.29
Setting the data
provided to the
table to use
canonically
named methods
found in the
FlipsideView

Controller.

12. Repeat this for the open outlet for the UITableView delegate, as shown in

Figure 16.30. This tells Interface Builder and Xcode to set up the appropriate

ptg8126863

Did You
Know?

428 HOUR 16: Building an iOS Application

message delegation so that the table functionality can be enhanced by adding

delegate methods to the FlipsideViewController.

FIGURE 16.30
Adding delegate
methods to the
FlipsideView

Controller to
enhance table
functionality.

13. Finally, within Table View in the Interface Builder sidebar, select the Table View

Cell or click the white bar just beneath the Prototype Cells header in the Table

View, open the Attributes Inspector in the Utilities area, and change the identi-

fier to freeCell, as shown in Figure 16.31. This connects the cells in the placed

tableView with the cell allocation performed in the

FlipsideViewController.

If you have set up an iPad version of the interface, you must repeat these connec-
tions for the iPad version.

The FlipsideViewController now needs a bit of extra code added to it to

complete the plotPoint method for the Add button and to connect it to the

singleton that carries our BetterList instance. The MainViewController also

needs these connections added. The code for both is in the Hour 16 folder of

the source code.

ptg8126863

Updating Application Logic and Library Calls for iOS 429

And now you should have an application that works on the iPhone with essentially

identical functionality to the BeeLine application you constructed for OS X. If you

click the Run button on the toolbar, you should be greeted (after a bit of compiling)

by a virtual iPhone running your new application. Considerably more gratifying

than before, your main view should now contain a white graphics view, as shown in

Figure 16.32. If you click on the Info button (the italic i) to flip to the alternate view,

you will see your X and Y coordinate entry boxes and your empty table view. Fill in a

few values (between -1.0 and 1.0) and it should look like Figure 16.33. Tap the Done

button to flip back to the main view, and the application will flip back to the main

view and plot a graph of the points you have entered, as shown in Figure 16.34.

Adding iOS Specialty Features
Although you’re technically done with the job of literally converting the application

functionality from BeeLine to iBLine, you could still do plenty of things to make the

user experience better on iOS (for example, supporting rotation). To get you started,

the version of iBLine that’s in the Hour 16 folder of this book’s source files includes

the logic and the modification of the notifications received by the

MainViewController that are necessary to receive rotation events and to redisplay

the graph interface as appropriate for rotated displays.

Change the identifier here

FIGURE 16.31
Changing the
Table View Cell
identifier to
freeCell.

ptg8126863

430 HOUR 16: Building an iOS Application

Summary
In this hour, you converted an OS X application into an iOS application, including

some tweaks to the functionality to support iOS and Cocoa Touch-specific features.

The steps you followed here are typical of what you must do any time you face

this task.

OS X applications tend to use dynamic frameworks, so converting these to iOS static

libraries is always necessary. Most of your code will translate, with the occasional

minor annoyance of discovering, for example, that the graphics coordinate systems

are inverted between the two platforms. You’ll probably have a few UI features in

your OS X application that don’t have exact analogs in what iOS provides. Still,

reusing the pieces from an OS X application on iOS should not be difficult, and if

you have done a good job of separating the model, view, and controller aspects of

your application, the specific features that you need to address should be well com-

partmentalized, enabling you to address each of them as discrete programming

tasks.

As you become more familiar with both OS X and iOS fundamentals, you’ll find

that these conversions become easier, both because of your increased skill and

because you’ll find yourself favoring easily converted interface idioms when doing

FIGURE 16.32
The main view
now has white
graphics (left).

FIGURE 16.33
The alternate
view has the X
and Y coordi-
nate entry
boxes and your
table view with
the entries
(middle).

FIGURE 16.34
After tapping
Done, we return
to the main
view, which has
the graph of the
points that were
entered in the
alternate view
(right).

ptg8126863

Q&A 431

initial development on either platform. With Apple’s clear intent to unify the OS

across desktop and palmtop platforms, getting into this habit is probably a great

way to prepare for Apple’s next big thing.

Q&A
Q. Is there a better way to handle the Header Path setting so that the iBLine

code can find the BetterLists header?

A. I sure hope so. We cover one improved alternative in Hour 20, but there

should be other solutions that are better than setting an explicit path, as well.

Unfortunately, none of them seem completely stable at the moment. For

example, if go back and look at the Search Paths section of the Build settings,

you’ll see an option to Always Search User Paths. Setting this to Yes produces

the tempting behavior that the code editor thinks that the BetterList header

can be found even without an explicit header search path. Unfortunately,

although the code editor can find it, the compiler still can’t. Let’s hope this

bug is resolved soon.

Q. What other iOS-specific features would be good to implement for iBLine?

A. Wow, lots of them. How about pinch/zoom on the iGrough? Shake to erase the

entire plotted graph? Tie the point collection into either the accelerometer or

the GPS so that users can play with drawing by waving the phone in the air or

by walking around with it? The more iOS bells and whistles you can usefully

add to your mobile application, the better it will fit with the other applications

on the user’s device. This makes the user experience more seamless and makes

users happy. Don’t go down the road of adding iOS fluff just to have more

bells and whistles, though. Just as surely as users like appropriately applied

iOS features, they react with visceral disgust when you misuse one. Please,

please, please, don’t set up push notifications to send all your friends updated

coordinate lists every time you add a point. They’ll hate you for that.

Q. Will this really run on an iPhone as well as in the simulator?

A. You bet. We cover provisioning actual iOS hardware devices and getting your

application into the App Store in Hours 22 and 23 (“Managing and

Provisioning iOS Devices” and “Distributing Your Applications,” respectively).

ptg8126863

432 HOUR 16: Building an iOS Application

Q. I think I did everything right, but whenever I try to run my project, I get an
error about something being undefined. I vaguely remember creating an out-
let with that name a while ago, but I deleted those bits. What’s up?

A. The Storyboard and Interface Builder features are great for what they do well,

but really annoying for what they do poorly. When you drag connections into

pieces of code, you’re not just adding @property and @synthesize lines to

your header and implementation files. You’re also telling Interface Builder to

add some other things behind the scenes (If you enter the text-editing mode,

rather than the graphical-editing mode for a NIB or storyboard, you’ll see

what I mean). Unfortunately, when you delete the @property and @synthe-

size lines from your header and implementation files, this does not tell the

Interface Builder or the Storyboard feature to delete those bits of internal

magic. The error you’re seeing is because some interface element still thinks it

has an outlet or action connected. Bring up the Interface Builder or Storyboard

feature and right-click each interface element to bring up its HUD of connec-

tions. You’ll eventually find one that references the no-longer-existing @prop-

erty that Xcode is complaining about. Click on the little X button beside that

item, and it should disappear from the HUD. Now you should be good to go.

Workshop

Quiz
1. What does the storyboard editor use instead of the Interface Builder dock for

holding proxies?

2. How many different ways are there to add an outlet connection for an inter-

face element?

3. What code belongs in the application delegate?

Answers
1. It uses a little bar beneath each scene that holds the name of the scene

(derived from the controller for that view) when the scene is not the active

selected one and holds the proxy object/file representations for the scene when

it is active.

ptg8126863

Workshop 433

2. At least four. You can Control-drag from the item in the Interface Builder or

storyboard itself. You can Control-drag from the item in the expanded compo-

nent list beside the storyboard or Interface Builder editor. You can right-click

the item to show its Heads Up Display and drag from an existing outlet to a

target or from the New Referencing Outlet item to a target. Finally, you can

use the Connections Inspector in the Utilities to access the same list of outlets

as you get from right-clicking the interface element. There are probably more.

3. Only what is necessary to manage the application life cycle. If it doesn’t have

to do with setting up or tearing down the application, it doesn’t belong there.

Activities
1. Build the iPad interface for iBLine.

2. Implement pinch and zoom on the iGrough so that it changes the plotted

coordinate range to something larger or smaller than the [-1,+1] range that

it currently supports.

3. Split the dataSource and delegate for the UITableView out so that they aren’t

embedded in the FlipsideViewController any more. Attach them to the

DataPhile and remove the dependence on BetterLists from the iGrough.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 17

Attaching Big Data: Using
Core Data in Your
Applications

What You’ll Learn in This Hour:
. The terminology of Core Data
. How to create Core Data models
. How to access Core Data through Managed Objects
. How to Bind OS X interfaces to Core Data entities

Way back in Hour 3, “Understanding the MVC Design Pattern,” you learned about the

model-view-controller design pattern as we walked through an application (Library) that

demonstrated the principles of this pattern. That example showed a Core Data model that

provides data to the views within an iOS application—linking authors with their books.

Why, now, are we returning to Core Data for an hour’s lesson? Because your authors

believe that Core Data—although a large topic—is important enough to warrant a full

formal introduction. Core Data can change the way you think about application design

and the way you code. Instead of you having to laboriously write methods to interact with

a database, Core Data can abstract the process for you, and, coupled with the Interface

Builder editor, even create rather complex application functionality without you ever

touching a line of code. This hour demonstrates exactly that.

Introducing Core Data
Core Data is a large, rather-intimidating framework that is easier to learn through

use than from sitting down and reading a large reference manual. If you recall, Core

Data provides high-performance persistent storage to your applications. The default

ptg8126863

Did You
Know?

436 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

implementation of this storage is through SQLite, but that, aside from being an

interesting fact, is irrelevant. The back-end storage is abstracted from the user, and

from you, the developer. In fact, the less you try to apply your knowledge of rela-

tional database systems to Core Data, the further ahead you’ll be.

Why Core Data?
Small iOS and OS X applications are well suited to use the defaults system available

for storing simple key-value data. This approach does not scale well, however. It also

does not allow (without tons of programming) a representation of real-world data.

Core Data fills this need without the developer having to re-invent the wheel.

OS X and iOS provide a system for storing key/value pairs called the defaults sys-
tem. It is accessed through the NSUserDefaults class and provides persistent
data storage for application preferences, settings, and other simple data
structures.

Core Data also provides some speed-of-development benefits. Using the Xcode Core

Data model editor, you can define, visually, what your data model looks like. No

coding, no initializing and allocating: Just point and click. You can also create

classes that map directly to that data model, which makes accessing information as

easy as accessing a variable. Even more impressive, you can create OS X applica-

tions that display, sort, add, modify, and delete data without writing one single line

of code. Not one.

Speaking the Core Data Language
If you have worked with databases, it isn’t hard to make the leap to using Core

Data. What you have to do, however, is stop thinking about manually defining the

bits and pieces that tie pieces of data together. Instead, you concentrate on the

model itself, not how it is implemented. Let’s quickly review some of the language

you’ll often encounter when working with Core Data. This will help you get away

from the SQL mindset and start thinking in Core Data terms:

. Entity: A unique unit consisting of pieces of related data—like a company, a

person, an address, and so on—similar to a database table. A Core Data

entity can be mapped to an object.

. Attributes: The “pieces of related data” that make up an entity. Consider

these the properties of the entity object. A person entity might have attributes

like first name, last name, email address, and so on. In database terms, these

are the columns within a table.

ptg8126863

Introducing Core Data 437

. Relationships: The defined connections between two entities. A person and

address entity might be defined by a relationship that states “a person can

have multiple addresses.” Unlike a database where columns are used to relate

data, relationships are defined between entities and the implementation is

handled behind the scenes.

. Properties: The attributes and relationships of an entity.

. Schema: The combination of entities, attributes, and relationships that make

up a Core Data model.

. Object store: The “back-end” storage for a Core Data model. The object store

maintains your data between application executions.

. Object graph: A representation of the relationship between objects as a

directed graph.

. Managed object: An instance of the objects within a schema

(NSManagedObject). Although roughly equivalent to a database record, you

work with managed objects like other Objective-C objects and can walk the

object graph using dot notation to deference across entities and attributes. You

also use standard methods for modifying information within the model.

Multiple objects (think the results of a search) are managed in an NSSet of

NSManagedObjects.

. Managed object context: Working with a managed object requires a man-

aged object context. The context ensures integrity within the managed object

and the underlying object store (NSManagedObjectContext).

. Fetch request: An object that describes data to be retrieved from an object

store. Fetch requests define the entity that will serve as the starting point in

the object graph that is created by the request, the sort order for when multi-

ple objects are returned, and a filter (called a predicate) to narrow the results.

. Predicate: A string that describes a means of limited the data returned by a

fetch request. A predicate to select all Person objects with a last name of

“Smith” might look like this: Person.lastName=”Smith”.

. Configuration: Core Data configurations provide a method of defining sets of

entities so that you can define a master set of entities that you need and then

use different configurations to target specific subsets of these entities.

. Fetched properties: A weak one-way relationship that is defined using a fetch

request rather than a true defined relationship. You might define a relation-

ship to “other people with the same last name” as fetched property for a

Person entity. Made available as an array rather than a set.

ptg8126863

By the
Way

438 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

. Binding: A defined relationship between an object and a Core Data entity or

attribute. You learn how to bind UI objects directly to Core Data entities a bit

later this hour.

Unfortunately, getting into the full scope of Core Data possibilities is beyond the

scope of this book, but we do look at enough of the tools and functionality for you

to gain an appreciation this valuable framework and toolset.

At the time of this writing, Core Data does not support any UI bindings in iOS
applications. Although I hope this changes, a great many of the wow features of
Core Data are available only when doing OS X development.

Using the Xcode Core Data Model
Editor
Your Core Data work begins with a Core Data model. The model is the Core Data

schema, and is developed directly in Xcode with the Core Data model editor. Models

get into your apps in one of two ways: You either add them during the project-

creation process by clicking the Use Core Data check box, as shown in Figure 17.1,

or you add a Data Model file (.xcdatamodeld) from the Core Data iOS/OS X file

template categories in Xcode.

FIGURE 17.1
Add a Core Data
model to your
project during
creation (or
afterward).

ptg8126863

Using the Xcode Core Data Model Editor 439

In this hour, the walkthrough example creates a simple Core Data model and appli-

cation that collects information about cities, and notable attractions within each

city. If you want to follow along, create a new OS X Cocoa application named

Attractions now. Be sure to choose to use Core Data during the project-creation

process. If you would rather just read, don’t worry; the project files are included in

this hour’s Projects folder.

The first step in creating a Core Data model is to open the model file for editing. To

do this, select the .xcdatamodeld file in the Project Navigator. Your screen refreshes

to show the Core Data model editor, as shown in Figure 17.2.

Model File

Core Data Model Editor

Table Style Editor

Graph Style Editor

FIGURE 17.2
Click the model
file to load the
editor.

Use the editor style buttons in the lower-right corner of the Editor area to switch to

the table-style display. The graph displays a visual representation of your data, but is

not nearly as easy to use as the table style. This example demonstrates use of the

editor with the table style.

In the left column of your editor, you’ll see headings for entities, fetch requests, and

configurations. Because you haven’t created anything yet, these are empty—with the

exception of a default configuration. To the right of the column are three sections

ptg8126863

Watch
Out!

440 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

titled Attributes, Relationships, and Fetched Properties. These contain information

that describe/define your entities, once they are defined. Speaking of which, let’s cre-

ate some entities.

Adding Entities
Everything in a model ties to an entity. To add an entity, follow these steps:

1. Click the Add Entity button.

2. A new entity with the name Entity is added to the entity list in the column on

the right of the model editor.

3. The entity name is made available for editing. Begin typing to set it, as shown

in Figure 17.3. You can double-click the name of the entity to change it at

any time.

Add a New
Entity

FIGURE 17.3
Add a new
entity to your
model.

The Mysteriously Changing Interface
The Add Entity button is really a pop-up menu. If you click and hold, it has options
for creating Fetch requests and configurations as well as entities. If it has been
changed from the default, it will not show Add Entity in its label. Just click and
hold to set it back to the Add Entity default.

ptg8126863

Using the Xcode Core Data Model Editor 441

This example shows two entities: Attraction (something fun to do) and Location.

They are linked by two relationships: a one-to-many relationship between location

and attraction (a location can have multiple attractions) and a one-to-one relation-

ship between attraction and location (a specific attraction can only exist in one

location.)

Using these steps, add two entities named Attraction and Location. They do not

need to contain anything; they just need to exist. Once added, your display should

resemble Figure 17.4.

FIGURE 17.4
A model with
two empty
entities.

Obviously, entities are not much use without attributes that can store information.

So, your next step is to add the attributes.

Adding Attributes
Attributes have two basic identifying properties: an attribute name and a type. To

add an attribute to an entity, follow these steps:

1. Click to highlight the entity in the left column of the model editor.

2. Click the + button at the bottom of the Attributes section.

3. A new attribute is added to the list with the name attribute—ready to be

edited. Type to change the name to whatever you want.

4. Finally, set the attribute type by clicking the pop-up menu immediately to the

right of the attribute name, as shown in Figure 17.5.

ptg8126863

By the
Way

442 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

For the Attractions project, I established a name attribute and an info attribute for

the Attraction entity; and, for the Location entity, I established city, state, and

zipcode. All of these are strings.

My Location entity, with all defined attributes, is shown in Figure 17.6.

Set Name

Add Attribute

Set Type

FIGURE 17.5
Add attributes
to your entities.

FIGURE 17.6
The Location
entity with
city, state,
zipcode
attributes.

In addition to names and types, you can use the Data Model Inspector
(Option+Command+3) to set attributes as indexed values, optional, and other eso-
teric settings. The Apple Guide “Getting Started with Core Data” in the Xcode doc-
umentation is a good place to begin exploring the options we cannot cover in
depth here.

ptg8126863

Using the Xcode Core Data Model Editor 443

Defining Relationships
The last step in most data models is defining the relationships between entities.

Relationships, although a very powerful part of a data model, are surprisingly sim-

ple to create. They are defined by the entities involved in the relationship, an arbi-

trary name of your choosing, and the cardinality of the relationship.

Relationships can also have an inverse relationship, which is nothing more than a

second relationship that defines the reverse of any given relationship. In the case of

the Attractions data model I’m working with, one relationship is that a location can

have multiple attractions (a one-to-many relationship). The inverse of that relation-

ship is that an attraction can have one location (a one-to-one relationship).

Complicated terms for concepts that are common sense.

To add a relationship between entities, complete this process:

1. Select the entity that you want to relate to another from the left column of the

editor.

2. Click the + button at the bottom of the Relationships section.

3. A new relationship is added to the list with the name relationship. Change

the name to whatever you want.

4. Use the Destination pop-up menu to set the destination entity (the other side

of the relationship). This is demonstrated in Figure 17.7.

Set Relationship Name

Choose the Destination Entity

Set the Inverse Relationship

FIGURE 17.7
Name and set
the destination
for your
relationship.

ptg8126863

444 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

5. Use the Inverse pop-up menu to choose another relationship that has been

defined (if any) that represents the reverse of the relationship you just created.

If this is the first relationship you have added, you must add the second

(inverse) relationship and then come back and set the inverse here.

These steps set the relationship between entities, but it defaults the cardinality of the

relationship to one-to-one. To set a one-to-many relationship, you must open the

Data Model Inspector (Option+Command+3) and check the Relationship settings

Plural check box, as shown in Figure 17.8.

Create a One-To-Many Relationship

FIGURE 17.8
Check the Plural
check box to
configure a
one-to-many
relationship.

You might also want to look at the options for the delete rule for the relationship.
A cascading delete rule, for example, ensures that when an object in a data set is
deleted, the deletion cascades across the relationship to the related objects.
Often, this is the preferred behavior across related entities.

For the Attractions data model, define two relationships. The first, from the

Attraction entity to the Location entity should be named locationInfo and set as

a one-to-one relationship. The second, from Location to Attraction, named

attractionInfo, should be configured as a plural (one-to-many) relationship. After

both relationships are in place, they should be set to be each other’s inverse (the

inverse of locationInfo is attractionInfo, and vice versa).

By the
Way

ptg8126863

Did You
Know?

Using the Xcode Core Data Model Editor 445

Using the Graph Editor Style
Creating your entities, attributes, and relationships using the table style of the Core

Data model editor is great for focusing on a single entity at a time. The graph style,

however, can give you a nice overview of all the entities, attributes, and relation-

ships you have defined, as shown in Figure 17.9.

FIGURE 17.9
The graph style
view of the
Attractions data
model.

In the graph view, you can drag individual entities around to arrange them in a way

that is logical to you. Each entity lists its attributes and relationships, and connec-

tions are drawn between each entity to visually demonstrate the relationships.

Cardinality is communicated by the number of arrowheads on a relationship con-

nection. One arrowhead = a one-to-one relationship, two arrowheads = a one-to-

many relationship.

The graph style is actually a full editor for your model. You can click to highlight an
entity, and then click the Add Attribute button (a pop-up menu with Add
Relationship and Add Fetch Property options, as well) to add a new attribute to the
entity. You can edit the names within the visual representation of the entities, and
use the Data Model Inspector (Option+Command+3) to set the type. You can even
define relationships by clicking and dragging from one entity to another.

I find this to be an extremely inefficient way of defining a data model, but if you
want to give it a try, be aware that the tools are there, even if they are not readily
apparent.

ptg8126863

446 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

Binding a Data Model to a User
Interface
After you have built a data model, you’ll want to do something useful with it. You

can take two approaches when working with the data. First, you can write code to

read and manipulate information. This is obviously an important skill, but, to be

frank, it is also a bit boring. The second approach is to bind the data model to inter-

face components, enabling quite advanced application functionality without writing

a line of code. We start with the second approach in this part of the lesson, and then

finish up with some code that can access the data model.

Because you can bind information to controls in Xcode in dozens of different ways,

what we look at in this section is one approach for a small set of controls and a very

simple data model. Core Data creates immense opportunities for your applications,

but you need to spend more time with the Xcode documentation to familiarize your-

self with all the intricacies of the binding system.

For this tutorial, we bind the Attractions data model to a user interface that enables

the users to see, add, edit, and remove information from the Location and

Attraction entities—all without typing one line of code. If you want to continue

building the project from scratch, you can—but the UI might take a few minutes. If

you want to get a quick start, open the Attractions (Disconnected) version of the

project from this hour’s Projects folder. This contains the finished data model and a

complete UI with no bindings in place. Otherwise, make sure your data model is

wrapped up before continuing on.

Implementation Overview
The Attractions application presents, when complete, two windows: Attractions and

Locations. The Locations window contains an interface for collecting and managing

information about the cities that contain attractions. The Attractions window

enables the user to create a new attraction and tie it to an existing location. Figure

17.10 shows the finished application in action.

To get our Core Data model connected to the interface, we need to add two Array

Controller objects (NSArrayController) to the XIB file. These are special objects that

manage collections of information and selections within these collections. For our

purposes, the collections will be the Core Data entities we defined (Attraction and

Location). After the array controllers have been configured, they can be bound to

the interface elements. We use special controller keys to ask the controllers for infor-

mation:

ptg8126863

Binding a Data Model to a User Interface 447

. selection: The selected objects within the collection. When the user clicks an

attraction in the list, for example, it is represented by the selection key.

. arrangedObjects: An array of sorted objects. The arrangedObjects key pop-

ulates our interface with the entity attributes for our entire entity, or for the

selection.

FIGURE 17.10
Manage attrac-
tions and
locations.

The app delegate will serve as the managed object context, and we’ll use the array

controller’s built-in actions of add and remove to add and remove data from the

underlying data store. Let’s get started.

Creating the Interface
Open the XIB file in your new project or in the Attractions (Disconnected) project.

Figure 17.11 shows the interface I created for the application.

If you want to create the interface as an exercise in using Interface Builder, these

are the elements you want to add to the default Cocoa application XIB before mov-

ing on.

. For the Attractions window

A single-column table view to contain the list of attractions. In my example,

the headers are turned off.

A text field to enter or edit an attraction name.

A pop-up button to choose from the locations that have been defined.

ptg8126863

448 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

A wrapping text field to enter or edit a description of the attraction.

Two labels, initially set to NA, for the state and zip data. This will be popu-

lated when the user chooses a location.

Two push buttons (Add and Remove) for adding and deleting attractions.

You should add any labels that you want to help describe the UI elements

(such as Name, Location, and so on). I placed most of my UI inside of a box

element, but that is strictly a superficial design decision.

. For the Locations window

The second Window object itself; the default XIB has a single window.

A three-column table view with headers set to City Name, State, Zip.

Two push buttons (Add and Remove) for adding and deleting locations.

FIGURE 17.11
A potential inter-
face for the
application.

That’s it. There is nothing particularly special about the UI. Just add your objects and

tweak them using the Attributes Inspector (Options+Command+4).

Adding Array Controllers
Once the interface is built, we’re ready to get down to work. As mentioned earlier, we

need two Array Controller objects to provide our interface to the Core Data entities.

Using the Object Library, drag two Array Controller objects into the Objects list for

the application. They will appear as shown in Figure 17.12.

ptg8126863

Binding a Data Model to a User Interface 449

Labeling the Array Controllers
Now, to make it easy to tell the controllers apart, rename them. Select the first array

controller and, using the Identity Inspector (Option+Command+3), set its label to

Attractions, as shown in Figure 17.13.

FIGURE 17.12
Add two array
controllers to
the XIB objects.

FIGURE 17.13
Set labels for
the array con-
trollers so that
you can tell
them apart.

Repeat this process for the second array controller, labeling it Locations. Xcode, for

some reason, doesn’t seem to like updating the object list to show the labels until

you save the XIB file and click off of it and then click back on. Do that now, and you

should see the array controllers labeled after the Core Data entities we want them to

represent.

Setting the Managed Object Context
Next we need to set the managed object context for the controller. Select the

Attractions controller, and then open the Bindings Inspector (Option+Command+7).

ptg8126863

450 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

Expand the Parameters section of the inspector and set the Bind To value to App

Delegate and the Key Path value to managedObjectContext, as shown in

Figure 17.14.

FIGURE 17.14
Set each
controller’s
managed object
context.

Do the exact same thing for the Locations array controller object. Just one more step

and we’ll be ready to bind data to the UI.

Setting the Controller Entity
The last thing we need to do with the array controllers is tell them what entity is

going to be providing them with data. To do this, select the controller (starting with

Attractions) and open the Attributes Inspector (Option+Command+4). Expand the

Object Controller section and set the mode to Entity Name. Next, in the Entity Name

field, type Attraction. Finally, check the Prepares Content check box, as shown in

Figure 17.15. The array controller is now successfully configured to work with the

Attraction entity.

Rinse and repeat for the Location array controller. Congratulations, you have com-

pleted the steps to make the Core Data model accessible to the application UI.

ptg8126863

Binding a Data Model to a User Interface 451

Binding Data to the Attractions Window UI
To bind the data to the UI, we work through each UI element and various settings

under the Bindings Inspector (Option+Command+7). Because this application has a

number of different UI components, it is easy to overlook a step, so be sure to follow

along closely until you get the hang of the process.

The Attractions Table Column
Let’s start with the single-column table that will list the contents of the Attractions

entity. Expand the Scroll View—Table View object until you get to the entry for the

Table Column. Select the Table Column object and open the Bindings Inspector. For

this element, we want to set the bindings for its value, so expand the Value section

of the inspector.

Click the Bind To check box and choose Attractions from the pop-up menu. Provide

the controller key of arrangedObjects, and the model key path of name, as shown

in Figure 17.16.

This translates to “fill the table column with the name attribute from the Attraction

entity” (by way of the Attractions array controller).

FIGURE 17.15
Configure the
entity for each
controller.

ptg8126863

452 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

The Name and Information Fields
The name and information fields in the Attractions window should be used to edit

the currently selected attraction. To set this functionality for the Name text field,

select it and open the Bindings Inspector. Again, expand the Value section and set

the Bind To option to bind to the Attractions array controller. This time, however,

set the controller key to selection because we are interested in editing the currently

selected item in the array controller. Set the Model Key Path field to name because

the field should be changing the name attribute data in the Attractions entity.

Figure 17.17 shows the completed configuration for the Name field.

Do the exact same thing for the wrapping text field, but instead of setting the model

key path to name, set it to info—the entity attribute that will hold a description of

the attraction.

The Location Pop-Up Menu (Pop-Up Button)
The pop-up menu of locations is a bit different because it requires that we access

data from another source: the Locations array controller. Let’s walk through this

setup.

FIGURE 17.16
Set the bindings
for the attrac-
tions table
column.

ptg8126863

Binding a Data Model to a User Interface 453

Select the pop-up menu and open Bindings Inspector. You set your binding options

in the Value Selection section of the inspector, but you need to make three separate

settings, as follows:

1. Expand the Content entry. Bind the content to the Locations array controller,

and set the controller key to arrangedObjects, as shown in Figure 17.18.

2. Expand the Content Values entry and also bind it to the Locations array con-

troller, using the controller key arrangedObjects and the model key path city.

This tells the pop-up menu to display the values from the city attribute of the

Location entity—by way of the Locations array controller. Figure 17.19

shows the finished configuration.

3. Expand the Selected Object entry, and this time bind it to the Attractions

array controller using the controller key selection and the model key path

locationInfo, as shown in Figure 17.20.

Why are we now dealing with the Attractions array controller again? Because

we want to store the selected location for the attraction using the locationInfo

relationship established in the Core Data model.

FIGURE 17.17
Set the bindings
for the Name
field.

ptg8126863

454 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

FIGURE 17.18
Set the content
bindings.

FIGURE 17.19
Set the content
values.

ptg8126863

Binding a Data Model to a User Interface 455

Congratulations. This is the most complicated step you’ll encounter this hour, and

you have made it through.

The State and Zip Labels
The state and zip labels are easy to configure, but will reveal a bit more of the

power behind data bindings, because we will grab their values by traversing the

relationship from Attributes to Locations. For example, select the label that should

show the state, and then open the Bindings Inspector.

Expand the Value section, and bind the element to the Attractions array con-

troller. Next, set the controller key to selection. Now, enter locationInfo.state for

the model key path. What this tells the system is that for the currently selected

Attraction in the array controller, use the locationInfo relationship to grab the

Location attribute state that has been related to the attraction. Figure 17.21 shows

this setup.

The zip label should now be configured the same way, but using the model key path

of locationInfo.zipcode.

FIGURE 17.20
Set the
selected object
bindings.

ptg8126863

456 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

The Add and Remove Buttons
The final two UI features of the Attractions window are the Add and Remove but-

tons. These need to be connected to the add and remove actions on the Attractions

array controller. To do this, Control-drag from the Add button to the Attractions

array controller in the Objects list. When prompted, choose the add action. Do the

same for the Remove button, connecting it to the remove action. Because this

Control-drag process is almost certainly getting old by now, I’ll spare you the

screenshots.

If you want, you should now be able to build and run the application and create

new attractions. Use the Window menu to show the Attractions window if it is not

visible. You won’t be able to choose any locations (because we haven’t added a way

to do that yet), but everything else should “just work.”

Binding Data to the Locations Window UI
After what you have accomplished with the Attractions window bindings, the

Locations window bindings are going to be a piece of cake. Each of the three table

columns needs a binding, and the Add and Remove buttons need to connect to the

add and remove actions on the Locations array controller.

FIGURE 17.21
Traverse the
relationship to
access data
across entities.

ptg8126863

Binding a Data Model to a User Interface 457

The Table Columns
Start by selecting the city column within the table (the first column). Open the

Bindings Inspector and expand the Value entry. Set the column to bind to the

Locations array controller with the controller key arrangedObjects and the model

key path city, as shown in Figure 17.22.

FIGURE 17.22
Bind the table
columns.

Repeat this for the second column (state), but using the model key path of state and

the third column (zip) with the model key path zipcode.

The Add and Remove Buttons
Finish up the application by connecting the Add and Remove buttons using the

same procedure you followed for the Attractions window. The Add button should

connect to the add action on the Locations array controller and the Remove button

to the remove action.

Building the Application
The application is now complete. You should be able to build and run the applica-

tion, add locations, add attractions, modify locations and attractions, and so on. If

ptg8126863

458 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

you did not build the application by hand, just use the Attractions (Complete) proj-

ect to see the results.

After putting in a few values, try quitting and restarting the application—the data

stays put. You have just created a simple database application that didn’t require

any coding by hand.

Accessing Data Through Code
Now that you have seen the glamorous side of Core Data, let’s take a look at how

you can work with the data directly in code. Using the data model that we created

earlier for the Attractions application, let’s review some of the methods you can use

to read and write data.

Open the Attractions (Code) project file to view the completed examples or just fol-

low along with Attractions project that you finished in the preceding section.

Creating NSManagedObject Subclasses
One of the nice things about Core Data is that after you have created a model you

can map the entities of the model directly to objects in your code. You do this

through the creation of NSManagedObject subclasses—typically one for each entity.

The best part? This is something that Xcode does for you.

To create a managed object class for each of the entities in Attractions, follow these

steps:

1. Click the .xcdatamodeld file to open the Core Data model editor.

2. Select the Location and Attraction entities in the left column by pressing

Shift and clicking each.

3. Choose File, New, New File from the menu.

4. Select the NSManagedObject subclass from the Core Data file template cate-

gory, as shown in Figure 17.23.

5. Click Next.

6. Make sure the Attractions code group is specified and the Options check box is

unchecked.

7. Click Create.

ptg8126863

Accessing Data Through Code 459

Notice that classes Attraction and Location are added to your project, as shown

in Figure 17.24. You use instances of these classes to work with data in the Core

Data model.

FIGURE 17.23
Choose the
NSManaged
Object sub-
class when
prompted.

FIGURE 17.24
Classes for
each of your
entities are
added to the
project.

ptg8126863

Did You
Know?

460 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

When you add entities to your Core Data model, they are, by default, instances of
the class NSManagedObject. When you use this technique to create your
NSManagedObject subclasses, the entities are automatically set to the appropri-
ate subclass name. You can check this by selecting an entity in the model editor
and viewing the Entity section of the Data Model Inspector (Option+Command+3).

Writing Data
Now that you have created classes to represent the Core Data entities you want to

work with, storing data is as simple as initializing and populating new Attraction

and Location objects. To initialize a new object that will be added to the data store,

you use the NSEntityDescription class method insertNewObjectForEntityFor

Name:inManagedObjectContext:.

To see this in action, let’s add some code to the AppDelegate class’s

applicationDidFinishLaunching method to store a new city and attraction. Before

we can write the code, we need to update AppDelegate.m to import the interface

files for the Attraction and Location classes. Add this code to the top of the file,

after the existing line #import “AppDelegate.h”:

#import “Location.h”

#import “Attraction.h”

Now, update applicationDidFinishLaunching by adding the code in Listing 17.1.

LISTING 17.1 Write Data to the Core Data Store
1: - (void)applicationDidFinishLaunching:(NSNotification *)aNotification

2: {

3:

4: NSManagedObjectContext *objectContext = [self managedObjectContext];

5:

6: Location *location = [NSEntityDescription

7: insertNewObjectForEntityForName:@”Location”

8: inManagedObjectContext:objectContext];

9: location.city=@”Birmingham”;

10: location.state=@”OH”;

11: location.zipcode=@”44889”;

12:

13: Attraction *attraction = [NSEntityDescription

14: insertNewObjectForEntityForName:@”Attraction”

15: inManagedObjectContext:objectContext];

16:

17: attraction.name=@”Woolly Bear Drive-in”;

18: attraction.info=@”A tiny restaurant with great burgers”;

19: attraction.locationInfo=location;

20:

21: NSError *error;

ptg8126863

Accessing Data Through Code 461

LISTING 17.1 Continued
22: [objectContext save:&error];

23:

24: // Insert code here to initialize your application

25: }

In line 4, we grab the managedObjectContext object that we can use to work with

our data model. Recall that an object of this type is required for accessing a Core

Data model. If you scroll through the AppDelegate.m file, you’ll see how this object

comes into existence. Because this application is based on a Core Data template,

lots of supporting setup code is added to the app delegate, including an instance of

a managed object context.

Line 6 creates a new Location object named location based on the Location

entity.

Lines 9–11 populate the new object with data.

Lines 13–18 create and populate a new attraction object.

Line 19 sets the relationship between the attraction and the location objects;

notice that it uses the locationInfo relationship that we defined in the model.

Line 22 saves the data back to the store.

As you can see from this example, writing data is not difficult. In fact, it is almost as

easy as assigning values to variables/properties.

Reading Data
Reading data is actually easier than writing it—even across relationships. To read

data, we must create an NSFetchRequest object and use it to execute a fetch

request. From that, we are given an array of results that we can loop through.

Consider the code snippet in Listing 17.2.

LISTING 17.2 Loop Through All the Locations, Outputting All Their
Attractions
1: NSFetchRequest *fetchRequest = [NSFetchRequest

2: fetchRequestWithEntityName:@”Location”];

3: NSArray *fetchedLocations = [objectContext

4: executeFetchRequest:fetchRequest

5: error:&error];

6: for (Location *aLocation in fetchedLocations) {

7: for (Attraction *anAttraction in aLocation.attractionInfo) {

8: NSLog(@”%@ %@”,anAttraction.locationInfo.zipcode,anAttraction.name);

9: }

10: }

ptg8126863

By the
Way

462 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

Here, we start in lines 1 and 2 by creating a fetch request using the NSFetchRequest

class method fetchRequestWithEntityName.

The results are stored in the fetchedLocations array in lines 3–5.

Lines 6–10 loop through each of the fetchedLocations, declaring each item as a

Location object stored in the variable aLocation.

Because a location can contain multiple attractions, we know that

aLocation.attractionInfo points to an NSSet of Attraction objects. This means

we can loop over that set (as we do in lines 7–9), accessing each successive attrac-

tion object through the variable anAttraction and outputting its attributes with

NSLog().

Note that you insert this code at the end of the method defined in Listing 17.1. It
depends on the declarations in lines 4 and 21.

If you want to run it by itself, make sure you declare the objectContext and
error variables at the top of the listing.

As you know, this is not a book that is intended to teach you how to code. I have

included these examples, however, so that you get a sense of what working with

Core Data is like, beyond just defining a model.

Summary
This hour introduced a powerful framework—Core Data—that can greatly expand

the capabilities of the applications you develop and the speed at which you develop

them. Core Data provides persistent data storage that you can use in iOS and OS X

applications. Xcode includes visual tools for defining Core Data models as simple as

a single entity or consisting of dozens of entities and relationships.

Accessing data from a Core Data model can be done through code or by way of

interface bindings (currently OS X only). You can create interfaces that add, delete,

and update data without ever writing a single line of code. Even when code is

required, you can access your data through NSManagedObject classes, which is very

similar to working with any other collection of objects. The use of Core Data does

entail a learning curve, but the benefits to your applications make it worth the

effort.

ptg8126863

Workshop 463

Q&A
Q. If Core Data, by default, sits on top of SQLite, why can’t I just use SQLite

directly?

A. The benefit of Core Data is that you do not have to worry about the underly-

ing implementation—it manages your data for you. Stop thinking in rela-

tional database terms and let Core Data do its job.

Q. Why would I use Fetched Properties rather than a real relationship?

A. Fetched Properties are used when a real relationship is not important. Your

data model should be as lean and structured as possible. Defining relation-

ships that you may not need or that are rarely used is unnecessary overhead.

Q. Why can’t I use data binding in iOS?

A. Apple just hasn’t implemented it yet. In the meantime, read the documenta-

tion for the NSFetchedResultsController class. It can streamline the use of

Core Data with iOS table views.

Workshop

Quiz
1. Core Data is a requirement for OS X and iOS applications. True or false?

2. iOS and OS X support UI data bindings. Yes or no?

3. In a one-to-many relationship that is dereferenced, how do you access the

objects on the “many” side?

Answers
1. False. Core Data is a great feature for working with large or complex data sets.

For simple key/value data storage, using the application defaults system is a

perfectly acceptable solution.

2. No. Only OS X supports UI data bindings at this time. It is possible (as you

learned in this hour) to build functional applications using Core Data and no

code. In iOS, this is not yet an option.

ptg8126863

464 HOUR 17: Attaching Big Data: Using Core Data in Your Applications

3. When you dereference across a one-to-many relationship, you are handed an

NSSet of the “many” objects. You can then loop through the set to work with

each individually.

Activities
1. Build the Attractions (or a similar) app from scratch. I know it was easy to fol-

low along with the same project, but doing this from scratch exposes you to

Core Data and many aspects of the Interface Builder editor—important skills

to practice.

2. Return to the BeeLine application and create a data model to store the points

used in the application. Update the application code to read the points from a

Core Data implementation.

ptg8126863

HOUR 18

Test Early, Test Often

What You’ll Learn in This Hour:
. The wrong way (adding unit tests to an existing application)
. The right way (test-driven development and testing before code)
. How to use the available OCUnit testing macros to validate your application

logic
. How to give the OCUnit framework a handle into your running app to test live

application features

All the examples so far have focused on the aspects of Xcode necessary to complete the

steps, and this has led to us displaying some fairly shoddy practices in terms of code devel-

opment, testing, and debugging. Code littered with NSLog() calls, although convenient to

use as an example (of something other than good code), is difficult to maintain and is

quite unlikely to be well tested. Fortunately, Xcode integrates the SenTesting OCUnit Unit

Testing framework, making it easy to use a well-principled testing methodology and

enabling you to continually validate functionality in a manner that is much easier than

reading NSLog() output.

The OCUnit Unit Testing framework, and all unit-testing frameworks in general, is

intended to support a very specific testing paradigm that has emerged from recent

advances in programming practices. This paradigm, known as test-driven development, is a

software development method in which tests that validate functionality are written before

the code that implements the functionality. If you’re not familiar with the idea, this might

sound odd, or even a bit crazy, but done well, the result can be code that is much easier to

maintain and much less time spent in the debugger trying to figure out why something

stopped working. However, if you are like most people, you are coming at unit testing with

some code already written and a need to implement testing into that existing code for

quality control. The OCUnit framework can help with this goal, as well, but it is much

harder to make sure that you have tests written to validate every aspect of your software if

you start late in the game.

ptg8126863

Did You
Know?

466 HOUR 18: Test Early, Test Often

Adding Unit Tests to an Existing
Application
How you go about adding unit tests to an existing application depends on whether

you were thinking ahead back when you created the project for the application. If

you indicated that unit tests should be included when you initially created the proj-

ect, even though you haven’t been using them while coding, almost everything is

set up, and you just need to start adding code to the unit-test target to start reaping

the benefits of unit testing.

If you did not originally tell Xcode to include the Unit Test module, or if the project

is coming from an earlier version of Xcode where unit testing wasn’t integrated, you

have a bit more work to do. If you’re lucky enough to have created your project with

tests enabled, skip ahead to the “Implementing Tests for Existing Code” section; oth-

erwise, complete the following section before starting to implement tests. We use

Apple’s OpenGL demo code, available from

https://developer.apple.com/library/mac/samplecode/GLEssentials/GLEssentials.zip,

for this example. As delivered, the example’s code does not include the unit-testing

framework or any instantiated tests.

If this does not compile properly for you out of the box, it is probably because they
are updating operating systems and Xcode versions much faster than they can
keep up with updating their example project files. If you run into this difficulty on
the GLEssentials project from Apple, you can probably get past it by changing the
Base SDK to match your current operating system. You can find the Base SDK
setting under the Build Settings for the project.

To add unit tests to an existing application, follow these steps:

1. Open your existing unit-test-less project in Xcode. You can tell that it is test-

less because it does not include any Tests group for files within the project nor

any target.octest product in the Products group, as shown in Figure 18.1.

2. Select the project in the Navigator.

3. Click the + (Add Target) icon at the bottom of the Xcode window.

4. Select the Other category of templates (for either OS X or iOS, as appropriate

for your environment), select the Cocoa Unit Testing Bundle, as shown in

Figure 18.2, and then click Next.

https://developer.apple.com/library/mac/samplecode/GLEssentials/GLEssentials.zip

ptg8126863

Adding Unit Tests to an Existing Application 467

5. Enter a product name for your tests. It probably makes the most sense to give

your testing suite for an application a name similar to the application. I

named mine GLEssentials. A smarter name to pick might be GLEssentialsTests.

6. Enable Automatic Reference Counting. Make sure the Project is still set appro-

priately. Enter your company identifier or abbreviation and click Finish. As

fully filled out, the target options should appear as shown in Figure 18.3.

FIGURE 18.1
You can tell that
this project is
unit-test-less
because it does
not have any
Tests group for
files nor a
target.octest
product in the
Products group.

FIGURE 18.2
Selecting the
Cocoa Unit
Testing Bundle.

ptg8126863

468 HOUR 18: Test Early, Test Often

After completing these steps, return to the Xcode window that appears in

Figure 18.4. A new GLEssentials.octest product should exist in the Products

group in the Navigator. A new GLEssentials group, containing an implemen-

tation file and a header file, should now appear in the Navigator, just above

the Frameworks group. A new GLEssentials Target, with an icon that looks like

a Lego block should appear under the Targets list in the Editor area. The

SenTestingKit and Cocoa frameworks should have been added in the

Frameworks group, below Linked Frameworks.

FIGURE 18.3
Filling out the
target options
for the test
suite.

FIGURE 18.4
The Xcode inter-
face just after
adding our test
suite.

ptg8126863

By the
Way

Adding Unit Tests to an Existing Application 469

You’re getting closer, but you still have more work to do. If you try to run tests

right now, as shown in Figure 18.5, Xcode helpfully reminds you of what you

still need to do.

FIGURE 18.5
When trying to
run tests now,
Xcode tells us
that we must
first configure
the project for
testing.

7. If you tried that, just to be contrary, click the Edit Scheme button. If you’re not

the contrarian, under the Product menu, select Edit Scheme.

8. The Scheme Editor opens. Select the Test scheme, as shown in Figure 18.6.

Configure it for testing the debug or release versions of the application, as

needed.

FIGURE 18.6
Select the Test
scheme and
configure it for
use with either
the debug or
release ver-
sions of the
application.

Although there “shouldn’t” be any differences in application behavior between
debug and release versions, typical differences in the way that debugging and opti-
mization flags are set for these two types of builds means that memory usage
and traversal is rather different between them. If you have a hidden bug in your
code where an off-by-one error results in a single-character buffer overrun, it is
quite possible for this code to never fail when compiled for debugging, yet always

ptg8126863

470 HOUR 18: Test Early, Test Often

crash when compiled for release. Situations like this, where something like the
presence of the debugging symbols is enough to make the difference between
completely functional and completely dead code, are more common than you prob-
ably think. So, test both debug and release configurations. Doing so will save you
headaches later.

9. Click the + button below the (empty) list of tests.

10. In the dialog that opens, open the project, and select the testing bundle you

created, as shown in Figure 18.7. Then click Add.

FIGURE 18.7
Selecting the
testing bundle
created earlier.

11. Back in the Scheme Editor, you should now see your testing bundle. If you click

its reveal triangle, you’ll see your testing class, with an additional reveal trian-

gle, and if you open it, you’ll see a single test method. Each of these has a

checked check box next to it, indicating that it is enabled for testing with the

current scheme setting, as shown in Figure 18.8. Close the Scheme Editor by

clicking OK.

ptg8126863

Adding Unit Tests to an Existing Application 471

12. Click the Run button in the upper-left corner of the Xcode interface and wait

until a pop-up menu of run options appears. Select Test, or under the Product

menu, select Test. A short time will pass. If you watch the build status, you’ll

see reports of compiling code flashing by, and then your build will… fail.

But, this is a good thing. If you look in the Navigator, you’ll see your GLEssentials

test class with a red error icon, as shown in Figure 18.9. Click its disclosure

triangle to see the source of the error and you’ll see that it is something in your

GLEssentials class implementation that produced the error. Reveal the details

under the GLEssentials.m implementation file and you’ll see a bit more (cramped)

detail. Click the red error icon beside the brief error details, and the source of the

error will open in the Editor area. As you can see from Figure 18.10, the actual “fail-

ure” in the build is that the test case example (named testExample) successfully ran.

And success, in the case of running the example method provided by Apple, is for it

to throw an STFail message, complaining that you have not actually implemented

any tests, which probably means it is time to add some.

FIGURE 18.8
Then testing
bundle now
appears in the
Scheme Editor
and includes a
testing class
with a single
test.

FIGURE 18.9
In the Navigator
panel, the red
error icon is
showing.

ptg8126863

472 HOUR 18: Test Early, Test Often

Implementing Tests for Existing Code
Implementing tests for existing code usually sounds easier than following the test-

driven development (TDD) mantra of implementing tests before functionality. In

fact, though, it is usually rather difficult to figure out exactly what to test and how

to test it. If you follow the TDD mantra and implement tests first, your code tends to

be designed in modules that can be tested. If you implement code first and add tests

later, it is quite often the case that the functionality that you want to test is buried

in methods that because of their reliance on user interaction, network access, or

other complicated behavior are quite difficult to test in an automated fashion.

If you are faced with this situation, you must put on your thinking cap and identify

components within the application that can be tested and components that cannot.

For those that can, you can implement tests as follows:

1. In the Navigator, select your testing class implementation file and open it in

the source editor.

2. Delete Apple’s testExample method.

3. Create a new instance method with a void return type. Make sure its name

starts with test. The rest of its name should reflect what it is going to test for

you. For instance, let’s test Apple’s vector math addition routine, found in the

vectorUtil.c source file. So, we name our test method testVec4Add. The bare

method should look something like Listing 18.1.

FIGURE 18.10
In the Editor
area, we
see that
testExample ran
but did not have
any tests
implemented.

ptg8126863

Implementing Tests for Existing Code 473

LISTING 18.1 Bare Method for Testing vectorUtil.c
- (void)testVec4Add

{

}

4. To get access to the method (vec4Add is a function in this case), we need to

add its code to our test case target. So, select the vectorUtil.c file from the

Other Sources group in the Navigator, open the Utilities, and select the testing

bundle GLEssentials for Target Membership, in addition to the already selected

OSXGLEssentials application target, as shown in Figure 18.11.

FIGURE 18.11
Setting up
vectorUtil.c so
that the test
method can
access it.

5. Up at the top of the implementation file, add an #import line for the

vectorUtil.h file.

6. Now add code to test the Vec4Add routine to your testVec4Add testing

method.

Exactly how you choose to test this method is up to you; in fact, if this were your

project, you would probably want to test several different features of it, possibly with

several different testing method implementations. For example, it is, of course,

appropriate to test whether it properly adds two vectors and produces the correct

mathematical result. It is also appropriate to test whether it handles null pointers, or

vectors containing non-numeric values, or vectors with different storage sizes prop-

erly. Looking at Apple’s implementation, I’m guessing the answer is no.

ptg8126863

Did You
Know?

By the
Way

474 HOUR 18: Test Early, Test Often

You can put any “generic” setup code that you think you’re going to need for more
than one test in the setUP method for your testing class. For example, if you are
going to need a set of standard variables with known values for each of your
tests, initializing them here, rather than in each test individually, makes your test
cleaner. Another common thing to include in the setUp method is the invocation
of network connections, initialization of databases, and instantiation of necessary
classes. Put any necessary code to cleanly remove, deallocate, or tear down any-
thing that you initialize in setUP in the tearDown method.

The setUp and tearDown methods are run separately for each test case method
that you include in your class.

To actually test the method (function, in this case) under consideration, you need to

build the appropriate parameters to pass to the method (or function), invoke the

method with the parameters, and then examine the result. The SenTesting suite pro-

vides a number of STAssert macros that perform the “examine the result” part of

that process for you; you just have to pick the right one.

The primary macros you’ll want to choose from are probably from the highly useful

subset of the complete bunch shown in Table 18.1.

TABLE 18.1 The Most Useful STAssert Macros for Testing Code Unit
Functionality

STAssertNil(a1, format_string, args…) Fail if a1 is not nil.

STAssertNotNil(a1, format_string, args…) Fail if a1 is nil.

STAssertEquals(a1, a2, format_string, args…) Fail if a1 is not equal to a2.

STAssertEqualObjects(a1, a2, format_string, Fail if a1 and a2 are not
args…) equal objects, based on a1’s

isEqualTo method.

STAssertEqualsWithAccuracy(a1, a2, Fail if a1 and a2 differ by
accuracy, format_string, args…) more than accuracy.

STAssertTrue(expr, format_string, args…) Fail if expr evaluates to
false.

STAssertFalse(expr, format_string, args…) Fail if expr evaluates to
true.

STFail(format_string, args…) Always fail.

ptg8126863

Implementing Tests for Existing Code 475

Others, for more specialized uses, are defined and documented in /Developer/

Library/Frameworks/SenTestingKit.framework/Versions/A/Headers/

SenTestCase_Macros.h.

In each case, the macro takes a return value or values from your tests, compares

them to expected values or each other, and if they don’t pass whatever variety of

assertion the macro applies, the format_string (an NSString) is used to produce a

printf-type formatted string from the remaining args... values, a failure excep-

tion is thrown for the build, and the formatted result is logged.

Putting this together for the Vec4Add function, and planning to test whether it prop-

erly adds two proper vectors, we come up with a testVec4Add method that looks

something like Listing 18.2.

LISTING 18.2 testVec4Add Method for Adding Two Proper Vectors
- (void)testVec4Add

{

float *vecA, *vecB, *vecC, *vecD;

int i;

NSLog(@”Testing vec4Add”);

vecA = malloc(sizeof(float)*4);

vecB = malloc(sizeof(float)*4);

vecC = malloc(sizeof(float)*4);

vecD = malloc(sizeof(float)*4);

vecA[0] = 1.2; vecA[1] = 3.4; vecA[2] = 5.6; vecA[3] = 7.8;

vecB[0] = 9.9; vecB[1] = 7.8; vecB[2] = 5.7; vecB[3] = 3.6;

// vecC;

vecD[0] = 11.1; vecD[1] = 11.2; vecD[2] = 11.3; vecD[3] = 11.4;

vec4Add(vecC, vecA, vecB);

for(i=0;i<4;i++)

{

STAssertEquals(vecC[i], vecD[i],

@”vec4Add index %d Exp %f Rec %f”,

i, vecD[i], vecC[i]);

}

free(vecA); free(vecB); free(vecC); free(vecD);

NSLog(@”Done Testing vec4Add”);

}

Now, if you run your tests, the result will be yet another fail, as shown in Figure

18.12. This time, however, it is not such a good thing that it is a failure because the

test is actually telling you that the vec4Add routine is producing incorrect results.

Examined more closely, the specific errors are as follows:

ptg8126863

476 HOUR 18: Test Early, Test Often

GLEssentials.m: error: testVec4Add (GLEssentials) failed: ‘11.099999’ should be

➥equal to ‘11.100000’: vec4Add index 0 Exp 11.100000 Rec 11.099999

GLEssentials.m: error: testVec4Add (GLEssentials) failed: ‘11.200001’ should be

➥equal to ‘11.200000’: vec4Add index 1 Exp 11.200000 Rec 11.200001

GLEssentials.m: error: testVec4Add (GLEssentials) failed: ‘11.299999’ should be

➥equal to ‘11.300000’: vec4Add index 2 Exp 11.300000 Rec 11.299999

FIGURE 18.12
The tests fail
because
vec4Add is pro-
ducing incorrect
results.

Because I added some helpful debugging code in the return message format string, I

can see that the problem looks like a floating-point precision error. For example,

we’re supposed to be receiving 11.1 back in the 0th vector component of the summed

vector, and instead we’re receiving 11.099999 (and probably some more repeating 9s

after that).

Chances are, this is not really an error but simply a limitation on the precision of

the variables we are using. So, let’s try updating the STAssert macro we’re using, to

compare the values with some tolerance for error. Changing the STAssertEquals

macro invocation and replacing it with STAssertEqualsWithAccuracy, with the accu-

racy tolerance set at 0.000001, results in the long-hoped-for behavior of the

testVec4Add method passing its test, as shown in Figure 18.13.

If you examine the Debug area, you’ll see that the SenTestingKit framework reports

when it starts the test case testVec4Add, the NSLog lines I added to validate that my

test was running appear, and then the SenTestingKit reports the successful conclusion

of the test and the time it took to complete. Parsing the NSLog()-based output from

the OCUnit testing module is not the easiest task in the world, but because it is

tightly integrated into Xcode, failures come back to the GUI, and you really only

have to look at the log if you want more information about your successes.

ptg8126863

Implementing Tests for Existing Code 477

Finally, to verify that the test case actually catches real errors, we induce an actual

error in the vec4Add routine. As delivered from Apple, the routine is as appears in

Listing 18.4.

LISTING 18.4 vec4Add Routine from Apple
void vec4Add(float* vec, const float* lhs, const float* rhs)

{

vec[0] = lhs[0] + rhs[0];

vec[1] = lhs[1] + rhs[1];

vec[2] = lhs[2] + rhs[2];

vec[3] = lhs[3] + rhs[3];

}

Edit it so that the third vector component assignment reads as follows:

vec[2] = lhs[1] + rhs[3];

Now run your test case again. You should first see a report that the build succeeded.

Because the edit is legal C code, this is expected. Xcode should be able to build the

application; it just shouldn’t run properly anymore. Immediately after, you should

see a message that says “Tests Failed” and the dreaded red error icon appears in the

Status field, and the Navigator switches to a view showing you the cause of the

error. In this case, a received value of 7.0 should be equal to an asserted value of

11.3. Because we broke the vector adder, it did not correctly add 5.6 + 5.7, and

instead added 3.4 + 3.6. The test fails (correctly) when the adder does not work. All

is well, but fix the bug you introduced in the vec4Add function and retest it, just for

good measure.

FIGURE 18.13
After you adjust
the accuracy
tolerance, the
tests pass.

ptg8126863

By the
Way

478 HOUR 18: Test Early, Test Often

Who watches the watchers? The NSLog() calls in testVec4Add seem gratuitous
because the testing framework already reports that it is starting the test and fin-
ishing the test. However, those calls are there to give me more confidence that my
testVec4Add method actually runs top to bottom. One of the most annoying mis-
takes that can happen in unit testing is the implementation of a test that doesn’t
actually run completely. Portions of tests that do not run cannot fail, and it is only
failures that get reported back to the interface for you to check.

Unit testing the rest of the application logic proceeds from here in an iterative fash-

ion, as follows:

1. Identify a method, function, or other component of your code that needs

tested.

2. Figure out how to test it.

3. Add a test method to your testing class.

4. Add code to implement you test.

5. Tweak the code that implements the test until it passes for correct output from

the application code.

6. Tweak the application code so that it produces incorrect output so that you

can be sure the test properly fails.

7. Fix your application code again and retest.

8. Repeat as necessary.

If you find that you need to implement conceptually distinct subsets of unit tests—

for example, a group that tests vector math functions, and a different group that

tests image rendering, or a group that tests vector math with floats and a different

group that tests it with integers—you can facilitate this by adding additional testing

classes. This approach lets you segregate your testing methods so that they can be

grouped with appropriate setup methods so that only the correct and necessary

setup values and variables are created. It also facilitates enabling and disabling

groups of related tests, in cases where you want to focus on specific features of the

code and not waste time on regions where you either know that things are currently

correct or know that they are currently broken but not a priority.

If you want to add additional test classes, you can do this by dragging test class

templates out of the File Template Library in the Utilities, into the group for the test-

ing bundle in the Navigator. To add a class, follow these steps:

ptg8126863

Watch
Out!

Implementing Tests for Existing Code 479

1. Show the File Template Library in the Utilities and drag an Objective-C Test

Case Class template and drop it into your Tests group in the Navigator, as

shown in Figure 18.14.

FIGURE 18.14
Dragging a test
class template
into the project.

Make sure that your Objective-C test class matches the OS target you’re building
for. There are two, identical-looking Objective-C Test Class templates. One of them
is for iOS and Cocoa Touch; the other is for OS X and Cocoa. You can make your
life a little easier by using the File Template Library drop-down to select the appro-
priate subgroup of templates (OS X or iOS) for your project. Read the description
of the template carefully to make sure you have the right one.

2. In the dialog that opens, shown in Figure 18.15, name your test class and

optionally create a new directory for it. Do not click Create yet.

3. Deselect the application target from the targets and select the building-block

iconed testing bundle that you created in the first steps of this hour. Now click

Create. Back in the main Xcode interface, you should see that a new pair of

files, one implementation and one header for your new class, has appeared in

the group for your testing bundle.

Test your application again and examine the contents of the Debug area. You’ll see

that a new test has been added and passed. This is the default testApp test method

from the class you just added. You can add more test methods to this new class, and

you can add setUp and tearDown methods copied from your original testing class to

initialize specific items that the tests in this class need to function.

ptg8126863By the
Way

480 HOUR 18: Test Early, Test Often

If you look at the demonstration code provided in the Objective-C Test Case class
that you dragged in, you will find something interesting. This class invokes itself in
such a fashion that it acquires a handle to the application delegate. This should
give you some hints about other things you might be able to do with the OCUnit
testing framework.

With a little more tweaking of settings, you can actually give your test cases
access to the running application itself. Although this is a bit more dangerous
than just testing discrete bits of the logic by linking specific classes from your
application’s code and testing their methods, it is actually the default setup that
Xcode creates when you start off with a project that includes unit tests.

Accessing the Rest of an Application
Through the Bundle Loader
In the preceding example, we followed the canonical unit-testing path of linking the

source for the methods we want to test with the unit-testing class we’re implement-

ing. This is clean, neat, and significantly reduces the running time and memory

overhead for your tests, but it does not provide a way for you to test your methods in

situ, only in the “clean room” environment of the unit-testing framework.

Fortunately, Xcode provides a convenient way to work around this limitation, in the

form of the Bundle Loader, which, with only two tweaks to the build settings for

FIGURE 18.15
Provide a name
and optionally
create a new
directory for the
test class in the
dialog that
appears.

ptg8126863

Accessing the Rest of an Application Through the Bundle Loader 481

your project, can give your unit-test classes full access to the application internals.

Formally, many tests that you can write this way are not actually unit tests but are

rather integration tests, but you will probably be happy with the functionality no

matter what it is called.

To enable the Bundle Loader, follow these steps:

1. Select your project in the Navigator and your testing target from the Targets in

the Editor area.

2. Open the Build Settings tab for your testing target.

3. Select All rules, Combined.

4. Enter the word bundle (no quotation marks required) into the Search field.

The giant list of cryptic settings should condense down to what is shown in

Figure 18.16.

FIGURE 18.16
Searching for
bundle.

5. Double-click the Bundle Loader field. A pop-up editing field appears.

6. Enter $(BUILT_PRODUCTS_DIR)/OSXGLEssentials.app/Contents/MacOS/

OSXGLEssentials into the editing field, and then click Done.

7. Cancel the search for bundle and search now for host. A setting for Test Host

should appear.

8. Double-click the Test Host field. A pop-up editing field appears.

ptg8126863

By the
Way

482 HOUR 18: Test Early, Test Often

9. Enter $(BUNDLE_LOADER) into the editing field and click Done.

10. Select your application target (not your testing target) in the left column of the

Editor area.

11. Open the Build Settings tab for it. Select All rules, Combined.

12. Enter the word symbols into the Search field.

13. Find the setting for Symbols Hidden by Default.

14. Click the (default) Yes setting and change it to No, as shown in Figure 18.17.

FIGURE 18.17
Changing the
Symbols Hidden
by Default set-
ting from Yes
to No.

Now you have access to the symbol space of your application. If you run your tests,

you’ll probably notice that the application window briefly appears. With this setup,

you can access methods from the application without explicitly linking specific

source files with the testing target. Moreover, and more usefully, if you add appropri-

ate getter and setter methods to expose application internals like the NSWindow

pointer, you can send messages to the instantiated methods in the running

application.

For an iOS app, the Test Host setting controls whether the tests will run within the
simulator or standalone outside it as pure logic tests. If it is configured as recom-
mended here, the tests run in the simulator.

ptg8126863

Summary 483

For example, if you use this technique to enable the Bundle Loader for Unit Tests in

BeeLine (Hour 15, “Putting It All Together: Building an OS X Application”), you can

add a test case with code like Listing 18.5, and it will automatically draw a list of

points into the QuartzGrough view, just as though you entered the X and Y values

and clicked the Add button yourself.

LISTING 18.5 Test Case Code That Automatically Draws a List of Points
into the QuartzGrough View
- (void)testPointAddingPipeline

{

NSRect testRect;

testRect.origin.x = 10;

testRect.origin.y = 20;

testRect.size.width = 200;

testRect.size.height = 100;

QuartzGrough *aGroughGraph = [SGFAppDelegate getTheGroughGraph];

aGroughGraph.anX = 0.4;

aGroughGraph.anY = 0.6;

[aGroughGraph plotUpdate];

aGroughGraph.anX = 0.6;

aGroughGraph.anY = 0.8;

[aGroughGraph plotUpdate];

aGroughGraph.anX = -0.3;

aGroughGraph.anY = 0.2;

[aGroughGraph plotUpdate];

[aGroughGraph drawRect:testRect];

}

If you want to experiment with BeeLine with the Bundle Loader enabled, and a test

case configured to drive the interface, you can download the project from the hour

18 source code at http://teachyourselfxcode.com.

Summary
In this hour, you learned about unit testing and how to apply the SenTesting frame-

work (OCUnit) to develop unit tests for your application logic. You learned how to

add the testing framework to an existing application and why it is a better idea to

start building unit tests immediately from the beginning of your project. You learned

how to write test methods and how to make them correctly pass when they should

pass and fail when they should fail. Finally, you learned how to access the running

application bundle, enabling the use of the unit-testing framework for some types of

integration testing, as well.

http://teachyourselfxcode.com

ptg8126863

484 HOUR 18: Test Early, Test Often

Q&A
Q. How could you handle unit-testing the plotPoint method of the BeeLine

application delegate? It relies on user input and receiving UI events from a
sender.

A. One possible answer is that unit testing of complex code often requires the

implementation of components called mocks, fakes, and stubs. Each of these

(and there is some disagreement in the community exactly what is meant by

the different terms) is a variety of stand-in bits of code that in some fashion

pretends to be an interface or a connection to a database or other complex

connection. Used properly, they can pretend to be the UI and send event mes-

sages in to your application as though a user clicked an interface component.

There are rapidly evolving libraries available on the Internet to aid you in

developing mocks for your unit tests. Because they are changing so rapidly, we

recommend an Internet search to find the most recent, but

http://www.ocmock.org/ is probably a good place to start.

Another possible answer is that the difficulty in figuring out how to test this

call should suggest to you that the implementation is less clean than might be

desired. This is probably an opportunity to refactor the code and separate out

the functionality of what to do with the results of a UI action and the receipt

of the UI action itself.

Q. How in the world does the test-driven development paradigm of writing tests
before you write code work?

A. Usually painfully, at first. The TDD paradigm requires that you be able to

articulate what a method should do before you implement it. This is probably

a good idea overall. It does not lend itself to organically growing applications,

but it does drive a workflow where you know how to test every step of an

implementation because you know what to expect from a method before you

write it.

Q. What if I expect the wrong thing from the code?

A. That is one of the downsides to TDD. When the same person is writing the

tests and the code, the tests and the code may be subject to the same blind

spots. This is why debugging, which we cover in the next hour, is still required

even when you are using TDD methods.

http://www.ocmock.org/

ptg8126863

Workshop 485

Workshop

Quiz
1. Why can you just start adding testing methods to some of your projects,

invoking methods out of your application and frameworks without doing any

further configuration, while other projects complain with linker errors claim-

ing they cannot find the application methods?

2. How can you test whether two pointers point to the same memory location in

a unit test?

3. What can you do if what is required for “passing” a particular test cannot be

encoded into any of the STAssert comparisons?

Answers
1. Projects that were initially set up with unit testing turned on have the Bundle

Loader configuration already set up and therefore do not require you to

explicitly link the source files for the methods you want to test with the testing

framework target.

2. STAssertEqual, using the values of the pointers, will accomplish this. Make

sure you do not use the targets of the pointers because then STAssertEqual will

not fail when you hand it different pointers that point to different variables

that have identical values.

3. Write your test case to carry out whatever conditional evaluation you require,

and invoke STFail() directly if your evaluation indicates test failure.

Activities
1. Implement unit tests for each of the BetterList framework methods. Exercise as

many of the STAssert macros as you can.

2. Add a new method to the BetterList framework using the TDD “tests before

code” paradigm. Make the new method roll the list down—that is, have it

move the tail of the list before the head, making the former tail into the new

head, the former head the second item, and the former next-to-last item into

the tail. Implement the unit tests for this method before implementing the

method, and then develop the method implementation to satisfy your tests.

Test and develop until your tests pass.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 19

Getting the Bugs Out

What You’ll Learn in This Hour:
. How to use the debugger to find out why your program crashed
. How to use the debugger to find out how your program is working
. How to manipulate your running program to test ideas and potential fixes

for problems

In the preceding hour, you learned about using unit tests, which are a great tool for vali-

dating that everything is still working right when it’s working right. However, they are

only so helpful when something is working wrong. When your code is not behaving as

planned, you need to be able to dig into it and check the values that variables are holding

and verify that execution is following the path through your code that you were planning.

So far in this book, we have been using NSLog() to write debugging output to the console

to keep an eye on these internal behaviors of applications. Variations on this theme,

adding output statements to code so that it can self-document the process of its execution

and the states of its variables as it goes, are the universal route by which everybody comes

to debugging. It’s easy, it’s intuitive, and it’s a huge time-eating productivity killer.

Completely ignoring the fact that NSLog() is intended for logging purposes and not for

debugging, and that you have almost certainly looked at your console logs and cursed

other programmers whose products blather reams of useless (to you) debugging output

into the log where you’re trying to find a critical system fault, using log output for debug-

ging output is still a poor idea. Each NSLog() call can output only a predetermined collec-

tion of data from a single point in your program, and it’s almost never the case that you

get exactly the right output, from exactly the right location, on the first try. And then

there’s the annoyance of having to clean the useless NSLog()s back out of the code again

once you’re confident that a routine is working properly.

ptg8126863By the
Way

By the
Way

488 HOUR 19: Getting the Bugs Out

Thankfully, there is a better way: using a proper debugger.

Make sure to remove no-longer-necessary NSLog() statements before distributing
your application. This output lands in the system log on your users’ machines,
and filling their logs with unnecessary debugging is impolite at best and a route to
poor feedback in the App Store and other public venues if users actually start
to notice.

Debuggers are a programmer’s best friend. When you’re running your program

through a debugger, you can pause your program anywhere, examine the contents

of all the variables, and step through your code one line at a time to observe how

values are being calculated and stored.

The only downside of debuggers is that they look scary to use. This appearance—

and it’s only an appearance; after all, using a debugger under Xcode is, if anything,

easier than using NSLog()—prevents many programmers from even trying to use

debuggers. Don’t be one of those programmers. If you can write code, you can use a

debugger, and if you can use a debugger, writing code gets easier.

If you are sitting there reading this and thinking, “Ah, well, the debugger might not
be that bad, but I’m getting on okay with NSLog(). I’ll worry about the debugger
later.” Reconsider. If you look at the debugger and think “that’s a little intimidat-
ing,” don’t panic. Really, the debugger is “hard,” the same way “computers are
hard.” Everyone thinks that when starting out, so you’re in perfectly good com-
pany. Everyone quickly discovers that those concerns were misplaced. You will,
too, and be a better programmer in the end with the debugger.

Getting Started with the Debugger
You have almost certainly been using the debugger already even if, perhaps, you

weren’t aware of it. Unless you fiddled with things earlier and have only been build-

ing for release when following instructions in this book so far, every time you have

run your projects, you have been running them in the debugger. So, no need to be

shy; you’ve been introduced.

Load up iBLine (use the version from the Hour 19 folder in the source available from

http://teachyourselfxcode.com/—I’ve added one more feature to it to support the

exercises in this hour) and run it by clicking the Run button on the toolbar. Check

the output section in the Debug area. Yours should look like what’s shown in Figure

19.1. Notice our NSLog() lines down at the bottom and how it says GNU gdb… at the

top? gdb is the debugger. You’re already using it. See, that was easy.

http://teachyourselfxcode.com/

ptg8126863

Did You
Know?

Getting Started with the Debugger 489

Associating Debuggers with Targets
If the output section in the Debug area doesn’t inform you that you’re using gdb or

lldb, the build action that’s currently configured for your target doesn’t have a

debugger associated with it. To fix this, choose Edit Scheme from the Product menu.

In the scheme editing dialog, display the Info tab for the Run action and configure

the Run action for debugging and select a debugger. As of Xcode 4.2 and iOS 5, you

must select the gdb debugger for iOS. You can select either gdb or lldb for OS X

applications. Your settings should be similar to those shown in Figure 19.2.

FIGURE 19.1
The Debug area
shows NSLog()
output lines
with gdb as
the debugger.

FIGURE 19.2
Selecting GDB
from the debug-
ger settings.

The current external functionalities of gdb and lldb are very close. Their internal
functionalities, and what will probably be possible in the future, are rather
different.

gdb is the GNU debugger, from the Free Software Foundation. It’s very powerful,
well supported, and has stood behind the creation of pretty much every piece of
complex software in the OS X and UNIX world for the past several decades.
Unfortunately, as a GNU General Public License application, some severe

ptg8126863

490 HOUR 19: Getting the Bugs Out

limitations apply as to what Apple can do with it. To alleviate the difficulties
caused by these limitations, Apple has recently been developing their own debug-
ger, lldb. lldb will be much more tightly integrated into Xcode, and will eventually
provide enhanced functionality that’s not possible with gdb.

Unfortunately, they’re not there yet. Apple recommends using lldb for OS X applica-
tions, but lldb is not yet available for use with iOS architectures. Rather than
including support for the enhanced lldb features in the limited cases where it’s
applicable, Apple has currently only exposed the lldb functions that are common
with gdb. Therefore, at this point, as long as the debugger is supported on the
architecture for your target, it makes little difference which you select. In the
future, as lldb matures and Apple exposes more of its functionality in Xcode, it will
certainly become the debugger of choice, and in all likelihood, support for gdb will
be dropped entirely.

Putting the Debugger to Work
Of course, while you’re now over that hurdle of starting to use the debugger, it

hasn’t done anything much for you yet. This is because you haven’t asked it to.

The debugger’s job is to watch your application for you, grab its collar if it messes

up, and let you poke around in the running application internals to figure out if

and why the application is misbehaving. If your application hasn’t misbehaved,

and you haven’t asked the debugger to intervene, the debugger sits there in the

background minding its own business.

The easiest way to get the debugger to step out of the background is to cause your

application to do something untoward (for example, to try to use memory that

doesn’t belong to it). As a matter of fact, as you have been working through exam-

ples and developing your Xcode skills, you have probably even seen it do this but

didn’t realized what was happening.

I’ve added some code to iBLine so that you can intentionally run the program off

the rails and see what gdb does about it. To herd iBLine into generating an error,

follow these steps:

1. Make sure you’re using the project version from the Hour 19 folder in the

source available from http://teachyourselfxcode/.

2. Make sure your scheme is set up to build a debug version for the Run action

and that the gdb debugger is configured for the Run action.

3. Run iBLine from the toolbar.

4. Add three points, and then click Done to make sure that they’re plotted.

5. Click the Info button (the italic i) to go back to adding more points.

http://teachyourselfxcode/

ptg8126863

Getting Started with the Debugger 491

6. Before you add a new point, click-drag across the second point listing in the

UITableView. It should display a standard iPhone-style Delete option, as

shown in Figure 19.3.

FIGURE 19.3
The
UITableView

about to send a
delete message
for an entry.

7. Click Delete. Click Done to return to the graph to verify that the middle point

has actually been removed.

8. Click the Info button again. Add another point and check the graph to verify

that the new point has been appended.

9. Return to the FlipsideViewController and click-drag-swipe across each of

the points listed in the UITableView, deleting each of them.

10. Once the UITableView is empty, enter another pair of values into the X and Y

coordinate boxes and click the Add button again.

Whoa. Something’s wrong. The iPhone application didn’t respond as expected, and

the Xcode interface jumped back to the front. There’s some unfamiliar content in the

Navigator, and a green bar is highlighting a line of code in BetterList.m in the Editor

area. It probably looks like what’s shown in Figure 19.4.

You have probably seen this before. That green bar, and the cryptic comment

“Program received signal EXC_BAD_ACCESS.” When you have hit this previously,

you knew something was wrong and probably went in and added some NSLog()

ptg8126863

492 HOUR 19: Getting the Bugs Out

statements to try to figure out where the application was going sideways. Without

knowing it, here, too, you have been using the debugger. It’s the debugger that

highlighted that line of code for you, and although EXC_BAD_ACCESS might seem

cryptic, the debugger is trying to tell you something useful about what went wrong.

FIGURE 19.4
The debugger
highlighted the
line where the
application
received the
EXC_BAD_
ACCESS signal.

Documenting every response and return code from gdb and lldb would require an
entire book (or two). EXC_BAD_ACCESS is one you’ll see often, and it means that
your program tried to access a location in memory and for some reason it could
not. Usually that reason is because the memory it is trying to access does not
belong to it.

To make the fullest possible use of the debugger, we strongly recommend that you
buy a book on gdb, or if Apple has gotten lldb completely integrated by the time
you read this, a book on lldb. You don’t need to read and learn the material, but a
reference book to consult when the debugger says something cryptic will prove
mighty handy.

EXC_BAD_ACCESS means that your program failed (at the command line this would

be a segmentation fault), because the operating system caught it trying to access

memory that it wasn’t allowed to access. This can happen for a number of reasons,

including logic errors where some variable has been corrupted and points off into

the wilderness. However, the most common cause is attempting to do something

with a nil (or Nil, or NULL) pointer. nil, Nil, and NULL pointers all point to mem-

ory location zero, and nothing should ever be living at memory location zero, so

your program shouldn’t be trying to either read or write to it.

By the
Way

ptg8126863

Proactive Debugging 493

Useful information from the debugger, indeed, but don’t go writing NSLog() state-

ments into the surrounding code to try to catch that zero pointer just yet. Along with

telling you where the problem happened, gdb also tells you about all the variables

in the current scope. Yes, you get that for free, too. Look on the left side of the Debug

area shown in Figure 19.4. Notice the list of items there? self, _cmd, anitem,

newNode? This area is the Variables View. Look more closely at the routine where

that EXC_BAD_ACCESS fault occurred. Yes, the appropriately named Variables View

is listing the variables in the routine where execution is currently paused.

Try expanding the listing for newNode and for self. The list should now look similar

to that shown in Figure 19.5. Notice that the head, tail, and current variables for

self, all DLNode pointers, are pointing to location 0x0? You have just found a bug

that’s been hanging around in BetterList since we first wrote it. If you call the

remove method when there’s a single item in the list, the item gets deleted but the

BetterList instance hangs around, pointing to a nil current item and to nil

head and tail items. The append method, however, assumes that its instance has at

least one node in it and dutifully tries to add the new list item that it creates, after

the previous list tail. How long would it have taken you to find that bug using

NSLog() statements? Unless you have seen that bug coming since we implemented

BetterList back in Hour 14, “Planning for Reuse: Frameworks and Libraries,” I bet

the answer is “a lot longer than it took to click the reveal triangle by the self

variable.”

FIGURE 19.5
After expanding
the listing for
newNode and
self, we dis-
cover that all
the DLNode
pointers point
to 0x0.

Proactive Debugging
Of course, waiting until your program goes off the tracks and only looking at the

debugger when it does isn’t the most efficient way of programming either.

Pleasantly, debuggers are just as adept at letting you browse around the innards of

an otherwise healthy program. This lets you verify how your program is running

and check that everything is going to plan. Before we get started, let’s take a step

back and become familiar with the debugging interface as presented in Xcode.

Figure 19.6 labels the important areas and controls.

ptg8126863

494 HOUR 19: Getting the Bugs Out

. In the Debug Navigator, you’ll find a list of threads. Until you’re up to pro-

gramming threads, most of this information will be irrelevant to you.

However, under the primary thread, you can find the call stack for your appli-

cation. This lists the methods currently running. Examining the call stack can

give you insight into how your program arrived at the routine its in and

whether there are peculiarities, such as your method being invoked from

somewhere unexpected. If you look closely at the Debug Navigator shown in

Figure 19.6, you can see that the top (most recent) method invoked is the

BetterList append: method. This method was messaged from the

FlipsideViewController plotPoint method, which was messaged from

something in the NSObject class. Twenty-one methods further up the stack,

the grand-daddy C main routine is still running. If you want more detail

about the methods between the originating main and the location where your

program is currently stopped, you can adjust the available detail in the Debug

Navigator by sliding the detail slider at the bottom of the Debug Navigator

area.

Debug Navigator
button

Breakpoints Navigator
button

An active
breakpoint

Gutter area

Adjust detail in the
Debug Navigator

Adjust detail in the
Debug Navigator

Stepping buttons

Continue
program

execution
Step over

Step into

Step out

Variables
View Show just the

Variables View

Show both

Console
Output
area

Show just the
Console Output area

Show just the
Console Output area

A disabled
breakpoint

The reason that
execution

is paused here

The reason that
execution

is paused here

Execution is currently paused
just before executing the
statements on this line

Debug Navigator
area

Debug Navigator
area

FIGURE 19.6
The debugging
interface in
Xcode.

ptg8126863

Proactive Debugging 495

. A Breakpoint Navigator can also be displayed in the Navigator area. The

Breakpoint Navigator lists all the breakpoints you currently have set for the

target and lets you toggle them on and off as needed. You learn more about

breakpoints and how to use them in the next section.

. In the main Editor area, the debugger shows the region of the code where your

program is currently paused, with the current line highlighted. If you want to

have line numbers displayed in the gutter as shown in Figure 19.6, you can

enable them by opening the Xcode preferences from the Xcode menu and

checking the Show Line Numbers check box in the Text Editing tab. If you

have breakpoints set in the region, they show up as blue flags in the gutter.

Line 154 has an active breakpoint, and line 159 has an inactive breakpoint

in Figure 19.6. You learn about breakpoints and how to use them in the next

section.

If you hover over variables in the code shown in the main Editor area, Xcode

displays pop-up datatips. Figure 19.7 shows a typical example. Here, we’re

paused in BetterList’s append method, just after the newNode has been allo-

cated, its item assigned, and its previous and next pointers filled in. Because

all the members of the DLNode structure are pointers, the values you’re seeing

here are hexadecimal memory locations. If you were to hover over a simple

variable, or a structure or object with simple variable components, you would

see their integer, float, and so on values displayed in the datatip.

FIGURE 19.7
Hovering over
variables in the
main Editor
area causes
pop-up datatips
to appear.

By the
WayHaving line numbers displayed in the gutter makes it a lot easier to figure out

which breakpoints in the Breakpoint Navigator go with which lines in code dis-
played in the Editor area.

. At the bottom-left of the main Editor area is a small panel of Step buttons that

give you control over what the debugger does next. Your options are as follows:

Continue: The Continue button instructs the debugger to release its control

over the application and let the application get on with business. Of course, if

the application just crashed because of an EXC_BAD_ACCESS fault, it’s not

going to accomplish anything else even if you ask it to continue.

ptg8126863

Did You
Know?

496 HOUR 19: Getting the Bugs Out

Step Over: The Step Over button has a slightly confusing name. In most cases,

it really means “do the next step” in the program. If the next step is a simple

statement, that statement is executed, and the debugger pauses again. If the

next step contains a method invocation, the entire method invocation is exe-

cuted as “a step,” and the debugger pauses after the method returns.

Step Into: This button behaves identically to Step Over for simple statements,

but instead of stepping over method and procedure invocations, Step Into

enters the called method and pauses on the first statement in it.

Step Out: This button does not really mean step, as the Step Over and Step

Into buttons do. Instead, it means “finish up everything in the current

method, and then pause again once control returns to whatever routine called

this one.” This behavior is not contextually dependent on whether the next

step is a method invocation or a simple statement.

Beside these, there’s an icon to set up a simulated location. This lets you test
location-aware code, but doesn’t have anything to do with the debugger. We’re not
sure why that functionality is wedged in there.

. At the bottom-right of the main Editor area is a jump bar where you can

browse through the calling stack that has gotten the program to this point

and examine variables and memory content in any frame of the stack, in

addition to the immediate line where your program is paused.

. The Console log output section with which you’re already familiar is beneath

the main Editor area on the right.

. The Variables View, which you were briefly introduced to earlier, is beneath

the main Editor area on the left. This view shows current variables and their

values. It has a search window so that you can limit the variables to only

those most relevant, and it has options to restrict itself to only local scope vari-

ables, all variables including global and static variables accessible from the

current scope, and an Auto setting that tries to make intelligent guesses about

what variables are most relevant.

Compound variables (structures and objects) are hierarchically expandable in

the Variables View, to let you browse child variables or to collapse them and

reduce clutter.

Each top-level variable shown includes a small icon to indicate its scope: A for

argument variables, passed in to the current scope; L for local variables

defined in the current scope; S for static variables; and G for global variables.

ptg8126863

Did You
Know?

Working with Breakpoints 497

Unfortunately, as of Xcode 4.2, global variable display is broken when using gdb. If
you can switch your project to use lldb, the global variables show up properly. If
you can’t, keep your fingers crossed that Apple fixes this bug. Global variable dis-
play worked just fine in earlier versions of Xcode, so the difficulty here is not an
inherent limitation of gdb.

Working with Breakpoints
Now that you’re familiar with where to find all the tools to use the debugger, it’s

time to start actively using the features. Every debugger’s big hammer is its ability to

set breakpoints, and gdb and lldb are no different. You set breakpoints to tell the

debugger where you want it to pause the program, and then you use the other tools

at your disposal to study the state of the application while it is paused.

You can set as many breakpoints in your code as you like, anywhere that you need

one. Every time that your running program tries to execute any of the statements

marked with a breakpoint, the debugger interrupts it and brings control back to you

and Xcode, where you can examine the state of the program, and even edit some

aspects of the running program on-the-fly.

Setting Breakpoints
To set a breakpoint, simply find the location in your program where you want to

interrupt the program and click in the gutter. A blue flag icon will appear, and the

next time you run your program, it pauses at that statement. To experiment with

this, set a breakpoint for the remove method, in BetterList. Follow these steps to

set it:

1. Navigate to the BetterList.m file included in the BetterList subproject in your

iBLine project. Display BetterList.m in the main Editor area.

2. Click in the gutter beside the line that defines the (void) remove instance

method. A blue flag will appear; it should be on line 168 if you have line

numbers turned on.

3. Now run iBLine in the iPhone simulator by selecting the iBLine iPhone simu-

lator scheme and clicking the Run button on the Xcode toolbar.

4. Add two points, and then swipe to delete the first. Click Delete.

5. The iPhone simulator should pause, and Xcode should immediately pop to the

foreground, with the entry point for the remove method highlighted, as shown

in Figure 19.8. The highlighted line is line 170, the creation of the tempNode,

because this is the first executable statement after the method entry point.

ptg8126863
Did You

Know?

498 HOUR 19: Getting the Bugs Out

The line hasn’t executed yet. You can tell this by looking at the Variables View,
where the tempNode currently actually has a nonzero value. This value is random
bits lying about in the memory where the tempNode variable lives. It’s not zero
because C languages know that initialization costs time and assume that you’ll
deal with initialization if and when you need to.

Maneuvering a Paused Application
iBLine is now paused at the first step of the remove method, letting you examine the

variables and the calling stack, but you’re not just limited to sitting here or jumping

to the next breakpoint. You can also continue your program’s execution in baby

steps and follow its progress in the debugger. The details of the baby steps your pro-

gram will take are controlled by the Step buttons at the bottom of the main Editor

area (labeled in Figure 19.6) or by tiny icons that replicate those on the stepping

buttons and that appear next to the gutter as you cursor-over lines of code.

The simplest stepping action is simply to Continue Program Execution, which causes

the program to run either until it hits another breakpoint or to completion, or a

crash, whichever comes first. This is probably the most common action to take after

a program has paused at a breakpoint.

FIGURE 19.8
Xcode has
appeared in the
foreground with
line 168, the
entry point for
the remove
method, high-
lighted, as well
as line 170, the
first executable
statement after
the method
entry point.

ptg8126863

Working with Breakpoints 499

The next stepping action is the Step Over action. This is probably the next most

common action, and clicking it will proceed through the current method, one line at

a time, remaining at the level of the method where the breakpoint occurred until it

reaches the end of the method (or the return call). After hitting the end of the

method, it steps up into the parent calling method and proceeds in a similar fash-

ion. At no point does it step down into methods that are called.

The third option is the Step Into action. This action performs the same task as the

Step Over action, except it always steps down into methods that are called, instead

of executing them completely in a single step.

The fourth option is the Step Out action. This action completes all the remaining

steps in the current method and pauses the program again after control returns to

the method that invoked the one containing the breakpoint.

Continuing Program Execution
You can now start exploring the program control functionality. From where we

paused earlier (at the end of step 5 in the preceding section), proceed as follows:

1. Click the Continue button. Control should return to the iPhone simulator. The

second point you created should still remain in iBLine’s UITableView.

2. Click the Project Navigator in the Navigator area so that you can see the files

for your project. Select the FlipsideViewController implementation file.

3. Scroll down to the tableView method that is listening for an editingStyle

message (it should be line 173) and set a breakpoint for the method. You

should now have a breakpoint set for the remove method for BetterList and for

the tableView dataSource method that handles deleting cells from the

UITableView.

4. Back in the iPhone simulator, add another point, and then delete the first one

on the list again.

The iPhone simulator pauses, and Xcode comes to the front with the debugger

again. This time it should be paused in the FlipsideViewController method

where we just set the breakpoint. Your display should look something like what is

shown in Figure 19.9. Remember that the line that the debugger is paused on hasn’t

executed yet.

ptg8126863

500 HOUR 19: Getting the Bugs Out

Stepping Forward One Line
Sometimes you really want to know about what the program is doing at other lines

near your breakpoint, and setting individual breakpoints for all of them seems silly.

The Step Over action is here to solve that problem. From where the debugger is

paused in step 4 in the preceding section, do the following to single step through

your program:

1. Pay attention to the line where Xcode is currently paused and to the contents

of the Variables View.

2. Click the Step Over icon at the bottom of the main Editor area. The current

line updates, stepping into the conditional statement and pausing on

[thePoints removeObjectAtIndex:indexPath.row].

3. Practice stepping forward a few more times. Note that each time you do you

move one statement further in the execution of the current method, whether

that statement is a simple variable assignment or a complex method invoca-

tion. When you try to step over [myPointsList remove], however, you’ll find

that you’re interrupted down in the remove method for BetterList. This is

because you have left a breakpoint for the remove method. Go ahead and

Continue Program Execution after you hit the breakpoint at remove, and then

add another point or two in iBLine, and delete another one to get back to the

breakpoint in the FlipsideViewController.

Stepping Forward Several Lines
If you want to continue for several lines, but not uncontrollably to the next break-

point, you can set a one-time Continue to Here breakpoint. From where Xcode

FIGURE 19.9
Xcode has
appeared in the
foreground
again, paused
in the
FlipsideView

Controller

method, where
we set our
breakpoint.

ptg8126863

Working with Breakpoints 501

paused in step 3 in the preceding section, we are probably more interested in the

activity around [myPointsList remove] than at the top of the function. To jump

directly there without having to click Step Over several times, just do this:

1. Right-click the line containing [myPointsList

gotoItemNum:indexPath.row].

2. In the pop-up menu that appears, select Continue to Here, as shown in Figure

19.10. Xcode restarts iBLine and leaves it running until it is ready to execute

the line you just indicated, where it pauses again.

FIGURE 19.10
To continue for
several lines,
but not as far
as the next
breakpoint, set
a Continue to
Here break-
point.

Using the Step Into Action
So far, we’ve been using the step actions to step over method invocations without

going down into them to see how they’re working. We can get into the remove

method because we’ve set a breakpoint there. But what if we want to check the func-

tionality of a method where we haven’t yet set a breakpoint? This is what the Step

Into action is for.

When execution is currently paused on a statement that when executed will result in

a method or procedure invocation, the Step Into action transfers control into that

method (or procedure) and pauses execution again at its first executable statement.

If we want to know what goes on in the gotoItemNum method of myPointsList, we

can Step Into this method, as follows:

ptg8126863

502 HOUR 19: Getting the Bugs Out

1. Make sure the current line highlight indicates that iBLine is paused at the

[myPointsList gotoItemNum:indexPath.row] statement.

2. Click the Step Into action icon at the bottom of the main Editor area.

Control transfer to the BetterList gotoItemNum method, where you can examine

variables and again step, continue, or otherwise maneuver in the paused

application.

Using the Step Out Of Action
When you have finished exploring in the gotoItemNum method, returning to the

FlipsideViewController method that called gotoItemNum is easy. Just click the

Step Out Of button, and any remaining instructions in gotoItemNum are executed,

control return to the FlipsideViewController, and execution pauses again, on the

line immediately following the call to gotoItemNum.

One Dog, Many Tricks
You should already see that the capabilities of the debugger are a good replacement

for the variable-checking uses for which we’ve previously abused NSLog(). However,

the debugger is not limited just to stopping at every breakpoint it encounters and

reporting variable values. In addition to this already-quite-useful functionality, the

debugger can make “intelligent” choices about pausing at breakpoints, perform

automated actions when it encounters specific conditions at a breakpoint, and it

can also edit live variables in a running application. Put together, these move the

debugger far beyond a tool for simply reporting or exploring the state of an applica-

tion and convert it into a tool that, in collaboration with unit tests, can be used

proactively to watch for and report errors.

Conditional breakpoints, or watchpoints, are breakpoints that have been configured

to only pause program execution when certain conditions are met. Causing iBLine

to fault, due to trying to add a new item after a nil BetterList tail node is reason-

ably easy because we just have to add a point and then delete it and try to add

another one. But what if the error only happens if we have a dozen (or a hundred)

points allocated? Hitting the breakpoint in remove and continuing every time just to

get to see what happens when the list is on its last item seems painful. It would be

much easier if the breakpoint for remove activates only if the current node is the

only node.

Conditional breakpoints can do that. To configure the breakpoint for remove so that

it only activates when it is about to delete the only node in a list, follow these steps:

ptg8126863

Working with Breakpoints 503

1. Navigate to the breakpoint for remove and right-click it. You can do this using

the Breakpoint Navigator in the Navigator area.

2. From the pop-up menu, choose Edit Breakpoint.

A pop-up dialog appears where you can set a condition for the breakpoint,

configure how many times to ignore it, add an action that should be carried

out when the breakpoint is encountered, and configure the breakpoint to

automatically continue after the action if that serves your purposes.

3. In the Condition field, enter the text head == tail. If the head and the tail are

the same item when you are entering this method, there must be only one

node in the list. Your configuration should look like Figure 19.11. Click Done.

FIGURE 19.11
Setting a condi-
tional break-
point for when
the head and
the tail are
identical.

4. Go ahead and run iBLine, add three or four points, and then start deleting

them.

5. When the debugger pauses at the breakpoint in the FlipsideViewController,

disable that breakpoint by left-clicking it once. It turns a dim bluish-gray to

indicate that that it is currently disabled. Click Continue Program Execution to

get things moving again.

6. Continue to delete points until you get to the last item in the list. Xcode should

let you delete all of them except that last one without pausing in the debugger

any more.

7. Try to delete the last point. The iOS simulator pauses, and Xcode comes to the

front, paused at the BetterList remove method. If you examine the variables

in the Variables View, you’ll see that head and tail do indeed point to the same

location (and not coincidentally, current does, as well).

Instead of configuring a condition based on program variables, you could have con-

figured the conditional breakpoint to become active only after the code had passed

through the routine some number of times, or configured automatically executed

actions to be conducted when the breakpoint was reached. Consult your debugger

ptg8126863

504 HOUR 19: Getting the Bugs Out

reference to learn about some of the actions that you can connect to a breakpoint,

but be aware that you can also attach execution of shell scripts, AppleScripts, and

other actions of essentially arbitrary complexity. A sufficiently demented application

of this capability could have a running program conditionally detecting an adverse

condition at a breakpoint and using an action to externally reconfigure program

parameter files in an attempt to alleviate the problem. With a sufficient dose of

determination, there are very few questions regarding program state that you can’t

answer with breakpoints and actions.

The other jaw-droppingly useful capability of good debuggers is the ability to mod-

ify program memory contents (its variables) on-the-fly while it is running. As a dra-

matic example of the power of this, let’s try an experimental fix for our problem

with the BetterList remove method.

Thinking through the problem, it is clear that the remove method itself doesn’t fail.

It successfully removes the final item from the list. The thing that fails is the attempt

to add a new thing to a now-empty list. We might be able to fix this by adding a

new method to BetterList to repopulate a list that has lost its last item, but maybe

a better solution is just to pitch lists that have become empty into the trash and

instantiate new ones when necessary.

Looking at the plotPoint code in the FlipsideViewController, you’ll find that it

issues the append (where we’ve been having trouble) if the pointsList is non-nil,

but in cases where it is nil, it invokes the DataPhile setupPointsList method to

create a new list. This sounds promising.

To test whether it is worth the effort of adding code to BetterList so that it zaps

itself more completely out of existence when the list becomes empty, we can use the

debugger to simulate this condition. Follow these steps:

1. Make sure your breakpoint for remove is still in place and still configured as a

conditional breakpoint that will pause only when the head and tail are

identical.

2. Run iBLine and add a few points to verify that everything is working

properly.

3. Delete the points. The breakpoint at remove should not activate until you

delete the last point in iBLine.

4. Use the Step Out action. This should bring you to the code for the

FlipsideViewController on the line immediately following the message

[myPointsList remove].

ptg8126863

Watch
Out!

Working with Breakpoints 505

5. In the Variables View, reveal the variables under the self compound variable

group.

6. Find the entry for myPointsList. It contains a BetterList pointer and a

valid memory value, as shown in Figure 19.12. This is our culprit. If the

BetterList remove method were set up to annihilate the BetterList

instance when the list became empty, this variable would be nil, and there’s

a good bet that a subsequent add would properly reinitialize a new

BetterList instance and everything would continue to work.

FIGURE 19.12
Our problem
is that
myPointsList

has a
BetterList

pointer and a
valid memory
value. The
BetterList

remove method
should annihi-
late the
BetterList

instance when
the list is
empty.

7. Variable editing to the rescue! To find out what happens if BetterList zeros

this pointer, double-click the value shown beside myPointsList, and enter 0x0

as a new value, as shown in Figure 19.13 and then press Return.

FIGURE 19.13
Editing the
pointer’s value
to 0x0 (hexa-
decimal zero,
nil) to see what
happens if
BetterList

zeros the
pointer.

And Another Bug Bites the Programmer
In all likelihood, when you press Return to submit your edited value for the
myPointsList pointer, several variables previously accessible in the Variables
View vanish. This shouldn’t happen, but at the moment, the only way to get them
back appears to be quitting Xcode and restarting it.

If you find yourself in this situation, you can still access and edit the contents of
variables by right-clicking them to bring up their datatip and then editing the value
presented in the datatip line.

ptg8126863

506 HOUR 19: Getting the Bugs Out

8. Click Continue Program Execution and try adding a new point to iBLine.

Voilà. No more error, the point adds, and iBLine runs along quite happily, as

though nothing is wrong.

With that little bit of experimentation, and no code written at all, you have just ver-

ified that you can you can fix BetterList and repair the crash by making sure that

the entire list instance is torn down when the last list item is deleted and making

sure that the DataPhile keeps itself updated with respect to the actual state of the

underlying BetterList instance.

Summary
In this hour, you learned about using a debugger under Xcode. Because the func-

tionality currently available for lldb and gdb are identical in Xcode (minus the

unintentional differences due to bugs), what you have learned applies to either

Apple’s preferred lldb for OS X targets or the legacy gdb for iOS targets. It might still

take you a few days practice of setting a breakpoint and using the Variables View to

completely replace NSLog() output in your programming habits, but after you have

made that transition you’ll find that the debugger becomes an incredibly powerful

tool for both verifying your program’s functionality as you are building it and for

identifying problems when something goes wrong.

Q&A
Q. Is there a way to cause the debugger to output specific variables when it

hits a breakpoint, rather than all of them in the scope?

A. You can limit what’s shown in the Variables View, using its search field, but

this capability is not very flexible. If you require more flexibility, you can con-

figure an action for a breakpoint and set the action type to Debugger

Command. Using the p command (or one of several other output-control vari-

ants, see your debugger reference), you can tell the debugger to print the value

for a specific variable or variables. The output from these commands appear

in the console output area.

Q. Can the debugger be used to debug unit tests as well as the main program?

A. Yes. The behavior is a little bit flaky at the moment, especially if you’re trying

to do this with gdb. When you are using gdb, Xcode doesn’t know quite as

much about what the debugger is doing internally and seems to sometimes

ptg8126863

Workshop 507

get a bit confused about exactly where it’s pausing and how it got there. This

will almost certainly improve when Apple finishes the transition to lldb.

Q. Sometimes when I step through program execution, I can step over a per-
fectly explicit statement like x=x+5, and watching the Variables View, noth-
ing happens to the value of x. What’s up?

A. You mostly likely have optimization enabled, in addition to the debugger. The

optimizer rewrites portions of your code so that it runs more efficiently, and

there is not always a line-per-line match between the code you wrote and

what the optimizer produces. As a result, when you are debugging an applica-

tion that’s used the optimizer, the “current line” in your code doesn’t necessar-

ily correspond to exactly what the program is doing at any given point.

Q. What does that big Breakpoints button up on the toolbar do?

A. It enables or disables all breakpoints in the code (without changing their indi-

vidually enabled or disabled status).

Q. What happens if you step into a system framework method?

A. That depends on whether the source for the method is available, but in gen-

eral, the debugger does exactly what you asked. If the source isn’t available,

you end up in an assembly language listing derived from the library object

file, but you are paused at the first executable statement of the framework

method.

Workshop

Quiz
1. How can you make the debugger skip over a breakpoint when it’s hit for bor-

ing setup purposes in your application and only begin pausing once the

breakpoint is being encountered for interesting user interaction?

2. What happens if you try to “Continue to Here” but the program runs across

code containing another breakpoint along the route to “here”?

3. Can you Continue Program Execution after stopping for an EXC_BAD_ACCESS

fault?

ptg8126863

508 HOUR 19: Getting the Bugs Out

Answers
1. Edit the breakpoint to make it conditional. If you’re always doing the same

setup, you will probably hit the breakpoint a fixed number of times before

interesting things start to happen. In this case, you can simply set the break-

point to ignore that number of passes before beginning to activate.

2. Execution stops at the intervening breakpoint anyway.

3. That’s a trick question. Most literally, yes, although your program will still be

suffering from the same memory fault and will immediately fall on its face

again. If you’re clever and can alleviate the fault by editing a variable value,

however, it is possible to rescue a program from this condition.

Activities
1. Set a breakpoint in one of the anonymous blocks used by iBLine to pass func-

tionality to BetterList’s walklist method. Trace execution through the

walklist method as the block is called.

2. Replace the annoying NSLog() statements in iBLine that are just producing

status messages to confirm that execution has reached specific routines with

breakpoints that have logging actions attached and Automatically Continue

selected. Observe that you can silence all that annoying logging by using the

global button on the toolbar to turn off all the breakpoints.

ptg8126863

HOUR 20

Keeping Things Organized:
Shared Workspaces

What You’ll Learn in This Hour:
. How to use workspaces to manage projects with shared components
. How to create workspaces
. How to add projects to workspaces
. How to adapt projects built outside workspaces into workspace members

Workspaces are Apple’s new way of trying to reduce the clutter and difficult-to-maintain,

manually specified path information that inevitably gets hard-coded into large projects

composed of many independent parts. An Xcode workspace is a collection of projects and

other documents that are developed together.

In several previous hours, you set up projects where a primary application project con-

tained a subproject for a library or framework. If you’re like most programmers, you

quickly recognized that the machinations that were necessary to configure header search

paths or locations for loading libraries were a recipe for disaster if files or projects were

moved. The Xcode 4 workspace concept simplifies such co-development designs by recog-

nizing implicit dependencies between the projects and doing much of the work of config-

uring the build process so that the compiler can find the necessary files without having to

build explicit paths into the projects.

This makes the build process much more resilient to rearrangement of code content and

files, while simultaneously reducing the amount of configuration work you need to do. It’s

a clear win, all around, or at least it would be if it actually worked properly. Unfortu-

nately, Apple still has some work to do in this area, and the process is not as smooth as it

should be. Still, it is a good-sized step in the right direction, and it seems reasonable to

assume that Apple will polish up the rough edges as time goes by. In the meantime, it is

still worth enjoying the benefits of the parts that do work.

ptg8126863

Watch
Out!

510 HOUR 20: Keeping Things Organized: Shared Workspaces

Don’t confuse Xcode 4 workspaces with the identically named workspaces con-
cept from earlier versions of Xcode. Before Xcode 4 and its single-window design,
Apple used the term workspace to mean the collection of windows and tools that
were used together in developing a project under Xcode. There’s even an official
Apple Xcode Workspace Guide that you’ll encounter in many places around the
Web. Don’t read it; it is no longer relevant to Xcode 4.

Slow Down, Construction Ahead
Xcode’s workspace functionality is still a work in progress, and many minor details
are all in flux (such as the exact naming of choices in dialogs, the existence of
some dialog confirmation buttons, and the placement of some details). If you
encounter a step where what you’re looking at on your screen does not match
what is written here, it is almost certainly because Apple changed something to
make your life easier. The functionality is still there, and if you look in the most
natural place for it, you should find it easily.

Using Workspaces
Taking advantage of the workspace concept in Xcode is simple. You just create a

new workspace, add projects to it, and build them. This is quite similar to what

you’ve already done several times before. Where things differ is in the amount of

information that you have to give Xcode about where you have put things.

Specifically, for workspaces, you mostly have to explicitly not tell Xcode where you

put things, so that it can find them itself. With workspaces, the more information

you give Xcode, the more narrow its search strategy for finding interdependent

parts. Therefore, in general, the less specifics you provide, the better the automatic

dependency finding performs.

To see how this works in real life, let’s deconstruct our BeeLine OS X and iBLine iOS

projects, which previously both contained references to the BetterList framework

and static library. Let’s build a workspace that contains the BetterList project, the

BeeLine project, and the iBLine project, all as peer projects within the workspace.

To get started, copy the BetterList2, BeeLine2, and iBLine2 project folders from the

Hour 20 folder in the code archive from http://teachyourselfxcode.com, and then

follow these steps:

1. First, remove the implicit BetterList subprojects from BeeLine and iBLine.

Launch Xcode and open the BeeLine.xcodeproj file in the BeeLine2 directory.

2. Open the Project Navigator and select the BetterList project in it.

Did You
Know?

http://teachyourselfxcode.com

ptg8126863

By the
Way

Using Workspaces 511

3. Right-click the BetterList project in the Project Navigator, and from the pop-up

menu that appears, choose Delete, as shown in Figure 20.1.

FIGURE 20.1
Deleting the
BetterList
project.

4. If Xcode can find both the BeeLine project and the BetterList project, a dialog

appears asking if you want to actually delete the file or just the reference. If

this dialog appears, click the Remove Reference Only button, as shown in

Figure 20.2. Otherwise, if Xcode cannot find both projects simultaneously, it

just asks if you want to delete BetterList, without giving you the option of

deleting the reference. In this case, it is safe to tell it to go ahead with the

delete.

FIGURE 20.2
Clicking the
Remove
Reference Only
button.

It is almost always safer to delete the reference in Xcode, even if you really want
to also remove the files from disk. This way you can go to the directory in the
Finder and delete the files that you want to delete and be sure that you’re remov-
ing the ones that you intend. If you ask Xcode to delete the files for you, it might
delete something that you had not intended (which occurs about half the time, in
my experience).

ptg8126863

512 HOUR 20: Keeping Things Organized: Shared Workspaces

5. Select the BeeLine project in the Navigator, and the BeeLine target in the side-

bar of the Editor area.

6. Open the Build Settings tab.

7. Enter BetterList in to the Search box, to find places where we have previously

hard-coded paths to the framework.

8. The list of options should reduce down to a single line showing Framework

Search Paths. Double-click the path that is displayed.

9. In the dialog that appears, select the path line that starts with $(SRCROOT),

and click the – button at the bottom of the dialog to remove that path, as

shown in Figure 20.3, and then click Done or close the window using the stan-

dard title bar controls.

FIGURE 20.3
Removing the
path that
starts with
$(SRCROOT).

10. Display the Build Phases tab and open the Target Dependencies, Compile

Sources, and Link Binary with Libraries groups. Verify that BetterList does not

appear in any of them, as shown in Figure 20.4.

11. Choose File, Project Settings from the menu. The dialog for configuring the

Derived Data Location will appear, as shown in Figure 20.5. In all likelihood, it

will show a path that is not actually the correct derived data location. Click

the Advanced button.

12. In the Advanced Build Locations dialog that appears, you need to configure

the build location to work with the derived data location. Depending on the

version of Xcode that you have, you might see a dialog like that shown in

Figure 20.6, or like that shown in Figure 20.12. If you have the Figure 20.6

ptg8126863

Using Workspaces 513

version, select the option for a shared folder of Xcode’s derived data location,

and leave the optional field value at its default. If you have the Figure 20.12

version, select the Derived Data Location option.

FIGURE 20.4
Verifying that
BetterList does
not appear
in Target
Dependencies,
Compile
Sources, and
Link Binary with
Libraries groups
of the build
phases.

FIGURE 20.5
Clicking the
Advanced
button to config-
ure the derived
data location.

FIGURE 20.6
Selecting
Derived Data
Location as the
build location.

ptg8126863

514 HOUR 20: Keeping Things Organized: Shared Workspaces

Did You
Know?

FIGURE 20.7
BeeLine has
errors now.

Yes, when working on libraries and frameworks and building your first OS X and
iOS applications in Hours 14 through 16, you learned that using the Locations
Specified by Targets option is the way to keep a sane build hierarchy. This is true
if you’re going to manage the build hierarchy yourself. However, Xcode workspaces
perform this task for you automagically. For the magic to work, though, you have to
give up control of the build hierarchy.

13. Click Done, and then click Done again to finish removing all traces of

BetterList from the BeeLine project.

14. Just to confirm that BetterList is really gone, and that BeeLine no longer

builds, try building the project from the Product menu or by clicking the Run

button on the Xcode toolbar. You should be greeted with a collection of errors

similar to that shown in Figure 20.7. Clearly, BeeLine is no longer a complete

and functional project.

Now it is time to perform the same cleanup on iBLine. To do this you need to open

the iBLine.xcodeproj file in the iBline2 directory and retrace the same steps that you

took for BeeLine. After you delete (remember to just remove the reference) the

BetterList subproject, the iBLine build phases should appear as shown in Figure 20.8.

Remember to delete the header search path for BetterList, as shown in Figure 20.9. If

you had to add an explicit library search path for your static library subproject (we

did not for libBetterList in the example, but depending on several factors, you might

in your code), remember to search for it and delete it, too. If you use a search that

will catch both the header and the library in the Build Settings Search box, you can

see from the search results whether you have any other build settings to edit.

ptg8126863

Creating a Workspace 515

Creating a Workspace
After you have finished cleaning iBLine, it is time to build and populate a work-

space. To do so, follow these steps:

1. Close any open Xcode projects.

2. Choose File, New, Workspace from the Xcode menu bar.

3. In the dialog that appears, pick a name for your new workspace and a place

to store it. As shown in Figure 20.10, we use BsNees in this example. I recom-

mend keeping your workspaces all collected in one directory for neatness.

Click Save when you’re satisfied with the name and location.

FIGURE 20.8
Showing how
the iBLine build
phases look
after removing
the reference to
the BetterList
subproject.

FIGURE 20.9
Deleting the
header file
search path for
BetterList.

ptg8126863

516 HOUR 20: Keeping Things Organized: Shared Workspaces

The main Xcode window opens. All three of the main Xcode content areas are

empty, as shown in Figure 20.11, because the workspace is just a container

and you haven’t added any content yet.

FIGURE 20.10
Giving the new
workspace a
name.

FIGURE 20.11
Now we have a
completely
empty
workspace.

4. Just to make sure that the workspace will operate consistently, choose File,

Workspace Settings from the Xcode menu to bring up the dialog for the derived

data location for the workspace. Click the Advanced button, and make sure

ptg8126863

Adding Projects to the Workspace 517

that the build location is set to the derived data location and that the default

subfolder is selected, as shown in Figure 20.12. Alternatively, your version of

Xcode might show a dialog like that shown in Figure 20.6. In this case, the

correct option is again the Shared Folder of the derived data location.

FIGURE 20.12
Verifying that
the build loca-
tion is set to
the Derived
Data Location.

5. Click Done, and then click Done again to finish setting up the workspace.

At this point, you have a workspace built and appropriate defaults configured so

that you can start adding projects and have them behave properly in cooperation

with each other. In the next section, you fill that workspace with some active projects

and configure them to use the workspace features.

Adding Projects to the Workspace
Having created a workspace, you can now add files. If you have new project content,

you can do that by choosing File, New, Project from the Xcode menu and developing

your new project just as you have in previous hours. If you’re moving old projects

into a coordinated workspace, however, you need to complete a few more-involved

steps.

We walk through those for the BetterList, BeeLine, and iBLine projects now. First, we

add the BetterList project in steps 1–3, which builds both a framework and a static

Cocoa Touch library. We repeat these three steps for BeeLine and IBLine before mov-

ing on to step 4:

1. Choose File, Add Files to BsNees from the Xcode menu bar, as shown in

Figure 20.13.

2. Navigate to the BetterList2 directory, open it, and select the BetterList.xcodeproj

file in it.

3. Check the Copy Items into Destination check box, and then click Add, as

shown in Figure 20.14.

ptg8126863

518 HOUR 20: Keeping Things Organized: Shared Workspaces

Repeat steps 1–3 for the BeeLine.xcodeproj file in the BeeLine2 directory and

for the iBLine.xcodeproj in the iBLine2 directory. After doing so, if you reveal

the contents of each project in the workspace Project Navigator and reveal the

contents of each project’s Products group, your Xcode window and workspace

should look something like what is shown in Figure 20.15. If your projects are

not all peers (at the same level of the hierarchy in the Project Navigator),

delete any that are subprojects and re-add them to the workspace. Note that

all the products are red, indicating that none of them are current.

FIGURE 20.13
Starting to add
files to the new
workspace.

FIGURE 20.14
Adding the
BetterList.xcode
proj to the work-
space, with the
Copy Items into
Destination
check box
checked.

ptg8126863

Configuring the OS X Project to Work in the Workspace 519

4. Choose Product, Manage Schemes from the Xcode menu bar, clean up any

extraneous schemes you have laying around, and set all of the main project

schemes to Shared. When you have finished, the Scheme Manager dialog

should look similar to what is shown in Figure 20.16.

FIGURE 20.15
After adding
more projects,
we see that all
of them are red,
indicating that
none of them
are current.

FIGURE 20.16
Setting all the
main project
schemes to
Shared.

Configuring the OS X Project to Work in
the Workspace
In an ideal world, Xcode’s automatic detection of dependencies would recognize

when linking to the library and framework is necessary (for example, if BeeLine and

iBline include the header from BetterList and call methods from the BetterList

class). Unfortunately, this is not currently possible, but it is probably not Xcode’s

fault. The Betterlist.framework and the libBetterListlib.a static library both define the

same library routines, so it is not really possible for Xcode to choose between them

for you. Instead, you still have a little bit of work to do:

1. Select the BeeLine project in the Project Navigator and the BeeLine target in

the Editor area.

ptg8126863

520 HOUR 20: Keeping Things Organized: Shared Workspaces

2. Display the Build Phases tab for the BeeLine target, and open the Link Binary

With Libraries group, as shown in Figure 20.17.

FIGURE 20.17
Opening the
Link Binary with
Libraries group
of the Build
Phases section
for the BeeLine
target.

3. Click the + button at the bottom of the Link Binaries with Libraries group.

4. From the dialog that appears, select BetterList.framework, as shown in Figure

20.18. Then click Add.

FIGURE 20.18
Adding
BetterList.
framework.

ptg8126863

Configuring the OS X Project to Work in the Workspace 521

5. In the Scheme drop-down on the Xcode toolbar, select the BeeLine scheme and

your appropriate build architecture, as shown in Figure 20.19.

FIGURE 20.19
Selecting the
BeeLine
scheme
and build
architecture.

6. Choose Product, Build from the Xcode menu bar. If all goes well, you receive a

Build Succeeded notification. Note, as well, that the BetterList.framework prod-

uct in BetterList and the BeeLine.app product in BeeLine have turned from red

to black, as shown in Figure 20.20, indicating that the build has gone accord-

ing to plan.

FIGURE 20.20
After these
changes,
the build is
successful.

If all does not go according to plan, you may be greeted by anything from a BeeLine

program that runs, but an Xcode notification that it failed, to strange errors in the

Xcode interface, to an Xcode indication that everything went fine, but a BeeLine

application that crashes. The most likely source of this difficulty is an inconsistency

where Xcode thinks it is supposed to find the framework for which you added a

dependency in step 3.

ptg8126863

522 HOUR 20: Keeping Things Organized: Shared Workspaces

To determine whether this is the problem, follow these steps:

1. Reveal the Utilities area.

2. Select the BetterList.framework product from the BetterList project in the

Project Navigator.

3. Observe the location and full path that is shown for the BetterList.framework

in the Identity area of the Utilities, as shown in Figure 20.21.

FIGURE 20.21
Noting the loca-
tion and full
path settings.

4. Select the BeeLine project in the Project Navigator and the BetterList.framework

framework that is linked within it. Again observe the location and full path

that is shown for the framework in the Identity area of the Utilities area. If a

framework location mismatch is the problem, you will see something different

for the linked framework than what you observed for the actual framework in

BetterList, as shown in Figure 20.22.

FIGURE 20.22
You could expe-
rience a frame-
work mismatch.

5. To correct this, display the Build Phases tab for BeeLine and open the Link

Binary with Libraries group within the build phases. Select the BetterList.

framework in the Link Binary with Libraries group and click the – button to

remove it. Then click the BetterList.framework in the Products group of

BetterList and drag it into the Link Binary with Libraries group for BeeLine, as

shown in Figure 20.23.

ptg8126863

By the
Way

Watch
Out!

Configuring the OS X Project to Work in the Workspace 523

One Click Is Good, Two Is Not Better
Do not single-click and release on the BetterList.framework product before you
start your click and drag; otherwise, the Editor area will switch to the appropriate
view for the framework rather than the build settings for the BeeLine target. You
need to do the click and drag in a single smooth action after removing the offend-
ing framework version. (We would recommend this process for all the steps that
require adding a library or framework if we were better at remembering this and
weren’t constantly having to open the build settings twice.)

You’ll have better luck clicking and dragging it if you click the name of the frame-
work rather than on the icon for it.

6. Try building again. This time you should be rewarded with a successful build

and a runnable BeeLine application.

7. Even though BeeLine runs in Xcode, you have one more step to do before you

can run BeeLine in the Finder. As before, when you were building your first OS

X application in Hour 15, you need to add a Copy Files phase to the Build

phases for BeeLine, and add the BetterList framework to the list of files to copy.

For reference, this should look exactly as shown in Figures 15.42 and 15.43.

You now have rebuilt your BeeLine project, using BetterList as a peer project in the

workspace rather than as a subproject within BeeLine. For a single project and sin-

gle library/framework, this has little advantage. However, as you accumulate more

Drag framework hereDrag framework here

FIGURE 20.23
Fixing a frame-
work mismatch.

ptg8126863

524 HOUR 20: Keeping Things Organized: Shared Workspaces

projects that use the same underlying frameworks and libraries, and that share

other resources and code, the advantages begin to pile up quickly. One of the most

significant is that with BetterList as a peer in the workspace you can have multiple

projects that use it open at the same time, and not have one of them constantly

complaining about the BetterList resources already being in use.

In the next section, you add a second project to the workspace to demonstrate this

convenient feature, and you learn about configuring different peer projects to make

use of different components out of the framework/library project.

Configuring the iOS Project to Work in
the Workspace
Configuring the iBLine iOS project to work with the automatically discovered

dependencies in the workspace is quite similar to the process for the OS X BeeLine

project. However, the fact that the iOS project uses a static library rather than a

framework makes things work just slightly differently. Unfortunately, some of these

differences seem to be Xcode bugs.

To start, you follow the same procedure that you did to connect BeeLine to the

BetterList framework, only this time you select the libBetterListlib.a static library, as

follows:

1. Select the iBLine project in the Project Navigator and the iBLine target in the

Editor area.

2. Display the Build Phases tab in the Editor area for iBLine and open the Link

Binary with Libraries group, as shown in Figure 20.24.

FIGURE 20.24
Opening the
Link Binary with
Libraries group
for target
iBLine.

ptg8126863

Did You
Know?

Configuring the iOS Project to Work in the Workspace 525

3. Click the + button at the bottom of the Link Binary with Libraries group.

4. In the dialog that appears, select libBetterListlib.a from the BetterList project,

as shown in Figure 20.25, and then click Add.

FIGURE 20.25
Adding the
libBetterListlib.a
from the
BetterList
project to the
iBLine target.

Yes, we are aware that we just told you that dragging the product from the
BetterList project could avoid problems with Xcode confusing itself about locations.
Unfortunately, that works only for the framework. Because of what appears to be a
bug in Xcode, BetterList will never believe that the static library is actually built (it
will always remain red), and dragging the unbuilt red static library produces random
crashes as of this writing.

5. In the Scheme drop-down on the Xcode toolbar, select iBLine and the iPhone

simulator, as shown in Figure 20.26. Build iBLine by choosing Build from the

Product menu. It won’t work.

6. Examine the errors that appear in the Issue Inspector. You should see several

complaints about not being able to find BetterList.h, as shown in Figure 20.27.

(Actually, you shouldn’t see them, but Xcode’s ability to find the implicit

dependencies falls down on the job here.)

ptg8126863

526 HOUR 20: Keeping Things Organized: Shared Workspaces

To correct Xcode’s difficulty in finding the headers, and the resultant failure to find

the libBetterListlib.a static library itself, we need to add a few settings in the build

settings for iBLine. To do so, follow these steps:

1. Select the iBLine project from the Project Navigator and the iBLine target in

the Editor area.

2. Open the Build Settings tab for the iBLine target.

3. Enter header search into the Search box for the build settings. This should

limit the displayed settings to just a few, including header search paths.

4. Double-click in the value area for the header search paths.

5. In the pop-up dialog that appears, click the + button to add another search

path, and then enter the value $(BUILT_PRODUCTS_DIR) and select the

Recursive option (which might not actually have a column header for

Recursive but only an unlabeled column of check boxes, depending on your

Xcode version—probably another bug), as shown in Figure 20.28. Then

click Done.

FIGURE 20.26
Selecting iBLine
and the iPhone
simulator.

FIGURE 20.27
A number of
errors involving
not being able
to find
BetterList.h
appear after
the build.

ptg8126863

Configuring the iOS Project to Work in the Workspace 527

6. Change your search to library search in the Search box. The list of displayed

settings should change to a list including library search paths.

7. Double-click in the value area for the library search paths.

8. In the pop-up dialog that appears, click the + button to add another search

path, and then enter the value $(BUILT_PRODUCTS_DIR) and select the

Recursive option, as shown in Figure 20.29. Then click Done, or dismiss the

dialog by clicking outside it.

FIGURE 20.28
Adding a recur-
sive header
search path.

FIGURE 20.29
Adding $(BUILT_
PRODUCTS_DIR)
to the library
search path.

9. Again, select the iBLine scheme and iPhone simulator from the Scheme pop-up

on the Xcode toolbar, and then choose Build from the Product menu. You

should be rewarded with a report that the build succeeded, as shown in

Figure 20.30.

ptg8126863

528 HOUR 20: Keeping Things Organized: Shared Workspaces

Bizarrely, even though that build will succeed, if you examine the interface, there’s a

good chance you’ll see that Xcode is simultaneously reporting no issues and com-

plaining that it still cannot find BetterList.h. Chalk up another bug. If you try to use

code completion for methods and variables that are within BetterList, you’re likely

to find that they do not work properly either. Make that two bugs.

If you’re happy enough that the build is succeeding and do not need code comple-

tion, and aren’t bothered by spurious complaints about not being able to find things

that are clearly being found, you can stop here. If you want to make code comple-

tion work, and silence the erroneous errors, however, you can do something rather

hackish instead. This makes your project and workspace a bit less elegant, and

requires you to remember to do more maintenance if you change files or file con-

tents around in the future, so there is a tradeoff. If that sounds like an acceptable

tradeoff to you, here’s a simple trick that will work until Apple fixes the bugs:

1. Add a new group to the iBLine project, by right-clicking the iBLine project

and selecting New Group from the pop-up menu that appears, as shown in

Figure 20.31.

2. Double-click your new group in the Project Navigator under iBLine and

change the name. This example uses the name BustedCruft.

FIGURE 20.30
This time
the build
succeeded.

ptg8126863

Did You
Know?

By the
Way

Configuring the iOS Project to Work in the Workspace 529

In what I’ll call yet another bug, causing the group name to become editable by
double-clicking it isn’t as easy as double-clicking the name of a file in the Finder
(or other slow-double-click processes you’re probably already familiar with). I know
it sounds silly, but try “scrubbing” your mouse back and forth while double-clicking
the name. For reasons probably not even known to Apple, this seems to produce
the desired results much more reliably than a standard double-click.

3. Reveal the contents of the BetterList project and the BetterList group within it.

4. Click the BetterList.h file in the BetterList group, drag it to your new

BustedCruft group in iBLine, and drop it there, as shown in Figure 20.32.

5. In the dialog that appears, deselect all targets in the Add to Targets list, and

then click Finish, as shown in Figure 20.33.

Since you’ve gone down this rabbit hole, if you have to change the name of
BetterList.h, or add other headers to BetterList and rearrange method definitions,
or otherwise modify things so that BetterList.h no longer completely defines the
interface for code in the libBetterListlib.a static library, you’ll need to revisit the
headers you’ve referenced here.

iBLine will build now, code completion will work properly, and it will not complain

about missing headers that it can really find.

FIGURE 20.31
Right-clicking
the iBLine proj-
ect to get the
menu with the
New Group
option.

ptg8126863

530 HOUR 20: Keeping Things Organized: Shared Workspaces

Summary
In this hour, you learned a better way of managing projects that share components.

Managing each component as an independent project is sometimes your only

choice if you want to share development with others but keep some code private.

However, if you are not obliged to partition your projects by such external concerns,

the ability of workspaces to automatically deal with dependencies can save you a lot

of headaches.

Drag BetterList.h from the BetterList project
and drop it in the new group in iBLine

FIGURE 20.32
Adding
BetterList.h to
the new group,
BustedCruft.

FIGURE 20.33
Deselecting all
targets and
clicking Finish in
the dialog.

ptg8126863

Workshop 531

Q&A
Q. Can projects that are members of workspaces also be opened as stand-

alone projects outside the workspace?

A. Yes, though you’re running a risk if you try to open a project in a workspace

and also open it separately. In addition, if you open a project independently

outside of its workspace, it won’t receive all the benefits of the workspace’s

automatic dependency resolution. This might require you to do some addi-

tional manual configuration for some tasks.

Q. Can projects in workspaces contain subprojects?

A. Yes. Subprojects within other projects in workspaces are especially useful in

keeping your workspace organized. You could, for example, have a

Frameworks project in which you keep all the frameworks that you develop

and use. And, with more and more varied projects around, BeeLine and iBLine

probably start looking more like they should be two subproject peers in a par-

ent project that contains them.

Workshop

Quiz
1. What incantation enables you to replace explicit search paths to other in-

workspace projects’ products?

2. If code completion is not working for members of a framework or library that

is in your workspace, how can you fix it?

3. If you add a shared framework to a sister project in a workspace and it contin-

ues to act like the framework is missing, what is the likely problem?

Answers
1. $(BUILT_PRODUCTS_DIR)

2. Create a new group in the project that’s having difficulty resolving the sym-

bols, and make reference copies of the headers for the problematic library or

framework. Hopefully, this won’t be necessary for very long.

ptg8126863

532 HOUR 20: Keeping Things Organized: Shared Workspaces

3. Xcode probably added the wrong path to the framework. Try deleting it from

the Link Binary with Libraries group and then dragging it back in directly

from the framework project.

Activities
1. Download Apple’s GLEssentials project from https://developer.apple.com/

library/ios/samplecode/GLEssentials/GLEssentials.zip. This project contains a

pair of Xcode projects, one for OS X and one for iOS, that implement the same

program and that share a lot of code through the somewhat dangerous mech-

anism of both living among the shared files on disk. (Consider what happens

if you delete a file from one without realizing that it is used by the other.)

Convert these two independent projects into a pair of sister projects under a

workspace, and using shared code resources from the workspace instead of

each compiling and linking the shared files independently.

2. Try splitting the libBetterListLib product out of the BetterList2 project in the

BsNees workspace and make it another peer in the workspace. Single projects

that can build multiple targets for different purposes, such as the original

BettterList/BetterList2 project that built both a framework and a library, are a

great way to keep your functionality together and organize features when

you’re stuck working with a bunch of independent projects. Under the work-

space model, however, they actually place unnecessary restrictions on the way

you work. Breaking out the static libBetterListLib library and dynamic

BetterList framework into their own sibling projects, both using the same code

resources, is a much more flexible solution when using workspaces. If you

think about it a bit, you might be able to figure out how to make one of them

function as a wrapper project that simply includes the product of the other to

build its target.

https://developer.apple.com/library/ios/samplecode/GLEssentials/GLEssentials.zip
https://developer.apple.com/library/ios/samplecode/GLEssentials/GLEssentials.zip

ptg8126863

HOUR 21

Advanced: Analyzing Code
with Instruments

What You’ll Learn in This Hour:
. How to use the Instruments feature to trace the operations of your program
. How to repeatedly automate user interface actions with instruments

The Instruments application is Apple’s Xcode-like interface to a collection of tools that

enable you to observe the status of a process, or of numerous processes on a running sys-

tem. They also provide reports about things such as open files, memory usage, network

usage, or user interface events.

Instruments operate primarily by observing method invocations and messages within the

system at a very deep level, mostly via a command-line tool (although this is hidden

when using the Instruments interface) called dtrace. dtrace itself can report on essentially

every byte allocated or deallocated, every memory location changed, every process regis-

ter, every command that runs through the CPU, the status of all the files on the disk, the

status of all the network connections, and numerous other pieces of information. dtrace’s

output, however, is voluminous and not particularly easy to read. Instruments take this

output, parse portions of it that are useful to you, and display them in easy-to-read graphs

and detailed summaries.

Whereas some of the features of the Instruments application are easy
enough to use productively right away, others require a deep under-
standing of the underpinnings of the OS X kernel, interprocess com-
munications, network technologies, and so on. The examples in this
hour barely scratch the surface of what is possible. In fact, an entire
book this size would probably barely make a dent in the available
options.

By the
Way

ptg8126863

534 HOUR 21: Advanced: Analyzing Code with Instruments

Don’t be shy about using the tremendously valuable features, such as leak detec-
tion, that can be used without much study, but be prepared to get your hands dirty
and to spend a lot of time deep in the man pages if you want to make full use of
the profiling power that the Instruments application provides.

The Instruments Interface
The Instruments interface is designed much like the Xcode interface, layering all fea-

tures into a single window. Shown in Figure 21.1, the Instruments window contains

several areas. Like most Mac OS applications, it has a toolbar and a main window

area. The main window is broken up into an Instruments pane, a Track pane, a

Detail pane, and an Extended Detail pane, with functions as detailed here.

By the
Way

ToolbarInstruments pane

Navigation barNavigation bar

Changes level of detail in
Extended Details pane

Detail pane

Track pane Extended Detail pane

Instrument details displayedInstrument details displayed

Track details displayedTrack details displayed

Changes track scaleChanges track scale

FIGURE 21.1
The Instruments
window has an
Instruments
pane, a Track
pane, a Detail
pane, and an
Extended Detail
pane.

. Instruments pane: The Instruments pane contains a list of the currently active

instruments, enabling the control of the features that each instrument cap-

tures, and some parameters that affect how results display.

. Track pane: For each instrument in the Instruments pane, the Track pane

displays a tickertape-like or chart-recorder-like graph of the events that the

ptg8126863

The Instruments Interface 535

instrument captured while an application or applications were running.

Multiple runs of the application can be carried out, creating multiple parallel

tracks for an instrument.

. Detail pane: The Detail pane displays details about the currently selected

instrument in the currently selected run and, when possible, about the cur-

rently selected portion of the currently selected track. The details are generally

contextually appropriate for the track selected, and you can configure the

variety of details shown by selecting different options for the details from a

navigation bar (which falls between the Detail pane at the bottom of the

window and the Instruments pane and Track pane above it). At the left of the

Detail pane, you can configure some additional features and capture options

for the selected instrument.

. Navigation bar: The Navigation bar extends horizontally across the top of

the Detail pane and controls the type of details shown for the selected track.

The detail options range from different presentation styles for the details to

overall details for the application run, such as its console output. The leftmost

field in the Navigation bar, falling directly under the Instruments pane,

enables the selection of the different instruments in the Instrument pane (and

has the same effect as clicking on the instrument in the Instruments pane).

The next field to the right enables selection of the types of details to be dis-

played in the Detail pane. Additional navigation selections are contextually

available depending on the selected instrument and details displayed.

. Extended Detail pane: The Extended Detail pane shows fine-grained detail

about one detail line selected from the Detail pane. It may show this as a sin-

gle collection of information or in a number of group summary areas like the

inspectors in the Utility area in Xcode.

At the right side of each instrument in the Instruments pane is a small round i but-

ton (of the style typically used for information dialogs) that opens a pop-up configu-

ration dialog where you can configure data-capture features of the instrument and

data-display features of the track.

Within the toolbar itself, you can select the target to which you want to apply the

instruments, run the Instruments (by clicking the Record button), and customize the

layout and features of the Instruments application itself, by adjusting the inspection

time range, the panes within the application that should be shown or hidden, and

the run to examine. There is also a button that displays the library of available

instruments, and a Search field from which you can search for features of interest

within your recorded data.

ptg8126863

Did You
Know?

536 HOUR 21: Advanced: Analyzing Code with Instruments

At the top of the track pane is a timeline. By clicking in the timeline, you can drag

an indicator called a thumb to select the precise point in the timeline that you want

to examine. As you scrub the thumb back and forth across the timeline, the details

in the Detail pane will update to reflect those appropriate for the point in time that

you’re indicating, and small detail notification flags will appear in the track graphs,

indicating the nearest, or most salient, events in that track to the time point you

have selected, as shown in Figure 21.2.

Timeline thumb

Detail flags

FIGURE 21.2
Small detail
notification
flags appear
when you select
a point in the
timeline to
examine.

I have written “will update” in the preceding paragraph, but perhaps I should have
written “should update.” The Instruments application seems to be in a state of
transition. As of Xcode 4.2, and in Xcode 4.3, this feature is unreliable. As a mat-
ter of fact, many features of the Instruments application are unreliable at this
point. This is unfortunate because instruments are tremendously powerful way to
understand how your program operates and how it interoperates with the rest of
the system, and they are an indispensable tool for identifying problems in a
program that are practically impossible to find by any other means outside of
guesswork.

Using Instruments
Using instruments on applications you are developing in Xcode is quite simple. You

access this functionality by clicking and holding the Run button on the Xcode tool-

bar until the Profile option appears. Then you select it. When you do so, a dialog

opens in which you can choose the type of instrument to use for profiling your appli-

cation. To get some practice using instruments, let’s returned to the BeeLine applica-

tion and find out if I’ve left any memory leaks.

ptg8126863

Using Instruments 537

Checking for Memory Leaks
Memory leaks occur when all the pointers that point to a block of memory that is

allocated during execution (for example, in response to a malloc() call) lose track

of the address of that block of memory. For example, if foo is the only pointer to a

block of malloc()ed memory, and you assign foo=0, there is no longer any way to

access the malloc()ed block of memory because nothing knows where it is. Because

you cannot access it, you cannot free() it, and it will hang around, still taking up

space until your program ends. This is no big deal if it is one leaked block of mem-

ory, but if that kind of leak happens in a loop or in response to user interaction with

the program, the amount of memory your application will require will continually

grow as long as it is running. This is not a recipe for happy users or a stable system.

To check BeeLine for memory leaks, follow these steps:

1. Locate the BsNees workspace you created in Hour 20, “Keeping Things

Organized : Shared Workspaces,” or retrieve a new version from the Hour 21

folder of the source downloadable from http://teachyourselfxcode.com/.

2. Open the BsNees workspace in Xcode. Select the BeeLine project in the Project

Navigator and the BeeLine target in the sidebar of the Editor area.

3. In the scheme drop-down in the Xcode toolbar, select the BeeLine scheme and

the appropriate architecture.

4. Click and hold the Run button at the upper left of the Xcode toolbar until the

available Run options appear, and then drag down to the Profile option and

release. The button should change from Run to Profile so that you only have

to click it the next time.

5. In the dialog that appears, choose the Leaks instrument, as shown in

Figure 21.3, and click Profile.

6. BeeLine launches, as does the Instruments interface. It is collecting informa-

tion as soon as it launches. Add some points to BeeLine.

7. Continue adding points for 40 seconds or so.

8. Then click the Stop button on the Instruments toolbar, or quit BeeLine by

choosing Quit from BeeLine’s File menu.

http://teachyourselfxcode.com/

ptg8126863

538 HOUR 21: Advanced: Analyzing Code with Instruments

After you quit BeeLine, you should be greeted with an Instruments window that

looks much like Figure 21.4. It should come preconfigured with an Allocations

instrument and a Leaks instrument. The Allocations instrument shows you all the

memory that has been allocated by the process and when the allocations occurred.

The Leaks instrument shows you times when, as far as the instrument can tell,

memory that was allocated by BeeLine became unreferenced. When you click the

Allocations instrument, details for it are shown in the Detail pane. When you click

the Leaks instrument, likewise, its details appear.

FIGURE 21.3
Choosing
the Leaks
instrument.

FIGURE 21.4
The Allocations
instrument
shows all the
memory allo-
cated by a
process and
when the alloca-
tions occurred.
The Leaks
instrument
shows when
memory alloca-
tions became
unreferenced.

ptg8126863

Did You
Know?

Watch
Out!

Using Instruments 539

If you want to adjust the granularity of the information display (for example, if all

your data is bunched up at the left side of the track pane, or if the track pane is

showing only a few milliseconds in the middle of your 40-second run), you can try

to do this using a small horizontal scrollbar that appears directly under the

Instruments pane. Dragging this to the left zooms out, making more time fit within

the Track pane. Dragging it to the right zooms in, expanding the tracks within the

pane so that you can see finer detail than if all the events were compressed into

your available window or screen space.

If you want to make the entire duration of your run fit exactly within the Track

pane, you can do this by selecting Snap Track to Fit from the View menu in

Instruments.

Gentle Touch Required
The Track Scale slider is incredibly sensitive (almost uselessly so). The difference
between 20 seconds and 20 milliseconds on the slider is a matter of only a few
pixels on the screen. When you try to use it, pay attention to the current value
that it is displaying and make very small moves with your mouse. Otherwise, you
will find the track display zipping back and forth from too compressed to be useful
to too wide to be useful at an uncontrollable rate. We hope this is a bug.

Within the Detail pane for the Leaks instrument, you can see that there have been

multiple leaks of 800 bytes from memory allocated by malloc. In the rightmost col-

umn of the Detail pane, you will see a list of the methods where the memory was

leaked from these mallocs.

You probably should be able to double-click the method indicated in the responsi-
ble frame column and have Instruments take you straight to the guilty bit of code.
Unfortunately, this doesn’t currently work. Peculiarly, while double-clicking the
method currently does nothing, double-clicking the allocation size attempts to take
you to the code. However, it fails to do so correctly, and induces erratic behavior in
the Instruments application.

Getting Additional Information About Leaks
To find out where in the method calling stack the offending method was called, and

to gain the ability to jump to that code, reveal the Extended Detail pane by clicking

its icon in the View options on the toolbar.

ptg8126863

Watch
Out!

540 HOUR 21: Advanced: Analyzing Code with Instruments

In the Extended Detail pane, you will see a bottom-up trace of the call stack, ending

at the top in the allocation that eventually was leaked. Immediately below the allo-

cation is the method that invoked the allocation, as shown in Figure 21.5. If you

double-click the calling method in the Extended Detail pane, Instruments will suc-

cessfully find the source and display the offending line in the Detail pane, as shown

in figure 21.6.

FIGURE 21.5
In the Extended
Detail pane, we
can see which
method leaked
the allocation.

FIGURE 21.6
Double-clicking
the calling
method takes
us to the
offending line of
code in the
Detail pane.

Don’t Squash the Bug
Although the error I’ve left here is fairly obvious, don’t fix it just yet. You need it for
the rest of this hour.

ptg8126863

By the
Way

Additional Runs 541

Additional Runs
Instruments can also collect multiple runs from the same application so that you

can compare those runs and determine whether there are commonalities or differ-

ences in the behavior of your program. To add additional runs of your program to

the Instruments display so that you can compare them to the first run, just click the

Record button and interact with BeeLine again. Try to keep your run about the same

duration as your first run, and then click the Stop button again. Do this two or three

times. Try to have add lot of points in one run, and only add a few in another run

with some long pauses between points. When you have finished, click the disclosure

triangle on the Leaks instrument in the Instruments pane. Instruments should show

you an Instruments pane and a Track pane that look much like those shown in

Figure 21.7.

FIGURE 21.7
Collecting
multiple runs
to compare.

As you can see, although there are some distinct similarities in the leaked memory

pattern, some differences also exist. The similarities are primarily due to the granu-

larity of sampling in how Instruments look for leaked memory. The differences are

because of the differences in timing of how I interacted with BeeLine when I was

adding points.

You can adjust the granularity of sampling by changing the snapshot interval for
the Leaks instrument. Select the Leaks instrument from the leftmost field in the
navigation bar, and a parameter group for Snapshots will appear beneath it. The
snapshot interval controls how often the Instruments application collects data
from the running process being profiled and provides it to the Leaks instrument for
analysis. So, setting this field to smaller values causes the Leaks instrument to
check for leaks more frequently. Different instruments have different ways of con-
figuring their snapshot interval or sampling rate.

ptg8126863

542 HOUR 21: Advanced: Analyzing Code with Instruments

Memory leaks like this, which depend on what you do and when you do it, can be

particularly hard to diagnose. This is especially true if it requires a lot of time inter-

acting with the user interface before the error occurs. Thankfully, the Instruments

feature has a powerful tool for replicating interactions with the user interface: the

Interface Recorder. In essence, it can record a series of interactions with the interface

of a program, including where the mouse moved, what text was entered, and what

buttons were clicked and when. It can then play those events back to a freshly

started copy of the program as though you were pressing the buttons and entering

the text yourself. Using this tool lets you consistently replicate user interactions so

that you can consistently replicate problems for debugging.

To use the Interface Recorder instrument, follow these steps:

1. Quit Instruments and return to Xcode.

2. Click the Profile button on the Xcode toolbar. In the dialog that appears, find

the UI recorder trace template, and click Profile.

3. The Instruments application will launch and again begin recording a trace of

BeeLine. This time it is recording actions that you take in the user interface.

Begin entering point values. Again enter four or five values for different

points, clicking Add after each one.

4. When you have finished, wait a few seconds, and then choose Quit from

BeeLine’s File menu.

The BeeLine interface will disappear, and the Instruments interface will display a

track similar to that shown in Figure 21.8. In the Track pane, a series of overlapping

thumbnails showing the various actions is presented. Each thumbnail is a mini

screenshot of the region of the interface where the action occurred. The Detail pane

will display, line by line, each of the thumbnails and also what type of event was

recorded for the thumbnail and any value parameters that were entered. The Record

button on the Instruments toolbar changes from Record to Drive & Record. This indi-

cates that it is ready to play back the collection of events that it just recorded and

record new data.

ptg8126863

Collecting Data from Additional Instruments Simultaneously 543

Collecting Data from Additional
Instruments Simultaneously
You can add additional instruments to the Instruments pane. All of them will record

data simultaneously. To use our recorded user interface interaction to look for leaks,

we can add a Leaks instrument to the Instruments pane and let the User Interface

instrument drive BeeLine for us, while the Leaks instrument records data and reports

leaks. To do this, follow these steps:

1. Click the Library button on the Instruments toolbar to reveal the Library

browser.

2. Find the Leaks instrument in the Library browser. You can do this by scrolling

through the list or by using the Search field at the bottom of the Library

browser to filter the instruments shown.

3. Click the Leaks instrument in the Library browser and drag it to the

Instruments pane. Release it where you want it in the list of instruments, as

shown in Figure 21.9. Alternatively, if you’re happy with it at the bottom of

the list, just double-click it.

4. Now click the Drive & Record button on the Instruments toolbar. The BeeLine

interface will appear, and the User Interface instrument will proceed to drive

your cursor and attempt to carry out the exact same user interface actions

that you took when you recorded the session.

FIGURE 21.8
The Interface
Recorder instru-
ment recorded
actions taken in
the user inter-
face and is dis-
playing
thumbnails of
the actions in
the Track pane.
In addition, the
Record button
has changed to
Drive & Record.

ptg8126863

By the
Way

Watch
Out!

544 HOUR 21: Advanced: Analyzing Code with Instruments

Don’t Touch Anything
Don’t move your window, or the Instruments window, or move other windows on
the screen between recording the user interface session and using it to drive the
interface in Drive & Record mode. The Instruments application tries to reproduce
your actions literally, but its idea of literal involves “the same place” rather than
“the same thing.” If you’ve rearranged windows, Instruments will happily click on,
and interact with, whatever is in the same place on the screen as your target pro-
gram was previously.

5. If you need additional duplicate runs, you can continue to click Drive &

Record as many times as you need. Additional tracks of data from the Leaks

instrument and from the User Interface instrument will be collected for

each run.

At this point, we cannot recommend using the loop option for the Drive & Record
action. The loop option, enabled by a button found next to the Drive & Record but-
ton, is supposed to run your user interface action track over and over and over.
Unfortunately, there seem to be a number of bugs in this function at the moment.
Not only is it almost impossible to make it stop properly, it also has a bad habit of
losing its focus on the application it is supposed to be interacting with, and spam-
ming your user interface events into other applications that you have running. The
outcome is rarely healthy for your blood pressure or your computer.

Drag and Drop
the Leaks

FIGURE 21.9
Adding the
Leaks instru-
ment to the
Instruments
pane.

ptg8126863

Did You
Know?

Summary 545

As of Xcode 4.2 and 4.3, the User Interface instrument is unlikely to function as
described here. This is the way it is supposed to work. However, as shown in
Figure 21.10, it does not produce perfect replicates of the user interface actions
that were originally carried out. It does not even produce identical erroneous runs.

This is not simply a matter of user interface timing, as examination of the console
output from BeeLine (viewable by selecting a track in the Track pane, and the
Console output details from the navigation bar) demonstrates that BeeLine is in
fact receiving different values. It appears as though a significant portion of this
problem is due to the user interface actions not being properly indexed spatially
to the program interface, even if nothing is moved. This is a critical failure on the
part of the Instruments application and one that we expect Apple will address
soon. Perhaps (we at least hope) it will be working properly by the time you
read this.

FIGURE 21.10
Unfortunately,
the User
Interface instru-
ment does not
produce perfect
replicates of the
actions that
were originally
carried out.

Summary
In this hour, you got a brief introduction to the Instruments application and learned

how to use two of the most immediately powerful instruments together, to augment

your ability to debug your code. The instruments within this feature are so much

more than we have space to cover here. They can inform you of just about every

change that takes place in your machine, almost on an instruction-by-instruction

basis.

By using the full panoply of instruments that are available, as well as leveraging the

ability to easily create custom instruments by wrapping Apple’s provided interface

around custom dtrace scripts, you can take your programs and programming to a

whole new level. Start slowly, use the tools that are easy to use, and one day when

you think “I wonder if there’s some way that I could find out what the system does

when…,” turn to the Instruments feature. They’ll do that for you.

ptg8126863

546 HOUR 21: Advanced: Analyzing Code with Instruments

Q&A
Q. Can you save the traces from instruments for additional analysis later?

A. Yes. You can also pare down what is saved by picking unneeded traces in the

Trace pane and selecting Delete Run from the Instruments menu. Saved user

interface tracks can be reloaded for later playback. However, remember that

they are quite literal about the location of features on the screen, so you need

to position your application exactly identically if you want user interface play-

back to work from a saved run.

Q. Is the Instruments application limited to working with Xcode projects?

A. No. The Instruments application is actually a completely separate tool kit

from Xcode. Xcode and Instruments simply interoperate fairly easily, making

it a useful tool to use along Xcode for diagnosing problems with your projects.

Instruments can actually profile the operation of any program (that your

userid has permission to peek into) on the system, including the kernel. In

addition, it can profile multiple programs simultaneously, enabling the debug-

ging of situations where multiple intercommunicating programs are involved.

You can access this additional functionality through the Attach to Process

selection in the Target drop-down menu on the Instruments toolbar.

Workshop

Quiz
1. How can you get a better idea of the connection between user interface actions

and memory leaks?

2. Where do the additional runs appear when you make several recordings in

the same Instruments session?

Answers
1. Create an Instruments setup with a UI recorder instrument. Stop the run and

delete it to get back to the initial Record mode. Then add a Leaks instrument.

Set the Leaks snapshot interval to a small value, 1 second or less. Record a ses-

sion, and use the timeline thumb to identify the UI recorder thumbnail frames

that correspond to the reported leaks.

ptg8126863

Workshop 547

2. They are initially hidden, but can be revealed by clicking the disclosure trian-

gle on the instruments in the Instruments pane.

Activities
1. Correct the memory leak in BeeLine. Profile it again to make certain that the

leak is really gone.

2. Profile iBLine and determine whether it has any leaks. If it does, see if you can

fix them. Remember that there is still a bug in the BetterList code, if you

haven’t fixed it already, that causes a crash if you delete every point in the list

and then try to add another.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 22

Managing and Provisioning
iOS Devices

What You’ll Learn in This Hour:
. How to prepare iOS applications for distribution
. How to create a distribution certificate
. How to create an App ID
. How to create and install a distribution provisioning profile

Once your application works as you want it to, you have to start thinking about the big

picture: getting it out of Xcode and onto the devices (whether iOS or OS X) where it will

be used.

If you’re developing just for yourself, you really have no reason to go beyond the rapid

development provisioning for iOS devices that you were introduced to in the first hour (or

beyond just building your application for use on your own Mac). However, if you want to

distribute your application, you need to complete a few additional steps.

These steps fall broadly into two separate categories: housekeeping steps to ensure that

your application is distributable, and steps that Apple requires if you want to make the

application available via the App Store.

In this hour, you learn how to prepare your iOS devices to receive your software and how

to inform Apple about resources that must be allocated (such as a namespace for your

iCloud data storage) to enable other devices to receive your app. In the next hour, we look

at the App Store itself and Apple’s requirements for distributing for iOS and OS X.

ptg8126863
Did You

Know?

550 HOUR 22: Managing and Provisioning iOS Devices

Unlike most other hours in this book, you cannot follow the instructions here
entirely literally. We create several configuration documents for application distri-
bution that are required, by virtue of how Apple manages the App Store, to be
completely unique among all apps. To avoid conflicts with other readers of the
book, and confusion when the App Store complains that an identifier is already
taken, make sure to use your own email addresses and company and bundle iden-
tifiers when following the steps in this hour.

Creating an iOS Distribution Certificate
The first thing that is necessary for distributing, as opposed to developing, iOS appli-

cations is a distribution certificate. Distribution certificates consist of unique public

and private key pairs, used by the distribution process and the users who will receive

your application to verify that it really came from you. They’re necessary to prevent

some malicious third party from sneaking out an update version of your software

that might contain damaging code and fooling your users into thinking that it is an

official release from you.

You need to fully understand two key terms used repeatedly through this and the
following hours:

. Certificates are a mechanism to ensure that you are who you say you are (or
rather, that anyone who says they’re you, really is you). Certificates are used
to sign applications to provide a guarantee that the application is authentic
and belongs to a specific developer or development team.

. Provisioning profiles are used to associate specific certificates with specific
hardware devices and specific applications. They effectively specify combina-
tions of who, where, and what may be run, enabling you to control how your
team uses your development resources and enabling Apple to limit the dam-
age that an unfinished application can do “in the wild,” by restricting its dis-
tribution to only those devices where you have explicitly enabled that
application.

As of Xcode 4.3, you can create a distribution certificate in several ways. The way

that Apple hopes that you use is automatic provisioning, letting Xcode manage the

creation of the necessary certificates for you. Unfortunately, this process doesn’t

always work.

To determine whether you are already set up, open the Organizer from the Xcode

toolbar and pick devices in the Organizer and profiles in the Organizer sidebar. If

you see an iOS device distribution profile there, along with an IOS device develop-

ment profile, and you can select it and it doesn’t tell you that it is an invalid profile,

Did You
Know?

ptg8126863

By the
Way

Creating an iOS Distribution Certificate 551

Xcode’s automatic creation of the certificates for you has worked. If you don’t see the

distribution profile, or it tells you that it is not a valid distribution profile, something

went wrong in the process, probably in the insertion of the certificate parts into your

keychain. In this case, you must clean up Xcode’s mess and create the certificates

and profile manually.

If you’re one of the lucky ones for whom everything worked, you can skip ahead to

“Creating an App ID.” If all that appears in the Organizer is your development pro-

file, and not a broken distribution profile, you can skip ahead to “Creating a New

Distribution Certificate and Provisioning Profile by Hand.”

Fixing Broken Distribution Certificates
and Profiles
If Xcode starts the automatic process but leaves you with a broken distribution pro-

file, follow these steps to get back to a clean slate so that you can build a working

profile by hand:

1. Open the Organizer from the Xcode toolbar and pick Provisioning Profiles

under Library in the sidebar.

2. Select the distribution profile that was partially created. It may have a status

line showing “Valid signing identity not found,” or it might only show a warn-

ing when you select it.

3. Delete the problematic profile and close the Organizer.

4. Launch the Keychain Access program from the Utilities folder of your

Applications directory.

5. Pick the Login keychain, and the Certificates category, from the Keychain

Access sidebar.

6. Use the Search field on the Keychain Access toolbar to search for “iPhone.”

7. Select any certificates with names that start with “iPhone developer” and

delete them.

8. Cancel the search for “iPhone” and delete the Apple Worldwide Developer

Relations Certificate Authority certificate.

It seems likely that in the future Apple will start using certificates named iOS
Developer rather than iPhone Developer. You might want to keep an eye out for
these, as well.

ptg8126863

552 HOUR 22: Managing and Provisioning iOS Devices

Now Xcode’s Organizer and your keychain should be clean and ready to accept a

new certificate that you create and install by hand.

Creating Distribution Certificates and
Provisioning Profiles Manually
To create a new distribution certificate and provisioning profile manually, you work

through the Keychain Access program and Apple’s Online Provisioning Portal in

addition to Xcode. The process has several parts. You must first use Keychain Access

to create a request for a certificate, and then use the Provisioning Portal to actually

obtain the certificate. After you’ve obtained the certificate, you can install it in your

keychain again, and then you use a combination of Xcode and the Provisioning

Portal to create provisioning profiles for distributing your application. Let’s start with

creating a request for a certificate.

Creating Certificate Requests with
Keychain Access
Keychain Access enables you to configure a request for a certificate that you can

send to a certificate authority. To use Keychain Access to configure the request, fol-

low these steps:

1. Launch Keychain Access from the Utilities subfolder of your Applications

directory on your Mac.

2. Open the Keychain Access preferences and click the Certificates tab.

3. Configure the preferences as shown in Figure 22.1, with both the Protocol and

the Revocation List set to Off. Close the preferences.

FIGURE 22.1
Setting the
Protocol and
Revocation
options in the
Certificates
section of the
Keychain
Access prefer-
ences to Off.

4. From the Keychain Access menu, choose Certificate Assistant, Request a

Certificate from a Certificate Authority.

ptg8126863

By the
Way

Creating an iOS Distribution Certificate 553

5. Provide the team agent email address as it appears in your iPhone Developer

Program registration.

The team agent is the sole individual allowed to actually submit files to the App
Store. If you have already registered the team agent under a different user ID or
on a different computer, you must duplicate their already-created distribution cer-
tificates and public and private keys into your keychain. Apple provides a tutorial
on how to do this in Tech Note TN2250 available at http://developer.apple.com/
library/ios/#technotes/tn2250/.

6. Provide the common name that should be associated with your certificate.

This can be your company name or your personal name. If you’ve requested

other certificates for other purposes, be consistent with this value.

7. Select the Save to Disk option, and check the Let Me Specify Key Pair

Information check box.

8. You should not have to specify a certificate authority email address because

you are going to save the request to disk rather than have Keychain Access

submit it automatically. However, Keychain Access sometimes insists that you

put something in this field before it will let you click Continue. Because it will

not be used, it is safe to just use your own email address here if Keychain

Access wants a value before proceeding.

9. When you have everything filled in, your request should look something like

what is shown in Figure 22.2. Click Continue, and then choose a place to save

the certificate request. The default filename and your desktop are good

choices. Click Save.

FIGURE 22.2
Here is the
completed cer-
tificate request
before clicking
Continue.

http://developer.apple.com/library/ios/#technotes/tn2250/
http://developer.apple.com/library/ios/#technotes/tn2250/

ptg8126863
Watch

Out!

554 HOUR 22: Managing and Provisioning iOS Devices

10. In the dialog that appears, specify a key size of 2048 bits and the RSA algo-

rithm. Click Continue.

11. A dialog appears indicating that your certificate request has been saved.

Click Done.

Requesting the Certificate Through the
Provisioning Portal
Now that you’ve created the certificate request, you can send it to the Provisioning

Portal, which requests the actual certificate for you. To use the Provisioning Portal to

request your certificate, follow these steps:

1. Navigate to the Provisioning Portal (http://developer.apple.com/ios/manage/

overview/index.action) in a web browser and sign in using your developer ID.

2. Click the Certificates category in the navigation list on the left. Then click the

Distribution tab along the top of the work area.

Don’t Let the Tabs Fool You
The contents of the Distribution tab and the Development tab look an awful lot
alike, and every time you make an action in the portal, the portal defaults back to
the Development tab. Sometimes it even seems to default back to the
Development tab when you look away from your screen for a few moments.

You don’t want to know how many times I’ve gone through all the steps of setting
up certificates or creating profiles only to discover that I’ve accidentally missed a
switch to the Development tab somewhere in the middle of the process and have
to delete everything and start all over again. Pay really close attention to those
tabs, and hopefully you’ll pull out less of your hair than I have.

If you’ve just deleted a broken distribution certificate and profile from your

keychain and organizer, you will probably see a current distribution certificate

listed.

3. a. If, and only if you just deleted the broken certificate from your Keychain

Access application, make sure you’re really on the Distribution tab, and

then revoke it, and continue with step 4.

b. If there was no distribution certificate in your Keychain Access applica-

tion, but a distribution certificate already appears here, ready for down-

load, the certificate may have been created properly and just not

downloaded. Skip ahead to step 9.

http://developer.apple.com/ios/manage/overview/index.action
http://developer.apple.com/ios/manage/overview/index.action

ptg8126863

Creating an iOS Distribution Certificate 555

4. Beside the line that says “You currently don’t have a valid distribution certifi-

cate,” click the Request Certificate button.

A page opens with instructions for this certificate-creation process that you’re

currently in the middle of, and a note that Xcode’s automated process is really

the preferred way of requesting these certificates. If Xcode had done it right,

you wouldn’t be here now, so forge ahead.

5. Near the bottom of the page, you’ll see Choose File. Click it.

6. Navigate to the certificate request that you saved to your desktop in step 9 in

the preceding section, select it, and click Continue. Back on the Distribution

tab (you’re still on the Distribution tab, right?), click Submit.

The page for the Distribution tab on the Provisioning Portal then reloads and

shows your new distribution certificate, probably with a status of Pending.

7. Wait a minute or two, and then reload the page for the Distribution tab. The

status should now be Issued, and there should be a button in the Actions col-

umn to download your distribution certificate. If the status is still Pending,

wait a bit longer and try this step again.

8. When the Download button appears, click it. The distribution profile then

downloads to your computer.

9. Click the link to download the Worldwide Developer Relations (WWDR) inter-

mediate certificate. The link should be located immediately beneath the list of

distribution certificates in the Provisioning Portal.

10. Back in the Finder on your Mac, navigate to where you saved the WWDR

intermediate certificate and your distribution certificate.

11. Double-click each of the certificate files (the WWDR and distribution certifi-

cates) that you just downloaded. Keychain Access should launch (if it is not

already open), and the certificates should be installed in the Certificates list for

your Login keychain. The private keys for each should be installed in your

Keys list for your Login keychain.

12. Select the iPhone Distribution certificate in your keychain and click its

disclosure triangle. You should see an associated private key, as shown in

Figure 22.3.

ptg8126863

By the
Way

556 HOUR 22: Managing and Provisioning iOS Devices

FIGURE 22.3
Showing the
iPhone distribu-
tion certificate
in Keychain
Access and its
associated
private key.

If you do not see the key here, try looking directly in the keys under your Login key-
chain, opening each likely one to see whether there is one associated with the
iPhone distribution certificate. If the private key is present, you’re ready to create a
distribution profile. If the private key is missing, something went wrong, and you
must start from the “cleaning up” step again and repeat the process.

This entire process seems rather unstable at the moment, and many people seem
to end up having to repeat it several times before everything works properly.
According to reports on the Web, some developers even have to quit and restart
the Keychain Access program or Xcode between each step to make it through the
entire process successfully. Because Apple is moving toward Xcode performing all
the steps automatically for you, this process should be easier soon (we hope).

Thankfully, because a certificate’s purpose is to identify you or your team, you gen-
erally will need just one distribution certificate for all of your development work.
So, once you get this certificate downloaded and installed properly, you should not
have to repeat this process.

Creating an App ID
The next thing you need so that you can make use of your distribution certificate is

a registered identifier for your application. App IDs are identifiers that are used to

distinguish your application from all others in the App Store and to make certain

that Apple’s iCloud and push notification services are connecting the right iCloud

data, and right push notifications, to your application. You create these unique iden-

tifiers through the iOS Provisioning Portal, as well.

Did You
Know?

ptg8126863

Watch
Out!

Creating an App ID 557

App IDs Are like Tattoos
After you’ve created an App ID, you’re stuck with it, and the closest you can do to
removing it is to hide it. Make sure you really want a particular App ID before you
create it. Apple doesn’t currently even give you a way to hide App IDs, although if
you create more than a few, some of them will inevitably be hidden off the bottom
of your screen (probably not the ones you want though). A kind third-party devel-
oper has created Safari and Chrome extensions that parse Apple’s iOS
Provisioning Portal pages and let you hide selected App IDs. You can find it at
https://github.com/simonwhitaker/app-id-sanity/downloads.

To create an App ID in the Provisioning Portal for your application, follow these

steps:

1. Navigate to the Provisioning Portal

(http://developer.apple.com/ios/manage/overview/index.action) in a web

browser and sign in using your developer ID.

2. Click the App IDs category in the navigation list on the left, and then click the

Manage tab.

3. Click the New App ID button in the upper right of the Manage tab. A new

page loads under the Manage tab, where you set up the appropriate details

for your application.

4. Fill in the description with a short descriptive string or name for your App ID.

Remember that these IDs are forever, so do not create them unnecessarily, and

don’t give them descriptions that you might regret later.

5. Enter the bundle identifier for your application. If you don’t know the bundle

identifier, or you want to use something other than the identifier that Xcode

created automatically from your initial project setup parameters, follow these

steps:

a. Open your iOS project in Xcode.

b. Select the iOS project in the Navigator area, and the iOS application tar-

get in the sidebar of the Editor area.

c. Display the Info tab in the Editor area and find and disclose the Custom

iOS Target Properties.

d. Find the bundle identifier line. If it contains something like

COM.SGF.${PRODUCT_NAME:rfc1034identifier}, and your target is

named iBLine, the bundle ID that is being written into the application is

COM.SGF.iBLine.

https://github.com/simonwhitaker/app-id-sanity/downloads
http://developer.apple.com/ios/manage/overview/index.action

ptg8126863

By the
Way

Watch
Out!

558 HOUR 22: Managing and Provisioning iOS Devices

Case Matters (Kind Of)
There is currently some confusion about case sensitivity of bundle IDs. Although
they apparently are not supposed to be case sensitive, it appears that some parts
of Xcode and the Provisioning Portal assume that they are lowercase, and some
parts do not automatically downcase uppercase characters in the specified string.

The result is that you can get a mixed-case string stuck in the Provisioning Portal,
which won’t let you delete it, and which won’t let you actually use it to provision
devices because on their end they downcase the strings and then discover a mis-
match with the profile.

So, it is currently safest to explicitly downcase your bundle ID manually if you have
previously specified a bundle prefix or application ID that would cause a mixed-
case bundle identifier to be created.

You can set up a wildcard App ID for all the applications developed with a particu-
lar bundle identifier prefix if you use a wildcard in place of the product name in
the App ID Request page.

It is probably not a great idea to use something like just your company prefix and
a wildcard for the App ID, even though that would let you use the same App ID for
any application you wanted to provision. A better use is creating wildcarded App
IDs for collections of cooperating products that all need access to the same
iCloud data storage and so forth.

If I were planning to develop a whole host of bee-related products for SGF, I might
use com.sgf.beez.* for my bundle identifier in the Provisioning Portal and
com.sgf.beez.ibline for the iBLine bundle identifier in Xcode.

e. If you need to convert your bundle ID manually to lowercase, double-

click the Value for the bundle identifier under the Info tab and specify a

lowercase and properly formatted string. In Figure 22.4, I set the iBLine

target we’ve been working on to use com.sgf.ibline as the bundle

identifier.

FIGURE 22.4
Setting the
bundle identifier
to use a name
with all lower-
case letters.

ptg8126863

Creating an App ID 559

6. Back in the Provisioning Portal, make sure that the bundle seed ID is set to use

your team profile. Depending on your configuration, the Provisioning Portal

may require that you explicitly set this value, or it may have it automatically

configured with no options for you to select.

7. After you have the Create App ID page in the Provisioning Portal configured

approximately as shown in Figure 22.5, click the Submit button.

FIGURE 22.5
Creating an App
ID with a
description of
the App ID
and a bundle
identifier.

8. The App IDs page should reload, and your newly created App ID should show

up in the list, similar to what is shown in Figure 22.6. If you need to modify its

configuration (for example, to enable access to iCloud data containers, or to

configure for access to Apple’s push notification service), you can set up those

features by clicking the Configure button at the right of the App ID details.

ptg8126863

560 HOUR 22: Managing and Provisioning iOS Devices

FIGURE 22.6
The App ID has
been success-
fully set up. If
you need to
make any
adjustments to
the configura-
tion, click the
Configure option
at the right end
of the line.

Creating a Distribution Provisioning
Profile
After you have successfully installed a distribution certificate and configured an App

ID for your product, you can put these together to create distribution profiles for your

application. Your distribution profiles can either associate specific iOS devices with

the App ID and your identifying certificate or they can be App Store distribution cer-

tificates that enable distribution of your application through the App Store for any-

one to download or purchase. To create a provisioning profile for your application

using your distribution certificate, follow these steps:

1. Navigate to the Provisioning Portal (http://developer.apple.com/ios/manage/

overview/index.action) in a web browser and sign in using your developer ID.

2. Click the Provisioning category in the navigation list on the left. Then click the

Distribution tab along the top of the work area. Remember that the pages for

the Distribution and Development tabs look quite similar and have an insidi-

ous and annoying tendency to try to trade places when you’re not looking.

3. Click the New Profile button near the top of the page that’s displayed for the

Distribution tab.

http://developer.apple.com/ios/manage/overview/index.action
http://developer.apple.com/ios/manage/overview/index.action

ptg8126863Watch
Out!

By the
Way

Creating a Distribution Provisioning Profile 561

4. Enter a profile name. This should be adequately informative that you can tell

what the profile is for from the name. For iBLine, I’m naming my profile App

Store Distribution for iBLine.

5. From the pop-up menu for the App ID, pick the App ID you just created for

your application.

6. Decide whether you want to distribute your application via the App Store or

via Ad Hoc distribution and select the appropriate option. If you decide to use

Ad Hoc distribution, you must also pick the devices where the profile will

enable the application to be installed.

Usually, you would use the App Store for your final production builds and Ad Hoc
distribution for your development team for testing. If you use Ad Hoc distribution,
you must send your built products to your team members yourself, instead of
using the App Store to distribute your product. In the next hour, we cover Ad Hoc
distribution, including the Enterprise type of distribution whereby your users can
download and install your app directly on their iOS device.

Developer Apps Are Not for Sharing
Do not use the Ad Hoc distribution mechanism to distribute software to people
who are not members of your development team. Unless you have an Enterprise
developer account, which enables distribution to arbitrary devices in an enterprise,
Apple reserves the right to revoke developer credentials without warning and with-
out recourse if you distribute software to end users, rather than developers, out-
side the App Store mechanism.

7. After filling out the Distribution Provisioning Profile page approximately as

shown in Figure 22.7, click the Submit button.

A new page loads under the Distribution tab for provisioning in the

Provisioning Portal. It should contain a new line listing your just created pro-

file, probably with a status of Pending.

8. Wait a minute or two, and then reload the page in your browser. When your

newly created distribution profile status changes to Active and a Download

button appears in the available actions for it, click Download.

9. Navigate to the downloaded file (it should have the extension .mobileprovi-

sion) in the Finder and double-click it. Xcode launches if it is not already run-

ning, and the Organizer opens.

ptg8126863

562 HOUR 22: Managing and Provisioning iOS Devices

10. Select the Devices tab on the toolbar of the Organizer and the Provisioning

Profiles item in the Library group of the Organizer sidebar.

11. Look for a new profile line that matches the Distribution Provisioning Profile

you just created. If everything worked, and you’ve been following along with

similar configurations for your iOS application build, the Organizer should

show you something like what is shown in Figure 22.8, where the most impor-

tant detail to check is that the Status line for my App Store distribution for

iBLine profile says “Valid Profile.”

FIGURE 22.7
Setting up the
Distribution
Provisioning
Profile.

FIGURE 22.8
After creating
your Distribution
Provisioning
Profile, go to
the Organizer
and verify that
the status line
for your profile
says “Valid
Profile.”

ptg8126863

Summary 563

Congratulations, you’ve made it through the certificate installation and provision-

ing profile creation process successfully. Now you can move on to the final step of

making Apple’s required tweaks in your application for submitting to the App Store

and finalizing the submission process.

Begin Soapbox Mode
A lot of people are annoyed that Apple requires all this certificate and provisioning
business for distributing iOS applications and wonder why they cannot just build
apps and distribute them like they can OS X applications. The answer is that
iPhones are phones, and first and foremost as phones, they must function as
phones.

That means that if someone picks one up and dials for emergency help, it had
better function as a phone and dial properly. If just anyone could write apps and
distribute them without restriction, there’s a very real chance that a broken appli-
cation or a malicious application could interfere with the basic phone functionality.
This might not bother you on your phone-turned-development platform, but for
many people, their iPhone is just a phone (and might be their only phone).

Be careful what you wish for, too. For instance, unless you think your grandmother
(standing in for all our grandmothers) is sufficiently savvy enough to keep mali-
cious applications off of her phone, and unless you are comfortable with the fact
that her phone could potentially crash during an emergency, don’t wish too hard
for easy, open development and distribution mechanisms for iOS apps.

Summary
This hour walked you through the process Apple requires to get your application set

up to begin the App Store submission process or to prepare the app for Ad Hoc dis-

tribution. These steps are the practical requirements that you must complete to cre-

ate a certificate that guarantees your identity and the app’s authenticity; to create a

unique identifier so that the app can find its data in the cloud and receive notifica-

tions if needed; and to create a provisioning profile that associates the App ID, your

identifying distribution certificate, and the hardware on which the app is allowed

to run.

There are a few steps where optional configuration is possible, such as configuring

the App ID (using the Configure button on the App IDs page in the Provisioning

Portal) to enable iCloud support or modifying the Distribution Provisioning Profile

(using the Modify button on the Distribution tab of the Provisioning page) to

change the profile name. To a large extent, however, the steps in this hour are

almost identical for every iOS application that you decide to provision and

distribute.

ptg8126863

564 HOUR 22: Managing and Provisioning iOS Devices

Q&A
Q. Is there a way to move my distribution certificate from the machine I cre-

ated it on to another machine?

A. Yes. To do this, you need to export both the private and public keys for your

distribution certificate and copy them to the new machine. It is recommended

that you copy them and store them somewhere secure on a CD or other

durable media for safekeeping anyway, because if you lose the private key, all

your provisioning profiles will become invalid and you’ll have to delete them

all and start again. Apple details the process for copying the keys at

http://developer.apple.com/library/ios/#technotes/tn2250/.

Q. I’m getting a weird error when I try to install an iOS App Store provisioning
profile that says something about there being no devices configured for
development under my profile. But I have one (or more) iOS devices set up
for development and can see them in the Provisioning Portal. What’s up?

A. Developer, meet another Xcode bug. The problem is really that you don’t have

an OS X device registered with the development portal. I know you’re working

on an iOS project. Xcode should, too, but well, it is Xcode. Sometimes you

have to remember that it is still growing and treat it like it is a bit daft. To cor-

rect the problem, select your OS X machine from the sidebar of the Devices

tab in the Organizer. On the page that appears, click the Enable Developer

Mode button, wait until Xcode comes back from thinking to itself, and then

click the Add to Portal (+) button at the bottom of the Organizer. Now go back

and try to install your provisioning profile. Bug, meet developer. Squash.

Q. This hour talked a bunch about setting up provisioning for iOS devices. Do I
have to go through all of this rigmarole for provisioning OS X machines, as
well?

A. Not all of it, at least at the moment. When you build an OS X application,

you produce a standalone OS X application that you can double-click and run

in the Finder and that you can copy to other machines and run the same way.

You do have to do some of this if you want to distribute through the App Store

for OS X applications, however.

http://developer.apple.com/library/ios/#technotes/tn2250/

ptg8126863

Workshop 565

Workshop

Quiz
1. Why might the Organizer tell you that your distribution provisioning profile is

invalid?

2. Can you delete that App ID you created as a joke, with that uncomplimentary

reference to your boss’s receding hairline?

3. Should you just use the wildcard team App ID for all of your apps and avoid

the risk of creating something you’ll wish you hadn’t later?

Answers
1. There are several possible causes. The most likely is that you do not have a

private key installed for the distribution certificate in your keychain. If you

have, or can obtain a copy of it from somewhere, finding the file, quitting

Xcode, and double-clicking it to install it into your keychain should cause

Xcode to improve its behavior on the next launch. If you do not have access

to the private key, you must start at the beginning of this hour, delete the bro-

ken certificate from your keychain, and create a new one. If you already have

the private key and it is already installed, you’ve hit an Xcode bug. You can

do one of two things: Quit and restart Xcode, export the certificate and private

key from your keychain, delete them from the keychain, and reinstall them

from the exported files, reboot, or various combinations of these things.

Alternatively, you can just delete the key and certificate and start over from

the top. The “delete and do it again” option is often a faster route to getting

Xcode to recognize the key properly than any amount of trying to convince it

to pay attention to the already properly configured certificate that’s right

under its nose.

2. No. App IDs, like diamonds, are forever. This is frustrating, but it actually

makes sense. App IDs uniquely associate applications and their iCloud data,

notifications, and other resources that really should be unique to the applica-

tion. If you could delete an App ID, someone else on your team could possibly

create another app with the same ID and completely confuse things by having

a different app that appears to want access to the same iCloud storage and

push notification services. Think twice before creating App IDs that might

haunt you later.

ptg8126863

566 HOUR 22: Managing and Provisioning iOS Devices

3. That depends. If you want to let all your applications have access to the same

collection of iCloud data and notifications, using the team wildcard solves

your App ID dilemma and keeps your collection of App IDs from growing out

of bounds. If you need to partition your iCloud data so that only some is

shared between only some apps, you need to create additional, only partially

wildcarded App IDs for each application group.

Activities
1. Recruit a friend for your development team and add his iPhone to your list of

development devices. Then create a new Ad Hoc distribution profile that

includes both your iOS device and his iOS device and install it in Xcode.

2. Sneak a peek in the Build settings for your project, looking for the Code

Signing group. Configure one of the Debug or Release build configurations to

use your new Ad Hoc distribution profile, and experiment with Archiving and

Sharing your application with your new development team member. If you

get stuck, don’t worry. We cover this in more detail in the next hour.

3. Reenable one of the crash-producing bugs that we previously fixed in iBLine.

A good choice would be the bug that bit us when the last point was deleted

from the list and then another point was added. Install this buggy version of

iBLine on your iOS device, and then crash the app. Now connect your iOS

device to your computer, launch Xcode, and open the Organizer. Select the

Devices tab, and look under the Device Logs in the group for your iOS device.

Pretty cool, huh? This is also the mechanism you use to connect crash reports

that your users might generate back to your code. If you receive crash reports,

you can drag them into the log area to add them to the list and connect them

to Xcode.

ptg8126863

Watch
Out!

HOUR 23

Distributing Your Applications

What You’ll Learn in This Hour:
. How to prepare your new application for distribution
. How to archive your newly built app
. How to distribute your app
. How to set up iTunes Connect to facilitate your app submission to the

App Store

Well, you’ve done it: You have your application developed and debugged. You have cre-

ated your developer ID (Xcode created it automatically for you when you created your first

provisioning profile) for OS X applications and distribution provisioning profiles for your

iOS applications. Now the App Store awaits.

In this hour, you learn about the final changes to your application code, project configu-

ration, and build settings that enable you to distribute your iOS apps through the App

Store and through Ad Hoc distribution. For your OS X applications, you learn about the

process for distributing through the App Store and via direct distribution yourself. You also

learn about signing applications with your developer ID so that they can be validated

with Apple’s upcoming Gatekeeper software authentication system, and how to avoid

signing if you prefer not to use Gatekeeper at this time.

Just When You’re Getting the Hang of Things
As of this writing, Apple’s developer ID and Gatekeeper (the default
mechanisms for application distribution) are still under development
and so subject to change. Therefore, the exact steps you follow to
use them might differ somewhat from what is shown in this book. But,
from what you learn here, you’ll be able to improvise and achieve dis-
tribution. After all, Apple only makes the process easier with each
change, right? You’ve made it this far in this book, so now you’ll be
able to figure all this stuff out.

ptg8126863

Did You
Know?

568 HOUR 23: Distributing Your Applications

Your developer ID should have been created automatically when you first set up a
provisioning profile, way back in Hour 1, “Xcode 4.” However, sometimes this slips
through the cracks. To check whether the automatic process worked for you, open
the Organizer, display the Devices tab, and then click your ID under the Teams
group in the sidebar.

If you see a listing for you, with the name Developer ID Application, you’re good to
go. If you do not see that item listed, you can try to convince Xcode to request a
developer ID again by selecting Profiles under the Library group in the Organizer
sidebar and then clicking the Refresh button in the lower right of the Organizer
window. Xcode should automatically request missing IDs for you.

Finalizing Your Distribution Build
You need to make a few final tweaks to your app before it is ready for distribution.

These involve adding features that are required by the App Store and configuring

code signing for your apps and a few “common courtesy” fixes that you should do

just to keep your users happy. The required modifications differ slightly for OS X and

iOS applications.

OS X Applications
For an OS X application, you must decide whether to sign your application with

your developer ID, add icons (as appropriate), and you must ensure the archive set-

tings for your scheme are configured properly. You also want to remove any unnec-

essary NSLog() statements that you have left hanging around in your code.

To sign your app with your developer ID, follow these steps:

1. Open your project in Xcode, select the project in the Navigator area, and

again select the project in the sidebar of the Editor area.

2. Click the Build Settings tab.

3. On the Build Settings tab, enter Code Signing in the Search field.

4. Find the Code Signing Identity line and click where it says Don’t Code Sign.

5. In the pop-up that appears, select your developer ID signing certificate.

Several options appear in the dialog, as shown in Figure 23.1. Apple’s devel-

oper ID documentation indicates that the correct value is your Developer ID

Application certificate. We expect that in the future the value that Xcode rec-

ommends will default to this certificate, but at the moment the recommended

default does not appear to work.

ptg8126863

Finalizing Your Distribution Build 569

If you do not want to sign your app with your developer ID, you can just leave

the Code Signing setting alone.

FIGURE 23.1
Selecting the
Developer ID
Application
identity to sign
the app.

Confirming Archive Settings in Your Scheme
Because you haven’t been archiving your apps for distribution so far (if you have

been archiving them at all), you need to check the settings for the Archive build in

your scheme. If you’re like me, you can and probably have gotten away with some

settings for your own archive purposes that are not acceptable for distribution

archives. To make sure that your scheme is configured properly, follow these steps:

1. Open your project in Xcode, select the project in the Navigator area, and again

select the project in the sidebar of the Editor area.

2. Choose Edit Scheme from the Product menu.

3. Open the Build pseudo-action, and make sure that the target you’re planning

to distribute is the only thing selected for the Archive action, as shown for the

BeeLine app in Figure 23.2.

FIGURE 23.2
Making sure
that the target
we plan to
distribute is
the only item
selected for the
Archive action.

ptg8126863

570 HOUR 23: Distributing Your Applications

Open the Archive action and make sure that Build Configuration is set to

Release and that an appropriate archive name is specified. Make sure that the

Reveal Archive in Organizer check box is checked, and then click Done, as

shown in Figure 23.3.

FIGURE 23.3
In the Archive
action, we
set Build
Configuration to
Release, make
sure that the
archive name is
appropriate, and
check the
Reveal Archive
in Organizer
box.

Final Code Cleanup
It’s that time: Those last lingering NSLog() statements that are still hanging around

like a security blanket have got to go. Your users do not want their system logs filled

with notes about traversals of your data structures and congratulatory exclamations

that your application successfully launched. Either delete them completely, comment

them out, or wrap them in conditionals dependent on a variable that you can glob-

ally configure in your header to turn them all on or off simultaneously. You can use

the Find, Find in Workspace item under the Edit menu to locate all the NSLog()

instances across your entire project. If you want to comment them out, you can do

that using a Find and Replace, replacing NSLog(with //NSLog(across the entire

workspace.

Also, remember to go back and either connect or remove any interface components

that do not currently have attached functionality (for example, menu items that

were created in the default menu in the NIB that are not relevant to your

application).

Attending to Additional Details
The last thing you need to do is add those little touches that make your application

fit in with the flock of other OS X applications. These include adding application

icons, screenshots, and any other metadata that is required for distribution and

installation of your application. Mac users expect a certain look, feel, and style to

your application icons and onscreen presentation; and although you can get away

without providing these polishing touches for simple distribution to a local circle of

friends, if you want your application to shine in the App Store, providing high-

quality graphics is a near necessity. Providing minimally acceptable graphics is an

ptg8126863

Did You
Know?

Finalizing Your Distribution Build 571

absolute requirement; after all, Apple won’t accept an App Store submission without

them.

Despite Xcode apparently wanting, and accepting, a PNG file dropped into the App
Icon space on the Summary tab for OS X application targets, what it really needs
you to put there is a ICNS file built from your PNG files. To construct the ICNS file,
launch the Icon Composer by picking Open Developer Tool, Icon Composer from
the Xcode menu. Then, drag appropriately sized copies of your icon image into the
provided slots in Icon Composer. Next, from the File menu, choose Save As and
save the collection to an ICNS file. You can then drag this file into the App Icon
space on the Summary tab for your application, to properly configure its App Icon
resources.

You can find the full details about what Apple requires for submission in the iTunes

Connect documentation available from https://itunesconnect.apple.com/docs/

iTunesConnect_DeveloperGuide.pdf.

Building Your App Archive
After you have collected these final bits for your application, it is time to build an

archive for your application so that you can submit it to the App Store (or distribute

it outside of the App Store to your users). Building an archive is no different from

invoking the build actions that you have done many times already while working

through each hour’s projects in this book, with the sole difference being that the

Archive build action does not appear as an option under the Run button on the

Xcode toolbar. Instead of the Run button, to invoke an Archive build action, pick the

appropriate scheme and architecture from the Xcode toolbar, and then choose the

Archive item from the Product menu. Xcode builds an archive, and if you elected to

code-sign your application, prompts you for access to a keychain key with which to

sign the archive. Allow it access to the keychain key, and you should (after Xcode

finishes building, linking, and archiving) be greeted with a new archive for your

application in the Organizer.

If You Don’t Get a Clean Archive Build
Your OS X application might not build cleanly when you try to archive it. For some
reason, despite using the Release build configuration for archiving and a having a
Release build configuration that’s perfectly functional when you Build for Running,
the Build for Archiving action sometimes gets confused and loses track of the
autodiscovered framework dependencies.

By far the easiest way to solve this problem is as follows:

1. Select the scheme for your embedded framework on the toolbar, and make
sure that it is set to use the Release configuration for building.

https://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf
https://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

ptg8126863

572 HOUR 23: Distributing Your Applications

2. From the Product menu, choose Build For, Running.

3. Select the scheme for your application on the Toolbar, and again choose Build
For, Running from the Product menu.

4. From the Product menu, choose Archive.

The archive should build cleanly now.

This issue seems to have something to do with the same framework location
issue mentioned in Hour 20, “Keeping Things Organized: Shared Workspaces,”
where the location of the BetterList.framework in the Linked Frameworks and
Libraries group of the Summary Tab for the BeeLine target changed depending on
how the framework was added to the list. You might want to experiment with
removing your framework from the list and adding it back using different methods,
such as directly from the + button in the Linked Frameworks and Libraries group,
or dragging it, or in the Link Binary with Libraries group in the Build phases. If you
experiment with this, remember that you must add the new framework back to the
Copy Files build phase so that it will be embedded in the final application.

At this point, from the Archives tab of the Organizer you are ready to select the

application archive and distribute it, depending on your preference, via the App

Store, as a code-signed (or unsigned) directly distributable application, or as an

Xcode archive for other people to use in Xcode.

iOS Applications
As with OS X applications, you must change a few of your iOS application’s build

settings and configuration details to ready it for distribution. For instance, remove

any unnecessary NSLog() invocations and confirm that your the Archive build

action in your scheme is configured properly. Unlike with OS X applications, you

have no choice about code signing. You also need to attend to a couple of details

that are not necessary for OS X distribution archives.

To configure code signing for your iOS application, follow these steps:

1. Open your project in Xcode, select the iOS project in the Navigator area, and

again select the project in the sidebar of the Editor area.

2. Click Build Settings for the iOS project. Enter Code Signing into the Search

field for the build settings.

3. Locate the Code Signing Identity group and expand it.

4. For the Release identity, click the value setting to the right and configure it for

the recommended Automatic Profile Selector iPhone Distribution, as shown in

Figure 23.4.

ptg8126863

By the
Way

Finalizing Your Distribution Build 573

5. For the Any iOS SDK code-signing identity, click the Value setting and con-

figure it for the same iPhone Distribution certificate.

To configure your scheme settings for proper archiving, follow these steps:

1. From the Product menu, choose Edit Scheme.

2. From the Scheme selector at the top of the Scheme Editor dialog that appears,

select the scheme for your iOS target.

3. Select iOS Device for the destination at the top of the Scheme Editor dialog.

If you see your iPhone or other hardware iOS device listed in the pop-up list of
destinations, rather than the generic destination iOS Device, unplug your iOS
device. For some reason, the generic iOS Device destination sometimes disap-
pears when a hardware iOS device is available.

4. Select the Build pseudo-action and verify that your iOS app target is the only

target selected for the Archive action.

5. Select the Run build action and configure it to use the Debug build con-

figuration.

6. Select the Archive build action and configure it to use the Release build config-

uration, make sure that it has an acceptable archive name specified, and then

select the option to Reveal Archive in Organizer. Click Done to close the

Scheme Editor dialog.

FIGURE 23.4
Selecting
iPhone
Distribution for
the Release
identity.

ptg8126863

Did You
Know?

574 HOUR 23: Distributing Your Applications

If for some reason you really need your Run build action to use the Release con-
figuration, and you want it to use your development provisioning profile instead of
your distribution provisioning profile, you can configure the Run build action as you
want and create another build configuration with which to apply the distribution
provisioning profile. To do this, create a new build configuration (on the Info tab for
the project, under Configurations) for your iOS application and set up code signing
with your distribution provisioning profile with it. Then add a new scheme dedi-
cated to archiving that uses your new build configuration in its Archive build
action.

You can also use this trick to set up an iOS target so that it can be built for either
Ad Hoc distribution or App Store distribution simply by changing schemes. In this
case, you add two new build configurations for the project (on the Info tab for the
project, under Configurations), one for Ad Hoc distribution and one for App store
distribution, and then assign the appropriate distribution provisioning profiles to
each configuration (on the Build Settings tab for the target, under Code Signing).
Then, two new schemes are required, with each selecting the appropriate build
configuration for its Archive build action.

Final Code Cleanup
If you did not get rid of any remaining NSLog() invocations in your iOS app when

you globally cleaned your OS X application, do so now.

Also, remember to check your interface layout on all the devices that your app sup-

ports, and for all the device rotations that are enabled.

Attending to Additional Details
As with your OS X application, your iOS application needs icons and screenshots. It

also needs one or more launch images. Unlike OS X applications, instead of specify-

ing these images by providing a collected group of them in an ICNS file, for iOS

applications Xcode requires you to add the plethora of images required directly to

the target’s Summary tab into many scattered image-drop spaces. Hover over each

of the image-drop spaces to bring up its tooltip hint, to find out what the resolution

requirements are for each image.

You can find the full details about what Apple requires to submit iOS apps in the

iTunes Connect documentation available at https://itunesconnect.apple.com/docs/

iTunesConnect_DeveloperGuide.pdf.

Also unlike OS X apps, which really can contain just about anything in their inter-

nal directory structure, iOS apps for distribution are more rigorously constrained in

what they can contain. Therefore, it is possible to have an iOS app that builds and

runs fine, both in the simulator and on development hardware, but that cannot

build an archive that is acceptable for either Ad Hoc or App Store distribution.

https://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf
https://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

ptg8126863

Finalizing Your Distribution Build 575

Building Your App Archive
After you have collected the final bits for your application, it is time to build an

archive so that you can submit it to the App Store (or outside of the App Store via

Ad Hoc distribution). The process is identical to building an archive for an OS X

application:

1. Set the scheme as appropriate for your iOS application and set the architec-

ture to iOS Device on the Xcode toolbar.

2. From the Product menu, choose Archive.

If your changes to the code or other configuration details require that the app

be rebuilt, Xcode builds it, and then it constructs the archive and puts it in the

Organizer. If Xcode asks for permission to access a key from your keychain

during the build, click Allow so that it can properly sign the app archive. After

Xcode is finished building, signing, and archiving your app, the Organizer

opens, and you should be greeted with a new archive of your iOS app.

Derived Data Interference
If, when you try to build your app for archiving, you get a silly error about not being
able to find files in directories that look suspiciously like the name of an iPhone,
or you get complaints that build directories that should be standard (such as
build/Release-iphoneos/) are missing, it is because you have, or recently had, an
iOS device plugged in.

For reasons known only to Apple, some parts of the automagically constructed
derived data path take cues from the name of the device that’s plugged in, while
other parts of the automatic dependency discovery and linking mechanism ignore
the device information. As a result, certain orderings of build steps and device
connections and disconnections can leave Xcode with a completely confused
notion of the derived data directory structure.

If this happens to you, plug in your device, select the appropriate scheme, and
from the Product menu choose Clean. Unplug your device and repeat the cleaning
step. Then, make sure the architecture is listed as just a generic iOS device on
the Xcode toolbar and retry the Archive build action. If you have multiple iOS hard-
ware devices, you might need to repeat the connect-and-clean step for each
device.

If the archive of your iOS app looks like a spiral-bound notebook in the Organizer’s

list of archives, as shown for iBLine in Figure 23.5, rather than like a typical

rounded-square iOS app icon, the format of the archive is not correct. To diagnose

the problem, follow these steps:

ptg8126863

576 HOUR 23: Distributing Your Applications

1. Click the Distribute button on the Organizer.

2. Use the Save Built Products option to save the archive to your desktop.

3. Open the archive and find out what it contains other than your intended iOS

app. From this information, you should be able to figure out what portion of

the build process is including the unneeded information.

If you try this with the iBLine iOS app from the BsNees workspace from Hour

20, you’ll find that what gets saved to your desktop contains a directory hier-

archy and a copy of the BetterList.h header. Embedded headers are meaning-

less to iOS applications, and it turns out that there is an erroneous Copy

Headers build phase set up for the BetterListLib target in the BetterList proj-

ect in BsNees. Removing the Copy Headers phase for that target and rebuild-

ing the archive will fix the archive structure and cause iBLine to appear

properly in the Organizer.

FIGURE 23.5
A successful
archive of an
iOS app that
can’t be suc-
cessfully distrib-
uted, looks like
a spiral-bound
notebook.

Configuring an iTunes Connect
Application Record
You need to set up iTunes Connect records only if you plan to distribute your OS X or

iOS applications via the App Store. iTunes Connect is a moving target, and full docu-

mentation fills several volumes of Apple’s Developer Documentation, making it

impossible to do more than touch on the highlights here. Apple’s current introduc-

tion to the documentation is stored in a PDF file that you can download from

http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf.

http://itunesconnect.apple.com/docs/iTunesConnect_DeveloperGuide.pdf

ptg8126863

Did You
Know?

Configuring an iTunes Connect Application Record 577

To get started with iTunes Connect and create your first application record, follow

these steps:

1. Open https://itunesconnect.apple.com in your web browser. Enter your Apple

developer user ID and password. Click Sign In.

2. If you need to set up a contract so that you can receive payments for your app

through the App Store, click the Contracts, Tax, and Banking link in the main

body of the page.

At the top of the page that opens, you can request new contracts for regional

or worldwide distribution. The iTunes Connect Developer Guide contains infor-

mation on how to properly configure requests for contracts.

If you plan to distribute your app for free, you can use the free distribution

contract that was autocreated for you when you joined the Developer

Program, so you do not need to request a new contract.

3. Click the Manage Your Applications link in the main body of the iTunes

Connect page. A new page opens listing your current apps and most recent

activity with your submitted applications.

4. Click the Add New App button in the upper left of the Manage Your Apps

page. If you have not previously added an app to iTunes Connect, a page

opens requesting that you specify a company name.

Think carefully about what you enter for the company name. Like App IDs, com-
pany names are forever. The one you configure this first time will apply to all appli-
cations that you submit to the App Store in the future.

They’re also much more public. The company name you enter is exactly the com-
pany name that will be shown for your app in the App Store. This is also the value
that the App Store uses to collect all the apps that you submit so that users can
find other software that you have written, so it is both an important field for organ-
izing your submissions and highly visible public information.

5. After you have configured your company name (or immediately after clicking

the Add New App button, if you configured your company name previously),

you are launched into the App Information Entry process.

This process is documented in detail in the iTunes Connect Developer Guide.

As part of this process, you specify many details about your application, such

as the range of devices on which it can be installed, the pricing information,

variable rights for different territories, educational discounts, version informa-

tion, screenshots to be included in the App Store listings for the app, and

numerous other pieces of information.

https://itunesconnect.apple.com

ptg8126863
Watch

Out!

578 HOUR 23: Distributing Your Applications

As the App Store evolves and new iOS devices with new capabilities and new OS X

technologies become available, the information that Apple requires changes.

Download and read the iTunes Connect Developer Guide sections that apply to your

application carefully. You should download and peruse this document before each

app submission, just to be sure that you are working with the most current version

of the document and understand Apple’s requirements at the time of submission.

While you’re configuring your app record in iTunes Connect, you need to provide

your app name. Things will go more smoothly if you can use the app name exactly

as you have named the target in Xcode. If that app name is already taken, you

should probably edit your Xcode project to use a different name, instead of playing

games with renaming the application binary after Xcode builds the archive. You

also need to configure your bundle identifier exactly as it is set for your app in

Xcode and upload all your image assets for the app when requested.

After all your app details are filled in, you reach a page that shows an overview of

your app information and which shows a status of Waiting for Upload. When you

get here, you’re ready to distribute your archived application via the App Store dis-

tribution method.

It’s All in the Details
Make sure that you are very familiar with the current requirements when you’re
submitting your apps. Many seemingly minor details in the submission configura-
tion and requirements can come back to haunt you if you aren’t thoroughly famil-
iar with them. For example, the Developer Guide contains a note pointing out that
after you have created a new app submission record, future versions can expand
the list of supported devices but can never revoke existing device support. As a
result, if you accidentally create an app record that specifies that it supports a
device that you do not actually intend to support, you will end up being forced to
add support for that device to your program. Apple won’t add apps to the App
Store that do not support all the devices that their submission record lists, and
there is no way to get rid of the erroneous specification (both now and forever in
the future).

Distributing Your Archived Application
Now that you have your OS X or iOS application archived, it is time to take that last

big step and distribute it. For direct distribution with OS X applications, this is really

no step at all; you just need to give your application to someone, and you have just

distributed it. For Ad Hoc distribution of iOS applications, you give out copies of an

application.ipa file, and your users install it through iTunes, which is hardly any

more difficult. For Enterprise distribution of iOS applications, you need to add a few

ptg8126863

Watch
Out!

Distributing Your Archived Application 579

steps to the Ad Hoc distribution, but if you can edit a web page, enterprise distribu-

tion is easy enough. Finally, for App Store distribution, the steps get quite lengthy,

for both OS X and iOS applications. Regardless of which type of application or what

distribution process you choose, distribution starts in the Organizer. To distribute

your apps, follow these steps:

1. Open the Organizer and go to the Archives tab.

2. Select the app that you want to distribute from the sidebar on the left, and

select the appropriate build of the app from the list that loads in the

Organizer window.

3. Click the Distribute button beside the description of the app and build you just

selected.

4. In the dialog that appears, choose the type of distribution that you want for

your app. As outlined in the following subsections, several different distribu-

tion types are available, depending on the type of app you have selected for

distribution.

Distributing Unsigned OS X Applications
To directly distribute unsigned OS X applications, follow these steps:

1. Choose the Export As, Xcode Archive option and click Next.

2. Save the archive to your desktop, and then locate it on the desktop in the

Finder and right-click it to Show Package Contents.

3. Open the Products directory, and then open the Applications directory.

4. Drag your application from there out to your desktop.

Now you have a file you can distribute any way that you see fit. You can zip it up

and put it on a web page, create an installer package, or put it on a CD or thumb

drive and physically hand it to your users.

Exports Damaged in Transit
Yes, you should be able to simply export an unsigned application using the Export
As option for either the Application type or the Installer Package type, resulting in
an easier process for getting to your app for distribution. Unfortunately, this cur-
rently does not work. Apple’s evolving developer ID system seems to have gotten
its fingers in here where they don’t really belong, and the Organizer attempts to
validate the code signature on unsigned archives and, of course, fails to do so,
making these options currently useless.

ptg8126863

Did You
Know?

Did You
Know?

580 HOUR 23: Distributing Your Applications

Distributing Signed OS X Applications
To distribute signed OS X applications, follow these steps:

1. Choose the Export Developer ID-Signed Application option and click Next.

2. In the next dialog, confirm that the same developer ID is configured in this

dialog as was configured to code-sign the application in the build settings,

and then click Next.

3. Xcode asks you for permission to access your keychain (perhaps once, perhaps

a dozen times). Click the Allow button, and keep clicking it until Xcode stops

presenting that dialog and brings up a Save As dialog instead.

4. Give your application a name and save it where you can find it.

Yes, for some reason even though you have code signing turned on in the project,
you have to do it here again. If you did not code-sign during the build, it is not
clear what will happen if try to code sign now (and it is even less clear that what
does happen is the intended behavior). If you code-sign with a different developer
ID here than you did within the project itself, we have no idea what Gatekeeper is
going to think.

Using Ad Hoc Distribution for iOS Applications
To distribute your iOS applications via Ad Hoc distribution, follow these steps:

1. Choose Save for Enterprise or Ad-Hoc Deployment, and then click Next.

2. In the dialog that follows, select the appropriate code-signing identity. This

should match the code-signing identity that was used when creating your Ad

Hoc distribution provisioning profile (and should match the owner of your

distribution certificate).

3. Click Next, provide a filename, and then click Save.

A file with the extension .ipa is created. You can distribute this file however you

want to distribute it, via the web, CDs, or even email. When your users click it, your

iOS app loads into their iTunes library for installation on their device.

An Ad Hoc distribution can be installed only on the iOS devices that were selected
for it when the Ad Hoc distribution provisioning profile was created. Users with
other devices can install it in the iTunes library, but they cannot install it on their
devices.

ptg8126863

By the
Way

Distributing Your Archived Application 581

Using Enterprise Distribution for iOS Applications
Enterprise distributions are loaded directly to iOS devices through links on web

pages. So to use this option, you must first save your iOS app archive, and then

upload it and some associated resources to a web server. Then, you must construct a

web page with a link that your users can click to download your app.

To save the app for Enterprise distribution and upload it and some associated

resources to a web server, follow these steps:

1. Choose Save for Enterprise or Ad-Hoc Deployment, and then click Next.

2. In the dialog that follows, select the appropriate code-signing identity. This

should match the code-signing identity that was used when you created your

Ad Hoc distribution provisioning profile.

3. Click Next, provide a filename, and then click Save.

4. At the bottom of the dialog, check the Save for Enterprise Distribution check

box, and fill in the various fields that appear. Provide the URL where you are

going to store your iOS app for your users to download. You also need to make

a large and small application image available on a web server and provide

URLs for those in this dialog, too. Then, add a title and a subtitle if appropri-

ate, and if you want Xcode to automatically add the canonical iOS icon

“shine” to your images, check the box for that option. Then click Save.

Two files are created: one named appname.ipa, the other named appname.plist.

Figure 23.6 shows the Save for Enterprise Distribution dialog filled out for

iBLine, to be distributed from the iOSapps directory on my server at someguys-

farm.com.

FIGURE 23.6
Filling out the
details in the
Save for
Enterprise
Distribution
dialog.

If at some point later time you need to change the URLs that you used here, you
can edit the plist file and change them there, instead of re-exporting the archive
from the Organizer.

ptg8126863

Did You
Know?

582 HOUR 23: Distributing Your Applications

5. Upload both the application (.ipa) file and the plist file so that they are avail-

able at the URL you specified in the Save for Enterprise Distribution dialog.

If you specified that your application URL was

http://mycompany.com/dir1/myApp.ipa, you need to download the file from

that URL, and you need to download the associated plist file from

http://mycompany.com/dir1/myApp.plist.

You also need to upload a 512 x 512 PNG app image URL to be available

from the URL specified for the Large Image URL, and a 72x72 PNG app image

to be available from the URL specified for the Small Image URL.

Now you must construct a web page with a link that your users can click to down-

load your app, as follows:

1. Construct a link with the following syntax:

<a href=”itms-services://?action=download-manifest&url=itms-services:

//?action=download-manifest&url=<URL for your plist>” id=”text”>Download

➥My App

2. Embed it in a simple HTML page, such as the following:

<HTML>

<H1>BZZZZZZ! Get your Bs in Line!</H1>

<a href=”itms-services://?action=download-manifest&url=itms-services://

?action=download-manifest&url=http://someguysfarm.com/iOSapps/iBLine.plist”

➥id=”text”>Tap

Here to install iBLine

<hr>

Now Buzz on!

</HTML>

3. Upload the HTML page to your web server and share the URL for that page

with your users so that they can install your iOS app.

When users visit that page on their iOS device, they can click the link to download

and install the application on their device.

Remember that unless you have an Enterprise Developer account, users can
install your Enterprise distribution app only on devices that were specifically
included in the Ad Hoc distribution provisioning profile when you configured it in
the Provisioning Portal.

http://mycompany.com/dir1/myApp.ipa
http://mycompany.com/dir1/myApp.plist

ptg8126863

Q&A 583

Distributing Applications via the App Store
(OS X or iOS)
You cannot proceed with the App Store submission process unless you have already

configured an application record in the iTunes Connect system. If you have an

application record configured in iTunes Connect, follow these simple steps:

1. Select Submit to the (Mac or iOS) App Store and click Next.

2. On the next dialog that opens, provide your iOS developer username and

password.

Your app then begins its journey into the App Store validation process, and you

interact with iTunes Connect from here on out, to configure additional information

about your app, such as the purchasing options and so on.

Summary
Congratulations. You have finished your journey through Xcode’s twists and turns,

and have developed both an OS X application and an iOS app from start to finish

in Xcode. You now have a lot of details to remember, and several of Apple’s devel-

oper guides will be your constant companions in the future. But, you’re ready to

submit your apps to the App Store, or distribute them through other means, and

enter the wide world of professional developers building high-quality applications

for Macs, iPhones, and iPads. There’s a world of opportunity out there. Make a

BeeLine for it!

Q&A
Q. What’s this gatekeeper thing mentioned in conjunction with the

developer ID?

A. Gatekeeper is a new technology that Apple is currently testing that provides

users a way to validate the origin of OS X applications that they receive. As

currently envisioned, when enabled for a user account, the user of that

account will only be able to install apps that are signed with a valid developer

ID. The exact details of Gatekeeper seem likely to change as it nears final

release, but the mechanism of developer IDs to use with Gatekeeper appears

to be relatively stable, even if it is hit or miss that Xcode creates your devel-

oper ID automatically when it should.

ptg8126863

584 HOUR 23: Distributing Your Applications

Q. Is there any way to add more iOS devices where an already provisioned Ad
Hoc distribution can be installed?

A. Not without resorting to some undocumented tricks that may not work in the

future. The approved route is to create a new Ad Hoc distribution provisioning

profile in the Provisioning Portal and create a new, signed build of your app.

Workshop

Quiz
1. How can you obtain a runnable, distributable copy of your unsigned OS X

application?

2. Why doesn’t the PNG app icon that you added to your OS X app show up

when you look at the app in the Finder?

3. Why do some devices refuse to install the Enterprise distribution (download) of

your iOS app?

Answers
1. Unfortunately, the obvious answers like exporting an unsigned application or

installer are broken at the moment because Xcode tries to sign them even if

you ask it not to. As of Xcode 4.3.1, you need to save an Xcode archive of your

unsigned app and dig the actual application out of the archive bundle that

Xcode creates. Hopefully, the unsigned-export options will begin working

again in the future.

2. The PNG app icon that you added to your OS X app does not show up when

you look at the app in the Finder because Xcode accepts a PNG for the app

icon in the interface but cannot actually use one to build an icon for the

application. You need to use Icon Composer to build an ICNS format collec-

tion of PNG files and add them to the app icon slot instead.

3. This can be for a number of reasons. The most likely is that those devices were

not included in the Ad Hoc distribution provisioning profile. However, they

also might not be compatible with, or have installed, the versions of iOS that

you have required for your app, or perhaps they are not listed in your app’s

list of compatible devices.

ptg8126863

Workshop 585

Activities
1. Set up schemes to create both App Store and Ad Hoc distributions for your iOS

app.

2. Create an Ad Hoc distribution archive, and then set it up for distribution via

the Enterprise distribution (download) from a web server. Install it on your

team’s iOS devices wirelessly.

3. Create your company ID and an app record in iTunes Connect, and then

submit your built application archive to the App Store for validation and

distribution.

ptg8126863

This page intentionally left blank

ptg8126863

HOUR 24

Xcode CLI Utilities

What You’ll Learn in this Hour:
. How to use tools from Xcode from the command line
. How to get more information about command-line tools
. How to automate the Xcode build process using command-line tools

Xcode is rapidly evolving into a first-class integrated development environment (IDE) for

OS X and iOS applications. For many users, it serves its purpose perfectly in that capacity,

providing an environment where users can go to develop and test applications. However,

some users, and some uses, need to develop and build projects without wrapping the

process in the development environment. Some of these uses are purely preferential

because some programmers prefer to maintain code using command-line tools such as

emacs. Other such uses are entirely practical, such as the collaborative development of

cross-platform projects where some developers are not even using Xcode.

Conveniently for either use, Xcode exposes almost all of its GUI IDE functionality to the

command line, enabling you to perform the same actions that you can using clicks in the

interface by using commands in the Terminal instead. The primary tools you work with to

use Xcode functions from the command line are xcode-select, xcodebuild, and xcrun.

Several others are also available, including commands for code signing and product

signing.

To use command-line tools, you can launch Terminal.app (located in
/Applications/Utilities) on your workstation, or if you’re not at your
workstation you can connect to it using an ssh (Secure Shell) pro-
gram, enabling you to work with your Xcode projects from almost any-
where that you can find a network.

Did You
Know?

ptg8126863

Did You
Know?

By the
Way

588 HOUR 24: Xcode CLI Utilities

With a little creativity, you can set up a system so that a development team working

on a heterogeneous collection of hardware can all submit code changes to a central

Xcode build server, which can continuously compile their work, construct Enterprise

distribution ad hoc builds of an iOS app based on it, and email out app-download

links for your development team, all automatically and without you needing to

interact with the Xcode IDE other than for initial configuration.

Using xcode-select
To use the Xcode command-line tools, the first thing you have to do is tell the com-

mand-line tools where the Xcode folder is. You configure the location of the Xcode

folder using the xcode-select tool with a command such as this:

xcode-select -switch /Applications/Xcode.app

Depending on your user and machine configuration, you might need to run xcode-
select with administrative privileges. Use sudo xcode-select ... if the com-
mand complains that you do not have permission to use it.

If you move your Xcode installation, rerun this command to reflect the new path. If

you have multiple versions of Xcode, you can also use xcode-select to switch

between them.

To verify that xcode-select is set to the Xcode that you are expecting, run the

following:

xcode-select -print-path

/Applications/Developer/Xcode.app/Contents/Developer

Note that the path that this command returns is an expansion of what was actually

set. From this, we can also see that I have moved my Xcode installation from the

default location.

If you set your Xcode path as shown here, but when you run the check you do not
see the expansion, your system might have the wrong version of xcode-select. So
far, this most commonly occurs if a system has OS X 10.7.3 and then Xcode 4.2
is installed. OS X 10.7.3 comes with xcode-select by default, but installing Xcode
4.2 overwrites the system xcode-select. You can fix this by installing the 10.7.3
combo update.

ptg8126863

By the
Way

By the
Way

Using xcode-select 589

You do not really need to install the command-line tools package to use the Xcode
command-line tools discussed in this hour. However, if you want to make common
UNIX developer tools like the gnu compiler suite readily available systemwide,
install the command-line tools package either via the Downloads in the
Preferences or via Xcode, Open Developer Tool, More Developer Tools.

The man page for xcode-select is included in Table 24.1.

For those developers who might be a bit old fashioned and who really appreciate
having decent printed documentation that they can read, mark up in the margins,
and on which they can highlight examples of successful uses to reference, here
you go. This hour reproduces a few relevant man pages so that you don’t have to
print them out later and stuff them in here as your own personal (and binder-
breaking) addenda.

TABLE 24.1 xcode-select Man Page

xcode-select Manages the path to the Xcode folder for the Xcode BSD tools.

Synopsis

xcode-select [-help]

xcode-select [-switch xcode_path]

xcode-select [-print-path]

xcode-select [-version]

Description

Specifies which Xcode folder is used by these Xcode BSD tools: agvtool, ibtool, open-
diff, xcodebuild, xcrun, instruments. It can be used to switch between Xcode versions
or to update the path to the current Xcode folder if it is moved after installation.

Options

-help Prints the usage message. Also prints the usage mes-
sage when invoked with no options.

-switch xcode_path Sets the path of Xcode to xcode_path. Must be run as
the superuser. To set this without superuser permissions
or only for the current shell session, use the
DEVELOPER_DIR environment variable.

-print-path Prints the path of the current Xcode folder.

-version Prints xcode-select version information.

Environment Variables

DEVELOPER_DIR Specifies the search path for locating the current devel-
oper tools and overrides the xcode-select default.

ptg8126863

By the
Way

Did You
Know?

590 HOUR 24: Xcode CLI Utilities

Using xcodebuild
xcodebuild is the command-line tool that builds targets from Xcode projects and

workspaces. It has access to the schemes and build configurations of the project or

workspace and to some of the build actions (Build [the default], Clean, Archive,

and Test).

xcodebuild for Projects
To build a project, use Terminal.app to run xcodebuild in the directory with your

project.xcodeproj file, and if you have multiple projects in the directory, specify

which project to build with the -project option:

xcodebuild -project some-project -target target -scheme schemename

➥[build action]

For example, to build and archive our original BeeLine application target from

within its directory, I can issue the following commands:

cd /Volumes/Lump/SGFApps

cd BeeLine

xcodebuild -target BeeLine -scheme BeeLine archive

Xcode takes some time and prints a considerable amount of detail to the terminal.

All of this same action is taking place behind the scenes when Xcode is running a

build in response to a click in the IDE interface. When it is finished, it prints **

Archive Succeeded ** to the terminal and returns you to the command prompt.

If you do not specify the build action, xcodebuild compiles the target as per the
Build for Archive settings, but does not actually construct the archive.

The target and the scheme do not need to be the same; they just happen to be in
this instance, and many others, because schemes are often autocreated with a
name shared with their target.

If I have multiple .xcodeproj files in the same directory, I can identify the one that

I want xcodebuild to use by adding the -project option to the xcodebuild

invocation:

xcodebuild -project BeeLine.xcodeproj -target BeeLine -scheme BeeLine archive

Both of these commands compile any source required to build the BeeLine target,

using the BeeLine scheme, and submit the compiled BeeLine.app product into the

Archives section of the Organizer.

ptg8126863

Did You
Know?

Did You
Know?

Using xcodebuild 591

If I want to build the project only to check for compile errors, and not build an

archive, I can simply omit the archive build action keyword. In that case,

BeeLine.app is built but not copied into the Organizer as an archive.

The documentation says that you can omit the -scheme parameter for project
builds and just use the -target parameter, but builds do not seem to work prop-
erly in some situations when the scheme is omitted. It is possible that there are
other situations where it breaks if it is included. If your builds produce errors
rather than successful archives, try removing or adding the parameter for the
appropriate scheme.

xcodebuild for Workspaces
To build a workspace, you must first change directories to the directory containing

the .xcworkspace file. Then you invoke xcodebuild adding a -workspace option to

the xcodebuild invocation and dropping the -project option.

xcodebuild -workspace some-workspace -scheme schemename

➥[-configuration Release|Debug] [-sdk thesdk] [-arch thearch] [build action]

For example:

xcodebuild -workspace BsNees.xcworkspace -scheme iBLine -configuration

➥Release -sdk iphoneos -arch armv7 archive

Xcode will build iBLine, and a bit oddly, if you have not yet told it to Always Allow

access to the code-signing keys, it opens a dialog box at the end of the build request-

ing your permission to access the keychain for code signing. If you do not want to

have to deal with clicking the button to allow access, you can either grant default

access or compile your app without code signing into an archive for the Organizer

and then code-sign the result when you actually export it for distribution.

Don’t be alarmed if you see a list of errors pop up first, before seeing a success-
ful build at the end. Xcode’s ability to correctly identify implicit dependencies does
not seem to work quite properly when using the xcodebuild command, and for
the BsNees workspace, it erroneously attempts to build the BetterList framework
as a prerequisite for iBLine builds and for the libBetterListLib static library.

Despite these errors on the (irrelevant) target, xcodebuild will eventually get to the
correct targets and build them properly. It’s likely that you can avoid the creation
of these unnecessary errors by explicitly specifying the dependencies for your tar-
get, but that defeats the purpose of the workspace implicit dependency mecha-
nism, so it’s probably better to just live with them.

ptg8126863

By the
Way

592 HOUR 24: Xcode CLI Utilities

xcodebuild for Release Builds
If you need to save the build products directly to the file system rather than into the

Organizer archives, you can also use xcodebuild for that. To use this option, you use

xcodebuild and explicitly specify the build action Build:

xcodebuild -workspace BsNees.xcworkspace -scheme iBLine

➥-configuration Release -sdk iphoneos -arch armv7 build

Yes, the Build build action is the default, but for this specific type of invocation,
you get different behavior if you omit it, even though it is the default. This is prob-
ably yet another Xcode bug.

When xcodebuild returns control to the command line, look at the last line of out-

put. There will be a path to your derived data location ending in appName.app,

which is the on-disk location where the output is stored. Keep track of this path; you

will need to provide it to other tools for automatic packaging or autodistribution of

your product.

Other Uses for xcodebuild
You can also use xcodebuild to display which software development kits (SDKs) are

available in the current version of Xcode that has been set with xcode-select.

For example, in the current version of Xcode, we see that both macosx10.6 and

macosx10.7 SDKs are available:

xcodebuild -showsdks

Mac OS X SDKs:

Mac OS X 10.6 -sdk macosx10.6

Mac OS X 10.7 -sdk macosx10.7

iOS SDKs:

iOS 5.0 -sdk iphoneos5.0

iOS Simulator SDKs:

Simulator - iOS 5.0 -sdk iphonesimulator5.0

Upon switching to a different Xcode, we see that macosx10.7 and macosx10.8 SDKs

are available:

xcodebuild -showsdks

Mac OS X SDKs:

Mac OS X 10.7 -sdk macosx10.7

Mac OS X 10.8 -sdk macosx10.8

ptg8126863

Using xcodebuild 593

iOS SDKs:

iOS 5.0 -sdk iphoneos5.0

iOS Simulator SDKs:

Simulator - iOS 5.0 -sdk iphonesimulator5.0

As of this writing, Xcode changes regularly. If you find that you are forgetting which

versions of Xcode you have installed, you can use xcodebuild to find out what ver-

sion of Xcode is the current version.

It turns out that Xcode 4.2.1 is what gave us the first batch of SDKs shown:

xcodebuild -version

Xcode 4.2.1

Build version 4D502

Xcode 4.4. gave us the second batch of SDKs:

xcodebuild -version

Xcode 4.4

Build version 4F90

Table 24.2 provides the man page for xcodebuild.

TABLE 24.2 xcodebuild Man Page

xcodebuild Builds Xcode projects and workspaces.

Synopsis

xcodebuild [-project project-name] [-target target-name . . .]
[-configuration configuration-name] [-sdk sdk-full-path|sdk-name]
[build-action . . .]
[setting=value . . .] [-user-default=value . . .]

xcodebuild -workspace workspace-name -scheme scheme-name

[-configuration configuration-name] [-sdk [sdk-full-path | sdk-name]
[build-action . . .]

[setting=value . . .] [-user-default=value . . .]

xcodebuild -version [-sdk [sdk-full-path | sdk-name] [info-item]

xcodebuild -showskds

ptg8126863

594 HOUR 24: Xcode CLI Utilities

TABLE 24.2 Continued

xcodebuild -list [-project project-name | -workspace workspace-name]

Description

xcodebuild builds one or more targets contained in an Xcode project or builds a
scheme contained in an Xcode workspace.

Usage

To build and Xcode project, run xcodebuild in the directory containing your project,
which is the directory containing project-name.xcodeproj. If you have multiple projects
in the directory, use -project to specify which project to build. By default, xcode-
build builds the first target listed in the project with the default build configuration.

To build an Xcode workspace, pass both the -workspace and -scheme options to
define the build. The parameters of the scheme control which targets are built and
how they are built, although you may pass other options to xcodebuild to override
some parameters of the scheme.

Options

-project project-name Builds project-name. Required if there are multi-
ple projects in the same directory.

-target target-name Builds target-name.

-alltargets Builds all targets in the specified project.

-workspace workspace-name Builds workspace-name.

-scheme scheme-name Builds scheme-name. Required if building a work-
space.

-configuration Uses configuration-name when building each
➥configuration-name target.

-arch architecture Builds each target for architecture.

-sdk [sdk-full-path | Builds an Xcode project or workspace against the
➥sdk-name] specified SDK, using build tools appropriate for

that SDK. SDK can be specified by an absolute
path or canonical name.

-showsdks Lists available SDKs that Xcode knows about.

-list For a project, lists the targets and configurations.
For a workspace, lists the schemes.

build-action . . . Specifies a build action or actions to perform.
Available build actions are as follows:

build Builds the target in the build root
(SYMROOT). This is the default build
action.

ptg8126863

Using xcrun 595

TABLE 24.2 Continued

archive Archives a scheme from the build
root (SYMROOT). Requires specify-
ing a workspace and scheme.

installsrc Copies the source of the project
to the source root (SRCROOT).

install Builds the target and installs it
into the target’s installation direc-
tory in the distribution root
(DSTROOT).

clean Removes build products and inter-
mediate files from build root
(SYMROOT).

-xconfig filename Loads the build settings defined in filename
when building all targets. These settings override
all other settings, including settings passed indi-
vidually on the command line.

setting=value Sets the build setting to value.

-user-default=value Sets the user default user-default to value.

-version Displays version information for this install of
Xcode.

-usage Displays usage information for xcodebuild.

Environment Variables

XCODE_XCONFIG_FILE If set, provides the path to a file for build settings
that should be loaded and used for building all tar-
gets. These settings override all other settings,
including ones passed at the command line and
those in the file passed with the -xconfig option.

Using xcrun
You can use xcrun to run or locate other necessary development tools. One of its

most important uses is invoking the PackageApplication tool, to create distributable

packages from the output of xcodebuild.

Packaging Applications with xcrun
The basic syntax for xcrun is as follows:

xcrun [-sdk thesdk] toolname arguments

ptg8126863

596 HOUR 24: Xcode CLI Utilities

For example, to package the iBLine.app output created by the xcodebuild…build

command earlier, I can use xcrun like this:

xcrun -sdk iphoneos PackageApplication -v full path to Release-iphoneos dir

➥/iBLine.app -o ~/Desktop/iiBBLine.ipa --sign “iPhone Distribution Cert”

➥--embed full path to mobileprovisioning profile

The full path to Release-iphoneos dir component is taken from the last line

of the xcodebuild invocation that built iBLine.app in build mode.

You can find the iPhone Distribution Cert value by using Keychain Access and

looking in your Login keychain certificates for a certificate starting with the words

iPhone Distribution. The search for this key is slightly smart, and it is sufficient to

specify only a portion of the name of the certificate, as long as that portion is

unique among all of your certificates. For example, if you have only one distribu-

tion certificate, it is sufficient to use Distribution Certificate for your search. In my

case, iPhone Distribution is adequately unique.

The full path to mobileprovisioning profile value can be the full path to an Ad Hoc dis-

tribution certificate that you downloaded from the Provisioning Portal, if you’ve

saved these somewhere convenient on disk. It cannot currently look these up from

Xcode’s stored copies of the provisioning profiles.

If you did not save a copy outside of Xcode, you can find Xcode’s stored copy as

follows:

1. Open the Xcode Organizer and display the Devices tab.

2. Select Provisioning Profiles under the Library group in the sidebar.

3. Right-click the desired Ad Hoc distribution provisioning profile and choose

Reveal Profile in Finder.

4. If you drag and drop the revealed .mobileprovision file into a Terminal win-

dow, it places a copy of the path to that file in the Terminal.

Fully filled in with the values that my system produces for iBLine, this command

looks like this:

xcrun -sdk iphoneos PackageApplication -v

➥/Users/ray/Library/Developer/Xcode/DerivedData/BsNees-

➥bnbedrkgivgpkjbnjdolvofyhygn/Build/Products/Release-iphoneos/iBLine.app -o

➥~/Desktop/iiBBLine.ipa --sign “iPhone Distribution” -embed

➥/Users/ray/Library/MobileDevice/Provisioning\

➥Profiles/6BC2A945-5A7D-4336-83AE-2D43A33E50F3.mobileprovision

ptg8126863

Using xcrun 597

Other Uses for xcrun
You can also use xcrun to locate tools that are stored within Xcode and that you

might need to use at the command line. For example, to locate ibtool (the applica-

tion for validating and compiling Interface Builder documents), you can use xcrun

like this:

xcrun -find ibtool

It responds with the following:

/Applications/Xcode.app/Contents/Developer/usr/bin/ibtool

Table 24.3 shows the man page for xcrun.

TABLE 24.3 xcrun Man Page

xcrun Runs or locates development tools.

Synopsis

xcrun [-sdk SDK] -find tool_name

xcrun [-sdk SDK] [-log] tool_name [tool_arguments]

tool_name [tool_arguments]

Description

xcrun provides a means to locate or invoke coexistence- and platform-aware devel-
oper tools from the command line, without requiring users to modify makefiles or do
other inconvenient things.

The SDK defaults to the boot system OS SDK, and can be specified by the SKDROOT
environment variable or the -sdk option, which takes precedence over SDKROOT.

Usage

The first usage returns the full path to tool_name.

The second usage executes tool_name with tool_arguments.

The third usage is when xcrun is used as a replacement for any of the standard UNIX
developer tools (typically in /usr/bin), by duplicating xcrun and renaming the dupli-
cate as a standard UNIX developer tool. When invoked in this fashion, xcrun uses the
name of the tool it is replacing, tool_name, to locate the corresponding tool within
the evaluated DEVELOPER_DIR and SDK. In this usage, tool_arguments are not
parsed by xcrun.

Options

-verbose Displays information about how the redirected path is
constructed.

-no-cache Does not consult the cache when looking up values.

-kill-cache Removes the cache and causes all values to be recached.

ptg8126863

598 HOUR 24: Xcode CLI Utilities

TABLE 24.3 Continued

-sdk SDK Specifies which SDK to use. Overrides SDKROOT environ-
ment variable.

-log Prints the full command line that is invoked.

-find Prints the full path to the tool.

Environment Variables

DEVELOPER_DIR Specifies the search path for locating the current devel-
oper tools and overrides the xcode-select default.

SDKROOT Specifies the SDK to use. Overriden by the -sdk option.

xcrun_log Same as specifying -log.

xcrun_nocache Same as specifying -no-cache.

xcrun_verbose Same as specifying -verbose.

Other Xcode Command-Line Tools
Some other Xcode command-line tools that might prove useful include agvtool,

ibtool, opendiff, instruments, codesign, and productsign. We do not discuss these

commands in depth, but knowing about them will be helpful, and you can always

access their documentation through the built-in man pages:

. agvtool is the Apple-generic versioning tool. You can use it to manage version

numbers, if you have versioning enabled in your project:

To display the current build version, you can use agvtool to query the project

version, as follows:

agvtool what-version

To increment the CFBundleVersion across all your Info.plist files, you can use

agvtool like this:

agvtool next-version -all

Alternatively, if you want to update your CFBundleVersion to a specific value,

rather than increment it, you can use agvtool, as follows:

agvtool new-version -all 2.0

You can also query your marketing version (the CFBundleShortVersionString

in your Info.plist file) like this:

agvtool what-marketing-version

ptg8126863

Bigger and Better Command-Line Uses 599

And you can update your marketing version in all of your Info.plist files

simultaneously using agvtool like this:

agvtool new-marketing-version 4.0

Unfortunately, if you need different marketing versions in different Info.plist

files, you will need to update these manually.

. ibtool compiles, prints, updates and verifies Interface Builder documents. It is

commonly used when localizing applications.

. opendiff launches FileMerge from the command line to graphically compare

or merge files or directories.

. instruments reads an Instruments template from the command line.

. productbuilder creates a deployable product archive that can be used with

the OS X Installer.

. codesign and productsign are components needed for working with the

Developer ID program. Man pages for these tools might still be in flux as

Apple refines the Developer ID program.

. codedesign creates and manipulates code signatures.

. productsign signs an OS X Installer product archive. It can be used in three

different modes:

. Creating a product archive using a distribution file

. Creating a product archive from one or more bundles (or component

packages)

. Creating a distribution for one or more component packages

. PackageMaker is another utility that is needed for the Developer ID program.

It is included in the Auxiliary Tools download from the Developer site. You

can open it in the Finder or run open path-to-auxiliary-tools/PackageMaker.app

to launch it from the command line.

Bigger and Better Command-Line Uses
While simply managing and building projects from the command line can give you

enhanced development flexibility and convenience, a much more sophisticated use

of the tools, and one that can take your development efforts to a whole new level, is

using these tools to put your projects under the control of a continuous integration

ptg8126863

600 HOUR 24: Xcode CLI Utilities

server. Using a continuous integration server (CIS) pushes the job of building your

application, and even potentially distributing it to your users, into the hands of a

continuously running back-end process that can compile, verify, package, and

deliver your application, even if your workstation is turned off.

Under this scenario, your entire development team would submit their changes to

the project to a centralized CIS server, which would handle the build process, inde-

pendent of any of their workstations. Xcode, on each of their workstations, would

become a front end to developing the code and project, rather than the mechanism

of building it and distributing it.

Although you can build a sort of CIS yourself, using the UNIX cron command to

periodically execute shell scripts containing the appropriate xcodebuild and xcrun

commands, a plethora of quite sophisticated CIS tools already exists. If you are

interested in pursuing this option, we recommend that you look into Jenkins

(http://jenkins-ci.org/) and TestFlight (http://testflightapp.com/), although many of

their competitors are also worthy of your consideration.

Summary
In this hour, you learned how to use the Xcode suite of command-line tools to build

targets without having to launch into the Xcode IDE itself. You also learned how to

package those built targets into actually distributable versions of your applications.

These capabilities can be immensely useful for several reasons. At the simplest, these

command-line tools enable you to check the validity of code changes in your proj-

ect, regardless of whether you are at the keyboard of your workstation or connected

to it from a remote terminal on the other side of the world. At their most sophisti-

cated, they can be used to completely customize your build environment and

process to work the way that you want it to.

Q&A
Q. Why should I use xcrun sometool rather than just using the tool directly?

A. Because xcrun knows about your currently selected Xcode version and will

always point to the correct tool binary.

http://jenkins-ci.org/
http://testflightapp.com/

ptg8126863

Q&A 601

Q. Is there some way to make that (horrible) path to the Release build of an
app less of a pain to work with?

A. It doesn’t seem like Xcode provides a neat solution at this point, but you can

always use other UNIX tools to make your life easier. For example, you could

create a Perl script like this:

#!/usr/bin/perl

$apploc = “”;

while($inline=)

{

if($inline =~m/Validation (.+\.app)/) { $apploc = $1; }

}

print $apploc;

Put it somewhere that your shell can find it and make it executable, and then

run the xcodebuild like this:

export apploc='xcodebuild -workspace BsNees.xcworkspace -scheme iBLine

➥-configuration Release -sdk iphoneos -arch armv7 -target iBLine build |
➥xcodebuildparse.pl'

The final directory and appName.app result will now be stored in the shell

variable $apploc, which you could use in your xcrun command like this:

xcrun -sdk iphoneos PackageApplication -v $apploc -o ~/Desktop/iBLine.ipa

➥--sign “iPhone Distribution” --embed /Users/ray/Library/MobileDevice/

➥Provisioning\ Profiles/6BC2A945-5A7D-4336-83AE-2D43A33E50F3.

➥mobileprovision

Q. I set up a cron job to run my xcodebuild commands. It works for some, but
not for others. What’s the problem?

A. The builds for which it is breaking are ones that require access to your key-

chain. When you’re working in a terminal, inside a logged-in session directly

at your workstation, you have full authentication to your Login keychain. For

security reasons, when you log in to the machine remotely, the shell you’re

working in, at least with OS X 10.7.3, doesn’t have access to your Login key-

chain. If you want to make this work, copy your development/distribution cer-

tificates from your Login keychain into one that’s available to a remotely

connected shell. The process for doing this is the same as Apple documents for

moving your identities around between different machines (see TN2250 at

http://developer.apple.com/library/ios/#technotes/tn2250/). You have to iden-

tify the correct keychain by adding the command security list-keychains

to a cron job and capturing the output to see which keychains are available.

They probably include one for named /Library/Keychains/System.keychain,

where you could store your credentials if you do not mind them being avail-

able to the entire system. If you prefer to keep your credentials more private,

http://developer.apple.com/library/ios/#technotes/tn2250/

ptg8126863

602 HOUR 24: Xcode CLI Utilities

you can use the security command in your script to unlock additional key-

chains. See the man page for the security command (man security in the

terminal) for complete details on accessing keychain resources.

Workshop

Quiz
1. How can you find out which of your installed Xcode versions is being used by

the command-line tools?

2. xcodebuild for projects uses the -target parameter to specify what’s going to

be built. What controls the build target for xcodebuild for workspaces?

3. How can you learn more about the syntax, typical uses, and other documen-

tation for these (and other) command-line commands?

Answers
1. xcode-select -print-path

2. xcodebuild for workspaces uses the targets specified by the scheme for the pro-

vided build action.

3. From the man pages: man commandname at the command line.

Activities
1. Test build your apps using the command-line tools.

2. Write a shell script that invokes both xcodebuild and xcrun to produce a final

packaged app.

3. Write the next killer app for the App Store, change the world, and don’t forget

to say nice things about us when you’re rich and famous!

ptg8126863

Symbols
@2x naming convention, 114

@class directive, 222

@implementation directive, 34

#import directive, 29, 34

@interface directive, 29-30

@property directive, 31-33

@synthesize directive, 35

A
accessing

Core Data model data,

458-460

Quick Help, 158

actions, 196

connections, creating, 198,

201-203

creating, 208-211

prebuilt, 203

activating Quick Help Inspector,

160

ad hoc distribution, iOS

applications, 580

adding

attributes in Core Data model

editor, 441-442

browser component to OS X

interface, 382-387

code snippets, 140-141

custom objects to IB,

192-193

embedded frameworks to OS

X applications, 388-395

entities in Core Data model

editor, 440-441

files to projects, 105-106

frameworks to projects,

108-109

groups to projects, 110-111

icons to applications,

113-114

programming language

support

Python, 322-323

Ruby, 324-325

Index

ptg8126863

projects to workspaces,

517-519

scenes to storyboard,

218-219

schemes, 270-271

shared frameworks to OS X

applications, 376-382

supporting view controller

subclasses to scenes,

220-223

templates, 99-105

unit tests to applications,

466-471

Xcode Help viewer book-

marks, 156

Address Book Actions, 81

advanced segues, creating

navigation controllers,

230-234

tab bar controllers, 234-239

agvtool, 598

alignment (IB), 179

allocating objects, 40-41

Analyze action, 255, 268

API (application programming

interface), 145

App IDs, creating, 556-560

App Store

applications, distributing, 583

iTunes Connect records,

configuring, 576-578

AppleScript, 317-319

application access, comparing

Mac OS X and iOS, 7

application logic, updating iOS

applications, 414-430

Application templates, 72

Master-Detail template, 73

OpenGL Game template, 74

applications

accessing through Bundle

Loader, 480-483

distributing via App Store, 583

icons, adding, 113-114

iOS

ad hoc distribution, 580

distribution build,

finalizing, 572-576

enterprise distribution,

581-582

launching in iOS simulator,

272-273

OS X

browser component,

adding to interface,

382-387

building, 356-358

code, attaching to

interface, 364-369

distribution build,

finalizing, 568-572

embedded frameworks,

adding, 388-395

interface, building,

374-375

interface, creating,

359-364

object references,

inserting in code,

369-373

shared frameworks,

adding, 376-382

signed applications,

distributing, 580

unsigned applications,

distributing, 579

unit tests, adding, 466-471

ARC (Automatic Reference

Counting), 49

archive

building applications

OS X applications,

571-572

iOS applications, 575-576

settings, confirming for OS X

applications, 569-570

Archive action, 255, 268

arrays, Cocoa, 52

articles, 150

Assistant Editor, 131-132

attaching code to OS X interface,

364-369

attributes, 436

adding in Core Data model

editor, 441-442

of properties, 33

Attributes Inspector (IB), 188-189

Auto Layout system (IB), 183-188

auto snapshots, 282

auto-indentation feature (Source

Editor), 120-121

autocompletion feature (Source

Editor), 118-120

Automator Action template, 81

604

adding

ptg8126863

B
balancing delimiters (Source

Editor), 122-123

binding data models to user

interfaces, 446-458

bindings, 438

blocks, 43

bookmarks, adding Xcode Help

viewer, 156

branching, 284, 304-306

breakpoints

conditional, 502-506

setting, 497-498

broken distribution certificates,

repairing, 551-552

browser component, adding to OS

X interface, 382-387

browsing Xcode Help viewer

library, 156

build actions, 254, 266

build configurations, 252, 255

build actions, 254

schemes

adding, 270-271

editing, 266-268

targets, 252

case study, 260-262

creating, 257-258

products, 253

verifying, 256

Build Phases tab (Project

Navigator), 263

Build Rules tab (Project

Navigator), 264

Build Settings tab (Project

Navigator), 263

building

iOS applications

archive, 575-576

from template, 403-404

static library target,

adding, 404-413

OS X applications, 356-358

archive, 571-572

interface, 359-375,

382-387

built-in langauges

AppleScript, 317-319

C, 313-315

C++, 315-316

Java, 319-320

Objective-C, 316-317

Perl, 321-322

Bundle Loader, 480-483

bundles, 80

C
C, 313-315

C++, 315-316

reusing code, 349-352

categories, defining, 37

certificates, 550

changes, committing, 284

checkouts, 283

CIS (continuous integration

server), 600

class methods, 27

classes, 26, 216

cleaning up final code

iOS applications, 574

OS X applications, 570

Cocoa, 50-51

arrays, 52

dates, 53

dictionaries, 53

numbers, 53

strings, 52

URLs, 54

versus Cocoa Touch, 51

Cocoa Application template, 79

Cocoa Framework template, 80

Cocoa Touch, 51

Cocoa Touch Static Library, 77

Cocoa-AppleScript Application

template, 79

code

attaching to OS X interface,

364-369

auto-indentation (Source

Editor), 120-121

autocompletion (Source

Editor), 118-120

C/C++, reusing, 349-352

connection code, writing with

Interface Builder, 205-211

design, 599

extracting, 137

interface object references,

inserting, 369-373

refactoring

instance variables,

encapsulating, 138

symbols, renaming,

135-136

How can we make this index more useful? Email us at indexes@samspublishing.com

code

605

ptg8126863

snippets

adding, 140-141

editing, 141

viewing, 138

spaghetti code, 59

code folding (Source Editor),

123-124

coding how-tos, 150

collecting

data simultaneously with

Instruments, 543-545

multiple runs in Instruments,

541-542

Command Line Tool template, 80

command-line

agvtool, 598

xcode-select tool, 588-589

xcodebuild tool, 590-591

available SDKs,

displaying, 592-595

workspaces, 591

xcrun, 595-597

command-line tools, 587

commits, 298-299

committing changes, 284

comparing

dynamic libraries and

frameworks, 330

Mac OS X and iOS develop-

ment, 6

application access, 7

frameworks, 6

interface development, 6

Xcode 3.2 and Xcode 4.2, 4

compilers, LLVM, 49

conditional breakpoints, 502-506

configurations, 437

configuring

documentation downloads,

148-149

iTunes Connect records,

576-578

segues, 225-227

template for projects, 85-87

workspaces

iOS projects, 524-529

OS X projects, 519-524

connecting to remote

repositories, 287-290

connection code, writing with

Interface Builder, 205-211

connections, 166

creating, 198

to actions, 201-203

to outlets, 199-200

editing with Quick Inspector, 204

continuing program execution in

debuggers, 499

controllers, 59, 62, 67-68

IBAction directive, 63-64

IBOutlet directive, 63

convenience methods, 41

converting OS X applications to

iOS, 400-402

Core Data Editor, 64-65, 438-440

attributes, adding, 441-442

entities, adding, 440-441

graph style, 445

relationships, defining,

443-444

Core Data model, 60, 436

binding to user interface,

446-458

data, accessing through code,

458-460

data, reading, 461-462

data, writing to Core Data

store, 460-461

Core Image, 82

creating

actions, 208, 210-211

App IDs, 556-560

connections, 198

to actions, 201-203

to outlets, 199-200

distribution certificates,

552-554

distribution profiles, 560-563

frameworks, 341-347

ICNS files, 571

interfaces (OS X), 359-375,

382-387

iOS distribution certificates,

550-551

outlets, 206-208

projects, 13, 83

template, configuring,

85-87

template, saving, 87

template, selecting, 84

protocols, 38

provisioning profiles, 552-554

segues, 223-225

navigation controllers,

230-234

push segues, 243

tab bar controllers, 234-239

606

code

ptg8126863

snapshots, 280

static libraries, 333-342

superclasses, 137

targets, 257-258

user interfaces, 174

working copies, 295-296

workspaces, 515-517

custom objects, adding to IB,

192-193

customizing templates, 91

D
data models, binding to user

interfaces, 446-458

data type classes, Cocoa

arrays, 52

dates, 53

dictionaries, 52-53

numbers, 53

strings, 52

URLs, 54

dates, Cocoa, 53

debuggers, 488

breakpoints, 497-498

conditional breakpoints,

502-506

gdb, 489-492

lldb, 490

paused applications,

maneuvering, 498-499

proactive debugging, 493-496

program execution,

continuing, 499

stepping forward, 500-502

declaring variables, 38

object data types, 40

primitive data types, 39

defining

categories, 37

methods, 30-31

relationships in Core Data

model editor, 443-444

delimiters (Source Editor),

122-123

deploying frameworks, 349

derived data interference,

troubleshooting, 575

design patterns, 58

MVC, 59

controllers, 62-64, 67-68

Data model, 64-65

models, 60

views, 61, 66

developers, paid developer pro-

grams, 8

joining, 9-11

registration, 9-10

development paradigms

comparing Mac OS X and

iOS, 6

imperative development, 24

OOP, 24

inheritance, 25

Objective-C, 26-49

development profiles, installing,

17-19

dictionaries, Cocoa, 53

dismissing modal segues, 227

distributing, applications

iOS applications

ad hoc distribution, 580

App Store, 583

enterprise distribution,

581-582

signed applications,

OS X, 580

unsigned applications,

OS X, 579

distribution builds, finalizing

iOS applications, 572-576

OS X applications, 568-572

distribution certificates

creating, 550-554

repairing, 551-552

distribution profiles, 17

creating, 560-563

documentation

articles, 150

coding how-tos, 150

downloads, configuring,

148-149

Getting Started, 151

Quick Help, 147

accessing, 158

Quick Help Inspector,

activating, 160

results, interpreting,

159-160

reference documents, 152

sample code, 153

technical notes, 154

technical Q&As, 154

How can we make this index more useful? Email us at indexes@samspublishing.com

documentation

607

ptg8126863

video, 155

web-based, 146

Xcode Help viewer, 146

bookmarks, adding, 156

library, browsing, 156

library, searching, 157

Xcode tasks, 154

downloads

documentation, configuring,

148-149

updates, 284

Xcode developer program, 11

dynamic libraries, 330

E
editing

code snippets, 141

connections with Quick

Inspector, 204

schemes

Analyze action, 268

Archive action, 268

Build action, 266

Profile action, 268

Run action, 267

Test action, 267

embedded frameworks, adding to

OS X applications, 388-395

encapsulating instance

variables, 138

ending interface files, 33

enterprise distribution for iOS

applications, 581-582

entities, 436

adding in Core Data model

editor, 440-441

errors, 133

fixing, 135

jumping to in Issue

Navigator, 134

events, actions, 196

examples of navigation

controllers, 239-248

exporting snapshots, 282

expressions, 44-45

condition-based loops, 47

if-then-else statements, 45

loops, 46

switch statements, 45

syntax, 44

Extended Detail pane

(Instruments), troubleshooting

memory leaks, 540

extracting code, 137

F
features

iOS simulator, 275-276

Source Editor, 125-126

fetch requests, 437

fetched properties, 437

File Template Library, 103-105

File Template Wizard, adding

template-based files, 99-103

files

adding to projects, 105-106

locating, 107

removing, 106-107

renaming, 106

filters (project Navigator), 98

final code, cleaning up in iOS

applications, 574

finalizing distribution build

iOS applications, 572-576

OS X applications, 568-571

archive settings,

confirming, 569-570

archive, building, 571-572

final code, cleaning up, 570

fixing

distribution certificates,

551-552

errors in Issue Navigator, 135

for loops, 46

Framework & Library templates, 72

frameworks, 6

adding to projects, 108-109

Core Data, 436

Core Image, 82

creating, 341-347

deploying, 349

embedded frameworks,

adding to OS X applications,

388-395

headers, 109

removing from projects, 110

selecting, 331-333

shared frameworks, adding to

OS X applications, 376-382

608

documentation

ptg8126863

G
gdb (GNU debugger), 489-492

generating multitouch events in

iOS simulator, 274

Getting Started documents, 151

Git, 283

branching, 304-306

commits, 298-299

merging, 306-307

pulls, 299-300

pushes, 298-299

repositories

creating, 286-287

loading projects into,

293-294

status codes, 297

updates, 299-300

working copies, creating,

295-296

graph style (Core Data model

editor), 445

groups

adding to projects, 110-111

removing from projects, 111

guides (IB), 177-178

H
headers (frameworks), 109

Hellegrass, Aaron, 317

how-to videos, 155

I
IBAction directive, 63-64

IBOutlet directive, 63

ibtool, 599

ICNS files, constructing, 571

icons, adding to application,

113-114

IDE (interface development

environment), 16

if-then-else statements, 45

Image Unit plug-in, 82

imperative development, 24

implementation files

#import directive, 34

@implementation directive, 34

@synthesize directive, 35

methods, implementing,

35-36

implementing

methods, 35-36

tests for existing code,

472-480

inheritance, 25

initializing objects, 40

convenience methods, 41

Installer plug-in, 82

installing

development profiles, 17-19

Xcode developer suite, 11

instance methods, 27

instance variables, 27

encapsulating, 138

instantiation, 26-27

Instruments

interface, 534-536

memory leaks

additional information,

retrieving, 540

checking for, 537-539

multiple runs, collecting,

541-542

simultaneous data collection,

543-545

interface, 96

Instruments, 534-536

Navigator, 97-98

OS X

browser component,

adding, 382-387

code, attaching, 364-369

creating, 359-364

external code, enabling

communication with

QuartzGrough instance,

374-375

object references,

inserting in code,

369-373

Xcode, 13, 88

Interface Builder, 166

connection code, writing,

205-211

custom objects, adding,

192-193

interfaces, creating, 174

layout tools

alignment, 179

Auto Layout system,

183-188

How can we make this index more useful? Email us at indexes@samspublishing.com

Interface Builder

609

ptg8126863

guides, 177-178

selection handles, 178

Size Inspector, 179-182

object identities, setting,

191-192

OS X interface, 167

creating, 359-364

storyboards, 172-174

loading, 168

XIB files, 168, 170

interface objects, 170-171

placeholder objects,

169-170

Interface Builder Editor, 62

interface development,

comparing Mac OS X and iOS, 6

interface files, 28

#import directive, 29

@interface directive, 29-30

@property directive, 31-33

ending, 33

methods, defining, 30-31

Interface Inspector

Attributes Inspector, 188-189

Simulate Document

command, 189-190

interface objects, 170-171

interpreting Quick Help results,

159-160

IOKit Driver template, 82

iOS applications

ad hoc distribution, 580

application logic, updating,

414-430

building from template,

403-404

converting from OS X

applications, 400-402

distribution build, finalizing,

572-576

enterprise distribution,

581-582

projects, configuring for work-

spaces, 524-529

static target library, adding,

404-413

iOS distribution certificates

creating, 550-554

requesting through

Provisioning Portal, 554-556

iOS Empty template, 83

iOS project templates, 72

Application templates

Master-Detail template, 73

OpenGL Game template, 74

iOS simulator, 271-272

applications, launching,

272-273

features, 275-276

multitouch events,

generating, 274

simulated device,

rotating, 274

Issue Navigator, errors, 133

fixing, 135

jumping to, 134

iTunes Connect Records,

configuring, 576-578

J-K
Java, 319-320

joining paid developer program,

9-11

jump bar (Source Editor), 127

jumping to errors, Issue

Navigator, 134

JVM (Java Virtual Machine), 320

Keychain Access, 552-554

L
languages

built-in languages

AppleScript, 317-319

C, 313-315

C++, 315-316

Java, 319-320

Objective-C, 316-317

Perl, 321-322

Objective-C, 311

Python, adding support,

322-323

Ruby, adding support,

324-325

selecting, 312-313

unsupported, 325

launching applications in iOS

simulator, 272-273

layout of Assistant Editor,

modifying, 132

610

Interface Builder

ptg8126863

layout tools (IB)

alignment, 179

Auto Layout system, 183-188

guides, 177-178

selection handles, 178

Size Inspector, 179-182

libraries

C/C++, reusing code,

349-352

dynamic, versus

frameworks, 330

static, 330

creating, 333-342

library calls for iOS applications,

updating, 414-430

lldb, 490

LLVM, 49

loading

projects into repositories,

291-294

storyboards, 168

local Git repositories, creating,

286-287

locating files, 107

M
Mac OS X

application access,

comparing with iOS, 7

development, 6

frameworks, 6

interface development, 6

project templates, 78

Automator Action

template, 81

Cocoa Application

template, 79

Cocoa Framework

template, 80

Cocoa-AppleScript

Application template, 79

Command Line Tool

template, 80

XPC Services template, 81

macros, testing code functionality

with STAssert, 474-480

man pages, xcode select tool, 589

managed objects, 437

managing

projects

commits, 298-299

pulls, 299-300

pushes, 298-299

revisions, viewing,

301-304

status codes, 297

updates, 299-300

snapshots, 282

maneuvering paused

applications, 498-499

Master-Detail application

template, 73

memory leaks

additional information,

retrieving, 540

checking for with

Instruments, 537-539

multiple runs, performing with

Instruments, 541-542

memory management

ARC, 49

objects, releasing, 48-49

merging, 284-285, 306-307

messaging, 27, 41-42

blocks, 43

nested messaging, 42-43

methods

convenience methods, 41

defining, 30-31

implementing, 35-36

prepareForSegue:sender

method, 228-229

modal segues, dismissing, 227

modal views, 217

models, 59-60

Data model, 64-65

modifying Assistant Editor

layout, 132

multiple runs, collecting in

Instruments, 541-542

multiscene projects, 216

scenes

adding to storyboard,

218-219

naming, 219-220

multitouch events, generating in

iOS simulator, 274

MVC (model-view-controller),

57-59

controllers, 62, 67-68

IBAction directive, 63-64

IBOutlet directive, 63

Data model, 64-65

How can we make this index more useful? Email us at indexes@samspublishing.com

MVC (model-view-controller)

611

ptg8126863

design patterns, 58

models, 60

views, 61, 66

N
naming scenes, 219-220

navigating Xcode workspace,

15-17

navigation controllers

example, 239-248

segues, creating, 230-234

Navigator, 97-98

nested messaging, 42-43

NeXTSTEP/OpenStep

development tools, 4

NSManagedObject subclasses,

creating, 458-460

numbers, Cocoa, 53

O
object data types, 40

object identities, setting in IB,

191-192

Object Library, 174

object references, inserting in OS

X interface code, 369-373

Objective-C, 25-28, 311, 316-317

categories, defining, 37

class structure, 36

expressions, 44-45

if-then-else statements, 45

messaging, 41-42

blocks, 43

nested messaging, 42-43

objects

initializing, 40-41

releasing, 48-49

protocols, creating, 38

switch statements, 45

variables, declaring, 38-40

implementation files

#import directive, 34

@implementation

directive, 34-35

methods, implementing,

35-36

interface files, 28

#import directive, 29

@interface directive,

29-30

@property directive, 31-33

ending, 33

methods, defining, 30-31

objects

convenience methods, 41

initializing, 40

releasing, 48-49

OCUnit framework, 465

online documentation, 146

OOP (object-oriented

programming), 24

inheritance, 25

Objective-C, 25-28

ARC, 49

categories, defining, 37

class structure, 36

expressions, 44-45

if-then-else statements, 45

implementation files, 34-36

interface files, 28-33

messaging, 41-43

objects, initializing, 40-41

protocols, creating, 38

releasing objects, 49

switch statements, 45

variables, declaring, 38-40

opendiff, 599

OpenGL Game template, 74

OS X applications

building, 356-358

converting to iOS applica-

tions, 400-402

distribution build, finalizing,

568-572

embedded frameworks,

adding, 388-395

interface

browser component,

adding, 382-387

building, 359-364

code, attaching, 364-369

external code, enabling

communication with

QuartzGrough instance,

374-375

object references,

inserting in code,

369-373

Interface Builder, 167

projects, configuring for work-

spaces, 519-524

612

MVC (model-view-controller)

ptg8126863

shared frameworks, adding,

376-382

signed applications,

distributing, 580

unsigned applications,

distributing, 579

outlets, 195-196

connections, creating,

198-200

creating, 206-208

P
PackageMaker, 599

paid developer programs, 8

joining, 9-11

registration, 9-10

panes, Instruments

application, 534

parameters, 27

parents, 26

paused applications

continuing, 499

maneuvering, 498-499

stepping forward, 500-502

Perl, 321-322

placeholder objects, 169-170

pointers, 40

pop, 230

pragma marks, 131

prebuilt actions, 203

predicates, 437

prepareForSegue:sender method,

228-229

preparing iOS device for Xcode

development, 17

primitive data types, 39

proactive debugging, 493-496

procedural programming, 24

productbuider, 599

products, 253

productsign, 599

Profile action, 255, 268

program execution

continuing, 499

stepping forward, 500-502

programming

Cocoa, 50

arrays, 52

dates, 53

dictionaries, 53

numbers, 53

strings, 52

URLs, 54

versus Cocoa Touch, 51

imperative development, 24

language, selecting, 312-313

Objective-C, 25-28

ARC, 49

categories, defining, 37

class structure, 36

expressions, 44-45

if-then-else statements, 45

implementation files, 34-36

interface files, 28-33

messaging, 41-43

objects, initializing, 40-41

protocols, creating, 38

releasing objects, 49

switch statements, 45

variables, declaring, 38-40

project files, 88

Project Navigator, 97-98

Build Phases tab, 263

Build Rules tab, 264

Build Settings tab, 263

files, renaming, 106

filters, 98

templates, adding, 99-103

projects

adding to workspaces,

517-519

commits, 298-299

configuration, reviewing, 89

creating, 13, 83

template, configuring,

85-87

template, saving, 87

template, selecting, 84

files

adding, 105-106

locating, 107

removing, 106-107

frameworks

adding, 108-109

headers, 109

removing, 110

groups

adding, 110-111

removing, 111

loading into repositories

Git, 293-294

Subversion, 291-293

How can we make this index more useful? Email us at indexes@samspublishing.com

projects

613

ptg8126863

products, 253

pulls, 299-300

pushes, 298-299

revisions, viewing, 301-304

schemes, adding, 270-271

status codes, 297

targets, 252

build phases, 263

build rules, 264

build settings, 263

case study, 260-262

creating, 257-258

properties, 111-113

templates, building, 90

updating, 299-300

properties, 27, 195-196, 437

attributes, 33

of targets, 111-113

protocols, 27

creating, 38

Provisioning Portal

App IDs, creating, 556-560

distribution certificates,

requesting, 554-556

provisioning profiles, 17, 550

creating, 552-554

distribution profiles, creating,

560-563

installing, 17-19

repairing, 551-552

pulls, 299-300

push segues, creating, 243

pushes, 230, 298-299

Python, adding support for,

322-323

Q
Quartz Composer plug-in, 82

Quick Help, 147

accessing, 158

results, interpreting, 159-160

Quick Help Inspector

activating, 160

connections, editing, 204

Quick Look plug-in, 83

R
reading Core Data model data,

461-462

refactoring

code, extracting, 137

instance variables,

encapsulating, 138

symbols, renaming, 135-136

reference documents, 152

registration, Apple Developer

Registration Portal, 9-10

relationships, 217, 437

defining in Core Data model

editor, 443-444

release configurations, testing, 470

releasing objects, 48-49

remote repositories

connecting to, 287-290

Git, loading projects, 293-294

Subversion, loading projects,

291-293

removing

files, 106-107

frameworks from projects, 110

groups from projects, 111

renaming

files, 106

symbols, 135-136

repairing distribution certificates,

551-552

repositories, 283

connecting to, 287-290

Git

creating, 286-287

projects, loading into,

293-294

Subversion, loading projects

into, 291-293

requesting distribution

certificates through Provisioning

Portal, 554-556

restoring snapshots, 280-282

retaining objects, 48-49

reusability

C/C++ code, 349-352

code, selecting between

frameworks and static

libraries, 331-333

reviewing project configuration, 89

revisions (source control),

viewing, 301-304

rotating simulated devices in iOS

simulator, 274

Ruby, adding support for,

324-325

Run action, 267

Run build action, 254

614

projects

ptg8126863

S
sample code, 153

saving templates, 87

scenes, 217

adding to storyboard,

218-219

multiscene projects, 216

naming, 219-220

segues

advanced segues,

creating, 230-239

configuring, 225-227

creating, 223-225

dismissing, 227

push segues, creating, 243

creating, 243

sharing information between,

prepareForSegue:sender

method, 228-230

supporting view controller

subclasses, adding,

220-223

schema, 437

Scheme Editor

Analyze action, 268

Archive action, 268

Build action, 266

Profile action, 268

Run action, 267

Test action, 267

schemes, 256

adding, 270-271

SDKs, displaying with xcodebuild

tool, 592-595

Search Navigator, 129-130

searching Xcode Help viewer

library, 157

segmented controls, 198

segues, 217

advanced segues, creating

navigation controllers,

230-234

tab bar controllers,

234-239

configuring, 225-227

creating, 223-225

dismissing, 227

push segues, creating, 243

selecting

programming language,

312-313

static libraries, 331-333

template for projects, 84

selection handles (IB), 178

setting

breakpoints, 497-498

object identities (IB), 191-192

shared frameworks, adding to

OS X applications, 376-382

sharing information between

scenes, 228-230

signed applications (OS X),

distributing, 580

Simulate Document command

(IB), 189-190

simultaneous data collection, per-

forming with Instruments,

543-545

singletons, 26

Size Inspector (IB), 179-182

snapshots, 279

auto snapshots, 282

creating, 280

exporting, 282

managing, 282

restoring, 280-282

viewing, 280-282

snippets

adding, 140-141

editing, 141

viewing, 138

source control

branching, 284, 304-306

changes, 284

commits, 298-299

merging, 284-285, 306-307

pulls, 299-300

pushes, 298-299

repositories, 283

connecting to, 287-290

Git, creating, 286-287

projects, loading into,

291-294

revisions, viewing, 301-304

snapshots, 279

auto snapshots, 282

creating, 280

exporting, 282

managing, 282

restoring, 280-282

viewing, 280-282

status codes, 297

trunks, 284

updates, 299-300

How can we make this index more useful? Email us at indexes@samspublishing.com

source control

615

ptg8126863

version control systems, 283

working copies, 283

creating, 295-296

Source Editor, 117

auto-indentation, 120-121

balancing delimiters, 122-123

code completion, 118-120

code folding, 123-124

features, 125-126

jump bar, 127

pragma marks, 131

Search Navigator, 129-130

Symbol Navigator, 128

tabbed editing, 126-127

spaghetti code, 59

Spotlight Importer, 83

STAssert macros, testing code

functionality, 474-480

static libraries, 330

creating, 333-342

selecting, 331-333

target, adding to iOS

application, 404-413

versus dynamic libraries, 330

status codes, 297

stepping forward (debuggers),

500-502

STL C++ Library, 81

storyboards, 167-174, 215-217

navigation controllers

advanced segues,

creating, 230-234

example, 239-248

scenes

adding, 218-219

multiscene projects, 216

naming, 219-220

segues, configuring,

225-227

segues, creating, 223-225

segues, dismissing, 227

sharing information

between, 228-230

supporting view controller

subclasses, adding,

220-223

tab bar controllers, creating

advanced segues, 234-239

strings, Cocoa, 52

Stroustrup, Bjarne, 315

subclasses, 26

NSManagedObject, creating,

458-460

view controller subclasses,

adding to scenes, 220-223

Subversion, 283

branching, 304-306

commits, 298-299

merging, 306-307

pulls, 299-300

pushes, 298-299

repositories, loading projects

into, 291-293

status codes, 297

updates, 299-300

working copies, creating,

295-296

superclasses, 26

creating, 137

switch statements, 45

Symbol Navigator, 128

symbols, renaming, 135-136

syntax

expressions, 44

messaging, 41-42

T
tab bar controllers, creating

segues, 234-239

tabbed editing, 126-127

targets, 252

build phases, 263

build rules, 264

build settings, 263

case study, 260-262

creating, 257-258

products, 253

properties, 111-113

technical notes, 154

technical Q&As, 154

templates

adding, 99-103

building, 90

configuring, 85-87

customizing, 91

File Template Library,

103-105

iOS applications, building,

403-404

iOS project templates, 72

Master-Detail application

template, 73

OpenGL Game template,

73-74

616

source control

ptg8126863

Mac OS X project templates, 78

Automator Action

template, 81

Cocoa Application

template, 79

Cocoa Framework

template, 80

Cocoa0-AppleScript

Application template, 79

Command Line Tool

template, 80

XPC Services template, 81

saving, 87

selecting, 84

Test action, 267

Test build action, 255

test-driven development, 465

unit testing, 466-471

Bundle Loader, 480-483

tests, implementing for existing

code, 472-477, 479-480

tools

agvtool, 598

xcode-select, 588-589

xcodebuild, 590-591

available SDKs,

displaying, 592-595

workspaces, 591

xcrun, 595-597

troubleshooting

errors, 135

memory leaks, 537-540

multiple runs, performing

with Instruments,

541-542

trunks, 284

U
unit testing, 466-471

Bundle Loader, 480-483

tests, implementing for

existing code, 472-480

unpaid developer programs, 8

unsigned applications (OS X),

distributing, 579

unsupported languages, 325

updates (source control),

299-300

updating iOS application logic,

414-430

URLs, Cocoa, 54

user interfaces

creating, 174

data models, binding,

446-458

Instruments, 534-536

Navigator, 97-98

V
variables, 27

declaring, 38

object data types, 40

primitive data types, 39

verifying build configurations, 256

version control systems, 283

branching, 284, 304-306

changes, committing, 284

Git, creating repositories,

286-287

merging, 284-285, 306-307

repositories, 283

connecting to, 287-290

loading projects to,

291-294

revisions, viewing, 301-304

trunks, 284

working copies, 283

creating, 295-296

Version editor, viewing revisions,

301-304

videos, how-to, 155

view controllers, 216

navigation controllers

advanced segues,

creating, 230-234

example, 239-248

subclasses, adding to

scenes, 220-223

tab bar controllers, creating

advanced segues, 234-239

viewing

code snippets, 138

revisions, 301-304

snapshots, 280-282

views, 59-61, 66, 216

modal views, 217

W
web-based documentation, 146

welcome screen (Xcode), 13

working copies, 283

creating, 295-296

How can we make this index more useful? Email us at indexes@samspublishing.com

working copies

617

V413HAV
Typewritten Text
V413HAV

ptg8126863

workspaces, 509-514

creating, 515-517

iOS projects, configuring,

524-529

navigating, 15-17

OS X projects, configuring,

519-524

projects, adding, 517-519

xcodebuild tool, 591

writing

connection code with

Interface Builder, 205-211

data to Core Data store,

460-461

X-Y-Z
Xcode developer suite, installing, 11

Xcode Help viewer, 146

bookmarks, adding, 156

library

browsing, 156

searching, 157

Xcode tasks, 154

xcode-select tool, 588-589

xcodebuild, 590-591

available SDKs, displaying,

592-595

workspaces, 591

xcrun, 595-597

XIB files, 168-170

interface objects, 170-171

loading, 168

placeholder objects, 169-170

XPC services template, 81

618

workspaces

ptg8126863

This page intentionally left blank

ptg8126863

Learning Cocos2D

Rod Strougo | Ray Wenderlich

ISBN-13: 978-0-321-73562-1

Cocoa Programming for Mac OS X

Aaron Hillegass | Adam Preble

ISBN-13: 978-0-321-77408-8

The iOS 5 Developer’s Cookbook

Erica Sadun | ISBN-13: 978-0-321-83207-8

Learning Objective-C 2.0

Robert Clair | ISBN-13: 978-0-321-71138-0

Learning iPhone Game Programming

Michael Daley | ISBN-13: 978-0-321-69942-8

Take Your Skills to the Next Step and Build the Applications YOU Want

For more information and to
read sample material please
visit informit.com/learnmac.

Titles are also available at
safari.informit.com.

	Table of Contents
	Introduction
	HOUR 1: Xcode 4
	Welcome to Xcode
	The Apple Developer Programs
	Installing the Xcode Developer Tools
	The Nickel Tour
	Preparing Your iOS Device (Optional)
	Summary
	Q&A
	Workshop

	HOUR 2: Just Enough Objective-C and Cocoa
	Object-Oriented Programming and Objective-C
	What Is Objective-C?
	Objective-C Programming Basics
	Memory Management and Automatic Reference Counting
	What Is Cocoa?
	Cocoa Versus Cocoa Touch
	Summary
	Q&A
	Workshop

	HOUR 3: Understanding the MVC Design Pattern
	Development, Design Patterns, and MVC
	How Xcode Implements MVC
	An MVC Walkthrough
	Summary
	Q&A
	Workshop

	HOUR 4: Using Xcode Templates to Create Projects
	Available Project Types
	The Project-Creation Process
	You’ve Got a Project
	Summary
	Q&A
	Workshop

	HOUR 5: Managing Projects and Resources
	Getting Your Bearings
	Managing Project Files
	Managing Frameworks and Libraries
	Managing Groups
	Managing Target Properties
	Summary
	Q&A
	Workshop

	HOUR 6: Using the Xcode Source Editor
	Understanding Editor Basics
	Navigating Within and Between Files
	Using the Assistant Editor
	Correcting Errors and Warnings in the Issue Navigator
	Refactoring Code
	Using Code Snippets
	Summary
	Q&A
	Workshop

	HOUR 7: Working with the Xcode 4 Documentation
	Overview of Documentation Resources
	Configuring the Xcode Documentation Downloads
	Understanding the Documentation Resources
	Using the Xcode Help Viewer
	Using the Quick Help Assistant
	Summary
	Q&A
	Workshop

	HOUR 8: Creating User Interfaces
	What Is Interface Builder?
	The Anatomy of an Interface Builder File
	Creating User Interfaces
	Working with the IB Layout Tools
	Customizing Interface Appearance
	Setting Object Identities
	Adding Custom Objects to Interface Builder
	Summary
	Q&A
	Workshop

	HOUR 9: Connecting a GUI to Code
	Outlet, Actions, and Properties: A Review
	Making Connections to Outlets and Actions
	Writing Connection Code with Interface Builder
	Summary
	Q&A
	Workshop

	HOUR 10: Creating iOS Application Workflows with Storyboards
	The Power of Storyboards
	Storyboard Terminology
	The Anatomy of a Multiscene Project
	Making Advanced Segues
	A Navigation Storyboard Example
	Summary
	Q&A
	Workshop

	HOUR 11: Building and Executing Applications
	The Language of the Build
	Managing Targets
	Managing Schemes
	Using the iOS Simulator
	Summary
	Q&A
	Workshop

	HOUR 12: Using Source Control
	Using Xcode Snapshots
	A Brief Introduction to Source Control Systems
	Working with Subversion and Git Repositories
	Managing a Project in Source Control
	Summary
	Q&A
	Workshop

	HOUR 13: Xcode-Supported Languages
	Choosing the Right Language
	Built-In Languages
	Adding Support for Other Languages
	Summary
	Q&A
	Workshop

	HOUR 14: Planning for Reuse: Frameworks and Libraries
	Understanding Frameworks
	Deploying a Framework
	Reusing Code from Existing C/C++ Libraries
	Summary
	Q&A
	Workshop

	HOUR 15: Putting It All Together: Building an OS X Application
	Getting Started
	Creating the Interface
	Attaching Code
	Inserting Interface Object References into the Code
	Tying Things Together
	Increasing Functionality with a Framework
	Summary
	Q&A
	Workshop

	HOUR 16: Building an iOS Application
	Assessing What You Already Have
	Building from the Template
	Adding a Static Library Target
	Updating Application Logic and Library Calls for iOS
	Summary
	Q&A
	Workshop

	HOUR 17: Attaching Big Data: Using Core Data in Your Applications
	Introducing Core Data
	Using the Xcode Core Data Model Editor
	Binding a Data Model to a User Interface
	Accessing Data Through Code
	Summary
	Q&A
	Workshop

	HOUR 18: Test Early, Test Often
	Adding Unit Tests to an Existing Application
	Implementing Tests for Existing Code
	Accessing the Rest of an Application Through the Bundle Loader
	Summary
	Q&A
	Workshop

	HOUR 19: Getting the Bugs Out
	Getting Started with the Debugger
	Proactive Debugging
	Working with Breakpoints
	Summary
	Q&A
	Workshop

	HOUR 20: Keeping Things Organized: Shared Workspaces
	Using Workspaces
	Creating a Workspace
	Adding Projects to the Workspace
	Configuring the OS X Project to Work in the Workspace
	Configuring the iOS Project to Work in the Workspace
	Summary
	Q&A
	Workshop

	HOUR 21: Advanced: Analyzing Code with Instruments
	The Instruments Interface
	Using Instruments
	Additional Runs
	Collecting Data from Additional Instruments Simultaneously
	Summary
	Q&A
	Workshop

	HOUR 22: Managing and Provisioning iOS Devices
	Creating an iOS Distribution Certificate
	Creating an App ID
	Creating a Distribution Provisioning Profile
	Summary
	Q&A
	Workshop

	HOUR 23: Distributing Your Applications
	Finalizing Your Distribution Build
	Configuring an iTunes Connect Application Record
	Distributing Your Archived Application
	Summary
	Q&A
	Workshop

	HOUR 24: Xcode CLI Utilities
	Using xcode-select
	Using xcodebuilid
	Using xcrun
	Other Xcode Command-Line Tools
	Bigger and Better Command-Line Uses
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

