
www.allitebooks.com

M A N N I N G

Wynn Netherland
Nathan Weizenbaum
Chris Eppstein
Brandon Mathis

IN ACTION

http://www.allitebooks.org

Sass and Compass in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Sass and Compass
in Action

WYNN NETHERLAND
NATHAN WEIZENBAUM

CHRIS EPPSTEIN
BRANDON MATHIS

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Scott Stirling
20 Baldwin Road Technical proofreader: Matt Martini
PO Box 261 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290145
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To those who craft the web
and delight in the work of their hands
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 GETTING ACQUAINTED WITH SASS AND COMPASS 1

1 ■ Sass and Compass make stylesheets fun again 3

2 ■ Basic Sass syntax 25

PART 2 USING SASS AND COMPASS IN PRACTICE 47

3 ■ CSS grids without the math 49

4 ■ Eliminate the mundane using Compass 73

5 ■ CSS3 with Compass 88

PART 3 TUNING FOR PRODUCTION. 105

6 ■ Spriting 107

7 ■ From prototype to production 124

8 ■ High-performance stylesheets 138

PART 4 ADVANCED SASS AND COMPASS 151

9 ■ Scripting with Sass 153

10 ■ Creating and sharing a Compass extension 170
www.allitebooks.com

vii

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface xv
acknowledgments xvi
about this book xvii
about the authors xix
about the cover illustration xx

PART 1 GETTING ACQUAINTED
WITH SASS AND COMPASS 1

1 Sass and Compass make stylesheets fun again 3
1.1 Getting started with Sass 4

From CSS to Sass 5 ■ Think dynamic 5 ■ Don’t Repeat
Yourself 6

1.2 Hello Sass: DRYing up your stylesheets 6
Reuse property values with variables 6 ■ Write long selectors more
quickly with nesting 7 ■ Reuse chunks of style with mixins 8
Avoid property duplication with selector inheritance 10

1.3 What is Compass? 12
The Compass library 13 ■ Simple stylesheet projects 13
Community ecosystem 14
www.allitebooks.com

ix

http://www.allitebooks.org

CONTENTSx
1.4 Create a Compass project 14
1.5 Solve real-world CSS problems with Compass 15

Clear the canvas with resets 15 ■ Create layouts without a
calculator 19 ■ Zebra-stripe like a pro with table helpers 21
Easy CSS3 without vendor prefixes 23

1.6 Summary 24

2 Basic Sass syntax 25
2.1 Working with variables 26

Declaring 26 ■ Referencing 27 ■ Variable names: dashes or
underscores? 28

2.2 Nesting CSS rules 28
&, the parent selector 29 ■ Nesting selector groups 30
Child and sibling combinators: >, +, and ~ 31
Nested properties 32

2.3 Importing Sass files 33
Using Sass partials 34 ■ Default variable values 34
Nested imports 35 ■ Plain CSS imports 35

2.4 Silent comments 36
2.5 Introducing mixins 37

When to use mixins 37 ■ CSS rules in mixins 38
Passing arguments to a mixin 39 ■ Default argument values 40

2.6 Trimming CSS with selector inheritance 40
When to use inheritance 41 ■ Advanced inheritance 42
How inheritance works 43 ■ Best practices when using
inheritance 43

2.7 Summary 44

PART 2 USING SASS AND COMPASS IN PRACTICE 47

3 CSS grids without the math 49
3.1 What is a grid? 49

Without CSS grids, or designing without a net 50 ■ What is a grid
system or framework and how does it work? 50 ■ Grids with Sass
and Compass 53

CONTENTS xi
3.2 Getting started with grids 54
Terminology 54 ■ Choosing a grid style, semantic versus
pragmatic 55 ■ Fixed versus fluid grids 55

3.3 Using Blueprint 56
Blueprint with plain CSS 56 ■ Blueprint grids with Compass 58
Blueprint in Compass without the classes 60

3.4 Using 960.gs 61
A basic 960 layout 63 ■ Using the 960 Grid System with
Compass 64

3.5 Vertical rhythm with Compass 66
Establishing a baseline 68 ■ Leading and trailing
whitespace 71

3.6 Summary 72

4 Eliminate the mundane using Compass 73
4.1 A better blank slate with targeted resets 74

Global resets 74 ■ Gain more control with targeted resets 75

4.2 Utilities for faster, better-looking typography 76
Anchors away: link helpers 76 ■ Creating versatile lists 79
Taming text with helpers 83

4.3 Layout helpers 85
Sticky footers 85 ■ Stretching elements 87

4.4 Summary 87

5 CSS3 with Compass 88
5.1 What is CSS3? 88

New properties: vendor prefixes got you down? 89
Compass to the rescue 89

5.2 Using CSS3 with Compass 90
Rounded corners 90 ■ CSS3 shadows 92 ■ Gradients 97
Embedding fonts with @font-face 99

5.3 Support for Internet Explorer with CSS PIE 100
5.4 Summary 103

CONTENTSxii
PART 3 TUNING FOR PRODUCTION 105

6 Spriting 107
6.1 How do CSS sprites work? 108
6.2 Why is spriting necessary? 108

The fewer HTTP requests, the better 109 ■ The soul-crushing
tedium of doing it manually 110 ■ The Compass solution 111

6.3 Spriting with Compass 111
Creating a sprite map 112 ■ Generating spriting CSS 112

6.4 Configuring Compass sprites 114
Customizing the sprite map 114 ■ Customizing the sprite
CSS 117

6.5 Mastering the magic with sprite helpers 120
Creating sprite maps 120 ■ Writing sprite CSS 120

6.6 Summary 123

7 From prototype to production 124
7.1 Abstracting URLs 125

Generating URLs to assets 125 ■ Avoiding broken links 127
Avoiding stale images with cache busting 128

7.2 Prototyping with Sass and Compass 129
Simplifying your development environment 130 ■ Designing in
the browser 131

7.3 Deploying to production 132
Surprise! It’s moving time 132 ■ Compiling for production 133
Generating domain-relative assets 133 ■ Adding copyright
notices 134 ■ Deploying CSS is simple 135 ■ Working with
source control and the deployment process 135 ■ Working with
staging servers 136

7.4 Summary 137

8 High-performance stylesheets 138
8.1 Measuring client-side performance 139
8.2 Avoiding HTTP requests with server-side @import 140
8.3 Reducing transfer time with compression 142

gzip compression 143 ■ Image compression 144

CONTENTS xiii
8.4 Speeding up page loads with asset hosts 144
Generating URLs with asset hosts 145 ■ Avoiding mixed content
warnings with domain-based assets 146

8.5 Inline data URIs 146
8.6 Selector performance 148

It all adds up 148 ■ The danger of over-nesting 148

8.7 Summary 150

PART 4 ADVANCED SASS AND COMPASS. 151

9 Scripting with Sass 153
9.1 Using expressions 154
9.2 Understanding data types 155

Strings and names 155 ■ Numbers 157 ■ Colors 158
Lists 158 ■ Booleans 159

9.3 Functions 160
Number functions 160 ■ Color functions 162 ■ List
functions 164 ■ Other Sass functions 164 ■ User-defined
functions 164

9.4 Using expressions in selectors and property names 165
9.5 Control directives 166

Repeating styles for a range of numbers 167 ■ Repeating styles for
a list of values 168 ■ Conditional styling 168

9.6 Summary 169

10 Creating and sharing a Compass extension 170
10.1 Sharing and reusing stylesheets 171

Sass is easier to share than CSS 171 ■ Share-ready Sass 171
Sharing Sass isn’t enough 172 ■ Why use a Compass
extension? 173

10.2 A simple extension 173
Installing ad hoc extensions 174 ■ Testing your extension 174

10.3 Creating an extension demo project 174
10.4 Writing an advanced extension 176

Automating the hard parts 177 ■ Refactoring your
extension 182

CONTENTSxiv
10.5 Creating a template 185
10.6 Distributing extensions 186

Distributing extensions in an archive 186 ■ Distributing an
extension as a Ruby gem 187 ■ Social coding on GitHub 190

10.7 Summary 192

appendix A Installing Sass and Compass 193
appendix B Getting started with Compass 199
appendix C The Sass syntaxes 205

index 209

preface
Just a few short years ago, the idea of a book on Sass or Compass seemed absurd. As
early adopters, we knew we had seen the future of stylesheet authoring, but we strug-
gled to gain much traction outside the Ruby community in which Sass was born.
Developers often didn’t see the dichotomy of using frameworks to create dynamic web
pages while still writing static CSS by hand. Yet others were distrustful of Sass’s only syn-
tax at the time, the original indented, whitespace-significant syntax. It felt too rigid,
like too much of a departure from CSS.

 In 2010, as we worked to evangelize the benefits of Sass to our designer friends across
the industry (and making some converts, we should add), Sass and the idea of pre-
processed CSS began to get a foothold in development and designer circles. When Sass
introduced the SCSS syntax, many of the objections to adopting Sass began to fade away
and we saw a real tipping point in projects using Sass for stylesheet authoring.

 At the time, many other languages with a similar vision were emerging. Much like
Sirius and XM validated the idea of satellite radio, healthy competition helped validate
the idea of preprocessed CSS. It was in this environment of initial industry curiosity
that Manning approached us to write a book about Sass and Compass. We agreed to
write this book because we wanted to share Sass with a broader audience. While it’s
taken much longer to produce than we wanted due to career moves and major life
events for each of us, we’re excited to offer this book to the community that has grown
up around Sass.

 If you’re new to Sass, we hope it provides a solid foundation for the language and
opens your eyes to new techniques. Even if you’ve been writing Sass for many years,
we’re confident you’ll deepen your understanding of advanced Sass and Compass fea-
tures that you’ll take back to your own projects.
xv

acknowledgments
We couldn’t write a book about Sass (and Compass by extension) without thanking
Hampton Catlin. Sass has made CSS fun again for so many of us. Though the syntax
has evolved, Sass has always kept to the spirit of CSS while extending it in powerful
ways. Hampton’s vision and hard work have made an indelible mark on the project
and the community.

 Chris Eppstein, we (your coauthors), would like to extend our sincere apprecia-
tion to you. Without your tireless efforts extending and maintaining Sass and Compass
over the last few years, we can say with certainty that the community would not be
what it is today.

 We’d like to thank the folks at Manning for sticking with us during a long, long
journey to get this book published. Writing a book about fast-moving open source is
always difficult, as the landscape is constantly shifting. We’re excited to put this book
in the hands of designers and developers wanting to level up their front-end tools.

 Finally, special thanks to our technical proofreader, Matt Martini, for his careful
reading of the final manuscript shortly before it went into production, and to the fol-
lowing reviewers, who read our chapters several times at different stages during devel-
opment and offered invaluable feedback: Adam Michela, Adam Yonk, Andrea
Ferretti, David A. Mosher, David Landau, Ezekiel Templin, Graham Ashton, Jacob
Rohde, Jake Stutzman, James Hafner, Jason J. W. Williams, Jeremiah Stover, Jeroen
van Dijk, Ken Paulsen, Kerrick Long, Kevin Sylvestre, Kyle Wild, Ron Chloupek, Ryan
Kelln, and William Dodson.

WYNN NETHERLAND

I would like to thank my wife Polly for dealing with the stress and deadlines of yet
another manuscript. Thanks for loving this crazy person.

 I’d also like to thank Jason J. W. Williams, another Manning author, for sharing his
polyglot authoring toolchain and countless hours of technical support.
xvi

about this book
So many of us pick up techniques from the community, learning stylesheet hacks and
other tricks in short-form blog posts or screencasts. This book aims to present a top-
down survey of two tools—Sass and Compass—to expand your CSS toolkit and make
you a better stylesheet author. While focusing on practical application, we take a sys-
tematic approach to teaching Sass syntax and applying the patterns in the Compass
framework. Hopefully, the reader will walk away with a more complete understanding
of both Sass and Compass.

Audience

This book is designed for two main audiences. First, we want to reach out to web
designers, those who write a lot of CSS but might not have considered ways to automate
parts of the stylesheet authoring process. Second, we want to show full stack developers
how to treat stylesheets, images, and fonts like any other project asset and how to han-
dle them throughout the lifecycle of a project from development to production.

Roadmap

If you’re new to Sass and Compass, you might find yourself jumping to appendixes A
and B as you begin the book. Those appendixes provide setup instructions and other
prerequisites you’ll need for the book.

 Chapter 1 dives right into the powerful features of the Sass language. You’ll dis-
cover not only exciting features, but hopefully a renewed joy for CSS when the tedium
of static stylesheets disappears. We’ll also give you a taste of the Compass framework in
examples that provide practical application of Sass’s features.

 Chapter 2 goes deeper into Sass and covers variables, mixins, and other language
features that provide the building blocks for the rest of the book.

 Chapter 3 jumps right into one of the most common uses for CSS, building grid
systems. As you’ll see, with Sass, there’s far less math involved.
xvii

ABOUT THIS BOOKxviii
 Chapter 4 takes a step back to give a broader view of how the Compass framework
can reduce the mundane tasks that come with stylesheet authoring.

 In Chapter 5, we take a survey of Compass’s CSS3 module and how it provides
vendor-independent implementation of the most commonly used aspects of CSS3.

 Chapter 6 is a fun experiment with CSS sprites, an advanced technique every
designer should know.

 Chapter 7 demonstrates how to optimize your stylesheets for both development
debugging and production deployment using Compass’s compile features. Chapter 8
builds on this theme and shows advanced techniques to compress and minify your
stylesheet assets for deployment.

 Chapter 9 is aimed at the advanced developer who would like to use Sass’s
advanced scripting techniques. Chapter 10 expands on this topic and walks you
through creating your own Compass plugin.

Code conventions and downloads

Source code in listings or in text appears in a fixed-width font like this to separate
it from the ordinary text. Code annotations accompany many of the listings, highlight-
ing important concepts. In some cases, numbered cueballs link to additional explana-
tions that follow the listing.

 Source code for the examples in this book can be downloaded from the pub-
lisher’s website at www.manning.com/SassandCompassinAction. Updates to code will
be available at https://github.com/pengwynn/sass-and-compass-in-action.

Author Online

Purchase of Sass and Compass in Action includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/SassandCompassin-
Action. This page provides information on how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

https://github.com/pengwynn/sass-and-compass-in-action
http://www.manning.com/MacRuby
http://www.manning.com/MacRuby

about the authors
WYNN NETHERLAND has been building the web for nearly twenty years. He’s authored
or contributed to several books on topics from web development to open govern-
ment. When he’s not shipping at GitHub, you can find him speaking at industry con-
ferences, hanging out at developer meetups, or picking his guitar on the back porch.

CHRIS EPPSTEIN is an engineering graduate from the California Institute of Technol-
ogy and has more than ten years of experience building websites and applications for
Silicon Valley startups. He has a passion for front-end engineering and is currently
working on front-end architecture and developer relations at LinkedIn. An active
member of the Ruby open source community, Chris created the Compass Stylesheet
Authoring Framework, is a member of the Sass core team, maintains many open
source projects, and has contributed to dozens of others.

NATHAN WEIZENBAUM is a graduate of the University of Washington, majoring in Com-
puter Science and Philosophy, and has been the lead developer for Sass since it was
first conceived. He’s currently a software engineer working on Gmail at Google.

BRANDON MATHIS is on the Compass core team and creator of Octopress, a beautifully
extensible blogging framework for hackers based on Jekyll. He currently is a designer
at MongoHQ.
www.allitebooks.com

xix

http://www.allitebooks.org

about the cover illustration
The figure on the cover of Sass and Compass in Action is captioned “Silanka,” a woman
from a Slavic tribe that lived in the Gail River Valley. The river, called Zilja in Slovene,
originates in southern Austria and flows through some of the most picturesque land-
scapes of the Julian Alps. This illustration is taken from a recent reprint of Balthasar
Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs
published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–
1815) was an Austrian physician and scientist who spent many years studying the bot-
any, geology, and ethnography of many parts of the Austrian Empire, as well as the
Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of
many different tribes and ethnicities. Hand-drawn illustrations accompany the many
scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of the eastern Alpine and northwestern Balkan regions
just 200 years ago. This was a time when the dress codes of two villages separated by a
few miles identified people uniquely as belonging to one or the other, and when
members of a social class or trade could be easily distinguished by what they were
wearing. Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another, and today the residents of the picturesque towns and villages in the Slo-
venian Alps or Balkan coastal towns are not readily distinguishable from the residents
of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.
xx

Part 1

Getting acquainted
with Sass and Compass

The first part of this book introduces you to Sass and Compass, looking at
Sass’s core and covering some of the principles behind writing dynamic
stylesheets. In chapter 1, we look at what it means to author stylesheets dynami-
cally and discuss development principles to help wield this power wisely. You’ll
see how Sass simplifies stylesheet authoring by helping you avoid repetition with
selector nesting and variables, and how you can intelligently reuse common styles
and patterns using @extend and mixins. We discuss the Compass framework and
how it provides patterns and tools to make styling websites smooth and efficient.

 Chapter 2 helps you get acquainted with the Sass syntax and its many power-
ful features. We discuss how to use variables in Sass and how scoping works.
You’ll learn how nesting selectors and subproperties can make your stylesheets
cleaner and easier to read. You’ll see how Sass has improved CSS’s @import to let
you combine many stylesheets into one, allowing you to break up your styles into
smaller, more manageable files. We look at using mixins to easily share common
styles while avoiding repetition, and how to pass arguments and use variables in
mixins, making it easy to customize the styles while preserving patterns. You’ll
learn to use selector inheritance with @extend, another way to reduce repetition,
when to use inheritance and when to use mixins, and best practices.

 After reading the first two chapters, you should feel comfortable with the Sass
syntax and have some great ideas for how to improve your stylesheets. You’ll
have a good grasp of what it means to think dynamically about stylesheets. In the
next part, we move from the principle to the practical, and solve some real-world
problems using Sass and Compass.

Sass and Compass
make stylesheets fun again
Sass is an extension of CSS3 that helps you create better stylesheets with less effort.
Sass frees you from repetition and gives you tools to be creative. Since you can
implement changes much faster, you’ll be free to take risks in your designs. Your
stylesheets will be able to keep pace with changing colors and changing HTML
markup, all the while producing standards-based CSS you can use in any environ-
ment. The Sass processor is written in Ruby, but unless you want to hack the lan-
guage itself, you need not care.

 Throughout this book, we speak to two sets of readers, hoping to find some
common ground with each camp. If you find yourself in both groups, even better.

 To our web designer friends: You have all the Adobe app keyboard shortcuts
memorized. You choose complementary colors based on RGB values alone. You
may or may not sport a pair of dark-rimmed glasses, but chances are you start your

This chapter covers
 Getting started with Sass and dynamic stylesheets

 Writing stylesheets more efficiently with Sass features

 A quick introduction to Compass

 Compass solutions to real-world stylesheet challenges
3

4 CHAPTER 1 Sass and Compass make stylesheets fun again
day with coffee or tea and the latest from Smashing Magazine. By your own admission,
you know enough jQuery to be dangerous and don’t know why your developer friends
chuckle when you talk about CSS as a language.

 We’ll set you free from the tedious and let you do what you do best—be creative.
We know you have opinions on resets, typographic scales, color palettes, and layouts.
We’ll show you how to create stylesheets faster with less repetition. You’ll start doing
less in graphics software and more in your stylesheets.

 To our front-end developer pals: You take pride in your ability to slice-and-dice a
Photoshop comp into semantically sound HTML and CSS, but there’s a problem. Your
server templates are DRY because you Don’t Repeat Yourself, but your stylesheets are as
soggy as a doorbell-interrupted Raisin Bran breakfast. As the project grows, you also
find that organizing your stylesheets is a challenge. If only you could author
stylesheets in the same way you write the other code in your software project—with
variables, reusable parts, and control flow. Take heart, have we got a project for you!

 In this chapter, we’ll look at powerful Sass features such as nested rules, vari-
ables, mixins, and selector inheritance, and how Compass leverages these into reus-
able patterns to free you from mindless repetition and let you focus on your design
instead of your styles. If you don’t already have Sass installed, go ahead and jump to
appendix A and follow the steps outlined there. If you’re reading this at the coffee
shop on your iPad, you can still run these basic examples online at the Sass website:
http://sass-lang.com/try.html.

1.1 Getting started with Sass
Before we jump into some examples, it’s important to nail down some keys to success
with Sass. Sass isn’t a silver bullet or pixie dust. It won’t instantly help your color,
typography, or layout choices, but it can help you implement your ideas faster, with
less friction. Before we get into syntax and features, let’s take a look at the big picture.
When using Sass, the Sass engine compiles your stylesheet source files into 100% pure
CSS during your development workflow, as shown in figure 1.1.

 Though there are many options for running the Sass engine, ranging from the
command line to server framework integration to GUI tools, the key takeaway is that
Sass produces CSS during your development workflow. You deploy static CSS as you
normally would; you just benefit from Sass language features to write that CSS much
faster and maintain it more easily.

Develop Deploy

*.scss
*.sass *.cssSass engine Figure 1.1 The

Sass authoring
and compilation
workflow

http://sass-lang.com/try.html

5Getting started with Sass
1.1.1 From CSS to Sass

If you’re skilled in creating CSS, you’ll find the on-ramp to using Sass a short one. Sass
focuses on how to create awesome stylesheets, not what goes into them. We’ll cover
tools like Compass that provide you with CSS best practices, but ultimately you’ll bene-
fit from this book if you have a firm grasp of CSS. As with anything in computing, gar-
bage in, garbage out. If you need a CSS primer, you might want to check out another
Manning title, Hello! HTML5 and CSS3.

 Sass supports two syntaxes. The original indented syntax has a .sass extension and is
whitespace aware, so instead of surrounding properties with braces, you indent them
underneath their selector. Rather than using semicolons, each property is separated
by a new line:

h1
color: #000
background: #fff

SCSS, or Sassy CSS, was introduced in Sass 3.0 and is a superset of CSS3. SCSS files have
a .scss file extension and are chock-full of familiar braces and semicolons:

h1 {color: #000; background: #fff}

This demonstrates the primary differences between the two syntaxes, but there are
other differences which are discussed in appendix C.

 Sass will continue to support both syntaxes. You can even mix and match each syn-
tax within the same Sass project (just not within a single file). It’s important to choose
a syntax that’s right for you and your team. If you work in a Python or Ruby environ-
ment, perhaps the whitespace-aware indented syntax will fit nicely. If your team deals
with outside design agencies, then Sassy CSS provides a lower barrier to entry.

 In addition to sound CSS skills and a grasp of Sass syntax, it’s important to take a
dynamic view of stylesheets.

1.1.2 Think dynamic

Outside of basic brochure sites, who really writes much static HTML anymore? You
take your HTML and carve it up for your blog engine, CMS, or application framework
to preprocess, mixing markup and dynamic content. These tools give life to your HTML
and it’s crazy to imagine the web without them. So why do you still write static stylesheets?
You’ll see how the concepts you use in creating static markup, dynamically, can be
applied to creating static stylesheets, dynamically. What does it mean to write dynamic
stylesheets? It means that when you author Sass stylesheets, you’re no longer limited
by how the browser thinks about CSS. With conditional logic, reusable snippets, vari-
ables, and various other tools, you can bring your stylesheets to life. Changing a web-
site’s layout and color scheme can be as simple as tweaking a few variables. Of course,
though Sass lets you write stylesheets in a dynamic fashion, the output is still 100%
pure static CSS. Once you’re working with dynamic stylesheets, you can now listen to
that inner voice that keeps shouting Don’t Repeat Yourself.

6 CHAPTER 1 Sass and Compass make stylesheets fun again
1.1.3 Don’t Repeat Yourself

Sass gives stylesheet authors powerful tools that remove the tedium from many CSS
tasks you do over and over and over. Many features of Sass embrace the familiar pro-
gramming axiom Don’t Repeat Yourself, letting you DRY up your stylesheets. As you cre-
ate your stylesheets, repetition should be a red flag. Constantly ask yourself, how can I
work smarter, not just harder? In the next few sections, we’ll show you how to let Sass
squeeze more reuse out of your stylesheets.

1.2 Hello Sass: DRYing up your stylesheets
We’ve been harping on DRY-DRY-DRY up to this point. So what does a soggy stylesheet
look like? Consider the following CSS.

h1#brand {color: #1875e7}

#sidebar { background-color: #1875e7}

ul.nav {float: right}
ul.nav li {float: left;}
ul.nav li a {color: #111}
ul.nav li.current {font-weight: bold;}

#header ul.nav {float:right;}
#header ul.nav li {float:left;margin-right:10px;}
#footer ul.nav {margin-top:1em;}
#footer ul.nav li {float:left;margin-right:10px;}

Even in this extremely simplified example, the duplication is apparent. What happens
if the marketing team wants to tweak that lovely shade of blue from #1875e7 to
#0f86e3? Sure, two occurrences is manageable, but when it’s a dozen or more across
several stylesheets, find-and-replace seems archaic, don’t you think? Eight instances of
ul.nav in a 10-line stylesheet also seems excessive.

 In the next few sections, you’ll discover a cool breeze of syntactic sugar that will
DRY up this stylesheet and blow you away, including variables, mixins, nested selec-
tors, and selector inheritance. If we seem to move fast, don’t fret. We dig deeper into
each of these concepts in chapter 2.

1.2.1 Reuse property values with variables

Are you using search-and-replace to swap hex code values and manage color palette
changes in your stylesheets? With Sass, you can assign values to variables and manage
colors, border sizes, and virtually any stylesheet property value in a single location:

$company-blue: #1875e7;

h1#brand {
color: $company-blue;
}

#sidebar {
background-color: $company-blue;
}

Listing 1.1 A soggy stylesheet in need of DRYing

7Hello Sass: DRYing up your stylesheets
Sass variables start with the $ symbol and can contain any characters that are also valid
in a CSS class name, including underscores and dashes. In this simple example, if you
want to tweak the shade of blue, you can update it in one spot and the rest of your
stylesheet falls in line.

 If you come from a development background, variables should feel natural. If
you’re coming to Sass from a design background, variables may seem intimidating at
first glance. But they’re really nothing new. You already use named values in CSS such
as blue, green, inherit, block, inline-block, serif, and sans-serif. Think of vari-
ables as your own special values. Next up, using nested selectors to create deep
descendant CSS selectors with less typing.

1.2.2 Write long selectors more quickly with nesting

Did you ever hear about the Texan who went to work for the state painting dashed
center lines on the highway? He was a top performer his first week, painting 10 miles
of road. Production tailed off quickly, as he covered five miles in his second week, and
only two in the third. When he rounded out the last week of the month with only a sin-
gle mile, his supervisor asked him what seemed to be the problem. “Well,” the worker
remarked, “it keeps getting farther and farther back to the bucket.”

 That’s exactly how it can feel working with deep descendant CSS selectors. Con-
sider the following CSS:

ul.nav {float: right}
ul.nav li {float: left;}
ul.nav li a {color: #111}
ul.nav li.current {font-weight: bold;}

Sass lets you DRY that up a bit. Find the file 1.1.2.nesting.scss in the code examples
folder for chapter 1 or create your own by saving a text file with the following contents.

ul.nav {
float: right;

li {
float: left;
a {

color: #111;
}
&.current {

font-weight: bold;
}

}
}

From your terminal, run the sass command and pass it the path to the file:

sass 1.2.nesting.scss

You should get the following CSS results in your terminal output.

Listing 1.2 Nesting CSS selectors

8 CHAPTER 1 Sass and Compass make stylesheets fun again
ul.nav {
float: right; }
ul.nav li {

float: left; }
ul.nav li a {

color: #111; }
ul.nav li.current {

font-weight: bold; }

Other than some formatting differences, that’s the same CSS we started with. (Don’t
sweat the format just yet. We’ll discuss more about Sass’s output options a bit later.)

 Using Sass, you can nest rules and avoid duplicating the same elements in your
selectors. Not only does this save time, the added benefit is that if you later change
ul.nav from an unordered list to an ordered list, you only have one line to change.
This is especially true with the last selector in the example. The & is a parent selector. In
this case &.current evaluates to li.current. If the markup were to change to using
the current class on some other element, this line in the stylesheet would just work.
Now that you’ve seen how to reuse values with variables and write longer selectors with
nesting, let’s put the ideas together and look at Sass mixins.

1.2.3 Reuse chunks of style with mixins

Variables let you reuse values, but what if you want to reuse large blocks of rules? Tradi-
tionally in CSS, as you see duplication in your stylesheets, you factor common rules out
into new CSS classes.

ul.horizontal-list li {
float: left;
margin-right: 10px;

}

#header ul.nav {
float: right;

}

#footer ul.nav {
margin-top: 1em;

}

You then need to give your ul.nav elements an additional class of horizontal-list.
This works fine, but what if you wanted to keep your classes more semantic and still
get the reuse?

 Let’s open or create 1.1.2.mixins.scss, our second example.

@mixin horizontal-list {
li {

Listing 1.3 Resulting CSS after using nested selectors

Listing 1.4 Traditional CSS refactoring

Listing 1.5 Reusing code with @mixin and @include

9Hello Sass: DRYing up your stylesheets
float: left;
margin-right: 10px;

}
}

#header ul.nav {
@include horizontal-list;
float: right;

}

#footer ul.nav {
@include horizontal-list;
margin-top: 1em;

}

Just as the name suggests, Sass mixins mix in rules with other rules. You’ve extracted
the rules for the horizontal list into an aptly named mixin using the @mixin directive.
You then include those rules into other rules using the @include directive. You no lon-
ger need the .horizontal-list class, since those rules are now mixed into your
ul.nav rules in your resulting CSS.

#header ul.nav {
float: right;

}

#header ul.nav li {
float: left;
margin-right: 10px;

}

#footer ul.nav {
margin-top: 1em;

}

#footer ul.nav li {
float: left;
margin-right: 10px;

}

As handy as this is, the real power of Sass mixins comes from combining them with
variables to make reusable, parameter-driven blocks of styles. For example, let’s sup-
pose you wanted to vary the item spacing in your horizontal list. Find the next code
example, 1.1.2.2.mixins-parameters.scss, and consider the following changes.

@mixin horizontal-list($spacing: 10px) {
li {

float: left;
margin-right: $spacing;

}
}

Listing 1.6 Mixins help you remove redundant styles

Listing 1.7 Mixins with variables
www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 1 Sass and Compass make stylesheets fun again
#header ul.nav {
@include horizontal-list;
float: right;

}

#footer ul.nav {
@include horizontal-list(20px);
margin-top: 1em;

}

You’ve updated the mixin and added a $spacing parameter with a default value of
10px. Parameters are no different than the variables we looked at earlier. In this case,
you’ve specified a default value so that in the case of the navigation list in the header,
you get the default spacing. In the footer, you now can pass in a value of 20px to get
more spacing between the list elements, as you can see in the CSS output.

#header ul.nav {
float: right;

}

#header ul.nav li {
float: left;
margin-right: 10px;

}

#footer ul.nav {
margin-top: 1em;

}

#footer ul.nav li {
float: left;
margin-right: 20px;

}

Sass mixins save you a lot of time, letting you reuse chunks of properties, but the
astute reader might notice that what you’ve gained in productivity, you may have given
back in stylesheet weight, since mixin styles are duplicated in each instance where
they’re included. Fear not: with Sass, you always have options. Selector inheritance
deals with just this issue.

1.2.4 Avoid property duplication with selector inheritance

As you’ve seen, Sass mixins can be a powerful way to avoid duplication when writing
your stylesheets. Bur since rules are mixed into other classes in the compiled CSS,
you’re not avoiding duplication entirely. Because CSS file size is important, Sass
includes another slightly more complex way of avoiding duplication altogether. Selec-
tor inheritance instructs a selector to inherit all the styles of another selector without
duplicating the CSS properties. Take, for instance, the styles for a set of form error
messages.

Listing 1.8 Final CSS output after using mixins

11Hello Sass: DRYing up your stylesheets
.error {
border: 1px #f00;
background: #fdd;

}

.error.intrusion {
font-size: 1.2em;
font-weight: bold;

}

.badError {
@extend .error;
border-width: 3px;

}

Using selector inheritance, you can instruct .badError to inherit from the base
.error class, yielding the results shown next.

.error, .badError {
border: 1px #f00;
background: #fdd;

}

.error.intrusion,

.badError.intrusion {
font-size: 1.2em;
font-weight: bold;

}

.badError {
border-width: 3px;

}

In this case, it makes sense to have both the error and badError classes, since you
expect to use both of them in your HTML, but occasionally your base class isn’t some-
thing you expect to use in your markup. In Sass 3.2, the placeholder selector was
introduced to allow you to use selector inheritance without creating throwaway base
classes.

%button-reset {
margin: 0;
padding: .5em 1.2em;
text-decoration: none;
cursor: pointer;

}

.save {
@extend %button-reset;
color: white;

Listing 1.9 Some CSS for error messages

Listing 1.10 Reducing redundancy with selector inheritance

Listing 1.11 Selector inheritance with the placeholder selector

12 CHAPTER 1 Sass and Compass make stylesheets fun again
background: #blue;
}

.delete {
@extend %button-reset;
color: white;
background: red;

}

As the name placeholder implies, the classes that extend %button-reset take its place in
the generated CSS.

.save, .delete {
margin: 0;
padding: .5em 1.2em;
text-decoration: none;

 cursor: pointer;
}

.save {
 color: white;

background: #blue;
}

.delete {
color: white;
background: red;

}

Placeholders give you a safe way to store common styles without worrying that they’ll
interfere with any of your class names. Also, if a placeholder is never extended, the
styles inside of it are never compiled to CSS, keeping your stylesheets light and free
from the bloat of unused styles.

 With a little planning, selector inheritance is a nice way to keep your Sass DRY and
your CSS lean. Now that you’ve seen how Sass helps you avoid repeating yourself, in
the next section you’ll see what Compass brings to the table.

1.3 What is Compass?
Compass helps Sass authors write smarter stylesheets and empowers a community of
designers and developers to create and share powerful frameworks. Put simply, Com-
pass is a Sass framework designed to make the work of styling the web smooth and effi-
cient. Much like Rails as a web application framework for Ruby, Compass is a
collection of helpful tools and battle-tested best practices for Sass.

 Compass is made up of three main components. It includes a library of Sass mix-
ins and utilities, a system for integrating with application environments, and a plat-
form for building frameworks and extensions. Expanding the big picture diagram
from earlier in this chapter, let’s see how Compass fits into your development work-
flow in figure 1.2.

Listing 1.12 Resulting CSS after using selector inheritance

13What is Compass?
1.3.1 The Compass library

Compass comes with a host of Sass mixins and functions that are organized into mod-
ules, all of which are thoroughly documented with examples on the Compass website.
This library insulates you from cross-browser quirks and provides a great set of proven
design patterns for resets, grid layouts, list styles, table helpers, vertical rhythm, and
more. Compass also comes with helpers for CSS3, handling vendor prefixes and
abstracting away different browser implementations of emerging CSS3 features, mak-
ing it much easier to write cutting-edge stylesheets.

 Compass can do some really handy tasks like measuring images from the filesystem
and writing them into your stylesheets. Asset URL functions are available that make it
easy to move assets around in a project or even switch to a content delivery network
(CDN) without having to rewrite your stylesheets. Compass can even combine a direc-
tory of images into a single sprite image and do the otherwise tedious task of calculat-
ing coordinates and writing the spriting CSS for you.

 These are tasks you could tackle yourself, and sometimes will, but Compass bun-
dles proven solutions from the design community, letting you focus on getting more
done in less time.

 The Compass Core stylesheet framework isn’t going to make your website pretty. In
fact, all features in the core framework are design agnostic so that they can be used with
any website design. Website design aesthetics, like all fashions, come and go. So the
task of providing well-designed website features is left to the Compass community of
front-end developers and designers through the use of plugins.

1.3.2 Simple stylesheet projects

Both Sass and Compass are written in Ruby and have their origins in the Ruby on Rails
community, but Compass provides tools and configuration options to make it easy to
write Sass stylesheets outside of Ruby-based projects. Whether you need to simply
build an HTML mockup or to integrate Sass into a large application framework like
Django, Drupal, or .NET, Compass makes it a snap (see figure 1.3).

 Compass understands that you aren’t building stylesheets. You’re building a
design. As such, Compass wants to know where you keep things like image, font, and
JavaScript files so that it can simplify the management of and references to those files

Develop Deploy

*.scss
*.sass *.css

Sass engine

Compass patterns

Figure 1.2
Compiling with
Compass

14 CHAPTER 1 Sass and Compass make stylesheets fun again
from within your stylesheets. For example, Compass will
help you construct sprite maps and refer to those within
your stylesheets; Compass will warn you if you reference an
image that doesn’t exist via the image-url() helper; and
Compass can embed an image or font into your CSS so that
the browser doesn’t have to make another round trip to
get that asset.

1.3.3 Community ecosystem

If you’ve been in web development for a while, you might
remember the dark ages before JavaScript frameworks. It
was truly a terrible world—the smallest quirk in the DOM
might send you on a bug hunt for hours. These days,
JavaScript frameworks isolate you from the browsers’
inconsistencies and give you a foundation for sharing your
code through plugins that others can easily drop into their
projects. Thanks to the hard work of the web development
community at large, developing with JavaScript is actually
enjoyable these days.

 As a framework for Sass, Compass is a foundation for designers and developers to
share their libraries and frameworks, empowering you to participate in an ecosystem
of open source stylesheet development. Fading quickly are the days when sharing a bit
of CSS wizardry meant embedding code snippets and demo files in a blog post. This
strategy leaves each user owning their code without a way for the original developer to
fix bugs and provide additional enhancements over time. With Compass, stylesheet
libraries can be distributed like other software, which means fixing a bug or getting
support for the latest browsers may just be a simple matter of upgrading and recompil-
ing your stylesheets.

 Many community members package up their bag of tricks into Compass extensions
for others to begin using immediately, without requiring them to rewrite a nasty nest
of static stylesheets. (See chapter 10 to learn how to write your own Compass exten-
sion.) Responsive layouts, typographic scales, custom animations, fancy buttons, icon
sets, and color palettes can all be made into Compass extensions written in Sass. Com-
pass extensions get you past the drudgery of building the basics so you can focus on
what’s unique and special about your website. As you progress from Sass novice to Sass
assassin, if you’re grateful for all the time Sass, Compass, and the community save you,
you’ll be able “pay it forward” by sharing your hard work with others.

1.4 Create a Compass project
If you haven’t installed Compass already, go ahead and jump to appendix A and follow
the instructions outlined there. After you have the bits installed, you’ll be ready to
start using Compass. Your first task will be creating a Compass project.

Figure 1.3 A standalone
compass project

15Solve real-world CSS problems with Compass
 Like any good command-line interface (CLI), Compass provides substantial help
messages for its many options. Let’s check your Compass install. Open a terminal win-
dow in the root of a new stylesheet project. Now, run compass help. If you’re greeted
with help text and command-line options, you’re good to go. If not, circle back to
appendix A one more time and we’ll see you on the flip side.

 Let’s start by creating a new Compass project, which is a configuration file and fold-
ers for your Sass source and CSS output. We’ll call it sample:

compass create sample

Now list the contents of your new folder:

total 8
drwxr-xr-x 6 wynn staff 204 Jan 3 12:11 .
drwxr-xr-x 3 wynn staff 102 Jan 3 12:12 ..
drwxr-xr-x 4 wynn staff 136 Jan 3 12:11 .sass-cache
-rw-r--r-- 1 wynn staff 315 Jan 3 12:11 config.rb
drwxr-xr-x 5 wynn staff 170 Jan 3 12:11 sass
drwxr-xr-x 5 wynn staff 170 Jan 3 12:11 stylesheets

Using the defaults, Compass has unfurled a config.rb configuration file, a sass
folder for your Sass source, and a stylesheets folder for your CSS output. For a full
list of Compass configuration options, please consult appendix B. For now, we’ll work
with the default settings and set out to tackle some real-world CSS problems using
Compass.

1.5 Solve real-world CSS problems with Compass
Now that you’ve seen how to create a skeleton Compass project, let’s take a look at
how Compass can help solve some stylesheet challenges you probably face every day.
In the next few sections you’ll apply Compass’s built-in modules (which are only nice
bundles of Sass mixins and other features) to CSS resets, grid layouts, table formatting,
and CSS3 features.

1.5.1 Clear the canvas with resets

Made popular by Eric Meyer and other standards advocates, adding a CSS reset has
become the first task for designers when creating a stylesheet. If you’ve ever used a
CSS grid framework, you’ve used a CSS reset, perhaps without even knowing it. A CSS
reset simply removes all intrinsic browser styling from all elements, providing a com-
mon blank canvas to add back the styling you want.

 Eric’s classic reset looks like this.

/* v1.0 | 20080212 */

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,

Listing 1.13 Classic CSS reset

16 CHAPTER 1 Sass and Compass make stylesheets fun again
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {

margin: 0;
padding: 0;
border: 0;
outline: 0;
font-size: 100%;
vertical-align: baseline;

background: transparent;
}
body {

line-height: 1;
}
ol, ul {

list-style: none;
}
blockquote, q {

quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {

content: '';
content: none;

}

/* remember to define focus styles! */
:focus {
 outline: 0;
}

/* remember to highlight inserts somehow! */
ins {

text-decoration: none;
}
del {

text-decoration: line-through;
}

/* tables still need 'cellspacing="0"' in the markup */
table {

border-collapse: collapse;
border-spacing: 0;

}

You might have noticed from the default Sass file, screen.css, that Compass ships with
its own reset based on Eric’s, allowing you to put all browsers on equal footing with a
single line in your Sass file:

@import "compass/reset"

There’s a lot going on in this one line, so let’s break it down. You use the Sass @import
rule to import the Compass Reset module. A module is a standalone portion of the

17Solve real-world CSS problems with Compass
Compass framework that can be added independently to your project. With this one
line, the contents of your CSS output file include your CSS reset.

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {

margin: 0;
padding: 0;
border: 0;
outline: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;

}

body {
line-height: 1;
color: black;
background: white;

}

ol, ul {
list-style: none;

}

table {
border-collapse: separate;
border-spacing: 0;
vertical-align: middle;

}

caption, th, td {
text-align: left;
font-weight: normal;
vertical-align: middle;

}

q, blockquote {
quotes: "" "";

}
q:before, q:after, blockquote:before, blockquote:after {

content: "";
}

a img {
 border: none;
}

Listing 1.14 CSS output file, including CSS reset

18 CHAPTER 1 Sass and Compass make stylesheets fun again
It should be noted that adding styles to your stylesheet isn’t the default behavior of
most Compass modules, but since the usual use case is to apply the CSS reset, the
Compass Reset module goes ahead and applies the global-reset mixin upon import.
Let’s take a look at that mixin.

@mixin global-reset {
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {

 @include reset-box-model;
 @include reset-font; }

body {
@include reset-body; }

ol, ul {
@include reset-list-style; }

table {
@include reset-table; }

caption, th, td {
 @include reset-table-cell; }

q, blockquote {
@include reset-quotation; }

a img {
@include reset-image-anchor-border; } }

Note that Compass is using the Sass @mixin and @include features we looked at earlier
to build the reset. In addition to the global-reset, the Reset module includes a num-
ber of more surgical reset mixins, including one for HTML5 elements. By adding
@include reset-html5 to your Sass file, you get an additional CSS rule in your output
for all the HTML5 elements that need some basic styling.

article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary {

margin: 0;
padding: 0;
border: 0;
outline: 0;
display: block;

}

For additional Compass Reset module mixins, be sure and check out the Compass
online docs. Now that you have a handle on resets, let’s look at how Compass can help
you more effectively use CSS grid frameworks.

Listing 1.15 CSS global-reset mixin

Listing 1.16 Resulting code after HTML5 reset

19Solve real-world CSS problems with Compass
1.5.2 Create layouts without a calculator

One of the major trends in CSS in the last couple of years has been the emergence of
popular CSS grid frameworks such as Blueprint and 960 Grid System (see figure 1.4).
Grid layouts, which have long been a cornerstone of good print design, have made
their way online as the medium has matured. Grid frameworks allow you to allot a cer-
tain number of columns for your layout and then apply a column-based layout with
uniform gutters to your content.

 Basically, grid frameworks reduce the math needed to create a nice column layout.
They do this with CSS rules that set the layout and widths for a container element as
well as for each possible column width in the grid. Let’s look at a snippet from Blue-
print.

Figure 1.4 960.gs—the 960 Grid System CSS framework

20 CHAPTER 1 Sass and Compass make stylesheets fun again
.container {
width: 950px;
margin: 0 auto;

}

/* Sets up basic grid floating and margin. */
.column, .span-1, .span-2, .span-3, .span-4, .span-5,
.span-6, .span-7, .span-8, .span-9, .span-10, .span-11,
.span-12, .span-13, .span-14, .span-15, .span-16,
.span-17, .span-18, .span-19, .span-20, .span-21,
.span-22, .span-23, .span-24 {

float: left;
margin-right: 10px;

}

/* The last column in a row needs this class. */
.last { margin-right: 0; }

/* Use these classes to set the width of a column. */
.span-1 {width: 30px;}

.span-2 {width: 70px;}

.span-3 {width: 110px;}

.span-4 {width: 150px;}

.span-5 {width: 190px;}

.span-6 {width: 230px;}

.span-7 {width: 270px;}

.span-8 {width: 310px;}

.span-9 {width: 350px;}

.span-10 {width: 390px;}

.span-11 {width: 430px;}

.span-12 {width: 470px;}

.span-13 {width: 510px;}

.span-14 {width: 550px;}

.span-15 {width: 590px;}

.span-16 {width: 630px;}

.span-17 {width: 670px;}

.span-18 {width: 710px;}

.span-19 {width: 750px;}

.span-20 {width: 790px;}

.span-21 {width: 830px;}

.span-22 {width: 870px;}

.span-23 {width: 910px;}

.span-24 {width:950px; margin-right:0;}

With these CSS rules in place, you can create a 16-column layout simply by adding the
container class to a container element and a span-xx class to each element you want
to place on the grid. Laying out content in this way also lets you prototype more
quickly by not having to remember the multiples of 40 between 30 and 950.

 So how does Compass improve upon CSS grid frameworks? First, Compass provides
support for grid framework styles as mixins, allowing you to pull in just the features
you want to use while avoiding littering your HTML markup with extra classes. The

Listing 1.17 Blueprint grid layout

21Solve real-world CSS problems with Compass
second, and perhaps most important, way Compass supports grid frameworks is in the
way it changes how you create these frameworks, as you’ll see in chapter 4.

 Let’s create a Compass project using Blueprint. Run the following in a terminal
window:

compass create my_grid --using blueprint

Just as in section 1.4, you should find a freshly stamped Compass project in a folder
called my_grid, only this time the screen.scss file has more content. The file is well
annotated and provides a quick survey of most of the Blueprint modules at your dis-
posal along with a set of styles for a basic layout. The first thing to notice here is that
column layouts can be mixed in to a set of styles. So instead of setting a class of span-8
in your HTML, you use the column Sass mixin:

@include column($sidebar-columns);

Also note the variable $sidebar-columns. This is extremely powerful because now,
thanks to Sass, you can make your layouts variable-driven. You can rapidly prototype
and play with different layouts including number of columns, gutter width, and side-
bar sizes all by changing a few variables at the top of your Sass file. To do this in tradi-
tional CSS grid frameworks, you’d have to do the math to create those CSS layouts, and
then change the CSS classes in your markup as well.

 We won’t go into all the aspects of the Blueprint grid here. We jump into using
Blueprint with Compass later in chapter 6. We’ll continue our survey of real-world
Compass applications by taking a look at the Compass table helper.

1.5.3 Zebra-stripe like a pro with table helpers

Continuing our overview of Compass features, let’s look at the Compass table helpers,
a set of Sass mixins that make prettifying your HTML tables easier. Let’s look at an
example.

@import "compass/reset"
@import "compass/utilities/tables";

table {
$table-color: #666;
@include table-scaffolding;
@include inner-table-borders(1px, darken($table-color, 40%));
@include outer-table-borders(2px);
@include alternating-rows-and-columns($table-color,

 adjust-hue($table-color, -120deg), #222222); }

Now let’s break this down. You import the table helpers using the @import rule. This
provides four mixins for your use. The table-scaffolding provides base styles for
your th and td elements that you stripped with your CSS reset, as well as an often-used
pattern of right alignment for numeric columns. Here’s the source for this mixin.

Listing 1.18 Compass table helpers

22 CHAPTER 1 Sass and Compass make stylesheets fun again
@mixin table-scaffolding {
th {

text-align: center;
 font-weight: bold; }

td,
th {

 padding: 2px;
 &.numeric {
 text-align: right; } } }

The inner-table-borders and outer-table-borders mixins work as advertised, add-
ing borders to the table and to cells within the table.

 Lastly, the alternating-rows-and-columns mixin is an easy way to add some
zebra-striping to your HTML table. You might ask why you wouldn’t use the :nth-
child, :even, or :odd CSS pseudo selectors for this task, and you’d be right to ask.
That’s exactly what Compass is doing under the hood. But this mixin provides some
additional support for class-name-based striping as well as color intersections. Let’s
look at the source.

@mixin alternating-rows-and-columns(
$even-row-color,
$odd-row-color,
$dark-intersection,
$header-color: white,
$footer-color: white) {

th {
background-color: $header-color;
&.even, &:nth-child(2n) {
background-color: $header-color - $dark-intersection; }

}
 tr.odd {

td {
background-color: $odd-row-color;
&.even, &:nth-child(2n) {

background-color: $odd-row-color - $dark-intersection; }
}

}
tr.even {

td {
 background-color: $even-row-color;

&.even, &:nth-child(2n) {
background-color: $even-row-color - $dark-intersection; }

}
}
tfoot {

th, td {
background-color: $footer-color;
&.even, &:nth-child(2n) {

 background-color: $footer-color - $dark-intersection; }
}

}

Listing 1.19 Table helper mixin

Listing 1.20 A mixin for alternating colors by row or column

23Solve real-world CSS problems with Compass
Note that the color values are not only variables; they’re employing a bit of math to
ensure proper contrast for readability. You’ll learn more about how Sass deals with
variables and math in the next chapter. Let’s keep moving with a look at how Compass
means never having to write vendor prefixes again.

1.5.4 Easy CSS3 without vendor prefixes

When CSS3 started gaining adoption by modern browsers, designers were excited to
start using CSS for tasks that used to require stupid stylesheet tricks. We were so
excited that we could now make those glorious rounded corners with a few lines of
CSS that we didn’t mind the vendor prefixes that came with them very much. Vendor
prefixes are those -webkit and -moz bits that browsers add on to CSS features that have
experimental support. In its simplest form, this means that to give a <div> a set of
rounded corners with a 5px border radius, you have to resort to CSS like this:

.rounded {
-webkit-border-radius: 5px;
-moz-border-radius: 5px;

}

As usual, Compass can save you from the repetition with a set of border radius mixins
found in the Compass CSS3 module. Import the module into your Sass file and
include the mixin:

@import "compass/css3";
.rounded {

@include border-radius(5px);
}

This will yield the following CSS:

.rounded {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
-o-border-radius: 5px;
-ms-border-radius: 5px;
border-radius: 5px;

}

Not only did you save your fingers from the common repetition of -webkit and -moz
but you’re also being good designers and supporting the other common vendor
namespaces as well. Though that bit of repetition isn’t horrible, what if you only want
one of the four corners to be rounded? Well, the Mozilla folks don’t yet see eye to eye
with the rest of the field on the best way to make that happen, so you’re left with this:

.rounded-one {
-moz-border-radius-topleft: 5px;
-webkit-border-top-left-radius: 5px;

}

That’s where Compass shines. You can target a single corner for a border radius with
the border-corner-radius mixin:

24 CHAPTER 1 Sass and Compass make stylesheets fun again
.rounded-one {
@include border-corner-radius(top, left, 5px);

}

This will give you the CSS you want, Mozilla quirk included:

.rounded-one {
-moz-border-radius-topleft: 5px;
-webkit-border-top-left-radius: 5px;
-o-border-top-left-radius: 5px;
-ms-border-top-left-radius: 5px;
border-top-left-radius: 5px;

}

That’s just the tip of the tip of the tip of the CSS3 iceberg in Compass. We take a
deeper look at all the time-saving features in chapter 9.

1.6 Summary
In this first chapter, we’ve looked at the case for CSS preprocessing. We took a quick
look at four key features of Sass: variables, nested selectors, mixins, and selector inher-
itance. We also looked at some real-world applications of Sass included in the Com-
pass framework, including CSS resets, grids, table styling, and CSS3 rounded corners.

 In the next chapter, we’ll dive deeper into Sass syntax, including color functions
and scripting support. After you get a bit more Sass under your belt, we’ll take a
deeper look at Compass.

Basic Sass syntax
Sass’s SCSS syntax is a superset of the syntax of CSS3. This means that if can read
and write CSS, you already know the basics of how to read and write Sass.

 On top of CSS, Sass adds new features and new syntax that let you express more
styles more clearly with less writing. Some Sass additions are designed to be easy to
understand for people who understand CSS, even without having seen Sass before.
Most of them require some explanation, though, which is what this chapter is for.

 When reading a Sass file for the first time, you begin by just looking at the part
you’re familiar with: the CSS. The fundamental purpose of any Sass file is to style a
website, just like CSS, so the style being defined is still the most important part of
the file.

This chapter covers
 Reusing colors, lengths, and other values with variables

 Adding structure to your CSS by nesting rules

 Writing maintainable stylesheets by distributing them
among multiple files

 Reusing entire styles with mixins and inheritance
25

26 CHAPTER 2 Basic Sass syntax
 After you understand the styles, you look at the Sass features being used. If there
are any you don’t recognize, you can look them up in this book. Then, for the ones
you do, you ask yourself, how might these be helping to express the style?

 Writing Sass is similar to reading it in that you start with CSS, just the same as you
would if you weren’t using Sass at all. Then you consider which features of Sass can
improve your CSS. Are you using the same color (or variants of it) all over the place?
Do all of your selectors start with the same ID? Sass can help.

 The first chapter gave a brief overview of the main features of Sass. This chapter
goes into more depth, explaining the ins and outs of those features. We start by talk-
ing about variables, the simplest and most fundamental form of reuse in Sass. Then,
we talk about different things you can do with nested selectors to keep your stylesheets
lean and easy to read. Next, we’ll look at how to spread out your stylesheet into multi-
ple files to make it easy to work with large numbers of styles. We’ll take a detour into
silent comments, which are a great way of keeping notes in a file without exposing
them for all the world to see. Finally, we’ll look at two ways of reusing entire chunks of
style: mixins, which make it easy to use a pattern over and over, and inheritance,
which makes it possible to express relationships between classes.

 First let’s talk about variables, the most basic form of reuse in Sass.

2.1 Working with variables
One of the major benefits of Sass is the variables it brings to CSS. Variables allow you
to name CSS values that you use repeatedly and then refer to them by name rather
than repeating the value over and over. You can also name values you only use once in
order to make it more clear what they’re for.

 Sass uses $ to distinguish variables (such as $highlight-color, $sidebar-width).
The dollar sign was chosen because it’s visually distinctive, it’s aesthetically pleasing,1

and it’s not used elsewhere in CSS and thus doesn’t come into conflict with any pres-
ent or future CSS syntax.

 The most basic aspect of variables is how they’re declared in the first place; natu-
rally, this is what we’ll focus on first.

2.1.1 Declaring

A Sass variable is declared a lot like a CSS property:

$highlight-color: #abcdef;

This means that $highlight-color is now #abcdef. Any value that could be used for a
CSS property can also be used as a variable, including multiple values separated by
spaces ($basic-border: 1px solid black;) or commas ($plain-font: "Myriad
Pro", Myriad, "Helvetica Neue", Helvetica, "Liberation Sans", Arial, sans-

1 Older versions of Sass used ! instead of $ for variables. The change was made largely because !highlight-
color just looked ugly.

27Working with variables
serif; sans-serif;). This doesn’t have any effect until you refer to the variable,
which you’ll learn to do shortly.

 Unlike CSS properties, variables can appear outside any CSS rule. If they do appear
in a CSS rule, then the variable can only be used in that rule (or its descendants; see
section 2.2). The same is true if they appear in any other sort of { ... } block, like
@media or @font-face blocks:

$nav-color: #abcdef;

nav {
$width: 100px;
width: $width;
color: $nav-color;

}

The $nav-color variable is declared outside any CSS rule, so it can be used anywhere
in the stylesheet, such as in the nav rule. The $width variable was declared within the
{ and } of the .nav rule, so it can only be used within that rule. This means that it’s
safe to use $width again elsewhere in the stylesheet without fear of affecting this use.

 Just declaring variables isn’t very interesting—you want to use them, too. You’ve
already seen $width and $nav-color used in the example, so let’s look in more depth
at the ways variables can be used.

2.1.2 Referencing

Variables can be placed anywhere in a property that a normal CSS value like 1px or
bold can. They’re simply replaced by their value when the CSS is generated. Then, if
you need a different value later, you can change the variable’s value, and everywhere
it’s referenced the value will change as well:

$highlight-color: #abcdef;

.selected {
border: 1px $highlight-color solid;

}

Here the $highlight-color variable, when it’s used in the border property, is
replaced by the color #abcdef when the code is compiled to CSS. This gives elements
with the selected class a one-pixel, solid, #abcdef-colored border.

 Variables can even be used when declaring other variables. This is useful when you
have different levels of granularity in the values you want to name. The following
example has one variable at the level of granularity of individual color value, and
another at the level of a more-complex border value:

$highlight-color: #abcdef;
$highlight-border: 1px $highlight-color solid;

.selected {
border: $highlight-border;

}

28 CHAPTER 2 Basic Sass syntax
Here the value of the $highlight-border variable is set using the $highlight-color
variable. This works just like it did when you were setting the border property directly:
the value of $highlight-border becomes 1px #abcdef solid. This is then used as the
value for the border property.

 We’ll wrap up our examination of variables by looking at a useful quirk in the way
variable names work.

2.1.3 Variable names: dashes or underscores?

Variable names in Sass allow the same characters as property and selector names in
CSS, including dashes and underscores. Different people prefer different styles; some
use dashes to separate words within variables ($highlight-color), and some use
underscores ($highlight_color). The dash style is more widely used, including in
Compass and in this book.

 Sass doesn’t want to force anyone to use either dashes or underscores, though. To
that end, the two are completely compatible. A variable declared using dashes can be
referenced using underscores, and vice versa. This means that someone using Com-
pass can use underscores throughout their stylesheets, even though Compass uses
dashes everywhere:

$link-color: blue;

a {
color: $link_color;

}

In this example, $link-color and $link_color both refer to the same variable. In
fact, dashes and underscores are interchangeable most places in Sass, including mix-
ins (see section 2.5) and Sass functions (section 11.3). They aren’t interchangeable in
the plain-CSS parts of Sass like class, ID, or property names, though.

 Although variables are useful on their own, they’re the most basic tool Sass has to
offer. Their full potential is only unlocked when they’re used alongside other features
of Sass. One of those features is the ability to nest rules within one another, which
we’ll look at next.

2.2 Nesting CSS rules
One of the most annoyingly repetitive aspects of CSS is writing selectors. When you’re
writing a bunch of styles that all target the same section of the page, you often need to
write the same ID over and over again:

#content article h1 { color: #333 }
#content article p { margin-bottom: 1.4em }
#content aside { background-color: #eee }

Sass can save a lot of typing in these situations, and be easier to read as well. In Sass,
you can put rules within rules, like Russian nesting dolls. Sass will unpack these nested
rules into CSS for you, saving all that retyping:

29Nesting CSS rules
#content {
 article {
 h1 { color: #333 }
 p { margin-bottom: 1.4em }
 }

aside { background-color: #eee }
}

Sass will take this and translate it into the same CSS you saw earlier. It does this in two
steps, one for each of the levels of nesting but the last, like opening up the nesting
dolls. First, it takes #content (the parent) and sticks it onto the beginning of article
and aside (the children):

#content article {
h1 { color: #333 }
p { margin-bottom: 1.4em }

}
#content aside { background-color: #eee }

Then, since #content article still has more rules nested, Sass does the same thing
again and sticks the new selector onto its nested rules:

#content article h1 { color: #333 }
#content article p { margin-bottom: 1.4em }
#content aside { background-color: #eee }

A given rule can contain both properties, like in normal CSS, and other nested rules.
This is useful when you need special styling for a container element and child ele-
ments contained within:

#content {
background-color: #f5f5f5;

aside { background-color: #eee }
}

The container rule is kept around, and the nested rules are unpacked just like they
would be if the container didn’t have any properties:

#content { background-color: #f5f5f5 }
#content aside { background-color: #eee }

Plain old nesting works for most cases, but sometimes it’s not enough. What if you
want to apply a pseudo-class like :hover that needs to be nestled right up against the
selector? Sass has a special construct, &, for that and other purposes.

2.2.1 &, the parent selector

Normally, when Sass unpacks a nested rule, it connects the parent (#content) to the
children (article and aside) with a space (#content article and #content aside).
This is known in CSS as the descendant combinator, since it selects the article and aside
elements contained within (descendants of) the element with ID content. But there
are times when you don’t want Sass to use the descendant combinator to make this
connection.

30 CHAPTER 2 Basic Sass syntax
 The most common case where the descendant combinator is undesirable is when
you’re writing :hover styles for something like a link. For example, this Sass won’t
work properly:

article a {
color: blue;
:hover { color: red }

}

This means that color: red should apply to article a :hover—all the descendants
of links within article that are being hovered over. That’s not right! You want the
style to apply to the link itself, and the descendant combinator can’t do that for you.

 Instead, you use a special Sass selector called the parent selector. The parent selector
is used in nested rules to give finer control over how the nesting is unpacked. It’s a sin-
gle & and it can go anywhere in the selector that an element name like h1 could:

article a {
color: blue;
&:hover { color: red }

}

When the selector for a nested rule that contains a parent selector is unpacked, the
parent isn’t combined using a descendant combinator like it normally would be.
Instead, the & is replaced by the parent itself:

article a { color: blue }
article a:hover { color: red }

This is useful for adding pseudo-classes like :hover to the parent. It also allows you to
add a selector before the rest of the parent selector. For example, if you use JavaScript
to add an ie class to the <body> tag when the user is using Internet Explorer, you can
easily target it with &:

#content aside {
color: red;

body.ie & { color: green }
}

Sass is smart about selector nesting even beyond the parent selector. When it encoun-
ters selector groups—multiple selectors separated by commas—it figures out what it
has to do to nest them correctly.

2.2.2 Nesting selector groups

In CSS, the selector h1, h2, h3 matches h1 elements, h2 elements, and h3 elements.
Similarly, .button, button matches button elements and elements with class .button.
These are known as selector groups. A rule with a selector group applies to all the ele-
ments that match some selector in the group:

.button, button {
margin: 0;

}

31Nesting CSS rules
This is a welcome relief from repetition in CSS, but the relief is short-lived. Eventually,
you need to have a selector group that only applies within a container. CSS makes you
repeat the container’s selector for each selector in the group:

.container h1, .container h2, .container h3 { margin-bottom: .8em }

Luckily, Sass’s nested rules can help here too. When Sass unpacks a rule nested inside
a selector group rule, it unpacks it for each of the selectors in the group:

.container {
h1, h2, h3 {margin-bottom: .8em}

}

First, it combines .container and h1, then .container and h2, and then .container
and h3. Finally, it puts all three selectors together in a new group, and pops out the
repetitive CSS you saw earlier. It’ll do the same thing for rules nested within a selector
group rule:

nav, aside {
a {color: blue}

}

First, it combines nav and a, and then aside and a. Then it puts the two new selectors
together in a new group:

nav a, aside a {color: blue}

Handling nested selector groups is one of the bigger wins that Sass offers in terms of
saving on typing. Especially when you have selectors nested two or three levels deep,
having even a single group can really explode the amount of typing you’d need to do
in normal CSS.

 The other side of the same coin is that you need to be mindful of the CSS that will
be generated when using nested selector groups. Although Sass may make it seem like
a small amount of text, if your styles end up producing a large amount of CSS, they
can slow down your site.

 The final aspect of selector nesting that we’ll look at is how it works with selector
combinators, a fancy word for >, +, and ~. It turns out that it just works: you don’t even
need to use the parent selector.

2.2.3 Child and sibling combinators: >, +, and ~

These are called combinators because they’re used in combination with other selec-
tors to instruct the browser to only select those elements in a specific context:

article section { margin: 5px }
article > section { border: 1px solid #ccc }

The child combinator, >, allows you to select elements that are immediate children of
another element. The first selector will style all section elements within an article
element. The second selector uses the child combinator to select only the section
elements that are immediate children of an article element.

32 CHAPTER 2 Basic Sass syntax
 In this example, the adjacent sibling combinator, +, lets you select the paragraph
that immediately follows a header element:

header + p { font-size: 1.1em }

Here, the general sibling combinator, ~, selects every article that comes after
another article regardless of any elements that may be between them:

article ~ article { border-top: 1px dashed #ccc }

These combinators can be used with nested rules with no extra effort. Just leave them
dangling at the end of the parent, or at the beginning of the child:

article {
~ article { border-top: 1px dashed #ccc }
> section { background: #eee }

dl > {
dt { color: #333 }
dd { color: #555 }

}
nav + & { margin-top: 0 }

}

Sass will expand these nested styles, joining selectors on the combinators just like
you’d expect:

article ~ article { border-top: 1px dashed #ccc }
article > footer { background: #eee }
article dl > dt { color: #333 }
article dl > dd { color: #555 }
nav + article { margin-top: 0 }

CSS rules aren’t the only things that can be nested in Sass. Properties also benefit
from this reduction in repetition.

2.2.4 Nested properties

CSS selectors aren’t the only things that can be nested in Sass. Properties can be
nested, too. Although the problem of repetition isn’t as bad for properties as it is for
selectors, it can still get annoying to type border-style, border-width, border-
color, and all sorts of border-nonsense. In Sass, you only need to type border once:

nav {
border: {

style: solid;
width: 1px;
color: #ccc;

}
}

To nest properties, you split them at the -, add a : after the root property, and nest
the subproperties in a block beneath the root property. Like nested CSS selectors, Sass
will unpack your subproperties and join the parent and the children at the -, yielding
the CSS properties that would be repetitive to write by hand:

33Importing Sass files
nav {
border-style: solid;
border-width: 1px;
border-color: #ccc;

}

You can even write styles for shorthand properties followed by nested exceptions:

nav {
border: 1px solid #ccc {

left: 0px;
right: 0px;

}
}

This is nicer than writing the equivalent CSS:

nav {
border: 1px solid #ccc;
border-left: 0px;
border-right: 0px;

}

Property and selector nesting are great features, and not just because they reduce the
amount of typing you have to do. They also simultaneously make your stylesheets eas-
ier to read and work with, because the visual, indented structure mirrors the structure
of the styles that are being written.

 But sometimes even this isn’t enough for keeping track of a large stylesheet. Some-
times the only way to deal with a massive amount of styles is to split them up into mul-
tiple files. Sass supports this directly by adding built-in support for CSS’s @import rule.

2.3 Importing Sass files
One of the seldom-used features of CSS is the @import rule. This rule allows one CSS
file to include all the styles defined in another. Unfortunately, in order to do this, the
browser has to download another CSS file, which usually makes the page load too
slowly for CSS’s @import to be practically useful.

 Sass has an @import rule as well, but Sass does its importing when it’s compiling to
CSS. That means that all the styles end up in the same CSS file, so no extra download is
needed. In addition, all the variables and mixins (see section 2.5) defined in the
imported file are made available to the importer.

 Sass’s @import also doesn’t require you to specify the full name of the imported
file. You can leave off the .sass or .scss extension (see figure 2.1). This is so that you, or
people whose Sass styles you’re importing, can switch between the Sass and SCSS syn-
taxes without breaking your stylesheet. For example, the line @import "sidebar"; will
include all the styles from sidebar.scss into the current stylesheet.

 In this section, you’ll learn how to use @import to manage many Sass files at once.
First, we’ll cover making Sass files that are only ever going to be imported, since these
are actually the most common sort of file you’ll write in a large Sass project. Then,
we’ll look at several ways to use imported files to make your styles more reusable,

34 CHAPTER 2 Basic Sass syntax
including declaring customizable variables and importing within the scope of a single
selector. Finally, we’ll wrap up by explaining how to use the plain CSS @import direc-
tive in Sass.

 Usually you don’t want to make a CSS file for each Sass file you’re importing. Sass
has a special convention for dealing with this.

2.3.1 Using Sass partials

When you’re splitting up your Sass styles among many files using @import, usually you
only want to generate a few CSS files. The Sass files that are only meant for @importing
and don’t need their own individual CSS files are known as partials, and Sass has a spe-
cial convention for naming them.

 The convention for Sass partials is to begin the filenames with _. This tells Sass that
it shouldn’t generate an individual CSS file for the partial, and should only use it for
imports. Sass will also let you omit the _ when @importing a partial. For example, to
include the variables from the themes/_night-sky.scss partial, you’d just have to add
@import "themes/night-sky"; to your stylesheet.

 Partials can be included by multiple different files. This can be useful for having a
shared set of styles across multiple pages or even projects. Sometimes it’s useful to
allow the importing stylesheet to tweak those styles. Sass has a feature just for that:
default variable values.

2.3.2 Default variable values

Normally, if you declare a variable multiple times, the last declaration is the final value
of the variable. For example:

$link-color: blue;
$link-color: red;

a {
color: $link-color;

}

In this example, the anchor’s color will be set to red. This isn’t always what you want.
If you’re writing a Sass library that will be @imported by someone else, you may want

@import "colors";
@import "mixins";
@import "grid";

mixins.scss

colors.scss

grid.scss
Figure 2.1 Importing
Sass files

35Importing Sass files
to allow the @importer to customize some of the values in your file. This is what Sass’s
!default flag is for. It’s sort of like the opposite of !important, but for variables. It
means, if this variable is already declared, leave it alone, but otherwise use this value.

$fancybox-width: 400px !default;

.fancybox {
width: $fancybox-width;

}

If a user sets $fancybox-width before @importing your Sass partial, then your declara-
tion of 400px is ignored because of the !default flag. If the user hasn’t set the value
of $fancybox-width it’ll default to 400px.

 Next we’ll look at nested imports, which allow a partial to be imported within the
scope of a single selector.

2.3.3 Nested imports

Unlike plain CSS, Sass allows @imports to appear inside CSS rules. The styles in the
imported document are unpacked as though they were nested within the rule them-
selves. So if one file, named _blue-theme.scss, contained this,

aside {
background: blue;
color: white;

}

and then another imported it, like so,

.blue-theme {@import "blue-theme"}

the result would be the same as if you had written the contents of _blue-theme.scss
inside the .blue-theme rule to begin with:

.blue-theme {
aside {

background: blue;
color: #fff;

}
}

Any variables or mixins (see section 2.5) defined in the @imported file are also avail-
able in the rule. They aren’t available outside it, though, which makes nested
@imports useful for applying color themes or other styles configured with variables to
a specific section of your site.

 Sometimes it can be useful to use CSS’s own @import mechanism, which is per-
formed in the browser. Sass provides several ways to fall back on this.

2.3.4 Plain CSS imports

Since Sass is compatible with plain CSS, it also supports normal CSS @imports.
Although in general Sass will try to find a Sass file to import, there are three things

36 CHAPTER 2 Basic Sass syntax
that will tell it to forget that and send a simple CSS @import, despite the additional
download:

 The imported filename ends with .css.
 The imported filename is a URL (such as "http://sass-lang.com/stylesheets/

application.css"). This allows Sass files to use services like Google’s Font API.
 The imported filename is a CSS url() value.

This means you can’t directly import a plain CSS file without having Sass think you
want a plain CSS @import as well. But since Sass is compatible with CSS, you can
rename the file to .scss and import it that way.

 Imports are an important part of keeping Sass code maintainable and easy to
understand. Another less-impressive but still important aspect of this is comments.
Comments help style authors keep track of what they were thinking when they first
wrote some Sass. In plain CSS, comments are all visible to users, but Sass provides sup-
port for some comments that are never seen in the CSS output.

2.4 Silent comments
Comments in CSS are useful for organizing your styles, reminding your future self why
you did something, and similar purposes of stylesheet annotation. But you don’t
always want your comments to be visible to everyone who cares to view source on your
website.

 Sass provides an alternative form of comments called silent in addition to the stan-
dard CSS /* ... */ comments that aren’t part of the CSS output. These comments
have the same form as single-line comments in languages like JavaScript, Java, and
other C-like languages. They begin with // and last until the end of the line:

body {
color: #333; // This won't appear in the CSS
padding: 0; /* This will appear in the CSS */

}

It’s actually also possible for CSS-style /* ... */ comments to be silent too. If they
show up in tricky places (basically, places where a full CSS property or selector
wouldn’t be allowed) Sass can’t figure out how to slot them back into the CSS output,
and they’re discarded:

body {
color /* This won't appear in the CSS */: #333;
padding: 1em; /* Nor will this */ 0;

}

Now that you’ve got comments down, you understand the three basic ways to keep
your Sass organized and readable: nesting, importing, and commenting. That means
it’s time to move on to features that not only help you keep your styles organized, but
help you write altogether better styles. The first of these features is the ability to
abstract out repetitive styles with mixins.

37Introducing mixins
2.5 Introducing mixins
When you have a few small stylistic similarities throughout your site—colors and fonts
that you use consistently—variables are a great way to keep track of them. But when
your styles get more complicated, you need to be able to reuse more than just individ-
ual values. You need to reuse whole chunks of style. In Sass, you do this with mixins.

 A mixin is defined using the @mixin rule. This looks just like any other CSS @-rule,
like @media or CSS3’s @font-face. It gives a name to a bunch of styles, so that those
styles can be easily reused throughout the stylesheet. The following Sass code defines
a simple mixin for adding cross-browser rounded corners to a CSS rule:

@mixin rounded-corners {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
border-radius: 5px;

}

The mixin can then be used anywhere in the stylesheet using the @include rule. This
takes all the styles in the mixin and puts them wherever it was @included. When you
write this,

.notice {
background-color: green;
border: 2px solid #00aa00;
@include rounded-corners;

}

Sass turns it into this:

.notice {
background-color: green;
border: 2px solid #00aa00;
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
border-radius: 5px;

}

The border-radius, -moz-border-radius, and -webkit-border-radius properties
in .notice all came from the rounded-corners mixin. In this section, you’ll learn to
use mixins to avoid repetition. With the use of arguments, mixins will even allow you
to abstract out common patterns in your styles, so that they can be reused easily else-
where. In fact, mixins are so useful, it’s tempting to overuse them. Overuse can result
in a large amount of generated CSS that’s slow to download. As such, we’ll start by dis-
cussing which situations call for the use of mixins.

2.5.1 When to use mixins

Mixins allow you to easily share styles among different parts of the stylesheet. Any style
you find yourself repeating from rule to rule would make a good mixin, especially
when that style seems like a logical unit: a good group of properties that make sense to
set together.

38 CHAPTER 2 Basic Sass syntax
 A good rule of thumb for determining whether a group of properties would make
sense as a mixin is whether you can come up with a good name. If you can find a nice
short name that describes the style those properties bestow (like rounded-corners,
fancy-font, or no-bullets), then they’d probably make a good mixin. If you can’t,
maybe a mixin isn’t called for.

 In some ways, mixins are a lot like CSS classes. Both let you name chunks of style, so
it can be confusing when to use which. The most important distinction is that classes
are meant to be used in your HTML, whereas mixins share styles within the stylesheets.
This means that classes should be semantic, not presentational: they should describe the
meaning of an HTML element, not how it looks. Mixins, on the other hand, should be
presentational: they’re designed to describe how a CSS rule should look.

 In the preceding example, .notice is a semantic class name. When an HTML ele-
ment has class="notice", that describes the meaning of the element: it’s some sort
of message for the user. The rounded-corners mixin is presentational. It describes
the visual style (specifically, the corners) of whatever rule includes it.

 Using mixins and classes together allows you to write clean HTML and CSS using
semantic classes, while still avoiding repetition using mixins. In addition to making
your HTML and CSS easier to read and maintain, sticking to this distinction makes it
easier to think about your styles as you’re writing them.

 Sometimes it’s useful to put more than just properties into a mixin. Luckily, Sass
allows you to put rules in mixins as well.

2.5.2 CSS rules in mixins

Mixins can contain more than just properties. They can also contain CSS rules, with
selectors and properties of their own.

@mixin no-bullets {
list-style: none;
li {

list-style-image: none;
list-style-type: none;
margin-left: 0px;

}
}

When a mixin containing CSS rules is @included in a parent rule, the rules in the
mixin become nested within the parent. As an example, look at the following Sass
code, which uses the no-bullets mixin:

ul.plain {
color: #444;
@include no-bullets;

}

Listing 2.1 A mixin containing rules

39Introducing mixins
Sass’s @include directive expands the mixin, replacing it with the contents. Effectively,
the previous example becomes the following.

ul.plain {
color: #444;
list-style: none;

}
ul.plain li {

list-style-image: none;
list-style-type: none;
margin-left: 0px;

}

The rules within the mixin can even use the Sass parent selector, &. Just like when it’s
used outside of mixins, it’s replaced by the parent selector when Sass unpacks the
nested rules.

 If a mixin contains only CSS rules and no properties, it can be included at the top
level of the document, outside of any CSS rule. This isn’t very useful when you’re only
writing mixins for yourself, but if you’re using a library like Compass, this is a good
way of providing styles in such a way that you can choose whether to use them.

 Next, you’ll learn how to make mixins more flexible and reusable by allowing
them to take arguments.

2.5.3 Passing arguments to a mixin

Mixins don’t have to always produce the exact same style. A mixin can take arguments
that allow the @includer to customize the exact style the mixin produces. Arguments
are just variables that are assigned to CSS values provided when the mixin is
@included. If you’ve used JavaScript, this works just like a function:

@mixin link-colors($normal, $hover, $visited) {
color: $normal;
&:hover { color: $hover; }
&:visited { color: $visited; }

}

When the mixin is @included, arguments are passed just like they would be to a CSS
function. When you write this,

a {
@include link-colors(blue, red, green);

}

Sass turns it into this:

a { color: blue; }
a:hover { color: red; }
a:visited { color: green; }

Listing 2.2 Resulting code from including no-bullets in ul.plain

40 CHAPTER 2 Basic Sass syntax
When you’re @includeing a mixin, it can sometimes be hard to keep track of which
argument means what and which order they go in. Because of this, Sass allows the
arguments to be explicitly named using the syntax $name: value. Named arguments
can go in any order, as long as they’re all present:

a {
@include link-colors(

$normal: blue,
$visited: green,
$hover: red

);
}

Although it’s good to allow customizability for mixins with arguments, sometimes
arguments can be a pain when you don’t need to customize. Thus Sass allows mixins
to declare default values for their arguments.

2.5.4 Default argument values

Arguments can also have default values, which are used if the mixin isn’t passed
enough arguments when it’s @included. Default arguments take the form $name:
default-value. The value can be any normal CSS value, including other arguments.

@mixin link-colors(
$normal,
$hover: $normal,
$visited: $normal
) {
color: $normal;
&:hover { color: $hover; }
&:visited { color: $visited; }

}

Now if someone does @include link-colors(red), $hover and $visited will auto-
matically be red too.

 Mixins are only one of the features Sass has for making styles reusable. You’ve
learned that mixins should be used for reusing presentational styles, but what hap-
pens when you want to reuse semantic classes as well? For this, you have the other
main reuse feature in Sass: selector inheritance.

2.6 Trimming CSS with selector inheritance
The final major method for reducing repetition when using Sass is known as selector
inheritance. Based on the idea of object-oriented CSS pioneered by Nicole Sullivan,
selector inheritance is the ability to tell Sass that one selector should inherit all the
styles defined for another selector. This is declared using the @extend-rule.

Listing 2.3 Setting default values for arguments

41Trimming CSS with selector inheritance

.error {
border: 1px red;
background-color: #fdd;

}
.seriousError {

@extend .error;
border-width: 3px;

}

This means that .seriousError will inherit all the styles for .error defined anywhere
in the stylesheet. HTML elements with class="seriousError" will be styled as though
they had class="seriousError error". They’ll not only have a three-pixel border,
but that border will be red and the elements will have a light red background as well,
since that was the style defined for .error.

.seriousError won’t just inherit the style for .error itself. Any CSS rule that has
to do with .error will work with .seriousError as well.

.error a {
color: red;
font-weight: bold;

}

h1.error {
font-size: 1.3em;

}

Links within an element with class="seriousError" will also be red and bold.
 In this section, we’ll look at situations when inheritance is appropriate to use, as

opposed to mixins. Then we’ll cover advanced ways to put inheritance to work, before
examining how inheritance works in detail. Finally, we’ll look at some of the potential
pitfalls of using inheritance, and how to avoid them.

 Inheritance and mixins are, in some ways, very similar in what they do. It’s impor-
tant to know when each of them is the right tool to use, so that’s what we’ll go over
first.

2.6.1 When to use inheritance

In section 2.5.1, we said that mixins should be “presentational” and share style,
whereas classes should be “semantic” and convey meaning. Since inheritance is a rela-
tionship between classes (and sometimes other sorts of selectors), that relationship
should be on the level of semantics. When an element having one class (such as
.seriousError) means that it should have another (such as .error), you should use
inheritance.

Listing 2.4 Extending styles with selector inheritance

Listing 2.5 .seriousError inherits from .error

Applies to
.seriousError a

Applies to
h1.seriousError

42 CHAPTER 2 Basic Sass syntax
 This is high-concept, so let’s look at it from a different perspective. Imagine you’re
designing a page and adding classes, and you find that one of your classes
(.seriousError) is a more specific version of another (.error). What do you do?

 You could write the same styles for both of them, but that would be a lot of rep-
etition. You shouldn’t have to repeat yourself when using Sass.

 You could use a selector group (.error, .seriousError) to write the same rule
to both selectors. This is great if you have all the styles for .error in one place,
but if .error is used a lot in your stylesheet, this becomes much more difficult.

 You could use a mixin to provide the same styles for both classes. This would
work fine, but it has the same problem as the selector group when .error is
used all over the stylesheet. And it’s not like the two classes just happen to have
the same style. You should be able to express the relationship more clearly.

 So you use @extend. Having .seriousError inherit from .error makes the
relationship between the two clear. More important, everywhere you use .error
in your stylesheet will work for .seriousError as well.

Now that you have a better idea of when inheritance should be used and what it’s par-
ticularly good for, it’s time to look at some advanced uses.

2.6.2 Advanced inheritance

Any CSS rule can use @extend, and almost any CSS rule can be @extended. Most of the
time you just want to use it with single classes, but occasionally you’ll want something
more. The most common advanced use is to inherit an HTML element. Although the
default browser styles won’t be inherited since they aren’t part of the stylesheet, any of
the styles you write will.2

 The following style defines a class called disabled that will make elements look
like grayed-out links. It does so by extending a, the link element:

.disabled {
color: gray;
@extend a;

}

If a rule @extends a complex selector, it’ll only inherit styles that would apply to ele-
ments matching that selector. So if .seriousError @extended .important.error, it
would inherit styles for .important.error and h1.important.error, but not for
.important or .error. In this case, you’d probably want .seriousError to @extend
.important and .error separately.

 If a selector sequence (#main .seriousError) @extends another selector
(.error), only elements matching #main .seriousError inherit the style of .error
(just like with a single class). Elements with class="seriousError" outside of .main
are unaffected.

2 This is a moot point if you’re using a CSS reset, since the element will be completely styled by your stylesheet
anyway.

43Trimming CSS with selector inheritance
 Only selector sequences like #main .error can’t be @extended. This is because the
styles that would be inherited for #main .error will almost always be nearly identical
to the styles for plain .error, and the distinction could get confusing.

 Now that you understand what inheritance does, it’s time to explore what Sass is
doing to the CSS to make it work.

2.6.3 How inheritance works

Unlike variables and mixins, inheritance isn’t as simple as replacing @extend with
some CSS styles. It’s important to have a basic understanding of what’s going on under
the hood so that you aren’t surprised by the generated CSS.

 The basic idea behind @extend is that if .seriousError @extends .error, then
every time .error appears in the stylesheet, it’s replaced with .error, .serious-
Error. This means that the CSS rule applies to both .error and .seriousError, just as
desired. The details get complicated when .error appears in complex selectors like
h1.error or .error a or #main .sidebar input.error[type="text"], but Sass will
worry about those for you.

 There are two important practical consequences of this that you should know:

 Unlike mixins, inheritance generates relatively little additional CSS. Since it
only repeats the selector, not the properties, using inheritance can result in far
less CSS than using mixins. This can be important if you worry a lot about the
speed of your site.

 Inheritance works with the cascade. When two different CSS rules apply to the
same HTML element, and they each have different values for the same property,
the cascade is how CSS decides which one applies. It’s pretty intuitive: usually
the more specific selector wins, and failing that, the rule that comes last in the
stylesheet.

Though mixins sidestep the cascade by putting their styles right in the CSS rule, with
inheritance the cascade matters. The styles being inherited are defined wherever they
were defined for the @extended selector, and at the same level of specificity. Usually
this doesn’t pose a problem, but it’s important to be aware of nonetheless.

2.6.4 Best practices when using inheritance

Usually, using inheritance will keep your CSS nice and trim since it’s only copying
selectors, not bunches of CSS properties. But if you’re not careful, you can put Sass
into a position where it has to copy a huge number of selectors.

 The best way to avoid this is to never use @extend in CSS rules with descendant
selectors like .foo .bar (.foo.bar is safe, though). If you do, and @extend is also
used in a descendant selector, the size of your selectors can quickly get out of hand:

.foo .bar { @extend .baz; }

.bip .baz { a: b; }

44 CHAPTER 2 Basic Sass syntax
In this example, Sass has to make sure that the styles that apply to .baz also apply to
.foo .bar (an element with class="bar" within an element with class="foo"). Then
you have a CSS rule that applies to .bip .baz (an element with class="baz" within an
element with class="bip"). Notice the three separate cases where this rule might
apply to .foo .bar.

<!-- Case 1 -->
<div class="foo">

<div class="bip">
<div class="bar">...</div>

</div>
</div>

<!-- Case 2 -->
<div class="bip">

<div class="foo">
<div class="bar">...</div>

</div>
</div>

<!-- Case 3 -->
<div class="foo bip">

<div class="bar">...</div>
</div>

Sass has to generate three new selectors for this. If either rule were longer, the num-
ber would become much greater. Sass won’t always generate all possible selector com-
binations, but the number can still get pretty big, so better to avoid it if possible.

 It’s worth noting that it’s completely safe to use @extended selectors with as many
descendant selectors as you want, as long as there aren’t any descendant selectors
@extending them as well.

2.7 Summary
This chapter introduced the fundamental building blocks of Sass and Compass. Using
the tools explained here, you can go off and use Sass to write wonderfully clear,
repetition-free, semantic CSS. You have a reasonably deep understanding of the tools
Sass provides, and some good rules of thumb for when to use each one.

 Variables are the most basic tool provided by Sass. They allow individual CSS values
to be reused, either throughout the stylesheet or locally within a single rule. Variables,
along with mixins and even Sass filenames, can use either - or _ interchangeably.

 Similarly basic is the Sass nesting facility. Nesting allows CSS rules to be laid out
within one another, reducing the repetition of typing out common selectors and mak-
ing it easy to see the structure of a stylesheet at a glance. Sass also provides the special
parent-reference character, &, which allows for even more powerful nesting.

 You’ve also learned about Sass’s stylesheet importing, another important feature.
This allows a single CSS file to be generated by many separate Sass files, making it

Listing 2.6 Inheritance can quickly get complicated

45Summary
easier to work on large amounts of CSS without the performance penalty of CSS
@import. With nested imports and default variable values, importing also enables
more powerful, customizable stylesheets.

 Mixins allow Sass users to write semantic stylesheets while still avoiding repetition
of presentational styles. You learned not only how to use mixins to reduce repetition,
but when to use them so that your stylesheets and CSS are as maintainable and seman-
tic as possible.

 Finally, we looked at selector inheritance, the other side of the same coin as mix-
ins. Inheritance allows you to declare relationships between semantic classes and use
those relationships to keep your CSS lean and easy to maintain.

 If you were to use just what you’ve learned in this chapter, you could write fine
Sass, but soon you’d start to wonder if there were ways you could make it even better.
You’d think your mixins could be more reusable, and wish you could have Sass do
some math for you. You’d start to wonder if it would be possible to theme your entire
site using only one color variable, and if you could write stylesheets so reusable you
could share them among your sites and with your friends.

 In the next chapter, we’ll explore Sass’s scripting features, which enable you to do
all of these things.

Part 2

Using Sass and Compass
in practice

In the first two chapters, you got acquainted with Sass and Compass, and we
covered the core features of the Sass syntax. In the next three chapters, you’ll
see the practical value of Sass and Compass, how they help you tackle previ-
ously tedious tasks, and how they help you write powerful stylesheets with far
less effort.

 In chapter 3, you’ll see how Compass simplifies one of the most fundamental
elements of web design, layout. In this chapter, we discuss the principles behind
grid layouts and cover the tools Compass provides to make them incredibly sim-
ple and flexible. Whereas traditional CSS grid systems require you to litter your
markup with stacks of presentational class names, in this chapter you’ll see how
Compass lets you use Blueprint and 960 Grid System without imposing upon
your markup. You’ll see how the dynamic nature of Sass allows you to set up a
grid framework and easily change it by changing a few variables. Finally, you’ll
learn how to maintain vertical rhythm with Compass’s typography helpers.

 In chapter 4, we dig deeper into the Compass tool chest and look at Compass
mixins, which help you eliminate the drudgery of authoring repetitive
stylesheets. Compass provides a fantastic set of style patterns wrapped up in
dynamic mixins. You’ll learn how you can reset browser styling defaults and help
older browsers catch up with HTML5 resets. We look at mixins for styling links,
horizontal and inline lists, and other helpful patterns for typography and layout.

 Chapter 5 shows how Compass mixins take the headache out of writing cross-
browser CSS3. You’ll see how easy it is to write cutting-edge stylesheets with box
shadows, rounded corners, and gradients without the hassle of managing vendor

prefixes or having to keep track of varying browser implementations. We look at how
Compass simplifies @font-face and even helps you support some CSS3 features in
older versions of IE with easy CSS PIE integration.

 When you’ve completed this part, you should have a good understanding of how
Compass fits into your stylesheet workflow and solves your everyday problems. You
should also have a more tangible sense of the power of dynamic stylesheets and how
you can write better stylesheets with less effort. In the next part, we take a look at ways
to use Compass’s brilliant automatic CSS spriting, how to take your stylesheets from
prototype to production, and how to optimize your stylesheets for better performance.

CSS grids
without the math
3.1 What is a grid?
Whitespace is a powerful, yet often underutilized aspect of great web design.
Whitespace (or negative space) is the area between “the other stuff” in your lay-
outs and content. Whitespace can create separation between types of information,
helping you to visually scan content or calling your attention to items of greater
importance.

 A grid is a layout framework that helps you make efficient use of whitespace in
your web pages, providing uniform dimensions for columns and rows of content, as

This chapter covers
 Basic grid theory and when you might use a grid

 CSS grid framework options when using Compass

 Maintaining vertical rhythm in your layouts using
typography helpers
49

50 CHAPTER 3 CSS grids without the math
well as other whitespace elements like margins and gutters. Though grids have been
common in print since the invention of the printing press, they became popular in
web design only a few short years ago. In addition to providing some best practices for
whitespace use in your designs, CSS grids also allow for rapidly prototyping new lay-
outs, since you can more quickly adjust the width of content areas.

3.1.1 Without CSS grids, or designing without a net

Uniform whitespace isn’t just a matter of aesthetics; it helps you scan and read con-
tent. Our eyes are drawn to the space between objects on a page, and uneven amounts
of whitespace draw attention. This can be either good or bad, but too much attention
leads to cognitive noise.

 Compare a paragraph written on lined paper to a note inside of a greeting card
and the value of those lines becomes obvious. Without a consistent baseline, your
handwriting suffers and its legibility declines sharply. In the same way, designing with-
out a grid leaves you with inconsistent sizes and arbitrary alignment, dramatically
reducing the impact of your design. CSS grid frameworks lay down a groove of consis-
tent measurements so you’re not left to the peril of “eyeballing” your layouts. Let’s
look at a simple grid example.

3.1.2 What is a grid system or framework and how does it work?

In case you haven’t worked with grids before, let’s look at some grid layouts in action.
If you happen to have an internet connection handy, you may want to follow along
online. We’ll take a look at Geoffrey Grosenbach’s excellent PeepCode blog (http://
blog.peepcode.com/archives), shown in figure 3.1, which makes effective use of a CSS
grid layout.

 Take a look at figure 3.1. How many columns are in the grid? If you said four, you’d
be partially correct. There are indeed four columns of thumbnails, but take a look at
the footer. There are six columns of links down there. If you press Ctrl+G, you’ll see
that Geoffrey has wired up a nice little Easter Egg to reveal the underlying grid layout
(see figure 3.2).

http://blog.peepcode.com/archives
http://blog.peepcode.com/archives

51What is a grid?
As figure 3.2 reveals, there are actually 12 columns. Each thumbnail is three columns
wide (4 x 3 = 12) and each column in the footer is only two columns wide (6 x 2 = 12).
This kind of layout makes it easy to distribute images in an eye-pleasing arrangement,
but it does so much more. If you click through to any of the articles in Geoffrey’s
archives (and hit Ctrl+G), you’ll see the same grid at work (see figure 3.3).

Figure 3.1 The
PeepCode blog uses
a CSS grid.

52 CHAPTER 3 CSS grids without the math
The article in figure 3.3 is only five columns wide. The layout uses seven columns of
negative space to provide a background image of a business card, a design that sup-
ports the content of the article.

 So you can see the value that grids provide, but where do Sass and Compass come
in?

Figure 3.2 The grid
revealed

53What is a grid?
3.1.3 Grids with Sass and Compass

At their core, grids are simple mathematical divisions which define a structure for con-
tent and containers. Compass (and Sass) step in and handle all the math, freeing you
from the tedium of rolling your custom grid width classes by hand. You can use either
CSS classes or Sass mixins to construct your grid layout. Using Sass variables, you can
configure your grids easily, trying new settings simply by changing a few variables.

 Next we’ll look at what grid systems are made of and how Sass and Compass help
you master them.

Figure 3.3 Grid layouts are for text, too.

54 CHAPTER 3 CSS grids without the math
3.2 Getting started with grids
In this section, we’ll cover some advanced features of CSS grid frameworks. If you’re
already familiar with using CSS grids, this will be a review. If this is your first foray into
the world of CSS grids, this section will serve as a quick primer. Now, let’s define some
terms.

3.2.1 Terminology

Though all CSS grid frameworks have their own internal names for grid elements,
there are some concepts which they all share (see table 3.1).

The items in table 3.1 are core to any CSS grid, but as you’ll see, only the grid con-
tainer is represented in your markup.
COLUMNS

Columns are at the heart of grid frameworks. In print media, if “Content is King,”
then columns are the power behind the throne. Authors are called columnists. Classi-
fied ads are sold in units of columns and inches. In web design, we’ve advanced beyond
our slate-gray, center-justified Stone Age wrought with red, blue, and purple links.
But, as a medium, the web still trails print in many ways. CSS has long had the ability to
adjust how content is rendered horizontally, but vertical layout has been a challenge.
Native support for column-based layout is only now making its way into the CSS spec
and it will be years before you can reliably depend on it. This vacuum gave rise to CSS
grid frameworks and column-based layouts.

 Take another look at figure 3.2. Those vertical shaded items are columns. You can
observe that they’re each 30 pixels wide and share a uniform spacing. There are many
techniques for achieving columns in CSS. We’ll look at a few in the context of several
grid systems throughout section 3.2. For now, it’s only important to know that all CSS
grids have the notion of columns and those columns have an equal width within a
container. We’ll explore containers in the next section.
CONTAINERS

Looking back at the Blueprint example in figure 3.2, you might get the impression
that CSS grids turn the whole page into a column-based layout, much like a newspaper
page. On the web, since you have no control of a user’s screen size and resolution, you
don’t know how big “the page” actually is. In CSS grids, you enable a column-based lay-
out within a container. A grid may have just one container, or it might include a

Table 3.1 Grid framework terms

 Term Definition In markup

 Column Vertical unit of measurement of content No

 Container HTML element wrapping a grid layout Yes

 Gutter Uniform space between columns in a grid No

55Getting started with grids
number of containers. In some cases, you might enable different containers with dif-
fering column widths and column counts, as you’ll see later when we cover the 960
Grid System. In CSS grid frameworks, a container is merely a wrapping element, usu-
ally a <div> that scopes the CSS selectors used to implement the grid.

 Now that you know that CSS grids all have columns in one or many containers, let’s
look at another linchpin of grid-based layouts, the gutter.
GUTTERS

Just like gutters on a house take rainfall and move it efficiently off a roof and into the
storm drain, gutters help our eyes efficiently notice the boundaries of areas of con-
tent. Consider again the Blueprint example in figure 3.2. Those gaps in between the
shaded columns are the gutters. Note that, just like the columns, the gutters have a uni-
form width, in this case 10 pixels. Different grid layouts employ different math to
achieve their column layouts, but they’re all based on number of columns, column
width, and gutter width.

 Up until now, we’ve looked only at fixed-sized, pixel-based columns and gutters. In
the next section, we’ll look at alternative CSS grid layouts.

3.2.2 Choosing a grid style, semantic versus pragmatic

Most technologies are not without detractors. CSS grid frameworks are no different.
Critics claim that using CSS classes to specify grid layout couples presentation with
content. Folks in this semantics camp argue that markup should be about content and
data, and not indicate anything about presentation of that data. Pragmatists counter
that semantic meaning resides in the markup and not in class names.

 Fortunately, Compass gives you the choice of using CSS classes or including grid
layout styles in your own selectors with mixins.

3.2.3 Fixed versus fluid grids

Given the wide range of user screen sizes on the web, designers have two choices:
choose a reasonable, fixed layout size for most users (and constrain the content to that
layout), or implement a flexible or fluid layout and let the content adapt to the user’s
screen, even when the browser is resized.

 Figure 3.4 shows a quick example of a fluid grid from Stephen Bau based on
Nathan Smith’s popular 960 Grid System. In this composite image, you can see how
the same 16-column grid can grow as the user’s browser window changes sizes.

 Though fluid layouts might sound appealing (after all, who likes to be inflexible?),
the nature of dynamic content, including images and copy, makes fluid layouts more
difficult to implement and maintain. We’ll look at a few of those later in the chapter
when we discuss the 960 Grid System and others.

 Now that we’ve covered the basics of CSS grid frameworks, in the next section we’ll
take an in-depth look at four popular grid systems and how to use them with Compass.

56 CHAPTER 3 CSS grids without the math
3.3 Using Blueprint
Originally developed by Olav Bjørkøy in 2007, Blueprint CSS is now maintained by
Joshua Clayton and a team of contributors. Blueprint packages common CSS tech-
niques for grid layout, typography, and form styling into a framework that can be used
from project to project. You can use Blueprint whole or à la carte, choosing only those
modules you like. Most designers who use Blueprint initially do so for the grid layout
features, so let’s start there.

 As you saw in section 3.1, CSS grid layouts consist of containers, columns, and gut-
ters. As you’re about to see, columns and gutters are virtual, meaning you won’t see
any items in your markup for actual columns and gutters. Instead, you indicate how
many column widths (and gutter space between them) your content should consume.
Let’s look at an example of using Blueprint with static CSS.

3.3.1 Blueprint with plain CSS

First, you need to download and unarchive Blueprint’s CSS and supporting assets into
your project and reference them in the <head> of your document.

Figure 3.4 960 fluid grid

57Using Blueprint

<link rel="stylesheet" href="css/blueprint/screen.css">
<link rel="stylesheet" href="css/blueprint/print.css">
<!--[if lt IE 8]>

<link rel="stylesheet" href="css/blueprint/ie.css">
<![endif]-->

In this basic example, you add the stylesheets for both screen and print media types,
as well as a conditional stylesheet to handle all of Internet Explorer’s lovely quirks.
This is the kitchen-sink approach: enable all of Blueprint’s features, including its
reset, grid, typography, and forms support. You could choose to include just the Blue-
print modules you want, but this example will suffice for now. We’ll take a look at how
to optimize Blueprint in Compass in section 3.3.3.

 Now that you’ve included Blueprint on your page, you’re all set to create your grid
system. Let’s look at a basic layout.

<section class="container">
<header class="main span-24">

Header
</header>
<section class="content span-20">

Content
</div>
<aside id="sidebar" class="span-4 last">

The last column
</aside>
<footer class="main span-24">

Footer
</footer>

</section>

In this basic example, you’ve created a simple two-column, blog-style layout with full-
width header and footer. You begin by adding the container class to the element to
wrap your grid B. You make your header and footer elements take up the full width
of your grid (24 columns in this case) with the span-24 class C. Since you want a ver-
tical split between your main content and sidebar, you assign the span-20 D and
span-4 classes, respectively. Note the last class for your sidebar E. This class elimi-
nates the gutter on the right side of this column, since it’s the last column in a row.

 We don’t have the space to dive into the complete source of Blueprint, but it’s
important to understand a few things in the CSS before we jump into a Compass
example. Consider the following listing.

Listing 3.1 Adding Blueprint to a page

Listing 3.2 A basic Blueprint layout

Create grid layoutB

Full-width headerC

Main content areaD

SidebarE

58 CHAPTER 3 CSS grids without the math

.container {width:950px;margin:0 auto;}

.column,

.span-1,

.span-2,

.span-3,

.span-4,

...

.span-24 {float:left;margin-right:10px;}

.last {margin-right:0;}

.span-1 {width:30px;}

.span-2 {width:70px;}

.span-3 {width:110px;}

.span-4 {width:150px;}

...

.span-20 {width:790px;}

.span-21 {width:830px;}

.span-22 {width:870px;}

.span-23 {width:910px;}

.span-24 {width:950px;margin-right:0;}

In this abridged listing from the Blueprint grid module, we get a look at how the grid
is implemented. The container has a width of 950 pixels and is centered in the page
B. Next, all possible column widths (indicated with the span-x classes) are floated to
the left and have a right gutter of 10 pixels via a right margin C. Next, the width of
the sidebar and main content are set via span-4 D and span-20 E. Finally, the full-
width header and footer elements share the same width as the container F.

 If this is your first exposure to CSS grids, you can see that the math isn’t difficult.
Blueprint provides classes for each column width from 1 to 24 in 40-pixel increments:
30-pixel columns with 10-pixel gutters. In addition to basic span-x classes, Blueprint
also provides similar classes named append-x, prepend-x, pull-x, and push-x for
leading or trailing column padding or nudging columns horizontally on the grid, as
well as other classes for adding borders and other niceties. Now that we’ve explored a
bit of the theory and CSS behind Blueprint, let’s look at how Compass makes imple-
menting Blueprint grids even easier.

3.3.2 Blueprint grids with Compass

Now that you’ve seen how to implement a simple layout using CSS, let’s take a look at
how to do the same Blueprint layout in Compass. Let’s get started by generating a new
Compass project.

compass create simple --using blueprint/basic

directory simple/
directory simple/images/
directory simple/sass/
directory simple/sass/partials/

Listing 3.3 Selected CSS for Blueprint example

Listing 3.4 Generating a basic Blueprint project

Set grid widthB

Float columns
left; add gutter

C

SidebarD

Main
content

E

Full width
implies no gutter

F

59Using Blueprint

G
se
directory simple/stylesheets/
create simple/config.rb
create simple/sass/screen.scss
create simple/sass/partials/_base.scss
create simple/sass/print.scss
create simple/sass/ie.scss
create simple/images/grid.png
create simple/stylesheets/ie.css
create simple/stylesheets/print.css
create simple/stylesheets/screen.css

...

In addition to the basic project structure, it’s important to note a couple of things.
First, Compass creates a main stylesheet, screen.scss, and imports Blueprint B. Next
Compass creates a _base partial that contains the math for your grid C. In this case, it
matches the (30 + 10) x 24 setup from the static CSS example, so you’ll leave it alone
for now. You might be wondering why you’d used blueprint/basic. Compass pro-
vides a few options for implementing Blueprint, which we’ll look at in a moment. For
the sake of this example, we’ll look at the basic pattern first.

 Let’s take a look inside your generated screen.scss stylesheet starting point.

// This import applies a global reset to any page that imports
// this stylesheet.
@import "blueprint/reset";

// To configure blueprint, edit the partials/_base.sass file.
@import "partials/base";

// Import all the default blueprint modules so that we can access
// their mixins.
@import "blueprint";

// Import the non-default scaffolding module.
@import "blueprint/scaffolding";

// Generate the blueprint framework according to your
// configuration:
@include blueprint;

@include blueprint-scaffolding;

In this generated file, you gain the Blueprint reset B, import your grid settings from
the partial C, and make the Compass-powered Blueprint mixins available D. Now
you’re ready to generate your grid E and add some additional Blueprint features for
handling forms F. The real magic happens when you generate the grid with
@include blueprint. Let’s take a look at what that line is doing by looking at the
Compass source.

Listing 3.5 Default screen.scss for Blueprint basic pattern

Main
stylesheet

B
rid
ttings

C

Default Blueprint resetB

Grid settingsC

Make Blueprint
modules
availableD

Generate gridE

Forms and other
Blueprint nicetiesF

60 CHAPTER 3 CSS grids without the math
@mixin blueprint-grid {
...
// Use these classes (or mixins) to set the width of a column.
@for $n from 1 to $blueprint-grid-columns {
.span-#{$n} {

 @extend .column;
width: span($n); } }

.span-#{$blueprint-grid-columns} {
 @extend .column;

width: span($blueprint-grid-columns);
margin: 0; }

...

Inside Compass’s Blueprint module, a couple of mixins deep lies the blueprint-grid
mixin, which does most of the heavy lifting for your grid. This mixin handles the math
for your grid, based on the values you specified in your _base.scss partial. It loops
through the number of columns and generates the CSS classes you expect B. Just like
in the static CSS example from earlier in the chapter, it treats the last column class dif-
ferently, omitting the gutter C. As you can see, if you were to modify the math in your
base partial, you’d get a new grid system with minimal effort. We only highlight this
mixin to demonstrate how Compass supports Blueprint classes. The beauty is that you
never have to deal with this sort of code at all if you don’t want to. You can use the
Blueprint classes without any thought as to how they’re created. But as with all things
Compass, it’s important to understand what’s going on under the hood.

 Now that you’ve seen how Compass makes quick work of creating class-based Blue-
print grids, let’s look at some other options available.

3.3.3 Blueprint in Compass without the classes

In the previous example we used the Compass blueprint basic pattern:

compass create simple --using blueprint/basic

Compass also ships with a couple of other options. If you’d like to not use classes and
prefer to mix grid styles into your other selectors, use blueprint/semantic:

compass create simple --using blueprint/semantic

If you compare the generated files from both patterns, you can see not only some
additional files, but also some additional imports at the bottom of screen.scss:

// Combine the partials into a single screen stylesheet.
@import "partials/page";
@import "partials/form";
@import "partials/two_col";

Using this pattern, Compass doesn’t generate those span-xx classes. Instead, you use
the @column mixin. Compass is nice enough to provide an example in the two_col
partial.

Listing 3.6 Compass-powered Blueprint grid generation

Generate span-xx
classesB

Last column
class needs
no gutterC

61Using 960.gs

#container {
@include container; }

#header, #footer {
@include column($blueprint-grid-columns); }

#sidebar {
// One third of the grid columns, rounding down. With 24 cols,
// this is 8.
$sidebar-columns: floor($blueprint-grid-columns / 3);
@include column($sidebar-columns); }

#content {
// Two thirds of the grid columns, rounding up.
// With 24 cols, this is 16.
$content-columns: ceil(2 * $blueprint-grid-columns / 3);
// true means it's the last column in the row
@include column($content-columns, true); } }

This listing is short but chock-full of Compass techniques that make working with
grids faster (especially when you’re refactoring later). To set up the grid, you need a
container. Here, you mix in that behavior to your #container selector B. Your
header and footer elements get set to full width via a mixin as well C. The most magi-
cal part of the code is when Compass calculates the number of columns for your side-
bar and main content based on a one-third, two-thirds split for sidebar and content,
respectively D. Using the floor and ceil methods, you can employ some basic
rounding to ensure the proper split. Again, if you change the number of columns in
your grid in your _base.scss partial, the code in this listing will just work.

 Now that we’ve taken a drive-by look at Blueprint grids in Compass, let’s explore
some other popular CSS grids with Compass. Next up, we’ll take a look at the 960 Grid
System.

3.4 Using 960.gs
Another popular CSS grid framework is Nathan Smith’s 960 Grid System (shown in fig-
ure 3.5). The power of the framework lies in its flexibility. Its 960-pixel width is ideal
for a long-popular 1024-pixel screen width, and is a value that’s divisible by 2, 3, 4, 5, 6,
8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, and 480.

Listing 3.7 Default two-column Blueprint layout using Compass

Set up grid
container

B
Full-width
header
and footer

C

Use a third of
columns for
sidebarD

62 CHAPTER 3 CSS grids without the math
For the most part, the 960 Grid System functions much like the Blueprint CSS frame-
work we’ve just explored, with a couple of key differences. First, gutters in 960 are split
across both sides of each column, meaning both the first and last columns share a gut-
ter on their outside edges. Second, 960 comes with scoped containers, supporting
grids with different column counts and widths on the same page. 960 ships with 12-,
16-, and 24-column grids out of the box. See figure 3.6.

 With this background, let’s revisit our example from section 3.3.

Figure 3.5 960 Grid System

63Using 960.gs
3.4.1 A basic 960 layout

Let’s recast the grid from earlier in the chapter from Blueprint CSS to the 960 Grid
System. Begin by adding 960 to your page:

<link rel="stylesheet" href="css/reset.css" />
<link rel="stylesheet" href="css/text.css" />
<link rel="stylesheet" href="css/960.css" />

By default, you’ll need to include 960’s reset, optional text stylesheet, and the grid sys-
tem to use either the default 12- or 16-column layouts.

<section class="container_12">
<header class="grid_12">

Header
</header>
<section class="content grid_10">

Content
</div>
<aside id="sidebar" class="grid_2">

The last column
</aside>
<footer class="grid_12">

Footer
</footer>

</section>

Note that the markup required for the 960 Grid System is very similar to the Blueprint
example. Your container class becomes container_12 B and your span-x classes

Listing 3.8 A basic 960 Grid System 12-column layout

Figure 3.6 An example of 960.gs

Create a grid layoutB

Full-width headerC

Main content areaD

SidebarE

64 CHAPTER 3 CSS grids without the math
become grid_x C, D, E. Astute readers will notice that the sidebar doesn’t have a
last class indicating you’re at the end of a row. This is because since all 960 columns
have a gutter on each side, it’s unnecessary. 960 does have an omega class similar to
Blueprint’s last class, but this is only needed when you want to force content into a
new row on the grid.

 You could just as easily convert your layout to 24 columns. First, you’ll need to ref-
erence the 24-column grid stylesheet:

<link rel="stylesheet" href="css/reset.css" />
<link rel="stylesheet" href="css/text.css" />
<link rel="stylesheet" href="css/960_24_col.css" />

You replace the reference to 960.css with 960_24_col.css. With the right grid CSS in
place, you can modify your markup for the 24-column version.

<section class="wrapper container_24">
<header class="main grid_24">

Header
</header>
<section class="content grid_20">

Content
</div>
<aside id="sidebar" class="grid_4">

The last column
</aside>
<footer class="main grid_24">

Footer
</footer>

</section>

As expected, you adjust your container B and columns C, D, E to accommodate
the change in math. Though this may seem obvious to those who’ve worked with 960
in the past, it’s important to understand the grid options in 960 before we bring Com-
pass to the party. In the next section, we’ll show the true power of using the 960 Grid
System in Compass.

3.4.2 Using the 960 Grid System with Compass

Support for the 960 Grid System isn’t bundled with Compass, so you’ll need to begin
by installing the Compass plugin. You’ll recall from chapter 3 that you do this via Ruby
Gems:

gem install compass-960-plugin

Now you’re ready to create your Compass project.

compass create -r ninesixty twelve_col --using 960
directory twelve_col/
directory twelve_col/sass/

Listing 3.9 A basic 960 Grid System 24-column layout

Listing 3.10 Generating a new 960 Grid System Compass project

Create a grid layoutB

Full-width headerC

Main content areaD

SidebarE

Require the plugin and
apply 960 patternB

65Using 960.gs
directory twelve_col/stylesheets/
create twelve_col/config.rb
create twelve_col/sass/grid.scss
create twelve_col/sass/text.scss
create twelve_col/stylesheets/grid.css
create twelve_col/stylesheets/text.css

When you unfurl a new 960 Grid System project using Compass, you need to require
the plugin B and apply the pattern, telling Compass which templates to unpack for
you. Note that by default the plugin creates two stylesheets for you, the grid settings C
and the basic typography module that comes with 960. You’d most likely convert these
to partials and reference them in one screen.scss stylesheet to cut down on network
hops. But for the purposes of this example, let’s explore the grid settings Compass
gives you.

@import "compass/reset";
@import "960/grid";

// The following generates the default grids provided by the css
// version of 960.gs
.container_12 {

@include grid-system(12); }

.container_16 {
@include grid-system(16); }

// But most compass users prefer to construct semantic layouts
// like so (two column layout with header and footer):

$ninesixty-columns: 24;

.two-column {
@include grid-container;
#header, #footer {

 @include grid(24); }
#sidebar {

 @include grid(8); }
#main-content {

@include grid(16); } }

You’ll recall the semantic versus pragmatic debate from section 3.2.2. By default, the
960 Grid System Compass plugin supports three grids out of the box. It includes the
class-based 12- and 16-column grids B, C as well as the mixin-based (semantic) grid
for 24 columns D. This means you have a choice of either using classes or mixing in
the grid styles to your existing selectors. Let’s fix up this stylesheet to match your
markup.

Listing 3.11 Default grid settings for Compass 960

Grid settingsC

Set up the 12-column
grid classesB

Set up the 16-column
grid classesC

Set up the 24-column
grid using mixinsD

66 CHAPTER 3 CSS grids without the math

@import "compass/reset";
@import "960/grid";

// The following generates the default grids provided by the css
// version of 960.gs
.container_12 {

@include grid-system(12); }

// But most compass users prefer to construct semantic layouts
// like so (two column layout with header and footer):

$ninesixty-columns: 24;

.wrapper {
@include grid-container;
header.main, footer.main {

@include grid(24); }
#sidebar {

@include grid(4); }
.content {

@include grid(20); } }

To adapt the grid to your needs, you can remove the 16-column version, since you
don’t need it B. Since your 12-column grid works out of the box, you only need to set
up your 24-column grid C. If you did prefer to use classes for the 24-column version,
you could make another call to the grid-system mixin:

.container_24 {
@include grid-system(24); }

Powerful and simple. For more about usage and features of the 960 Grid System
plugin for Compass, please visit the project source, hosted on GitHub: https://
github.com/chriseppstein/compass-960-plugin.

 Up until now, our discussion of grid frameworks has focused on the vertical align-
ment of content in a grid. You’ve seen how to use containers to set up a grid layout.
We looked at how to easily arrange content on the grid using both CSS class and Sass
mixins. We also explored how to download Compass plugins that offer even more
Grid support. In the next section, we’ll look at an often-overlooked aspect of great
grid design—typographical vertical rhythm.

3.5 Vertical rhythm with Compass
In the previous section, we looked at how CSS grids help you manage whitespace
between vertical columns of content. Many designers stop there, without considering
whitespace down the page, in and between rows of content. This content is usually
text, but also includes images, videos, tables, and any other elements of your designs.
Just as a grid places content in well-defined vertical columns with uniform gutters, a
good grid also maintains vertical rhythm, uniformity of horizontal whitespace. So what
does vertical rhythm look like? Let’s go back to the PeepCode blog that we visited at
the beginning of the chapter; see figure 3.7.

Listing 3.12 Modifying 960 for your simple grid

Remove 16-column
grid; you don’t need it

B

Set up
24-column grid

C

https://github.com/chriseppstein/compass-960-plugin
https://github.com/chriseppstein/compass-960-plugin

67Vertical rhythm with Compass
Figure 3.7 Vertical rhythm on the PeepCode blog

68 CHAPTER 3 CSS grids without the math
Note how each of the paragraphs lines up nicely with the horizontal grid lines even
though each heading, code listing, and pull-quote is a different size. If you compare
this page to a musical composition, the grid lines are like beats. Body text hums along
on that beat, providing a rhythm. Headings, images, tables, and other block elements
can enter on the up, down, or even back beat, but the body text returns to the rhythm
that drives the page. So how do you accomplish this?

 First, you need to set the line height, or the leading for your body text. The leading is
the distance between successive base lines of text, your vertical rhythm and unit by
which you’ll add whitespace down the page. This means that all elements need to have
a height that’s a multiple of this base unit, adding up font size, line height, top and
bottom padding, and top and bottom margin for the element. In the next few sec-
tions, we’ll construct a layout and employ a vertical rhythm. In each step, we’ll demon-
strate the CSS involved, and the Compass shortcuts to get the same result in less time.

3.5.1 Establishing a baseline

Let’s start by laying down a groove, as we mentioned in the previous section, by choos-
ing a nice legible base font size and default line height for the body text:

body {
font-family: 'Helvetica Neue', sans-serif;
font-size: 16px;
line-height: 24px;

}

With a CSS reset in place, this small amount of CSS establishes a nice-looking 1.5em
baseline, as shown in figure 3.8.

Figure 3.8 Simple vertical rhythm example

69Vertical rhythm with Compass
To keep you honest, there’s a repeating image as the background for the page which
is 24 pixels tall, the same as the baseline. Now let’s continue to develop your design.
You need some contrast in size between your headlines and your body content. Let’s
establish your typographic scale for your <h1> through <h5> headlines.

h1 {font-size: 48px;}
h2 {font-size: 36px;}
h3 {font-size: 24px;}
h4 {font-size: 20px;}
h5 {font-size: 18px;}
h1,h2,h3,h4,h5 {line-height: 1.5em;}
p {margin: 1.5em 0;}

Now you’ve graduated the heights of your headlines B and given them and the para-
graphs a bit of breathing room, as shown in figure 3.9.

 As you can see in the figure, you’ve got a nice range of headline sizes, but your
body copy is no longer in sync with your desired vertical rhythm. To fix this, you need
the height of your headlines and other elements to be multiples of your baseline. In
the example, this means a headline’s font size, line height, vertical margin, and

Listing 3.13 Setting line height

B

Figure 3.9 Setting up a typographic scale

70 CHAPTER 3 CSS grids without the math
vertical padding all added together need to be a multiple of 24, your baseline unit.
Let’s adjust your headline styles and get back in rhythm. The math for adjusting the
line height to accommodate varying font sizes in order to stay on your baseline is this:

(baseline unit/ font-size) = line height

Since your <h1> is already a multiple of your baseline, let’s take the <h2> in the exam-
ple. The calculation would be this:

(24px / 36px) = .6666667 em

h1 {font-size: 48px; line-height: 1.5em}
h2 {font-size: 36px; line-height: .666667em}
h3 {font-size: 24px; line-height: 1em}
h4 {font-size: 20px; line-height: 1.2em}
h5 {font-size: 18px; line-height: 1.33333em}
p {margin: 1.5em 0}

Adjusting the line height for each headline style gets you back on your vertical
rhythm, as shown in figure 3.10.

 As you can see, the body text is again rocking to your groove. Now this isn’t hard
math, mind you, but math is math. Why not let the computer do the heavy lifting,
freeing you from calculating the line heights for each of these elements and allowing

Figure 3.10 Vertical rhythm with typographic scale

71Vertical rhythm with Compass
you to experiment with different font sizes, letting the stylesheet cascade with your
changes? Let’s take a look at a Compass version of your stylesheet so far.

@import "compass/typography";

$base-font-size: 16px;
$base-line-height: 24px;
@include establish-baseline;

body {
font-family: 'Helvetica Neue', sans-serif;
@include debug-vertical-alignment("../images/debug.png");

}

h1 {@include adjust-font-size-to(48px)}
h2 {@include adjust-font-size-to(36px)}
h3 {@include adjust-font-size-to(24px)}
h4 {@include adjust-font-size-to(20px)}
h5 {@include adjust-font-size-to(18px)}
p {margin: 1.5em 0;}

For your Compass version, you begin by importing Compass’s typography module B.
Next, you declare your base font size and base line heights as variables C. Compass
includes a mixin to add your grid debug image to the page D. Finally, you can use the
adjust-font-size-to mixin to set the font size and line height. Compass uses the
same calculation as earlier in this section. The true power in this example lies in the
flexibility. Now you can experiment with any of the values for base font size, base line
height, or element font sizes and the appropriate math is worked out at compile time.
Now that you’ve seen a quick example for establishing a baseline, let’s look at addi-
tional helpers Compass provides for adding extra whitespace when you need it.

3.5.2 Leading and trailing whitespace

Compass’s establish-baseline and adjust-font-size-to mixins make it super easy
to lay down a vertical rhythm for your copy, but how do you keep that rhythm when
you need to add extra space, without getting out your calculator? Fortunately, Com-
pass provides helpers for those scenarios, too. Let’s look back at the paragraph styles
of the previous CSS example:

p {margin: 1.5em 0;}

You used top and bottom margins to give your paragraphs some separation, making it
easier to scan the page. What if you wanted to do the same thing with an important
headline?

h2.important {margin: 1.5em}

The problem is that unless the font size for this element is a perfect multiple of your
baseline rhythm, you’ll hit some sour notes in your design as your body copy will get
off-rhythm. Compass provides some helpers to add leading (before) or trailing (after)

Listing 3.14 Vertical rhythm using Compass

Import typography moduleB

Declare
font sizeC

Include
debug
mixinD

72 CHAPTER 3 CSS grids without the math
whitespace to your elements and maintain your rhythm. You could style each of the
preceding elements in this way:

p {@include leader; @include trailer;}
h2.important {@include leader(2); @include trailer(2)}

The leader mixin adds one baseline unit of margin before the element, whereas the
trailer adds one baseline unit of margin after the element. Need more? You can pass
the desired baseline units to the mixin. If you need padding instead of margin, Com-
pass also provides padding-leader and padding-trailer variants of these mixins,
which use padding instead of margin to add whitespace.

3.6 Summary
In this chapter, we looked at how popular CSS grid frameworks make it easy to manage
whitespace and quickly prototype designs. Simply by adding a few CSS classes, you can
create vertical columns of content with uniform spacing in between. You also saw how
Compass makes using and creating grid frameworks much easier than using static CSS
alone. Finally, you learned to manage whitespace down the page using Compass’s ver-
tical rhythm helpers in the typography module. In the next chapter, we’ll take a
deeper look at other Compass helpers that make quick work of typical CSS tedium.

Eliminate the mundane
using Compass
Now that we’ve taken a first pass at Sass syntax and looked at how Compass fits into
your stylesheet workflow, let’s dive deeper. In this chapter, we’ll look at some every-
day easy, yet mundane (read: not fun), tasks and how Compass can save you time
and effort while taking advantage of community-vetted approaches. If you haven’t
made the jump to dynamic stylesheets and are still writing CSS by hand, you know
that certain stylesheet tasks seem like death by a thousand paper cuts. Things like
providing a CSS reset, styling list elements into horizontal navigation, setting link
colors, and swapping headline text with images can get repetitive with each new
project. In this chapter, we’ll show you some helpers Compass provides to make
these tasks quicker, easier, and more adaptive to your project.

This chapter covers
 Using Compass to reset default browser styles

 Compass helpers for better typography in your
stylesheets

 Using Compass to create sticky footers, style
tables, and floats
73

74 CHAPTER 4 Eliminate the mundane using Compass
4.1 A better blank slate with targeted resets
In chapter 1, we looked at CSS resets and how just by adding @import "compass/

reset" to your Compass project, you can take advantage of Eric Meyer’s Reset v2.0.
Though convenient, there are times when a such a global reset can be heavy-handed.
Fortunately, Compass offers more fine-grained approaches. To determine which
approach to use, it’s important to contrast the global and à la carte reset options.

4.1.1 Global resets

If you’ve used a CSS reset before, chances are it’s a global reset that employs a
scorched earth policy to eliminate most inherent styling that browsers apply to HTML
elements. These resets became popular as a way to provide a consistent blank canvas
for web applications. A global reset makes sense if you’re building a traditional web
app and you need to support a wide range of browsers including older versions of
Internet Explorer. Compass provides a global reset, aptly named global-reset, based
on Eric Meyer’s classic. As with any Compass mixin, it’s important to understand the
internals of the global-reset mixin before you use it.

@mixin global-reset {
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {

@include reset-box-model;
@include reset-font; }

body {
@include reset-body; }

ol, ul {
@include reset-list-style; }

table {
@include reset-table; }

caption, th, td {
@include reset-table-cell; }

q, blockquote {
@include reset-quotation; }

a img {
@include reset-image-anchor-border; }

@include reset-html5; }

Listing 4.1 The Compass global-reset

Define
global
reset

Includes
individual
mixins

75A better blank slate with targeted resets
Note that global-reset is just a wrapper, applying several additional reset mixins
internally. All together, the preceding mixins (included with Sass’s @include) not only
address browser inconsistencies in box models, typography, list styles, and table styles,
but also add default styles for new HTML5 elements. We’ll look at some of these spe-
cific mixins in the next section, but before we leave the global-reset mixin, it’s
worth noting that this Compass reset is unique in that it’s applied simply by importing
compass/reset. To understand why, let’s look at the source of compass/reset:

@import "reset/utilities";

@include global-reset;

That’s it, just two lines. In the first line, @import makes available the global-reset
mixin as each of its mixins in turn. In the second line, @include includes the global
reset. In the next section, we’ll look at how to implement targeted resets without using
the global reset.

4.1.2 Gain more control with targeted resets

Suppose you have a mobile interface where the global reset brings a lot of unneces-
sary weight. Perhaps your page doesn’t use <tables>, <blockquotes>, or lists. Since
page weight is critical, trimming the fat from your mobile application’s stylesheets
more proportionately affects the user experience than in a desktop browser. If you’re
writing plain CSS, you might have a snippet that you carry with you from project to
project with a favorite global reset. If you want only a portion of that for your new proj-
ect, you’d start carving it up in your text editor, trimming out what you don’t need or
want. Thankfully, Compass lets you pick and choose which of its resets you want to
apply. To take advantage of these without using the global reset, use @import
"compass/reset/utilities". Let’s take a look at a few of the mixins comprising the
global reset we looked at in the previous section.

FUTURE-PROOF WITH RESET-HTML5

One of the exciting new features of HTML5 is the introduction of new markup tags.
You can cut back on a diet of <div>s and use more meaningful tags like <header>,
<footer>, and <nav> where appropriate. Unfortunately, not all browsers agree on how
to handle these new tags. Suppose you want to list each of the new tags and apply
display: block for each. You could memorize the list. You might even save a snippet
of code to reuse from time to time. If you’re using Compass, you can just use the
reset-html5 mixin to make quick work of this task. Let’s look at Compass’s reset-
html5 mixin.

@mixin reset-html5 {
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary {

display: block; } }

Listing 4.2 HTML5 reset

76 CHAPTER 4 Eliminate the mundane using Compass
Now, by applying the mixin using @include reset-html5 in your SCSS file, you don’t
have to remember all 11 tag names.

MORE RESETS IN THE COMPASS DOCS

The global reset and the HTML5 reset will most likely cover 90% of the use cases in
your stylesheets, but we encourage you to check out the full list of resets in the Com-
pass documentation. Table 4.1 provides a quick overview.

Now that you’ve seen how to remove browser styles, let’s take a look at how you can
add your own styles in common scenarios using Compass helpers

4.2 Utilities for faster, better-looking typography
Perhaps nothing impacts your design more than typography. Typography is more than
just choosing a typeface and a size. Styling lists and handling text wrapping have long
been part of the job for print designers. Since the web is an interactive, data-driven
medium, web designers have picked up new chores like styling hyperlinks and trun-
cated text as well. Dealing with typography in your stylesheets is part choosing what
the design outcome should be and part implementing those choices. Compass is here
to help with that last part, letting you quickly knock out the tedium of styling links,
lists, and other elements, and letting you focus on your design. In the next section,
we’ll look at some mixins that help you style your hyperlinks, the first of these typogra-
phy helpers. For all of these examples, you’ll need to be sure to @import "compass/
typography" to use Compass’s typography module.

4.2.1 Anchors away: link helpers

Good designs make effective use of contrast. Styling links to stand out from body copy
isn’t just good aesthetics; it’s good user experience. Therefore, when creating a new
stylesheet (just after setting up a reset), good designers will often define base colors
for text and links—a simple task that Compass makes even simpler.

Table 4.1 Resets available in Compass

 Reset mixin Purpose

reset-box-model Removes margin, padding, and borders on elements

reset-font Resets the font size and baseline

reset-focus Removes browser-supplied outlines (like <input> elements in
Safari)

reset-table and
reset-table-cell

Resets table borders and alignment

reset-quotation Adds stylesheet-only quotation marks for <blockquotes>

77Utilities for faster, better-looking typography
EASY COLORING WITH LINK-COLORS

Many of the patterns we take for granted in the CSS community were forged over years
of trial and error with a dream of creating designs that worked reliably across several
browsers. One such pattern was the suggested stylesheet order of hyperlink pseudo
elements such as :hover and :visited to deal with link specificity, a fancy way of
describing the precedence browsers give to the anchor tag pseudo elements. For
instance, if you hover over a link that has been previously visited, which style wins?

 Best practice suggests you include pseudo element selectors in the following order:

1 <a>

2 :visited

3 :focus

4 :hover

5 :active

This means your CSS would look something like the following.

a {color: #333}
a:visited {color: #555}
a:focus {color: #f00}
a:hover {color: #00f}
a:active {color: #f00}

It still can be tedious to remember this order and create additional pseudo elements
just to change colors for your links. Sass’s & parent selector doesn’t buy you much. For-
tunately, Compass provides an easy mixin to handle the job:

a { @include link-colors(#333, #00f, #f00, #555, #f00); }

Astute readers will note that the order of the colors in this Compass example doesn’t
match those in the CSS example. This is because Compass has chosen to optimize for
stylesheet author productivity instead of browser precedence. The order of the color
arguments for link-colors is the order in which you’re most likely to use them in
your stylesheets. Table 4.2 shows the order of the complete set of link-colors argu-
ments as well as the order in which they’re applied for browser link specificity.

Listing 4.3 CSS for setting link colors according to browser specificity

Table 4.2 Arguments for link-colors

link-colors order Browser order

<a> <a>

:hover :visited

:active :focus

:visited :hover

:focus :active

78 CHAPTER 4 Eliminate the mundane using Compass
If you’re the attention-to-detail type who prefers readability over terseness, you can
pass your arguments as named parameters:

a { @include link-colors(
#333,
$hover: #00f,
$active: #f00,
$visited: #555,
$focus: #f00);

}

The unnamed syntax has its advantages. Following Pareto’s famous 80/20 rule (in this
case, 20% of the code will cover 80% of the use cases), since link-colors arguments
are optional, you could specify default and :hover state colors simply by passing the
first two arguments:

a { @include link-colors(#333, #00f); }

Now that you’ve seen how to add color to links, let’s take a look at other ways Compass
makes it easy to visually distinguish links in your designs.

HOVER WITH STYLE USING HOVER-LINK

Some usability experts say you should always add underlines to your links to cue users
that an item is clickable. But there are times when, due to line height, adding under-
lines might actually degrade readability. Suppose you decide to add an underline only
when a user mouses over a link with the following CSS:

a { text-decoration: none}
a:hover { text-decoration: underline }

Compass makes it easy to underline links just on the :hover state with the hover-link
mixin:

a {@include hover-link}

Note how easy it is to grok what’s going on with this mixin. You don’t have to parse the
properties in the stylesheets to see what’s going on; it’s right there in the name:
hover-link.

INCOGNITO LINKS WITH UNSTYLED-LINK

Now imagine you want to hide a link altogether, removing any styling that would tip
the user that a hyperlink lies within a paragraph of text. You could write something
along the lines of the following CSS:

p.secret a {
color: inherit;
cursor: inherit;
text-decoration: inherit

}

This would strip away any color, cursor, or underlining, letting your text blend in with
any containing text. But what about the :hover and :focus states? Let’s update the
CSS:

79Utilities for faster, better-looking typography
p.secret a,
p.secret a:hover,
p.secret a:focus {

color: inherit;
cursor: inherit;
text-decoration: inherit

}

This approach works, but Compass makes it much easier with the unstyled-link
mixin:

p.secret a { @include unstyled-link }

Again, Compass mixin names make the stylesheet more descriptive. Now that you’ve
seen how Compass makes styling links incredibly easy, let’s look at how it makes deal-
ing with lists easier.

4.2.2 Creating versatile lists

List element treatment is an often-overlooked aspect of great web typography. As a
designer in a medium where short, clear communication is key, the is your
friend. In this section, we’ll take a look at some Compass helpers (Sass mixins) to
make quick work of dealing with common tasks in designing great lists.

DRESSING UP LISTS WITH PRETTY-BULLETS

Image-based bullets (see figure 4.1) can add impact to your list
elements. But IE support for list-style-image has been
buggy since the property was first supported in version 5.5. For
instance, prior to version 8, floated list elements won’t display
a list item image in Internet Explorer. In order to find a cross-
platform solution, designers will often use background images
as list item “bullets”:

ul.features li {
background: url(/images/pretty-bullet.png) 5px 5px no-repeat;
list-style-type: none;
padding-left: 20px;

}

Though a simple approach, this does pose some headaches. First, you have to calcu-
late the layout, taking into account the desired padding and image width. Your 5px
5px x and y values for the background-position portion of your background short-
hand are the output of a couple of calculations:

x = (padding - image width) / 2
y = (line height - image height) / 2

Your second problem is implied by the first: you have to know the dimensions of your
image. To get around these issues, Compass makes it easy to use a background image
as a list item bullet using the pretty-bullets mixin:

Figure 4.1 Example of
pretty bullets

80 CHAPTER 4 Eliminate the mundane using Compass
ul.features {
@include pretty-bullets('pretty-bullet.png')

}

With the pretty-bullets mixin, Compass does the heavy lifting, determining the size
of the image from the image itself, performing the calculations, and creating the
same CSS you saw in the previous listing. If you need more control, you can pass in the
desired $height, $width, $line-height, and $padding as either named or ordered
parameters:

ul.features {
@include pretty-bullets('pretty-bullet.png',

$padding: 10px,
$line-height: 22px)

}

Note that in each of the Compass examples, we didn’t specify the full path to the
image, only the filename and extension. This is because the pretty-bullets Compass
mixin uses the image-url helper to determine the full path and will return the appro-
priate path for your development and production environments. Now that you’ve
seen how to make pretty, cross-browser bullets, let’s take a look at how to opt out of
bullets for list items.

DISARMING LISTS USING NO-BULLET AND NO-BULLETS

Compass also provides some quick ways to remove list styles from elements. You
might be thinking, why not just use list-style: none and call it a day? For IE8 and
above (as well as the rest of the world), you could do that. If you need to support
browsers crafted in Redmond prior to version 8, you need to use this instead:

li.no-bullet {
list-style-image: none;
list-style-type: none;
margin: 0px;

}

With Compass, you don’t have to remember to do that; you can just use the no-bullet
mixin:

li.no-bullet { @include no-bullet }

If you want to turn off bullets for an entire list, you can use the plural form of the
mixin, no-bullets:

ul.no-bullet { @include no-bullets}

This form will mix in the singular no-bullet mixin for every in the list. Now that
you’ve seen how to add some pop to your lists with custom bullets and remove bullets
entirely, let’s look at how to teach your lists to lie flat and play dead.

81Utilities for faster, better-looking typography
EASY HORIZONTAL-LIST

By default, browsers display lists vertically and
style them with margins and padding. While
this is all well and good for listing most items,
designers often prefer to style lists of naviga-
tional links horizontally (see figure 4.2).

 Consider the following markup:

<ul class="nav">
Home
Services
Blog
Contact

How do you apply some CSS origami to turn this list into a horizontal nav bar with a
nice 8-pixel split between items? A common approach usually looks something like
the CSS in the following listing.

ul.nav {
border: 0;
margin: 0;
overflow: hidden;
padding: 0;

}
ul.nav li {

display: inline;
float: left; /* make the menu horizontal */
margin-left: 0px;
padding-left: 4px;
padding-right: 4px;

}

As with most tasks in this chapter, not incredibly difficult, but monotonous if you do it
enough. With Compass, you can get all of this (and then some) simply by including
the horizontal-list mixin:

ul.nav { @include horizontal-list }

In addition to the CSS in the previous listing, Compass also provides some hooks for
styling the first and last list elements specially. Here’s the full CSS output.

ul.nav {
margin: 0;
padding: 0;
border: 0;
overflow: hidden;
*zoom: 1;

}

Listing 4.4 CSS for creating navigation out of

Listing 4.5 CSS output from Compass horizontal-list helper

Figure 4.2 Example of a horizontal list

82 CHAPTER 4 Eliminate the mundane using Compass
ul.nav li {
list-style-image: none;
list-style-type: none;
margin-left: 0px;
white-space: nowrap;
display: inline;
float: left;
padding-left: 4px;
padding-right: 4px;

}
ul.nav li:first-child, ul.nav li.first {

padding-left: 0;
}
ul.nav li:last-child {

padding-right: 0;
}
ul.nav li.last {

padding-right: 0;
}

For browsers that support :first-child and :last-child, we can omit the padding
on the outside-facing edge of those elements. For older browsers, we can use the
.first and .last class names.

 Up until now, you may not have seen the point of this mixin (other than saving a
lot of typing). As with most things Compass, the real power comes in leveraging the
dynamic nature of Sass that powers this mixin. The horizontal-list mixin takes two
arguments—a $padding value, and a $direction. Since these are optional, you can
omit them and get a left-to-right, eight-pixels-between-elements list. (The actual
default $padding is 4px. Four pixels on the right plus four pixels on the left equals
eight pixels between items.) What if you want to reverse the item order and widen the
space between list items? It’s as simple as supplying these two arguments to the mixin:

ul.nav { @include horizontal-list(7px, right)}

Now, items have seven pixels on either side (for a 14-pixel split) and are floated right,
reversing the list item order. Here’s the updated CSS of the relevant portion of the
previous listing:

...

ul.nav li {
...
float: right;
padding-left: 7px;
padding-right: 7px;

}

As you can see, Compass reduces horizontal navigation lists to a single line of code,
but can it handle inline lists?

.first for
older
browsers

.last for
older
browsers

83Utilities for faster, better-looking typography
INLINING WITH INLINE-LIST

In an earlier section, you saw how to make links look like text. What if you want to do
the same thing with lists? Consider the following example:

<ul class="giant-words">
Fee
Fi
Fo
Fum

<p>are some words of giants with acute senses of smell
for Englishmen.</p>

This (contrived) example would read better if you could style the items as an inline
list, separated by a comma (see figure 4.3). Compass makes it easy with its one-line-of-
code approach:

ul.words { @include delimited-list }

Using a combination of :after and :last-child (to opt out of the trailing comma
for the last item), Compass uses CSS to present the list as inline copy.

 But wait, there’s more! Since Compass also lets you supply the separator, you can
make your list more intimidating:

ul.words { @include delimited-list("! ") }

That’s a quick survey of Compass’s list-styling prowess. In the next section, we’ll look
at how it can help bend stray text to your will.

4.2.3 Taming text with helpers

Unlike their print design counterparts, web designers spend a lot more time accom-
modating copy they didn’t write and may never see. Design templates are fused with
user-supplied, data-driven content that can often spill out of the intended container.
Fortunately, Compass includes a few helpers to make working with text easier.

LEAVE THEM HANGING WITH ELLIPSIS...

A common problem web designers face is placing an unknown amount of text into a
fixed-width container, such as cells within a table. In the past, designers have trun-
cated content on the server before it’s rendered as markup. With CSS, you can apply
text-overflow: ellipsis:

td.dot-dot-dot {
white-space: nowrap;

Figure 4.3 Example of
a delimited list

84 CHAPTER 4 Eliminate the mundane using Compass
overflow: hidden;
text-overflow: ellipsis;

}

Now text that normally would wrap or spill out of its container will be truncated and
an ellipsis will be appended. As you’d expect, Compass makes this even easier:

td.dot-dot-dot {
@include ellipsis;

}

The added benefit of using the ellipsis mixin is the vendor-namespaced support for
Opera and Microsoft browsers. Here’s the full CSS output:

td.dot-dot-dot {
white-space: nowrap;
overflow: hidden;
-o-text-overflow: ellipsis;
-ms-text-overflow: ellipsis;
text-overflow: ellipsis;

}

It’s important to note that for text-overflow to take effect, it must be used in tandem
with white-space: nowrap. Often, developers find it difficult to remember whether
it’s white-space or whitespace. Thankfully, Compass has your back, as you’ll see in
the next section.

PREVENT TEXT WRAP WITH NOWRAP

The nowrap mixin is nice and simple, and produces the following CSS:

td { white-space: nowrap}

It’s simply called with the following:

td { @include nowrap }

Billed as a way to not have to remember that white-space does indeed contain a
hyphen, it unfortunately can’t help you if you read it (as many often do) as “now rap.”

 Now let’s look at one more common task when dealing with text in web design—
removing it altogether in favor of an image representation.

SWAP TEXT FOR IMAGES USING REPLACE-TEXT

Despite the best efforts of new features such as @font-face, Cufón, and other tech-
niques, sometimes designers must resort to a traditional method to improve web
typography—swapping text for an image representation. Often used for headlines
and other core page elements, images can deliver complex design elements that
sometimes you can’t pull off with standard type. In those situations, many designers
have felt the urge to plop an tag on the page in place of the text and call it a
day. For accessibility (and SEO) reasons, a much better approach is to handle this in
CSS. Consider the example shown in figure 4.4, in which we’ll secretly replace the
headline the user is used to seeing with our own special blend of image-powered typo-
graphic magic.

85Layout helpers
To achieve this with CSS, you could do something like this:

h1.coffee {
text-indent: -119988px;
overflow: hidden;
text-align: left;
background-image: url('/images/coffee-header.png');
background-repeat: no-repeat;
background-position: 50% 50%;

}

The first step is to hide the default text by negatively indenting it offscreen. (If you get
a monitor that will do 119,988 pixels wide, call us; we want to be your friends.) You
then swap out the text with the image using the background property. Compass makes
this even easier with the replace-text mixin:

h1.coffee { @include replace-text("coffee-header.png") }

You’ll notice that you didn’t have to supply the /images portion of the image path.
This is because internally, Compass uses an image-url helper which relies on a proj-
ect’s Compass configuration to write out image paths for you. As a result, you only
have to supply the image’s file name. You can read more about the image helper and
other asset helpers in chapter 7.

 Compass also supplies a specialized version of the replace-text mixin, replace-
text-with-dimensions, which will set the dimensions of the element according to the
height and width of the image passed in.

 There you have it: a few handy helpers for dealing with text in Compass. Up next,
we’ll look at some tricks for handling common layout tasks.

4.3 Layout helpers
Outside of grids, layout patterns tend to be the most specialized parts of stylesheets.
Compass does provide a couple of helpers for use with familiar layout scenarios: sticky
footer and stretched elements. For the following examples to work, be sure to import
the compass layout module with @import "compass/layout";.

4.3.1 Sticky footers

Imagine a scenario where you need the footer to fit flush to the bottom of the page.
Your first instinct might be to use position: fixed. Unfortunately, if you need to sup-
port IE6, the CSS isn’t this straightforward. Here’s one approach, based on a tech-
nique developed by Ryan Fait. Consider the following markup.

Figure 4.4 Coffee text replacement

86 CHAPTER 4 Eliminate the mundane using Compass
<body>
<div id="content">

Page content...
<div id="bump"></div>

</div>
<div id="footer">

Fix me to the bottom of the page.
</div>

</body>

You can craft this into a layout with a sticky footer with the following CSS.

html, body {
height: 100%;

}

#content {
clear: both;
min-height: 100%;
height: auto !important;
height: 100%;
margin-bottom: -40px;

}
#content #bump {

height: 40px;
}

#footer {
clear: both;
position: relative;
height: 40px;

}

In this example, you can fashion a 40-pixel-tall footer, using the #footer selector. Set-
ting a minimum height of 100% ensures the content area is at least as tall as the
browser’s screen height. Unfortunately, you have to use height: 100% for the <html>
and <body> tags and height: auto !important on the #content element as min-
height hacks for IE6. The #bump element is just an offset to provide enough padding
at the end of the #content element to accommodate the footer.

 Not only is this CSS more extensive than you’d like in order to play nice with IE6, it
also falls down in that you have to set three values based on the height of the footer.
With Compass, you can knock out the same footer using the sticky-footer mixin:

@include sticky-footer(40px, "#content", "#footer", "#sticky-footer");

Now, if you decide to make your footer taller or shorter, you change it in one spot
and the rest of the CSS output falls in line. Now that you’ve seen how to make a
footer stay put, in the next section, we’ll look at how to stretch elements inside their
parent elements.

Listing 4.6 Sticky footer markup

Listing 4.7 Sticky footer CSS

Hack for IE6

The footer

87Summary
4.3.2 Stretching elements

Flow layouts are considered one of the core strengths of web user interfaces, and web
designers often take them for granted. Those coming from a desktop application
background might miss the absolute positioning approach so common in frameworks
like .NET WinForms, JavaSwing, Flash, and others. Of course, the web supports this
approach via position: absolute:

a.login {
position: absolute;
top: 5px; right: 5px; bottom: 5px; left: 5px;

}

Compass provides a shorthand for this style of layout via the stretch mixin:

a.login { @include stretch(5px, 5px, 5px, 5px) }

This produces the same CSS as the previous code listing. The stretch mixin takes
four arguments: $offset-top, $offset-right, $offset-bottom, and $offset-left.
Compass also provides mixins to stretch only on one axis with stretch-x and
stretch-y, which take only two arguments, $offset-left and $offset-right, and
$offset-top and $offset-bottom, respectively.

4.4 Summary
In this chapter, we looked at some Compass time savers that take the monotony out of
creating stylesheets. We used targeted resets to clear styles from a subset of elements
in scenarios when a global reset is too heavy-handed. You saw how you can style links
and lists with ease using mixins like link-colors, hover-link, no-bullets, pretty-
bullets, and horizontal-list. We also looked at how Compass provides easy ways to
handle text overflow and wrap, layout, colors, and even clearing floats.

 In the next chapter, we’ll look at some advanced CSS3 features of Compass that
make it easier to create otherwise complex user interface themes.

CSS3 with Compass
In the last three chapters, you saw how Compass makes creating stylesheets faster
by removing much of the repetition, tedium, and even math from the process. Up
until this point, we’ve focused on CSS techniques that use selectors and properties
that have been available for over a decade. In this chapter, we’ll look at more
advanced approaches on the cutting edge of web design known collectively as CSS3.

5.1 What is CSS3?
CSS3, or Cascading Stylesheets level 3, builds upon the previous CSS2 spec. The first
draft of what we now refer to as CSS3 first appeared in 1999 and contained more
than two dozen modules, or groups of features, in varying states of completion. It’s
only been in the last couple of years that relatively recent browser support has
enabled stylesheet authors to benefit from CSS3. So what does CSS3 give you? Nest-
ing, variables, mixins? Sadly no, you’ll need to use Sass for that. CSS3’s innovations

This chapter covers
 Creating cross-browser CSS3 stylesheets with

the Compass CSS3 module

 Supporting some CSS3 features in older versions
of Internet Explorer

 Advanced CSS3 techniques with Compass
88

89What is CSS3?
can be grouped into two main buckets—more powerful selectors for targeting
markup elements and extensive new properties to change how those elements look.
We’ll take a brief look at the new selectors in CSS3 before we spend the rest of the
chapter covering many of the new CSS3 properties.

5.1.1 New properties: vendor prefixes got you down?

Though we often speak of CSS3 as a well-formed tangible list of features, the truth is
that it’s a loose collection of CSS improvements in varying degrees of flux, ranging
from suggestions to working drafts to recommendations. Since vendors have their
own independent release cycles, browsers adopt new features at different rates, often
while a proposed enhancement to the spec is under rapid iteration. For this reason,
browser vendors often introduce support for new CSS3 properties under vendor pre-
fixes. Consider an early example of using the border-radius property for native sup-
port for those coveted Web 2.0 rounded corners:

button, a.button {
-webkit-border-radius: 5px;

-moz-border-radius: 5px;
border-radius: 5px;

}

Though the latest versions of popular browsers now support the border-radius prop-
erty without the vendor prefixes, it wasn’t always so. Support for rounded corners was
introduced in Safari 3.2 using the -webkit prefix and in Firefox 3.5 using the -moz
prefix. This meant that if you wanted to support Safari, Firefox, and Opera, you’d
need to use all three properties. This is inconvenient enough when it’s a copy-and-
paste task in your stylesheet development, but when vendors implement different syn-
tax, using CSS3 properties can become a real headache.

5.1.2 Compass to the rescue

As you saw briefly in chapter 1, Compass solves the pain of supporting each vendor
namespace by doing the heavy lifting for you. You can now use a standard syntax and
let Compass generate all of those CSS prefixes.

@import "compass/css3";

.notice {
@include border-radius(5px);

}

Just by adding the Compass CSS3 module to your project B and using the border-
radius mixin C, you can quickly generate the CSS to target all modern browsers.

Listing 5.1 Faster vendor namespaces with Compass

Import Compass CSS3 supportB

Add rounded corners with border-radiusC

90 CHAPTER 5 CSS3 with Compass

.notice {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
-o-border-radius: 5px;
-ms-border-radius: 5px;
border-radius: 5px;

}

As the code listing indicates, you not only get support for Safari, Chrome, and Firefox,
you also can easily target Opera and IE9. Though this is certainly convenient, what if
you in your browser snobbery (er, pragmatism) don’t wish to include every vendor
prefix under the sun? After all, these do add some weight to your stylesheet. Compass
provides an easy way to configure which vendor namespaces are created by setting
some configuration values provided by the browser support module.

@import "compass/css3";

$experimental-support-for-opera: false;
$experimental-support-for-microsoft: false;
$experimental-support-for-khtml: false;

.notice {
@include border-radius(5px);

}

Compass provides a number of configuration settings as experimental-support-for-
xxxx-named variables. By overriding the default values for these with false, Compass
will omit the appropriate vendor-namespaced versions in the CSS output.

 In this first section, we’ve looked at new selectors in CSS3 and how to deal with
some of the headaches of using CSS3 properties using Compass. In the rest of this
chapter, we’ll explore some concrete examples of using CSS3 to create modern design
elements and how Compass makes that a snap.

5.2 Using CSS3 with Compass
You’ve seen how Compass abstracts away the ugliness of dealing with vendor prefixes
and CSS3 properties. In this section, we’ll survey the rather large CSS3 module in Com-
pass and how to use it to tackle common design tasks with less work.

5.2.1 Rounded corners

Though we’re certain no one has ever gotten injured on a sharp corner while reading
a web page, designers (as well as managers and clients) love rounded corners. But-
tons, tabs, sidebars, and tables aren’t exempt from being cut off, sanded down, and
smoothed. To this end, designers have resorted to such techniques as using multiple
background images or employing extra markup. Thankfully, CSS3 brings some sanity

Listing 5.2 CSS output for Compass border-radius mixin

Listing 5.3 Configuring vendor namespaces in Compass

91Using CSS3 with Compass
back to your designs with the border-radius property. Let’s look at the example
shown in figure 5.1.

 In the figure, we see three buttons (and a sidebar), all with nifty rounded corners.
Note that each button has a different degree of roundness, or border radius. If you
didn’t care about Safari 4 and prior, Firefox 3.6 and prior, mobile Safari, or older ver-
sions of the Android browser, you could use the border-radius property in CSS3. But
since you do care about these browsers, the CSS gets more messy, thanks to vendor
namespaces.

button {
background: red;
border: 0;
color: #fff;
line-height: 30px;
width: 100px;

}

button.rounded {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;

}

button.really-rounded {
-moz-border-radius: 10px;
-webkit-border-radius: 10px;

}
button.extreme-rounded {

-moz-border-radius: 30px;
-webkit-border-radius: 30px;

}

Since older browsers require vendor namespaces for this feature, you have to include
the -moz and -webkit prefixes when using the border-radius property. This sort of
tedium makes CSS feel more like a typing test at times than a design tool. Thankfully,
Compass has a mixin to help you target multiple browsers when implementing
rounded corners. Let’s look at how you’d write the previous example using Compass.

Listing 5.4 Rounded corners in CSS

Figure 5.1 Buttons with rounded corners

Base styles
for all three
buttons

Firefox < 3.6

Safari < 5,
Mobile Safari,
Android browser

92 CHAPTER 5 CSS3 with Compass
button {
background: red;
border: 0;
color: #fff;
line-height: 30px;
width: 100px;

}

button.rounded {
@include border-radius(5px)

}

button.really-rounded {
@include border-radius(10px)

}

button.extreme-rounded {
@include border-radius(30px)

}

The CSS in this example is easy to follow. You set some base styles for all three buttons
B and then set the border radius for each C. It should be clear by now from the
@include directive that border-radius in this context is a Sass mixin. You’re back to
a single line per rule set to round the corners of your buttons. Compass will include
the required vendor namespaces (and more, based on the configuration variables
discussed in section 5.1) in the CSS output.

 Now that you’ve seen how to round corners in Compass, let’s look at another com-
mon design element: drop shadows.

5.2.2 CSS3 shadows

Shadows are a common technique designers use to add depth to the page. Used sub-
tly, they can add the illusion of texture or a third dimension to your two-dimensional
designs, making it seem there’s space between an element and the page behind it.
Let’s look at an example of some CSS3 shadows in figure 5.2.

 How many shadows do you see in the figure? If you said two, then look again. You
should see three shadows. Two should be obvious: the drop shadow on the first head-
line and the shadows around the box around the second. Unless you’ve used this tech-
nique before you might’ve missed the etching around the second headline. Though
it’s not really a shadow in that it conveys reflected light instead of obstructed light, you
can still use the same CSS3 properties to achieve these different effects. Let’s take a
look at the CSS behind the example.

Listing 5.5 CSS3 border-radius with Compass

Base button stylesB

Set border radiusC

Figure 5.2 CSS3 drop shadows

93Using CSS3 with Compass

h1 {
text-shadow: #cccccc 5px 5px 2px;

}

h2 {
-moz-box-shadow: #cccccc 5px 5px 2px;
-webkit-box-shadow: #cccccc 5px 5px 2px;
box-shadow: #cccccc 5px 5px 2px;
text-shadow: #dddddd -1px 1px 0;
background: #999;
padding: 1em;

}

You achieve the three shadows using CSS3 text-shadow B and box-shadow C for the
drop shadows and text-shadow again D for the etched text. If you’re spotting the
trend in this chapter, then you might guess that Compass provides mixins for box-
shadow to save you from typing those vendor namespaces.

h2 {
@include box-shadow(#ccc 5px 5px 2px);
text-shadow: #ddd -1px 1px 0;
background: #999;
padding: 1em;

}

Again, Compass abstracts away those pesky vendor namespaces behind a single mixin
for box-shadow. You might be surprised to learn that Compass provides a mixin for
CSS3 text-shadow even though no browser supports it using a vendor namespace.
This is because both the box-shadow and text-shadow Compass mixins let you apply
multiple shadows to elements. Let’s look at an figure 5.3, which shows an example of
applying multiple drop shadows using CSS3.

Listing 5.6 Creating shadows with CSS3

Listing 5.7 box-shadow mixin using Compass

Text shadowB

Box shadowC

Etched textD

Figure 5.3 Applying multiple shadows to an element in CSS3

94 CHAPTER 5 CSS3 with Compass
In the figure, you see how to apply multiple CSS3 shadows to achieve very different
effects. In the first, we’ve set the text in motion. In the second, we’ve mocked up the
old Simon Says game from the ’80s. Let’s look at the CSS to pull this off.

.motion {
text-shadow:

rgba(0, 0, 0, 0.5) -200px 0 0,
rgba(0, 0, 0, 0.4) -400px 0 0,
rgba(0, 0, 0, 0.3) -600px 0 0,
rgba(0, 0, 0, 0.2) -800px 0 0;

font-size: 2em;
font-style: italic;
text-align: right;

}
.simon {

-moz-border-radius: 100px;
-webkit-border-radius: 100px;
border-radius: 100px;
-moz-box-shadow:
black 0 0 0 25px,
red 0 -50px 0,
blue 50px 0px 0,
yellow 0 50px 0,
lime -50px 0 0;

-webkit-box-shadow:
black 0 0 0 25px,
red 0 -50px 0,
blue 50px 0px 0,
yellow 0 50px 0,
lime -50px 0 0;

box-shadow:
black 0 0 0 25px,
red 0 -50px 0,
blue 50px 0px 0,
yellow 0 50px 0,
lime -50px 0 0;

background: #999;
color: #fff;
height: 50px;
margin: 100px auto;
padding: 40px;
text-align: center;
width: 50px;

}

We achieve the text-in-motion effect by applying multiple text-shadows B in gradu-
ated levels of opacity and position on the x-axis. For the Simon Says game, we apply a
black offset shadow C using a spread value of 25px for the ring around the center of
the game. We then use a series of colored shadows D each offset on the x- or y-axis for
the buttons. As you’d expect, Compass DRYs up this code considerably.

Listing 5.8 Applying multiple shadows using CSS3

Text in motionB

Black ringC

Colored buttonsD

95Using CSS3 with Compass

.motion {
@include text-shadow(

rgba(#000,.5) -200px 0 0,
rgba(#000,.4) -400px 0 0,
rgba(#000,.3) -600px 0 0,
rgba(#000,.2) -800px 0 0

);
font-size: 2em;
font-style: italic;
text-align: right;

}

.simon {
@include border-radius(100px);
@include box-shadow(

black 0 0 0 25px,
red 0 -50px 0,
blue 50px -0px 0,
yellow 0 50px 0,
lime -50px 0 0

);
background: #999;
color: #fff;
height: 50px;
margin: 100px auto;
padding: 40px;
text-align: center;
width: 50px;

}

The box-shadow C mixin once again saves us from vendor namespaces. At first glance
the text-shadow mixin B doesn’t appear to gain us much, since there are no vendor
namespaces to deal with, but you can see the real power of this mixin if we push the
example a bit farther.

$shadow-1: rgba(#000,.5) -200px 0 0;
$shadow-2: rgba(#000,.4) -400px 0 0;
$shadow-3: rgba(#000,.3) -600px 0 0;
$shadow-4: rgba(#000,.2) -800px 0 0;

.motion {
@include text-shadow($shadow-1, $shadow-2, $shadow-3, $shadow-4);
font-size: 2em;
font-style: italic;
text-align: right;

}

.skipping {
@include text-shadow($shadow-2, $shadow-4);

}

Listing 5.9 Multiple CSS3 shadows with Compass

Listing 5.10 Reusing text shadows with Compass

Multiple text shadowsB

Multiple box shadowsC

Define text shadowsB

Use all
four
shadows

C

Use just two shadowsD

96 CHAPTER 5 CSS3 with Compass
In this example, again we have two elements that use multiple shadows, but this time,
one of the elements only uses two shadows. We can define the shadows once B and
then reuse them by passing them to the text-shadow mixin C, D. The text-shadow
mixin gets even more interesting if you’re creating shadows programmatically using
Sass script and the techniques found in chapter 12.

 Though each of the examples so far has shown you how to save time using Com-
pass to create CSS3 shadows, perhaps the biggest time-saving features are setting
shadow defaults with each mixin. Let’s revisit the first example in the series, the sim-
ple text and box shadows as seen in figure 5.1.

$shadow-color: #ccc;
$shadow-h: 5px;
$shadow-v: 5px;
$shadow-blur: 0;

$default-text-shadow-color: $shadow-color;
$default-text-shadow-h-offset: $shadow-h;
$default-text-shadow-v-offset: $shadow-v;
$default-text-shadow-blur: $shadow-blur;

$default-box-shadow-color: $shadow-color;
$default-box-shadow-h-offset: $shadow-h;
$default-box-shadow-v-offset: $shadow-v;
$default-box-shadow-blur: $shadow-blur;

h1, h2 {font-family: sans-serif;}

h1 {
@include text-shadow;

}

h2 {
@include box-shadow;
@include single-text-shadow(#ddd, -1px, 1px);
background: #999;
padding: 1em;

}

In raw lines of code, this refactor doesn’t gain much. In fact, it’s much longer than our
original example. Before you pass judgment, let’s walk through it step-by-step. First, we
set some shared shadow settings in some Sass variables B. We can reuse those to set the
Compass defaults for text-shadow C and box-shadow D. We can now call these mix-
ins without passing any values E. Additionally, we can add another text shadow via the
single-text-shadow mixin, passing in the values we want to override F.

 Granted, for a simple page with only two or three shadows, this is overkill, but con-
sider a large-scale site with dozens of elements that need text or drop shadows with
consistent values. Instead of creating special CSS classes, you can set some sensible
defaults and get a great deal of reuse in your stylesheets.

 Now that you’ve seen how Compass does text and box shadows, let’s look at how it
handles something tougher: CSS3 gradients.

Listing 5.11 Using default settings for shadows in Compass

Shared shadow settingsB

Text defaultsC

Box defaultsD

DefaultE

One-off text shadowF

97Using CSS3 with Compass
5.2.3 Gradients

As you’ve seen already in our examples using CSS3
border-radius, text-shadow, and box-shadow,
vendor namespaces are a pain. You’ve also seen
how Compass saves you the monotony of typing
-webkit, -moz, and the rest. With its support for
CSS3 gradients, you’ll see how Compass not only
saves you typing, but saves brain cycles as well. Con-
sider the real-world example shown in figure 5.4.

 We’ve all seen the familiar television test pat-
tern that networks broadcast when they go off air.
This pattern is a vertical linear gradient of eight
colors, with evenly distributed color stops every
12.5% of the width of the pattern. Let’s look at the CSS involved to reconstruct this
test pattern for the web.

#pattern {
background: -webkit-gradient(

linear, 360deg, 360deg,
color-stop(0%, #bfbfbf),
color-stop(12.5%, #bfbfbf),
color-stop(12.5%, #bfbf00),
color-stop(25%, #bfbf00),
color-stop(25%, #00bfbf),
color-stop(37.5%, #00bfbf),
color-stop(37.5%, #bfbf00),
color-stop(37.5%, #00bf00),
color-stop(50%, #00bf00),
color-stop(50%, #bf00bf),
color-stop(62.5%, #bf00bf),
color-stop(62.5%, #bf0000),
color-stop(75%, #bf0000),
color-stop(75%, #0000bf),
color-stop(87.5%, #0000bf),
color-stop(87.5%, #000000),
color-stop(100%, #000000));

background: -webkit-linear-gradient(
360deg,

#bfbfbf 0%, #bfbfbf 12.5%,
#bfbf00 12.5%, #bfbf00 25%,
#00bfbf 25%, #00bfbf 37.5%,
#bfbf00 37.5%, #00bf00 37.5%,
#00bf00 50%, #bf00bf 50%,
#bf00bf 62.5%, #bf0000 62.5%,
#bf0000 75%, #0000bf 75%,
#0000bf 87.5%, #000000 87.5%,
#000000 100%);

/* identical -ms, -o, -moz versions snipped /*

Listing 5.12 Building the TV test pattern in CSS3

Older WebKitB

New syntaxC

Figure 5.4 Television test pattern
gradient

98 CHAPTER 5 CSS3 with Compass
height: 300px;
margin: 100px auto;
width: 400px;

}

It sure takes a lot of CSS to make eight vertical stripes, even with omitting the dupli-
cate vendor-namespaced versions from the code listing! This is because linear gradi-
ents first came to CSS3 in 2008 with an earlier syntax B adopted by Safari and WebKit-
based browsers before the spec was simplified into the newer syntax now supported by
the latest versions of almost all browsers C. Let’s take a look at the same example
using Compass.

#pattern {
@include background(
linear-gradient(

360deg,
#bfbfbf 0%,
#bfbfbf 12.5%,
#bfbf00 12.5%,
#bfbf00 25%,
#00bfbf 25%,
#00bfbf 37.5%,
#bfbf00 37.5%,
#00bf00 37.5%,
#00bf00 50%,
#bf00bf 50%,
#bf00bf 62.5%,
#bf0000 62.5%,
#bf0000 75%,
#0000bf 75%,
#0000bf 87.5%,
#000 87.5%,
#000 100%));

height: 300px;
margin: 100px auto;
width: 400px;

}

That’s it! Using Compass, you need only four lines in your stylesheet to pull off the
same CSS written by hand a moment ago. Using the background mixin in the Compass
CSS3 module, you can create linear (or radial) gradients using the standard CSS3 syn-
tax B and get vendor-namespaced and older browser syntax versions for free. Not
only is this a lot less typing, it’s a lot less thinking about syntax, letting you focus on
your design.

 So far in this chapter, we’ve looked at how Compass makes working with basic CSS3
features easier and more enjoyable. In the rest of this chapter, we’ll dive into some
more advanced, less-often-used CSS3 concepts and how Compass supports them.

Listing 5.13 TV test pattern using Compass

Gradients with the background moduleB

99Using CSS3 with Compass
5.2.4 Embedding fonts with @font-face

Think about your favorite magazine, newspaper, or other print publication. Consider
how infused typography is with the brand. Great care is taken in choosing (or commis-
sioning) fonts and in using them throughout the design. Unfortunately for web
designers, we’ve been stuck with miserably small selections of fonts that can be
depended upon to be installed on users’ machines and used in our designs. We’re
used to defining font stacks, or lists of fonts in our order of preference that browsers
should use for elements on the page:

font-family: Georgia, "Times New Roman", serif;

Though the @font-face rule has been around since CSS2, it was initially only sup-
ported through a proprietary format in Internet Explorer. Recently though, other
browsers have added support for OTF, WOFF, SVG, and TTF so we can now serve up
fonts with our designs. The trouble is that, just like the other emerging CSS3 modules,
browsers still haven’t agreed on a single format for web fonts and writing the CSS to
support them all is tedious and easy to get wrong. Thankfully, Compass is here to help.

 A quick warning: before using just any font with @font-face, be sure and check
the license to see whether you have permission to do so. Font Squirrel and Google
Web Fonts are great resources to find free, great-looking fonts that you can legally
embed on your site. After selecting a font, you can download a zip archive with every-
thing you need to serve up the font on your site, including multiple font files to sup-
port multiple browsers, as well as a stylesheet with the required CSS3 needed to render
the font. For a demonstration, let’s look at set-
ting up our page to use Font Squirrel’s extra
bold ChunkFive for our headlines, as shown in
figure 5.5.

 Now that you have an idea of the end result,
let’s look at the CSS3 to make it happen.

@font-face {
font-family: 'ChunkFiveRegular';
src: url('Chunkfive-webfont.eot');

src: url('Chunkfive-webfont.eot?#iefix')
format('embedded-opentype'),

url('Chunkfive-webfont.woff')
format('woff'),

url('Chunkfive-webfont.ttf')
format('truetype'),

url('Chunkfive-webfont.svg#ChunkFiveRegular')
format('svg');

font-weight: normal;

Listing 5.14 CSS3 for ChunkFive headlines

IE9B

IE6-8C

Latest browsersD

Safari, mobile browsersE

Older iOS
browsersF

Figure 5.5 ChunkFive makes a great
headline font

100 CHAPTER 5 CSS3 with Compass
font-style: normal;

}

h1,h2,h3,h4,h5,h6 {
font-family: 'ChunkFiveRegular'

}

It seems no slick new CSS feature is without its hacks for Internet Explorer, and @font-
face is no different B, C. But this particular CSS3 feature requires a broad range of
font formats to support the most popular browsers D, E and older versions of some
mobile browsers F. Though it’s convenient that Font Squirrel provides the CSS along
with the font files in their “font kits,” the stylesheet assumes that you’re serving your
fonts from the same folder as your stylesheets. If your fonts are located elsewhere (like
an asset host as outlined in chapter 7), you’ll need to prepend that path for the url()
location of each font in the declaration. Once again, Compass saves your fingers from
a lot of typing, allowing you to create the same CSS with less code.

@import "compass";
@include font-face("ChunkFiveRegular",

font-files("Chunkfive-webfont.woff", woff,
"Chunkfive-webfont.ttf", ttf,
"Chunkfive-webfont.svg", svg),
"Chunkfive-webfont.eot", normal, normal);

Not only is this code more succinct, it’s more robust. The font-files helper does a
couple of things here. First, it provides a shorthand syntax for creating the url() and
format() portions of the rule. Second, and perhaps more important, it builds the
url() path based on your Compass configuration settings. This could be /fonts on
your local machine while you’re developing, or http://assets.example.com/fonts in
production. We’ll look a bit deeper at this Compass feature in the next chapter.

5.3 Support for Internet Explorer with CSS PIE
Many of the features we’ve discussed in this chapter enjoy broad support in Firefox-
and WebKit-based browsers, but most of these CSS3 advancements didn’t find support
in Internet Explorer until version 8 or later. So what do you do if you need to support
IE in an enterprise scenario that’s locked into an older version of the browser?
Frankly, it’s all right to see some rough edges in older browsers, as figure 5.6, captured
from dowebsitesneedtolookexactlythesameineverybrowser.com, indicates.

 But while it’s okay to live with differences, Compass does provide a way to give
some love to users who can’t let go of their classic browser. CSS3 Progressive Internet
Explorer, or CSS3 PIE, is a project created by Jason Johnston that serves as a polyfill for
many CSS3 features for older versions of IE. Using an old, proprietary feature in

Listing 5.15 Using @font-face with Compass

http://assets.example.com/fonts

101Support for Internet Explorer with CSS PIE
Internet Explorer known as an HTC behavior, PIE provides full or partial support for a
number of CSS3 features, including these:

 Border-radius
 Box-shadow
 Border-image
 Multiple background images
 Linear-gradient background images

Let’s take another look at a couple of CSS3 proj-
ects we discussed in section 5.2 and see how we
could support rounded corners and linear gradi-
ents in older versions of Internet Explorer using
PIE. Look at the buttons in figure 5.7.

 As we saw earlier in the chapter, the cross-
browser CSS for these buttons is simple but verbose.

Figure 5.6 Do web sites need to look exactly the same in every browser?

Figure 5.7 Simple rounded corners
and background gradients for buttons

102 CHAPTER 5 CSS3 with Compass

.rounded {
-moz-border-radius: 20px;
-webkit-border-radius: 20px;
-o-border-radius: 20px;
-ms-border-radius: 20px;
border-radius: 20px;

}

.gradient {
background: -webkit-gradient(

linear, 50% 0%, 50% 100%,
color-stop(0%, #aaaaaa),
color-stop(100%, #333333));

background: -webkit-linear-gradient(#aaaaaa, #333333);
background: -moz-linear-gradient(#aaaaaa, #333333);
background: -o-linear-gradient(#aaaaaa, #333333);
background: -ms-linear-gradient(#aaaaaa, #333333);
-pie-background: linear-gradient(#aaaaaa, #333333);
background: linear-gradient(#aaaaaa, #333333);

}

According to the PIE documentation, to extend your support for older IE, you need to
make a few modifications. First, you need to download and add the HTC component
to your website. See the PIE website for complete installation instructions, but for now
let’s assume you’ll serve this file out of /stylesheets/PIE.htc. Next, you need to add
some additional rules to your stylesheet.

.rounded, .gradient {
behavior: url("/stylesheets/PIE.htc");
position: relative;

}

…

.gradient {
background: -webkit-gradient(linear, 50% 0%, 50% 100%,

color-stop(0%, #aaaaaa),
color-stop(100%, #333333));

background: -webkit-linear-gradient(#aaaaaa, #333333);
background: -moz-linear-gradient(#aaaaaa, #333333);
background: -o-linear-gradient(#aaaaaa, #333333);
background: -ms-linear-gradient(#aaaaaa, #333333);
-pie-background: linear-gradient(#aaaaaa, #333333);
background: linear-gradient(#aaaaaa, #333333);

}

For PIE to jump into action, you need to apply it to the elements that need it B, along
with position: relative to fix a bug in IE. Next, for your gradient, you have to use a

Listing 5.16 Rounded corners and gradients using CSS3

Listing 5.17 Rounded corners and gradients with CSS3 PIE

CSS3 rounded corners

CSS3 linear gradients

Apply the PIE behaviorB

103Summary
nonstandard CSS property of -pie-background to tell PIE to add a gradient back-
ground to your button.

 As you might expect, all of this is even easier with Compass, including installation.
You can add the required PIE assets to your project and unfurl a well-documented
example stylesheet right from the command line:

compass install compass/pie

With the PIE stylesheet and HTC component in place, you can now create the CSS in
the previous listing with just a little Sass, using the Compass PIE mixins.

@import "compass/css3/pie";

.pie-element {
// relative is the default, so passing relative
// is redundant, but we do it here for clarity.
@include pie-element(relative);

}

.rounded {
@include pie;
@include border-radius(20px);

}

.gradient {
@include pie;
@include background(linear-gradient(#aaa, #333));

}

That’s it! You import the Compass PIE module B and apply it to your buttons B. The
rest of the CSS is the Compass CSS3 support we looked at earlier. It’s clear that PIE is
sweeter with Compass.

5.4 Summary
In this chapter, we looked at how Compass makes CSS3 quicker to write and more
enjoyable to use. You saw practical ways to round corners, create drop shadows, apply
gradients, and refresh your typography using Compass CSS3 mixins, all without writ-
ing a single vendor namespace. We explored how to target specific browsers using
configuration properties as well as older versions of Internet Explorer using CSS3 PIE.

 In the next chapter, we’ll look at how Compass can increase site performance by
replacing individual background images with automatically generated image sprites.

Listing 5.18 Using Compass PIE

Import PIEB

Extend pie-element classC

Part 3

Tuning for production

In the first two sections of this book, you’ve been introduced to Sass and
Compass and looked at many practical ways they can transform your stylesheet
authoring workflow. In chapter 6, we go deeper down the rabbit hole and
explore the magic of spriting with Compass. We cover the reasons for using CSS
sprites and take a look at simple and advanced use cases for spriting. You’ll see
how Compass completely automates the spriting process, from combining and
measuring your images to writing your CSS. You’ll also learn how to configure
layout, spacing, position, class names, and more.

 In chapter 7, you’ll learn how Compass makes it easy to move from a locally
developed prototype to a production website or web application. We discuss how
to use Compass’s asset helpers to make it easy to update all the URLs in your
stylesheets with a simple configuration change. You’ll see how Compass warns
you when it can’t find images referenced by your stylesheets, helping you avoid
broken image links. We discuss approaches for designing in the browser and
look at how to prepare your stylesheets for deploying to production.

 Chapter 8 helps you get the best performance out of your stylesheets. You’ll
learn about stylesheet concatenation with @import, and how to use Compass’s
built-in stylesheet compression and configure it to use gzip compression to
reduce download time. You’ll learn how to use Compass’s support for asset hosts
to distribute downloads across different servers, and about Compass’s inline
image and font support for reducing HTTP requests. Finally, we cover selector
performance and weigh the performance cost of over-nesting selectors in Sass.

 By the end of this part, you’ll have the big, end-to-end picture of how Sass
and Compass fit into your web development workflow. You’ll know how to

smoothly move from a local development environment to a production web server
and you’ll be confident that you can squeeze the best performance out of your
stylesheets. In the next section, we look at some more advanced features of Sass, and
then we bring it all together by writing a Compass extension and sharing our
stylesheets as an open source project.

Spriting
In this chapter, we’ll look at the purpose of CSS spriting, the challenges involved,
and how Compass saves you from one of the most tedious jobs in web design.

 If you’ve ever manually created your own sprites before, you’re in for a treat!
Spriting with Compass is remarkably easy. Compass creates the sprite maps, writes
the CSS you don’t want to write, and integrates smoothly into your stylesheet work-
flow. But this is just the beginning. Even when you need more control over how Com-
pass creates sprite maps and generates CSS, the process is still incredibly simple.

 In this chapter, we’ll do an in-depth walk-through of a new Compass project, so
if you haven’t installed Compass on your computer yet, see appendix B for help.

This chapter covers
 The history of and basic principles behind CSS

spriting

 Automatic spriting with Compass mixins

 Advanced techniques for customizing sprite
images and CSS output
107

108 CHAPTER 6 Spriting
6.1 How do CSS sprites work?
In the early days, CSS sprites were very simple. Designers would
create images for the different states of a button and put them
together as a single image, as shown in figure 6.1.

 Then in CSS, they would set the height, width, and back-
ground image properties for the button, changing the back-
ground position for each state.

.go-button {
width: 75px; height: 45px;
background: url('images/sprite-button-usage.png') top left;

}
.go-button:hover { background-position: center; }
.go-button:active { background-position: right; }

The dimensions of the button are smaller than the
size of the sprite map, creating a viewport through
which sections of the image are visible. When a
user hovers or clicks, the background position
changes and the viewport displays the next
graphic (see figure 6.2).

 This is a simple example of what CSS sprites
looked like in the early days. Here in the enlight-
ened future, we can create beautiful button styles in CSS3, and we don’t really use
sprites this way anymore.

 When this technique was first becoming popular, most articles pitched it as a way
to get rid of the annoying flicker when the browser went to fetch another image—as if
that was the extent of it. But really, the flicker was just a visible pointer to one of the
most critical performance issues on the web, and spriting needed to evolve to ade-
quately address the real problem at hand.

6.2 Why is spriting necessary?
From the button sprite example, you’ve seen how spriting can combine three differ-
ent button graphics into a single image while maintaining the same appearance. If
you take this technique to the next level, you could build one giant sprite containing
nearly every background image on your site,
like in figure 6.3.

 But why do this? Every image needs to be
measured, and its position in the sprite map
needs to be recorded in your stylesheets. Main-
tenance across redesigns is tedious work and
requires a great deal of effort.

Listing 6.1 CSS for simple sprites

Figure 6.1 Example of
a simple sprite map

Figure 6.2 CSS creates a viewport

Figure 6.3 A more modern sprite map

109Why is spriting necessary?
 If the problem being addressed is speedier downloads, why not just use really good
image compression? Though that will help a bit, believe it or not, file size is only part
of the problem. Sure, each file would load faster if you compressed them really well,
but to understand what problems are solved by using sprites, you need to look at what
your web browser has to do for each image it downloads.

6.2.1 The fewer HTTP requests, the better

When building a website locally on your own computers, your browser usually
requests files directly from the hard drive, or from a web server running locally on
your computer. In either scenario, you’re experiencing nearly instant transfer of files
and you won’t see the pain of establishing network connections with a remote server
and downloading files.

 Every time your browser wants to download a file from a server, it has to go
through a series of steps. Here’s what that looks like in its simplest form:

1 Browser—Asks the server to open a socket for transfer
2 Server—Processes the request and responds
3 Browser—Acknowledges the server’s response
4 Browser—Requests data from the server
5 Server—Processes the request
6 Server—Looks for the file
7 Server—Initiates the file transfer
8 Browser—Accepts the file transfer

Before your browser can get even a single bye of data, it has to go through all of this
back-and-forth with the server. Even with small, properly compressed images, the time
it takes to download the file may be a fraction of the time spent on the network over-
head just to begin the download. More modern browsers try to download several files
concurrently in an effort to avoid having to reestablish a connection for each file. But
even then, this process can be significantly delayed by network congestion or high
latency connections like cellular networks. Tally up all of the JavaScript, CSS files, and
images a website requires, and it’s easy to see how this could add up quickly.

 This isn’t only an issue for browsers. Web servers have to do a lot of work to process
and answer these requests. Popular websites may process millions of requests every
second. This means that your first request and your last request may be separated by
hundreds of thousands of requests from other users, significantly delaying page load
times. Each additional request puts more strain on a web server, reducing site perfor-
mance and increasing operating costs.

 Using CSS sprites is one way to significantly reduce the strain on a web server. It
isn’t just a good idea; it’s a best practice and a necessary step for high-traffic websites.
But what about the effort? Surely it takes a lot of work to combine images of different
dimensions and maintain their positions in CSS!

110 CHAPTER 6 Spriting
6.2.2 The soul-crushing tedium of doing it manually

We’re not going to lie to you. If you have to manually create and maintain large sprite
maps and their corresponding stylesheets, you’ll probably lose your mind. Okay,
maybe that’s a bit extreme, but at the least you’d probably rather do your taxes.

 Sure, spriting images can seriously improve loading time for a website, but every
time you change an image, you have to update the sprite map. If you need to change
the dimensions of an image, that’ll change the position of lots of other images, forc-
ing you to move everything around, measure each image again, and update your
stylesheets.

 Clearly this is one of the more tedious jobs web designers and developers can be
expected to do. As a result, many have refused to “eat their vegetables” and large-scale
spriting has primarily been adopted out of necessity on websites with extremely high
traffic, like Amazon.com (see figure 6.4).

 What if this was easier? If someone would just melt some cheese on these vegeta-
bles, we’d all benefit from faster, more efficient websites.

 When we consider this, measuring, combining, and compressing images and spit-
ting out stylesheets is precisely the kind of work that automated software should han-
dle. As it turns out, this has been a pretty popular problem to solve over the past
several years.

 With a simple web search, you can find lots of different spriting tools, ranging
from command-line applications to browser-based web applications. Each tool offers
different features and various levels of automation. Some of these are very nice, but
they lack one critical feature: workflow integration. This is one area where the Com-
pass solution is unbeatable.

Figure 6.4 A sprite map from
Amazon.com

111Spriting with Compass
6.2.3 The Compass solution

Since Compass is already integrated into your stylesheet authoring workflow, it’s ide-
ally suited to generate CSS sprites. As you’ll see in chapter 7, Compass has a configura-
tion file that tells it where your site’s images are located, and because it’s generating
your CSS, it’s ideally suited to automate the spriting process.

 This is what it’s like when Compass generates your CSS sprites:

1 Point Compass to a folder of images to sprite.
2 Tell Compass to write the CSS for your sprites.
3 Compile your stylesheets.

With two lines of Sass, you can tell Compass to combine every image in a directory,
measure each image, and write out the background positions under class names gen-
erated from each image’s filename. When you make a change to an image, Compass
will automatically update your stylesheets, generating a new sprite and updating back-
ground positions wherever necessary. This is as close to magic as it gets!

6.3 Spriting with Compass
In this section, we’ll walk through a simple Compass spriting project. In the example
code there’s a starting-point project you can use to follow along. The project already
has everything you’ll need, including some icons from the free IcoMoon icon
set (https://github.com/Keyamoon/IcoMoon--limited-) and the Compass logo.
Figure 6.5 shows what we’re starting with.

 We use PNGs because at this time Compass can only generate sprites with PNG files.
This shouldn’t be a problem since PNG is an ideal image format for the types of images
that need to be sprited. Now let’s see what it takes to convert these into a sprite map.

Figure 6.5 Example
project setup

https://github.com/Keyamoon/IcoMoon--limited-

112 CHAPTER 6 Spriting
6.3.1 Creating a sprite map

To convert your folder of images into a sprite map, open up screen.scss and add the
following.

@import "compass/utilities/sprites";
@import "icons/*.png";

First, you import the Compass sprite module. Then, using a
sprite import, you tell Compass to generate a sprite map from
all of the PNGs in the images/icons/ directory. This will create
an image with a name like icons-s0cad3f8f97.png in your
images directory (see figure 6.6).

 By default, sprites are laid out vertically. Later on, we’ll look
at how to adjust sprite layout, spacing, and other settings for
each sprite individually or for the entire sprite map. But first,
let’s look at how Compass generates spriting CSS.

6.3.2 Generating spriting CSS

Compass has two handy mixins that can automatically generate spriting CSS for you.

@include all-<map>-sprites;
@include <map>-sprite($name);

The <map> part is a placeholder and should be replaced with the name of the folder
containing your sprite images. In this case, it would be icons. The all-sprites mixin will
write all the necessary CSS for the entire sprite map, whereas the second mixin will
output CSS for a single named sprite. Both of these mixins are created by the sprite
import, and therefore they can only be used after the import.

 We’ll take a look at how these two mixins work. You can follow along with the code
examples in all-sprites-mixin and single-sprite-mixin in the automatic-sprites
directory.

THE ALL-SPRITES MIXIN

Let’s take a look at what it’s like to have Compass generate all the sprite CSS for you.
Look in the example code under automatic-sprites/all-sprites-mixin to follow
along.

@import "compass/utilities/sprites";
@import "icons/*.png";
@include all-icons-sprites;

Listing 6.2 Generating a sprite map with Compass

Listing 6.3 Sprite mixins

Listing 6.4 Generating a sprite map with Compass

Figure 6.6 Generated
sprite map (cropped)

113Spriting with Compass
The all-icons-sprites mixin will write out the necessary CSS for every sprite in the
sprite map.

.icons-sprite,

.icons-arrow,

.icons-attachment,

.icons-box-add, ... {
background: url('/images/icons-s0cad3f8f97.png') no-repeat;

}

.icons-arrow { background-position: 0 0; }

.icons-attachment { background-position: -16px -96px; }

.icons-box-add { background-position: 0 -64px; }

...

We’ve shortened the preceding CSS output to save space in this book, but it goes on
for 91 lines. Ugh. Now, let’s go over what this mixin has generated:

1 It created a base class icons-sprite for styling all sprites from images/icons/.
2 It created classes for each sprite using its directory and filename.
3 It added a background image for all sprites.
4 It added the background position for each sprite.

By default, Compass doesn’t set the width or height for these elements. Compass can
generate sprite dimension styles automatically (and you’ll see how in a bit), but this
isn’t always desired.

 To use this CSS in a project, you could add these sprite classes to your HTML
markup, or you might prefer to use @extend (covered in chapter 2) to inherit proper-
ties from the sprite classes.

.add-button { @extend .icons-box-add; }

If you decide to create more than one sprite map, you can add images to another
directory, import them, include the all-sprites mixin, and you’re done.

THE SINGLE-SPRITE MIXIN

This mixin will let you output the sprite CSS for each individual sprite. Look in the
example code under automatic-sprites/single-sprite-mixin to follow along.

@import "compass/utilities/sprites";
@import "icons/*.png";

.add-button {
@include icons-sprite(box-add);

}

Listing 6.5 Generated sprite CSS (shortened)

Listing 6.6 Using @extend to inherit sprite styles

Listing 6.7 Using the single-sprite mixin

114 CHAPTER 6 Spriting
This will only output the CSS necessary to style this element.

.icons-sprite,

.add-button {
background: url('/images/icons-s0cad3f8f97.png') no-repeat;

}

.add-button { background-position: 0 -358px; }

With the single-sprite mixin, it’s not necessary to generate a class name for the sprite
styles because it’s included inside of a selector. Compass uses that selector, in this case
.add-button, when it adds styles for background-image and background-position.
Whereas the all-sprites mixin is nice and easy, this approach generates less CSS and
gives you more control of your output.

 It’s a nice start, but sometimes you need even more control of the spriting process.
Next, you’ll see how Compass gives you the control you need without making you do
all the work.

6.4 Configuring Compass sprites
Even for advanced users, Compass still manages to make spriting delightfully simple.
Remember that special sprite import? It does much more than generate a sprite
image. When Compass evaluates this special import, it first checks for a list of configu-
ration variables that you can use to influence how the sprite images and CSS are gener-
ated. The sprite import also creates several other mixins and functions for tweaking
your sprites in Sass.

 Compass uses the name of the folder containing the imported images to name
these configuration variables, mixins, and functions. In the preceding example, you
imported sprites from a folder named icons, which is where the all-icons-sprites
mixin got its name. If you import sprites from nested folders, Compass uses the name
of the last folder, the one containing the images. So @import "sprites/social/
*.png"; would use the name social in its variables, mixins, and functions. This feature
makes it easy to work with multiple sprite maps without naming conflicts.

6.4.1 Customizing the sprite map

You can customize a sprite map or its sprites individually by setting their configuration
variables. Variables affecting the whole sprite map begin with the map name, whereas
variables for changing an individual sprite use the map name followed by the file
name for that sprite.

$<map>-<property>: setting;
$<map>-<sprite>-<property>: setting;

Listing 6.8 Generated single-sprite CSS

Listing 6.9 Variable naming scheme

115Configuring Compass sprites
In our example project, the sprite folder name is icons, so the variable for the chang-
ing spacing would be $icons-spacing. So in order to set the spacing variable for
icons/attachment.png, you’d assign a value to $icons-attachment-spacing.

 Remember, these variables must be defined before the sprite import or they won’t
take effect. Check out the configuring-automatic-sprites folder to find code examples
for the following sprite configurations.

CONFIGURE SPRITE SPACING

Compass allows you to surround your sprites with padding by configuring the sprite
spacing variables:

$<map>-spacing: 0px;
$<map>-<sprite>-spacing: 0px;

This defaults to 0px, meaning each sprite is placed into the sprite map without any
padding. Set this variable to add pixels of transparent space surrounding each sprite
in the sprite map, or assign it to sprites individually. This example code can be found
under configuring-automatic-sprites/spacing.

$icons-spacing: 4px;
$icons-arrow-spacing: 12px;

This is how you’d add 4 pixels of transparent
space around each sprite in the icons sprite map
and 12 pixels of spacing around the arrow sprite.
Figure 6.7 shows how this changes your sprite
map.

 Spacing is especially useful in a design where
small sprites are used as a background for larger
elements. Without added spacing, adjacent sprites
would show through.

CONFIGURE SPRITE REPEAT

In some cases it may be helpful to have a sprite
image repeat horizontally across the sprite map.
For that, you can set the sprite repeat variables:

$<map>-repeat: no-repeat/repeat-x;
$<map>-<sprite>-repeat: no-repeat/repeat-x;

This defaults to no-repeat, but you can change it to repeat-x to make sprites repeat
across the entire x-axis of the sprite map. This setting can be applied to the whole
sprite map or an individual sprite. This example code can be found under configur-
ing-automatic-sprites/repeat.

Listing 6.10 Configure sprite spacing

Figure 6.7 Sprite map spacing
comparison

116 CHAPTER 6 Spriting

$icons-arrow-repeat: repeat-x;

This will cause the arrow icon to repeat for the entire width of
the image. By looking at the sprite map in figure 6.8, you can
see how the arrow icon repeats all the way across the sprite map
until it fits beneath the wide compass logo.

 At the time of publication, Compass doesn’t yet support
repeating images across the y-axis.

 Next we’ll look at how to configure the offset position

CONFIGURE SPRITE POSITION

Occasionally, it might be helpful to shift a sprite image’s posi-
tion. Compass allows you to move sprites horizontally by setting
the position variables:

$<map>-position: 0px;
$<map>-<sprite>-position: 0px;

This variable adjusts the horizontal positioning of sprites in the sprite map. It defaults
to 0px, meaning that each sprite is aligned to the left. This value can be a percentage
or a pixel value. An example of the following configuration can be found in configur-
ing-automatic-sprites/position.

$icons-position: 4px;
$icons-arrow-position: 100%;

In this example, each sprite in the icons sprite map will be shifted
four pixels to the right, and the arrow sprite will be placed all the
way to the right, as in figure 6.9.

 Next, we’ll cover ways to change the layout of the sprite map as
a whole.

CONFIGURE SPRITE MAP LAYOUT

Compass has several different sprite layouts to choose from:

$<map>-layout: vertical/horizontal/diagonal/smart;

The default layout is vertical and affects the sprite map as a
whole, telling Compass how to arrange all of the sprites. In most
cases, you’ll probably want to set this to smart, which tells Compass
to position sprites with the least amount of empty space. The following code example
is in configuring-automatic-sprites/layout.

$icons-layout: smart;

Listing 6.11 Configure sprite repeat

Listing 6.12 Configure sprite position

Listing 6.13 Smart sprite layout

Figure 6.8 Repeating
arrow icon

Figure 6.9 Sprite
positioning
example

117Configuring Compass sprites
If you used the smart layout in the example project from ear-
lier, the sprite map would look like figure 6.10.

 The position and repeat configurations will only apply to
sprite maps with a vertical or horizontal layout. With a smart
or diagonal layout, position and repeat will have no effect.

 Next, we’ll look at how to prevent Compass from removing
out-of-date sprite maps.

CLEAN UP OLD SPRITE MAPS

Whenever images are added, removed, or changed, new sprite maps are generated.
Compass can automatically remove old sprite maps for you, or you can keep them
around:

$<map>-clean-up: true/false;

By default, Compass automatically removes old sprite maps when new ones are gener-
ated. This keeps your hard drives from filling up with files you’re not using anymore,
and ensures that you never have to wonder which file your stylesheets are using. If you
prefer to manually remove old sprite maps, you can set this to false instead.

 Up to this point, we’ve looked at ways to modify the way Compass generates the
sprite map. Next, we’ll look at how to customize the CSS that Compass writes.

6.4.2 Customizing the sprite CSS

You’ve seen how simple it is to change the way Compass places sprites in the sprite
map. Though these changes to the sprite map will necessarily affect the CSS generated
by Compass, there are also ways you can directly customize the generated CSS.

OUTPUT SPRITE DIMENSIONS

If you want to assign dimensions to a specific sprite, you can use the sprite dimension
helpers:

<map>-sprite-height($name)
<map>-sprite-width($name)

These are two functions that tell Compass to measure the size of the original sprite
image and output its dimensions so you can use them in your stylesheets. Using these
helper functions, you can set the width and height properties for an individual sprite.
The following code example is in configuring-automatic-sprites/dimensions.

@import "icons/*.png";
.next {

@include icons-sprite(arrow);
width: icons-sprite-width(arrow);
height: icons-sprite-height(arrow);

}

.add-button {
@include icons-sprite(box-add);

}

Listing 6.14 Include sprite dimensions

Figure 6.10 Sprite map
with smart layout

118 CHAPTER 6 Spriting
Alternatively, if you wanted to automatically set the dimensions for every sprite in the
sprite map, you could set a configuration variable for that sprite map:

$<map>-sprite-dimensions: true/false;

This configuration defaults to false, but setting it to true will measure each sprite
image and assign the width and height to its sprite class.

$icons-sprite-dimensions: true;
@import "icons/*.png";
.next { @include icons-sprite(arrow); }

The resulting CSS would look like the following listing.

.next {
background-position: 0 -70px;
width: 32px;
height: 32px;

}
.add-button {

background-position: 0 -358px;
width: 32px;
height: 32px;

}

Automatically generating sprite dimensions is really nice compared to the tedium of
doing it manually. But if all of your icons are the same size, writing dimensions for
each sprite would unnecessarily bloat your CSS. Instead, it would be better to manually
set the dimensions on the sprite map’s base class.

SPRITE BASE CLASS

Compass makes it easy to apply common styles to each of your sprites by generating a
base class. You can choose your own class name by setting the base class variable:

$<map>-sprite-base-class: ".class-name";

When you use the all-sprites or single-sprite mixins, Compass outputs a sprite base
class, followed by a chain of sprite selectors when setting the background-image prop-
erty base class to the selector chain. The base class for each sprite map is chosen by the
name of the folder. If the sprite folder is named icons, the sprite map’s base class
would be .icons-sprites. Let’s take a look at how you’d change it. (This example is
in configuring-automatic-sprites/base-class.)

$icons-sprite-base-class: ".spritey-mcspriterson";
@import "icons/*.png";

.spritey-mcspriterson {

Listing 6.15 Include sprite dimensions

Listing 6.16 Generated CSS with sprite dimensions

Listing 6.17 Change the sprite’s CSS base class

119Configuring Compass sprites
overflow: hidden;
}
.next {

@include icons-sprite(arrow);
}

Each sprite class extends the base class, so any styles you add to the base class will also
affect each of your sprites.

.spritey-mcspriterson,

.next {
background: url('/images/icons-s0cad3f8f97.png') no-repeat;

}
.spritey-mcspriterson, .next {

overflow: hidden;
}
.next {

background-position: 0 -70px;
}

Keep in mind that this will only change the base class in the CSS output. Variable
names, functions, and mixins remain the same, deriving their names from the sprite
map’s folder.

MAGIC SPRITE SELECTORS

Compass can automatically generate sprite CSS with pseudo selectors, but you can dis-
able that if necessary:

$disable-magic-sprite-selectors: true/false;

Magic sprite selectors are enabled by default, meaning Compass will automatically
output CSS :hover, :active, and :target pseudo selectors for sprites with names end-
ing in _hover, _active, or _target. The code for this section is in configuring-automatic-
sprites/magic-selectors.

 For example, if you want to have a different sprite for normal and hover states, you
add arrow.png and arrow_hover.png to your sprite folder, and Compass will generate
CSS sprite backgrounds for the hover pseudo class.

.next {
background-position: -32px 0;

}
.next:hover, .next.arrow-hover {

background-position: -48px -96px;
}

If magic pseudo selectors interfere with the image-naming scheme you’ve chosen, set
this configuration to true to disable this feature for all sprite maps.

Listing 6.18 Generated CSS with custom base class

Listing 6.19 Generated CSS with magic pseudo selectors

120 CHAPTER 6 Spriting
6.5 Mastering the magic with sprite helpers
So far, we’ve looked at tools to automatically generate sprite maps and CSS, as well as
some options for customizing their output. In most cases, those magical mixins will be
all you need. But occasionally, you might want to slip behind the curtain and run the
show yourself.

 To perform its spriting feats, Compass relies on a number of helper functions. By
wielding these directly, you’ll have more flexibility and greater control over the sprit-
ing process.

6.5.1 Creating sprite maps

As we looked at earlier, creating a sprite map with the special sprite import, such as
@import "icons/*.png"; doesn’t just create a sprite map; it sets up mixins and variables
for the sprite map and each of its sprites. If you’re using sprite helpers, you won’t use
those variables or mixins, which makes the sprite import overkill. Instead, you’ll use the
sprite-map helper. See manual-sprites/sprite-helper for the code in this example:

sprite-map($glob, ...)

This helper accepts a glob, like "icons/*.png", and optional keyword arguments for
configuring the sprite map or individual sprites. Here are a couple of examples.

$icons: sprite-map("icons/*.png", $layout: smart);

This will create a sprite map with a smart layout and assign the sprite map’s image URL
to the $icons variable. We’ll use this variable later to generate CSS with other helpers,
which we’ll cover in a bit.

$icons: sprite-map("icons/*.png", $arrow-spacing: 5px);

Any property of the sprite map or properties of individual sprites can be configured
like this. Simply use configuration variables we covered earlier without the <map>
namespacing. To configure repeat, instead of $<map>-repeat, you’d use $repeat; or,
instead of $<map>-<sprite>-repeat, you’d use $arrow-repeat, where arrow is the
name of the sprite image you’re configuring.

6.5.2 Writing sprite CSS

After Compass generates the sprite map for you, you still need to write out the CSS for
each sprite. To do that, you’ll turn to a few helpers and mixins.

THE SPRITE HELPER

The sprite helper makes writing sprite CSS simple:

sprite($map, $sprite, [$offset-x], [$offset-y])

Listing 6.20 sprite-map helper

Listing 6.21 sprite-map helper—configuring an individual sprite

121Mastering the magic with sprite helpers
The sprite helper requires the sprite map, the name of the sprite image, and option-
ally accepts offset coordinates.

$icons: sprite-map("icons/*.png");
.next {

background: sprite($icons, arrow) no-repeat;
}
.add-button {

background: sprite($icons, box-add) no-repeat;
}

This will only output the background properties. There won’t be a sprite base class or
any other CSS you haven’t asked for.

.next {
background: url('/images/icons-s943de15a54.png') 0 -70px no-repeat;

}
.add-button {

background: url('/images/icons-s943de15a54.png') 0 -358px no-repeat;
}

One nice thing about the sprite base class is that you can assign the background image
once; here, it’s assigned to each class, which is unnecessary duplication.

SPRITE POSITIONING

To remove the duplication of the background image, you can use the sprite-
position helper or the sprite-background-position mixin instead of the sprite
helper. Example code for this these are in manual-sprites/sprite-position:

sprite-position($map, $sprite, [$offset-x], [$offset-y])
sprite-background-position($map, $sprite, [$offset-x], [$offset-y])

Both the helper and the mixin require a sprite map, a sprite name, and accept
optional offset position values.

$icons: sprite-map("icons/*.png");
.sprite-base { background: $icons no-repeat; }
.next {

@extend .sprite-base;
background-position: sprite-position($icons, arrow);

}
.add-button {

@extend .sprite-base;
@include sprite-background-position($icons, box-add);

}

Listing 6.22 sprite helper

Listing 6.23 sprite helper CSS

Listing 6.24 Sprite positioning

122 CHAPTER 6 Spriting
Both the sprite-position helper and the sprite-background-position mixin per-
form the same duty, and it’s a matter of preference which to use.

.sprite-base, .next, .add-button {
background: url('/images/icons-s943de15a54.png') no-repeat;

}

.next { background-position: 0 -70px; }

.add-button { background-position: 0 -358px; }

Here, you can see how nicely trim this CSS is. You have more flexibility, with no unnec-
essary duplication. But it’d be nice to add sprite dimensions.

SETTING SPRITE DIMENSIONS

To include the sprite dimensions as well, you can use the sprite-dimensions mixin,
which requires the sprite map and the sprite image name, and outputs the measured
dimensions. Example code for this mixin is in manual-sprites/sprite-dimensions.

$icons: sprite-map("icons/*.png");
.sprite-base { background: $icons no-repeat; }
.next {

@extend .sprite-base;
@include sprite-background-position($icons, arrow);
@include sprite-dimensions($icons, arrow);

}

This helper will measure the sprite image and write out its width and height proper-
ties in the generated CSS.

.sprite-base, .next {
background: url('/images/icons-s943de15a54.png') no-repeat;

}

.next {
background-position: 0 -70px;
height: 32px;
width: 32px;

}

And that’s all there is to it. With this power and flexibility at your disposal, you should
have no trouble adding image sprites to any web design project.

Listing 6.25 CSS for sprite positioning

Listing 6.26 The sprite-dimensions mixin

Listing 6.27 CSS for the sprite-dimensions mixin

123Summary
6.6 Summary
In this chapter, we looked at where image sprites came from and how they found their
way into web design. We looked at the performance impact of loading lots of images
from a remote server and how spriting is an essential practice for any high-traffic site.
We saw how Compass can fully automate the spriting process, and we explored ways to
configure and control how Compass generates sprite maps and writes spriting CSS.

 In the next chapter, we’ll look at some advanced Compass features that help you
prep your stylesheets to be served up in production.

From prototype
to production
Websites can be so simple, a kid can build one in a few minutes with a text editor
and a hosting account. Of course, websites can also be complex, have dynamic con-
tent, and need to scale to millions of visitors a day. It’s safe to say that the web
encompasses one of the broadest ranges of expertise of any software technology
field. From your high school home page to Google, the web can be micro-
optimized at every layer.

 The complexity of the web isn’t just limited to HTML markup. Due to their
heavy reliance on external resources like images, other CSS files, and fonts,
stylesheets can become a serious maintenance burden.

This chapter covers
 Best practices for generating URLs to your assets

 Authoring stylesheets without needing a web
server

 Tips and tricks for designing in the browser

 How to compile and structure stylesheets for
production
124

125Abstracting URLs
 In this chapter, you’ll learn how to use Compass helpers and configuration to gen-
erate URLs to your assets, making it easy to transition from prototype to production.
By using these helper functions, you’ll have the freedom to author your stylesheets
and HTML without a web server and the usual headaches that would result from that
approach; you’ll also be setting the stage for some great performance optimizations
that we’ll cover in the next chapter.

 Given the advancements in CSS3 coupled with the powerful abstractions of Sass
and Compass, it’s time to re-evaluate your design and prototyping tool chain. We’ll
cover some basic tips and tricks for designing in the browser so that you can decide
whether tools like Photoshop are actually slowing you down in the long run.

 With CSS, you’ve been fine-tuning your search-and-replace skills to manage the
changes that are needed to shepherd your stylesheets from prototype to production.
In chapter 3, you learned about some of Compass’s configuration options describing
where your assets are stored and how they’re served. In this chapter, you’ll learn how
you can use those simple configuration options and some authoring best practices to
make production deployment considerations virtually disappear, while simultaneously
allowing you to simplify your development environment. You’ll also learn how to deal
with banal things like copyright notices and source control.

 Then, in the next chapter, you’ll learn about some performance optimizations like
compression and image inlining to help you eke every bit of performance from your
stylesheets. But first things first: let’s look at the Compass best practices for generating
URLs and then get prototyping.

7.1 Abstracting URLs
Where are your images? That might sound like a dumb question; your images are
right there in your project folder! Sure, they’re easy enough to find, but you’re a
human. If you were a web browser, you’d have a harder time tracking them down.
Your images start their long and arduous journey in your project’s images directory,
but they may soon find themselves packaged, copied, deployed, unpackaged, URL-
rewritten, compressed, cached, and finally served from one or more places on the
internet.

 It’s not uncommon for a project to change where and how it stores and references
its images three or more times. When you use Compass, you’ll find it easier to gener-
ate and change where and how you store your images, but the benefits don’t stop
there. While Compass makes URLs for you, it also makes sure that images really exist
and that stale images don’t get stuck in the browser cache.

7.1.1 Generating URLs to assets

CSS provides the url function to denote URLs:

background-image: url('/logo.png');

URLs identify a resource anywhere on the internet, but when you refer to your own
assets, you often use relative URLs and the browser resolves the missing pieces of

126 CHAPTER 7 From prototype to production
information based on what it knows about the current request. Before we go on, let’s
review some terminology related to URLs in figure 7.1.

 Recall that four kinds of URLs can be specified in CSS, depending on which parts
of the fully qualified URL are omitted (see table 7.1).

Table 7.1 The four types of URLs

 Example Type Description

url('http://www.example.com/logo.png') Absolute URL The details of the originating request
don’t matter in this case.

url('logo.png') Relative URL The browser resolves the URL relative
to the request that served it, which in
this case is the CSS stylesheet, not the
web page. So if the stylesheet was at
http://www.example.com/stylesheets/
application.css, then this URL would
point to http://www.example.com/
stylesheets/logo.png.

url('/logo.png') Root-relative
URL

The browser resolves the URL against
the protocol and domain of the CSS
stylesheet. So if the stylesheet was at
http://www.example.com/stylesheets/
application.css, then this URL would
point to http://www.example.com/
logo.png.

url('//imgs.example.com/logo.png') Protocol-
relative URL

The browser resolves the URL using the
domain specified, but with the same
protocol as the originating request for
the CSS stylesheet. This type of URL is
especially useful when serving assets
from a different domain than your main
website. So if the stylesheet was at
https://www.example.com/
stylesheets/application.css, then this
URL would point to https://imgs
.example.com/logo.png.

http://www.example.com/images/logo.png?123456789

Protocol Domain Path Query

Relative URL

Root-relative URL

Protocol-relative URL

Absolute URL

Figure 7.1 Breaking down the URL

127Abstracting URLs
Though you can still use any of these URL types in Sass, Compass best practices dictate
that you use asset helper functions (http://compass-style.org/reference/compass/
helpers/urls/) to refer to your own assets. Compass provides three asset helpers, but
to each of them you always pass a path that is relative to that asset class’s directory—
never relative to the stylesheet:

 image-url('logo.png')—References the file logo.png saved at the root of
your images directory.

 font-url('arial.ttf')—References the file arial.ttf saved at the root of
your fonts directory.

 stylesheet-url('randomfile.xml')—References the file randomfile.xml

saved at the root of your css directory.

You might have noticed that there’s no URL helper for JavaScript. The JavaScript con-
figuration option exists so that Compass extensions can provide JavaScript files as part
of their installation. Similarly, there’s no URL generator for the sass directory
because that’s merely an aspect of development; the stylesheet_url will point to the
location where your CSS files live.

 The reason why Compass has chosen this approach is because it makes imports
and refactoring much simpler. As you’ll soon see, it’s possible to generate all four
kinds of the URLs that CSS supports using this single syntax.

 Your project configuration tells Compass where to find your assets so that you can
stop caring about how to refer to them in your stylesheets and leave that as an aspect
of configuration that will change over time as your stylesheets move from prototype to
production to scaling your website or application.

 But wait, there’s more! Compass will also check to make sure your URLs are valid
and up to date during compilation!

7.1.2 Avoiding broken links

You’re human; sometimes you make mistakes. Maybe a typo; maybe an image gets
renamed but you miss a reference to it. It happens. Don’t beat yourself up over it.
When you refer to an image using the image-url($path) helper function, Compass
will verify that the file exists; if it doesn’t, it’ll print out a warning to your console dur-
ing compilation. Similarly, missing fonts will be noticed when you use the font-
url($path) helper.

 Observe the following output from a compass compilation run where an image
isn’t found. If this was in your console, the WARNING line would be colored red:

[~/Projects/my_compass_project] compass compile
directory stylesheets/

create stylesheets/ie.css
WARNING: 'missing.png' was not found (or cannot be read) in images/

create stylesheets/main.css
create stylesheets/print.css

http://compass-style.org/reference/compass/helpers/urls/
http://compass-style.org/reference/compass/helpers/urls/

128 CHAPTER 7 From prototype to production
Of course, Compass can’t actually ensure that you won’t have broken links. A configu-
ration error or a change that occurs after compilation will still break your site, but this
simple check can save many hours of painful debugging due to common development
mistakes (like why that image isn’t showing up).

 Speaking of common development mistakes, have you ever spent 10 minutes try-
ing to figure out why an image isn’t displaying correctly, only to discover that the
browser was caching it? So have we, but not since starting to use Compass to generate
our URLs. Read on to see why.

7.1.3 Avoiding stale images with cache busting

Another common problem during development and across production deployments is
that browsers are lazy; they don’t like to download things. Perhaps it’s tedious for them.
So they cache your images and other assets in case they need them later, and they often
do. This is great for users; it makes their browsing experience much nicer. But it’s a
pain for web developers. If you change an image, those users who have recently down-
loaded it won’t notice. And it’s a shame, because the new image is clearly much better.
To work around this, Compass adds a query parameter to the end of each asset based
on its modification time. Your web server will still serve it just fine, but when the query
parameter changes, it’ll force the browser to ask for the image again.

 For example,

#logo { background-image: image-url('logo.png'); }

might be compiled to

#logo { background-image: url('/images/logo.png?1298578273'); }

It’s also possible for you to configure what cache-buster parameter gets created if time-
stamps aren’t a good approach for your needs. For example, you could increment a
deployment count before each deployment or you could use your source control’s
revision number for that file. Doing this requires that you write a little Ruby code. For
example, adding this to your compass configuration file

Increment the deploy_version before every
release to force cache busting.
asset_cache_buster do |http_path, real_path|

"v=1"
end

would cause Compass to now generate the following output for your logo image:

#logo { background-image: url('/images/logo.png?v=1'); }

Using a query parameter as a cache-busting strategy might interfere with some prox-
ies’ ability to cache your assets. (The query string makes them scared that the asset
might be dynamically generated.) If this is a problem for you, it’s possible to disable
the cache buster by adding the following line to your Compass configuration:

asset_cache_buster :none

129Prototyping with Sass and Compass
But if you want to maximize cacheability of your assets while also busting the cache,
the best way is to rewrite the path to the asset. With some corresponding web server
configuration, you can generate a URL more like this:

#logo { background-image: url('/images/logo-1307943914.png'); }

You’ll need to configure your web server so that it knows how to map the timestamped
path to the real path. How to do this is specific to your web server, but the Compass
configuration looks something like the following.

asset_cache_buster do |path, real_path|
if File.exists?(real_path)

pathname = Pathname.new(path)

modified_time = File.mtime(real_path)

new_path = "%s/%s-%s%s" % [
pathname.dirname,
pathname.basename(pathname.extname),
modified_time.strftime("%s"),
pathname.extname

]
{:path => new_path}

end
end

As you can see, arbitrarily complex logic can be used within the Compass configura-
tion file because it’s just a Ruby script. For example, some users integrate with their
content delivery network (CDN) or generate MD5 fingerprints for each asset. But
more complex logic is outside the scope of this book, so please contact the Compass
mailing list (http://groups.google.com/group/compass-users) or your nearest Ruby-
ist if you need help crafting custom code.

 But long before you can start worrying about how to serve your assets from a CDN,
you’ll need to do some prototyping first. CSS best practices dictate that you should set
up a web server before you write your first selector; let’s find out why that is and why
it’s not necessary when you use Sass and Compass.

7.2 Prototyping with Sass and Compass
Whether you’re working on a new concept or starting up a new project with some
fresh mockups or wireframes, the start of a new project is the point in a project’s life
when Sass and Compass really shine. Some people think that Sass and Compass are
for large sites with tons of CSS, but every large site starts small.

 Additionally, at the start of a project when everything is in flux and subject to
change, the capabilities of Sass and Compass to manage are indispensable. The CSS3
module and grid systems make designing in the browser easier than Photoshop. The

Listing 7.1 Defining a path-based asset cache buster

Always check if file
really exists Path names

easier to work
with than strings

Last modified time

Construct new
path from four
strings

Special return format
for path-based assets

http://groups.google.com/group/compass-users

130 CHAPTER 7 From prototype to production
Sass color functions can make experimenting with your site’s color theme so easy it’s
worth doing just for fun.

 Of course, prototyping involves writing HTML too, but Sass and Compass stay
out of the business of HTML, so we encourage you to investigate using a rapid
prototyping framework like Serve (http://get-serve.com/) or Middleman (http://
middlemanapp.com/), which include support for Sass and Compass out of the box.

 In order to write CSS files with root-relative URLs during development, getting
started with a new project with CSS used to mean setting up web servers, editing con-
figuration files, and editing DNS host files. Let’s explore how Compass can make your
development environment simpler.

7.2.1 Simplifying your development environment

URLs relative to your stylesheet are a great starting
point for your new application or website. They work
without a web server, so you can use them when proto-
typing using plain old HTML, and they also work in any
server environment where your assets are served from
the same domain as your stylesheets. For many users,
this is the beginning and end of their needs.

 Of course, one of the challenges that relative URLs
present to the CSS developer is that they make it hard to reorganize your stylesheets.
Consider the project structure shown in figure 7.2.

 When using relative URLs, if you want to move some styles from main.css to
header.css, then you have to change this,

#logo { background-image: url(../images/logo.png); }

to this:

#logo { background-image: url(../../images/logo.png); }

For this reason, it has long been considered a best practice to always use a simple web
server and domain-relative paths even when prototyping. Even when you have a web
server set up on your development environment, setting up a new site isn’t always
straightforward. Navigating the maze of configuration files, local host names, and
server ports can be even more daunting than working with the command line to many
front-end developers and designers.

 But with Compass you’re once again free to use local files by enabling relative
assets. To use relative assets, simply add (or uncomment) the following line in your
Compass configuration:

relative_assets = true

When enabled, Compass will generate relative paths whenever you use image-
url($path), font-url($path), or stylesheet-url($path). It’s important to note
that the paths generated are relative to the compiled stylesheet—not the Sass stylesheet.

Figure 7.2 A simple project

http://get-serve.com/
http://middlemanapp.com/
http://middlemanapp.com/

131Prototyping with Sass and Compass
This means that if you have a shared partial that’s included by several different CSS
files, the relative path to an image referenced in the partial will be correct in all cases.
For example, consider the project structure shown in figure 7.3.

 If _partial.scss is imported into both main.scss and header.scss, and _partial.scss
contains this,

#logo { background-image: image-url("logo.png"); }

then the generated main.css will contain this,

#logo { background-image: url(../images/logo.png?1298578273); }

and the generated header.css will contain this:

#logo { background-image: url(../../images/logo.png?1298578273); }

You can now refactor your stylesheets to your heart’s content; your relative URLs will
always just work. With Compass you have a development environment set up in just a
few minutes; if your next inclination is to open up Photoshop, stop and read the next
section instead.

7.2.2 Designing in the browser

If you’re a designer who writes your own stylesheets, you’re probably used to first
mocking up your website with Adobe’s Photoshop or Fireworks and then building out
your stylesheets when you have a design that you’re happy with. Before CSS3 and pro-
gressive enhancement, the need to create image slices almost demanded this work-
flow. But with CSS3, Sass, and Compass, there’s now tremendous efficiency to be had
by designing your website in the browser.

 From gradients to shadows, rounded elements to fancy fonts, modern browsers can
now handle the most common design elements without images. In many cases, Com-
pass’s CSS3 module now makes it easier to write the code than to emulate the effect in
Photoshop. And when you’re done, if you really need to
support legacy browsers, take screen grabs of your web
page and slice the images from there.

 This efficiency gain isn’t only the result of doing it
just once. When you design directly in the browser, it’s
more likely that you’ll express the relationships between
design elements clearly and explicitly. During the act of
creation, you don’t think, Boy, what this design needs is some
#4F9942. You think, I need to de-emphasize this header color.
At that instant it’s easier to write adjust-color

($header-color, $saturation: -15%, $lightness: -
25%) and then tweak the values a couple times until it
looks right to you. But when you’re authoring CSS from
a mockup, the easiest thing to do is take out your color
picker and copy the end-result value to your stylesheet,

Figure 7.3 A project with a
shared partial

132 CHAPTER 7 From prototype to production
thereby losing all the information that was in your head during the design step and
making it much harder to change the header color than it should be.

 Browsers are full of limitations. From time to time it’s great to push the limits of
what’s possible in the browser, but most of the time, you just need to get the job done.
Designing in the browser allows you to work within those limitations and embrace
them as part of the design process. The way floats work, it’s hard to imagine and emu-
late how floated elements will respond to browser window resizing. But when you’re
designing in the browser, it’s easy to test and see how it’ll work out.

 Sure, you might find that it takes a little longer to build your initial design with this
approach, but unless you have to throw the whole thing out, it’s likely that designing
and prototyping in the browser will yield a higher-quality product, in less time, that is
easier to change in the future.

 Now that you have a design that you like, it’s time to share it with the world. Let’s
put this baby into production!

7.3 Deploying to production
Deploying CSS to production is actually easier than deploying Sass files to production.
After all, CSS is a plain file so you simply need to copy the file to your web server and
call it a day. With Sass and Compass, there’s a compilation step and production config-
uration that must be taken into account. Though this might feel like a hassle at first,
you’ll soon realize that Compass is making you consider and do things that you should
have been doing with your CSS anyway.

7.3.1 Surprise! It’s moving time

Your client calls to inform you that the app you’re building that was going to be
deployed to http://example.com/fancy-app/ is now going to be renamed to http://
example.com/super-fancy-app/. The client feels bad; they thought this was all
approved, but the CEO really wanted the app to be super. Finally they get to the question:
“So, how long will this take?”

 There are literally hundreds of URLs in your stylesheets and if you had to change
and test them all by hand, it would be at least an hour of mindless busywork and test-
ing. But you’re a Compass user who has been using all the URL helpers provided, so
you know this will be a simple configuration change. You just have to change one line
in your configuration from this,

http_path = "/fancy-app"

to the following, and then recompile:

http_path = "/super-fancy-app"

So now you have a small dilemma on your hands. Do you give them the real time esti-
mate or not? We lean toward telling them it was a piece of cake and there would be no
extra charge because we like to elicit good will and show off that we’ve thought ahead
by using a stylesheet compiler. Isn’t it great when we let these machines do all our busy

133Deploying to production
work for us? In the next section, you’ll see how Compass can make your life easier by
targeting your production environment when it’s time to deploy.

7.3.2 Compiling for production

Compass has two modes that you can use to manage your stylesheets differently when
doing development and when you’re serving them in production. Normally, Compass
uses the development environment. To use the production environment you can
compile your stylesheets like so:

compass compile --force -e production

Compass will use sensible defaults for production stylesheets. Your output will be
compressed and most comments will be stripped out. It’s also possible to set a specific
configuration for the current mode. For instance, if you want compact output in pro-
duction mode, you can add this conditional setting in your Compass configuration:

if environment == :production
output_style = :compact

end

Using the preceding approach, it’s possible to use the environment toggle to set up
different asset configurations depending on whether you’re on a development
machine or in production.

7.3.3 Generating domain-relative assets

By default, Compass generates domain-relative URLs that assume you’re viewing your
web page via a web server. Now that you’re about to deploy your website, you’ll need
to consider some configuration settings for Compass to correctly generate URLs for
you. The first setting to consider is the http_path of your entire project—this defaults
to /, but if your site is hosted within a directory, you should change this in your Com-
pass configuration:

http_path = '/my-app'

If you have relative assets enabled, you should disable them now because you don’t
want the generated URLs to be relative to the generated CSS files, and the
relative_assets setting will take precedence:

relative_assets = false

After the next compile, the logo’s URL becomes

#logo {
background: url('/my-app/images/logo.png?1240702589');

}

Suppose that during deployment your images get copied to a folder called imgs that’s
relative to the site’s root folder. In this case, you need to set the http_images_dir for
your project:

134 CHAPTER 7 From prototype to production
http_path = '/my-app'
relative_assets = false
images_dir = 'images' #locally it's the images folder
http_images_dir = 'imgs' #on the webserver it's different

After the next compile, the logo’s URL becomes

#logo {
background: url('/my-app/imgs/logo.png?1240702589');

}

But if your website is strange and decides to put its images in a place entirely different
from the HTML, then you can set the http_images_path instead:

http_path = '/my-app'
relative_assets = false
images_dir = 'images'
http_images_path = '/somewhere-else/imgs'

After the next compile, the logo’s URL becomes

#logo {
background: url('/somewhere-else/imgs/logo.png?1240702589');

}

Compass has a lot of possible configuration options relating to assets. For common
cases, it’s easy to ignore them, but it’s nice to know that if your needs are outside the
norm, you can still accommodate them. Before your site goes live, it’s important to
dot your i’s and cross your t’s—small stuff like copyright notices might have been
overlooked.

7.3.4 Adding copyright notices

Some sites choose to annotate their stylesheets with a copyright. If you do this, you’ll
be sad to find out that Sass strips out CSS comments when stylesheets are compressed.
To work around this, Sass provides loud comments. Loud comments start with an excla-
mation mark immediately following the asterisk of a CSS comment:

/*!
Copyright © 2012, Example Inc. All Rights Reserved.

*/

It’s worth noting here that loud comments evaluate Sass script, so they can be used to
set your copyright notice into a variable and reuse that across your site:

$copyright-year: unquote("2012");
$company-name: unquote("Example, Inc.");
/*!

Copyright © #{$copyright-year}, #{$company-name}
All Rights Reserved.

*/

That made the lawyers pretty happy, didn’t it? Now it’s time to put your site into
production!

Locally it’s the images folder

135Deploying to production
7.3.5 Deploying CSS is simple

If your deployment system for CSS was to copy stylesheets to your web server, then
things won’t change much for you. After you’ve recompiled your stylesheets for pro-
duction, you have plain old CSS files just like you had before. From this point on, your
process should be the same as it was. All that matters is that you get your stylesheets
where they can be served to your users. In figure 7.4, you can see how a simple deploy-
ment process works.

 If your website is a simple site and you’re the only developer, this process likely
works fine for you. But if you work on a team and have source control and/or deploy-
ment or build scripts, there’s more to consider.

7.3.6 Working with source control and the deployment process

Source control best practices dictate that generated files that aren’t hand-edited
shouldn’t be tracked in source control. Instead, you should ignore your generated CSS
files and have a build step before or during deployment that prepares your stylesheets
using a repeatable process.

 But many websites don’t have such a step and don’t want to add one just because
they use Sass. In these cases, many users do check their compiled CSS into source con-
trol. If you do this, merge conflicts will eventually occur; when they do, the best

Users

url (logo.png)
Downloaded from

Web server

Becomes

Local file Developer

References

References

Uploaded to

Figure 7.4 How Sass stylesheets
get served

136 CHAPTER 7 From prototype to production
approach is to delete your generated stylesheets, resolve the merge conflicts (if any)
in the source files, and then recompile.

 If your application has a build step, it might be enough to compile the whole proj-
ect with one command, but some build systems may want to compile a file at a time
using a tool like make. In this case, you can either pass the single file to the Compass
compiler or use the Sass command-line compiler, which has a more traditional inter-
face that’s expected by such tools.

 This compiles a single file with the Compass command line:

compass compile my_sass_dir/application.scss

To compile a single file with the Sass command line, you can pass the --compass
option:

sass --compass my_sass_dir/application.scss my_css_dir/application.css

If you don’t understand your team’s build process, don’t be afraid to ask for help get-
ting things set up. Most engineers would rather deal with this one-time setup than an
ongoing risk of merge conflicts in generated files. Teams with complex build and
deployment scripts usually have a staging environment where they practice deploy-
ments and do final testing before a release. Read on to learn some great strategies for
managing more than two environments.

7.3.7 Working with staging servers

Some sites have a staging environment where code that’s about to be put into produc-
tion goes for final testing. Some websites even have three staging environments (edge,
integration, and staging) where they test and integrate features of varying maturity.

 Sometimes it’s sufficient to deploy the same stylesheets into staging as production,
but the staging environment is probably a little different—usually the hostnames are
different, or maybe you don’t use a CDN like in production. In these cases, you’ll need
to adjust your configuration accordingly.

 There are two approaches you can use in this case. The first is to set an environ-
ment variable when you compile:

STAGING=true compass compile --force -e production

Then, in your configuration file, you can use Ruby to inspect this environment vari-
able and vary settings accordingly:

if ENV['STAGING']
relative_urls = true
output_style = :compact

elsif environment == :production
relative_urls = false
output_style = :compact

else #development
relative_urls = true
output_style = :expanded

end

137Summary
If your configuration is significantly different for each environment, then you can also
create different configuration files:

compass compile --force -c staging_config.rb -e production

In order to keep things consistent and DRY, the staging_config.rb file should source
the normal configuration file and then make changes:

eval(File.read("#{File.dirname(__FILE__)}/config.rb"))
relative_urls = true
output_style = :compact

Deployment to a staging server is a great practice for complex sites, and though not
natively supported, you can see why the authors have chosen to use a Ruby file for
configuration: it allows the less-common cases to be supported easily.

 Congratulations on getting your website into staging. Next stop: production! We’re
sure it’ll be a smashing success.

7.4 Summary
In this chapter, we looked at how Compass supports the full lifecycle of your project,
from early rapid prototyping to production-ready deployment. We explored Compass
asset helpers to hide the details of asset serving from your stylesheets, giving you a sin-
gle configuration-driven approach to serving local assets during development while
supporting multiple asset hosts for faster sites in production. You also learned some
tips and tricks for working with Compass in the browser, and how your stylesheets
should be treated in source control. Without knowing it, you’ve already laid a strong
foundation for optimizing and scaling your website’s performance by creating smart,
well-abstracted stylesheets that don’t assume any knowledge about how your assets will
be served. In the next chapter, we’ll take a look at the strategies employed by the busi-
est websites on the internet and how Compass supports them to help you scale the
front end.

High-performance
stylesheets
In the last chapter, you learned how stylesheets, due to their heavy reliance on
external assets, can become a serious maintenance burden. But even worse,
stylesheets can be the source of myriad client-side performance issues and the
dreaded “mixed content” warning.

 But by following the best practices of client-side performance, you may be able
to shave seconds off of your page load times. This can have a significant impact on
your search engine rankings, user engagement, and goal conversion metrics. There
are whole books devoted to this subject, but in this chapter we’ll outline the unique
features of Sass and Compass that enable you to quickly implement many web per-
formance best practices.

This chapter covers
 Stylesheet concatenation

 Stylesheet and asset compression

 Strategies for reducing and parallelizing image
requests

 Selector performance and optimization strategies
138

139Measuring client-side performance
 By far, one of the best resources on the web regarding web page performance tun-
ing is Google’s PageSpeed documentation: http://developers.google.com/speed/
pagespeed/. It’s a must-read for anyone who’s focusing on client-side performance.
Though some of the tactics they suggest are simple enough to perform, many are very
challenging to implement. When “doing it right” in CSS is hard, there’s a good chance
that you’ll accept the trade-off and go with wrong and easy. With Sass and Compass in
your tool chest, “doing it right” is so easy that we hope you’ll take the small amount of
time needed to optimize your stylesheets and do your part to make the web a faster,
better place.

 Optimizing stylesheets basically comes down to reducing how many bytes are trans-
ferred, ensuring they’re maximally cached, and reducing the number of round trips
between the browser and the server. There’s no silver bullet that makes your website
screaming fast, but Sass and Compass are used by some of the biggest sites on the
internet because they provide the tools and a platform for tuning your stylesheets
based on measurements and usage patterns relating to your specific needs.

 But how can you make your website faster without first knowing just how slow it is?
Measuring your client-side performance used to be a chore, but in the last couple of
years it’s become easy to measure load time speeds and identify the critical paths in
your page’s structure.

8.1 Measuring client-side performance
Performance optimization starts and ends with measurement. Before you make your
first performance change, you need to know where you stand. A decade ago such mea-
surements could only be done coarsely and the remedies weren’t always obvious.
Today there are some really great developer tools that can help you diagnose these
issues. If you haven’t used the following tools, you’re missing out on a wealth of infor-
mation about what’s going on when your web page renders:

 YSlow—http://developer.yahoo.com/yslow/
 Google PageSpeed—http://developers.google.com/speed/pagespeed/
 WebPagetest—http://www.webpagetest.org/ (see figure 8.1)

The chart in figure 8.1 is a waterfall diagram from webpagetest.org. It’s a free service
that makes diagnosing performance issues straightforward. It’s not a pretty site, but
the information it provides is stunning. It allows you to see which requests block other
requests and which requests are parallelized. It allows you to compare a cached expe-
rience to an uncached experience, and it breaks down the network time into DNS,
time to first byte (how long the server takes plus round-trip time), and transfer time.

 Now that you know how to measure page performance, you can get started opti-
mizing. The first step along the way is to stop doing unnecessary things that cause
slowness. There’s nothing less necessary than CSS-based imports.

http://developers.google.com/speed/pagespeed/
http://developers.google.com/speed/pagespeed/
http://developer.yahoo.com/yslow/
http://developers.google.com/speed/pagespeed/
http://www.webpagetest.org/

140 CHAPTER 8 High-performance stylesheets
8.2 Avoiding HTTP requests with server-side @import
As you’ve already seen in chapter 3, the @import directive is a helpful tool for organiz-
ing large stylesheets into smaller partials so that styles are easier to find and peruse.
With CSS it’s not uncommon to have a single stylesheet that imports many others:

Figure 8.1 Performance waterfall from webpagetest.org

141Avoiding HTTP requests with server-side @import
@import url("blog.css");
@import url("forum.css");
@import url("article.css");
@import url("header.css");
@import url("footer.css");

This slows down the first page view because it requires users to make several HTTP
requests in order to download the styles for the page (see figure 8.2).

 The waterfall in figure 8.2 shows how browsers handle having a single stylesheet
that imports three others, each of which imports another 10 stylesheets. This is a per-
fectly legitimate structure for a project, but as you see, each level of imports can’t start
until the CSS files are downloaded. Worse still, browsers have a limit on the number of
files that can be downloaded at a time from a single server. The net effect is that
@import in CSS adds unnecessary load time where it matters most: the first page view.
For this reason, CSS best practices dictate concatenating your stylesheets into as few
stylesheets as make sense for your website. This is why Sass provides server-side imports:

@import "blog", "forum", "article", "header", "footer";

Figure 8.2 Performance waterfall from CSS-based @import

142 CHAPTER 8 High-performance stylesheets
This will speed up the first page view because all the styles are downloaded with a sin-
gle request.

 But did you notice the caveat? Different websites and web applications have differ-
ent visitor patterns. If your visitors come back often and some portions of your
stylesheets rarely change, then it may make sense to serve some stylesheets as separate
downloads. This will allow their browser to make better use of its cache when some
stylesheets do change—otherwise, a small change to the stylesheets would require
downloading the entire site’s styles again. Similarly, if your visitors land and look at
only a few pages in an isolated section of your site, then it may not make sense to make
them download the styles for every template.

 A strategy that works for many websites is to organize your CSS files into three lev-
els (as in figure 8.3):

 Core stylesheets—Common styles needed on most every page.
 Section stylesheets—Common styles need by a large section of your application or

website.
 Single-page stylesheets—Styles needed by only one page. These are usually things

like marketing pages where the design is intricate and unique.

Now that you’ve eliminated useless round trips without sacrificing your organizational
structure, you can start focusing on how to reduce the amount of time spent down-
loading assets like stylesheets and images.

8.3 Reducing transfer time with compression
One of the simplest ways to make your site faster is to make the size of the content
you’re sending over the internet smaller. That’s obvious, but the things that you need
to do to accomplish this aren’t so obvious.

application.css

forum.css blog.css articles.css directory.css

index.css

post.css

form
.css

index.css

post.css

form
.css

index.css

com
m

ent.css

adm
in.css

index.css

listening.css

signup.css

1

2

3

Figure 8.3 A common CSS structure

143Reducing transfer time with compression
 If you’re not already doing it, it’s time to start compressing your Sass output.
For most users, this is a simple matter of running the Compass compiler again with
the -e production --force arguments set. The production environment default is
set to use the compressed output format. But you can also accomplish this by setting
the Compass configuration setting output_style to :compressed or by passing -t
compressed to the Sass command-line tool.

 Compressing the text of your stylesheets is a good start. Sass will eliminate com-
ments and superfluous whitespace, and use the smallest representation of colors that
it can. But that’s just the start of what you need to do; gzip compression is a much big-
ger win.

8.3.1 gzip compression

Most modern browsers send a header with their requests, Accept-Encoding: gzip,
which allows the response to be compressed as long as the response includes a header
of Content-Encoding: gzip. Due to the verbose, repetitive nature of CSS, stylesheets
can be compressed to about 10–15% of their original size—a huge reduction! By com-
parison, JavaScript files generally compress down to around 25% of their original size.

 As a rule, one of the best things you can do for front-end performance is to make
the over-the-wire size of your assets as small as possible. Compressing your textual
assets using gzip and optimizing your images for the web are musts for any site that’s
focused on client-side performance.

 Most web servers have a setting or plugin to enable on-the-fly compression. In
many cases, the time spent compressing is more than covered by the time savings
when transferring the content across the internet.

 It’s also possible to precompress your stylesheets and serve different files based on
the request headers. The details of how to set this up are web server–specific, but if
you need to do this, Compass provides a simple way to automatically generate a com-
pressed stylesheet. You can register a callback with Compass and it’ll run your code
each time a new stylesheet is saved. Simply add the following code to your Compass
configuration file:

on_stylesheet_save do |filename|
run the gzip tool on the file
generates a file of the same name
plus a .gz at the end.
`gzip -f #{file}`

end

We encourage you to investigate how to enable gzip compression for your site. It’ll
take a little time, but it’ll be well worth it for your users.

 Unfortunately, stylesheets are only one small part of the amount of content you
need to compress. Often, images are where the biggest improvements can be made.

144 CHAPTER 8 High-performance stylesheets
8.3.2 Image compression

This section doesn’t have anything to do with Sass or Compass, but we’d feel terrible if
we didn’t share with you some of the basics of image compression.

 The first thing to know about images is that most formats have compression built
in. As general rule of thumb, you should use the image format that’s most appropriate
for the content to achieve maximum compression. This means that you should gener-
ally use the following:

 GIF for small files with a small number of colors
 JPG for photographic images with a quality setting at the lowest value that

doesn’t cause obvious degradation in picture quality
 PNG for everything else

PNG is a complex format that can handle a range of image types. Be sure to remove
the alpha layer unless you need transparency. We highly recommend that you install
the free tool Pngcrush and run it on all your PNG images. You can download Pngcrush
from http://pmt.sourceforge.net/pngcrush/.

 Now that you’ve made your assets as small as possible, you can turn your attention
to how these assets are loaded. For instance, did you realize that browsers limit the
number of consecutive downloads from a web server? If you’re running a load-
balanced website, this should seem conservative to you—certainly you can handle
more simultaneous connections than that. And you can, with a little trickery called
asset hosts.

8.4 Speeding up page loads with asset hosts
HTTP/1.1 specifies that web browsers should play nice by limiting the number of
simultaneous downloads from a single domain per page request. But load-balanced
sites running many web servers can happily handle this burst of traffic, so you have to
trick the web browser into being mean to you. A common strategy for this is to register
several domains (or subdomains) that all resolve to the same place. The web browser
will then download many more assets in parallel, resulting in a faster page load for
your users.

 For example, a site named example.com might set up img-1.example.com,
img-2.example.com, img-3.example.com, and img-4.example.com. Each of these DNS
names would actually be what’s called a CNAME record, which means they’re an alias to
www.example.com.

 Beyond the benefits of parallelization, it’s also important to set up your assets hosts
to use a cookieless domain—a domain that doesn’t share cookies with your site. This will
result in fewer bytes being sent to your web server with each image request. It’s not a
huge deal, but if you’re going through the effort to set up new domains, it’s a small
but important savings that you can get basically for free. For more information on
cookieless domains, see Google’s PageSpeed documentation: http://developers
.google.com/speed/docs/best-practices/request/.

http://pmt.sourceforge.net/pngcrush/
http://developers.google.com/speed/docs/best-practices/request/
http://developers.google.com/speed/docs/best-practices/request/

145Speeding up page loads with asset hosts
 Then the links to images, stylesheets, and JavaScripts are distributed evenly across
the available asset hosts. When doing this, it’s important that the same assets are
always accessed via the same asset host; otherwise the assets might be downloaded sev-
eral times. Clearly, this solution is only feasible if you have a framework at your dis-
posal to take the busy work and human error out of the equation. Well, you’re in luck!
Compass makes using asset hosts super easy!

8.4.1 Generating URLs with asset hosts

By default, asset hosts are disabled in your Compass project, but you can enable them
by teaching Compass how to distribute your assets across your asset hosts. For exam-
ple, to distribute across four subdomains, you need to add a bit of Ruby code to your
Compass configuration:

asset_host do |asset|
host_number = (asset.hash % 4) + 1
"http://img-#{host_number}.example.com"

end

Let’s explain what’s going on here. As you learned in the previous chapter, you should
be authoring all your assets’ references using Compass’s asset URL helpers. If you’re
already following this best practice, then you’re good to go with asset hosts. You still
write this:

#logo {
background-image: image-url("logo-small.png")

}

The asset_host function you’ve defined in your configuration takes an argument of
asset, which will be the fully resolved absolute HTTP path to the asset. Depending on
your other configuration settings, this will be something like /images/logo-

small.png. The job of the asset_host function is to return the protocol and host-
name for the asset’s generated URL.

 Though you’re free to implement whatever logic suits your needs, the preceding
example will usually suffice. First, the asset.hash gives you a number that fairly
uniquely represents the asset string. Then, the modulo operator (%) returns the
remainder after dividing by 4, which is an integer between 0 and 3 inclusive. Last, it’s
incremented by 1 to give a 1-based count. In the second line, the host_number is
inserted into a string to construct the appropriate return value. The last value of the
function is what is returned—no explicit return is needed here.

 Compass then joins this asset host value with the path that was passed in and any
cache buster to generate the full URL:

#logo {
background-image:

url('http://img-3.example.com/images/logo-small.png?1298578273');
}

Using asset hosts can shave significant time off of your client-side rendering. It’s such
a simple thing to do, there’s no excuse for not doing it.

146 CHAPTER 8 High-performance stylesheets
8.4.2 Avoiding mixed content warnings with domain-based assets

If your site supports SSL access and you’d like to use asset hosts, it’s important to make
sure that your users don’t receive warnings about insecure assets from their browser.
The best way to handle this is to use protocol-relative URLs:

#logo {
background-image:

url('//assets3.example.com/images/logo-small.png?1298578273');
}

You’re probably thinking, Where’s the http: at? It’s not needed. When a protocol-relative
URL is encountered, the browser will use the same protocol that was used to serve the
original request (the request for the stylesheet, in this case). Protocol-relative URLs
are supported in every major browser—even IE6. To configure Compass to use a
protocol-relative URL with asset hosts, you can do something like this:

asset_host do |asset|
host_number = (asset.hash % 4) + 1
"//img-#{host_number}.example.com"

end

While we’re on the subject, a word of caution if you decide to use protocol-relative
URLs in your HTML markup. There’s a bug in Internet Explorer 6 and 7 that causes a
protocol-relative stylesheet <link> to be downloaded twice.

IE 6 and 7 also botch another kind of URL called a data URI. But that doesn’t mean
you can’t give the performance benefits to those users with a decent browser. Sass and
Compass make inline data URIs a breeze.

8.5 Inline data URIs
As fantastic as CSS3 is for allowing you to create nice effects without needing images,
you still rely on images to spice up the design and call attention to the important
aspects. When you’re developing locally, it’s easy to forget that each image doesn’t
load instantly. Whereas on desktops, low-latency broadband connections are increas-
ingly common, the growing user base of international visitors and mobile devices is
more like a throwback to the era of dial-up connections: low bandwidth and high-
latency round-trip times are on the rise again.

 Imagine if you served images embedded within your stylesheets. You could avoid
the corresponding costs of an HTTP round trip. Fortunately, this is already possible
using a mechanism called a data URI, shown in figure 8.4.



Protocol MIME
type

Encoding Payload

Figure 8.4 Data URI breakdown

147Inline data URIs
The URI shown in figure 8.4 represents a 2 x 2 pixel solid black image. The 35 bytes
in the original image have been transformed into a 70-byte data URI using base-64
encoding. If you were to type it into your browser’s URL bar, a tiny image would be
displayed.

 With CSS, you might use a web service that lets you upload an image and have it
spit out the corresponding data URI, and then repeat this process for each image that
you need to embed, but this would be both laborious and difficult to maintain. With
Compass, embedding images and other assets is a piece of cake:

.icon { background: inline-image("black-dot.png"); }

Compass knows the MIME type of the most-common image formats based on the
image extension, but if it doesn’t recognize the extension and the extension isn’t the
same as the second part of the MIME type, you can provide the MIME type explicitly:

.icon {
background: inline-image("black-dot.bitmap", "image/bmp");

}

Given how easy Compass makes it to embed images and the benefits of avoiding all
those extra round trips, why not do this all the time? It turns out there are a few reasons:

 Bloat—The base-64 encoding algorithm isn’t as efficient as normal binary
encoding. Binary data becomes about 20% larger when base-64 encoded. Even
when compressing your stylesheets, if you have large amounts of inline data, the
costs of encoding overhead outweigh the gains in HTTP overhead and latency.
As a rule of thumb, you should be wary of embedding data that’s more than 1 KB.

 Caching—Even though it may be faster, inlining images can cause your CSS file
to get very large. Some user agents might decide to not cache a file that’s too
large. For example, the iPhone won’t cache any single CSS file larger than 25
KB. Additionally, changing an inlined image will cause the entire stylesheet to
change—whereas if each image was a separate request, only the image that
changed would need to be requested again.

 Browser support—IE6 and IE7 don’t support data URIs, and IE8 limits their length
to 32 KB. To work around this, you can use hacks to support legacy browsers
with a fallback image:
background-image: inline-url("logo.gif");
*background-image: image-url("logo.gif");

If you do this, those users will pay a performance penalty by downloading the image
twice. If your browser support requirements include these legacy browsers, you might
consider sending your data URIs in a separate stylesheet that’s conditionally linked.

 If inline images don’t appear to be a good fit for your needs, another great strategy
for speeding up image loading is to use sprites, as discussed in chapter 6.

 So far, we’ve looked at ways to improve performance by shipping smaller files and
requiring fewer HTTP requests. Next, we’ll tackle the browser-rendering side of things
and learn how to optimize Sass for better selector performance.

148 CHAPTER 8 High-performance stylesheets
8.6 Selector performance
It’s easy to see how a JavaScript file can slow down a page. Just make an infinite loop
and you’ll see your browser come to a screeching halt. CSS selectors have no loops and
are very fast compared to JavaScript, so it’s harder to see how a stylesheet impacts a
web page’s load time and general responsiveness. Beyond the time taken to transfer
and parse your stylesheets, the number and structure of your selectors can have a
small but measurable impact on the speed of your page. For a large website, this
impact might measure a couple hundred milliseconds, and when this becomes your
worst performance issue, your website is in a good place.

 Most performance issues follow the Pareto principle: you get about 80% of the
speedup with 20% of the work. Optimizing your selectors is a step you should take
only after you’ve already gotten past the easy part. You can spend weeks of work and
only save 100ms. For some sites, it makes sense to go through this effort, but if you do
so, consider rolling it out with some kind of redesign or larger template reorganiza-
tion to make it more cost effective.

 You shouldn’t even think about this aspect of performance until you’ve focused
first on your web page load order, server response time, and network transfer costs.

8.6.1 It all adds up

Selectors are fast. Really fast. But when you get into thousands of selectors, the time
spent calculating the cascade and inheritance of selectors and resolving properties
for an element in a document can add up—especially if the document itself has many
elements.

 The selector performance battle is fought on two fronts: pruning and matching. In
the pruning phase, the browser excludes all the selectors that it can say quickly and
definitively won’t match a particular element. At a minimum, the browser looks at the
key selector (usually the rightmost selector component) to decide whether the selec-
tor can be pruned. Recently, browsers have started to introduce new pruning heuris-
tics like ID scoping.

 In the matching phase, the browser checks each selector that couldn’t be pruned
to see whether the entire selector matches the element’s document context. This
might mean looking up the document hierarchy in the case of descendant and child
selectors or looking at sibling elements.

 In general, a good approach with selectors is to keep the complexity of a selector
low by keeping the number of HTML elements that have to be considered in order to
decide whether the selector matches to a minimum.

8.6.2 The danger of over-nesting

Sass makes it easy to make slow selectors—and lots of them. Ugh. Now we tell you! All
these lovely, presentation-free stylesheets that are possible with Sass are slowing down
your page.

149Selector performance
 Sometimes Sass files that are compact and immensely readable can become behe-
moth CSS files, so it’s important to keep the size and complexity of your generated CSS
in mind when writing in Sass. In particular, there’s a tendency for new users of Sass to
begin to replicate their HTML structure using nested selectors. There’s a certain purity
to this approach. Ultimately, you end up in a world that’s harder to maintain than
inline styles—the smallest change in markup can break your design. What’s more,
since the default combinator when nesting is the descendant combinator (a.k.a.
a space) and the key selector is usually an element selector, this means that your cod-
ing style is generating the most inefficient form of selectors that you can write.

 To help you identify stylesheets that have become unsuspectingly bloated, Com-
pass provides the stats command. To use the stats command, you must first install a
Ruby gem called css_parser:

$ gem install css_parser

Then you can run the Compass stats command:

$ compass stats

You’ll see all kinds of useful information about your Sass files. Here’s the output from
running compass stats on the Compass website’s stylesheets. (Note: Some columns
aren’t shown here for formatting reasons.)

| ------------------------- | ----- | --------- | ---------- | ------ |
| Filename | Sass | CSS | CSS | CSS |
	Size	Selectors	Properties	Size
home.scss	387	510	1579	41879
ie.scss	114	3	4	306
screen.scss	595	932	2846	68575
core/_base.sass	2052	--	--	--
core/_clearing.sass	382	--	--	--
core/_extensions.scss	192	--	--	--
partials/_ads.scss	666	--	--	--
partials/_blog.scss	84	--	--	--
partials/_code.scss	4100	--	--	--
partials/_example.scss	483	--	--	--
partials/_home.scss	2508	--	--	--
partials/_install.scss	603	--	--	--
partials/_layout.scss	683	--	--	--
partials/_main.scss	1840	--	--	--
partials/_nav.scss	2085	--	--	--
partials/_sidebar.scss	550	--	--	--
partials/_theme.scss	9667	--	--	--
partials/_typography.scss	1824	--	--	--
-------------------------	-----	---------	----------	------
Total (18 files):	28815	1445	4429	110760
-------------------------	-----	---------	----------	-------

As you can see, this makes it easy to see how many selectors are getting generated and
how big the files are. The generated CSS files here are almost four times bigger than

150 CHAPTER 8 High-performance stylesheets
the source files. It’s great that Sass and Compass do so much for you, but it’s impor-
tant to remember to wield their power responsibly.

8.7 Summary
One of the amazing things about working on the web is how many small ways there
are to optimize just about anything that needs optimizing. Unfortunately, many of
these approaches would take more effort than they’re worth without a framework in
place to help get the work done quickly. As you’ve seen, Compass has a broad array of
tools to help you scale your website from thousands to millions of visitors.

 As you’ve learned, there are dozens of things that you, the stylesheet author, can
do to make your site much faster. Performance isn’t just a server-side issue—quite the
contrary, for many sites, client-side performance can end up being one of the hardest
parts to optimize. Aren’t you glad you have Sass and Compass to help you?

 In the next chapter, you’ll learn advanced Sass techniques for writing smarter,
more powerful stylesheets. We’ll look at how to write better, more flexible mixins, how
to manipulate color and perform advanced math, and how to write your own Sass
functions.

Part 4

Advanced Sass and Compass

In the first three sections, you’ve learned the basics of Sass and Compass and
how they fit into your stylesheet authoring workflow. In this section, we explore
some advanced features of Sass and Compass. In chapter 9, we start off looking
at how Sass handles data types and expressions, allowing you to add strings and
values, with intelligent unit conversions. We’ll walk you through the many pow-
erful functions for working with numbers, lists, and colors. You’ll see how Sass
can easily manipulate colors, giving you the ability to do dynamic theming right
in your stylesheets. You’ll also learn how to write your own Sass functions. Finally,
we look at how to write loops with @for, @while, and @each and how to do condi-
tional styling with @if and @else directives.

 In chapter 10, we build on all you’ve learned so far to create a Compass
extension. First, we discuss the various methods of sharing stylesheets and front-
end code, their shortcomings, and how Sass and Compass make it easier for you
to share great reusable stylesheets. You’ll learn how to write an extension in its
most basic form, followed by a thorough walk-through of the process for creat-
ing an advanced extension for styling beautiful CSS3 buttons. As you write and
refactor your extension, we discuss design decisions and best practices for writ-
ing extension stylesheets. We discuss different ways to release your extension,
and you’ll learn how to easily create a Ruby gem to help you distribute your
extension. Finally, we take a brief look at how to share and manage an open
source project on GitHub.

 When you’ve completed this book, you’ll have a thorough understanding of
how to use Sass and Compass to write smarter and more maintainable stylesheets.
You’ll be equipped to approach web design problems with a powerful set of new

tools and a fresh perspective. You’ll also know how to more easily participate in the
design community by sharing your ideas and discoveries through open source. The
tedium of writing stylesheets will be behind you, as new and exciting challenges await.

Scripting with Sass
In the last chapter. we looked at how to optimize your stylesheets to get the best
performance out of the browser. In this chapter, you’ll learn how to optimize Sass
for readability and maintainability, and how to write smarter stylesheets that go way
beyond the limitations of CSS.

 You’ve already learned about the many benefits Sass adds on top of plain CSS.
Variables, nested rules, and mixins all help to make CSS less repetitive. Mixins in
particular are a good way to refactor repeated styles and patterns in a stylesheet and
make them reusable.

 But variables and mixins on their own can only go so far toward expressing pat-
terns that you use in your stylesheets. Sometimes you want to avoid doing width

This chapter covers
■ Manipulating CSS values that Sass understands
■ Using built-in Sass functions for advanced math

and color themes
■ Defining your own functions to avoid repetitive

calculations
■ Using control directives to create advanced,

reusable mixins
153

154 CHAPTER 9 Scripting with Sass
calculations over and over, or you want a mixin to have slightly different styles under
different conditions. For this, you need Sass’s more advanced scripting features, which
we’ll introduce in this chapter.

 The core of advanced Sass use is the ability to manipulate CSS values (the sort that
appear as property values). Sass supports all the arithmetic for numbers that you
learned when you were seven: they can be added, subtracted, multiplied, and divided.
It even understands units, so 5px + 10px = 15px.

 Sass also understands all the other standard CSS data types like colors, names (like
bold or center), and lists (like 1px solid black or font, font, font). It also has a
data type of its own for representing true and false; this is used for making decisions
about which styles to use.

 Other than arithmetic, which is mostly used with numbers, the main way CSS val-
ues are manipulated in Sass is with functions. In addition to built-in CSS functions like
rgb or hsl, Sass adds a whole slew of its own functions that do all sorts of useful things.
Many of these are useful primarily in the context of complex scripting, but some are
useful in isolation as well, especially the functions that manipulate colors. These are
powerful enough to allow an entire theme’s worth of colors to be generated from one
or two base colors.

 Sass also allows CSS values and Sass variables to be used outside of properties. They
can be included in selectors and property names using a special syntax. This is useful
for passing selectors or property names as parameters to a mixin.

 The most advanced use of CSS values is in control structures. Control structures
allow you to control whether styles are actually used and to produce many variations
of one style without using mixins. They’ll likely be familiar if you’ve used JavaScript or
another programming language, but if you haven’t, don’t fret; despite being
advanced, they’re very straightforward.

9.1 Using expressions
Expressions are the most common way to manipulate CSS values in Sass. What’s an
expression? It’s anything that can show up to the right of a property. In plain CSS, this
is usually a simple value like bold or 5px, or a list of values like 1px solid black. In
Sass, it can include not only variables, but mathematical operators, which we’ll cover
in this chapter.

 Although all types of values can be used in expressions, they’re most useful with
numbers. Numeric expressions work just like the arithmetic you’re used to: you can
add, subtract, multiply, and divide, using the +, -, *, and / characters. The order of
operations is the same, too: * and / happen before + and -, and expressions in paren-
theses happen first. In the following styles, we use multiplication and subtraction to
create a simple grid system.

155Understanding data types

$grid-cells: 20;
$cell-width: 25px;
#main {

$main-width: $grid-cells * $cell-width;
$main-padding: 10px;
width: $main-width;
padding: $main-padding;
.sidebar {width: ($main-width - $main-padding*2)/4}

}

Expressions can occur anywhere in a property or variable value; they don’t have to take
up the entire thing. This is useful for combined properties, like border or background,
that take multiple values separated by spaces. Take the following property, for example:

border: ($something - $something-else) solid blue

Since $something - $something-else is 5px, the property becomes 5px solid blue.
The parentheses aren’t required, but they make it easier to read.

 Now that you’ve seen how expressions work, let’s go over the data types CSS and
Sass use and look at what they can do in Sass expressions.

9.2 Understanding data types
Every value in a CSS property or a Sass variable has a type, and, depending on this
type, it works in different ways. Values like #abcdef or violet represent colors and are
used to color things like text, backgrounds, and borders. Values like 100% or 5px rep-
resent numbers and are used to set widths, margins, and padding. Values like center
or auto can represent a lot of different things, usually a choice among alternatives or
a special value.

 Sass understands all these types and more besides, and uses this understanding to
allow them to be manipulated in expressions. The way they’re manipulated differs from
type to type, but all of them support the arithmetic operators (+, -, *, and /) to some
degree. In this section, we’ll examine each type and how it uses the operators in depth.

9.2.1 Strings and names

Strings are the most common data type in CSS. They’re so called because they’re just
strings of letters. Anything that’s just a name—bold, auto, center, and so on—is a
string, as is anything with quotes around it, like "Helvetica Neue". The former is an
unquoted string, whereas the latter is a quoted string.

 The main difference between quoted and unquoted strings, other than the quotes
themselves, relates to which characters are allowed as part of the string. Quoted
strings can contain any character other than ", whereas unquoted strings can’t begin
with numbers or special characters, and can’t contain spaces and some special charac-
ters like * or &.1

Listing 9.1 Using Sass expressions

1 There are exceptions to this rule, but they’re part of CSS and outside the scope of this book.

156 CHAPTER 9 Scripting with Sass
 There are also a few special constructs that Sass considers strings. The most
straightforward is !important, which would not normally count as an unquoted string
(because it begins with !), but Sass counts it as one anyway. url() values are also con-
sidered to be unquoted strings, even though (,), and special characters commonly
found in URLs aren’t normally allowed. But url($variable) is not considered to be a
string; it instead wraps the contents of $variable in url().

 The Internet Explorer–specific filter values are also considered to be strings,
because they’re technically invalid syntax according to the CSS spec (which is what
Sass’s parser follows). Thus, progid:DXImageTransform.Microsoft.gradient

(startColorstr=#550000FF, endColorstr=#55FFFF00) is considered to be one big
unquoted string. Similarly, the CSS3 calc() function is currently considered to be a
string as well.

 The most common operation on strings is +. When adding a string to any other
value, string or not, the two values get joined together as a new string (see table 9.1).
If the string was quoted, the result is quoted; otherwise, it won’t be. If both values are
strings, and one is quoted and the other isn’t, then the resulting string will have the
same quotation as the string on the left.

Most other operations are unsupported for strings. For historical reasons, - and /
actually join the strings together like +, except that the operators themselves are
included in the result (see table 9.2).

Like strings, numbers are a common data type in CSS and Sass.

Table 9.1 Using the + operator with strings

 Expression Result

foo + 1 foo1

"foo" + 1 "foo1"

foo + bar foobar

"foo" + "bar" "foobar"

"foo" + bar "foobar"

foo + "bar" foobar

Table 9.2 The - and / operators working like + on strings

 Expression Result

foo - bar foo-bar

foo / bar foo/bar

157Understanding data types
9.2.2 Numbers

In Sass, as in CSS, a number has two parts: the actual numeric value and (optionally)
the unit. Commonly used units include px, em, and %.

 Since Sass understands numbers with units, all the operations work with units as
well. This follows the rules for handling units in science: when multiplying and dividing
numbers with units, the units are multiplied and divided along with the numeric values.

 This means that 5em * 4px is 20em*px, whereas 99px/1in is 99px/in.2

 This unit arithmetic is useful for doing conversions between units. For example, if
you set $pixels-per-em: 16px/1em, then you can calculate the pixels for 5em by
doing 5em * $pixels-per-em. The result is 80px*em/em; both ems cancel out, and you
get 80px. Sass handles all this automatically.

 When adding or subtracting, there’s not always an appropriate unit for the result.
For instance, 5px + 10% doesn’t make sense, since Sass doesn’t know how to convert
between pixels and percentages.3 In these circumstances, Sass will throw an error. But
if Sass knows how to convert between the units (such as in and cm), it will.

 Most of the operations that can be done on numbers are just the familiar grade-
school arithmetic operations that we’ve already talked about. There’s one additional
(slightly more complicated) operation for numbers: modulo. Modulo, written as %,
gives the remainder of division of two numbers. So $num1 % $num2 is the remainder of
$num1 / $num2. This operator is infrequently useful.

 There’s one complexity that arises when using / with numbers. CSS allows certain
values to be separated by a forward slash (/), which in that case doesn’t mean division.
This is rarely used in practice, but since Sass expressions are a superset of CSS, they
need to support this syntax without actually dividing the numbers.

 The way Sass handles this is to use a few simple rules to determine whether to
divide or to use a plain / (forward slash). If either value is a string, the result will use a
plain forward slash. Otherwise, Sass will divide if and only if any of the following three
conditions are met:

■ Either side of the / uses a variable.
■ The entire value is surrounded by parentheses.
■ The value is used as part of another arithmetic expression.

For example, in the following expression, division isn’t performed:

1px/2px => 1px/2px

But in these three, it is:

$var: 1px; $var/2px => 0.5px
(1px/2px) => 0.5px
1 + (1px/2px) => 1.5px

2 Note that the px*em and px/in notation isn’t valid Sass syntax; in order to get these values, you must multiply
and divide by numbers.

3 The CSS3 calc() function, which Sass supports, can do this, but only because it’s calculated by the browser,
which knows how everything is laid out.

158 CHAPTER 9 Scripting with Sass
Although numbers are used more often, colors are one of the most interesting of
Sass’s data types.

9.2.3 Colors

Colors in CSS can be written in a number of different ways. The most common is using
the hexadecimal representation of the RGB channels: #abcdef represents 171 red, 205
green, and 239 blue. You can also represent the same information using a function:
rgb(171, 205, 239). Then there are named colors like blue and violet, which are
more descriptive but limited in selection. The hsl() function works similarly to
rgb(), but with more useful dials to turn. Finally, rgba() and hsla() work like rgb()
and hsl(), respectively, but also allow an alpha transparency value for the color to be
specified. Sass understands all of these forms.

 Internally, Sass keeps track of both the RGB and HSL values for a color, regardless
of what form it was originally written in. This is useful for the color manipulation func-
tions that we’ll cover in section 9.3.2, many of which operate on the HSL properties of
a color.

 Colors used to support +, -, *, and / with numbers and other colors. But the way
these operations worked was neither straightforward nor very useful, so they were dep-
recated in favor of the color functions we’ll discuss in section 9.3.2.

 The next data type we’ll address is lists. Although lists, like colors, pop up a lot in
CSS and Sass, you may not be used to thinking of them as their own entities. They’re
useful in cleaning up repetitive styles.

9.2.4 Lists

Lists are the sequences of values that are used for compound properties like border or
background. For example, 1px solid black is a list of three values that you might use
for the border property. Values in lists can be separated by either spaces, as in this
example, or commas, as in font, font, font.

 Precisely speaking, lists in Sass must contain more than one item. But individual
values count as lists containing a single item for everything that cares about lists,
including list functions and control directives like @each, which we’ll cover later in
this chapter.

 Although in CSS lists can only contain individual values, in Sass lists can contain
other lists as well. The clearest way this is done is by including space-separated lists
within comma-separated lists. For example, the list foo bar, baz bang, bip bap con-
tains three elements: foo bar, baz bang, and bip bap. Each of these in turn is a list
containing two elements: the individual words.

 Lists can be nested within other lists of the same type using parentheses as well, as
in (foo bar) (baz bang) (bip bop) and (foo, bar), (baz, bang), (bip, bop), which
are both lists of three two-element lists. When lists containing lists are converted to
CSS, the parentheses are removed in order to make them valid CSS syntax.

159Understanding data types
 Arithmetic operations don’t do anything particularly useful for lists; they’re
allowed, but the lists are simply converted to unquoted strings, and then the corre-
sponding string operation is used.

 The real usefulness of lists is twofold. One use is for making code more concise
with the @each directive, covered in section 9.5.2. The other use is as a way to pass
more-complex arguments to mixins, which can then be accessed using Sass functions,
covered in section 9.3.3.

 The final data type in Sass is one that’s not from CSS, but was added to allow mixins
to use logic and make choices.

9.2.5 Booleans

Booleans, named after logician George Boole, represent truth values. There are only
two of them: true and false. They’re used (along with @if, which we’ll cover in sec-
tion 9.5.3) for making decisions in Sass about which styles to use.

 Booleans don’t use arithmetic operators. Instead, they have their own: and, or and
not. These operators are straightforward: $bool1 and $bool2 is true if both $bool1
and $bool2 are true, whereas $bool1 or $bool2 is true if either one of $bool1 and
$bool2 is true. not only operates on one value: not $bool is true if $bool is false,
and false if $bool is true.

 In fact, and, or, and not can be used with any value, although they’re most useful
with Booleans. Numbers, colors, strings, and lists all count as true for the purpose of
and, or, and not. When using non-Boolean values, the result of and and or will be non-
Boolean as well: $val1 and $val2 will return $val2 unless $val1 is false, whereas
$val1 or $val2 will return $val2 only if $val1 is false.

 There are also operators that work
on other types but return Booleans, as
in table 9.3.

 The less-than and greater-than oper-
ators only apply to numbers, whereas
the == operator applies to all types.4 All
of these operators return Booleans.

 For many data types, operators don’t
do nearly enough to allow the user to
make full use of those types. Because of
this, Sass exposes much of its scripting
functionality through functions.

4 Recall that Sass knows the RGB and HSL values for all colors, so blue, #0000ff, and hsl(240, 100, 50) all
count as the same color for the purposes of ==.

Table 9.3 Operators that return Boolean values

 Operator Meaning

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

160 CHAPTER 9 Scripting with Sass
9.3 Functions
Sass functions perform special operations on one or more values (called arguments).
They use the familiar syntax of CSS functions like rgb() or hsl(), but they’re evalu-
ated as part of Sass expressions and they return Sass values.

 Unlike CSS functions, Sass functions can have keyword arguments. This means that
instead of using the order of arguments to a function to figure out which argument is
which, some or all of the arguments can be explicitly named. The syntax for this is
$name: value; the names of the arguments are listed along with the functions. This is
especially useful for functions with many arguments, so you don’t need to remember
which goes where:

rgb($green: 127, $blue: 127, $red: 255)

One important aspect of Sass’s design philosophy is that it’s not possible to always
have up-to-date information about which browsers support what, so it’s better not to
try. Thus, if you use a function that Sass doesn’t recognize, it’ll assume it’s meant to be
a plain CSS function and pass it through unchanged (except for evaluating the argu-
ments). This can be annoying if you’ve made a typo in the function name, so it’s
important to keep it in mind.

 Most of Sass’s built-in functions are designed to be widely useful in many different
circumstances. But they can’t account for everything that anyone might want to do to
a color or a set of numbers. Thus, Sass allows users to define their own functions in a
manner similar to defining mixins. User-defined functions will be covered at the end
of this section.

 A substantial number of Sass’s functions are designed to make it easier to define
your own functions and mixins. Many of Sass’s number functions aren’t terribly useful
in day-to-day design, but are good to have around when writing, say, a function to fig-
ure out grid width. Similarly, there’s a collection of functions that provides informa-
tion about values so that functions and mixins can make decisions based on that.

 In this section, we’ll go over the most commonly used built-in Sass functions, and
then wrap up by discussing how to write your own. We’ll begin by looking at the num-
ber functions. Then we’ll move on to the color functions, before examining the list
functions and finally concluding with a brief overview of the miscellaneous functions
that don’t fall into any of the other categories.

9.3.1 Number functions

Sass has a few functions that make it easier to deal with numbers, especially in situa-
tions that come up frequently when writing stylesheets with Sass. Currently there
aren’t any functions for relatively complex mathematical operations like exponentia-
tion, logarithms, or trigonometry, since these are almost never useful for stylesheets. If
they are necessary, they can be easily added through the Ruby extension API. Table 9.4
lists the functions we’ll discuss.

161Functions

Three of the Sass number functions have to do with rounding numbers to whole num-
bers. Unlike some programming languages, in Sass when you divide two numbers, the
result is a decimal rather than always being a whole number. This is usually the desired
result, but sometimes you do want a whole number. The rounding functions are for
that. ceil($number) (for ceiling) rounds up, floor($number) rounds down, and
round($number) rounds to the nearest whole number.

 Similar to the rounding functions is abs($number), which returns the absolute
value of a number. If $number is positive, abs returns it unchanged; if it’s negative, abs
returns the positive version of $number

percentage($number) is a different sort of function. It takes a decimal number
(like 0.6, 0.33, or 1.3) and turns it into a percentage. So 0.6 becomes 60%, 0.33
becomes 33%, and 1.3 becomes 130%. This is the same as $number * 100%, but some-
what easier to read.

 There are also a couple of number functions that provide information about one
or more numbers. unit($number) returns the unit of the number as a string; this can
be useful for printing error messages when the unit for a mixin argument is incorrect.
unitless($number) returns true if a number has no units and false otherwise.
comparable($number-1, $number-2) returns whether two numbers can be added and
compared, based on the units. For example, comparable(13in, 5cm) is true since
inches and centimeters can be converted back and forth, but comparable(5px, 10%)
is false because pixels and percentages aren’t measured on the same scale.

 Whereas Sass’s number functions are, by and large, normal mathematical opera-
tions, the functions Sass provides for dealing with colors are much richer and more
interesting.

Table 9.4 Functions for working with numbers

 Function Description

abs($number) Takes the absolute value of $number

ceil($number) Rounds $number up

comparable($number-1, $number-2) Returns whether $number-1 and $number-2
can be compared

floor($number) Rounds $number down

percentage($number) Converts a decimal $number to a percentage

round($number) Rounds $number to the nearest whole number

unit($number) Returns the unit of $number

unitless($number) Returns whether $number has no unit

162 CHAPTER 9 Scripting with Sass
9.3.2 Color functions

The Sass color functions can be roughly divided into two categories: functions that
return information about colors, and functions that transform old colors into new
ones. Table 9.5 lists all these functions and divides them into informative and transfor-
mative categories.

You learned in section 9.2.3 that all Sass colors know their RGB and their HSL values,
regardless of how they were created. The information functions give you direct access
to the individual components of these values: the red, green, blue, hue, saturation, or
lightness of a function, as well as the alpha channel (which is 1, indicating a completely
opaque color, unless the color was created with rgba(), hsla(), or certain Sass func-
tions). These functions are named after the component they return: red($color),
green($color), blue($color), hue($color), saturation($color), lightness($color),
and alpha($color) (also known as opacity($color)).

Table 9.5 Functions for working with colors

 Function Type Description

alpha($color) /
opacity($color)

Informative Returns the alpha channel of $color

blue($color) Informative Returns the blue channel of $color

green($color) Informative Returns the green channel of $color

hue($color) Informative Returns the hue property of $color

lightness($color) Informative Returns the lightness property of $color

red($color) Informative Returns the red channel of $color

saturation($color) Informative Returns the saturation property of $color

adjust($color, ...) Transformative Adjusts properties of $color by fixed
amounts

complement($color) Transformative Returns the color wheel complement of
$color

grayscale($color) Transformative Returns a grayscale version of $color

invert($color) Transformative Returns the negative version of $color

mix($color-1, $color-2,
[$weight])

Transformative Returns $color-1 and $color-2 mixed
together, weighted by $weight

scale($color, ...) Transformative Scales properties of $color by percent-
ages

set($color, ...) Transformative Sets properties of $color to fixed values

163Functions
 Each of these functions returns the component in the same form as would be
passed to either the rgb() or hsl() functions. Thus, red(), green(), and blue()
return numbers from 0 to 255; hue() returns a number from 0deg to 359deg;5

saturation() and lightness() return numbers from 0% to 100%; and alpha()
returns a number from 0.0 to 1.0.

 The transformation functions are more widely used than the information func-
tions, since they make it easy to make nice-looking color themes quickly. Two of the
most useful ones are adjust($color) and scale($color). Both of these take a color
as the first argument, followed by a set of keyword arguments that describe how to
transform specific components of that color. Both functions take a keyword argument
for each component (such as $red, $saturation, $alpha), but what they do with
these arguments differs.

adjust($color, ...) increases or decreases the value of the component or com-
ponents by the amounts given. Thus, adjust($color, $red: 20, $alpha: -0.5)
increases the red component of $color by 20 and decreases the opacity by 0.5. Simi-
larly, adjust($color, $lightness: 15%, $hue: 10deg) increases the lightness by 15%
(the new lightness is the old lightness plus 15%) and the hue by 10 degrees.6

scale($color, ...) is similar, but it takes percentages for all components. Rather
than increasing or decreasing the components by a set amount, it scales them fluidly
by the percent given. Thus, scale($color, $lightness: 30%) will make $color 30%
lighter (30% closer to pure white) regardless of what the lightness already is. This can
be better than adjust() for colors that are light to begin with: if a color already had
80% lightness, adjust() would make it pure white (100% lightness) whereas scale()
would only make it 86% lightness. Like adjust(), scale() can have as many keywords
as you want as long as it doesn’t have both RGB and HSL components specified.
scale() also doesn’t support $hue, since the color wheel is a circle and so scaling it
doesn’t make a lot of sense.

 Another useful color function is mix($color-1, $color-2, [$weight]).7 This
mixes two colors together by taking the average of their components. In addition, you
can optionally choose how much one color or the other affects the mix using the
$weight argument. The closer $weight is to 100%, the more $color-1 is used; the
closer it is to 0%, the more $color-2 is used. The mixing is also affected by how
opaque the colors are; a more opaque color will have a greater effect on the resulting
color.

 The set($color) function works similarly to adjust() and scale(): it takes a key-
word for each component of a color. But its behavior is much simpler (and somewhat
less useful): rather than modifying the existing components, it sets them to the new

5 The CSS spec says that the unit for the hue component of HSL colors is deg. Using it is optional, so it’s usually
omitted.

6 You aren’t allowed to use RGB keywords at the same time as HSL keywords; otherwise, you may use as many
keywords as you want.

7 The square brackets around $weight indicate that it’s an optional argument.

164 CHAPTER 9 Scripting with Sass
value. So set($color, $red: 120) will set the red component of $color to 120 and
be done with it.

 Finally, there are a few convenience color functions. These functions’ effects are
possible to achieve without the functions themselves, but the functions make it easier
and more explicit. grayscale($color) sets the saturation of $color to 0%, making it
a shade of gray. complement($color) rotates the hue by 180 degrees, making the
color wheel complement of the original color. And invert($color) flips all the RGB
components, returning the negative version of the original color.

 Sass provides three built-in list functions, which we’ll examine next.

9.3.3 List functions

Using the Sass list functions, it’s possible to do whatever you need with lists, although
it may be useful to define your own functions for some repetitive operations.

 The most useful list function is nth($list, $n), which returns a single item (the
nth one) in a list. Unlike in languages like JavaScript, Sass lists start counting items
at 1. Thus, nth(foo bar baz, 2) returns bar, and nth(a b c, 1) returns a.

 The join($list1, $list2, [$separator]) function is used to create new lists. It
joins two lists together. Since a single value counts as a list with a single item, this func-
tion can also be used to make lists out of individual items. The optional $separator
argument says which type of list it should be; it can be either space or comma. If it’s left
out, then the type of $list1 is used.

 The length($list) function is simple. It returns the number of items in $list. So
length(1 2 3) is 3, whereas length(foo) is 1.

 Sass also has some miscellaneous functions that are mostly useful for doing
advanced scripting.

9.3.4 Other Sass functions

Sass’s miscellaneous functions are mostly used for writing mixins to be used in many
projects. The type-of($value) function returns an unquoted string representing the
type of the value in question. This type can be number, string, color, bool (for Bool-
ean), or list.

 The if($condition, $if-true, $if-false) chooses between two values based
on a Boolean value. If $condition is true, then it returns $if-true. Otherwise, it
returns $if-false. Like the Boolean operators, any non-Boolean values count as true
for if().

 You may also define your own Sass functions using the @function directive.

9.3.5 User-defined functions

The @function directive for defining your own function is useful when you have some
repetitive math calculation or color transformation that you’re using in many con-
texts. @function works much like @mixin, except that only a few things are allowed
within a @function and every @function must return a result:

165Using expressions in selectors and property names
@function grid-width($cells) {
@return ($cell-width + $cell-padding) * $cells;

}

The @return directive is the heart of a @function. It works much like return in
JavaScript: it takes a Sass expression and returns the value as the result of the function.
It will also end the function immediately, although this won’t be very useful until you
learn about control directives.

 It wouldn’t make sense to have a CSS rule inside a function, nor a property. In fact,
a @function may only contain a few things: @return, naturally, as well as variable dec-
larations, comments, and control directives (which we’ll cover in section 9.5).

9.4 Using expressions in selectors and property names
CSS properties aren’t the only place where CSS values can be used in Sass. Sass adds a
special syntax for using CSS values, as well as variables and expressions, in many addi-
tional contexts, like selectors and property names. This is useful for mixins, especially
those that are made to be widely used, and thus need to be as generally applicable as
possible.

 You can wrap an expression in #{ and } anywhere in selectors or property names,
and the result will be included in the CSS output in place of the #{...}. The result will
appear just as it would if it were the value of a property, except that quotes will be
removed from quoted strings. This is known as interpolation.

 In the following example, a mixin is created that uses interpolation to use its argu-
ments in a selector and a property name.

@mixin thing($class, $prop) {
.thing.#{$class} {

prop-#{$prop}: val;
}

}

@include thing(foo, bar);

#{$class} is replaced by foo, and #{$prop} is replaced by bar, so the resulting CSS
looks like the following:

.thing.foo {
prop-bar: val;

}

Interpolation allows mixins to be used for more than packaging up a few styles. For
example, it can be used to remove the repetition of writing the vendor prefixes for
properties that are common when using the latest CSS facilities provided by browsers.
In the following example, the experimental mixin uses interpolation to avoid having
to write browser prefixes for every cutting-edge CSS property.

Listing 9.2 Replacing an expression with its end value

166 CHAPTER 9 Scripting with Sass
@mixin experimental($property, $value) {
-moz-#{$property}: $value;
-webkit-#{$property}: $value;
-ms-#{$property}: $value;
#{$property}: $value;

}

Although CSS hacks to target specific browsers are distasteful, sometimes they can be
necessary. Interpolation can be useful there as well. The following example uses inter-
polation to avoid having to write out a property name twice when giving it an IE6-
specific value.

@mixin bang-hack($property, $value, $ie6-value) {
#{$property}: $value !important;
#{$property}: $ie6-value;

}

Interpolation can also be used in expressions, although this is less useful since expres-
sions themselves already allow variables and other expressions to be used. But it does
allow variables to be inserted into strings and string-like expressions (like calc() or
Internet Explorer’s filter syntax).

content: "This element is #{$color}";
width: calc(10% + #{$padding});
filter: progid:DXImageTransform.Microsoft.Alpha(

Opacity=#{$opacity * 100}
);

As you can see, interpolation can be very useful for writing dynamic stylesheets. It may
not be something you’ll use every day, but it’s a good technique to have in your
arsenal.

9.5 Control directives
In some ways, control directives are the most advanced aspect of scripting with Sass. They
certainly bear great similarity to programming languages, unlike most of the rest of
Sass, which is based more on CSS than anything else. But even if you’re a pure
designer with no experience coding, don’t let this intimidate you: all of Sass’s control
directives are straightforward. They’re also useful for making designs and making
mixins to help make designs (they’d have to be, or they wouldn’t be part of Sass).

 A control directive is a special type of directive that controls the way a chunk of
Sass styles becomes CSS. Control directives take the form @directive { ... } and con-
trol the styles within their block. How this works differs from directive to directive.
We’ll look at all three of Sass’s control directives in this section. The first two, @for

Listing 9.3 Using interpolation to add vendor prefixes for CSS properties

Listing 9.4 Using interpolation for CSS browser hacks

Listing 9.5 Inserting variables into strings

167Control directives
and @each, cause a chunk of styles to be used multiple times with variations each time;
@for does so for a specific number of times, whereas @each does so for each item in a
list. Finally, @if controls whether a chunk of styles is used at all.

 Control directives work for more than just styles. When writing complex mixins or
functions, it can sometimes be useful to have only variable assignments within control
directives. This allows you to choose the definition of a variable using @if, or build the
value up using @for or @each.

 Let’s begin by looking at the @for directive.

9.5.1 Repeating styles for a range of numbers

The @for directive counts from one number to another, using a chunk of styles for
each number on its way. It has two syntaxes, which are similar to one another: @for $i
from 1 to 5 { ... } and @for $i from 1 through 5 { ... }. For both of these, the
variable $i is first set to 1 and then increases by 1 each time the styles in the block are
used. The two syntaxes differ in where $i stops: for 1 to 5, it stops at 4, whereas for 1
through 5, it stops at 5.

 The following style is compiled to five different rating classes, each with a different
background image. These images presumably contain one through five stars, thumbs-
up, or something like that:

@for $i from 1 through 5 {
.rating-#{$i} {

background-image: url(/images/rating-#{$i}.png);
}

}

You don’t have to use 1 and 5 for your start and end numbers. You could use -5 and 15,
or 22 and 379. You could even use variables and count from $a to $b (this can be use-
ful for mixins or user-defined functions). Similarly, you can name the counting vari-
able ($i in this example) whatever you want.

@for can’t do everything, though: it can’t count down, or count by twos, or count
fractions. But with a little cleverness, you can mimic this by doing some math on $i.

// count backwards from 10 to 0
@for $i from 0 through 10 {

$i: 10 - $i;
...

}

// count to 20 by twos
@for $i from 0 through 10 {

$i: $i * 2;
...

}

Although counting is useful, often you just want to make styles for each of a list of val-
ues. For this, you use the @each directive.

Listing 9.6 Mimicking counting backward or by twos

168 CHAPTER 9 Scripting with Sass
9.5.2 Repeating styles for a list of values

The @each directive, like @for, repeats a chunk of styles multiple times. But instead of
just counting, @each uses the chunk for each item in a list. The syntax is @each $item
in foo, bar, baz { ... }, and it assigns $item to each of foo, bar, and baz, in turn.
The following example uses @each to style a link for each section of a website:

@each $section in home, about, archive, projects {
nav .#{$section} {

background-image: url(/images/nav/#{$section}.png);
}

}

The list for @each can be space-separated as well as comma-separated, although
comma-separated lists tend to be easier to read. It can also be a list in a variable, or
even a variable containing some other type of value (since nonlist values count as sin-
gle-element lists).

9.5.3 Conditional styling

The @if directive controls whether a chunk of styles is used at all. It’s less useful in
day-to-day styling than @for or @each, but it comes up a lot when writing mixins and
functions that are going to be used across many projects. These mixins and functions
need to accept a broad range of parameters, and sometimes they need to behave dif-
ferently based on these parameters. @if provides the means to do that.

 The syntax is @if condition { ... }, where condition can be a Boolean variable,
an expression with a Boolean value (such as one using == or >), or even an expression
with any other value (since such values count as true). If the expression is true, then
the block of styles is used; otherwise, it’s ignored. The following example uses @if to
add browser prefixes to a style if the $use-browser-prefixes variable is set.

.rounded {
@if $use-browser-prefixes {

-moz-border-radius: 5px;
-webkit-border-radius: 5px;

}
border-radius: 5px;

}

You can optionally include the @else directive after the @if block as well. This allows
you to use a different block of styles if the first one isn’t used. The @else directive can
either have its own condition, as in @else if condition { ... }, in which case the
block is only used if that condition is true; or it can just be on its own, as in @else
{ ... }, in which case the block is always used. Any number of @else ifs can be used
for each @if, along with one @else. The following example uses an @else if and an
@else to scale a background color based on an alpha channel value.

Listing 9.7 Conditional styling with @if

169Summary
@if $alpha < 0.2 {
background-color: black;

} @else if $alpha < 0.5 {
background-color: gray;

} @else {
background-color: white;

}

This is the sort of thing that you’d expect to see in a mixin that takes $alpha as a
parameter, but probably not in any non-mixin styles.

9.6 Summary
Now you’ve been introduced to the full range of Sass’s functionality. Using these tools
properly, you’ll be able to create powerful, reusable styles that will dramatically
increase the ease and expressiveness with which you design. You’ll even be able to
write styles that can be used across many projects by yourself and others, improving
the broad world of design.

 In this chapter, you’ve learned how Sass expressions work, including how to use
arithmetic operations and variables in them. We’ve covered the various data types that
Sass supports, including operations on those types.

 We’ve gone over the many useful functions that Sass provides for dealing with
these data types, and you’ve learned to write custom functions. You’ve learned to use
the result of these functions and expressions in selectors and properties via interpola-
tion. Finally, we’ve talked about how to use control directives to control how, and how
often, blocks of styles are used in the compiled CSS.

 So far, in this book you’ve learned a lot about Sass and Compass. You’ve seen the
power of Sass as an expressive dynamic language, and seen how Compass integrates
with your development and production environments and provides a fantastic library
of Sass tools. In the next chapter, we’ll bring it all together and learn how to use Com-
pass extensions to create a modern stylesheet framework.

Listing 9.8 Combining @if and @else for advanced conditions

Creating and sharing
a Compass extension
Up to this point, each chapter has focused on helping you get acquainted with dif-
ferent features of Sass and Compass and how they enhance working with
stylesheets. This chapter brings it all together, building on your knowledge of Sass
and Compass to help you take the next step and write a Compass framework. We’ll
discuss sharing code with the community and walk through the process of writing
an extension for styling CSS3 buttons. We’ll explore the design decisions that go

This chapter covers
 Sharing Sass stylesheets and why Compass

extensions are needed

 An introduction to simple extensions

 A detailed walk-through on writing an advanced
extension

 Creating templates to bootstrap or demonstrate
an extension

 A brief overview of different methods of sharing
extensions
170

171Sharing and reusing stylesheets
into building this extension, and discuss the principles and best practices that create
truly excellent code.

10.1 Sharing and reusing stylesheets
Those of us who’ve been writing stylesheets for some time know the joy of watching a
tricky bit of CSS finally come together. We save our stylesheets and refresh our brows-
ers in anticipation. Then our creation blinks into existence in all its glory. Success! A
victory dance is in order. But what comes next?

 Empowered with the expressiveness of Sass, our stylesheets can be smarter, and
these moments of discovery can come far more frequently than when we used vanilla
CSS. Also, Sass and Compass make it easier than ever to share our triumphs and
epiphanies.

10.1.1 Sass is easier to share than CSS

Sharing stylesheets used to mean writing a blog post with CSS snippets and download-
able demos. The more ambitious the solution, the more challenging it was for readers
to use. Helpful authors would explain how to properly customize and reuse their
stylesheets, meaning that more complex and interesting CSS stylesheets were a greater
burden to share and were harder for readers to use. Also, with CSS frameworks, any
included stylesheet automatically affects a website’s style. This means that users must
be careful what class names they use, or they must edit the CSS framework to pick and
choose what they want.

 On the other hand, Sass users can share incredibly useful stylesheets that don’t
output a single line of CSS. A stylesheet full of mixins and functions will have no direct
impact on a site’s style. Instead, Sass provides tools to help designers build something
that’s completely their own. Sass stylesheets aren’t limited to selectors, properties, and
values. With variables, @if, @else, @for, and @while, as well as custom functions and
mixins, Sass is inherently more expressive than CSS.

 A critical flaw in CSS frameworks is that, beyond inheritance, they have no concept
of reuse. When a Sass author writes @mixin button-style($color), they define a pur-
posed block of code, and every time this mixin is included, it indicates to the reader
that this element belongs to an organized framework of design. Vanilla CSS can’t do
this. A block of CSS styles can’t be reused, only copied. CSS has no way to preserve its
integrity as it’s used across a series of stylesheets.

 Expressiveness and abstraction are two key characteristics that make Sass easier to
explain and easier to share.

10.1.2 Share-ready Sass

If you’ve ever used a CSS framework before, you’re no doubt familiar with the frustra-
tion of having to become acquainted with new class names and design patterns.
Though some frameworks are better documented than others, in general, if you don’t
want exactly what they offer, you could wind up spending hours digging through their

172 CHAPTER 10 Creating and sharing a Compass extension
code to remove parts you don’t like while trying to preserve what you do. It’s awful.
When sharing Sass stylesheets, be careful to avoid this painful and outdated practice.

 Though you can package up your favorite designs for buttons, lists, tables, and
typography just like the CSS frameworks of the past, the features of Sass guide you
toward a different kind of sharing. Instead of writing out the style for a certain type of
button, it’s much nicer to encapsulate that style inside of a mixin. Packaging your
styles as a series of mixins is a terrific opt-in way to share a stylesheet framework, help-
ing the user retain full control of their site’s design. Also, you could wire up your mix-
ins to accept a set of variables, allowing users to customize attributes of your
framework.

 Sass functions can also be a great resource. If your framework offers customizable
color schemes, it can be awfully challenging to ensure quality results. For example, if a
user is able to choose a background color for a button, the text for that button should
still be easily readable. Here’s a snippet of Sass that can help out. It uses the color
functions built right into Sass to pick a higher contrast text color to go with the given
background color. The following code is in color-helpers.scss in this chapter’s code
examples.

// Returns true if the color is brighter than 50% lightness
@function is-bright($color) {

@return (lightness($color) > 50%);
}

// Returns the $light value if bright, $dark value if dark
@function if-bright($bg, $light: true, $dark: false) {

@return if(is-bright($bg), $light, $dark);
}

// Picks the color with the highest contrast
@function text-contrast($bg, $dark-text: #000, $light-text: #fff) {

@return if-bright($bg, $dark-text, $light-text);
}

This is a great example of how Sass addresses a broader range of problems in web
design, transforming what designers and developers can do with stylesheets. Here you
can see how sharing Sass differs from sharing CSS. It’s also a picture of how authoring
stylesheets has finally joined the world of web development as authors are sharing and
reusing tools rather than implementations. But simply posting a Sass file or snippet on
the web isn’t enough. With Compass extensions, you can do much better.

10.1.3 Sharing Sass isn’t enough

As you’ve seen, Sass is much more sharing-friendly than CSS, but when you have a
handy Sass snippet you’d like to share, what’s the best way to get it out there? You could
blog about it, or even release it as an iterative demo on CodePen (http://codepen.io).

Listing 10.1 Helpful color functions

http://codepen.io

173A simple extension
Others can simply copy your code into their projects and start enjoying your work. But
what if you want to release something that’s more than just a snippet?

 What if you need to include companion assets like images, fonts, JavaScript, or
HTML? This would require users to move all of these files to their proper locations in
order to integrate your work into their project. The more elaborate the solution, the
more effort it takes for someone to begin using it.

10.1.4 Why use a Compass extension?

Compass extensions are a great way to share Sass scripts (and related assets), making it
easy for others to use your work. They also make a great building block for a personal
or company-wide framework. Rather than copying snippets of Sass from project to
project, you should really be writing Compass extensions.

 When someone installs your Compass extension, you can be sure they have access
to the same library of mixins, functions, and other features provided by Compass. This
makes it easy to build against the solid library included with Compass. If you want to
do something with sprites or CSS3, you can confidently leverage Compass’s tools with-
out worrying about adding complexity to your extensions.

 Compass extensions can include multiple project templates to show users the dif-
ferent features of your extensions, and give them a starting point to begin playing
around with working examples. Based on its configuration file, Compass knows where
assets belong so your templates can easily install stylesheets, images, or JavaScript in
the right place.

 If it sounds like extensions take a lot of work, fear not. Creating your own exten-
sion is simple.

10.2 A simple extension
For this example, we’ll take the color functions we looked at earlier and package them
up as a simple extension called color-helpers. If you want to take a peek, you can find
this simple extension in this chapter’s code examples. The directory structure looks
like the following.

color-helpers/
stylesheets/

color-helpers.scss

It’s a directory named after the color-helpers extension that contains a stylesheets
directory and a Sass file, which is also named after your extension. This is an extension
in its most basic form. You could share this as a project on GitHub or upload a zip file
to your website. This is generally referred to as an ad hoc extension. You can also distrib-
ute an extension as a Ruby gem, which allows users to download, install, and update
your extension from the command line. We’ll look at that more in a bit.

Listing 10.2 The simplest extension

174 CHAPTER 10 Creating and sharing a Compass extension
10.2.1 Installing ad hoc extensions

To install this extension, a Compass user would copy the color-helpers directory into
their project’s extensions folder. After the extension is in the proper directory, the
extension’s Sass files can be imported just as if they were in the project’s sass directory.

 For standalone projects, extensions belong in an extensions directory in the root
of the project, for example project_root/extensions/color-helpers/. In Rails projects,
ad hoc extensions are installed to vendor/plugins/compass_extensions. Compass
doesn’t automatically create these directories by default, so extension users will have
to add them manually.

10.2.2 Testing your extension

To take your new extension for a spin, you’ll create a new Compass project and install
the color-helpers extension. Either run the following commands in a terminal, or
check out the test-color-helpers directory from the code examples:

compass create test-color-helpers --bare

Now you’ll add a sass/screen.scss and create an extensions directory. Copy the
color-helpers extension into the extensions directory, and your project will look like
figure 10.1.

Now you’ll add @import "color-helpers"; to screen.scss, and you can begin using
these color functions in your project. In the example code, you’ll find a couple of
examples of the color-contrast function in use. Admittedly, this isn’t an exciting
extension. Two color functions aren’t going to get you very far and, as we covered ear-
lier, extensions can be more than just stylesheets, so let’s work on something more
fun: CSS3 buttons!

10.3 Creating an extension demo project
As you’ve seen, an extension isn’t a fully formed Compass project, but a library of files
that are intended to be used within a Compass project. The best way to begin develop-
ing an extension is to create a Compass demo project. In a bit, we’ll begin working on
an advanced extension, but first we’ll walk through setting up a demo project.

Figure 10.1 Color helpers project setup

175Creating an extension demo project
 The demo will serve two purposes. First, it’ll help you develop and test your exten-
sion, and second, after you’re done, you can use this demo as a project template for
your extension. Users will be able to easily install this demo into their own Compass
projects, giving them a quick way to try out your extension.

 Our goal for this extension is to help users generate beautiful CSS3 buttons with lit-
tle effort. We’ll call this extension nice-buttons, because who doesn’t love a nice but-
ton? The directory structure for your demo project is shown in figure 10.2.

Just like for the color-helpers extension, you have a basic Compass project with an
extensions directory named after your extension, containing a stylesheets directory
with a Sass file which is also named after your extension. The only real difference here
is that you have a demo.html file, which you’ll use to preview your styles in the
browser. The demo HTML doesn’t have to be anything fancy. You just need a button
and a link for your extension to style.

<!DOCTYPE html>
<html>

<head>
<title>Nice Buttons - Demo</title>
<link href="stylesheets/demo.css" rel="stylesheet"

type="text/css">
</head>
<body>

<h1>Button Test</h1>
<button>Click Me!</button>
Click Me!

</body>
</html>

You may be wondering why we’re using <button>Launch</button> instead of <input
type="submit" value="Launch">. Historically, input buttons are hard to consistently
style across browsers and operating systems. Modern browsers tend to be easier to work
with, but the HTML 4.01 specification (http://www.w3.org/TR/html401/interact/
forms.html#h-17.5) states that the <button> element was created to offer richer

Listing 10.3 demo.html file

Figure 10.2 Nice-buttons
demo project setup

http://www.w3.org/TR/html401/interact/forms.html#h-17.5
http://www.w3.org/TR/html401/interact/forms.html#h-17.5

176 CHAPTER 10 Creating and sharing a Compass extension
rendering possibilities. As a result, we tend to use input buttons when we want to use
the default style for an OS or a browser. When we want to do some custom styling, we
know we can count on the <button> element to be consistent.

 Next, in demo.scss you’ll import the nice-buttons extension and add a bit of Sass to
get started.

@import 'nice-buttons';
html {

font-family: Helvetica, Arial, sans;
background: #f4f4f4;

}
body {

text-align: center;
position: absolute;
top: 30px; left: 30px; bottom: 30px; right: 30px;
padding-top: 20px;
background: #fff;
border: 1px solid #e5e5e5;

}

Since you haven’t yet written styles for the button or link, figure 10.3 shows what you
have after compiling demo.scss.

Now that your demo project is all set up, you can begin writing the extension.

10.4 Writing an advanced extension
Before we get to the fun CSS3 part, it’s a good idea to write some simple button reset
styles. Depending on the operating system and the browser, buttons have different
default styles, and since links are commonly styled as buttons, you want to be sure that
your styles will apply consistently to both of them. For that, you’ll add the nice-
button mixin to nice-buttons.scss.

Listing 10.4 demo.scss file

Figure 10.3 Nice-buttons
demo—before styling

177Writing an advanced extension
@import "compass/css3";

@mixin nice-button() {

// reset styles
font: normal 16px/18px "Lucida Grande", Lucida, Arial, sans-serif;
margin: 0;
text-decoration: none;
cursor: pointer;
padding: .5em 1.2em;
@include border-radius(.3em);
&:active, &:hover { outline: none }

// Normal styles
background-color: #eee;
border: #bbb 1px solid;
color: #333;

}

Since you’ll rely on the CSS3 mixins in Compass, you need to make sure to import
Compass’s CSS3 module at the top. If users are already importing the CSS3 module,
this import will be ignored. Now you just have to include this mixin in demo.scss:

button, .button { @include nice-button }

A trip to the browser shows you that you’re on the right track (see figure 10.4).
 The button and the link now appear identical, but they’re far from beautiful. You

should fix that.

10.4.1 Automating the hard parts

You’ve laid the groundwork; now it’s time to work on the valuable part of this exten-
sion. You want users to be able to create a nice button by simply telling your mixin
what color it should be. To help automate some of the styling, you’ll rely on the bril-
liant color transformation functions in Sass as well as the two color functions we
looked at earlier in this chapter.

Listing 10.5 nice-buttons.scss file

Figure 10.4 Consistently
styled buttons

178 CHAPTER 10 Creating and sharing a Compass extension
Go ahead and create _color-helpers.scss in extensions/nice-buttons/stylesheets/, and
then add the three color functions and import that file at the top of nice-buttons.scss
with @import "color-helpers";. Next, you’ll change your mixin to accept a back-
ground color and pick related colors.

@mixin nice-button($bg: #eee) {
...

// Normal styles
background-color: $bg;
color: text-contrast($bg, $dark-text: mix($bg, #000, 25%));
border: scale-color($bg, $lightness: -20%) 1px solid;

}

Now this mixin lets users set a background color (which defaults to #eee if they don’t
pass anything), and then, using the text-contrast function, you pick a good text
color to go with it. You’re mixing the dark text with a bit of the background color to
help it blend more nicely with the rest of the button. Finally, the border color is cho-
sen by darkening the background color. Make a quick update to the demo.scss.

button { @include nice-button } // default mixin background
.button { @include nice-button(#494e57) } // a dark blue gray

Figure 10.5 shows your progress.

Those color functions are doing a nice job of simplifying things, but these buttons
need gradients. To keep this mixin simple, you’ll generate the gradient in a separate
“support” mixin.

@mixin nb-gradient($bg) {
// scale main color to pick
$top: scale-color($bg, $lightness: 40%);

Listing 10.6 nice-buttons.scss

Listing 10.7 demo.scss

Listing 10.8 nb-gradient—nice-buttons.scss

Figure 10.5 Starting to
automate color choices

179Writing an advanced extension
$middle-1: scale-color($bg, $lightness: 10%);
$middle-2: scale-color($bg, $lightness: -5%);
$bottom: scale-color($bg, $lightness: -20%);

@include background-image(linear-gradient(
$top, $middle-1 50%, $middle-2 50%, $bottom));

}

With these variables, you can create a nice gradient with a top shine, a bottom shadow,
and a faint center line, giving the button a three-dimensional appearance. When cre-
ating support mixins like nb-gradient it’s nice to namespace them with the initials of
the extension. It’s a way of keeping mixin names short, while also telling those who
read the source code, This is an internal mixin; you’re probably not going to use it. Add
@include nb-gradient($bg); to the nice-button mixin, and you get something like
figure 10.6.

 The dark button looks good, but the gradient on the light button seems a bit high-
contrast. To address that, you’ll treat light and dark backgrounds differently.

// scale main color to pick
$top: scale-color($bg, $lightness: if-bright($bg, 80%, 40%));
$middle-1: scale-color($bg, $lightness: if-bright($bg, 20%, 10%));
$middle-2: scale-color($bg, $lightness: if-bright($bg, -2%, -5%));
$bottom: scale-color($bg, $lightness: if-bright($bg, -10%, -20%));

Now your gradient mixin can tune its color transformations to improve the final gradi-
ent. The if-bright function looks at $bg and uses the first percentage if it’s brighter
than 50%, the second if it’s darker. This is far simpler than writing separate gradient
code for bright and dark colors. It took some fiddling to settle on the percentages, but
it’s a nice improvement (see figure 10.7).

 The difference here is subtle, but this level of care helps you make a great exten-
sion. You can take the same approach to color manipulation when adding a text
shadow and a box shadow.

Listing 10.9 Color assignment in nb-gradient mixin

Figure 10.6 Initial gradient styling Figure 10.7 Improvements from tuning the color
transformation

180 CHAPTER 10 Creating and sharing a Compass extension

text-shadow: scale-color($bg, $lightness:
if-bright($bg, 25%, -25%)) 0 1px 1px;

@include box-shadow(rgba(#fff,
if-bright($bg, .6, .2)) 0 0 1px 1px inset);

For the text shadow, the if-bright function is deciding whether to darken or lighten
the color, and on the box shadow it chooses the correct transparency. You can see how
powerful this simple automation can be. Figure 10.8 shows what you have so far.

Now let’s refine what you have and add some interactive styles and a nice CSS3
transition.

 When styling a button’s focus, hover, and active states, it’s common to lighten,
darken, and add shadows. There are many ways to achieve these effects, but as you
begin to layer on the CSS3, you should consider the size of the generated CSS. At the
time of publication, you still need to use CSS3 vendor prefixes, and though Compass
takes care of that for you, the output can be pretty large. Generating a new brighter or
darker gradient for hover and active states adds a lot of CSS to the output. If people
use this extension to style many different buttons, the impact could be significant.

 To add these interactive styles while keeping your output lean, you’ll use a clever
trick. When including the nb-gradient mixin, you’ll use a partially transparent color.
This means your gradient will show through to the background color of the button.
Now you can change the background color of the button behind the gradient, and
the change will show through. Here are the main button styles so far.

// Normal styles
background-color: $bg;
border: scale-color($bg, $lightness: -20%) 1px solid;
color: text-contrast($bg);

@include nb-gradient(rgba($bg, .7)); // alpha shows color transitions
@include transition(background-color,box-shadow .15s);

Listing 10.10 text-shadow—nice-buttons.scss

Listing 10.11 Normal button styles in nice-button mixin—nice-buttons.scss

Figure 10.8 Added text-shadow
and inset box-shadow

181Writing an advanced extension
text-shadow: scale-color($bg, $lightness:
if-bright($bg,25%,-25%)) 0 1px 1px;

@include box-shadow(rgba(#fff,
if-bright($bg,.6,.2)) 0 0 1px 1px inset);

Now add the button state styles.

// State styles
&:hover, &:focus {

background-color: scale-color($bg,
$lightness: if-bright($bg, 85%, 25%)

);
}

&:active {
background: scale-color($bg,

$lightness: if-bright($bg, 55%, 15%)
);
border-color: rgba(#000, if-bright($bg, .4, .8));
@include box-shadow(

if-bright($bg,
rgba(mix($bg, #000, 25%), .4),
rgba(mix($bg, #000), .9)

) 0 2px 12px inset
);

}

Basically, you’re adjusting the background colors and adding a deep inset box shadow
while the button is being pressed. In the active state, instead of setting background-
color, you set the background property, removing the gradient background image so
that you’re left with the background color and an inset box shadow, creating a
depressed look. Figure 10.9 shows all three states back to back.

Listing 10.12 Styling :hover and :focus—nice-buttons.scss

Figure 10.9 Interactive button
states—nice-buttons.scss

182 CHAPTER 10 Creating and sharing a Compass extension
With a screenshot, it’s hard to get a sense of how this button feels when you click it, so
be sure to check out the demo in the example code. The styling part of this extension
is done, but you can still do some refactoring.

10.4.2 Refactoring your extension

Right now, your extension’s main mixin, nice-button, consists of three different
sections:

1 The reset styles
2 The normal button styles
3 The button state styles

The reset styles are the same for every button, and each button uses the same CSS3
transition. So each time the nice-button mixin is included, you duplicate eight lines
of Sass. Add the extra CSS generated for vendor prefixes, and this is clearly something
you need to fix.

 This is a great use case for @extend. You could add these styles to a base class and
have each button extend them like this:

.button-reset {
// Reset styles
...

}
@mixin nice-button {

@extend .button-reset;
...

}

But you’re not going to do this.
 This is a situation where writing an extension probably differs from how you might

write the same styles in your own project. Even though .button-reset is probably a safe
class name to use, this violates a key principle of extension design: An extension
shouldn’t output any CSS unless asked to do so. As much as possible, styles in your exten-
sion should live inside mixins. Otherwise, you make assumptions about which ele-
ments or class names people will use, and importing your extension’s stylesheets could
cause elements in their design to automatically inherit your styles.

 You can achieve the same goal by putting your reset styles inside of a mixin, and
then include the reset mixin under a placeholder selector:

@mixin nice-button-reset() {
// reset styles

}
%nice-button-reset { @include nice-button-reset; }

As you saw in chapter 2, if placeholders are never extended, the styles inside of them
will never be compiled to CSS. This is great for extension authors, since it allows your
extension to enjoy the benefits of selector inheritance without generating any unnec-
essary styles or class names.

183Writing an advanced extension
 Why use a reset mixin instead of just writing styles underneath the placeholder?
The reason is because a mixin stores your reset styles so they can be reused anywhere.
It’s possible that in someone’s project, their styling could override your reset styles.
With a mixin, they can easily include the styles to fight back against the cascade.

 Applying this principle, the outline for your extension looks like the following.

@mixin nb-reset() {
// Reset styles

}
%nb-reset { @include nb-reset }

@mixin nb-gradient($bg) {
// Gradient styles

}

@mixin nice-button($bg: #eee) {
@extend %nb-reset
// Normal styles
// Button state styles

}

With all the duplication removed, your extension is in great shape. It generates beau-
tiful buttons and beautiful CSS. Take a look at the full 62 lines of Sass that make up
your extension.

@import "compass/css3";
@import "color-helpers";

// Button style reset and basic styles
@mixin nb-reset() {

font: normal 16px "Lucida Grande", Lucida, Arial, sans-serif;
margin: 0;
text-decoration: none;
margin-bottom: .3em;
cursor: pointer;
padding: .5em 1.2em;
display: inline-block;
border: { width: 1px; style: solid }
@include border-radius(.3em);
&:active, &:hover { outline: none }
@include transition(background-color,box-shadow .15s);

}

%nb-reset { @include nb-reset; }

// Automate the gradient picking with simple color shifting
@mixin nb-gradient($bg) {

$top: scale-color($bg, $lightness: if-bright($bg,80%,40%));
$middle-1: scale-color($bg, $lightness: if-bright($bg,20%,10%));
$middle-2: scale-color($bg, $lightness: if-bright($bg,-2%,-5%));
$bottom: scale-color($bg, $lightness: if-bright($bg,-10%,-20%));

Listing 10.13 Extension overview

Listing 10.14 Extension directory pattern

184 CHAPTER 10 Creating and sharing a Compass extension
@include background-image(linear-gradient(
$top, $middle-1 50%, $middle-2 50%, $bottom));

}

@mixin nice-button($bg: #eee) {
@extend %nb-reset;

// Normal styles
background-color: $bg;
border-color: scale-color($bg, $lightness: -20%);
color: text-contrast($bg);
@include nb-gradient(rgba($bg, .7)); // alpha shows color transitions

text-shadow: scale-color($bg, $lightness:
if-bright($bg,25%,-25%)) 0 1px 1px;

@include box-shadow(rgba(#fff,
if-bright($bg,.6,.2)) 0 0 1px 1px inset);

// State styles
&:hover, &:focus {

background-color:
scale-color($bg, $lightness: if-bright($bg, 85%, 25%));

}

&:active {
background: scale-color($bg,

$lightness: if-bright($bg, 25%, 10%));
border-color: rgba(#000, if-bright($bg, .4, .8));
@include box-shadow(

if-bright($bg,
rgba(mix($bg, #000, 25%), .4), rgba(mix($bg, #000), .9)

) 0 2px 12px inset
);

}
}

Figure 10.10 shows a sample of what this extension can do.
 Now with this extension, any Compass user can create nice CSS3 buttons with a sin-

gle line of Sass. But you still have work to do. It’s time to learn how to package up this
demo as an example project, and then we’ll look at ways to share this extension.

Figure 10.10 nice-buttons
color trial

185Creating a template
10.5 Creating a template
Now that your extension works, it’s time to prepare it for release. Since you already
have a nice working demo, you can include it to show new users how the nice-buttons
extension works. Compass allows extension authors to include templates to help users
get started quickly. For the type of extension you’re building, this is just a demo, but
for larger, more ambitious extensions, you might use templates to bootstrap a sophisti-
cated framework. Here’s how the directory structure for an extension might look if it
was using templates and Sass extensions.

my-extension/
stylesheets/

my-extension.scss
templates/

project/
manifest.rb
test.html
test.scss

lib
my-extension.rb
my-extension/

sass_extensions.rb

For your nice-buttons extension, you have no need to write a Sass extension, but mak-
ing your demo an installable template would be nice. To convert your demo into a
template, you’ll need to copy demo.html and demo.scss into nice-buttons/templates/
project. Then you’ll need to create a manifest.rb, which helps Compass locate and
identify its assets. The manifest.rb belongs in the templates/project directory and
lists the assets for the template. You can also add a project description, help text
(which is displayed when someone runs compass help nice-buttons), and a
welcome message that’s displayed when the extension is installed. Here’s what the
manifest.rb looks like for nice-buttons.

stylesheet 'demo.scss', :media => 'screen, projection'
html 'demo.html'
image 'screenshot.png'

description "Create beautiful CSS3 buttons from a single color"
help "This will install a demo (HTML and Scss) to show you how to use

nice-buttons"
welcome_message %Q{
Example usage: button { @include nice-buttons(#444) }
See demo.html and demo.scss for example usage.
See screenshot.png for a screenshot of the rendered demo.
Enjoy!
}

Listing 10.15 Extension directory pattern

Listing 10.16 nice-buttons/templates/project/manifest.rb

186 CHAPTER 10 Creating and sharing a Compass extension
It’s probably a good idea to include documentation and support URLs with the wel-
come message and help text if your extension has them.

 With the demo added as a template, the directory structure for your extension
looks like the following.

nice-buttons/
stylesheets/
_color-helpers.scss
nice-buttons.scss

templates/
project/

demo.html
demo.scss
manifest.rb

If a user has the nice-buttons extension in their project’s extensions directory, they
can run this command to install the default template:

compass install nice-buttons

This will use the project’s Compass configuration to copy the assets from templates/
project to the appropriate locations. If you create a second template in the templates/
warm-cookies directory, a user could install it by passing the directory name:

compass install nice-buttons/warm-cookies

Before release, it’d be good to add a README file describing what the extension does,
how to use it, and how to install it. But for the purposes of this walk-through, this
extension is done. It has a nice demo and it’s ready to be shared. Next, we’ll look at
how to publish this extension so others can begin using it.

10.6 Distributing extensions
Historically, the majority of sharing in the web design community has happened in
blog posts, using zip files. Though developers have enjoyed releasing software
through sophisticated versioning and distribution channels, designers have relied on
far simpler methods. Today, though, more and more designers are participating in
open source, and it’s time to learn how to do this the right way.

 This is a deep topic, so this section only introduces the concepts of different
release methods. This isn’t intended to be a walk-through of how to release open
source software.

10.6.1 Distributing extensions in an archive

The simplest method for distributing your Compass extension is to zip it up in an
archive and post it on a server somewhere. This takes almost no time, but it has its
drawbacks.

Listing 10.17 nice-buttons directory structure

187Distributing extensions
 For one, updates require users to manually replace old code. When files belong in
more than one location, this can be a pain. Also, without sophisticated version con-
trol, trying to maintain older releases can be challenging when you have to work with
different historical states of a project. Though version-controlled systems keep the full
history for every file and offer features like tagging, an archive is merely a snapshot of
your extension at one point in time. That can be limiting.

10.6.2 Distributing an extension as a Ruby gem

Ruby gems are a sophisticated way to package and distribute code. For our purposes,
one of the most useful aspects of releasing a gem is the built-in dependency manage-
ment. You can require users of your extension to have specific versions of other gems
like Sass and Compass. Of course, with any release you can add a README file that
states the minimum supported version, but with a gem, simply installing your gem will
also fetch and install the correct versions of any gems you rely on.

 With an ad hoc extension, users have to copy all of the extension’s code into their
project’s extensions directory, but with a gem, the extension code will live in a central-
ized location, allowing multiple projects to point to the same extension code.

CONVERTING AN AD HOC EXTENSION TO A GEM

To distribute your extension as a Ruby gem, you’ll need to add a couple of files to your
project, as shown in figure 10.11.

 At a minimum, a gem needs to have a gemspec and a lib directory with a Ruby file
named after the gem. You’ll use nice-buttons.rb to register your extension with
Compass and tell it where to find your extension’s directories. The next listing shows
what the code for the nice-buttons.rb looks like.

Figure 10.11 Gem project setup

188 CHAPTER 10 Creating and sharing a Compass extension

require 'compass'

Compass::Frameworks.register('nice-buttons',
:stylesheets_directory => File.join(File.dirname(__FILE__), '..',

'stylesheets'),
:templates_directory => File.join(File.dirname(__FILE__), '..',

'templates'))

That’s not as pretty as the Sass you’re used to looking at, but basically you’re telling
your gem it requires the Compass gem. Then you use a Compass function to register
an extension called nice-buttons and you tell it where to find the stylesheets and tem-
plates directories.

 Now, let’s look at the nice-buttons.gemspec. There are lots of different ways to
construct a gemspec, but we’ll keep this one simple.

-*- encoding: utf-8 -*-
Gem::Specification.new do |gem|

gem.name = "nice-buttons"
gem.version = "1.0.0"
gem.authors = ["Brandon Mathis"]
gem.email = ["brandon@imathis.com"]
gem.description =

"Easily create beautiful CSS3 buttons with Compass."
gem.summary = "Nice and easy CSS3 buttons for Compass users"
gem.homepage = "http://github.com/imathis/nice-buttons"

gem.files = %w(README.md LICENSE)
gem.files += Dir.glob("lib/**/*")
gem.files += Dir.glob("stylesheets/**/*")
gem.files += Dir.glob("templates/**/*")

gem.add_dependency "sass", ">= 3.2"
gem.add_dependency "compass", ">= 0.12"

end

In this file, there are two sections. The first is made up of metadata about your gem, its
name, version number, authors, and so forth. The second section includes the gem’s
files and sets up dependencies on other gems. Since your extension relies on some
more recent features of Sass and Compass, you’ll require users to have at least Sass 3.2
and Compass 0.12.

 With all this set up, you can tell Ruby gems to generate your gem file by running
this command in your terminal:

gem build nice-buttons.gemspec

This will generate the gem file nice-buttons-1.0.0.gem in the root of your project.

Listing 10.18 nice-buttons.rb

Listing 10.19 nice-buttons.gemspec

189Distributing extensions
PUBLISHING A GEM

To publish this gem, you’ll need to create an account at RubyGems.org (a free central
repository for hosting gems) and follow their setup process. When you’re ready, you
can publish your gem by running the following command:

gem push nice-buttons-1.0.0.gem

With that, anyone can immediately install your gem and begin using your extension.

INSTALLING A GEM

You can install your gem manually by running this command from the terminal:

gem install nice-buttons

This will fetch the gem from RubyGems.org and, if you don’t have the right versions
of Compass or Sass, they’ll automatically be installed for you. Clearly this is nicer than
shipping a zip file.

 To begin using your gem with a Compass project, you’ll need to add a line to the
top of your Compass configuration file:

require "nice-buttons"

Now Compass knows about your gem and you can import the nice-buttons stylesheet
and begin using it in your project. If you like, you can also install the demo project
you created earlier by running this from the command line:

compass install nice-buttons

This will unpack your demo files into the Compass project and recompile your
stylesheets. Historically, this has been the most common way to install a gem and use it
with Compass, but recently many developers have adopted a different technique using
a gem called Bundler to install and manage gems.

INSTALLING A GEM WITH BUNDLER

Bundler (http://gembundler.com) is a gem that helps you install and manage Ruby
gems in your projects. Bundler uses a Gemfile to list the gems your project is using.
Here’s how you add your gem to the list.

source :rubygems

group :assets do
gem 'nice-buttons'

end

After you’ve updated the Gemfile, you’ll install your gems with a simple command:

bundle

This will connect to RubyGems.org and find the latest version of the nice-buttons gem
and all of its dependencies and install them to your system. It’ll also create a file called

Listing 10.20 Add nice-buttons to the Gemfile

http://gembundler.com

190 CHAPTER 10 Creating and sharing a Compass extension
Gemfile.lock, which contains the full set of gems that your project is using, their
version numbers, where they were downloaded from, and the hierarchy of gem depen-
dencies. This detailed record keeping ensures that you don’t run into problems using
incompatible versions. It’s a pain to do this manually, so the popularity of Bundler is no
surprise.

 To use Compass with Bundler, prepend your Compass commands with bundle
exec, like this:

bundle exec compass compile

This gives Compass access to the Gemfile’s assets group where it’ll find your extension
and make it available to your project. If you want to install the demo project you cre-
ated, you can run this command:

bundle exec compass install nice-buttons

After your gem is installed, users can import your nice-buttons stylesheet and start
using your code.

 Distributing an extension as a Ruby gem is easy, and the benefit it provides over
merely sharing an archive is worth the effort. But after you’ve shared your code with
others, it’s possible they’ll find bugs or offer to make improvements. This introduces a
new challenge. Communicating with other developers and dealing with code contri-
butions can be a challenge, especially if your extension becomes popular. For this,
we’ll turn to GitHub, an excellent resource for collaborating with the open source
community.

10.6.3 Social coding on GitHub

There are other open source communities out there, but GitHub is by far the most
popular. GitHub will host your project on a nicely designed website where others can
browse and download your code. It also gives you tools to manage contributors, pub-
lish a project website, and edit a wiki. Other GitHub users can fork your projects,
make improvements, and offer their changes back to you. With GitHub’s issue tracker,
you review and accept code contributions, merging them into your projects right from
the website. GitHub offers all of this freely to open source projects.

 To publish your extension on GitHub, you need to add a new repository and fol-
low their simple instructions for committing and pushing up your extension. If you
add a README to your project, GitHub will show it on your project’s home page. You
can see the nice-buttons gem on GitHub right now at http://github.com/imathis/
nice-buttons, and figure 10.12 shows what it looks like.

 If you’ve published an ad hoc extension, users can download nice-buttons from
the project website or install it from the command line by running this command
from their extensions directory:

git clone https://github.com/github_user_name/nice-buttons.git

http://github.com/imathis/nice-buttons
http://github.com/imathis/nice-buttons

191Distributing extensions
Later they can update to the latest version by running the following command from
their extensions/nice-buttons directory:

git pull

This will download the latest version of your extension, but if your extension requires
an updated version of Sass, Compass, or another gem, the user will have to manually
update those to the correct version. GitHub is an excellent place to host and collabor-
atively work on open source code, but if you want dependency management, you
should distribute your code as a Ruby gem.

 There’s a great deal more to learn about how to release and manage open source
software, but this section should provide a good starting point. As it goes with most
things, the best way to learn is to try.

Figure 10.12 nice-buttons project page

192 CHAPTER 10 Creating and sharing a Compass extension
10.7 Summary
In this chapter, you saw that although Sass and Compass expand your ability to solve
problems with stylesheets, they also let you share your knowledge and experience, and
participate in the design community like never before. We explored ways of writing
stylesheets that are designed to be shared with others. We discussed principles of good
extension design as we walked through the steps to create, refactor, and package up a
nice Compass extension. We also covered different methods of distributing your
extensions, and looked at ways you can share your code and collaborate with others.

 Over the course of this book, you’ve seen the power of Sass as a dynamic stylesheet
language and how it empowers you to write readable, maintainable stylesheets. You’ve
seen how Compass provides a solid library, integrates smoothly into your development
environment, and a gives you a great platform for building and sharing your knowl-
edge. You’ve seen Sass and Compass defeat the tedium of writing CSS, giving you new
and interesting challenges and greater rewards. Whether you’re new to Sass and Com-
pass or you’ve been using them for years, we hope this book has enabled you to see
stylesheets with new eyes, equipped you with new tricks and greater understanding,
and emboldened you to stretch yourself and to attempt great things.

appendix A
Installing Sass
and Compass

Both Sass and Compass are command-line tools built on top of the Ruby program-
ming language. To use them you’ll need to have Ruby installed as well as a basic
understanding of your computer’s command line. Sass and Compass can be installed
on Windows, Mac OS X, and Linux.

A.1 Installation on Windows
Windows doesn’t come with Ruby, so unless you have previously installed it, you’ll
need to do so now. It only takes a few minutes.

A.1.1 Opening the Windows command prompt

On Windows 7, you can launch the command prompt from the Windows start menu
by selecting All Programs > Accessories > Command Prompt. Alternately, you can type
command into the search box and then select Command Prompt from the results.

 On earlier versions of Windows, you can launch the command prompt by selecting
All Properties > Accessories > Command Prompt. Alternatively, you can select Run
and then enter cmd and press Return.

 When the command prompt is running, you should see a window like figure A.1.

Figure A.1 Windows command prompt
193

194 APPENDIX A Installing Sass and Compass
A.1.2 Installing Ruby on Windows

From the command prompt, type ruby -v and then press Return. If Ruby isn’t
installed, the command prompt will tell you 'ruby' is not recognized as an
internal or external command, operable program or batch file. If Ruby is
installed, it’ll print out the version of Ruby you have installed. The version should be
greater than or equal to 1.8.7 (if 1.8.6 or below, please install Ruby with the following
instructions).

Figure A.2 Downloading the Ruby installer

195Installation on Windows
Go to http://rubyinstaller.org/downloads/. Click on the most recent Ruby version and
click Run. Walk through the guided installer’s steps. When you get to the third screen,
it’ll ask you where to install Ruby; check the two check boxes before continuing.

Now close your command prompt and launch it again, and verify that Ruby is installed
by typing ruby -v and pressing Return.

Figure A.3 Configuring the Ruby installer

Figure A.4 Ruby installed

http://rubyinstaller.org/downloads/

196 APPENDIX A Installing Sass and Compass
A.1.3 Installing Sass and Compass on Windows

Ruby comes with a system for installing Ruby-based software called RubyGems. Both
Sass and Compass can be easily installed using this system. To install the latest version
of Sass:

$ gem install sass
$ gem install compass

In each case, you should see output that looks like this:

Successfully installed sass-3.1.0
1 gem installed
Installing ri documentation for sass-3.1.0...
Installing RDoc documentation for sass-3.1.0...

After installing, you should verify that the applications are installed correctly by run-
ning the following commands:

$ sass -v
Sass 3.1.0 (XXX NAME ME)

$ compass -v
Compass 0.11.0
Copyright (c) 2008-2011 Chris Eppstein
Released under the MIT License.

A.2 Installation on Mac OS X
Mac OS X has come with Ruby installed by default for some time now, so it’s likely that
you don’t need to install Ruby.

A.2.1 Opening the Mac OS X Terminal

Figure A.5 Launching the Mac OS X Terminal

197Installation on Linux
You can launch the terminal application from the Finder by going into Applications >
Utilities and double-clicking the Terminal application.

 If you’re unfamiliar with the Mac OS X Terminal, we recommend that you read the
Terminal tutorial written by John Long, which can be found at http://wiseheartdesign
.com/articles/2010/11/12/the-designers-guide-to-the-osx-command-prompt/.

A.2.2 Installing Ruby

From the command prompt, type ruby -v and then press Return. If Ruby isn’t
installed, the command prompt will tell you bash: ruby: command not found. In this
unlikely scenario, please follow the instructions for installation found at http://
rubyosx.rubyforge.org/. Be sure to restart the Terminal after installing.

A.2.3 Installing Sass and Compass on Mac

Ruby comes with a system for installing Ruby-based software called RubyGems. Both
Sass and Compass can be easily installed using this system. To install the latest version
of Sass and Compass:

$ sudo gem install sass
$ sudo gem install compass

In each case, you should see output that looks like this:

Successfully installed sass-3.1.0
1 gem installed
Installing ri documentation for sass-3.1.0...
Installing RDoc documentation for sass-3.1.0...

After installing, you should verify that the applications are installed correctly by run-
ning the following commands:

$ sass -v
Sass 3.1.0 (XXX NAME ME)

$ compass -v
Compass 0.11.0
Copyright (c) 2008-2011 Chris Eppstein
Released under the MIT License.

A.3 Installation on Linux
Please follow your Linux distribution’s instructions for installing Ruby if it’s not
installed.

A.3.1 Opening the Linux Terminal

It’s assumed that as a Linux user you know how to access your terminal.

A.3.2 Installing Ruby

If Ruby isn’t installed, install it using your Linux distribution’s software installation
mechanism.

http://wiseheartdesign.com/articles/2010/11/12/the-designers-guide-to-the-osx-command-prompt/
http://wiseheartdesign.com/articles/2010/11/12/the-designers-guide-to-the-osx-command-prompt/
http://rubyosx.rubyforge.org/
http://rubyosx.rubyforge.org/

198 APPENDIX A Installing Sass and Compass
A.3.3 Installing Sass and Compass on Linux

Ruby comes with a system for installing Ruby-based software called RubyGems. Both
Sass and Compass can be easily installed using this system. To install the latest version
of Sass:

$ sudo gem install sass
$ sudo gem install compass

In each case, you should see output that looks like this:

Successfully installed sass-3.1.0
1 gem installed
Installing ri documentation for sass-3.1.0...
Installing RDoc documentation for sass-3.1.0...

After installing, you should verify that the applications are installed correctly by run-
ning the following commands:

$ sass -v
Sass 3.1.0 (XXX NAME ME)

$ compass -v
Compass 0.11.0
Copyright (c) 2008-2011 Chris Eppstein
Released under the MIT License.

appendix B
Getting started
with Compass

B.1 Create a new project
To start using Compass in a new project, open up your terminal and run the following:

$ compass create my-project

This will create the my-project directory if it doesn’t already exist and fill it with the
following files:

my-project/
config.rb
- sass/

- ie.scss
- print.scss
- screen.scss

- stylesheets/
- ie.css
- print.css
- screen.css

If you don’t pass a directory to the compass create command, it’ll use your current
directory.

 In config.rb, you’ll make changes to Compass configurations like asset locations
and compression level (more on that in a moment). The sass directory contains some
starter stylesheets that you can edit, rename, or toss out completely, but this is where
your Sass stylesheets will live. Finally, there’s a stylesheets directory where compiled
CSS files are written.

B.1.1 Configuring options during setup

There are several options you can use with the compass create command to config-
ure your project:

--bare (Install without default stylesheets)
--syntax sass (Use the indented syntax for default stylesheets)
--sass-dir "cool" (Use the `cool` directory for Sass)
--css-dir "style" (Use the `style` directory for CSS)
--images-dir "img" (Use the `img` directory for images)
199

200 APPENDIX B Getting started with Compass
--fonts-dir "type" (Use the `type` directory for fonts)
--javascripts-dir "js" (Use the `js` directory for javascripts)

Adding several options looks like this:

$ compass create my-project --bare --sass-dir "cool" --css-dir "style"

You may be wondering why you can set a JavaScript directory. This is because Compass
extensions can also package relevant JavaScript files, and this setting lets you tell Com-
pass where to put them when you install extensions.

B.1.2 Adding Compass to a Rails project

To install Compass within a Rails project, cd into your project directory and add this
to your Gemfile:

group :assets do
gem 'compass-rails'
Add any compass extensions here

end

Then run the following command from the terminal:

$ bundle
$ bundle exec compass init rails

With Rails, the Compass configuration file is stored in config/compass.rb.
 If your project is on Rails 2.3 or 3.0, you need to follow some additional steps, out-

lined in the compass-rails README: https://github.com/Compass/compass-rails/
blob/master/README.md.

B.2 Installing Compass extensions
Compass extensions are distributed in two ways: as Ruby gems or ad hoc extensions.
Both are easy to install and work fine together in any project. If you’re curious about
how to develop an extension, you can read about that in chapter 10.

B.2.1 Installing extensions released as Ruby gems

You can install the extension to your system gems like this:

$ sudo gem install extension-name

If you use Bundler, add this line to your Gemfile:

gem 'extension-name'

Then install the gem from the terminal:

$ bundle install

Now that you have the gem downloaded to your system, you’ll need to install it into
your project.

https://github.com/Compass/compass-rails/blob/master/README.md
https://github.com/Compass/compass-rails/blob/master/README.md

201Installing Compass extensions
B.2.2 Install extensions for an existing project

Now that you have the gem, tell Compass about it by adding the following to your
config.rb:

require 'extension-name'

Then, from your project directory, run this in the terminal:

$ compass install -r extension-name -f extension-name

Now you can begin using the extension with your project. You can install several
extensions at the same time with this command by being sure to add -r and -f with
each extension.

INSTALL EXTENSIONS FOR A NEW PROJECT

If you already have the extension’s gem installed, you can create a new project using
that extension with the following command:

$ compass create my-project -r extension-name --using extension-name

This will create a new Compass project and configure it to use your extension.

B.2.3 Installing ad hoc Compass extensions

Ad hoc extensions are simply directories containing Sass stylesheets and a few files to
tell Compass how they work. If your project doesn’t already have an extensions direc-
tory, create one and then copy the extension’s folder into it. Your project’s directory
structure might look like this:

my-project/
config.rb
extensions/

some-extension/
sass/
stylesheets/

To install ad hoc extensions on a Rails app, create an extensions directory in vendor/
plugins/compass_extensions.

 You can customize the extensions directory by setting extensions_dir in your
project’s configuration file.

B.2.4 Installing an extension’s patterns

Most extensions ship with a default pattern consisting of a stylesheet or an asset to be
used with the extension. These patterns get installed automatically with the compass
install script. But some extension authors create additional patterns that provide
usage examples or give you a boost with assets and boilerplate code. The command
for installing an extension’s pattern looks like this:

$ compass install extension-name/pattern-name

202 APPENDIX B Getting started with Compass
Compass will display the author’s included instructions (if any) along with a list of new
files installed with the pattern.

UNPACKING EXTENSIONS AND FRAMEWORKS

For some of you, using extensions installed as Ruby gems might feel unusual. Some-
times it’s helpful to be able to read the source for an extension, but with Ruby gems
the source code is stored elsewhere on your computer. To help with that, Compass
offers the ability to unpack an extension—or even the Compass framework itself—
right into your project directory. Here’s how you do it:

$ compass unpack extension-name
$ compass unpack compass

This will extract the files for the extension and the Compass framework right into
your project’s extensions directory. So now your project might look like this:

your-project/
extensions/

compass-13.0/
extension-name-1.0/

Compass will also output a nice warning essentially telling you to look but not touch. It
may be tempting to alter the code you’ve just unpacked, but it’s a bad idea and will pre-
vent you from being able to update that extension without losing your customizations.
The best use for this feature is to read the source for education or troubleshooting.

B.3 Configuring your Compass project
Compass is a library for Sass, a platform for extensions, and a system for integrating
with your project environment. The Compass configuration ties all of these parts
together to give you a smooth workflow and lots of flexibility.

B.3.1 Working with assets

Stylesheet authors frequently work with images, fonts, and JavaScripts in addition to
writing stylesheets, and these files often have a codependent relationship. For exam-
ple, in order to show a background image, the stylesheet needs to tell the browser
exactly where to find that image. If you’ve ever reorganized a project or changed a
directory name, you know the pain of having to update those URLs.

 Compass aims to help you keep everything in sync by writing asset URLs for you. In
your configuration file, you can tell Compass where to find your project’s assets and
what URLs you want to generate. Compass will even output a warning if it can’t find
something when you compile your stylesheets.

B.3.2 Configuring asset locations

To tell Compass where to find assets on your filesystem, you’ll need to set these
configurations:

203The command line
 images_dir—Defaults to <project>/images
 sass_dir—Defaults to <project>/sass
 css_dir—Defaults to <project>/stylesheets
 fonts_dir—Defaults to <project>/<css_dir>/fonts
 javascripts_dir—Defaults to <project>/javascripts

These are relative to your project directory, so setting your images_dir = img will tell
Compass to look at your-project/img/ to find your project’s images. Then, in your
stylesheets, you can reference an image by using the image-url() helper function:

#logo { background: image-url('logo.png') }

Compass will look for your image in your-project/img/logo.png and then compile
the following CSS:

#logo { background: url('/img/logo.png') }

If your project will be deployed to a subdirectory on your web server, you can custom-
ize the URL by setting the http_path configuration. You can also set URL configura-
tions for CSS, images, JavaScripts, and fonts.

 If you want to know what value Compass is using for a configuration, you can ask it
like this:

$ compass config -p sass_dir
app/stylesheets
$ compass config -p css_dir
public/stylesheets

For a deeper look at configuring Compass, flip back to chapter 8.

B.4 The command line
The primary commands for Compass are as follows:

 compass create—Create a new Compass project
 compass init—Add compass to an existing project (Rails)
 compass clean—Remove generated files and caches
 compass compile—Generate your stylesheets
 compass watch—Watch Sass files and regenerate on change

Some other useful commands are these:

 compass stats—See statistics about your stylesheets
 compass unpack <extension> —Unpack extensions into your project
 compass validate—Validate your generated CSS
 compass version—Display the version, license, and so on
 compass interactive—Enter a console for testing SassScript with Compass

204 APPENDIX B Getting started with Compass
B.4.1 Getting help

There’s a lot to remember when working with Compass, but it’s nice to know that you
can ask the command line for help. Running compass help will list the following
information:

 Commands with descriptions
 Available frameworks and extensions
 Global options for the compass command

You can also get detailed help for an individual subcommand like this:

$ compass help watch

Run this and you’ll get a nice description of what compass watch will do, its syntax,
and a full list of options with descriptions.

 You can also get help with an extension or an extension’s pattern:

$ compass help extension-name
$ compass help extension-name/pattern

If an extension author hasn’t included help text for their extension, this will show the
default Compass help screen.

appendix C
The Sass syntaxes

C.1 Indented Sass versus SCSS
Most of this book demonstrates the SCSS syntax, which stands for Sassy CSS. SCSS is a
superset of CSS, meaning that any valid CSS file is also a valid SCSS file. This means that
you can change the CSS file screen.css to screen.scss and begin adding Sass features
without needing to make any other changes. As a result, though the SCSS syntax is
newer, it has become the most popular syntax for Sass.

 Originally, Sass only had one syntax, called the indented syntax, or at that time, just
Sass. To illustrate the differences between these syntaxes, we’ll look at the same code
example written in each syntax.

 First we’ll look at the SCSS syntax.

/* Compass makes CSS3 easy!
Especially CSS3 gradients. */

@import "compass/css3";

// This mixin gives us easy gradients
// It picks colors for us, how nice.

@mixin easy-gradient($bg, $alpha: false) {
@if ($alpha) {

$bg: rgba($bg, $alpha);
}
$top: lighten($bg, 5);
$bottom: darken($bg, 5);
@include background-image(

linear-gradient($top, $bottom)
)

}

nav {
margin: 20px { left: 0; right: 0 }
@include easy-gradient(#ccc);
a { color: blue; text-decoration: none }

}

Listing C.1 SCSS syntax example
205

206 APPENDIX B The Sass syntaxes
Now let’s see the same code in the indented syntax.

/* Compass makes CSS3 easy!
Especially CSS3 gradients.

@import compass/css3

// This mixin gives us easy gradients
It picks colors for us, how nice.

=easy-gradient($bg, $alpha: false)
@if ($alpha)

$bg: rgba($bg, $alpha)
$top: lighten($bg, 5)
$bottom: darken($bg, 5)
+background-image(linear-gradient($top, $bottom))

nav
margin: 20px

left: 0
right: 0

+easy-gradient(#ccc)
a

color: blue
text-decoration: none

There are some immediately obvious differences, and some subtle differences. Let’s
break them down.

C.1.1 Whitespace versus braces and semicolons

The most striking difference is the lack of curly braces and semicolons in the indented
syntax. Whereas SCSS uses the familiar curly braces, the indented syntax uses, well,
indentation. Also, rather than using semicolons, the indented syntax uses newlines to
separate properties.

 Those who prefer the indented syntax claim that with the noisy characters
removed, their Sass is cleaner and easier to read. Those who are fond of SCSS enjoy
having the freedom to use whitespace however they like, putting multiple properties
on a single line or even splitting long functions up across several lines. They also like
how they can begin using standard CSS without having to remove characters and
reformat them to the strict whitespace requirements of the indented syntax.

 Though the use of whitespace instead of characters is the most obvious difference,
there are several others as well.

C.1.2 The @import directive

In SCSS, the @import directive requires the target to be surrounded with quote charac-
ters, but in the indented syntax, the quotes are unnecessary. It’s also important to note
that with the @import directive, file extensions aren’t needed. You can use file exten-
sions, but by avoiding them, you can import either .scss files or .sass files. With the

Listing C.2 Indented syntax example

207Indented Sass versus SCSS
directive @import "some-file";, Sass will look for some-file.sass and some-file.scss.
Because of this, both syntaxes can easily coexist, and you can write your stylesheets in
SCSS while importing extensions written by someone else in the indented syntax.

C.1.3 Mixins

The way mixins are created and used is also different. In SCSS the @mixin and
@include directives are used to define and make use of mixins:

@mixin easy-gradient($bg, $alpha: false) { ... }
@include easy-gradient(#ccc);

The indented syntax can actually use these directives in the same way as SCSS, or it can
use = instead of @mixin and + rather than @include:

=easy-gradient($bg, $alpha: false)
+easy-gradient(#ccc)

Fans of the indented syntax like to point out how minimal their mixin directives are,
though some prefer the obviousness of writing out @mixin and @include, which is why
they can also be used in the indented syntax.

C.1.4 Comments

In Sass, there are three kinds of comments. Comments beginning with // won’t
appear in the generated CSS, comments that begin with /* will appear in uncom-
pressed CSS, and comments beginning with /*! (loud comments) will appear in com-
pressed and uncompressed CSS. In the indented syntax, all of these comments can be
multiline comments if the author indents each line beneath the comment markers,
like this:

// some comment
which spans
multiple lines

/* This comment
spans multiple
lines too

/*! As does
this one

In SCSS, the // comment is a single-line comment, and the two multiline comments
must be closed with the matching close comment characters like this:

// some comment
// which spans
// multiple lines

/* This comment
spans multiple
lines too */

/*! As does
this one !*/

208 APPENDIX B The Sass syntaxes
C.1.5 Which is better?

There are Sass enthusiasts on both sides of this debate, and even some who admit to
using both syntaxes for different purposes. Thankfully, you don’t have to decide. The
maintainers of the Sass project have committed to keeping both syntaxes, and you can
even convert between the two using the sass-convert command-line tool. Thanks to
the flexibility of the @import directive, you can easily use both syntaxes alongside each
other within the same project; you just can’t use both syntaxes within the same file.

index

Symbols

_ (underscore) 34
- (dash) 32, 154–156, 158
; (semicolon) 206
: (colon) 32
! (exclamation point) 26
!default flag 35
!important flag 35, 155
() (parentheses) 156
[] (brackets) 163
{ } (braces) 165, 206
* (asterisk) 154–155, 158
/ (forward slash) 154–158
& (ampersand) 8, 29–30, 39,

77, 155
#{...} wrapper 165
% (modulo) 157
+ (plus sign) 31, 154–156, 158,

207
< operator 159
<= operator 159
= (equals symbol) 207
== operator 159
> operator 31, 159
>= operator 159
~ (tilde) 31–32
$ (dollar sign) 7, 26

Numerics

1024-pixel screen width 61
960.gs 63–64

plugin 66
using with Compass 64–66

A

<a> elements 77
abs() function 160–161
absolute URLs 126
abstracting URLs 125

avoiding broken links
127–128

avoiding stale images with
cache busting 128–129

types of URLs 125–127
:active pseudo selector 77, 119
ad hoc extensions 173

installing 201
adjust-font-size-to mixin 71
adjust() function 163
:after pseudo selector 83
all-sprites mixin 112–113
alpha() function 162–163
alternating-rows-and-columns

mixin 22
Amazon.com 110
ampersand (&) 8, 29–30, 39,

77, 155
and operator 159
append-x class 58
Apple Safari 90
archives, distributing exten-

sions as 186–187
arguments

default values for 40
passing to mixins 39–40

article elements 29, 31
aside elements 29
asset argument 145

asset hosts
avoiding mixed content

warnings with 146
generating URLs for 145

asset_host function 145
assets

for Compass projects 202–
203

generating domain-
relative 133–134

asterisk (*) 154–155, 158
automatic-sprites

directory 112

B

background mixin 98
background property 79, 85,

158, 181
background-color

property 181
background-image

property 114, 118
background-position

property 79
badError class 11
base class for sprites 118–119
_base partial 59–61
baseline for vertical

rhythm 68–71
Bjørkøy, Olav 56
blue() function 162–163
Blueprint 56–58

in Compass for grid 58–60
in Compass without

classes 60–61
209

210 INDEX
blueprint-grid mixin 60
body elements 86
Boolean data type 159
border property 27–28, 32, 158
border-color property 32
border-corner-radius mixin 23
border-radius mixin 89
border-radius property 37, 89,

91, 97
border-style property 32
border-width property 32
box-shadow mixin 95
box-shadow property 93, 97
braces { } 165, 206
broken links 127–128
browser, designing in 131–132
Bundler 189–190, 200

C

cache busting 128–129
calc() function 157, 165
canvas, clearing 15–18
cascade, defined 43, 71
Cascading Stylesheets level 3.

See CSS3
CDN (content delivery

network) 13, 129
ceil() function 61, 161
child combinator 31–32
Clayton, Joshua 56
clean command 203
clearing canvas with resets

15–18
CLI (command-line

interface) 15
cmd.exe 193
CNAME record 144
CodePen 172
color data type 158, 162–164
color-helpers.scss 172
@column mixin 21, 60
columns 54
combinators 31
command-line interface.

See CLI
commands for Compass

203–204
comments 207
community ecosystem of

Compass 14
comparable() function 161
Compass

960 Grid System plugin
for 66

and CSS3 89–90
and grid frameworks 19–21,

53
and prototyping 129–130

designing in browser
131–132

relative URLs 130–131
and vendor prefixes 23–24
commands for 203–204
community ecosystem of 14
compiling stylesheets for

production 133
components of 12
creating project 14–15
CSS3 module

embedding fonts with
@font-face 99–100

gradients 97–98
Internet Explorer

support 100–103
rounded corners 90–92
shadows 92–96

extensions
creating template 185–186
demo project for 174–176
distributing as Ruby

gem 187–190
distributing in

archive 186–187
distributing on

GitHub 190–191
installing 174, 200–202
nice-buttons

extension 176–184
sharing stylesheets

using 173
testing 174
unpacking 202

help command 204
layout helpers

sticky-footer mixin 85–86
stretch mixin 87

library for 13
project configuration 13–14
projects

adding to Rails
project 200

assets for 202–203
creating 199
options for 199–200

resets 15–18
global resets 74–75
targeted resets 75–76

sprites in
all-sprites mixin 112–113

base class for 118–119
creating map from

folder 112
dimensions for 117–118
magic sprite selectors 119
map layout 116–117
modifying existing

maps 117
position of 116
repeating 115–116
single-sprite mixin

113–114
spacing for 115
workflow for 111

table helpers 21–23
typography utilities 76

link helpers 77–79
list helpers 79–83
text helpers 83–85

using 960.gs for grid 64–66
using Blueprint for grid

58–60
using Blueprint without

classes 60–61
vertical rhythm with 66–68

baseline for 68–71
leading and trailing

whitespace 71–72
--compass option 136
compile command 203
compiling stylesheets for

production 133
complement() function 162,

164
compressed output format 143
compression

gzip compression 143
image compression 144

conditional styling 168–169
config.rb 15, 199
container class 20, 57
containers 54

in grids 54–55
content delivery network.

See CDN
content elements 29, 86
control directives 166–167

conditional styling 168–169
repeating styles for list of

values 168
repeating styles for range of

numbers 167
converting between units 157
cookieless domains 144
copyright notices 134

211INDEX
core stylesheets 142
create command 203
.css files 36
css_dir setting 203
CSS3 (Cascading Stylesheets

level 3) 88–89
Compass and 89–90
vendor prefixes and 89

CSS3 module
embedding fonts with

@font-face 99–100
gradients 97–98
Internet Explorer

support 100–103
rounded corners 90–92
shadows 92–96

CSS3 PIE (CSS3 Progressive
Internet Explorer)
100–103

Cufón 84
current class 8

D

dash (-) 32, 154–156, 158
dashes vs. underscores 28
data types

Booleans 159
colors 158
lists 158–159
numbers 157–158
strings 155–156

data URIs 146–147
declaring variables 26–27
!default flag 35
deg unit 163
demo project for

extensions 174–176
deploying to production

adding copyright notices 134
changing deployment

location 132–133
compiling stylesheets 133
deploying CSS files 135
generating domain-relative

assets 133–134
using source control

135–136
using staging servers

136–137
descendant combinator 29
design agnostic 13
designing in browser 131–132
development environment 133

dimensions for sprites 117–118
$direction argument 82
distributing extensions

as archives 186–187
as Ruby gems

converting extension to
gem 187–188

installing gem 189
installing gem with

Bundler 189–190
publishing gem 189

on GitHub 190–191
Django 13
documentation for

extensions 186
dollar sign ($) 7, 26
DOM (Document Object

Model) 14
domain-relative assets 133–134
Drupal 13
DRY (Don’t Repeat Yourself) 6
dynamic stylesheets 5

E

@each directive 158, 166, 168
ellipsis mixin 83–84
@else directive 168
em unit 157
embedding fonts 99–100
equals symbol (=) 207
error class 11, 41–43
establish-baseline mixin 71
:even pseudo selector 22
exclamation point (!) 26
experimental mixin 165
experimental-support-for-xxxx

settings 90
expressions 154–155

using in properties 165–166
using in selectors 165–166

@extend directive 40, 42, 113,
182

extensions
creating template 185–186
demo project for 174–176
directory 201
distributing as Ruby gem

converting extension to
gem 187–188

installing gem 189
installing gem with

Bundler 189–190
publishing gem 189

distributing in archive
186–187

distributing on GitHub
190–191

installing 174
ad hoc extensions 201
as Ruby gems 200
extension patterns

201–202
for existing project 201
for new project 201

nice-buttons extension
176–177
allowing custom color

selections 177–182
refactoring 182–184

patterns from 201–202
sharing stylesheets using 173
should not output CSS 182
testing 174
unpacking 202

extensions_dir setting 201

F

-f flag 201
filter syntax 166
:first-child pseudo selector 82
fixed grids vs. fluid grids 55
floor() method 61, 161
fluid grids vs. fixed grids 55
:focus pseudo selector 77
folders for sprite maps 112
@font-face directive 37, 84,

99–100
font-files() helper function 100
font-url() helper function 127,

130
fonts_dir setting 203
footer elements 75, 86
@for directive 166–167
forward slash (/) 154–158
@function directive 164–165
functions 160

for colors 162–164
for lists 164
for numbers 160–161
user-defined 164–165

G

Gemfile 189–190
gemspec directory 187
GIF format 144

212 INDEX
GitHub 190–191
global-reset mixin 18, 74–75
Google Chrome 90
Google Font API 36
Google page speed

documentation 139
gradients 97–98
grayscale() function 162, 164
green() function 162–163
grid_x class 64
grids 49–50

960.gs 63–64
using with Compass 64–66

Blueprint 56–58
in Compass for grid 58–60
in Compass without

classes 60–61
columns in 54
containers in 54–55
fixed vs. fluid 55
frameworks for 50–52

and Compass 19–21, 53
and Sass 53

grid frameworks 50–52
and Sass/Compass 53

gutters in 55
semantic vs. pragmatic 55
vertical rhythm with

Compass 66–68
baseline for 68–71
leading and trailing

whitespace 71–72
Grosenbach, Geoffrey 50
gutters 54

in grids 55
gzip compression 143

H

header elements 75
$height argument 80
Hello! HTML5 and CSS3 5
help command 204
horizontal-list class 8
horizontal-list mixin 81–82
:hover pseudo selector 29–30,

77–78, 119
hover-link mixin 78
hsl() function 158, 160, 163
hsla() function 158, 162
HTC behavior 100
html element 86
HTTP requests, making

fewer 109

http_images_dir setting 133
http_images_path setting 134
http_path setting 133, 203
hue() function 162–163

I

@if directive 167–169
if-bright() function 179–180
if() function 164
image-url() helper

function 14, 127, 130, 203
images

avoiding stale with cache
busting 128–129

compressing 144
images_dir setting 203
img elements 84
@import directive

and performance 140–142
syntax comparison 206–207
usage 16, 21, 33, 35

!important flag 35, 155
importing files

default variable values 34–35
nesting of 35
plain CSS imports 35–36
using partials 34

@include directive 9, 18,
37–38, 92, 207

indented Sass syntax 5
vs. SCSS syntax 205–206, 208

@import directive
206–207

comments 207
mixins 207
whitespace vs. braces and

semicolons 206
informative color

functions 162–164
inheriting elements 42–43
init command 203
inline-list mixin 83
inner-table-borders mixin 22
installing

extensions 174
ad hoc extensions 201
as Ruby gems 200
extension patterns

201–202
for existing project 201
for new project 201

on Linux
installing Ruby 197

installing Sass and
Compass 198

opening Linux
Terminal 197

on Mac OS X 197
on Windows

installing Ruby 194–195
installing Sass and

Compass 196
opening Windows com-

mand prompt 193
Ruby gems 189

with Bundler 189–190
interactive command 203
Internet Explorer. See Micro-

soft Internet Explorer
interpolation 165
invert() function 162, 164

J

Java 36
JavaScript 36
javascripts_dir setting 203
join() function 164
JPG format 144
jQuery 3

L

last class 57
:last-child pseudo selector

82–83
layout helpers

sticky-footer mixin 85–86
stretch mixin 87

leader mixin 72
leading whitespace 71–72
leading, defined 68
legal use of fonts 99
length() function 164
li elements 80
lib directory 187
library for Compass 13
lightness() function 162–163
line height 68
$line-height argument 80
link helpers

hover-link mixin 78
link-colors mixin 77–78
unstyled-link mixin 78–79

link specificity 77
link-colors mixin 77–78
links, broken 127–128

213INDEX
Linux
installing Compass 198
installing Ruby 197
installing Sass 198
opening Linux Terminal 197

list data type
functions for 164
repeating styles for range

of 168
list helpers

horizontal-list mixin 81–82
inline-list mixin 83
no-bullet(s) mixin 80
pretty-bullets mixin 79–80

list-style-image property 79
loud comments 134, 207

M

Mac OS X 197
magic sprite selectors 119
make tool 136
manifest.rb file 185
maps, sprite

creating from folder 112
layout for 116–117
modifying existing 117

math for column layouts 19
MD-5 fingerprints 129
@media directive 37
Meyer, Eric 15, 74
Microsoft Internet Explorer

and CSS3 module 100–103
and protocol relative

URLs 146
hacks for fonts 100
handling quirks with

Blueprint 57
HTC behavior in 100
support for list-style

property 80
support for list-style-image

property 79
vendor prefixes support 90

Microsoft Windows
installing Compass 196
installing Ruby 194–195
installing Sass 196
opening Windows command

prompt 193
MIME type 147
min-height property 86
mix() function 162
mixed content warnings

with 146

@mixin directive 9, 18, 37, 207
mixins 8–10

CSS rules in 38–39
default argument values 40
making stylesheets more

descriptive 79
passing arguments to 39–40
syntax comparison 207
when to use 37–38

modules 16
modulo 157
-moz vendor prefix 23, 89, 91
-moz-border-radius property 37
Mozilla Firefox 90

N

names for variables 28
nav elements 75
nb-gradient mixin 179–180
nesting

of imported files 35
selectors 7–8

child and sibling
combinators 31–32

nesting properties 32–33
nesting selector

groups 30–31
parent selector 29–30
performance of 148–150

.NET 13
nice-buttons extension

176–177
allowing custom color

selections 177–182
refactoring 182–184

no-bullet(s) mixin 80
no-repeat value 115
not operator 159
nowrap mixin 84
:nth-child pseudo selector 22
nth() function 164
number data type

functions for 160–161
repeating styles for range

of 167

O

:odd pseudo selector 22
$offset-bottom argument 87
$offset-left argument 87
$offset-right argument 87
$offset-top argument 87

omega class 64
opacity() function 162
Opera 90
options for Compass

projects 199–200
or operator 159
outer-table-borders mixin 22
output_style setting 143

P

$padding argument 80, 82
padding-leader mixin 72
padding-trailer mixin 72
parent selector 29–30
parentheses () 154, 156, 158
Pareto principle 78, 148
partials 34
patterns, extension 201–202
“pay it forward” in

community 14
PeepCode blog 50
percentage() function 161
performance

avoiding @import
directive 140–142

measuring 139
of selectors 148

danger of over-
nesting 148–150

using asset hosts
avoiding mixed content

warnings with 146
generating URLs for 145

using compression
gzip compression 143
image compression 144

using data URIs 146–147
-pie-background property 103
placeholder 12
plus sign (+) 31, 154–156, 158,

207
PNG format 111, 144
Pngcrush tool 144
position of sprites 116
pragmatic grids vs. semantic

grids 55
prepend-x class 58
preprocess 5
pretty-bullets mixin 79–80
production environment 133
projects 15

adding to Rails project 200
assets for 202–203

214 INDEX
projects (continued)
configuration of 13–14
creating 14–15, 199
installing extensions for

existing 201
installing extensions when

creating 201
options for 199–200

properties
nesting 32–33
using expressions in

165–166
protocol relative URLs 126
prototyping

abstracting URLs 125
avoiding broken

links 127–128
avoiding stale images with

cache busting
128–129

types of URLs 125–127
and Sass/Compass 129–130

designing in browser
131–132

relative URLs 130–131
deploying to production

adding copyright
notices 134

changing deployment
location 132–133

compiling stylesheets 133
deploying CSS files 135
generating domain-relative

assets 133–134
using source control

135–136
using staging servers

136–137
publishing Ruby gems 189
pull-x class 58
push-x class 58
px unit 156

Q

quoted string 155

R

-r flag 201
Rails projects 200
README file 186–187
red() function 162–163
referencing variables 27–28
relative URLs 126

relative_assets setting 133
repeat-x value 115
repeating

and selector inheritance
10–12

for list of values 168
for range of numbers 167
for sprites 115–116
nesting selectors 7–8
using mixins 8–10
using variables 6–7

replace-text mixin 84–85
replace-text-with-dimensions

mixin 85
Reset module 16
reset-box-model mixin 76
reset-focus mixin 76
reset-font mixin 76
reset-html5 mixin 18, 75–76
reset-quotation mixin 76
reset-table mixin 76
reset-table-cell mixin 76
resets 15–18

global resets 74–75
targeted resets 75

comparison of available
resets 76

reset-html5 mixin 75–76
@return directive 164–165
rgb() function 158, 162
rgba() function 158, 162
root relative URLs 126
round() function 161
rounded corners, using CSS3

module 37, 90, 92
Ruby 3, 13, 193

file for configuration 137
installing

on Linux 197
on Mac OS X 197
on Windows 194–195

Ruby gems
distributing extensions as

converting extension to
gem 187–188

installing gem 189
installing gem with

Bundler 189–190
publishing gem 189

installing extensions 200

S

Sass 5
and grid frameworks 53

and prototyping 129–130
designing in browser

131–132
relative URLs 130–131

control directives 166–167
conditional styling

168–169
repeating styles for list of

values 168
repeating styles for range

of numbers 167
data types

Booleans 159
colors 158
lists 158–159
numbers 157–158
strings 155–156

dynamic stylesheets 5
expressions 154–155

using in properties
165–166

using in selectors 165–166
functions 160

for colors 162–164
for lists 164
for numbers 160–161
user-defined

functions 164–165
importing files

default variable values
34–35

nesting of 35
plain CSS imports 35–36
using partials 34

indented Sass vs. SCSS
205–206, 208
@import directive

206–207
comments 207
mixins 207
whitespace vs. braces and

semicolons 206
mixins 8–10

CSS rules in 38–39
default argument

values 40
passing arguments to

39–40
when to use 37–38

nesting selectors 7–8
child and sibling

combinators 31–32
nesting properties 32–33
nesting selector

groups 30–31

215INDEX
Sass, nesting selectors (continued)
parent selector 29–30

selector inheritance 10–12,
43
best practices using 43–44
inheriting elements 42–43
when to use 41–42

sharing stylesheets using
benefits of 171–172
limitations of 172–173

silent comments 36
variables 6–7

declaring 26–27
names for 28
referencing 27–28

website for 4
sass command 7
sass directory 15
.sass files 5, 33, 206
sass_dir setting 203
sass-convert tool 208
saturation() function 162–163
scale() function 162–163
screen.css file 16
screen.scss file 21, 59, 65, 112
scripting

control directives 166–167
conditional styling

168–169
repeating styles for list of

values 168
repeating styles for range

of numbers 167
data types

Booleans 159
colors 158
lists 158–159
numbers 157–158
strings 155–156

expressions 154–155
using in properties

165–166
using in selectors 165–166

functions 160
for colors 162–164
for lists 164
for numbers 160–161
user-defined

functions 164–165
SCSS (Sassy CSS) syntax

205–206, 208
@import directive 206–207
comments 207
mixins 207
whitespace vs. braces and

semicolons 206

.scss files 5, 33, 206
search engine optimization.

See SEO
section elements 31
section stylesheets 142
selected class 27
selector groups 30
selectors

inheritance for 10–12, 43
best practices using 43–44
inheriting elements 42–43
when to use 41–42

performance of 148
danger of over-

nesting 148–150
using expressions in

165–166
semantic grids vs. pragmatic

grids 55
semantic vs. presentational 38
SEO (search engine

optimization) 84
seriousError class 42
set() function 162–163
shadows 92–96
sharing stylesheets

purpose of 171
using Compass

extensions 173
using Sass

benefits of 171–172
limitations of 172–173

See also extensions
sibling combinator 31–32
$sidebar-columns variable 21
silent comments 36, 207
single page stylesheets 142
single-sprite mixin 113–114
single-text-shadow mixin 96
smart layout 116
Smashing Magazine 3
Smith, Nathan 61
social coding 190–191
source control 135–136
spacing for sprites 115
$spacing parameter 10
span-x class 20, 58
spread argument 94
sprite-background-position

helper function 121
sprite-dimensions mixin 122
sprite-map helper function 120
sprite-position helper 121–122
sprites 108

advantages of 109

disadvantages of 110
helpers

sprite helper 120–121
sprite-dimensions

mixin 122
sprite-map helper 120
sprite-position

helper 121–122
in Compass

all-sprites mixin 112–113
base class for 118–119
creating map from

folder 112
dimensions for 117–118
magic sprite selectors 119
map layout 116–117
modifying existing

maps 117
position of 116
repeating 115–116
single-sprite mixin

113–114
spacing for 115
workflow for 111

staging servers 136–137
staging_config.rb file 137
stale images 128–129
stats command 149, 203
sticky-footer mixin 85–86
stretch mixin 87
stretch-x argument 87
stretch-y argument 87
string data type 155–156
stylesheet-url() helper

function 127, 130
stylesheets

directory 15
grouping of 142
See also CSS3

support URLs for
extensions 186

syntax comparison (Sass) 5,
205–208

@import directive 206–207
comments 207
mixins 207
whitespace vs. braces and

semicolons 206

T

table helpers 21–23
table-scaffolding mixin 21

216 INDEX
:target pseudo selector 119
targeted resets 75

comparison of available
resets 76

reset-html5 mixin 75–76
td elements 21
templates 185–186
testing extensions 174
text helpers

ellipsis mixin 83–84
nowrap mixin 84
replace-text mixin 84–85

text-overflow property 83–84
text-shadow mixin 95–96
text-shadow property 93, 97
th elements 21
tilde (~) 31–32
trailer mixin 72
trailing whitespace 71–72
transformative color

functions 162–164
type-of() function 164
typography utilities 76

link helpers
hover-link mixin 78
link-colors mixin 77–78
unstyled-link mixin 78–79

list helpers
horizontal-list mixin

81–82
inline-list mixin 83
no-bullet(s) mixin 80
pretty-bullets mixin 79–80

text helpers
ellipsis mixin 83–84

nowrap mixin 84
replace-text mixin 84–85

U

ul elements 79
underscore (_) 34
unit() function 161
unitless() function 161
units, converting between 157
unpacking extensions 202
unquoted string 155
unstyled-link mixin 78–79
url() function 125, 156
URLs (Uniform Resource Loca-

tors)
abstracting 125
avoiding broken links

127–128
avoiding stale images with

cache busting 128–129
generating for asset

hosts 145
types of 125–127
using relative 130–131

user experience 77
user-defined functions

164–165

V

validate command 203
variables 6–7

declaring 26–27
default values for 34–35

names for 28
referencing 27–28

vendor prefixes 23
and Compass 23–24
and CSS3 89

version command 203
vertical layout 116
vertical rhythm 66–68

baseline for 68–71
leading and trailing

whitespace 71–72
:visited pseudo selector 77

W

watch command 203
waterfall diagrams 139
web designers 3
-webkit vendor prefix 23, 89, 91
-webkit-border-radius

property 37
WebPagetest 139
white-space property 84
whitespace

in web design 49–50
syntax comparison 206

$width argument 80
Windows. See Microsoft Win-

dows

Y

YSlow 139

Netherland ● Weizenbaum ● Eppstein ● Mathis

F
or 15 years, we’ve been using CSS to patiently paint the web
by hand. No more! Sass and Compass add scripting and a
library of components to standard CSS so you can simplify

stylesheet authoring, automate tedious tasks, and add dynamic
styling features to your pages. Th ink of Sass and Compass as
power tools that allow you to paint with remarkable speed and
precision.

Sass and Compass in Action is a hands-on guide to stylesheet
authoring using these two revolutionary tools. Th is practical
book shows you how to eliminate common CSS pain points and
concentrate on making your pages pop. You’ll begin with simple
topics like CSS resets and then progress to more substantial chal-
lenges like building a personal stylesheet framework to bundle
and reuse your own approaches and opinions.

What’s Inside
● CSS for desktop and mobile web apps
● Loaded with examples and reusable techniques
● Authors are Sass and Compass creators
 and core team members

Wynn Netherland is a full stack web developer who cohosts
Th e Changelog Podcast. Chris Eppstein is the creator of Compass
and a member of the Sass core team. Brandon Mathis is a
passionate professional web designer with deep Sass skills.
Nathan Weizenbaum is the creator and lead developer of Sass.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/SassandCompassinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Sass and Compass IN ACTION

WEB DEVELOPMENT

M A N N I N G

“Salient commentary from
the creators of Sass and

 Compass … a must-read!”
—David A. Mosher

DAVEMO Consulting

“An excellent reference for
learning Sass and Compass.”—Kevin Sylvestre, Pose

“Learn from the people
who transformed CSS into

something fun!”—Jeroen van Dijk, ADGOJI

“Takes your understanding
of Compass and Sass
 to the next level.”—James Hafner, Rocket Mobile

“Excellent real-world
examples.”—Jacob Rohde, Amino

SEE INSERT

	Sass and Compass
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1 Getting acquainted with Sass and Compass
	1 make stylesheets fun again
	1.1 Getting started with Sass
	1.1.1 From CSS to Sass
	1.1.2 Think dynamic
	1.1.3 Don’t Repeat Yourself

	1.2 Hello Sass: DRYing up your stylesheets
	1.2.1 Reuse property values with variables
	1.2.2 Write long selectors more quickly with nesting
	1.2.3 Reuse chunks of style with mixins
	1.2.4 Avoid property duplication with selector inheritance

	1.3 What is Compass?
	1.3.1 The Compass library
	1.3.2 Simple stylesheet projects
	1.3.3 Community ecosystem

	1.4 Create a Compass project
	1.5 Solve real-world CSS problems with Compass
	1.5.1 Clear the canvas with resets
	1.5.2 Create layouts without a calculator
	1.5.3 Zebra-stripe like a pro with table helpers
	1.5.4 Easy CSS3 without vendor prefixes

	1.6 Summary

	2 Basic Sass syntax
	2.1 Working with variables
	2.1.1 Declaring
	2.1.2 Referencing
	2.1.3 Variable names: dashes or underscores?

	2.2 Nesting CSS rules
	2.2.1 &, the parent selector
	2.2.2 Nesting selector groups
	2.2.3 Child and sibling combinators: >, +, and ~
	2.2.4 Nested properties

	2.3 Importing Sass files
	2.3.1 Using Sass partials
	2.3.2 Default variable values
	2.3.3 Nested imports
	2.3.4 Plain CSS imports

	2.4 Silent comments
	2.5 Introducing mixins
	2.5.1 When to use mixins
	2.5.2 CSS rules in mixins
	2.5.3 Passing arguments to a mixin
	2.5.4 Default argument values

	2.6 Trimming CSS with selector inheritance
	2.6.1 When to use inheritance
	2.6.2 Advanced inheritance
	2.6.3 How inheritance works
	2.6.4 Best practices when using inheritance

	2.7 Summary

	Part 2 Using Sass and Compass in practice
	3 CSS grids without the math
	3.1 What is a grid?
	3.1.1 Without CSS grids, or designing without a net
	3.1.2 What is a grid system or framework and how does it work?
	3.1.3 Grids with Sass and Compass

	3.2 Getting started with grids
	3.2.1 Terminology
	3.2.2 Choosing a grid style, semantic versus pragmatic
	3.2.3 Fixed versus fluid grids

	3.3 Using Blueprint
	3.3.1 Blueprint with plain CSS
	3.3.2 Blueprint grids with Compass
	3.3.3 Blueprint in Compass without the classes

	3.4 Using 960.gs
	3.4.1 A basic 960 layout
	3.4.2 Using the 960 Grid System with Compass

	3.5 Vertical rhythm with Compass
	3.5.1 Establishing a baseline
	3.5.2 Leading and trailing whitespace

	3.6 Summary

	4 Eliminate the mundane using Compass
	4.1 A better blank slate with targeted resets
	4.1.1 Global resets
	4.1.2 Gain more control with targeted resets

	4.2 Utilities for faster, better-looking typography
	4.2.1 Anchors away: link helpers
	4.2.2 Creating versatile lists
	4.2.3 Taming text with helpers

	4.3 Layout helpers
	4.3.1 Sticky footers
	4.3.2 Stretching elements

	4.4 Summary

	5 CSS3 with Compass
	5.1 What is CSS3?
	5.1.1 New properties: vendor prefixes got you down?
	5.1.2 Compass to the rescue

	5.2 Using CSS3 with Compass
	5.2.1 Rounded corners
	5.2.2 CSS3 shadows
	5.2.3 Gradients
	5.2.4 Embedding fonts with @font-face

	5.3 Support for Internet Explorer with CSS PIE
	5.4 Summary

	Part 3 Tuning for production
	6 Spriting
	6.1 How do CSS sprites work?
	6.2 Why is spriting necessary?
	6.2.1 The fewer HTTP requests, the better
	6.2.2 The soul-crushing tedium of doing it manually
	6.2.3 The Compass solution

	6.3 Spriting with Compass
	6.3.1 Creating a sprite map
	6.3.2 Generating spriting CSS

	6.4 Configuring Compass sprites
	6.4.1 Customizing the sprite map
	6.4.2 Customizing the sprite CSS

	6.5 Mastering the magic with sprite helpers
	6.5.1 Creating sprite maps
	6.5.2 Writing sprite CSS

	6.6 Summary

	7 From prototype to production
	7.1 Abstracting URLs
	7.1.1 Generating URLs to assets
	7.1.2 Avoiding broken links
	7.1.3 Avoiding stale images with cache busting

	7.2 Prototyping with Sass and Compass
	7.2.1 Simplifying your development environment
	7.2.2 Designing in the browser

	7.3 Deploying to production
	7.3.1 Surprise! It’s moving time
	7.3.2 Compiling for production
	7.3.3 Generating domain-relative assets
	7.3.4 Adding copyright notices
	7.3.5 Deploying CSS is simple
	7.3.6 Working with source control and the deployment process
	7.3.7 Working with staging servers

	7.4 Summary

	8 High-performance stylesheets
	8.1 Measuring client-side performance
	8.2 Avoiding HTTP requests with server-side @import
	8.3 Reducing transfer time with compression
	8.3.1 gzip compression
	8.3.2 Image compression

	8.4 Speeding up page loads with asset hosts
	8.4.1 Generating URLs with asset hosts
	8.4.2 Avoiding mixed content warnings with domain-based assets

	8.5 Inline data URIs
	8.6 Selector performance
	8.6.1 It all adds up
	8.6.2 The danger of over-nesting

	8.7 Summary

	Paert 4 Advanced Sass and Compass
	9 Scripting with Sass
	9.1 Using expressions
	9.2 Understanding data types
	9.2.1 Strings and names
	9.2.2 Numbers
	9.2.3 Colors
	9.2.4 Lists
	9.2.5 Booleans

	9.3 Functions
	9.3.1 Number functions
	9.3.2 Color functions
	9.3.3 List functions
	9.3.4 Other Sass functions
	9.3.5 User-defined functions

	9.4 Using expressions in selectors and property names
	9.5 Control directives
	9.5.1 Repeating styles for a range of numbers
	9.5.2 Repeating styles for a list of values
	9.5.3 Conditional styling

	9.6 Summary

	10 Creating and sharing a Compass extension
	10.1 Sharing and reusing stylesheets
	10.1.1 Sass is easier to share than CSS
	10.1.2 Share-ready Sass
	10.1.3 Sharing Sass isn’t enough
	10.1.4 Why use a Compass extension?

	10.2 A simple extension
	10.2.1 Installing ad hoc extensions
	10.2.2 Testing your extension

	10.3 Creating an extension demo project
	10.4 Writing an advanced extension
	10.4.1 Automating the hard parts
	10.4.2 Refactoring your extension

	10.5 Creating a template
	10.6 Distributing extensions
	10.6.1 Distributing extensions in an archive
	10.6.2 Distributing an extension as a Ruby gem
	10.6.3 Social coding on GitHub

	10.7 Summary

	Appendix A Installing Sass and Compass
	A.1 Installation on Windows
	A.1.1 Opening the Windows command prompt
	A.1.2 Installing Ruby on Windows
	A.1.3 Installing Sass and Compass on Windows

	A.2 Installation on Mac OS X
	A.2.1 Opening the Mac OS X Terminal
	A.2.2 Installing Ruby
	A.2.3 Installing Sass and Compass on Mac

	A.3 Installation on Linux
	A.3.1 Opening the Linux Terminal
	A.3.2 Installing Ruby
	A.3.3 Installing Sass and Compass on Linux

	Appendix B Getting started with Compass
	B.1 Create a new project
	B.1.1 Configuring options during setup
	B.1.2 Adding Compass to a Rails project

	B.2 Installing Compass extensions
	B.2.1 Installing extensions released as Ruby gems
	B.2.2 Install extensions for an existing project
	B.2.3 Installing ad hoc Compass extensions
	B.2.4 Installing an extension’s patterns

	B.3 Configuring your Compass project
	B.3.1 Working with assets
	B.3.2 Configuring asset locations

	B.4 The command line
	B.4.1 Getting help

	Appendix C The Sass syntaxes
	C.1 Indented Sass versus SCSS
	C.1.1 Whitespace versus braces and semicolons
	C.1.2 The @import directive
	C.1.3 Mixins
	C.1.4 Comments
	C.1.5 Which is better?

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

