
THE EXPERT’S VOICE® IN OPEN SOURCE

Spring

Persistence with

Hibernate

Paul Tepper Fisher and Brian D. Murphy

Guides you through the essential aspects and

best practices of building a real application, using

Spring Framework 3, Hibernate 3.5, Grails, and Roo

Covers

 Spring 3,
Hibernate 3.5,
Grails, and Roo!

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Spring Persistence

with Hibernate

■ ■ ■

PAUL TEPPER FISHER

BRIAN D. MURPHY

www.allitebooks.com

http://www.allitebooks.org

ii

Spring Persistence with Hibernate

Copyright © 2010 by Paul Tepper Fisher and Brian D. Murphy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2632-1

ISBN-13 (electronic): 978-1-4302-2633-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editors: Steve Anglin, Tom Welsh
Technical Reviewer: Sia Cyrus
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Marilyn Smith
Compositor: Kimberly Burton
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.allitebooks.com

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

To Melanie, for making it all worthwhile

—Paul

I would like to dedicate this, my first print book, to my mom. I miss you always

—Brian

www.allitebooks.com

http://www.allitebooks.org

 iv

Contents at a Glance

■About the Authors.. xii

■About the Technical Reviewer.. xiii

■Acknowledgments.. xiv

■Preface ... xvi

■Chapter 1: Architecting Your Application with Spring, Hibernate, and Patterns1

■Chapter 2: Spring Basics ...17

■Chapter 3: Basic Application Setup ...33

■Chapter 4: Persistence with Hibernate..49

■Chapter 5: Domain Model Fundamentals...69

■Chapter 6: DAOs and Querying ..85

■Chapter 7: Transaction Management ..109

■Chapter 8: Effective Testing...125

■Chapter 9: Best Practices and Advanced Techniques ...137

■Chapter 10: Integration Frameworks ..155

■Chapter 11: GORM and Grails ..189

■Chapter 12: Spring Roo ...215

■Index..235

www.allitebooks.com

http://www.allitebooks.org

 v

Contents

■About the Authors.. xii

■About the Technical Reviewer.. xiii

■Acknowledgments.. xiv

■Preface .. xv

■Chapter 1: Architecting Your Application with Spring, Hibernate, and Patterns1

The Benefit of a Consistent Approach..1

The Significance of Dependency Injection.. 2

A Synergistic Partnership ..2

The Story of Spring’s and Hibernate’s Success ... 3

A Better Approach for Integration... 3

Best Practices for Architecting an Application ... 4

Other Persistence Design Patterns ..12

The Template Pattern ... 12

The Active-Record Pattern.. 14

Summary ...15

■Chapter 2: Spring Basics ...17

Exploring Spring’s Architecture ...18

The Application Context.. 18

Beans, Beans, the Magical Fruit... 20

The Spring Life Cycle.. 20

Understanding Bean Scopes .. 22

Dependency Injection and Inversion of Control ...24

Setter-Based Dependency Injection ... 24

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

vi

Constructor-Based Dependency Injection .. 25

Instance Collaboration.. 26

Coding to Interfaces ... 27

Dependency Injection via Autowiring ... 28

@Annotation-Based Dependency Injection .. 29

Set It and Forget It!... 30

Injecting Code Using AOP and Interceptors ...31

Summary ...32

■Chapter 3: Basic Application Setup ...33

Application Management with Maven ...33

Managed Dependencies ... 33

Standard Directory Structure.. 35

POM Deconstruction ... 35

Spring Configuration..37

Namespace Support ... 38

Externalizing Property Configurations .. 38

Component Scanning ... 38

Import Statements.. 39

Database Integration..40

JDBC Support ... 40

Integration with JNDI.. 41

Web Application Configuration ..43

Servlet Definition .. 44

Spring MVC... 45

Summary ...47

■Chapter 4: Persistence with Hibernate..49

The Evolution of Database Persistence in Java ...49

EJB, JDO, and JPA.. 50

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vii

vii

How Hibernate Fits In ... 52

JPA Interface Hierarchy ...52

The Art Gallery Domain Model and DAO Structure...54

An @Entity-Annotated POJO... 55

Simplified DAO Pattern with Generics .. 56

The Life Cycle of a JPA Entity ... 62

JPA Configuration ..64

Bare-Bones JPA Setup ... 64

Spring Integration... 66

Summary ...68

■Chapter 5: Domain Model Fundamentals...69

Understanding Associations ..69

Building the Domain Model..71

Convention over Configuration ... 74

Managing Entity Identifiers... 75

Using Cascading Options to Establish Data Relationships ... 76

Adding Second-Level Caching.. 77

Using Polymorphism with Hibernate .. 78

Summary ...84

■Chapter 6: DAOs and Querying ..85

A Basic Hibernate DAO Implementation...85

Building a DAO.. 86

Using Spring’s Hibernate Support Classes ... 87

Enabling Query Caching with the HibernateTemplate .. 88

Going Template-less... 89

Querying in Hibernate ..92

Loading an Entity .. 93

Querying for a Particular Type.. 93

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

viii

Using Named Parameters... 94

Querying Using Core Hibernate .. 95

Using Named Queries ... 96

Working with Polymorphic Queries .. 96

Persisting Data with Hibernate ..97

Saving and Updating Data .. 97

Handling Binary Data.. 97

Understanding the Benefits of the Criteria API ... 98

Using the JPA 2.0 Criteria API... 99

Summary ...107

■Chapter 7: Transaction Management ..109

The Joy of ACID..110

Understanding Isolation Levels..111

Serializable... 112

Repeatable Read .. 112

Read Committed ... 113

Read Uncommitted ... 113

Controlling ACID Reflux..113

Platform Transaction Management .. 114

Declarative Transaction Management.. 115

Programmatic Transaction Management ... 120

Transactional Examples...121

Creating a Batch Application .. 121

Using Two Datasources.. 122

Summary ...123

■Chapter 8: Effective Testing...125

Unit, Integration, and Functional Testing...126

Using JUnit for Effective Testing..127

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

ix

Unit Testing with Mocks ... 128

Spring Dependency Injection and Testing .. 132

Testing with a Database ... 134

Summary ...136

■Chapter 9: Best Practices and Advanced Techniques ...137

Lazy Loading Issues...137

The N+1 Selects Problem... 137

Lazy Initialization Exceptions.. 141

Caching..143

Integrating a Caching Implementation ... 144

Caching Your Queries ... 149

Caching in a Clustered Configuration ... 150

Summary ...153

■Chapter 10: Integration Frameworks ..155

RESTful Web Services with Spring ..155

Nouns, Verbs, and Content-Types .. 156

Serializing the Object Graph ... 157

Using the Dreaded DTO Pattern.. 158

Leveraging Spring 3’s REST Support.. 168

Marshaling Data with Spring OXM.. 170

Handling Concurrency .. 172

Free-Text Search ...173

Introducing Lucene... 174

Introducing Hibernate Search... 176

Putting Lucene and Hibernate in Sync ... 184

Building a Domain-Specific Search.. 185

Summary ...186

■ CONTENTS

x

x

■Chapter 11: GORM and Grails ..189

A Crash Course in Groovy189

Letting Your Types Loose 191

GStrings—Strings on Steroids 191

Default Constructors in Groovy. ... 191

Closures in Groovy. .. 191

Getting Grails Running . ..193

Installing Grails. ... 193

Creating a Grails Application . .. 193

Configuring Your Application . .. 196

Configuring Your Datasource. .. 197

Mapping URLs. ... 198

Defining the Grails Domain Model . ..199

Adding Constraints and Validation. .. 200

Defining Associations and Properties. ... 201

Customizing Domain Class Hibernate Mappings. .. 203

Using Active Record As an Alternative to DAOs ...204

Looking Under the Hood of GORM..205

Working with Dynamic Finder Methods. .. 205

Creating Advanced Query Methods . .. 210

Using the Criteria API. .. 210

Handling Associations in Grails . ..211

Scaffolding and Building Your Grails Application...212

Defining a Transactional Service Layer in Grails . ..213

Summary . ..214

■ CONTENTS

xi

xi

■Chapter 12: Spring Roo ...215

What Roo Is (and What It Is Not) ..215

Creating a Domain Model with Roo ...217

Getting Started with Roo .. 218

Creating a New Project... 220

Adding Entities.. 221

Adding Fields .. 225

Exploring the Automatically Generated Testing Infrastructure... 226

Mapping Associations .. 228

Modeling Inheritance.. 228

Adding Spring MVC... 230

Adding Service Layers and DAOs ... 231

Now You See Me, Now You Don’t—Removing Roo ...233

Summary ...234

■Index..235

 xii

About the Authors

■ Paul Tepper Fisher first began working in technology at Johns Hopkins
University, where he spent several years developing a distance-learning
application for neuroscience, while completing graduate school there. He
has founded two technology start-ups: SmartPants Media, Inc., a software
development company specializing in interactive multimedia technology;
and dialmercury.com, which develops telephony applications using VOIP
and Java.

Paul was also Manager of Technology at Wired.com, where he led the
software development team for the online publications of Wired.com,
webmonkey.com, and howto.wired.com, using Spring, Grails, and Java
technology.

Currently, Paul is Director of Engineering for a new Music Service at
Lime Wire, where he manages several development teams using agile methodologies. Comprised of
client-side and distributed server-side components, the Music Service is designed for horizontal
scalability with a goal of supporting millions of end-users and terabytes of data.

You can read Paul’s blog at: http://paultepperfisher.com.

■ Brian D. Murphy is the Chief Architect and Director of Engineering at
Condé Nast. He was an early adopter of Spring and Hibernate and uses both
technologies to power all of Condé’s brands online, including wired.com,
newyorker.com, epicurious.com, and vanityfair.com, drawing tens of millions
of unique visitors each month. Brian deals with the challenges of building
scalable, distributed systems every single day. He has a B.S. in Computer
Science from Rutgers University. You can follow Brian on Twitter at
http://twitter.com/@brimurph or read his blog at
http://turmoildrivendevelopment.com.

http://paultepperfisher.com
http://twitter.com/@brimurph
http://turmoildrivendevelopment.com

 xiii

About the Technical Reviewer

� Sia Cyrus’s experience in computing spans many decades and areas
of software development. During the 1980s, he specialized in database
development in Europe. In the 1990s, he moved to the US where he
focused on client-server applications. Since 2000, he has architected a
number of middle-tier business processes incorporating Spring and
Hibernate. Most recently, he has been specializing in Web 2.0, Ajax,
GWT, and Android.

Sia is an independent software consultant who is an expert in Java
and development of Java enterprise-class applications. He has been
responsible for innovative and generic software, holding a US Patent in
database-driven user interfaces. Sia created a very successful
configuration-based framework for the telecommunications industry,

which he later converted to Spring Framework. His passion could be entitled “Enterprise Architecture in
Open Source”.

When not experimenting with new technologies, he enjoys playing ice hockey especially with his
two boys, Jason and Brandon. He can be reached at sia.cyrus@comcast.net.

mailto:cyrus@comcast.net

 xiv

Acknowledgments

Writing a book always ends up being more difficult than you initially imagined. Although the absurdly
late nights and lost weekends prove difficult to the authors, it is often the people around them that end
up suffering the most. To that end, I’d like to thank Melanie Colton for her endless patience and
perseverance. She deserves more than a medal for putting up with the many 4am nights and my noisy
typing. This book would not have been possible without her support, understanding, and muse.

I would also like to acknowledge my colleagues at Lime Company, for their continued trust and
support. It is a rare experience to work with such a talented and committed group of people, and I am
grateful for the opportunity to be a part of such an important adventure.

I’d also like to thank Solomon Duskis for starting this journey, and for his unwavering enthusiasm
for technology—especially Java and Spring.

I would be remiss if I didn’t offer my appreciation and gratitude to my parents, who have inspired
me through their relentless trust, support, and faith in everything I set out to do.

Finally, my sincere appreciation goes to Brian Murphy for joining the project and keeping things
rolling along. If it hadn’t been for Brian’s tenacity and motivation, this book would never have seen the
light of day. It’s been an honor and privilege working with you again.

—Paul Tepper Fisher

We’d like to thank Apress for the opportunity to write this book. Special thanks to Steve Anglin for
believing in us and letting us stretch the schedule to cover advanced topics in depth. We owe Mary
Tobin a special debt of gratitude for shepherding us through this process and ultimately dragging us
across the finish line. Thanks to Tom Welsh, Marilyn Smith, and Sia Cyrus, who provided invaluable
feedback, suggestions and encouragement along the way. This is a much better book as a result of their
wisdom and patience. Any issues or errors in this text are ours alone.

I would like to thank my wife, Dania, without whom this book wouldn’t be possible. She graciously
took on the role of super mom while I devoted nights and weekends to writing for far longer than
bargained for. I’d like to thank my son Liam for being the most terrific little kid. You provide me with
more joy and a new appreciation for the world than you’ll ever know. I’d also like to acknowledge our
second son, who is due shortly after this book will be published. I can’t wait to meet you!

Lastly, I’d like to thank Paul Fisher for sharing this experience with me. This book was Paul’s
brainchild and I’m glad he invited me along for the ride. Writing this book has been both rewarding and
challenging. I learned a ton and it’s been great to work with you again.

—Brian D. Murphy

 xv

Preface

Since its inception, the Spring Framework has gradually changed the rules of application development
in the Java community. This book is the ideal guide and teaching companion for developers interested in
learning about the Spring Framework and how it can be leveraged to build persistence-driven
applications using Hibernate, one of the most popular Java persistence frameworks today. Spring
Persistence with Hibernate gets you rolling with fundamental Spring concepts, as well as proven design
patterns for integrating persistence into your applications.

Many of the lessons illustrated in this book were culled from years of practical experience building
scalable, high-volume web applications using Spring and Hibernate. One of the details that stands out in
our joint experience is the importance and benefit of learning through hands-on experience. To this end,
we will build a real-world application that utilizes Spring 3, Hibernate 3.5, JPA 2.0, Hibernate-Search,
Grails, Spring Roo, and Dozer. We firmly believe that learning about Spring and Hibernate implies far
more than simply understanding the respective APIs of each framework. To be able to effectively
develop with these two amazing technologies, it is necessary to understand the design patterns and best
practices for getting the best from these frameworks, and building on them in a consistent, proven
manner. We hope this book will teach you more than just how to use Spring and Hibernate together. Our
goal is to channel the development experience, lessons, and best practices we’ve seen work successfully
in our experience, so that you can apply these skills and tools in your own applications.

Throughout these pages, we will introduce core Hibernate fundamentals, demonstrating how the
framework can be best utilized within a Spring context. We will start with foundational concepts, such as
strategies for developing an effective domain model and DAO layer, and then move into querying
techniques using HQL, JPQL, and the Criteria API. After fundamental concepts are introduced, we will
move on to more advanced topics, such as fetching and caching strategies. We will also illustrate several
approaches for architecting a transactional service facade. Both programmatic and declarative
transactions will be examined, showcasing the benefits of using Spring for expressing transactional
semantics.

Spring Persistence with Hibernate will also introduce JPA, covering its history and the ways in which
Hibernate influenced its development. We will discuss the benefits of following the JPA standard, as well
as when it makes sense to utilize Hibernate-specific features. The book will also introduce Grails and
GORM, illustrating the differences between the DAO and Active Record patterns. We will port our
sample application (which will be developed in the course of the book) into both Grails and Spring Roo,
highlighting the benefits and differences of using a rapid-development, convention-over-configuration
platform. In these sections, we will explore topics related to concurrency/optimistic locking, Hibernate
Session state, caching approaches, and transaction management.

The last part of the book will introduce several advanced techniques, important for working with
enterprise Spring/Hibernate applications. We will illustrate some of the pitfalls with integrating legacy
databases, as well as best practices for developing REST web services, handling Hibernate proxies and
lazy collections, as well as building search functionality using Hibernate-Search.

Here are some of the main topics we will discuss in this book:

■ PREFACE

 CONTENTS

xvi

xvi

• Basic Spring Framework features such as IoC and AOP

• Core concepts for architecting a well-layered persistence tier

• JPA concepts and steps for integrating JPA

• Foundational and advanced concepts for working with Hibernate

• Hibernate querying techniques

• DAO and Service Facade layer development

• Grails, along with the introduction of Active-Record Pattern

• Introduction of Spring Roo

• Building a REST web service

• Translating between a domain model and a DTO using Dozer

• Leveraging other frameworks and technologies, such as Hibernate-Search

• Advanced Caching and Integration strategies

C H A P T E R 1

■ ■ ■

1

Architecting Your Application with
Spring, Hibernate, and Patterns

Persistence is typically the lifeblood of an application, providing the long-term memory that software
requires in order to be useful across multiple invocations. Despite its importance, the architecture of a
persistence tier is rarely granted adequate consideration during the design or implementation stages of
an application. The consequences of this lack of planning can be far-reaching and devastating to an
organization.

The primary goal of this book is to provide you with the best practices, tools, and strategies required
to architect and implement a solid and effective persistence tier. Many of the concepts found on these
pages were gleaned from real-world, practical experience designing and building web applications
intended to scale to millions of daily users. Our objective is to illustrate the patterns and approaches that
have worked for us, while examining the integration details for using Spring and Hibernate in your own
applications.

One important lesson we’ve acquired over the years is that it’s often best to learn by example. To
this end, we will be building a real-world application over the course of the book: an Image Gallery web
application, which allows users to view slideshows and exhibitions curated by administrators. To
emphasize proven, pragmatic solutions and architectural patterns for building scalable and
maintainable applications, each chapter will focus on a different aspect of application development, in
regards to persistence. Through illustrated code samples and discussion, we will trace the design,
architecture, and implementation of a real working application. Starting with the foundation, each
successive chapter will build upon the previous one, adding new layers, features, and tests. And of
course, as with any real-world application, we will do significant refactoring as we discover new
capabilities of Spring and Hibernate, as well as alternative strategies and frameworks. In fact, the last two
chapters will re-architect our Image Gallery application entirely, as we examine two new frameworks
founded on the concept of “convention over configuration.” Intended for a more rapid style of
development, Grails and Roo offer a more holistic and consistent development environment with
powerful features popularized by frameworks from dynamic languages, such as Ruby on Rails and
Django.

The Benefit of a Consistent Approach
As you will learn throughout this book, the manner in which data is saved and queried is an integral part
of every application. In fact, the persistence layer often serves as the foundation upon which an
application is built. Building on top of this foundation are the three core components of a standard
Spring-based persistence tier: the domain model, the Data Access Object layer, and the service facade.

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

2

Don’t worry if some of these terms are unfamiliar to you. In the following chapters, we will explain the
purpose and function of each of these components, demonstrating the role each plays in an application.

While we don’t suggest that there is only one correct approach to architecting an application, we do
want to emphasize the benefit of using key design patterns and best practices. This is a theme that you
will see cropping up over and over again.

The Significance of Dependency Injection

The Spring Framework has helped to take much of the guesswork out of designing and building an
application. It has become the de facto standard for integrating disparate components and frameworks,
and has evolved far beyond its dependency injection roots. The purpose of dependency injection is to
decouple the work of resolving external software components from your application business logic.
Without dependency injection, the details of how a component accesses required services can get
muddled in with the component’s code. This not only increases the potential for errors, adds code bloat,
and magnifies maintenance complexities; it couples components together more closely, making it
difficult to modify dependencies when refactoring or testing.

By its very nature, Spring helps to enforce best coding practices and reduce dependency on external
frameworks, or even classes within an application. At the simplest level, Spring is a lightweight IoC
container, meaning that it will assume the responsibility of wiring your application dependencies.
Exactly how this wiring responsibility is handled will be discussed in depth throughout this book.
However, a theme you will see replayed throughout these pages is how Spring effortlessly ties
components together in a loosely coupled manner. This has far-reaching effects for any application, as it
allows code to be more easily refactored and maintained. And in the context of this book, it allows
developers to build a persistence tier that is not directly tied to a particular implementation or
framework.

Spring owes much of its success to the sheer number of integration points it provides, covering a
wide range of frameworks and technologies. As developers realized the benefits gleaned from using
Spring for integrating the various components within their own code, many new abstractions appeared
that relied on Spring to integrate popular open source frameworks. Using Spring to integrate a particular
framework not only simplifies the introduction of the framework, it allows the integration to be
performed in a consistent manner—no different than the way collaborating components are wired
within the context of an application. Additionally, using Spring’s dependency injection to wire in a key
framework ensures the integration is done in a decoupled way.

One of the leading catalysts for Spring’s adoption was its support for the open source, object-
relational mapping (ORM) framework, Hibernate. As the Spring Framework began to grow in popularity,
the Java development community was also buzzing about Hibernate. It was a pivotal time for open
source frameworks, as both Spring and Hibernate offered revolutionary solutions that would change the
way many new applications were architected and implemented. As you will see, Spring and Hibernate
complement each other in numerous ways, and each is partially responsible for the other’s success and
widespread adoption.

A Synergistic Partnership
In this book, we will focus on showing how Spring and Hibernate can be used together most effectively.
Nevertheless, we will still emphasize strategies for decoupling Hibernate from your application. This is
not because we have any concerns about using Hibernate, but because loose coupling provides a cleaner
separation of concerns.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

3

No matter how good a framework might be, it’s always better to keep dependencies decoupled. Not
only does an agnostic persistence tier lead to better, cleaner, more maintainable code (as well as
portability from one persistence technology to another), but it also ensures consistency across your
application. Suddenly, your code is supported by a backbone that handles dependency wiring, provides
aspect-oriented programming (AOP) capability, and generates cohesive configuration metadata that
implicitly documents the way your application’s pieces fit together.

Spring encourages design practices that help to keep all of your application’s dependencies
decoupled. Whether it be an external framework, an application component, or even Spring or
Hibernate themselves, ensuring that collaborating components are not directly tied together helps
prevent the concerns of one layer from leaking into another. By delegating all your wiring details to
Spring, you not only simplify your code base by relieving the need to create infrastructural “access
code,” you also ensure that components are kept distinct. In the next few chapters, you will learn how
coding to interfaces and using Spring’s ORM abstractions and generic exception hierarchy can help to
achieve these goals.

The Story of Spring’s and Hibernate’s Success

The rise in Spring’s popularity stems from more than just its ability to reduce code complexity by
helping to wire dependencies together. Much of the early excitement around the Spring Framework was
due to its support for other leading open source frameworks, including Hibernate. Hibernate was one of
the first open source ORM frameworks that provided an enterprise-level solution for building a
persistence tier. Spring’s ability to externalize integration details to an XML configuration file or express
dependency injection through Java annotations provided a powerful abstraction that greatly simplified
and standardized the integration efforts required to bootstrap Hibernate into an application.

ORM frameworks provide an abstraction layer over the actual persistence technology being used
(usually a relational database), allowing developers to focus on the object-oriented details of their
domain model, rather than lower-level database concerns. There is an inherent impedance mismatch
between the relational-table world of databases and the object-oriented world of Java, making an
effective ORM abstraction difficult to implement. This impedance mismatch is due to the fundamental
differences between relational databases and object-oriented languages, such as Java. For example,
relational databases don’t implement core object-oriented principles such as polymorphism,
encapsulation, and accessibility. Furthermore, the notion of equality is vastly different between Java and
SQL. We will discuss some of these differences throughout this book, examining approaches to bridging
the gap between a SQL database and a Java domain model.

Hibernate represented a significant step in bridging this gap by offering a powerful open source
framework for expressing an object-oriented domain model, and defining the ways in which the tables
and columns of a database synchronized with the object instances and properties in JavaBeans.

A Better Approach for Integration

Despite the improvements and efficiency with which a persistence tier could now be developed,
integrating Hibernate into an application could still be a painstaking endeavor. With no standardized
integration approach, developers were left to continuously reinvent the wheel, spending significant
resources on the development and maintenance of the infrastructure code required to wedge Hibernate
into their applications.

As Hibernate grew in popularity, the Spring Framework started to gain momentum as well. When
Spring first came on the scene, its mission was to make the development of server-side Java applications
simpler. First and foremost, it offered a better solution to wiring application dependencies together. For
this reason, Spring is often referred to as a container, meaning that it offers a centralized abstraction for

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

4

integrating collaborating dependencies via configuration, rather than writing (often repetitive) code to
handle this task.

Part of Spring’s momentum stems from the way it enables applications to deliver enterprise-level
features, such as declarative transactions and security, without requiring the overhead and complexity of
an Enterprise JavaBean (EJB) container or forcing developers to grapple with the details of specific
technologies or standards. Time has proven EJB, although powerful in theory, to be a victim of
overengineering. Spring and Hibernate owe much of their success to the fact that they provide a more
reasonable and effective solution than the EJB standard. While Spring offers a simpler approach to
declarative transaction management, Hibernate provides a more robust and intuitive ORM abstraction.
Both frameworks were built and popularized by the growing need for a solution that was less complex
than previous offerings. With the success of Spring and Hibernate came a stronger emphasis on building
applications that were simpler and lighter weight, significantly increasing both ease of maintenance and
scalability.

Although dependency injection was Spring’s core purpose, the framework has evolved far beyond
its original IoC foundation. The Spring Framework has expanded into other areas that naturally blend
with its IoC roots. Spring now provides a pluggable transactional management layer, AOP support,
integration points with persistence frameworks (such as Hibernate), and a flexible web framework,
called Spring MVC. The addition of these features was a gradual process, spurred by demand and
necessity.

As Hibernate’s popularity surged, developers began to rely on Spring’s persistence abstractions to
simplify the often daunting task of integrating Hibernate into an application. Thanks to Spring, the
process of getting up and running with Hibernate became a great deal easier. Developers could start
with a Spring configuration file that not only bootstrapped a Hibernate SessionFactory (allowing
configuration details to be specified via standard XML), but also streamlined the invocation of myriad
Hibernate operations through the use of well-crafted abstractions founded on time-tested design
patterns, such as HibernateTemplate and OpenSessionInView. We will discuss these core Spring-
Hibernate integration details in the next few chapters. The important point here is that combining
Spring and Hibernate affords developers an extremely powerful solution.

Not only does Spring simplify the integration of Hibernate, but it also reduces the coupling of
Hibernate to an application. If the need arises to switch to a different ORM or persistence technology,
this migration effort becomes much easier because there are few direct dependencies on Hibernate
itself. For example, Spring provides a generic exception hierarchy for persistence-related errors.
Although not required, it is considered good practice to convert Hibernate exceptions to Spring’s generic
exception hierarchy, which further decouples your application from Hibernate. Spring includes built-in
mechanisms to simplify this conversion, to the point that it is fairly transparent. Additionally, Spring’s
integration code for other persistence technologies (such as JDBC, JPA, TopLink, etc.) will also handle
the translation to Spring’s generic exception hierarchy, further simplifying a migration from one
persistence technology to another.

Establishing loosely coupled dependency relationships is one of Spring’s core purposes. In fact, the
framework itself limits direct coupling to itself as much as possible, meaning that your application will
rarely be directly tied to Spring classes.

Best Practices for Architecting an Application

The more your code is abstracted away from interfacing directly with a database (and dealing with these
lower-level concerns), the easier it is to switch to a different database or persistence technology.
Similarly, Hibernate also offers an abstraction over your data model, allowing you to focus on your
application’s persistence details rather than on the particulars of your database. Through these
decouplings, a persistence tier becomes far more portable across disparate databases.

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

5

Spring centralizes the wiring of dependencies within your application, making maintenance and
configuration easier, and coercing developers to code to interfaces, which brings about cleaner and
better code. It also allows you to focus more on your application’s business logic, with less concern over
how this information is physically stored and retrieved. This concept is often called layering. Each layer
is focused specifically on accomplishing a particular task (with little knowledge or coupling to other
layers within the application).

The Layers of a Persistence Tier

The application tier that deals with persistence is often called the persistence tier. Spring helps to enforce
a modular architecture in which the persistence tier is divided into several core layers that contain the
following:

• The Domain Model

• The Data Access Object (DAO) Layer

• The Service Layer (or Service Façade)

Each of these layers is representative of proven design patterns that are key to building a solid,
maintainable architecture. Outside the persistence tier, a typical Spring MVC application also has a
controller layer, which handles user interaction, delegating to the service facade and shuttling necessary
data back to the view. We will get into these implementation details over the next few chapters. Here,
we’ll take a brief look at the domain model, DAO, and service layers.

The Domain Model

The domain model represents the key entities within an application, defining the manner in which they
relate to one another. Each entity defines a series of properties, which designates its characteristics, as
well as its relationships to other entities. Each class within the domain model contains the various
properties and associations that correlate to columns and relationships within the database. Typically,
there is a domain entity for each table within the database, but this is not always the case.

For example, we might need to define a Person domain entity, designed to represent the concept of
a person within the application and the database. The Person class could be represented as follows:

@Entity
public class Person implements Serializable {

 private Long id;
 private String firstName;
 private String lastName;
 private String username;
 private String password;
 private Integer roleLevel;

 private Integer version;

 public Person() {

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

6

 }

 @Id
 public final Long getId() {
 return id;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 . . . Remaining Getters and Setters Omitted
}

Part of Hibernate’s job is to convert between domain model instances and rows in the database.

Developers provide hints to help Hibernate perform these conversions, by specifying mapping rules
using XML or annotations. This metadata is used by Hibernate to define the characteristics of the
domain model and how the object-oriented properties within a domain model class map to columns
and relationships within the database.

Although XML was initially used to define mapping rules, we recommend using annotations as this
approach is simpler and more concise. In fact, by applying the @Entity annotation to a class, it is
assumed that a class property should be persisted to the database using the property name as the
database column name and using the field type as a hint for the database column type. Of course, all
these details can be explicitly configured or overridden, but thanks to sensible defaults, your mapping
configuration should be relatively terse most of the time.

The Data Access Object (DAO) Layer

The DAO layer defines the means for saving and querying the domain model data. A DAO helps to
abstract away those details specific to a particular database or persistence technology, providing an
interface for persistence behavior from the perspective of the domain model, while encapsulating
explicit features of the persistence technology. The goal of the DAO pattern is to completely abstract the
underlying persistence technology and the manner in which it loads, saves, and manipulates the data
represented by the domain model. The key benefit of the DAO pattern is separation of concerns—the
lower-level details of the persistence technology and datasource are abstracted into a series of methods
that provide querying and saving functionality. If the underlying persistence technology changes, most
of the necessary changes would be limited to defining a new DAO implementation, following the same
interface.

For example, we might create a PersonDAO class to define all the application’s persistence needs
related to the Person entity. In PersonDao, we would likely have a method like the following:

public Person getPersonById(Long id);

This method would be responsible for loading a Person entity from the database using its unique

identifier.
The following might be another method for our application:

void savePerson(Person person);

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

7

This method would be designed to handle all updates to a given row in the Person table (that is,
creation or modifications).

When defining a DAO, it is good practice to first write the interface, which delineates all the core
persistence-related methods the application will need. We recommend creating separate DAOs for each
persistent entity in your domain model, but there are no clear rules in this area. However, defining DAO
methods in a separate interface is crucial, as it decouples the purpose and contract of the DAO from the
actual implementation, and even allows you to write more than one implementation for a given DAO
interface.

It’s important to note that such an interface is agnostic to the persistence technology being used
behind the scenes. In other words, the interface only depends on the relevant domain model classes,
decoupling our application from the persistence details. Of course, the DAO implementation class will
use Hibernate, JPA, or whatever persistence technology we have chosen to employ. However, the higher
layers of our application are insulated from these details by the DAO interface, giving us portability,
consistency, and a well-tiered architecture.

As we mentioned earlier, the Spring Framework also provides a generic data exception hierarchy,
suitable for all types of persistence frameworks and usage. Within each persistence framework
integration library, Spring does an excellent job of converting each framework-specific exception into an
exception that is part of Spring’s generic data-access exception hierarchy. All of the exceptions in
Spring’s generic exception hierarchy are unchecked, meaning your application code is not required to
catch them. Spring helps to decouple your application from a particular persistence framework, allowing
you to code to a generic and well-defined exception hierarchy that can be used with any persistence
technology.

In Chapter 6, we will dive deeper into DAO implementation strategies, exploring the flexible
querying and save/update capability afforded by Hibernate and JPA. Querying in particular can require
quite a bit of complexity, and to this end, Hibernate and JPA provide two different approaches for
searching and accessing your data. HQL and JPQL (Hibernate Query Language and Java Persistence
Query Language, respectively) both offer an object-oriented syntax for expressing queries that is very
similar to SQL. Although concise and intuitive, HQL and JPQL are interpreted at runtime, which means
you cannot use the compiler to verify the correctness and integrity of a query.

To address this limitation, Hibernate also includes a Criteria API, which allows queries to be
expressed programmatically. Until recently, JPA did not offer a Criteria API, which meant developers
would have to go outside the JPA standard if they required this type of querying facility. However, with
the introduction of JPA 2.0, a Criteria API is now available as part of the standard.

Whether to use HQL/JPQL or the Criteria API is sometimes a matter of style. However, there are
some cases where the Criteria API is more effective and maintainable. For instance, if you are building a
feature that requires dynamic filtering or ordering, being able to dynamically create a query
programmatically, based on the user’s runtime specifications, is much cleaner than attempting to
dynamically generate a JPQL query string via concatenation. We will discuss these types of
implementation decisions further in Chapter 6.

The Service Facade

The layer that handles the application business logic is (surprisingly enough) called the service layer. The
service layer typically defines an application’s public-facing API, combining one or more lower-level
DAO operations into a single, cohesive transactional unit.

To help you understand how a service layer is built and used, let’s take a look at a few examples:

Person loginUser(String username, String password);

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

8

The loginUser() method is intended to authenticate a user (that is, verify that the specified
username and password match), and then load important user information into the session (grab user
information, such as name, previous login date, role type, and so on). These tasks would likely not be
handled by a single DAO method. Instead, we would probably build upon the functionality of two
distinct DAO classes, a PersonDAO and a RoleDAO:

interface PersonDao {

 Person authenticatUser(String username, String password);

 . . .

 }

interface RoleDao {

 List<Role> getRolesForPerson(Person person);

 . . .

}

Together, these DAO methods accomplish a core business goal that is greater than the sum of its

parts. In this example, we are using two read-only methods, but imagine a scenario in which we have a
business method, such as the following:

boolean transferMoney(Long amount, Account fromAccount, Account destAccount)
 throws InvalidPermissionException, NotEnoughFundsException;

Now, assume that the preceding service layer method is composed of several DAO methods:

boolean validateSufficientFundsInAccount(Long accountId);

boolean removeFunds(Long accountId, Long amount);

boolean addFunds(Long accountId, Long amount);

It’s easy to see what’s going on here: we verify that enough cash exists in a particular account, and

then pull the funds from one account and transfer them to another. The task is simple enough, but it
doesn’t take an overactive imagination to visualize the hysteria that might ensue should this business
method fail halfway through the process—the funds might be withdrawn but never get deposited into
the destination account. That might be good for the bank at first, but after a short while the entire
economy collapses, and civilization is left with only a rudimentary barter system based on crazy straws
and Star Wars action figures.

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

9

Leveraging Declarative Transactions

Service facade methods typically group together multiple DAO methods to accomplish business logic as
a single unit of work. This is the concept of a transaction: the entire method (and all of its side effects)
completes 100 percent successfully, or the application is rolled back to the state before the method was
called. Before Spring persistence came on the scene, transactional requirements often prompted
developers to look toward EJBs, which let them declaratively configure transactional semantics for each
facade method. When they cannot specify transactional requirements declaratively, developers must
instead use a programmatic approach. Not only does this add code complexity and obscure the
intentions of the persistence logic, it further couples the persistence technology to the application.
Transactional demarcation is often considered a cross-cutting concern, meaning it represents
functionality that affects many parts of the codebase, but is orthogonal to their other features. Cross-
cutting concerns add redundancy to code, since they need to be repetitively interweaved into the fabric
of the business logic of an application, reducing code modularity. Aspect-Oriented Programming is
aimed at solving this problem by allowing these concerns to be expressed once, and once only, as
aspects, and then weaved into business logic as necessary.

In Spring, the service layer typically is intended to accomplish three primary tasks:

• Serve as the core API through which other layers of your application will interface
(this is the incarnation of the facade pattern)

• Define the core business logic, usually calling on one or more DAO methods to
achieve this goal

• Define transactional details for each facade method

Understanding Aspect Oriented Programming (AOP)

The service layer is where Spring’s AOP support is best utilized. Spring ships with transactional support
that can be applied to application code through the use of interceptors that enhance your service layer
code, by weaving in the transactional goodness. An interceptor is code that can be mixed into the
execution flow of a method, usually delegating to the interceptor before and/or after a particular method
is invoked. Simply speaking, an interceptor encapsulates the behavior of an aspect at a point in a
method’s execution.

It’s not enough to specify that a method should be transactional. You shouldn’t just force each
method to occur within the confines of a transaction, rolling back if an error occurs and committing if all
goes well. Perhaps certain methods don’t attempt to modify any data, and therefore should execute
within the context of a read-only transaction. Or more likely, perhaps some exceptions will trigger a
rollback, while others will allow the transaction to carry on.

Pointcuts are another important component of Spring AOP. They help to define where a particular
aspect (modularized functionality that can be weaved into application logic, such as transactional
behavior) should be weaved. With Spring’s transactional support, you have fine-grained control over
which exceptions may trigger a commit or rollback, as well as the details over the transaction itself, such
as determining the isolation level and whether a method should trigger a new transaction or a nested
transaction, or execute within the existing transaction.

At a basic level, Spring accomplishes AOP through the use of the proxy design pattern. When you
advise your classes by injecting cross-cutting behavior into various methods, you’re not actually
injecting code throughout your application (although in a way, that is the net effect of using AOP).
Rather, you’re requesting that Spring create a new proxy class, in which functionality is delegated to your
existing class along with the transactional implementation (or whatever aspect you are trying to weave
into your code). This explanation is an oversimplification of what actually happens under the hood, but

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

10

the important thing to remember is that when you weave cross-cutting behavior into your classes via
AOP, Spring is not directly inserting code; rather, it is replacing your classes with proxies that contain
your existing code intertwined with the transactional code. Under the hood, this is implemented using
JDK dynamic proxies or CGLIB bytecode enhancement.

Again, it’s easy to see how this is a natural fit for a lightweight, IOC container like Spring. Since
you’re already entrusting Spring with handling your dependencies, it makes perfect sense to let Spring
also take care of proxying these dependencies so you can layer on new cross-cutting behavior.

Although Spring AOP is amazingly powerful when you need to define and introduce new aspects to
be weaved into your implementations, key transactional functionality is available out of the box and
without the need to learn the details of AOP programming concepts. Still, understanding the basics of
what Spring does under the hood is helpful. Keep in mind that AOP is useful for more than just applying
transactional behavior—it is helpful for weaving any cross-cutting concern into your application, such
as logging or security. We will discuss AOP in more detail later in this book.

Simplifying Transactions

Although applying transactions using Spring used to require a bit of AOP know-how, this process has
been greatly simplified in recent versions of the framework. Now, applying transactional behavior to a
service layer class is a matter of specifying the @Transactional annotation at either the class or method
level. This annotation can be parameterized with attributes to customize its behavior, however the most
significant detail is whether a transaction is read-only. Many developers don’t recognize the importance
of using transactions—even within a read-only context. Transactions can be useful for more than just
ensuring atomicity. Transactions can also be used to specify a database isolation-level, and to delineate
other contextual details that might be ambiguous outside a transactional scope. We strongly
recommend that all database operations occur within the scope of some transaction—even if just to gain
control over the contextual state of the database. We will discuss some of these details, such as
understanding isolation levels and advanced transactional options, in Chapter 8.

The Benefit of Coding to Interfaces

We can rely on Spring to wire DAO dependencies into our service layer classes, ensuring that this
integration happens in a consistent way and that the integration point between these two layers is
through interfaces rather than specific implementation classes. As we mentioned earlier in this chapter,
this is a fundamental concept for leveraging Spring’s dependency injection: by coding to interfaces, we
get more for our money. We can always rely on Spring to automatically inject required dependencies,
but by using interfaces we gain the added benefit of being able to change which implementation should
be injected at runtime. Without interfaces, there are no other options—we have hard-coded which
dependencies must be injected into our components. Interfaces and Spring’s dependency injection
capability are a dynamic duo that offer significantly increased flexibility. For instance, without changing
any code, you can choose to inject one set of dependencies for unit-testing and another in production
deployment. Or you can choose which implementations to use for each environment. These are some of
the benefits afforded by adherence to best practices and leveraging the Spring Framework.

Testing your Persistence Tier

As you’ll see in later chapters, this separation of concerns helps keep your code clean and ensures that
details from one layer don’t interfere with the code from another layer. When it comes time for
refactoring, this advantage can be significant. Perhaps even more important, these best practices are
instrumental for ensuring an effective testing strategy. In Chapter 8, you will learn how Spring greatly
simplifies the creation of unit and integration tests. When it comes to testing, it’s rather intuitive to see

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

11

how swapping implementations can really come in handy. Spring 3 includes a powerful TestContext
framework that simplifies the creation and management of unit and integration tests—even abstracting
away which test framework you happen to be using. Integration tests can often be a tricky matter,
especially when you consider the details of instantiating all of a test’s dependencies and components.
For example, an integration test might require access to a database, as well as test data. Spring can
bootstrap the ApplicationContext and then automatically inject any required dependencies. In the case
of testing persistence-related code, you can choose to have your data occur within the scope of a
transaction and then automatically rollback the transaction at the completion of the test to ensure that
modifications made by the test are removed.

Advanced Features and Performance Tuning

This book will also cover some more advanced persistence concepts that are indispensable in most
applications, such as optimization techniques for loading and managing complex relationships and
collections within your domain model. We will discuss performance and optimization strategies, such as
eager fetching and caching (at both the domain level and higher abstractions). As we mentioned earlier,
Hibernate offers numerous features that can be leveraged to improve application performance. For
instance, Hibernate and JPA offer a great deal of flexibility for tuning HQL/JPQL and Criteria API queries.
These features enable developers to minimize round-trips to the database, allowing even large data sets
to be accessed with minimal SQL queries. Hibernate also provides features such as lazy-loading and
powerful caching mechanisms, which can be tuned to control the size and expiration time for cached
entities. Understanding how these features work, as well as the myriad options available for controlling
them, is critical for maximizing performance.

Caching is an often overlooked feature which can prevent an application from realizing its full
potential. In the case of caching, it is either not fully utilized, or not enough time and attention are given
to tuning and testing. However, if left untuned, caching can significantly degrade application
performance. In Chapter 10, you will learn how Hibernate caching works, strategies for tuning and
improving performance, and how to integrate a cache provider, such as ehcache. We will also explore
several common pitfalls responsible for performance problems, such as the N+1 Selects issue, and how
to go about identifying and resolving these issues.

Hibernate-Search

Sometimes, your application will require more than Hibernate or Spring have to offer. So we will discuss
some important frameworks that extend Spring and Hibernate, such as Hibernate-Search. Hibernate-
Search integrates the popular open source search framework, Lucene, into a Hibernate or JPA
application. For features that require true search functionality, a relational database is not able to
provide the capability that Lucene is able to offer. Hibernate-Search seamlessly integrates Lucene into
your persistence tier, allowing you to execute Lucene queries within the scope of a Hibernate Session or
a JPA Persistence Context. In Chapter 10, you will learn how this integration works, as well as the range
of functionality afforded by Lucene and Hibernate-Search.

Building a REST Web Service

Since many applications use Spring and Hibernate as part of a web application, we will explore some of
the potential issues and work-arounds related to building web applications. We will develop a REST-
based web service, to explore some strategies for marshalling domain entities back and forth between
Java and JSON or XML. We will examine frameworks, such as Dozer, which help to reduce some of the

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

12

complexity related to serializing the object graph and dealing with potential
LazyInitializationExceptions.

Other Persistence Design Patterns
Spring is based on time-tested design patterns, which go a long way toward simplifying code and
reducing maintenance. While we’re on the topic of some of the core building blocks of an application,
let’s look at a few of the more prevalent patterns used in much of the Spring architecture.

■ Note You will see many of these patterns in action throughout this book, but it may be useful to take a look at

the seminal work that popularized the use of patterns to solve recurring problems in object-oriented programming.

This famous book is called Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994). The authors, and by association their

patterns, are often jokingly referred to as “The Gang of Four”.

The Template Pattern

The Template pattern is one of the most frequently used idioms within Spring’s ORM framework
integration packages. Spring provides templates for each of the most popular persistence frameworks,
making it easy to port your code to a different persistence implementation. The Template Pattern is also
used by the Spring framework to more effectively integrate JMS, define transactional behavior, and
provide outbound email message capability, among other things.

The Template pattern allows a template to be defined in which a series of standard steps are
followed, delegating to a subclass for those operations that are specific to the business logic. For
example, when working with Hibernate, it is first necessary to create and initialize a new Hibernate
session and optionally begin a transaction, before executing any Hibernate operations. When the
operations are completed, it is necessary to close the session, and optionally commit or rollback the
transaction. It would be rather redundant to repeat these same steps each time it was necessary to
interface with Hibernate. Instead, we can leverage Spring’s HibernateTemplate or JpaTemplate
abstractions, which handle these steps for us. Although using these template support classes is an
effective approach, we will explore alternative options later in this book.

Typically, a template is defined as an abstract class. To specify the operations to be wrapped within
the templated workflow, we extend the template class, providing or extending the implementations for
the abstract methods defined in the template parent class.

The Template pattern does exactly what its name implies: it extracts boilerplate and redundant
tasks into a template, delegating to your specific implementation for functionality that can’t be
templated. In most cases, the code that cannot go in a template is your persistence logic itself. Using the
Template pattern means you can focus on the database operations, without needing to worry about
some of these mundane details:

• Opening a database connection

• Beginning a transaction

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

13

• Wrapping your SQL operations in try-catch blocks (to handle unexpected
exceptions)

• Committing or rolling back a transaction

• Closing the database connection (and handling any exceptions during this
process)

• Catching any exceptions that might occur in the transaction

Without using Spring, much of your code has little to do with your persistence logic, but is the same
boilerplate code required by each and every operation.

Spring’s HibernateTemplate and JpaTemplate offer a series of convenience methods to streamline
much of the common persistence-related functionality. For example, the HibernateTemplate provides
some useful methods such as:

• saveOrUpdate(Object entity)

• load(class entityClass, Serializable id)

• find(String hqlQuery)

• findByCriteria(DetachedCritieria criteria)

• delete(Object entity)

HibernateTemplate offers quite a few more methods, as well as numerous permutations of some of
the methods listed above. However, these convenience methods aren’t direct examples of the template
pattern. Rather, they are more like wrapper methods, which delegate to the core template method found
in Spring’s HibernateTemplate abstraction:

 public Object execute(HibernateCallback action) throws DataAccessException {
 return doExecute(action, false, false);
 }

To execute a series of Hibernate operations, ensuring that they occur within the necessary

templated steps (such as initializing and closing a Hibernate session), we need to create an anonymous
implementation of the HibernateCallback interface, which is the single parameter to the preceding
execute method. For example, to save an entity to the database, we could do the following:

public void customSavePerson(Person person) {
 getHibernateTemplate().execute(
 new HibernateCallback() {
 public Object doInHibernate(Session session) throws HibernateException {
 session.saveOrUpdate(person);
 }
 }
);
}

Of course, it would be a lot simpler to just use HibernateTemplate’s save(Object entity) method.
Yet in this contrived example, we define an implementation of the HibernateCallback interface, which
uses the passed-in Session to persist the Person entity to the database. Typically, this type of lower-level

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

14

persistence functionality would be part of a DAO class, which helps to abstract the Hibernate-specific
code from the rest of the application.

Although the HibernateTemplate and JpaTemplate provide an effective construct for streamlining
persistence operations, they are no longer as necessary as they once were. Hibernate 3 shipped with a
feature called Contextual Sessions, which provides greater flexibility around the scope of a Session. Part
of what Spring’s ORM support provides is the facilitation of a conversation surrounding persistence
behavior, allowing Hibernate and JPA operations to be seamlessly integrated into Spring’s transactional
support. Spring’s transactional features couldn’t be properly utilized if every Hibernate operation
created a new Session and a new database connection. To tie multiple lower-level persistence
operations into a holistic “conversation,” Spring uses the capabilities of ThreadLocal, allowing disparate
operations to be scoped across a continuous thread. Recent versions of Hibernate provide a pluggable
mechanism for defining how accessing the current Session should work. This new capability makes the
HibernateTemplate and JpaTemplate a bit redundant in some circumstances. We will discuss the benefits
and drawbacks of Spring’s ORM templates in the next few chapters.

■ Note Spring can be used for both JTA-managed transactions and local resource transactions. In a JTA

environment, transactions are managed by the container, and offer additional behavior, such as distributed

transactions. However, there is additional overhead for leveraging JTA transactions, and we recommend going

with lighter-weight, local transactions if your application doesn’t require the features provided by JTA. One of the

advantages of using Spring is that switching between locally-managed transactions and JTA is just a matter of

configuration. In the case of JTA, Spring will simply delegate to JTA, rather than manage the contextual state

across an application thread.

The Active-Record Pattern

The DAO pattern isn’t the only strategy for performing data operations. Another approach that has
started to garner more attention recently is the Active-Record pattern. Active-Record is a design pattern
popularized by frameworks such as Ruby on Rails and Grails, and takes a different approach than
abstracting persistence functionality into a separate layer. Instead, Active-Record attempts to blend a
domain object’s behavior directly into the domain class itself.

Typically, an instance of a particular domain class represents a single row within the respective
database table. To save changes to the instance (and thereby the appropriate row within the database), a
save instance method is called directly on the instance. To delete an instance, we can simply invoke
delete() on the instance that needs to be deleted. Query operations are usually invoked as static
methods on the domain class itself. For example, in Grails, to find all Person entities with a lastName
property of Fisher, we could call Person.findAllByLastName('Fisher').

The benefit of Active-Record is that it provides an intuitive and concise approach for performing
persistence operations, and usually reduces code overhead significantly. Active-Record also attempts to
combine behavior and properties into a domain object, providing a more object-oriented approach. You
will learn more about the Active-Record pattern in Chapter 11, when we discuss Grails.

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

15

Summary
Throughout this book, we will demonstrate how Spring integrates with key persistence frameworks and
strategies. Along the way, you will learn more about Spring’s features and capabilities, and some of the
key design patterns it uses to get the job done effectively.

Until several years ago, simple Java Database Connectivity (JDBC) was one of the most popular
choices for implementing an application’s persistence tier. However, EJB and open source ORM
frameworks such as Hibernate have significantly changed the persistence landscape, by allowing
developers to focus on a Java-based domain model, maintaining the object-oriented semantics of Java
while still working with the relational concepts of a SQL database. ORM offers a level of abstraction that
affords increased flexibility by decoupling application code from the lower-level details of a relational
database.

However, things aren’t always as easy as they seem. ORM is not without its drawbacks and
consequences. First, as we mentioned earlier, there is the impedance mismatch between the object-
oriented Java world and the relational SQL world. ORM frameworks, such as Hibernate, do their best to
address this mismatch by offering extensive options for mapping between SQL and Java. Nevertheless,
fundamental differences between these two spheres will always exist, and therefore can’t be fully
addressed.

Despite some of these limitations, ORM frameworks offer unparalleled benefits by streamlining the
way in which developers work with a relational database. For instance, Hibernate introduces ancillary
features, such as caching and lazy loading, which can improve the performance of an application
dramatically with little or no additional coding effort. Hibernate and JPA also provide tools to seamlessly
generate database schemas and even keep them in sync with the Java-based domain model. These
features make the integration between application code and database even more seamless—to the point
that it is often possible to forget that you are using a database altogether!

With an IoC container at its core, Spring helps to reduce application complexity, as well as coupling
between classes, by handling the details necessary to integrate one dependency with another. Spring
also provides transactional behavior, AOP capability, and infrastructural classes for numerous
persistence frameworks, such as Hibernate and JPA.

Hibernate is an ORM framework intended to translate between relational databases and the realm
of object-oriented development. Hibernate provides a querying interface, using Hibernate Query
Language (HQL) or the Hibernate Criteria API. Together, Spring and Hibernate are a dynamic duo,
capable of simplifying dependency collaboration, reducing coupling, and providing abstractions over
persistence operations.

JPA is a Java standard for persistence, the design of which was significantly influenced by the
Hibernate developers. Hibernate can be used as an implementation provider for JPA, allowing you to
adhere to standards and gain framework portability, while still utilizing the excellent Hibernate
implementation. However, there are some useful features that are not available in JPA, but are present
only in the Hibernate implementation. With the release of JPA 2.0, many of the limitations of the JPA
spec have been addressed, bringing more parity to Hibernate and JPA. For instance, JPA 2.0 now
provides a Criteria API for querying in an object-oriented manner, and compile-time checking.

In this chapter, we outlined the foundational layers of a typical persistence tier, which is composed
of the domain model, the DAO layer, and the service facade. We also discussed some integral design
patterns leveraged by the Spring Framework, such as the Template design pattern. Although adhering to
the typical foundational layers for your persistence tier is usually the best approach, some newer
frameworks follow slightly different strategies, such as using the Active-Record pattern.

In the next chapter, we will build on the concepts and patterns introduced in this chapter as we
incrementally build a Gallery application using Spring and Hibernate. Over the course of this book, it is
our aim to illustrate time-tested and pragmatic best practices that we hope you will be able to use in
your own applications as well.

CHAPTER 1 ■ ARCHITECTING YOUR APPLICATION WITH SPRING, HIBERNATE, AND PATTERNS

16

Before we start coding, it’s important to understand some of the core Spring and Hibernate
concepts. So in the next chapter you will learn about Spring’s architecture and capabilities, such as
dependency injection, AOP, and persistence-related features.

C H A P T E R 2

■ ■ ■

17

Spring Basics

The Spring Framework has its origins in the companion code for Rod Johnson’s book, Expert One-on-
One J2EE Design and Development (Wrox, 2002). The book developed a strong following of developers,
who used the Wrox forums to discuss both the book and the corresponding code. Two of those
developers, Juergen Hoeller and Yann Caroff, persuaded Rod to turn the code into an open source
project. The book referred to the framework as the Interface21 framework, because Rod felt that it
represented the future of enterprise Java development—a framework for the twenty-first century.
However, when the open source project was formed, they felt they needed a name that could better
inspire a community. Yann suggested Spring because of the association with nature, as well as the fact
that Spring represented a fresh start after the “winter” of traditional J2EE development. The project went
public in 2003, and version 1.0 of the Spring Framework was released in 2004.

Since then, Spring has been widely adopted because it delivers on the promise of simpler
development while also tackling some very intricate problems. Another key to Spring’s rise to
prominence is its exceptional documentation. Many open source projects have faded into oblivion
because of the lack of sound documentation. Spring’s documentation has been very mature since the
very early days of the project.

Despite what some may claim, the Spring Framework is not currently a standard. Standard
technologies are great, and Sun deserves a lot of credit for pushing standards-based Java technologies
into the mainstream. Standards allow you to do things like develop your web application on Tomcat and
then drop it into WebSphere, with little adjustment required (at least theoretically). But even though the
Spring Framework is unbelievably popular today, it does not represent a true standard.

Some consider Spring a de facto standard, due to the sheer volume of applications that rely on it.
Spring provides a means for integrating the various components of your application in a consistent way,
and it is deployed far and wide across a variety of application ecosystems. Sometimes, this type of
standard implementation is a far more valuable proposition than a standard specification.

Despite the naysayers that balk at the idea of using any technology that wasn’t designed by a giant
committee of corporate volunteers, using Spring in your application poses little risk. In fact, the more
you utilize Spring for integrating components into your application, the more consistent your
integration strategy will be, making maintenance and development easier. That’s right—reliance on
Spring will often lead to better, cleaner, decoupled code.

Because Spring is such a large framework, and because the documentation is so good, we have no
intention of covering it all. Instead, this chapter will serve as a quick overview of the most important
concepts that we build on in the rest of this book.

CHAPTER 2 ■ SPRING BASICS

18

Exploring Spring’s Architecture
Spring is composed of a series of modules. The beauty of this design is that you can pick and choose the
components that you would like to use. There’s no monolithic JAR file. Instead, you explicitly add the
components that you want to your project dependencies.

As they say, a picture is worth a thousand words. Figure 2-1 is a depiction of the Spring components.
The three primary groupings are the core, web, and data access modules.

Figure 2-1. The Spring Framework modules

We’ll be tackling many of these modules in this book. This chapter will take you through the core
container and AOP.

The Application Context

Spring’s job is to parse your configuration files and then instantiate your managed classes, resolving
their interdependencies. Spring is often called a container, since it is designed to create and manage all
the dependencies within your application, serving as a foundation and context through which beans
may also be looked up. This core engine is represented by a base interface called BeanFactory.

The BeanFactory interface defines the core Spring engine that conglomerates your beans and wires
the collaborating dependencies together. But the Spring container is capable of much more than just

CHAPTER 2 ■ SPRING BASICS

19

dependency injection. It can also be used to publish events, provide AOP functionality, support a
resource-loading abstraction, facilitate internationalization, and so on. For many of these advanced
capabilities, you will need to use an ApplicationContext instance.

The ApplicationContext extends the BeanFactory interface, providing a set of more robust features.
The separation can come in handy if you are building a very lightweight application and don’t need
some of these more advanced features. But for most applications (especially server-side software), you
will want to use an ApplicationContext implementation. In the case of web applications, you will use a
WebApplicationContext. Spring ships with a listener that you can throw into your web.xml file to
automatically bootstrap the Spring ApplicationContext and load your configuration file. It’s as easy as
adding the following lines into your web.xml:

<listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
</listener>

These lines will ensure that Spring is loaded when your application first starts up and will parse the

configuration file located at WEB-INF/applicationcontext.xml.
If you’re not building a web application, it’s just as easy to load the Spring container. In this case, we

recommend going with the ClassPathXmlApplicationContext implementation, which is designed to load
the Spring configuration files from the classpath. It is invoked in the following way:

ApplicationContext context =
 new ClassPathXmlApplicationContext(new String[]{"configfile1.xml", "configfile2.xml"});

You can see just how easy it is to get a Spring container instantiated. Once you have a reference to

the ApplicationContext, you can use it however you wish. The reference that is returned to you is the
loaded ApplicationContext, with all the beans that you defined instantiated and dependencies resolved.

If you felt so inclined, you could access a bean by name, simply by invoking the following:

UsefulClass usefulClass = (UsefulClass) context.getBean("myBeanName");

Assuming that your bean is defined somewhere in your Spring configuration files (referenced by the

ID or name attribute), Spring will hand you your class instance, ready to go (meaning all of its
dependencies will have been injected). However, we strongly recommend that you try to avoid issuing
calls to getBean().

The whole point of Spring is automatic dependency injection, which means not looking up your
beans when you need them. That’s dependency lookup, which is so 1995. While this approach does
decouple and defer your class dependencies, it still requires an explicit lookup step. As a rule of thumb, if
you need a reference to a particular dependency, specify these details in the configuration, not in your
code.

Some developers will rely on getBean() only in circumstances in which they always need a new
instance of their class (each time they make the call). A better solution to this problem is using the
lookup-method property in your XML configuration. This property coerces Spring to override or
implement the specified method with code that will always return a new instance of a designated bean.

An alternate strategy for accessing beans from the ApplicationContext is to implement the
ApplicationContextAware interface. This interface has the following method:

void setApplicationContext(ApplicationContext context);

CHAPTER 2 ■ SPRING BASICS

20

With access to Spring’s ApplicationContext, your class has the flexibility to look up beans by name
or type, without you needing to write code to acquire an ApplicationContext from the classpath directly.
In practice, there shouldn’t be many cases where you need to integrate Spring’s API so deeply into your
code. The more common approach is to let Spring manage the relationships between beans dynamically
through dependency injection.

Beans, Beans, the Magical Fruit

A big part of the secret sauce for the Spring Framework is the use of Plain Old Java Objects, or POJOs.
Martin Fowler, Rebecca Persons, and Josh MacKenzie originally coined the term POJO in 2000. POJOs
are objects that have no contracts imposed on them; that is, they don’t implement interfaces or extend
specified classes.

There is often quite a bit of confusion about the differences between JavaBeans and POJOs. The
terms tend to be used interchangeably, but that’s not always accurate. JavaBeans are best characterized
as a special kind of POJO. Put simply, a JavaBean is a POJO that follows three simple conventions:

• It is serializable.

• It has a public, default, and nullary constructor.

• It contains public getters and setters for each property that is to be read or written,
respectively (write permissions can be obscured simply by defining a getter,
without defining a setter).

An object in Java may be a POJO but not a JavaBean. For instance, it may implement an interface or

extend specified classes, but because it refers to objects that are stateful and/or exist outside the scope of
the Java Virtual Machine (JVM)—for example, HTTP or database connections—it cannot reasonably be
serialized to disk and then restored.

The concept of JavaBeans was originally devised for Swing to facilitate the development of stand-
alone GUI components, but the pattern has been repurposed for the land of Spring beans and back-end
persistence with Hibernate.

The Spring Life Cycle

Spring not only instantiates objects and wires up dependencies, but it also handles each managed
object’s life cycle.

For example, what if you need to do some initialization in your class, after the Spring-injected
properties have been set? One way to accomplish this is through constructor injection (so that you can
capture the moment all of a bean’s properties are injected). But a cleaner approach is to use the init-
method feature. By defining an init-method attribute on your bean, you can specify an arbitrary method
that will be called after all of the Spring properties have been set (that is, after all of your setters have
been invoked). Here is an example of using the init-method feature of Spring:

<bean id="initTest" class="com.prospringhibernate.gallery.InitTest" init-method="init">
 <property name="testString" value="Let me out of this computer!"/>
</bean>

Simple, right? Next, we need to define a class with the init-method we specified in the preceding

configuration:

CHAPTER 2 ■ SPRING BASICS

21

package com.prospringhibernate.gallery;

import org.springframework.util.Assert;

class InitTest {

 private String testString;

 public void init() {
 // let's do some initialization stuff!
 Assert.notNull(this.testString,
 "You forgot to set the testString property! What were
you thinking???");
 }

 public Foo doBizLogic() {
 ...
 }

 public void setTestString(String testString) {
 this.testString = testString;
 }

 public String getTestString() {
 return this.testString;
 }

}

If you’re using Java 5 or later, you can also tap into Spring’s annotation support for initialization

events. Using this approach, you simply annotate a class’s methods with the @postConstruct annotation,
without needing to specify initialization hints in the Spring configuration. For example, we could
refactor our earlier example as follows:

package com.prospringhibernate.gallery;

import org.springframework.util.Assert;

class InitTest {

 private String testString;

 @PostConstruct()
 public void init() {
 // let's do some initialization stuff!
 Assert.notNull(this.testString,
 "You forgot to set the testString property! What were
you thinking???");
 }

 }

CHAPTER 2 ■ SPRING BASICS

22

As with everything in Spring, there’s actually more than one way to skin a cat. Instead of specifying
init-method in the configuration or using the @postConstruct annotation, you could have your class
implement the InitializingBean interface. To a certain extent, using this interface makes things a bit
easier, since you don’t even need to change your configuration. The interface just requires you to
implement an afterPropertiesSet() method, which will automatically be detected and called for you
once Spring has finished setting all the configured properties. The downside with this approach is that
you sacrifice your simple POJOs and tightly couple your beans to Spring. While coupling to Spring isn’t
terrible, the cleaner approach is to keep initialization details entirely within configuration and out of the
code. So let this be your mantra: keep it in the configuration.

Similar to acting on bean creation, you may also trigger custom logic when beans are destroyed. You
can accomplish this in several ways:

• By implementing the DisposableBean interface, which is essentially the inverse of
InitializingBean

• By applying a @preDestroy annotation to the method in question

• By configuring the destroy-method parameter in your Spring XML configuration,
which is what we recommend to minimize tight coupling

Now that you know how to tap into the creation and destruction life-cycle events in Spring, there’s

another aspect of bean management that’s crucial to understand when building enterprise applications:
bean scoping.

Understanding Bean Scopes

By default, beans defined in Spring are all scoped as singletons. A singleton is a class that is guaranteed
to have only a single instance in the JVM. Singletons are great for storing application state, or for any
case where you want to be assured that there is only ever one reference in your application. Normally,
you would need to write code to achieve this assurance.

The typical singleton meets the following criteria:

• Has a static method to return the single instance of the class (stored as a static
reference within the class)

• Has a private constructor, ensuring that only the singleton itself can ever create a
new instance (which is your assurance that you won’t accidentally create more
than once instance simply by invoking new Singleton())

A singleton in your application might look like this:

public class Singleton {

 private static final Singleton INSTANCE = new Singleton();

 private Singleton() {
 }

 public static Singleton getInstance() {
 return INSTANCE;
 }

}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ SPRING BASICS

23

Although the preceding sample illustrates a useful design pattern, Spring obviates the need to write
this boilerplate code, once again allowing you to move these details into the configuration. By default, all
Spring beans are singletons. If this is not your intention, you need to specify a different scope for your
bean.

In Spring 1.x, beans were either prototype beans or singletons. Prototype means that each new call
to getBean() will return a brand-new instance of your bean. Singleton beans guarantee that there can
only ever be a single instance of your class in the entire Spring ApplicationContext. Spring 2.x
introduced several new standard scopes, as well as the ability to define custom scopes. Spring 3.x added
a thread scope, though it’s not registered by default. Table 2-1 lists the bean scopes that are provided by
Spring out of the box.

Table 2-1. Spring Bean Scopes

Scope Description

Singleton Scopes a single bean definition to a single object instance per Spring IoC
container. This is the default scope.

Prototype Scopes a single bean definition to any number of object instances.

Request Scopes a single bean definition to the life cycle of a single HTTP request; that is,
each HTTP request has its own instance of a bean created off the back of a single
bean definition. This scope is valid only in the context of a web-aware Spring
ApplicationContext.

Session Scopes a single bean definition to the life cycle of an HTTP session. This scope is
valid only in the context of a web-aware Spring ApplicationContext.

Global session Scopes a single bean definition to the life cycle of a global HTTP session. This
scope is valid only in the context of a web-aware Spring ApplicationContext, and
typically only in a portlet context.

Simple thread If for some reason, the request, session, or global session scopes don’t satisfy your
needs, you may enable the simple thread scope to bind a bean definition to an
instance of ThreadLocal.

So now you know how to create beans in the Spring ApplicationContext and manage their scope
and life cycle. The next piece of the puzzle is how to retrieve those beans from the Spring container
within your application.

CHAPTER 2 ■ SPRING BASICS

24

Dependency Injection and Inversion of Control
Enterprise applications are composed of many objects that provide behavior to emulate business
processes. Two very important design patterns have emerged to manage the relationships between
objects in an object-oriented application:

Dependency injection (DI): Classes that employ dependency injection specify
the objects that they interact with through constructor arguments, factory
method parameters, or public mutators (aka setters). With a dependency-
injection container or framework like Spring, the ability to externalize simple
class properties is just the beginning. Developers can create a complex tree of
dependencies, leaving the work of figuring out how each dependency is created
and set (also called injected or wired) to the Spring lightweight container.

Inversion of Control (IoC): When object location or instantiation is removed as a
responsibility for a given bean and instead left to the framework, control has
been inverted. This inversion of control is a very powerful concept and
represents the foundation on which the Spring Framework is based.

Dependency injection and IoC lead you down a path toward clean code that embodies high

cohesion and loose coupling.

Setter-Based Dependency Injection

Although frighteningly simple, Spring’s use of POJOs as a means of configuration and integration is quite
powerful. Consider the example of a fictitious User bean, which could be used in an application to
specify user credential information:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userBean" class="com.prospringhibernate.gallery.User">
 <property name="username" value="admin" />
 <property name="password" value="password" />
 </bean>

</beans>

You can take away several things from the preceding example. The first is that we use horribly
insecure passwords. But it does demonstrate how a simple Spring bean is configured via XML.

To make this work on the Java side, we need a valid JavaBean class that looks like the following:

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsd

CHAPTER 2 ■ SPRING BASICS

25

package com.prospringhibernate.gallery;

public class User implements Serializable {

 private String username;
 private String password;

 public User() {
 }

 public String getUsername() {
 return this.username;
 }

 public void setUsername(String name) {
 this.username = name;
 }

 public String getPassword() {
 return this.password;
 }

 public void setPassword(password) {
 this.password = password;
 }

}

Notice that, for each property entity in the Spring XML configuration, we have a corresponding

getter and setter defined in the Java class. In Spring terms, this is called setter injection, since the
property values are configured by invoking the JavaBean’s setter methods.

Constructor-Based Dependency Injection

An alternate approach is to use constructor injection, which allows the property values to be injected via
the constructor of the class. To use constructor injection, we refactor our code and Spring configuration
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userBean" class="com.prospringhibernate.gallery.User">
 <constructor-arg index="0" value="admin" />
 <constructor-arg index="1" value="password" />
 </bean>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsd

CHAPTER 2 ■ SPRING BASICS

26

And here’s the corresponding code for the updated User bean:

package com.prospringhibernate.gallery;

public class User implements Serializable {

 private String username;
 private String password;

 public User(String username, String password) {
 this.username = username;
 this.password = password;
 }

 public String getUsername() {
 return this.username;
 }

 public String getPassword() {
 return this.password;
 }

}

Although either approach is valid, we recommend the setter-based approach, as this better

conforms to the conventions of JavaBeans and makes your code easier to test later.

Instance Collaboration

In the preceding examples, we injected two string values, which are specified directly within the
configuration file. This is a useful shortcut to abstract basic configuration details away from your code
and into a more readily changeable file. However, the same concept can be taken a step further for
satisfying dependencies between collaborating instances within your application.

For example, let’s assume that authentication was implemented in a separate class. In our Spring
configuration file, we might have the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userBean" class="com.prospringhibernate.gallery.User">
 <property name="authHandler" ref="authService" />
 </bean>

 <bean id="authService" class="com.prospringhibernate.gallery.AuthService"/>

</beans>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsd

CHAPTER 2 ■ SPRING BASICS

27

And here’s the corresponding code for the updated User bean:

package com.prospringhibernate.gallery;

public class User implements Serializable {

 private AuthenticationService authHandler;

 public User() {
 }

 public AuthenticationService getAuthHandler() {
 return this.authHandler;
 }

 public void setAuthHandler(AuthenticationService authHandler) {
 this.authHandler = authHandler;
 }

}

Simple, isn’t it? We just wired up critical parts of our application with a few configuration lines. It’s

easy to imagine defining code for an alternate authentication service and then simply modifying the
bean reference in your Spring configuration to manipulate the behavior of your application.

Coding to Interfaces

Earlier, we mentioned that Spring has the tendency to lead developers to write better, cleaner, and more
loosely coupled code. You might be starting to pick up on why this is the case. Not only are your classes
free of application wiring code, but you’ll also find that applications based on Spring are usually more
interface-based, meaning that your code is dependent on interfaces rather than specific
implementations. This strategy is often called coding to interfaces, and it allows you to easily swap out
one implementation for another, simply by altering the class attribute within a Spring bean. As long as
your code is written to rely on an interface, and the interface isn’t changing, no changes to your class
files will be necessary.

For instance, notice that in the preceding example, the User bean depends on an
AuthenticationService bean. In your code, a good practice is to define an AuthenticationService
interface that specifies core methods related to user access and security. Your code would then reference
the AuthenticationService interface, and your Spring configuration would map the concrete
implementation class to your User object.

As an oversimplified example, our AuthenticationService interface might look like the following:

package com.prospringhibernate.gallery;

public interface AuthenticationService {
 public User authenticateUser(String username, String password)
 throws AuthenticationException;
}

CHAPTER 2 ■ SPRING BASICS

28

And our concrete implementation would be something like this:

package com.prospringhibernate.gallery;

public class AuthenticationServiceImpl implements AuthenticationService {

 public User authenticateUser(String username, String password)
 throws AuthenticationException {
 // authentication logic goes here
 }

}

Finally, bringing everything together in our Spring configuration, the userBean then points to a

particular implementation of the AuthenticationService interface by using the ref property.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="userBean" class="com.prospringhibernate.gallery.User">
 <property name="authHandler" ref="authService" />
 </bean>

 <bean id="authService" class="com.prospringhibernate.gallery.AuthServiceImpl"/>

</beans>

The key point here is that the User class does not depend directly on the AuthenticationServiceImpl

implementation, but rather on the AuthenticationService interface. Although the difference may appear
subtle, expressing dependencies on interfaces is an effective means of ensuring your application is
loosely coupled. If your code doesn’t express any direct coupling to a particular implementation, you
will gain the flexibility of defining these details in the Spring configuration, and only in that
configuration. In this way, you can easily swap implementations without needing to refactor your code.

No matter what type of library, class, or framework you need to integrate into your application,
Spring will allow you to work with these internal and external components cleanly and with a shallow
learning curve. This integration without direct coupling is the greatest benefit of IoC. Essentially, the
hooks into third-party libraries (or even in-house frameworks and classes) are moved outside the source
code and into configuration files (or annotation-based metadata within your classes). This type of
configuration lets developers worry less about how the various components of code fit together and
focus more on coding the core functionality itself.

Dependency Injection via Autowiring

Another type of injection is what Spring calls autowiring. This method allows you to simply define
getters and setters of a particular type or name, putting on the Spring container the onus of figuring out
which class to inject. This very powerful feature comes with some risk as well: should there be some
ambiguity as to which instance to inject, you may run into problems. For instance, if you have a class

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsd

CHAPTER 2 ■ SPRING BASICS

29

that depends on the AuthenticationService interface and you have a BasicAuthenticationServiceImpl
and a RemoteAuthenticationServiceImpl defined in your application (both of which implement the
AuthenticationService interface), Spring may get confused as to which implementation you intend to
inject.

@Annotation-Based Dependency Injection

Up to this point, we’ve shown how to specify how objects depend on one another in XML configuration
files. Over time, XML configurations for enterprise applications grew massive and unwieldy. Beginning
with Spring 2.5 and JDK 1.5, another configuration strategy was introduced. Utilizing annotation-based
metadata, you can now specify dependency wiring directly within your classes. The advantage of this
approach is that a class’s dependencies can be expressed directly within the code. The downside is that
you don’t benefit from having a centralized collection of configuration files that illustrate and document
how your application’s components are wired.

Which path you take is up to you. Certainly, using annotations does simplify the configuration
process. Furthermore, you can mix and match both XML configuration and annotations, allowing some
dependencies to be configured within the Spring XML, while other dependencies are detected via
annotations.

Here’s our User object, revised to use an annotation-based approach.

package com.prospringhibernate.gallery;

import org.springframework.beans.factory.annotation.Autowired;

public class User implements Serializable {

 @Autowired
 private AuthenticationService authHandler;

 public User() {
 }

 public AuthenticationService getAuthHandler() {
 return this.authHandler;
 }

 public void setAuthHandler(AuthenticationService authHandler) {
 this.authHandler = authHandler;
 }

}

Notice the @Autowired annotation above the authHandler member variable. This tells Spring to inject

(using the autowiring strategy we discussed earlier) an implementation of the AuthenticationService
interface.

In cases where ambiguity could be an issue, Spring provides a means for providing clues to the
container by using qualifiers. Qualifiers can be inserted as a separate annotation on an @Autowired field,
or within an XML configuration to provide specific hints to the Spring container in order to help
disambiguate a situation in which multiple instances of a particular type or interface are present. For

CHAPTER 2 ■ SPRING BASICS

30

instance, we might indicate which AuthenticationService was needed by adding the following
annotation:

@Autowired
@Qualifier("basicAuthHandler")
public void setAuthHandler(AuthenticationService authHandler) {
 this.authHandler = authHandler;
}

Now that we have disambiguated which implementation of our AuthenticationService should be

injected into the setAuthHandler method listed above, we need to “tag” this dependency so that Spring is
able to select the correct instance. In Spring XML, we can provide this hint by including the qualifier
element:

<bean id="authHandler" class="com.prospringhibernate.gallery.BasicAuthServiceImpl"/>
 <qualifier value="basicAuthHandler"/>
</bean>

It is also possible to provide disambiguating hints on dependencies by applying the @Qualifier

annotation to a class annotated for Spring’s component-scanning capability. We will demonstrate these
features later in this book. The @Autowired annotation may be applied to more than just member
variables. It can also be applied to methods and constructors. Furthermore, the @Qualifier annotation
may be applied directly to method parameters to target qualification to a specific parameter or to apply
different qualifying hints to different parameters within a method or constructor.

Set It and Forget It!

All this externalization doesn’t seem like a big deal at first, but it really is, and you’ll notice that when you
begin development. You can simply focus on the implementation without worrying about how a
reference from one class can get to another. You learn to simply define setters and getters for the
dependencies each class requires, and then leave the wiring to Spring. Imagine some of the alternatives.

Many applications rely on singletons to centralize and hand out references to needed dependencies.
This type of strategy will certainly work, but inevitably, your code becomes more about wiring classes
together than about your application’s core functionality.

Spring and IOC allow you to focus on the application design and business logic, and forget about
the wiring. Ron “Ronco” Popeil used the tagline “Set it, and forget it!” in some infomercial. You may find
this slogan floating through your head each time you start developing with Spring.

Slick configuration and life-cycle management are really only a small portion of the overall Spring
package. Spring also provides powerful integration points to most major frameworks in the Java
ecosystem, including many persistence frameworks. This greatly simplifies integrating these frameworks
into an application and makes maintenance and development easier overall. Beyond these integration
points, Spring also provides a powerful set of AOP and proxying features, which are instrumental for
configuring declarative transactions, logging, and remoting. These capabilities make Spring a viable
replacement for the enterprise-level features offered by EJB and Java EE application servers.

CHAPTER 2 ■ SPRING BASICS

31

Injecting Code Using AOP and Interceptors
AOP is often a hard pill for developers to swallow. In truth, it can be a somewhat confusing topic, as it is
a fairly new development paradigm. For those experienced in object-oriented methodologies, AOP can
seem a bit unconventional.

AOP is a strategy that allows behavior to be injected into code in places across an application. In
much the same way that Spring provides a means to inject values and instance references into a bean,
AOP allows developers to weave code from one class directly into another. Why on Earth would you ever
want to do this? Well, sometimes, you want to apply functionality across a whole slew of classes, but
extending from a base class to accomplish this goal doesn’t make sense, as the functionality you wish to
inject may be orthogonal to the destination class. This notion is often called cross-cutting concerns,
because the intention with AOP is to apply functionality across a series of classes that has little to do with
the main purposes of those classes.

For example, say you have a few classes that are designed to store and retrieve data to and from a
relational database. As part of this implementation, you may wish to do some auditing (for example, to
track details of each successive write operation). Extending from a base auditing class isn’t a viable or
proper way to accomplish this task. If you extend from any class at all, you probably want to inherit
behavior that relates more to manipulating your domain model and saving data (you don’t want to
inherit auditing behavior). In this example, we might say that auditing functionality is orthogonal to the
core persistence functionality (that is, completely independent of it). Furthermore, the auditing aspects
of the code can be applied in a reasonably similar and standard fashion across all the application code.
This is the perfect scenario for AOP. You can apply aspects of the unrelated auditing functionality across
all of the classes that aim to handle image gallery logic.

The way AOP works in practice is fairly simple: a class’s methods can be altered so that new
functionality can be injected before, after, or around (essentially, before and after) a method is called.
So, in the case of an auditing aspect, you could inject a block of code that writes a row in a database
(constituting a piece of an overall auditing trail) each time a method within a category of methods is
called.

A similar scenario concerns security. A security check can be inserted into your core data-access
code to ensure appropriate permissions or roles are verified each time certain methods are called. The
interesting part of this approach is that you can keep the security code entirely separate from your core
implementation (which no longer needs to worry about the implementation details of security). This
leads to cleaner code, as your core application need not get bogged down with details of your security
implementation.

Furthermore, it is often useful to have distinct teams manage features that are disparate. AOP makes
this feasible, as security-related code can be crafted by experts in this domain, while the application
business logic is developed and maintained by a different team. By ensuring these two facets don’t
intermingle (from a code standpoint), specialization becomes more attainable. These two distinct pieces
of functionality can be developed and maintained entirely separately, leading to cleaner and more
loosely coupled code.

This ability to intercept method calls and introduce, or inject, new functionality is the secret sauce
behind Spring’s support for declarative transactions. Using Spring’s declarative transaction support, you
can advise your persistence facade layer with transactional semantics. We’ll cover transactions in detail
in Chapter 7, but to illustrate the separation of concerns offered by AOP, we’ll leave you with this snippet
of code as a teaser:

CHAPTER 2 ■ SPRING BASICS

32

public class ServiceFacadeImpl implements ServiceFacade {

 @Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
 public void save(Map map) {
 // business logic goes here
 }

}

By simply annotating this method as @Transactional, Spring can enforce the transaction semantics

specified, without requiring that you write any code to start and complete a transaction in the body of
the save method. Don’t worry about the details associated with the annotation for now. Just know that
externalizing this logic via AOP enables modifications to the transaction implementation without
requiring you to refactor all the portions of the code base that depend on it. Similarly, you can be
confident that changes to the core business logic won’t break the transaction semantics.

Summary
In this chapter, you’ve learned about the fundamental concepts that power the Spring Framework. You
saw how to bootstrap a Spring ApplicationContext, learned the basics of configuring bean dependencies
in Spring XML configuration files, and developed an understanding of bean scopes and life cycles. The
benefits of dependency injection are now clear. You can effectively delegate to the Spring container to
manage and resolve your application dependencies, and doing so can help keep your application’s
dependencies loosely coupled. Finally, you were given a glimpse into the power of managing orthogonal
coding concerns with AOP.

Throughout the rest of this book, we will build on the Spring concepts introduced in this chapter to
define and implement an art gallery application.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3

■ ■ ■

33

Basic Application Setup

In this chapter, we’ll take you on a crash course though setting up a basic project using Spring and
Hibernate. The tool we’ll use for managing our application is Apache Maven 3. If you’re already well
versed in Spring, Hibernate, and Maven, you may want to just skim through this chapter, so you can get
a feel for structure and conventions we’ll be using throughout the book as we flesh out an art gallery
application. We’re going to cover a lot of ground very quickly and provide references to the chapters
where we dive deeper into the various configurations along the way.

Application Management with Maven
Maven was written by Sonatype’s Jason van Zyl in 2002 and reached its 1.0 release as a top-level Apache
Software Foundation project in 2004. Maven strives to simplify day-to-day development by ensuring an
easy, repeatable process for configuring. managing, and interacting with Java-based software projects.

Maven revolves around the concept of a Project Object Model (POM), which represents the
configuration for your project or module. In Maven parlance, a module is just a subproject for a given
“parent” Maven project. This organizational construct allows you to create a project that is
compartmentalized into a collection of smaller modules. Your POM describes many things about your
project, including required dependencies, plugin configuration. and the order and operations for
compiling and assembling your application.

Maven provides a ton of features out of the box. Also, a tremendous amount of plugins have been
developed by its massive community of users. When the time comes to further customize your project’s
build process, writing Maven plugins on your own is a snap.

Managed Dependencies

Maven’s killer feature is its dependency management. Maven downloads all of your project’s
dependencies from Maven repositories when you build or compile your application. This is a huge win
when working in a team. Do you want to upgrade the version of Spring your project uses? Just update the
project dependencies, commit to source control, and everyone on the team will automatically have their
project upgraded to the newest version of Spring as well! Maven even handles transitive dependencies,
meaning that Maven can automatically fetch the dependencies of the libraries your project depends on
without you explicitly including them all.

Remember how we told you that there are a huge number of mature plugins available for Maven?
One example of a handy plugin that you have at your disposal is the excellent m2eclipse plugin, for
integrating Maven with Eclipse. Figure 3-1, which comes courtesy of m2eclipse, shows you everything

CHAPTER 3 ■ BASIC APPLICATION SETUP

34

you need to know about why using a tool like Maven is important for managing enterprise Java
applications. The image isn’t really legible, and you can’t even see all of the dependencies, which extend
off to the left and right of the screen, because there are so many components that make up our
application.

Figure 3-1. A set of dependencies as displayed by Maven and m2eclipse

The number of dependencies may seem a bit daunting at first, but when you’re using Spring and
Hibernate, you are given a lot of granular choice about which JARs to include and when, which to
exclude, and so on. This results in many smaller library dependencies. Through your project’s
dependency configuration, Maven is aware of which JAR files are required for your project and which
JARs have dependencies on one another. It knows which libraries are needed only while executing unit
tests, as well as which libraries should be bundled into your resulting WAR file to be deployed on an
application container like Apache Tomcat.

With all of this power comes a good bit of complexity, and for that reason, Maven also has its fair
share of detractors. The fact remains that at the time of this writing, Maven is far and away the most
prevalent tool used by shops big and small for managing Java applications. Once you get over some of
the jargon, Maven is quite simple to configure and use. Get started by downloading it from
http://maven.apache.org, and let’s see how you can put it to use.

http://maven.apache.org

CHAPTER 3 ■ BASIC APPLICATION SETUP

35

Standard Directory Structure

Let’s first create the folder structure required for a standard Maven 3 web application. Though you can
define a custom directory structure and modify your Maven settings or graft Maven onto a legacy project
with a directory structure that’s already defined, your best bet is to stick with the basic folder structure
that Maven expects. That will ensure proper interoperability with all of the plugins and tools that are
available.

Since we’re building a basic art gallery application, start by making a folder called gallery:

mkdir gallery

Within the gallery folder, we’ll create the folders that are customary for a Java application:

mkdir gallery/src
mkdir gallery/src/main
mkdir gallery/src/main/java
mkdir gallery/src/main/resources
mkdir gallery/src/main/resources/META-INF

For web applications, we need a webapp and WEB-INF folder:

mkdir gallery/src/main/webapp
mkdir gallery/src/main/webapp/WEB-INF

We also need to create the folders that are required for unit testing our application:

mkdir gallery/src/test
mkdir gallery/src/test/java
mkdir gallery/src/test/resources

And finally, we’ll create the two folders where Spring configuration files are ordinarily placed:

mkdir gallery/src/main/webapp/WEB-INF/spring
mkdir gallery/src/main/resources/META-INF/spring

■ Note You can also have maven automatically generate your project's structure by using Maven's archetype

feature. Maven archetypes are like project templates that can be used to streamline the creation of a maven

project, including setting up your directory structure and a baseline pom.xml file.

POM Deconstruction

The primary configuration file for Maven is pom.xml. With this configuration file, you can specify
important metadata and build details about your project. The pom.xml file resides at the root of a given
Maven project, so we’ll create it within the gallery folder. This listing is abridged for the sake of
simplicity. We recommend you check out the full listing in the source code that accompanies the book.

CHAPTER 3 ■ BASIC APPLICATION SETUP

36

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/mavenv4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.prospinghibernate</groupId>
 <artifactId>gallery</artifactId>
 <version>1.0.0-SNAPSHOT</version>

 <packaging>war</packaging>

 <properties>
 <spring.version>3.0.2.RELEASE</spring.version>
 <hibernate.version>3.5.0-Final</hibernate.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>${spring.version}</version>
 </dependency>

 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>${hibernate.version}</version>
 </dependency>

 <!-- Most dependencies omitted for brevity... -->

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>tomcat-maven-plugin</artifactId>
 <version>1.0</version>
 </plugin>
 </plugins>

 <!-- Other plugins omitted for brevity... -->

 </build>

</project>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0maven.apache.org/mavenv4_0_0.xsd

CHAPTER 3 ■ BASIC APPLICATION SETUP

37

There is a lot happening in this POM configuration file. First, you’ll notice the XML namespace

that’s defined for Maven and its POM schema definition.
modelVersion is used to declare the version of the POM for your project. This protects you from

compatibility issues when upgrading the version of Maven you are using.
Next up is a series of fields commonly referred to as the project coordinates because they uniquely

identify the project. By convention, the groupId uses the reverse domain of the organization that created
the project. The artifactId is the unique name within a given groupId, and version is the specific
release of a project. No two projects may have the same combination of groupId:artifactId:version.

The packaging element is a special attribute in the project coordinates. It’s not used as a part of the
unique identifier, but it describes the output of a given project. The default value is jar, to produce a
Java archive (JAR file). Since, we’re building a web application, we specify war to output a web archive
(WAR file).

The properties section offers a convenient place to define variables that you use in the rest of your
configuration. In our project, we have ten Spring JAR files outlined as dependencies. Managing them all
individually is tedious. Using the properties attributes simplifies the management of upgrading versions
of Spring.

Finally, the build attribute offers a place for you to define, among other things, the plugins you
require for your project. For our project, the Tomcat Maven plugin provides an excellent mechanism for
easily building and running our web application on the Apache Tomcat application server.

With that, we have a very basic application stubbed out. You can execute mvn initialize from your
root gallery folder at a command prompt. If you’ve done everything correctly, Maven will fetch your
dependencies and deliver the message BUILD SUCCESS.

Of course, our application doesn’t yet do anything. Let’s start laying down our Spring configuration
so we can change that.

Spring Configuration
When building reasonably large Spring applications, you end up with a lot of Spring beans configured in
the Spring ApplicationContext. As you saw in Chapter 2, every object that you configure for use in the
Spring container is registered in the ApplicationContext, which is a subinterface of Spring’s BeanFactory.
The ApplicationContext provides you with the tools you need to interact with your configured beans.
We recommend creating a root configuration file, and then importing all other configuration files, so
that the XML files don’t become too large and obtuse.

The following is an extremely basic Spring configuration file (gallery/src/main/resources/META-
INF/spring/spring-master.xml).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:property-placeholder location="classpath*:META-INF/spring/*.properties"/>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/contextwww.s

CHAPTER 3 ■ BASIC APPLICATION SETUP

38

 <context:component-scan base-package="com.prospringhibernate">
 <context:exclude-filter type="annotation"
 expression="org.springframework.stereotype.Controller"/>
 </context:component-scan>

 <import resource="spring-datasource.xml"/>

</beans>

Let’s break down the contents of this spring-master.xml file in more detail.

Namespace Support

Spring introduced extensive namespace support as of version 2.0 of the framework. Everything is just a
bean in the IoC container, but over time, your configuration can become incredibly verbose. The
introduction of namespaces is intended to simplify the XML configuration when dealing with
integration points like transactions. You can even define your own namespaces if that’s required.

Two namespaces are used in our spring-master.xml configuration file, marked by the xmlns
declarations:

• The beans namespace is required for defining all basic bean definitions for your
application (such as DAOs, service layer beans, and so on).

• The context namespace is provided as a convenience for configuring some of the
core plumbing of Spring.

Externalizing Property Configurations

This configuration defines a PropertyPlaceholderConfigurer, which allows you to externalize some of
your settings to a properties file outside the Spring configuration.

<context:property-placeholder
 location="classpath*:META-INF/spring/*.properties"/>

The property-placeholder will automatically locate and parse any property files you have in your

classpath under the META-INF/spring directory. Any property you want replaced should be indicated in
your Spring configuration like so: ${propertyKey}. You’ll see a full example later in this chapter when we
configure a datasource for the gallery application.

Component Scanning

The next important piece of configuration is component scanning, which was introduced in Spring 2.5
as a mechanism for further simplifying the way you go about configuring Spring applications.

<context:component-scan base-package="com.prospringhibernate">

This declaration will cause Spring to locate every @Component, @Repository, and @Service in your

application. In practical terms, this allows you to write a POJO, and then simply annotate the new POJO

CHAPTER 3 ■ BASIC APPLICATION SETUP

39

as a @Service. Spring will then automatically detect, instantiate, and dependency inject your service at
startup time.

Additionally, component scanning turns on other notable Spring annotations like @Inject, @Named,
and @PostConstruct support. These annotations allow you to use common Spring and Java EE
annotations in your classes without needing to do any special configuration. The most commonly used
annotation is @Inject, which instructs Spring to dependency-inject an object into your class. You can
then also have your new service injected into any other class that requires it, simply by declaring a field
for your service inside the relying class.

■ Note @Inject and @Named are just two of the annotations defined as a part of JSR-330. JSR-330 defines a

standard set of annotations to be used in Java EE applications. @Inject and @Named are wholesale replacements

for the @Autowired and @Qualifier annotations in Spring that you may already be familiar with. This makes your

application more portable in the event that you should decide to change your dependency-injection implementation

to something like Google Guice.

The matching rules used by the component scanner can also be customized with filters for
including or excluding components. You can control this matching based on type, annotation, AspectJ
expression, or regular expressions for name patterns. The default stereotypes can even be disabled. In
our configuration, we declared the following exclusion:

<context:exclude-filter type="annotation"
expression="org.springframework.stereotype.Controller" />

This exclude-filter is declared to avoid instantiating our @Controller classes, as these should be

instantiated by a web tier application context. Yes, you read that right: our application will actually have
several distinct application contexts. We will talk about this a bit more when we introduce our web
application configuration via web.xml later in this chapter.

Import Statements

After the property-placeholder configurer, you’ll notice that we specify an import statement:

<import resource="spring-datasource.xml"/>

Imports allow you to specify an external Spring configuration file to be integrated into your

application context. This is a useful construct, especially in our demonstration application, as we can
easily externalize the different persistence strategies, keeping each version in its own file. These imports
can also reference your application classpath with the following syntax:

<import resource="classpath*:spring-config-name.xml"/>

Imports are invaluable when you’re dealing with large application contexts, as they provide a great

deal of flexibility for organizing your bean definitions. You can partition your application in any number

CHAPTER 3 ■ BASIC APPLICATION SETUP

40

of ways to make it more approachable by new developers and to help understand how the project
changes over time.

Database Integration
Now that you have a clearer picture of how Spring is bootstrapped within your application, let’s get back
to integrating your database of choice. You’ve learned that Spring’s adherence to interface-based
concepts helps to take implementation choices out of your code and into configuration. So, whether you
choose to use a Java Naming and Directory Interface (JNDI) factory bean to pull in a database reference
from an external JNDI directory or configure a specific database driver directly, your code won’t be
affected one bit. In the end, you’ll always end up with a JDBC DataSource, and that’s all your code needs
to care about.

JDBC Support

In our example, we’ll keep things simple. Let’s start off by defining a Spring bean that will create a JDBC
DataSource instance:

<bean id="galleryDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>
</bean>

If we wanted to get a bit fancier, we could instead choose a popular database connection pool as our

bean implementation. A connection pool is ideal for web applications that require multiple concurrent
database operations. A connection pool can be optimized for different usage scenarios, ensuring a more
efficient means for handing off new database connections to the application. Again, switching to a
database connection pool will give your application more efficiency without requiring any code changes.

■ Note Connection pools used to be something that developers had to write on their own. Their use is actually a

fun gauge to use to see how long engineers have been writing web applications in Java. If they’ve written their

own connection pools, they’ve probably been at it for a long while. As a result of needing to roll their own pools,

every open source project wound up with a unique implementation of a connection pool. Fortunately, all of the

projects that are part of the Apache Software Foundation came together to create the commons-dbcp library (dbcp

is short for database connection pool).

Notice in the configuration that follows how easily we switch to using a connection pool. This is
made possible by coding to interfaces, externalizing configuration, and leveraging dependency
injection. It’s a really rewarding experience to be able to make such large changes so quickly and easily.

CHAPTER 3 ■ BASIC APPLICATION SETUP

41

<bean id="galleryDataSource"
 class="org.apache.commons.dbcp.BasicDataSource">
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>
</bean>

You may have noticed that the id for our DataSource bean is galleryDataSource. In most enterprise

applications, you end up with several datasources. As a result, the best approach is to give each one a
unique name so you have finer-grained control over which portions of your application use which
datasource.

Also notice that we have specified properties for driverClassName, url, username, and password for
our datasource bean. These properties determine how an application connects to a given database.
Within the Spring configuration, we can use placeholder references through the ${} notation. These
placeholders represent external values stored in our jdbc.properties file, injected into our configuration
file, courtesy of our PropertyPlaceholderConfigurer. This detail isn’t necessary, but it makes our
configuration more portable. It allows us to easily define different database configurations for different
machines and platforms without needing to change our Spring configuration. For instance, here is a
snippet of our src/main/resources/META-INF/spring/jdbc.properties file:

jdbc.url=jdbc\:h2\:mem\:prosh;DB_CLOSE_DELAY\=-1
jdbc.driverClassName=org.h2.Driver
jdbc.username=sa
jdbc.password=

The syntax is intuitive. Each line contains a simple expression, in which the left side represents the

property name and the right side (after the =) represents the configured value. This externalization
makes it easy to swap different database configurations for different environments and better
externalizes these details from application-specific configuration.

Different databases will require different JDBC URLs. In this example, we use the popular H2
database. H2 is a Java-based database and is therefore easy to integrate into any Java-based application
(it doesn’t require a separate database process). You could just as easily use PostgreSQL, MySQL, or any
database for which a JDBC driver is available. Just make sure your database is up, running, and
configured to listen on the URL specified in the bean’s configuration.

It is also critical that you include the appropriate JDBC driver on your classpath when the
application is first started. Because H2 is Java-based, simply including the H2 JAR file on your classpath
is all that is required to get rolling.

Integration with JNDI

Hibernate almost always implies a relational database, so starting there makes the most sense. Java has
evolved into a platform for building enterprise-level applications, so there are many options for
connecting it to a standard relational database.

At the simplest level, you can instantiate the database driver for your database of choice, but most
applications require more than that. Many application servers offer their own optimized database
connection pools to improve performance when multiple clients are using the application concurrently.
To simplify administration and integration, many application servers use JNDI to interface with a
database.

CHAPTER 3 ■ BASIC APPLICATION SETUP

42

JNDI is often described as the opposite of Spring’s IoC. Instead of having dependencies
automatically injected into your application, JNDI allows dependencies to be looked up from a centrally
managed directory. There are certainly benefits to both approaches. For example, in the case of JNDI,
developers can define logical names for database resources in their application configuration, but allow
a system administrator to manage mapping that logical name to the proper database connection pool in
the web application container configurations, effectively deferring the specification of database
connection details until runtime. When a database migration is required, JNDI can simplify some of
these administrative tasks, as no changes to the application configuration will be required.

No matter which approach you decide to take, Spring makes integrating a datasource into your
application easy. The key factor is that Spring’s persistence templates never require a specific type of
datasource implementation. Instead, they depend on the more generic javax.sql.Datasource interface.
Whether you intend to use a database connection pool or a JNDI-retrieved datasource, the resultant
configuration should always produce a standard javax.sql.Datasource reference.

This brings us to a key concept in Spring: the FactoryBean interface. The FactoryBean is Spring’s
answer to the well-known factory design pattern. The key concept here is that you remove a direct
dependency on a specific implementation by delaying the selection or instantiation of the specific
implementation until runtime. You define a factory, and it is the factory’s job to pick the correct
implementation at runtime and instantiate (or look up) that specific class.

The Spring FactoryBean concept is quite similar. Normally in Spring, when you define a bean, the
class specified by the classname attribute is the class that will be instantiated and injected into other
beans that have that bean ID wired into them. This isn’t the case with a FactoryBean. When you use a
FactoryBean, you are instead instantiating a factory class that will then be responsible for creating the
specific implementation used to resolve dependencies in Spring. So essentially, the classname attribute
in this case just defines a factory implementation, whose job will then be to create the actual target
implementation you need.

This concept allows us to use multiple strategies to access a datasource without tying ourselves
down to a particular solution. If you use the JNDI FactoryBean, you will still end up with a datasource
reference, and the same will occur if you choose to use the pooled datasource implementation.

There are other reasons to use a FactoryBean in Spring, as well. For instance, a MapFactoryBean can
be used to create a Java Map entirely in your configuration file (which can be quite convenient in certain
cases).

A Spring FactoryBean implements the FactoryBean interface, which defines three methods designed
to instantiate the target object (that is, the instance the factory is intended to create), the target object’s
type, and whether the target object is a singleton or prototype. For our scenario, we would configure our
JNDI datasource in the following way:

<bean id="galleryDatasource" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="java:comp/env/jdbc/gallery"/>
</bean>

Although the preceding example is fairly concise, in some situations, you can make your

configuration easier to read and more terse by importing a namespace intended to handle a very specific
type of configuration. For example, by importing the jee namespace, we can simplify the preceding
JNDI lookup further:

<jee:jndi-lookup id="galleryDatasource"
 jndi-name="java:comp/env/jdbc/gallery"/>

Not only have we reduced the configuration to a single line, but we’ve also made the intention of

our configuration clearer.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BASIC APPLICATION SETUP

43

Web Application Configuration
Java web applications are deployed as WAR files. A WAR file is a special kind of JAR file that includes
things like servlets, JSPs, tag libraries, and static HTML assets.

The key configuration file for a WAR is web.xml, which outlines the structure for an application in
accordance with the Java EE specifications. The configuration that follows adheres to the Servlet 2.5
specification, and can be interpreted by all major application server containers, including Tomcat,
Resin, Jetty, WebSphere, WebLogic, GlassFish, and so on. The web.xml file should be placed under the
WEB-INF directory. For Maven projects, the WEB-INF directory is located under src/main/webapp. Here’s a
basic src/main/webapp/WEB-INF/web.xml to get our art gallery application started.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <!-- Listener to create the Spring Container shared by all Servlets and Filters -->
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath*:META-INF/spring/spring-master.xml
 </param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <!-- Spring DispatcherServlet for HTTP requests -->
 <servlet>
 <servlet-name>galleryDispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 WEB-INF/spring/spring-master-web.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>galleryDispatcher</servlet-name>
 <url-pattern>*.art</url-pattern>
 </servlet-mapping>

</web-app>

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaeejava.sun.com/xml/ns/javaee/web-app_2_5.xsd

CHAPTER 3 ■ BASIC APPLICATION SETUP

44

As mentioned earlier, with web-based Spring applications, you ultimately end up with multiple
application contexts containing all of your Spring beans. There’s a single root application context and
potentially many child application contexts.

ContextLoaderListener implements the javax.servlet.ServletContextListener interface. Listeners
that implement the ServletContextListener interface receive notifications from the application
container whenever the servlet context is initialized or destroyed. It’s a convenience mechanism to
simplify your application configuration and ease system maintenance. Spring’s ContextLoaderListener
fires upon receiving such a notification when the servlet context is created during application startup. It
expects to find a contextConfigLocation parameter defined in the servlet context, and then uses this
parameter to retrieve the bean definitions and instantiates them. The beans outlined by the
contextConfigLocation compose what is commonly referred to as the root application context.

Servlet Definition

The web.xml file is also where you configure any implementations of the Servlet interface that your
application requires. Servlets are configured, along with any initialization parameters the servlet class
expects, and then associated with the URL pattern to which you want the servlet to be applied.

For a Spring application, you would take advantage of the framework’s DispatcherServlet class.
DispatcherServlet is a flexible implementation of the Servlet interface that serves as a central routing
mechanism for HTTP requests. With the help of adapter classes offered by Spring, you can specify how
each instance of DispatcherServlet handles everything from view resolution to exception handling in a
nice, pluggable way.

Each of these instances of DispatcherServlet has its own namespace, commonly referred to as a
child application context. That means that each DispatcherServlet has its own ApplicationContext, but
they all share the root application context. In short, this means that Spring beans defined in the
ApplicationContext of a DispatcherServlet may reference the beans from your root ApplicationContext
but not vice versa. It also means that separate DispatcherServlet instances may not share their bean
definitions.

■ Note The ApplicationContext used by each DispatcherServlet is technically an implementation of Spring’s

WebApplicationContext interface. The WebApplicationContext adds a getServletContext method to the

generic ApplicationContext interface. It also defines a well-known application attribute name that the root

context must be bound to in the bootstrap process.

Let’s take another look at our galleryDispatcher servlet definition. Just as with our datasources, we
give each configured DispatcherServlet a unique name, because we expect to end up with several.

<servlet>
 <servlet-name>galleryDispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>

CHAPTER 3 ■ BASIC APPLICATION SETUP

45

 <param-value>
 WEB-INF/spring/spring-master-web.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

The servlet is defined with an init-param named contextConfigLocation, which provides the servlet

with all the information it needs to acquire and instantiate its Spring bean configuration. And beans in
spring-master-web.xml may safely reference beans the ApplicationContext defined in spring-
master.xml and its subsequent imports.

However, there’s one large exception to this ApplicationContext hierarchy: implementations of the
BeanFactoryPostProcessor interface and its sibling BeanPostProcessor just apply to the BeanFactory that
defines them. The PropertyPlaceholderConfigurer class described earlier in this chapter is one such
example. This means that you need to define a property placeholder once for each DispatcherServlet in
addition to the one already defined in the spring-master.xml root application context.

Finally, we instruct our application container to map any requests that start with /art/ to this
galleryDispatcher:

<servlet-mapping>
 <servlet-name>galleryDispatcher</servlet-name>
 <url-pattern>/art/*</url-pattern>
</servlet-mapping>

With that configuration in place, a fictitious request to /art/foo would be mapped to the

galleryDispatcher, which would in turn route the request to a proper Spring MVC controller.

Spring MVC

As of Spring 3.0, bootstrapping Spring MVC is incredibly simple. The following are the contents of
src/main/webapp/WEB-INF/spring/spring-master-web.xml, which is the configuration file behind the
galleryDispatcher servlet.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

 <context:component-scan base-package="com.prospringhibernate"
 use-defaultfilters="false">
 <context:include-filter type="annotation"
 expression="org.springframework.stereotype.Controller"/>
 </context:component-scan>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/contextwww.s

CHAPTER 3 ■ BASIC APPLICATION SETUP

46

 <mvc:annotation-driven/>

 <!-- selects a static view for rendering without the need for an explicit controller -->
 <mvc:view-controller path="/index.jsp"/>

</beans>

We’re using Spring’s component scanning again in this WebApplicationContext. This time around,

we’re specifying an include-filter to restrict the beans we instantiate to only those POJOs annotated
with the @Controller stereotype annotation.

Next, we employ the mvc-namespace declaration to turn on support for mapping requests to Spring
MVC @Controller methods.

<mvc:annotation-driven/>

This convenience configuration syntax also registers default Spring formatters and Spring validators

for use across all controllers. This allows us to write controller code like the following:

@Controller
@RequestMapping("**/people")
public class PersonController {

 @RequestMapping(value = "/{id}", method = RequestMethod.GET)
 public String show(@PathVariable("id") Long id, ModelMap modelMap) {
 // business logic to retrieve a Person entity
 return "person";
 }

 @RequestMapping(value = "/{id}", method = RequestMethod.DELETE)
 public String delete(@PathVariable("id") Long id) {
 // business logic to delete a Person entity and
 // return the appropriate view goes here
 }

}

This abridged code is annotated as a controller. It’s also mapped to **/people via the Spring MVC

@RequestMapping annotation. We use the @RequestMapping annotation again at the method level to
specify that any HTTP GET request to **/people/{id} should trigger the show method. The @PathVariable
annotation will take that {id} parameter and set it as Long id for use within the show method. Similarly,
when an HTTP DELETE is issued against the URL /art/people/{id}, the request will be routed through
the galleryDispatcher to the PersonController’s delete method. That’s a lot to digest in a short period
of time, but suffice it to say that Spring’s MVC annotations greatly reduce the amount of code required
to build out a full-fledged enterprise web application.

Finally, we demonstrate Spring’s mechanism for static view resolution:

<mvc:view-controller path="/index.jsp"/>

Often, you will want to simply route a request to a view without any logic in a controller. This is

where the mvc:view-controller comes in.

CHAPTER 3 ■ BASIC APPLICATION SETUP

47

Summary
In this chapter, you have gotten a sense for what is involved in setting up a web application using core
Spring, Maven, a database, and Spring MVC.

Maven is a great tool that development teams can use to simplify day-to-day development. You can
manage your dependencies, ensuring repeatable build processes, and provide a consistent interface for
developers on your team to use for interacting with your project.

You’ve also learned about some of Spring’s features, including component scanning,
BeanFactoryPostProcessors like the PropertPlaceholderConfigurer, Spring’s namespace support, and
more advanced XML configuration management with import declarations. Component scanning is likely
the most important of these features, since it allows Spring to locate classes within a specified package
structure so that it can manage these components and resolve dependencies appropriately.

The component-scanning feature allows developers to use annotations as hints for Spring. It
simplifies the work required to wire dependencies together and even reduces the amount of XML
configuration required. For instance, the @Repository annotation should be used to indicate those
classes that compose the DAO layer, the @Service annotation can be used to designate those classes that
are part of an application’s service façade, and the @Controller annotation denotes the presence of a
POJO that should be used for Spring MVC interactions. These annotations simplify the definition of the
respective tiers, imbuing layer classes with metadata that helps describe their purpose.

You also saw what’s required to integrate a database into a Spring application using the Apache
commons-dbcp library for connection pools or via JNDI if you want to use the datasource offerings from
your application container.

In the next chapters, we’ll build out our domain model and integrate Hibernate into our art gallery
application.

C H A P T E R 4

■ ■ ■

49

Persistence with Hibernate

Much like Spring, Hibernate changed the software development landscape when it first appeared on the
scene. The timing was ideal. Developers were frustrated by the complexity of J2EE and the overhead
associated with using EJB for persistence in particular. Hibernate solves the persistence problem
through simplicity and clean, thoughtful design.

Also like Spring, Hibernate relies heavily on POJOs. Other ORM frameworks force developers to
muddy their domain model with restrictive and rigid requirements, such as alternate and parent classes,
as well as Data Transfer Objects (DTOs). Hibernate enables persistence with little reliance or coupling to
Hibernate. Spring helps to decouple Hibernate further through several classes of its own, which serve to
simplify and standardize integration and persistence operations. Additionally, Spring provides a
framework-agnostic solution for implementing transactional behavior in a standardized, declarative
fashion, without requiring Hibernate-specific code.

Looking back, it is easy to see how Spring and Hibernate were instrumental to each other’s success.
With philosophies that stressed lightweight methodologies, simplicity, and code cleanliness, the
Hibernate-Spring duo ushered in a new age for enterprise Java applications and persistence. This
mutual success had a dramatic impact on the Java community, and was the catalyst to numerous
changes that embraced a lighter-weight approach to application development.

There is often a great deal of confusion about the various persistence options in the Java ecosystem.
What’s the difference between EJB 3, JPA, JDO, and Hibernate anyway? We’ll attempt to demystify these
things in this chapter by going over a bit of history and defining some terms. With that out of the way,
we’ll demonstrate how to integrate Hibernate into a Spring application.

The Evolution of Database Persistence in Java
JDBC was included by Sun Microsystems as part of JDK 1.1 in 1997. JDBC is a low-level API oriented
toward relational databases. It provides methods for querying and updating a database. JDBC provides a
great set of tools, but all of the heavy lifting is left entirely to the developer, who must write SQL, map
query results to domain objects, manage connections and transactions, and so on. Most other
persistence frameworks are built as abstractions on top of JDBC to ease this developer burden.

Beginning in 2000, version 3.0 of the JDBC specification was managed as a part of the Java
Community Process (JCP). The JCP was created in 1998 as a mechanism for interested parties to
participate in shaping the future directions of the Java platform. The JCP revolves around Java
Specification Requests (JSRs), which are formal documents outlining proposed additions or changes to
the Java platform. Each JSR has one or more individuals playing the role of specification lead and a team
of members referred to as the expert group, who collaborate to hammer out the specification. A final JSR
also includes a reference implementation.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

50

This distinction between a specification and an implementation is one of the primary sources of
confusion among developers when discussing the various persistence options available. For example,
JPA is a specification, and Hibernate is just one of many projects that provide an implementation of the
JPA specification. Other implementations of the JPA specification include OpenJPA, DataNucleus, and
the reference implementation, EclipseLink. But we’re getting ahead of ourselves. Let’s walk through the
origins of some of these specifications and implementations.

EJB, JDO, and JPA

In the late 1990s and early 2000s, the leading technology for developing large-scale applications in Java
was EJB. Originally conceived by IBM in 1997, the EJB 1.0 and 1.1 specifications were adopted by Sun in
1999. From there, EJB was enhanced through the JCP. JSR 19 served as the incubator for EJB 2.0, which
was finalized in 2001. The EJB 2.0 specification became a major component in Sun’s Java 2 Platform,
Enterprise Edition (a.k.a J2EE) reference implementation.

There’s no question that the problems that EJB set out to solve, including enabling transactional
integrity over distributed applications, remote procedure calls (RPC), and ORM, are complex, but EJB
quickly earned a reputation for being more trouble than it was worth. The EJB 1.0, 1.1, and 2.0
specifications were marred by the complexities of checked exceptions, required interfaces, and heavy
use of abstract classes. Most applications just didn’t require the heft associated with EJB 1 and 2. Against
that backdrop, there was a huge opportunity for competition and innovation.

The first official attempt to create a lightweight abstraction layer on top of JDBC by the JCP was
JSR 12: Java Data Objects (JDO). The expert group behind JDO set out in 1999 to define a standard way to
store Java objects persistently in transactional datastores. In addition, it defined a means for translating
data from a relational database into Java objects and a standard way to define the transactional
semantics associated with those objects. By the time the specification was finalized in 2002, JDO had
evolved into a POJO-based API that was datastore-agnostic. This meant that you could use JDO with
many different datastores, ranging from a relational database management system (RDBMS) to a file
system, or even with an object-oriented database (OODB). Interestingly, the major application server
vendors did not embrace JDO 1.0, so it never took off.

Between JDO and EJB, there were now two competing standards for managing persistence, neither
of which were able to break through and win over developers. That left the door open for commercial
players and open source frameworks. Hibernate is usually the ORM framework that people think of as
replacing EJB 2.0, but another major player actually came first.

An ORM by the name of TopLink was originally developed by The Object People for the Smalltalk
programming language. It was ported to Java and added to the company’s product line by 1998. TopLink
was eventually acquired by Oracle in 2002. TopLink was an impressive framework, and its features
played a major role in shaping the persistence specifications that have since emerged in the Java world.
As a fringe commercial project, TopLink never saw the level of adoption enjoyed by EJB, which was
heavily backed by the application server vendors like IBM and BEA; nor was it able to really compete
with the lightweight open source frameworks that emerged, such as Hibernate.

Gavin King set out to build Hibernate in 2001 to provide an alternative to suffering through the well-
known problems associated with EJB 2 entity beans. He felt that he was spending more time thinking
about persistence than the business problems of his clients. Hibernate was intended to enhance
productivity and enable developers to focus more on object modeling, and to simplify the
implementation of persistence logic. Hibernate 1.0 was released in 2002, Hibernate 2.0 was released in
2003, and Hibernate 3.0 was released in 2005. Throughout that entire period, Hibernate gained a huge
amount of momentum as a free, POJO-based ORM that was well documented and very approachable for
developers. Hibernate was able to deliver a means to develop enterprise applications that was practical,
simple, elegant, and open source.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

51

Throughout the first five years of Hibernate’s existence, it did not adhere to any specification, and it
wasn’t a part of any standards process. Hibernate was just an open source project that you could use to
solve real problems and get things done. During this time, many key players ,including Gavin King
himself, came together to begin working on JSR 220: Enterprise JavaBeans 3.0. Their mission was to
create a new standard that remedied the pain points associated with EJBs from a developer’s point of
view. As the expert group worked through the EJB 3.0 specification, it was determined that the
persistence component for interacting with RDBMSs should be broken off into its own API. The Java
Persistence API (JPA) was born, building on many of the core concepts that had already been
implemented and proven in the field by ORMs like TopLink and Hibernate. As a part of the JSR 220
expert group, Oracle provided the reference implementation of JPA 1.0 with its TopLink product. JSR 220
was finalized in 2006, and EJB 3 played a central role in Sun’s definition of Java Enterprise Edition 5,
or JEE 5.

■ Note Please pay attention to the change in notation from J2EE to JEE. J2EE is now a legacy designation for the

Enterprise Edition of Java. It’s time to fix your résumé! s/J2EE/JEE/

This evolution played out perfectly for JPA. JPA 1.0 was a huge milestone for persistence in Java.
However, many features that were essential for developers already using tools like Hibernate didn’t
make the cut due to time constraints. JPA 2.0 added many important features, including the Criteria API,
cache APIs, and enhancements to the Java Persistence Query Language (JPQL), JPA’s object-oriented
query language. The JPA 2.0 standard was finalized in December 2009 as a new, stand-alone JSR that was
targeted for inclusion in the Java EE 6 specification. Oracle donated the source code and development
resources for TopLink to Sun in order to create the EclipseLink project. EclipseLink went on to become
the reference implementation for JPA 2.0. Hibernate 3.5 was released in the spring of 2010 with full
support for JSR 317: JPA 2.0.

That’s a long and sordid history, but things have worked out quite nicely. JPA now encompasses
most of the functionality that you need for developing large-scale enterprise Java applications.

HOW ABOUT JDO?

Persistence standards in Java aren’t quite as clear as one might like. You see, JDO is still very much alive and
well. JSR 243 ushered in JDO 2.0 in 2006 and has seen several minor revisions since. In many ways, JDO is a
superset of JPA. As a result, JDO implementers like DataNucleus have been able to incorporate both the JDO
specification and the JPA specification into their products. For a variety of reasons, JDO isn’t implemented by
Hibernate, and it isn’t incorporated into the EJB 3 specification at all. Nevertheless, JDO has been enjoying bit of
a resurgence in recent years.

Because JDO is datastore-agnostic, while JPA is wholly about relational datastores, there are many interesting
use cases that aren’t suitable for JPA but hit a sweet spot for JDO. For instance, JDO is a key ingredient for
developing Java applications on the Google App Engine (GAE). GAE is a “platform as a service” (PaaS), which is
built on top of Google’s BigTable custom datastore rather than an RDBMS.

So why not just use JDO and forgo the creation of JPA in the first place? The reasons for competing
specifications are numerous—some technical, some ideological, and some political. The largest companies in
the industry heavily influence the JCP, and they obviously sometimes have competing motivations.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

52

How Hibernate Fits In

Now that we’ve talked about the standards, let’s look at where Hibernate fits in and dispel a few
common misconceptions.

First of all, Hibernate 3 is not EJB 3 and vice versa. EJB 3 is a specification to provide a distributed,
container-managed, server-side component architecture. EJB 3 encapsulates several distinct
specifications to facilitate many things, including distributed transaction management, concurrency
control, messaging, web services, and security—just to name a few. The EJB 3 specification assumes
persistence handling can be delegated to a JPA provider.

Secondly, Hibernate is not JPA. Rather, Hibernate is one of many frameworks that provide a
standards-compliant implementation of JPA. The first release of Hibernate to support JPA 1.0 was
Hibernate 3.2, which became generally available in the fall of 2006.

There are often specialized features provided by frameworks like Hibernate that fall outside the JPA
specification. As such, Hibernate can be thought of as a superset of JPA. On one end of the spectrum,
Hibernate’s architecture allows you to use Hibernate Core without using any parts of the JPA
specification at all. On the polar opposite end of the spectrum, you can strictly use only the pieces of
Hibernate that adhere to the JPA specification. Strict adherence to the JPA specification ensures true
frictionless portability to other JPA implementations like Apache’s OpenJPA project.

When using Hibernate, we recommend that developers stick to the JPA specification as closely as
possible, but don’t drive yourself crazy. Because open source projects tend to evolve at a much more
rapid pace than the JCP, frameworks like Hibernate will offer solutions to problems not addressed by the
standards process. If these custom offerings ease developer pain, please, please be pragmatic and take
advantage of them! This is part of the beauty of the standards process—implementers of the various
specifications are free to innovate, and the best, most successful ideas are likely to be incorporated into
future revisions of the specification.

The JPA specification defines a set of annotations that can be applied to domain classes in order to
map objects to database tables and member variables to columns. JPA also features a SQL-like language
called JPQL, which can query the database with an object-oriented flavor. To access your database-
mapped domain model, or to execute JPQL queries, you use javax.persistence.EntityManager.

Prior to JPA, Hibernate applications revolved around using Hibernate’s SessionFactory and Session
interfaces. Simply speaking, Hibernate’s SessionFactory is aware of global configuration details, while
the Session scope is limited to the current transaction. The JPA EntityManager serves as a cross between
Hibernate’s SessionFactory and Session; therefore, it is aware of both your database connection
configuration and the transaction context. In this chapter, you’ll learn a bit about JPQL, EntityManager,
and how they interact with Spring, but mostly, you’ll learn how to go about setting up an application to
use Hibernate’s implementation of the JPA 2.0 specification.

JPA Interface Hierarchy
Figure 4-1 outlines the four key interfaces in any JPA application. The EntityManagerFactory represents
the configuration for a database in your application. You would typically define one
EntityManagerFactory per datastore. The EntityManagerFactory is used to create multiple EntityManager
instances.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

53

Figure 4-1. JPA interfaces

Each EntityManager instance is analogous to a database connection. In a multithreaded web
application, each thread will have its own EntityManager.

■ Note By default, all Spring objects are singletons. EntityManager is no different, but it is still thread-safe and

knows about transactional boundaries. Spring passes in a shared proxy EntityManager, which delegates to a

thread-bound instance of the EntityManager that knows all about the context of the request (including transaction

boundaries).

Each EntityManager has a single EntityTransaction, which is required for persisting changes to the
underlying database. Finally, the EntityManager serves as a factory for generating Query classes. Classes
that implement the Query interface are needed for executing queries against the database.

The EntityManagerFactory is relevant only when starting up an application, and we’ll show you how
that is configured in a Spring application. Querying will be covered in more depth in Chapter 6, and
transaction management will be discussed in Chapter 7. As you’ll see in this chapter, the EntityManager
interface is the interface that you tend to interact with the most.

■ Note Since JPA is intended to be used in both heavyweight and lightweight containers, there are many

configuration options. For example, you can use an EJB container to configure JPA, and then expose the

container’s EntityManager for Spring to access via JNDI. Alternatively, you can configure JPA directly within

Spring using one of the many existing JPA implementations. One significant difference is the need (or lack thereof)

of load-time weaving, which is the type of bytecode manipulation required for AOP. Load-time weaving is needed

for creating transactionally aware JPA EntityManager and Entity objects that can perform lazy-loading. EJB

servers have their own load-time weaving mechanism, and so does Spring. A single EntityManager can handle

this type of functionality only through the support of the level of indirection that a proxy can provide. The Hibernate

JPA implementation is one of the frameworks that doesn’t require load-time weaving, so it allows you to get up

and running in a JPA environment as quickly as possible.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

54

The Art Gallery Domain Model and DAO Structure
Now it’s time to get back to building our art gallery application. The core thing that we must represent in
an art gallery application is an entity for the works of art. In the Figure 4-2, you’ll see that an ArtEntity
class represents the artwork. In our gallery, we will allow gallery curators to associate ArtEntity entities
to Category entities and allow the general public to apply Tag and Comment entities. These ArtEntity
entities are organized into Exhibition entities for public display, and we’re capturing all of the metadata
for a given work of art in a polymorphic representation called ArtData. We also define a Person type to
represent all users of the application. These Person entities are qualified by an enum representing the
possible system roles they may take on.

Figure 4-2. The art gallery domain model

JPA allows us to specify how a Java class is mapped to the database via annotations. The most
important annotation is the @Entity annotation.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

55

An @Entity-Annotated POJO

Adding a JPA @Entity annotation to a POJO makes it a persistable object! Well not quite—you still need
to add an @Id somewhere and, ideally, a @Version field, but it’s just that simple.

package com.prospringhibernate.gallery.domain;

import javax.persistence.Id;
import javax.persistence.Entity;
import javax.persistence.Version;
import javax.persistence.GeneratedValue;

@Entity
public class Person implements Serializable, DomainObject {

 private Long id;
 private Integer version;

 @Id
 @GeneratedValue
 public final Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 public void setVersion(Integer version) {
 this.version = version;
 }

 // getters, setters and fields omitted
}

■ Note We’ve included all of the requisite import statements in the code listings here to help you see where the

various annotations are coming from. Annotations are great for eliminating XML, but as the number of annotations

on a given class or method grows, they can become a bit hard to read at times. Anything in the

javax.persistence package is explicitly provided by JPA.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

56

Unless told otherwise, the JPA implementation will employ convention over configuration and map

this bean to a Person table. The @GeneratedValue JPA annotation tells Hibernate to use an autogenerated
id column. Hibernate will choose the best ID-generation strategy for the specific database you’re using.
Hibernate is also smart enough to determine the right data type for each database column based on the
Java primitive type or enumeration used for each member variable. You can customize these field
mappings further through the use of the @Basic, @Enumerated, @Temporal, and @Lob annotations. Every
member of the entity is assumed to be persistent unless it is static or annotated as @Transient. We’ll
talk more about the convention over configuration concept and Hibernate annotations in Chapter 5.

The implements Serializable that you see in the Person class isn’t strictly necessary as far as the JPA
specification is concerned. However, it is needed if you’re going to use caching or EJB remoting, both of
which require objects to be Serializable. Caching is a key component in achieving optimal
performance in any JPA application, as you’ll learn in Chapter 9, so implementing the Serializable
interface is a good habit to adopt.

That’s all you need to do from the POJO side, but an @Entity-annotated POJO doesn’t do anything
on its own. We need to, at the very least, provide code for basic CRUD operations. For now, we’re going
to embrace the DAO pattern. We’ll explore coding in a more domain-centric style with the Active Record
pattern when we cover Grails and Roo in Chapters 11 and 12, respectively.

Simplified DAO Pattern with Generics

Let’s create a DAO that saves and finds a Person entity. We’re going to get fancy with our class hierarchy
using generics so that we can abstract away the boilerplate CRUD operations that would otherwise be
repeated over and over again by each DAO in our application.

In the pseudo-UML in Figure 4-3, notice that our Person domain object implements an interface
called DomainObject. That DomainObject interface is an empty interface that is used by our GenericDao
interface as well as our GenericDaoJpa concrete class to bind our domain objects in a generic way. This
structure enables us to push common methods into the GenericDaoJpa class, which in turn, allows us to
keep our Hibernate DAOs succinct.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

57

Figure 4-3. Art gallery domain and DAO class hierarchy

In the diagram in Figure 4-3, solid lines represent inheritance, and interface inheritance is depicted
with dotted lines. The key usages of Java generics are highlighted by the “bind Person” annotations.
Generics in Java allow a type or method to operate on objects of various types while providing compile-
time type-safety.

Let’s see how this plays out in actual code. The first class we’ll tackle is GenericDao:

package com.prospringhibernate.gallery.dao;

import java.util.List;
import com.prospringhibernate.gallery.domain.DomainObject;

public interface GenericDao<T extends DomainObject> {

 public T get(Long id);
 public List<T> getAll();
 public void save(T object);
 public void delete(T object);

}

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

58

Each generic type variable is represented as T. As you can see, we’ve defined four basic methods in
this interface that are essential when managing persistent objects. The delete method will remove a
given entity from the database. The save method allows us to insert a new row or update an existing row
in the database based on the contents of the entity. The two basic getters provide a means for reading in
any entity T, which uses our DomainObject interface.

In the code that follows, we implement those methods on our concrete GenericDaoJpa class using
JPA’s EntityManager.

package com.prospringhibernate.gallery.dao.hibernate;

import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

import org.springframework.transaction.annotation.Transactional;

import com.prospringhibernate.gallery.dao.GenericDao;
import com.prospringhibernate.gallery.domain.DomainObject;

public class GenericDaoJpa<T extends DomainObject> implements GenericDao<T> {

 private Class<T> type;

 protected EntityManager entityManager;

 @PersistenceContext
 public void setEntityManager(EntityManager entityManager) {
 this.entityManager = entityManager;
 }

 public GenericDaoJpa(Class<T> type) {
 super();
 this.type = type;
 }

 @Transactional(readOnly=true)
 public T get(Long id) {
 if (id == null) {
 return null;
 } else {
 return entityManager.find(type, id);
 }
 }

 @Transactional(readOnly=true)
 public List<T> getAll() {
 return entityManager.createQuery(
 "select o from " + type.getName() + "o"
).getResultList();
 }

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

59

 public void save(T object) {
 entityManager.persist(object);
 }

 public void remove(T object) {
 entityManager.remove(object);
 }

}

As we’ve discussed, EntityManager is the core mechanism for interacting with JPA. It performs data-

access operations in a transaction-aware manner. With it, the GenericDaoJpa class can perform basic
CRUD tasks: finding single or multiple instances of the class, as well as saving, updating, and deleting an
instance.

You’ll notice that the SELECT clause looks like it was written in SQL, but it wasn’t. It’s JPQL, which is
specifically geared toward querying for JPA Entity objects, rather than tables.

This class uses the @Transactional and @PersistenceContext annotations. The @Transactional
annotation is provided by Spring. It lets Spring know that this class requires transaction management, as
well as the details of which types of operations are being performed within each method. You can add
@Transactional at the class level to tell Spring that each and every method requires a transaction. You
may also use the @Transactional annotation at the method level. If you annotate at both the class level
and method level, the method level annotation will take precedence. We’ll cover transaction semantics
in depth in Chapter 7.

@PersistenceContext is a JPA annotation that tells Spring that it needs to inject the proxied
EntityManager via autowiring. @PersistenceContext can be used on member variables, but the preferred
approach is to use it on a setter as shown here.

The next interface is PersonDao. This interface extends GenericDao bound by the type Person and
declares the methods that are specific to interacting with our Person entity in our DAO. Or class
hierarchy has allowed us to simplify the following code to the point that we just need to define method
signatures that are uniquely applicable to our Person entity.

package com.prospringhibernate.gallery.dao;

import com.prospringhibernate.gallery.domain.Person;
import com.prospringhibernate.gallery.exception.AuthenticationException;
import com.prospringhibernate.gallery.exception.EntityNotFoundException;

public interface PersonDao extends GenericDao<Person> {

 public Person getPersonByUsername(String username) throws EntityNotFoundException;

 public Person authenticatePerson(String username, String password)
 throws AuthenticationException;

}

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

60

And finally, here's the implementation for the PersonDaoJpa class, which implements PersonDao and
extends GenericDaoJpa bound with our Person entity:

package com.prospringhibernate.gallery.dao.hibernate;

import java.util.List;

import javax.persistence.Query;
import javax.persistence.EntityManager;

import org.springframework.dao.DataAccessException;
import org.springframework.stereotype.Repository;

import com.prospringhibernate.gallery.domain.Person;
import com.prospringhibernate.gallery.dao.PersonDao;
import com.prospringhibernate.gallery.exception.AuthenticationException;
import com.prospringhibernate.gallery.exception.EntityNotFoundException;

public class PersonDaoJpa extends GenericDaoJpa<Person> implements PersonDao {

 public PersonDaoJpa () {
 super(Person.class);
 }

 public Person authenticatePerson(String username, String password)
 throws DataAccessException, AuthenticationException {

 List<Person> results = null;
 Query query = entityManager.createQuery(
 "from Person as p where p.username = :username and p.password = :password"
);
 query.setParameter("username", username);
 query.setParameter("password", password);
 results = query.getResultList();
 if (results == null || results.size() <= 0) {
 throw new AuthenticationException("No users found");
 } else {
 return results.get(0);
 }
 }

 public Person getPersonByUsername(String username)
 throws DataAccessException, EntityNotFoundException {

 List<Person> results = null;
 Query query = entityManager.createQuery(
 "from Person as p where p.username = :username"
);
 query.setParameter("username", username);
 results = query.getResultList();
 if (results == null || results.size() <= 0) {

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

61

 throw new EntityNotFoundException(username + " not found");
 } else {
 return results.get(0);
 }
 }

}

The Spring @Repository annotation has three primary purposes in this example:

• It tells Spring that this class can be imported via classpath scanning.

• It’s a marker for Spring to know that this class requires DAO-specific
RuntimeException handling.

• We specify the name to be used in the Spring context to represent this class. By
specifying that the DAO should be recognized as personDao, via
@Repository("personDao"), we can refer to this DAO elsewhere in our Spring
configuration simply as personDao, rather than personDaoJpa. This allows us to
change the underlying DAO implementation to something else with far less
friction.

Using the @Repository annotation allows us to quickly group all DAOs through IDE searching, and it

also lets a reader know at a glance that this class is a DAO.
Because of our use of generics, the code that remains in the PersonDaoJpa implementation is nice

and short, and relevant only to the Person domain class. Developers are often intimidated by generics,
but they can help you avoid doing a lot of rote, repetitive work that adds no value.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

62

The Life Cycle of a JPA Entity

Let’s take a closer look at how JPA actually handles our Person entity internally. Figure 4-4 highlights the
various states that an entity might be in, some of the key methods involved, and a handful of useful
annotations for intercepting calls to modify behavior with cross-cutting aspects.

Figure 4-4. The life cycle of a JPA entity

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

63

There are five key states: Does Not Exist, New, Managed, Removed, and Detached. In addition, there
are seven life-cycle callback annotations. The callback annotations, when implemented within your
entity class, are referred to as internal callback methods. Alternatively, they can be defined outside a
given entity class as a listener class. These are referred to as external callback methods. You may
implement any subset of the callback methods or none at all. You may apply only a specific life-cycle
callback to a single method. You may use multiple callbacks on the same method by applying all of the
annotations that apply. You can also use both internal callbacks and external callbacks on a single entity.
The external callbacks fire first, and then the internal callbacks are executed. There are a ton of options
for taking advantage of these callbacks.

■ Note Callback methods should not interact with other entity objects or make calls to EntityManager or Query

methods, to avoid conflicts with the original database operation that is still in progress.

Let’s walk through a fictitious life cycle for a person through each of the five key states:

• Does Not Exist: We start here.

• New: A new person object is instantiated via Person person = new Person(). At
this stage, the person object is in the New state. It is not associated with an
EntityManager. and it has no representation in the database. Also, because we’re
using an autogenerated strategy for our primary key, the object is in memory but
has no ID associated with it. Again, this is something to be wary of when managing
objects in collections, as an entity has the potential to break the equals() and
hashCode() contract if an object's equality is based off its identifier and this
property suddenly changes from null to a real value upon being persisted via
Hibernate. We will discuss this issue in more detail in Chapter 5.

• Managed: We persist the person entity with a call to EntityManager.persist(). If
we have a method annotated with @PrePersist, that method is executed followed
by an insert into the database, optionally followed by the execution of any custom
method we’ve annotated with @PostPersist. Now our person entity is in the
Managed state. In this state, there are many things that could happen to our
person entity. For instance, we could make a call to EntityManager.refresh(),
which would discard the object in memory and retrieve a fresh copy from the
database, optionally taking advantage of the @PostLoad callback. Or we could
delete the entity via EntityManager.remove() resulting in a call to @PreRemove.

• Remove: Once the record is deleted from the database, the entity is in a Removed
state, pending execution of a method annotated with @PostRemove before
returning to the Does Not Exist state.

• Detached: The Detached state comes into play when the object is no longer
associated with an EntityManager or persistence context. Detached objects are
often returned from a persistence tier to the web layer where they can be
displayed to the end-user in some form. Changes can be made to a detached
object, but these changes won’t be persisted to the database until the entity is
reassociated with a persistence context.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

64

JPA Configuration
A few pieces of the puzzle remain. Before we have a fully working system, we need to do the following:

• Set up a JPA environment that knows about our Person domain object.

• Configure a database connection.

• Manage the system’s transactions.

• Inject all of that into the DAO.

We’ll first look at the setup from the JPA side, and then handle the Spring side of the configuration.

Bare-Bones JPA Setup

JPA requires you to create a META-INF/persistence.xml file. We’re going to set up the easiest possible
configuration:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="galleryPersistenceUnit" transaction-type="RESOURCE_LOCAL"/>

</persistence>

This creates a persistence unit called galleryPersistenceUnit. It’s recommended that you name
your persistence unit in a way that expresses the relationship to a given database so that you may easily
incorporate more datastores later without your bean definitions getting too confusing. By default, all
classes marked as @Entity will be added to this persistence unit.

Now that we have JPA up and running, the Spring configuration needs to be made aware of the
persistence.xml. We’ll set that up next.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_2_0.xsd

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

65

MORE JPA CONFIGURATION OPTIONS

In the persistence.xml file, you can optionally configure which classes you want to include for a given
unit, but generally that’s necessary only for more complicated scenarios, such as managing multiple
databases in a single application. When you do need to map entities to a particular persistence-unit,
add <class> elements to the persistence.xml like so:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="galleryPersistenceUnit" transaction-type="RESOURCE_LOCAL">
 <class>
 com.prospringhibernate.gallery.domain.Person
 </class>
 </persistence-unit>
</persistence>

There’s also a concept of mapping files. Rather than define classes inline, you can declare a mapping file
that’s referred to in the persistence.xml file in a <mapping-file> element. That file allows you to
declare entity classes, and even override mapping configuration, such as column names and the
mechanisms for retrieving IDs. This approach also lets you map classes that don’t have any JPA
annotations whatsoever.

The persistence.xml can also be used to define implementation-specific properties, such as Hibernate
properties. Spring’s JPA configuration requires you to configure these properties in persistence.xml in a
<properties><property> element. Unfortunately, that means that you won’t be able to put your
environment-specific configuration details in a Spring property file without getting fancier with your build
scripts.

JPA is extremely configurable and feature-rich. For more details on the persistence.xml configuration
file, see a book devoted to the topic, such as Pro JPA 2: Mastering the Java Persistence API by Mike Keith
and Merrick Schincariol (Apress, 2009).

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_2_0.xsd

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

66

Spring Integration

We need a way to create a usable EntityManager in the Spring ApplicationContext. In typical Spring
fashion, there is more than one way to configure JPA. The following are some of the options:

• A LocalEntityManagerFactoryBean uses JPA’s Java SE bootstrapping.
LocalEntityManagerFactoryBean requires the JPA provider (for example, Hibernate
or OpenJPA) to set up everything it needs, including database connections and a
provider-specific load-time weaving setup. The bean would look something like
this:

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="galleryPersistenceUnit"/>
</bean>

• If you have a Java EE container and you want to use EJB 3, you can use Spring’s
built-in JNDI lookup capabilities:

<jee:jndi-lookup id="entityManagerFactory" jndi-name="persistence/galleryPersistenceUnit"/>

• The Spring JPA LocalContainerEntityManagerFactoryBean requires a bit more
Spring configuration than the other two options. However, it also gives you the
most Spring capabilities. Setting up a LocalContainerEntityManagerFactoryBean
requires you to configure a datasource and JPA vendor-specific adapters, so that
the generic Spring JPA configuration can set up some of the extras required for
each vendor. This is the approach we’ll take in this chapter.

We’re going to use some of the generic Spring configuration we’ve touched on earlier. We’ll also use

component scanning to tell Spring to automatically create DAOs found in specific packages.
Let’s create a file called spring-jpa.xml under src/main/resources/META-INF/spring. This file will

have the LocalContainerEntityManagerFactoryBean, our datasource, a JPA transaction manager, and
annotation-based transactions. We’ll start the spring-jpa.xml file with the namespace setup for the
Spring file. There are a bunch of Spring namespaces that we’ll use to configure JPA.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <!-- The rest of the config is covered below -->

</beans>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/p
http://www.springframework.org/schema/tx
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/txwww.spring

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

67

This tells the XML parser that we want to use the following schemas as part of our configuration:

• The default Spring beans schema

• The p schema, which reduces the verbosity of setting properties

• The tx schema for transaction management

Because we’re using the p namespace, we can configure Spring values more simply. For example,

using p:url has the same effect as using the <property name="url" value="…"> XML fragment. You can
also use the p namespace to create references.

Next, let’s set up an in-memory H2 database datasource:

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="org.h2.Driver"
 p:url="jdbc:h2:mem:gallery;DB_CLOSE_DELAY=-1"
 p:username="sa"
 p:password=""/>

Obviously, you don’t need to use an in-memory database. There are plenty of other ways of getting a

datasource, including JNDI lookups and connection pooling.
We’re using LocalContainerEntityManagerFactoryBean, which creates a JPA EntityManager

according to JPA’s stand-alone bootstrap contract. This is the way to set up a completely Spring-
managed JPA EntityManagerFactory:

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="dataSource"/>

The LocalContainerEntityManagerFactoryBean can use a Spring-managed datasource and a few

Hibernate-specific properties, such as showSql, generateDdl, and databasePlatform.
Our @Repository annotation gets picked up as a result of Spring’s component scanning. Recall that

we set up component scanning in our spring-master.xml file, like so:

<context:component-scan base-package="com.prospringhibernate">
 <context:exclude-filter type="annotation"
 expression="org.springframework.stereotype.Repository"/>
</context:component-scan>

This directive will ensure that Spring loads and manages all of our application's DAO classes. As part

of this process, Spring will inject the correct EntityManager instance into the respective DAOs, as
expressed by the @PersistenceContext annotation.

The following settings allow our environment to perform JPA transactions. This very basic
configuration is required for our JPA application to be able to update data.

CHAPTER 4 ■ PERSISTENCE WITH HIBERNATE

68

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory"/>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

As you’ve seen, there is a fair amount involved for JPA configuration, but it’s definitely worth the

effort for the amount of functionality that is delivered!

Summary
Frameworks like Spring and Hibernate provided a means to solve some complex enterprise challenges.
The critical difference between EJB 2.0 and frameworks like Spring and Hibernate is that this complexity
is an option that you can elect to utilize, rather than an integral component of the framework
architecture that you are forced to embrace.

In this chapter, you took a stroll down memory lane to see how persistence has evolved in the Java
ecosystem, and now have a firmer understanding of the terminology as well as the distinctions between
specifications and implementations. You’ve learned that you can have an application that uses many
permutations of specifications and implementations. For instance, you can build a single application
that uses EJB 3.0 for a distributed component-based architecture, with JPA for persistence powered by
Hibernate as the JPA implementation. You also got a feel for the domain model and DAO structure that
underpins our art gallery example application. Finally, you learned quite a lot about setting up a JPA
application in a Spring environment. You are now armed with enough information to get a JPA
application working.

In the next chapter, we’ll continue building the domain model for our art gallery application.

C H A P T E R 5

■ ■ ■

69

Domain Model Fundamentals

The domain model is the foundation upon which a persistence tier is constructed. Each domain class
defines the properties to be persisted to the database, as well as the relationships between one class and
another. This rich object-oriented structure is not easily translated to the relational world of databases.
Hibernate provides the required mechanism to help address this impedance mismatch between these
two realms.

Mapping is the process through which you provide hints to Hibernate regarding how the properties
and references in your domain classes are translated to tables, fields, and associations in your database.
When Hibernate first appeared on the scene, developers used XML (called .hbm.xml files) to specify a
domain model’s mapping rules. With the release of the JPA specification came a series of annotations
that can be applied to your domain classes, providing similar types of hints to the XML mapping files.

Hibernate’s strength is the ease with which developers can begin building a persistence tier. The
first step is usually to define your domain model using simple JavaBeans (or POJOs). In the previous
chapter, we introduced several core classes that compose the root of our application’s domain model. In
this chapter, we will build on this foundation, introducing some additional classes.

Understanding Associations
In Chapter 4, we introduced our art gallery domain model and created the Person entity. We mentioned
that the ArtEntity class will represent artwork, images, and photos in our gallery application. We also
said that our domain model will include a Comment class, which will represent an individual comment
about a particular ArtEntity.

An ArtEntity will naturally contain multiple comments to allow for an unlimited number of site
visitors to add their own comments about the particular piece of art they are viewing. Although an
ArtEntity may contain many Comment instances, a given Comment can reference only a single ArtEntity, as
typically a comment is intended to relate to a particular piece of content within the gallery application.
The association between an ArtEntity and its Comment instances is best described as a one-to-many
relationship. Inversely, the relationship between a Comment and its associated ArtEntity is known as a
many-to-one association. Because each entity is able to reference the other, the association is considered
to be bidirectional. If one entity is able to reference another entity, but the inverse is not true, this is
considered a unidirectional association.

Whether you should use unidirectional or bidirectional associations depends on your application.
However, if you don’t have a specific requirement to use bidirectional associations, it can be easier to
stick with a unidirectional approach, as bidirectional associations can require circular references and
may end up complicating marshaling or serialization implementations.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

70

It’s always important to consider the way in which the domain model and its relationships will be
translated into a database schema, even when ORM abstractions often handle these details for us. The
ArtEntity and Comment association will require two tables: an Art_Entity table and a Comment table. An
ArtEntity instance will then be associated with a Comment through a foreign key reference to the
Art_Entity in the Comment table, as illustrated in Figure 5-1.

Figure 5-1. The relationship between the ArtEntity and Comment tables

Our gallery application will also require a Category class to represent a category into which a
particular ArtEntity may be placed (to help organize artwork and photos into logical groups). Each
Category may contain more than one ArtEntity instance. Similarly, each ArtEntity may be placed into
multiple Category entities. This type of association is normally referred to as many-to-many. The many-
to-many association is a bit more complicated than the one-to-many relationship. The best way to
model this type of relationship in the database is to use a join table. A join table simply contains foreign
keys from the two related tables, allowing rows in the two tables to be associated with each other.
Figure 5-2 illustrates this relationship.

Figure 5-2. The relationship between the ArtEntity and Category tables

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

71

Although it is important to have a clear understanding of your domain model’s table structure,
Hibernate can take care of creating these database-specific details for you. Instead, you need to focus on
the definition of the classes and the way they relate to each other from an object-oriented standpoint.

Developers have different philosophies on the best way to go about defining a Hibernate domain
model. Some developers believe it is best to define a database schema first, and then create the classes to
match the database structure. Obviously, there is no wrong way (provided your application works
reliably) to go about this process. However, in our experience, we have achieved the best results by
defining the Hibernate mappings first, allowing us to consider the Java classes and the database table
structure in tandem.

With JDK 1.5 and Hibernate 3, the definition of Hibernate mapping files in XML is no longer
necessary. Of course, you are welcome to continue following this more verbose methodology, and for
many developers, externalizing the specifics of the database mapping is very much a good thing.
However, it is hard to argue the fact that using Hibernate’s new annotation support is easier and far less
verbose. But using annotations isn’t your only (nor necessarily best) option.

Building the Domain Model
We’ve already described a few of our sample application’s core entities, along with their corresponding
associations. Now that we’ve considered how these entities will be represented in the database, let’s
start building our Java classes. Let’s first define the Comment class:

@Entity
public class Comment implements Serializable {

 private Long id;
 private String comment;
 private ArtEntity commentedArt;
 private Date commentDate;
 private String firstName;
 private String lastName;;
 private Integer version;

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @ManyToOne
 public ArtEntity getCommentedArt() {
 return commentedArt;
 }

 public void setCommentedArt(ArtEntity commentedArt) {
 this.commentedArt = commentedArt;
 }

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

72

 @Temporal(TemporalType.TIMESTAMP)
 public Date getCommentDate() {
 return commentDate;
 }

 public void setCommentDate(Date commentDate) {
 this.commentDate = commentDate;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 public void setVersion(Integer version) {
 this.version = version;
 }

}

Next, let’s define the ArtEntity class:

@Entity
public class ArtEntity implements Serializable {

 private Long id;
 private String title;
 private String subTitle;
 private Date uploadedDate;
 private Date displayDate;
 private Integer width;
 private Integer height;
 private String media;
 private String description;
 private String caption;
 private String imagePath;
 private Integer version;
 private Set<Category> categories = new HashSet();
 private Set<Comment> comments = new HashSet();

 public ArtEntity() {
 }

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }

3

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

73

 public void setId(Long id) {
 this.id = id;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 public void setVersion(Integer version) {
 this.version = version;
 }

 @ManyToMany(mappedBy = "artEntities")
 public Set<Category> getCategories() {
 return categories;
 }

 public void setCategories(Set<Category> categories){
 this.categories = categories;
 }

 @OneToMany
 public Set<Comment> getComments() {
 return comments;
 }

 public void setComments(Set<Comment> comments) {
 this.comments = comments;
 }

 public boolean addCommentToArt(Comment comment) {
 comment.setCommentedArt(this);
 return this.getComments().add(comment);
 }

}

■ Note For simplicity, the domain objects in these code listings only implement Serializable. However, as we

demonstrated in the previous chapter, our GenericDao assumes that each domain entity implements our

DomainObject marker interface. Although our code samples follow this approach, we've kept these listings a bit

simpler for illustrative purposes.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

74

We’ve omitted some of the redundant getters and setters to conserve space. However, you’ll
immediately recognize that we’re essentially defining a JavaBean or POJO. There is no reference to
Hibernate dependencies, and no parent class from which to extend.

We have defined the properties that we need to persist in the database along with their respective
getters and setters. As well as the appropriate getters and setters, we have also added an
addCommentToArt(Comment comment) method. This is a convenience method for bidirectional
associations, since it is important that references are set on both sides of the association. In the
addCommentToArt(Comment comment) method, we ensure that the specified comment parameter is added to
the ArtEntity’s comment collection and that the comment’s commentedArt property properly references
the ArtEntity instance. We strongly recommend creating this type of “association management”
method on one side of the relationship to ensure that both sides of a bidirectional relationship are
properly set.

Our Comment domain entity also has the @ManyToOne annotation. This tells Hibernate that the
commentedArt property will have a many-to-one association to the ArtEntity table. From a database
perspective, specifying a @ManyToOne annotation on the Comment field will add a foreign key field on our
Comment table to the ArtEntity table. This also demonstrates some of the advantages of using Hibernate
to architect both your domain model and your database schema. If Hibernate is used to generate your
schema, it will also create foreign key constraints for your associations to ensure the referential integrity
of your database is not compromised.

Convention over Configuration

The simplicity of Hibernate’s annotation support stems from using sensible defaults, as well as
Hibernate’s ability to infer associations and database field types by considering the Java type of each
JavaBean property. When mappings are defined in XML, we must explicitly delineate the details of each
property and association. With Hibernate, because annotations are embedded into code, we have the
benefit of drawing hints from the code itself, which dramatically simplifies configuration efforts.

As you learned in Chapter 4, the key annotation for Hibernate persistence is @Entity. This
annotation tells Hibernate that we intend to persist this class. If we were following the XML mapping
approach, we would then need to define each field explicitly in the hbm.xml mapping file. With Hibernate
annotations, it is necessary to define only the details that don’t conform to Hibernate’s default behavior.

Hibernate will look at each property’s Java type and its name, and use this metadata to define a
column’s field type and field name, respectively. The default behavior is to assume that all POJO
properties are persistable, but you can also specify this behavior explicitly by using the @Basic
annotation. Using @Basic also provides you with a way to customize various persistence-related aspects,
such as whether a particular property should be lazily loaded. If you don’t want certain fields persisted,
you need to specify that these properties are transient using the @Transient annotation.

■ Note Hibernate offers control over fetching associations, allowing related entities to be lazily loaded —that is,

only when needed, rather than when the originating object is loaded from the database. This has dramatic

performance benefits (if used properly), but can also degrade performance if you’re not careful. We’ll be covering

lazy loading in more detail in Chapter 9.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

75

In addition to the @Transient and @Basic annotations, you can also use the @Temporal annotation for
controlling the way date or time-based properties are mapped to the database. In our Comment class, we
specify the following to declare that a Date property be persisted in the database as a timestamp:

@Temporal(TemporalType.TIMESTAMP)
public Date getCreatedDate() {
 return this.createdDate;
}

This concept of sensible defaults, or convention over configuration, really reduces the amount of

coding required to get a domain model up and running. And Hibernate’s annotation support provides
ample flexibility to override any of the default behavior, should you be so inclined. For instance, if we
wanted to define a table name for our Comment class that is different from the Java class name, we could
accomplish this feat by using the @Table annotation:

@Table(name = "HOGWASH")
class Comment {
 . . . (Methods Omitted)
}

Similarly, we can require that the comment property maps to the column commentText by using the

@Column annotation:

@Column(name = "commentText")
public String getComment() {
 return this.commentText;
}

This level of customization is very useful, but most of the time is unnecessary and redundant (unless

you are mapping your domain model to a legacy database).

■ Note You should have a very good reason before you override any of Hibernate’s default behavior. If you feel the

need to map a Java property to a column of a different name, you may want to reconsider your naming

conventions. Now, it’s not wrong to have discrepancies between column names and Java property names, but

simplicity of configuration is very important, and we encourage you to limit the overriding of default behavior

whenever possible. After all, less code equals less maintenance.

Managing Entity Identifiers

Hibernate annotation support does require that you define a primary key and all of your JavaBean’s
associations. In our Comment class, we have added the @Id annotation above the getId() method. This
annotation tells Hibernate that the id property of our Comment class is the identifier (or primary key) for
our Comment entity.

Below the @Id annotation is the @GeneratedValue annotation, which specifies the way in which a
given instance’s identifier will be created. The default is AUTO, and in our example, this is the identifier-

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

76

generation strategy Hibernate will use (since we haven’t defined a strategy at all). AUTO will look at the
underlying database to make the decision as to how identifiers should be created. The options are to use
a sequence, an identity column, or to use a special table for generating new IDs. If you wanted to
override the default behavior and use a sequence, your @GeneratedValue annotation might look like this:

@GeneratedValue(strategy=GenerationType.SEQUENCE, generator="COMMENT_ID_SEQ")

This would create a sequence named COMMENT_ID_SEQ to be used for generating new IDs for our

Comment table. Hibernate offers many more options for a domain class’s identifier, including UUID-
based generation, or simply allowing your application to assign identifiers directly.

■ Note When using the AUTO mode for ID generation, Hibernate will pick the ideal strategy based on the database

you are using. However, for many databases, Hibernate will end up creating a single sequence to use across all

your tables. This can get a bit messy, and we have often found that creating explicit sequences for each table is a

little cleaner. If your domain model has some complexity to it, we recommend specifying a different sequence for

each table or class.

Using Cascading Options to Establish Data Relationships

Associations within a domain model represent how different domain entities relate to one another.
Often, these relationships can be expressed in layman’s terms as parent-child relationships, meaning
that one entity owns or encapsulates a collection of another entity. Within the database, associations are
represented through table joins, but there is no clear analogue for representing the more hierarchical
relationships we have within Java. This is where Hibernate comes in. Cascading options help to establish
parent-child relationships, or more precisely, the rules for how operations such as save and delete that
are applied to one entity should cascade to associated entities. This concept is often referred to as
transitive persistence.

For example, within our gallery application, we would assert that ArtEntity owns a collection of
Comment instances. This is logical since a Comment is attached to a particular ArtEntity instance. An end
user can post a comment about a particular image, and this comment is typically relevant only to the
image about which it was posted. Furthermore, if an ArtEntity instance is deleted, it doesn’t make sense
to keep its related Comment instances around anymore. In essence, comments are children of an
ArtEntity.

Since comments can be considered children of an ArtEntity, we can assert that a save operation
invoked on an ArtEntity should also cascade to any added or updated Comment instances associated to
that ArtEntity instance. Additionally, should an ArtEntity be deleted, we would want the delete action
to cascade to any associated Comment instances. We can represent these cascading rules using the
following annotation:

@OneToMany(orphanRemoval = true, cascade = { javax.persistence.CascadeType.ALL })
public Set<Comment> getComments() {
 return comments;
}

In this case, we are setting orphanRemoval to true, which will also ensure that any dereferenced

comments will also be deleted. We also specify a CascadeType of SAVE_UPDATE, which will ensure save and

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

77

update operations invoked on an ArtEntity instance will be passed along to child Comment instances as
well.

Adding Second-Level Caching

Hibernate allows entities, as well as association collections (a group of comments) to be implicitly
cached. With caching enabled, Hibernate will first try to find an entity or collection in the cache before
trying to query the database. Since loading data from the cache is far less expensive than performing a
database operation, caching is another effective strategy for improving application performance.

Hibernate integrates with several caching frameworks, such as Ehcache, and provides a
CacheManager interface if you want to add your own caching solution. Once integrated, caching happens
implicitly, without requiring any additional coding, other than specifying caching rules for each entity
and collection.

To get basic caching enabled on our domain model, we can add the following annotation to each
domain entity, as well as its corresponding collections, to ensure they are appropriately cached:

@Entity
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class ArtEntity implements Serializable {

 . . . Methods Omitted . . .

 @OneToMany(orphanRemoval = true, cascade = { javax.persistence.CascadeType.ALL })
 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
 public Set<Comment> getComments() {
 return comments;
 }

 public void setComments(Set<Comment> comments) {
 this.comments = comments;
 }

 . . . Methods Omitted . . .

}

Specifying a read-write caching strategy ensures that Hibernate will invalidate the cache whenever a

particular domain instance is updated. This prevents stale data from being stored in the cache.
There are three types of caching options for Hibernate: domain, collection, and query. Domain and

collection caching are demonstrated in the preceding example, as we have specified the @Cache
annotation for the top-level domain entity as well as for the comments association.

Caching details should be adjusted using the configuration file appropriate for the caching
implementation you have selected. In the case of Ehcache, you can configure specifics, such as the time-
to-live and cache size on a domain-by-domain basis within the ehcache.xml file.

We will cover caching strategies in more detail in Chapter 9.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

78

Using Polymorphism with Hibernate

For our gallery application, we require a few more classes to help provide the persistence details for all of
the gallery’s functionality. As a quick recap, here is an overview of our domain model, as it currently
stands:

• Person: Represents an administrative user or a registered user of our gallery
application.

• Exhibition: Organizes collections of images into logical groups.

• ArtEntity: Represents an image in the application and contains metadata about
the image, as well as its location.

• Comment: Represents an individual comment that relates to a particular ArtEntity
instance.

Our ArtEntity class represents basic metadata about an image, but what if we need to store an

image in different resolutions, such as thumbnails, medium-resolution versions, and high-resolution
versions? We could certainly insert additional fields into our ArtEntity class, but Hibernate provides a
cleaner solution.

ORM solutions like Hibernate go far beyond mapping database fields to domain model instances.
Object-oriented concepts, such as polymorphism, are also enabled by Hibernate and are an effective
means for establishing a hierarchy of domain objects that share a set of core properties and
functionality.

Rather than store an image path directly within our ArtEntity class, let’s instead refactor this data
into a separate base class called ArtData. We will then create three subclasses that each extend the
ArtData class (and therefore share its properties) but are tailored to represent a particular type of image.
We will define the following four new domain classes:

• ArtData: The bulk of the properties will be stored here, since it is the base class.

• ArtData_Gallery: This class will be used to represent the standard view of an
image within the gallery listing pages.

• ArtData_Thumbnail: This class will be used to represent thumbnails.

• ArtData_Storage: This class will persist a high-resolution version of the image,
suitable for archival purposes or for zoomed-in views.

■ Note We won’t include the entire source code for our domain model here. You can download the example code

for this chapter if you would like to follow along.

Hibernate provides four different options for implementing polymorphism:

Implicit polymorphism: This option uses the Java inheritance structure without
requiring these structural details to affect the database schema. In other words,
using implicit polymorphism, you will be able to query a parent class, and
Hibernate will issue select queries for all tables within the specified Java class

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

79

hierarchy. While this strategy allows you to leverage the polymorphic structure
inherent in your Java classes without affecting the database, these types of
queries can be a bit inefficient, as Hibernate must do a lot more heavy lifting to
translate distinct tables into a coherent class hierarchy, without being able to
effectively leverage the database. The other polymorphic strategies rely on the
database to some degree to delineate the associations between classes in the
Java hierarchy.

Table-per-hierarchy: This option combines all the properties of a class
hierarchy into a single table, using a discriminator field to help determine
which Java type is represented by each row in the database. A discriminator is
simply a table column, the value of which is used to specify to which class that
particular row should be associated. The advantage of this approach is that all
the necessary fields for any class within the hierarchy are included in a single
table, without requiring the overhead of a database join. The disadvantage is
that the design is not very normalized, and for any given type, there will likely
be fields that will not be utilized. This can impose limitations on your database
schema, such as preventing you from being able to specify not-null constraints.
Since field requirements will differ between classes in the hierarchy and they
are all shared within a single table, you must simplify the schema down to the
lowest common denominator.

Table-per-subclass: Using this option, each Java class in the hierarchy is
represented by a different table. Properties related to the parent class are
persisted to a single table. The specific properties unique to each subclass are
stored within their own database tables. A particular subclass in the hierarchy is
then represented through a join between the parent table and the subclass
table. The advantage of this approach is that the design is clean and
normalized, since shared properties are stored in a single parent table and only
subclass-specific attributes are sequestered into their own subclass tables.
However, although cleaner from a relational database modeling perspective,
you should consider the performance hit incurred by the necessity of joining
tables together.

Table-per-concrete-class: This option requires that every Java class that is not
declared as abstract be represented by its own table. Subclasses are not
implemented as joins between multiple tables. Instead, all the properties of
each class—including those properties inherited from a parent class—are
persisted to their own table. This obviously requires a bit of redundancy, as the
same fields across a class hierarchy will be present in each mapped table.
However, Hibernate can implement polymorphic queries more efficiently by
leveraging SQL unions across all tables mapped to a particular class hierarchy.
The downside is the increased verbosity and redundancy in your database
schema. Furthermore, Hibernate imposes limitations on the ID-generation
strategy used by tables mapped with this polymorphic approach.

Which option to use really depends on your domain model. If there isn’t too much disparity across

classes within your class hierarchy, then the table-per-hierarchy option probably makes the most sense.
In our case, this is the strategy we will employ.

Let’s take a look at the base ArtData entity:

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

80

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(discriminatorType = DiscriminatorType.STRING)
@DiscriminatorValue("GENERIC")
public class ArtData implements DomainObject {

 private Long id;
 private byte[] picture;
 private Integer version;

 public ArtData() {
 }

 public ArtData(byte[] picture) {
 this.picture = picture;
 }

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public byte[] getPicture() {
 return picture;
 }

 public void setPicture(byte[] picture) {
 this.picture = picture;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 public void setVersion(Integer version) {
 this.version = version;
 }

}

Much of this class should look familiar. You will notice the standard JavaBean conventions, as well

as the core Hibernate annotations. Let’s focus on the annotations that enable the inheritance in our
model.

The @Inheritance annotation tells Hibernate that we want to use inheritance and that we are
defining our base class.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

81

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

We are also specifying that we intend to use the table-per-hierarchy strategy (meaning that we want

to persist all the fields in the entire hierarchy within a single table).
The @DiscriminatorColumn annotation provides Hibernate with the details about our discriminator.

As mentioned earlier, the discriminator provides Hibernate with the clues it needs to infer to which Java
type a particular database row corresponds. In our example, we are defining our discriminator column
to be a String type. We could also use a char or an Integer.

Last, we define the discriminator value that each type will use through the @DiscriminatorValue
annotation. In the case of the ArtData base class, we specify a value of GENERIC. So, for each ArtData
instance that is persisted to the database, Hibernate will set the discriminator column to a value of
GENERIC.

Next, we must define the classes that extend from our ArtData base class. Each class is fairly similar
to one another in our scenario, but inheritance provides a clean way to classify the different types of
images within our gallery application. Furthermore, this approach also provides future extension points,
should we need to define additional metadata that only relates to a particular image type, such as a
thumbnail aspect ratio or archival details for our ArtData_Storage class.

Here’s our ArtData_Thumbnail class:

@Entity
@DiscriminatorValue("THUMBNAIL")
public class ArtData_Thumbnail extends ArtData {

 public ArtData_Thumbnail(byte[] picture) {
 this.setPicture(picture);
 }

 public ArtData_Thumbnail() {
 }

}

This is a fairly straightforward class. Notice, however, that we’ve set a discriminator value of

THUMBNAIL.
Let’s look at our ArtEntity class again, now with all of our refactorings applied:

@Entity
public class ArtEntity implements DomainObject {

 private Long id;
 private Integer version;
 private ArtData_Gallery galleryPicture;
 private ArtData_Storage storagePicture;
 private ArtData_Thumbnail thumbnailPicture;
 private Set<Category> categories = new HashSet();
 private Set<Comment> comments = new HashSet();

 public ArtEntity() {
 }

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

82

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @Version
 public Integer getVersion() {
 return version;
 }

 public void setVersion(Integer version) {
 this.version = version;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Gallery getGalleryPicture() {
 return galleryPicture;
 }

 public void setGalleryPicture(ArtData_Gallery pic) {
 this.galleryPicture = pic;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Storage getStoragePicture() {
 return storagePicture;
 }

 public void setStoragePicture(ArtData_Storage pic) {
 this.storagePicture = pic;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Thumbnail getThumbnailPicture() {
 return thumbnailPicture;
 }

 public void setThumbnailPicture(ArtData_Thumbnail pic) {
 this.thumbnailPicture = pic;
 }

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

83

@ManyToMany(mappedBy = "artEntities")
 public Set<Category> getCategories() {
 return categories;
 }

 @OneToMany(orphanRemoval = true, cascade = { javax.persistence.CascadeType.ALL })
 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
 public Set<Comment> getComments() {
 return comments;
 }

 public void setComments(Set<Comment> comments) {
 this.comments = comments;
 }

}

Notice that we have now defined a few one-to-one relationships for our thumbnailPicture,

galleryPicture, and storagePicture properties. To simplify our code, we defined three separate one-to-
one associations. However, we could have also chosen to put all the ArtData entities into a single
collection, with a generic type of the ArtData base class. Since each image type is represented by a
different subclass, it would be easy to differentiate between the different image types.

Also, notice that we have defined a many-to-many association to the Category class for the
categories property. We have added the mappedBy hint here to indicate that the inverse side of this
relationship is referenced by the artEntities property in the Comment class. For bidirectional many-to-
many associations, we need to tell Hibernate which side of the collection is the owner. By adding the
mappedBy attribute to the Comment class, we are asserting that the Category class owns the relationship.

OVERRIDING EQUALS AND HASHCODE

In simple scenarios, Hibernate is able to maintain entity equivalence without requiring any special changes
to the domain objects themselves. However, if your application requires that you add entities to Java
collections, such as java.util.Set, or you plan to work with detached entities, you will probably need to
override the default equals() and hashCode() methods for your domain objects.

Hibernate is able to maintain entity equivalence only within a single EntityManager scope. If you attempt to
reattach a detached entity, Hibernate is no longer able to make the same guarantees. The way to resolve
this problem is to override equals() and hashCode() for each of your domain objects, providing equality
rules that are reflective of its identity within the database.

The simplest approach is to use an entity’s identifier to determine equality and generate its hash code.
However, if you are planning to use a generated identifier strategy, this can have negative implications.
When an object is first created, it will have a default null identifier. If you attempt to add this newly created
entity to a java.util.Set and then later save this instance, the invocation of EntityManager.save() will
trigger an identifier to be generated for the entity in question. However, because you have based equals
and hashCode on the object’s identifier, you will run into a situation where the hashCode for the object
suddenly changes. This change breaks the contract for many of the Java collection types, such as Set, and
could lead to unexpected behavior in your application.

CHAPTER 5 ■ DOMAIN MODEL FUNDAMENTALS

84

There are two options to get around this problem:

Using an assigned identifier strategy isn’t too difficult, but can impose some limitations on your application.
Generally, the recommended approach is to generate equals() and hashCode() using the values of key
properties of a domain object—specifically, properties that define an object’s uniqueness from a business
logic perspective.

Here is an example of a customized equals and hashCode for the Category domain object:

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof Category)) return false;

 Category category = (Category) o;
 if (categoryName != null ?

 !categoryName.equals(category.categoryName) : category.categoryName != null) {
 return false;
 } else {
 return true;
 }
 }

 @Override
 public int hashCode() {
 return categoryName != null ? categoryName.hashCode() : 0;
 }

Summary
In this chapter, we’ve introduced the fundamentals for defining a domain model with Hibernate. You
learned about the mapping process and how you can use annotations to provide Hibernate with the
appropriate clues to effectively map your object-oriented domain classes to your relational database.

We also examined association mapping, differentiating between the various cardinality options
Hibernate provides. These details—such as whether to use many-to-many or one-to-many
associations—have a significant impact on your domain model design, as well as the resultant database
schema. Furthermore, it is important to think carefully about whether an association should be
unidirectional or bidirectional. While bidirectional associations are often necessary to simplify reference
walking and access, this option can have consequences in terms of circular dependencies that may
complicate marshaling implementations.

Hibernate provides a powerful feature called cascading that allows you to associate the operations
applied to one entity with its children entities so that these operations cascade. This feature is useful for
ensuring that child entities are kept in sync with the state and life cycle of their parent entities.

• Don’t use a generated identifier strategy (and instead assign an entity identifier
when the domain object is first instantiated)

• Base equals() and hashCode() on business equality, rather than row equality

C H A P T E R 6

■ ■ ■

85

DAOs and Querying

If the domain model serves as the persistence tier’s foundation, then the DAO layer might be considered
the engine. As you’ve learned in previous chapters, the DAO pattern is intended to abstract lower-level
persistence functionality, including creating, reading, updating, and deleting entities. But a DAO
typically provides more than basic CRUD functionality.

Specialized queries that reflect the core entity-access capability of an application are usually baked
into a DAO layer. For example, since our gallery application requires that end users be able to view a
series of images within a particular category, the ability to query and load the relevant ArtEntity domain
objects by a specified Category should be provided by a DAO class. In other words, you can think of an
application’s DAO classes as the building blocks utilized by the service layer to provide the necessary
persistence-related functionality for the application. We will discuss the service layer in the next chapter,
but it is helpful to keep in mind that the service layer typically encapsulates an application’s business
logic, relying on the DAO layer to get the persistence dirty work done.

One of the reasons that the DAO pattern is considered a best practice is that it helps to abstract the
persistence implementation details (and technology) from the DAO interface. This allows application
developers to settle on the methods and features of a particular DAO, extracting these specifics into the
interface. The DAO interface then becomes the integration hub between the actual persistence
implementation and the service layer—the contact for lower-level persistence functionality. This is
another area where Spring can help to decouple these components.

In this chapter, we will build some of the DAO classes for our art gallery application and look at how
to use the various querying mechanisms afforded to us by Hibernate and JPA, such as Hibernate Query
Language (HQL), Java Persistence Query Language (JPQL), and the Criteria API.

A Basic Hibernate DAO Implementation
To begin our first DAO implementation, we will turn to Spring’s HibernateTemplate. This support class
leverages the Template design pattern, an approach used numerous times throughout the framework.

■ Note Although it is one of the more commonly used techniques, building DAO classes on the

HibernateTemplate is not the only approach to take. We will examine a few alternative solutions later in this

chapter. Since HibernateTemplate has been around for many years, you are bound to run into some legacy code

that uses it, even if you opt for an alternative strategy.

CHAPTER 6 ■ DAOS AND QUERYING

86

The HibernateTemplate handles most of the boilerplate operations required by Hibernate,
delegating to your code for the important parts. When working with Hibernate (or any persistence
framework), a fair amount of resource management is required to get everything working reliably. For
instance, before performing a persistence-related operation, some setup is required. You need to open a
database connection and get a Hibernate session. You also may set up transactional requirements or
check if there is an existing transaction that you should take part in. Finally, after an operation
completes, some cleanup is required, ensuring that the session is closed and transactions are properly
committed or rolled back.

The HibernateTemplate takes care of these arduous steps. It also catches any exceptions that may
occur and translates them into Spring’s own data-access exceptions. This conversion allows you to work
with a consistent exception hierarchy that is not tied to a specific persistence framework, so you can
easily switch between disparate persistence technologies without needing to change the exception
handling throughout your code.

■ Note Spring’s exception hierarchy does not use checked exceptions, meaning you aren’t required to catch any

of these exceptions. When it comes to database operations, unchecked exceptions are far more pragmatic. If

something goes awry when you are trying to write to the database, chances are there’s nothing your application

can do to recover. So what is the point of handling this exception if you can’t do much about it anyway?

Building a DAO

We’ll start with the CategoryDAO implementation for our gallery application. ArtEntity domain classes
can be organized into one or more categories. This feature allows end-users to browse for photos and
artwork by categories. We define the CategoryDao interface as follows:

public interface CategoryDao {

 public List<Category> getCategories() throws DataAccessException;

 public Category getCategory(Long catId) throws DataAccessException;

 public List<ArtEntity> getArtworkInCategory(Long catId)
 throws DataAccessException;

 public void saveCategory(Category category) throws DataAccessException;

}

■ Note Although we introduced our GenericDao approach earlier in this book, we are going to take a step back

and examine rolling a DAO from scratch. Typically, we would extend from our GenericDao implementation and

define those additional methods not provided by the GenericDao base class.

CHAPTER 6 ■ DAOS AND QUERYING

87

With these methods, we can load an individual category, find all the categories, and access artwork
within a particular category. The CategoryDao enables us to save new instances of Category objects as
well. Of course, our application might also define a few additional Category-related persistence
methods, but this interface is sufficient for illustrative purposes.

Using Spring’s Hibernate Support Classes

Spring excels at reducing the amount of code you need to write in order to get something to work. When
it comes to building Hibernate DAO classes, you have several options. One of the more common
solutions is to extend Spring’s HibernateDaoSupport class. This abstract class requires that you pass in a
Hibernate SessionFactory via the setSessionFactory(SessionFactory sessionFactory) setter method.
You should, of course, configure your SessionFactory in Spring so that it can be easily injected via
configuration. We will demonstrate this process shortly.

When a valid SessionFactory is injected into a class that extends HibernateDaoSupport, a
HibernateTemplate instance is automatically created for you, using the SessionFactory reference that
was passed in. The HibernateTemplate works in a similar fashion to the Spring Framework’s other
template abstractions, such as the JDBCTemplate and TransactionTemplate. Following the Template
design pattern, this class handles all the heavy lifting required by Hibernate so that you can focus on the
persistence logic. The result is cleaner code that usually reflects very little other than the Hibernate
persistence operations you are implementing.

Extending the HibernateDaoSupport class is ideal for reducing code, since it automatically defines a
setter for your Hibernate SessionFactory and handles the creation of a HibernateTemplate. However, if
your DAO needs to extend from a different base class, you won’t be able to extend HibernateDaoSupport
as well. Of course, flexibility and decoupling are key Spring philosophies, and therefore you are rarely
required to extend from framework classes (although this is sometimes preferred). Instead, you can
simply create your HibernateTemplate directly:

@Repository("categoryDao")
public class CategoryDaoImpl implements CategoryDao {

 private SessionFactory sessionFactory;
 private HibernateTemplate hibernateTemplate;

 @Autowired
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 this.hibernateTemplate = new HibernateTemplate(sessionFactory);
 }

}

This approach requires a little more plumbing, but you are now free from extending any framework-

specific classes. Notice that we created our HibernateTemplate within our
setSessionFactory(SessionFactory sf) setter method. This way, when Spring injects the Hibernate
SessionFactory, the HibernateTemplate will be automatically created. We applied the @Repository
annotation to help Spring find our DAO via component scanning, and used the @Autowired annotation to
inject the SessionFactory.

In the above snippet, we are using the @Autowired annotation to automatically inject a bean of type
DataSource. Provided we have only a single bean of type DataSource, this example will work fine. If your
application requires multiple datasources, you will need to ensure that you remove any potential for

CHAPTER 6 ■ DAOS AND QUERYING

88

ambiguity. As discussed in Chapter 2, you can use the @Qualifier annotation to provide Spring with the
necessary hints so that it is able to distinguish among your datasources.

The choice over which configuration approach to use largely depends on your coding style. In the
preceding example, we use the @Repository annotation, indicating that we are configuring a class with
persistence-related functionality. This annotation is used by Spring’s component-scanning facility,
which we introduced in Chapter 3. With component scanning, Spring searches a specified package
structure to find those classes annotated as components so that they can be managed by Spring and play
a role in dependency injection.

Spring defines three core stereotype annotations, each representing a layer within a typical
application:

• @Repository is used to delineate those classes that provide data repository
functionality. In this case, it is our DAO implementation, as it serves the purpose
of abstracting all data-access functionality that relates to the Category domain
object.

• @Controller is used to delineate controller classes, which are used in the web layer
to handle requests.

• @Service defines a service facade. Typically, the service layer wraps the DAO layer,
providing a coherent, transactional service that often serves as the business logic
for an application. The service layer is often called a façade, since it serves as an
abstraction over the data-access code, hiding the lower-level implementation
details and providing a business-specific API. We will discuss the service layer in
more detail in Chapter 8.

These three annotations logically extend from the @Component annotation, which defines any bean
intended to be managed by the Spring container. In fact, we could just as easily have used @Component
instead of @Repository in our example, but we would lose the intention of our class as a DAO. In other
words, we use the @Repository annotation to clue Spring in to the fact that our class is a DAO.

To ensure that our CategoryDao class will be configured into our Spring ApplicationContext, we will
need to add a component-scanning bean like the following to our Spring XML configuration:

<context:component-scan base-package=
 "com.prospringhibernate.gallery.dao.hibernate">
 <context:include-filter type="annotation" expression=
 "org.springframework.stereotype.Repository"/>
</context:component-scan>

This XML snippet tells Spring to look for classes annotated with @Repository within the
com.prospringhibernate.gallery.dao.hibernate package. Eventually, we will have multiple DAO
implementations in this package, all configured in a similar fashion.

Enabling Query Caching with the HibernateTemplate

The HibernateTemplate includes two methods needed to facilitate query caching. Using a query cache
with Hibernate can provide a significant performance boost by minimizing the number of trips to the
database. However, you should verify the performance benefits of query caching carefully, as sometimes
query caching can actually have a detrimental effect on application performance. We discuss this in
more detail in Chapter 9.

CHAPTER 6 ■ DAOS AND QUERYING

89

There are several different strategies for enabling query caching. One approach is to configure a
HibernateTemplate directly in your Spring configuration. This way, you can externalize and centralize
query cache specifics:

<bean id="hibernateTemplate"
 class="org.springframework.orm.hibernate3.HibernateTemplate">
 <property name="sessionFactory" ref="sessionFactory"/>
 <property name="queryCacheRegion" value="querycache_artwork"/>
 <property name="cacheQueries" value="true"/>
</bean>

■ Note You must first enable query caching globally by adding the following hibernate property to the
hibernateProperties map when creating your SessionFactory:

<prop key="hibernate.cache.use_query_cache">true</prop>

You can then inject this preconfigured HibernateTemplate directly into your DAO implementation. If
your DAO extends from the HibernateDaoSupport class, it will use the SessionFactory applied to your
Spring-configured HibernateTemplate automatically. Using this strategy, you can ensure that query
caching is enabled for all operations that make use of the HibernateTemplate. The downside to this
technique is that you are using a centrally configured HibernateTemplate, which makes it difficult to
apply customizations for specific DAOs that rely upon it. An alternative approach is to configure query
caching details in code through extending HibernateTemplate or setting the query cache specifics
directly.

Going Template-less

When you use Spring’s template abstractions, you don’t need to worry about handling boilerplate
processes and resource management. Most Hibernate operations can be managed through the
HibernateTemplate.

When working with Hibernate directly, you normally are required to create a new Hibernate Session
from a SessionFactory. For most operations, you also need to be concerned with transactional details,
ensuring that transactions are started at the beginning of an operation, and then either committed or
rolled back when the operation completes. The HibernateTemplate (along with other Spring Framework
classes) will ensure that the Hibernate Session is opened and closed, and that transactional semantics
are properly applied. However, using a HibernateTemplate is not the only valid approach, when using
Spring and Hibernate together.

■ Note You are free to specify transactional requirements all in code. However, doing so can be verbose and

error-prone. Instead, we recommend specifying transactional requirements entirely via configuration, separating

transactional details from our persistence logic. This is one of the key purposes of the service facade layer.

CHAPTER 6 ■ DAOS AND QUERYING

90

The introduction of the HibernateTemplate came early in Hibernate’s development. Prior to
Hibernate 3, Hibernate suffered from “a few architectural flaws.” Unlike today’s version, earlier versions
of Hibernate had a checked exception hierarchy, which required developers to write messy DAO code as
a result of attempting to handle Hibernate’s exceptions through a series of nested try-catch-finally
blocks.

With the release of Hibernate 3.0.1, things became a bit simpler. Hibernate swapped its checked
exception hierarchy for unchecked exceptions, removing the requirement for sloppy try-catch blocks.
Additionally, Hibernate introduced the concept of a contextual session, which allows Hibernate to
associate and synchronize a single session with the current transaction. This is a similar to what Spring
provides in its Hibernate support, allowing sessions to automatically participate in transactions.

In its Hibernate 3 support, Spring’s LocalSessionFactoryBean classes integrate with Hibernate’s
contextual session support, creating a proxied Hibernate SessionFactory by default. This proxied
version of the SessionFactory enhances its getCurrentSession method, allowing it to be automatically
synchronized with Spring’s resource management, such as transactional features.

Going with the standard Hibernate APIs rather than utilizing Spring’s HibernateTemplate might
simplify some development, but you lose some benefits. Spring’s template support provides a level of
consistency across various persistence technologies; for example, Spring’s JDBCTemplate works in a
similar fashion to the HibernateTemplate or the JPATemplate.

Additionally, Spring’s template support automatically translates a particular persistence
framework’s exceptions into the appropriate exception from Spring's DataException hierarchy, further
decoupling your code from a particular technology. But there is a way to achieve this without using the
HibernateTemplate. If you add a BeanFactory PostProcessor, Spring can detect any DAO classes
annotated with the @Repository annotation and automatically translate Hibernate exceptions into the
Spring generic DataAccessException hierarchy. To make this work, simply add the following bean to your
Spring configuration:

<bean class="org.springframework.dao.annotation.
 PersistenceExceptionTranslationPostProcessor"/>

Then ensure your DAO classes are properly annotated with @Repository, and you will be able to use

the Hibernate API directly in your DAO implementation, rather than relying on HibernateTemplate. You
can instead just define getters and setters for the Hibernate SessionFactory, allowing the
AnnotationSessionFactoryBean to inject a proxied SessionFactory into your class. Then you can
implement your DAO methods by accessing the Hibernate session via the following:

this.getSessionFactory().getCurrentSession()

A more complete implementation might look like this:

@Repository("categoryDao")
public class CategoryDaoHibernate implements CategoryDao {

 private SessionFactory sessionFactory;

 public SessionFactory getSessionFactory() {
 return this.sessionFactory;
 }

CHAPTER 6 ■ DAOS AND QUERYING

91

 @Autowired
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 @SuppressWarnings("unchecked")
 public List<Category> getCategories() throws DataAccessException {
 return this.getSessionFactory().getCurrentSession().createQuery(
 "select categories from Category categories"
).list();
 }

 . . .

}

This example is a bit contrived, but it should provide you with a clearer sense of how you can

leverage the Hibernate API directly while still taking advantage of Spring’s powerful resource-
management features. Which approach you take depends on your preferences and specific
requirements. For example, if your organization uses other persistence technologies, such as JDBC or
iBatis, then using HibernateTemplate may still be a good idea, since it provides greater consistency
within the organization and perhaps the code base. Additionally, HibernateTemplate can also provide a
few shortcuts that are not available with the direct Hibernate APIs, such as setting default behavior (for
example, to activate cache settings) across an entire DAO.

Although we focus on the usage of Hibernate a bit more than JPA in this chapter, keep in mind that
the two approaches are quite similar—especially when it comes to HQL and JPQL syntax. For this
reason, we aren’t going to examine every example from both a Hibernate and JPA perspective. However,
to give you a clearer sense of how we might set up a JPA-based DAO, let’s look at a short example:

@Repository("categoryDao")
public class CategoryDaoHibernate implements CategoryDao {

 private EntityManager entityManager;

 @PersistenceContext
 public void setEntityManager(EntityManager entityManager) {
 this.entityManager = entityManager;
 }

 @SuppressWarnings("unchecked")
 public List<Category> getCategories() throws DataAccessException {
 return this.entityManager.createQuery(
"select categories from Category categories"
).getResultList();
 }

 . . .

}

CHAPTER 6 ■ DAOS AND QUERYING

92

Notice that the JPA version of our simple DAO example is quite similar, with a few syntax
differences. The most significant variation is the use of @PersistenceContext to inject our JPA
EntityManager. This annotation depends on the inclusion of a BeanPostProcessor in our Spring
configuration, which will help to perform the standard JPA configuration, using the persistence.xml file.
You can add this BeanPostProcessor by adding the following to your Spring configuration:

<bean class="org.springframework.orm.jpa.support.
 PersistenceAnnotationBeanPostProcessor" />

Throughout this book, we will include examples that use the Hibernate APIs, Core JPA and

HibernateTemplate or JPATemplate to demonstrate a broader range of implementations.

Querying in Hibernate
Now that we’ve examined some approaches for implementing our DAO and have taken care of all the
wiring details, let’s move on to the actual implementation. We will consider the following as the first
version of our CategoryDao implementation:

@Repository("categoryDao")
public class CategoryDaoImpl extends HibernateDaoSupport
 implements CategoryDao {

 public List<Category> getCategories() throws DataAccessException {
 return this.getHibernateTemplate().find(
 "select categories from Category categories"
);
 }

 public Category getCategory(Long catId) throws DataAccessException {
 return (Category) this.getHibernateTemplate()
 .load(Category.class, catId);
 }

 public List<ArtEntity> getArtworkInCategory(Long catId)
 throws DataAccessException {
 return this.getHibernateTemplate().findByNamedParam(
 "select art from Category cat " +
 "join cat.artEntities art "+
 "where cat.id = :catId ",
 "catId", catId
);
 }

 public void saveCategory(Category category) throws DataAccessException {
 this.getHibernateTemplate().saveOrUpdate(category);
 }

}

CHAPTER 6 ■ DAOS AND QUERYING

93

If you’re not attempting to access a single entity, you will likely need to execute a query using either
HQL or the Hibernate Criteria API. Here, we will look at how to use HQL to meet our persistence
requirements for the CategoryDAO. We will start with the fundamentals and gradually work our way up to
the more complex querying approaches.

Loading an Entity

One of the most basic operations you can perform in Hibernate is loading an entity by its identifier.
Hibernate provides two primary means of accessing an entity from the database: load and get. Although
these two methods do the same thing, there are slight differences in how they behave.

For example, to load a Category instance from the database, we could use the getCategory method
defined in our sample implementation. Alternatively, we could also use the Hibernate Core APIs directly:

public Category getCategory(Long catId) throws DataAccessException {
 return (Category) this.getSessionFactory().getCurrentSession()
 .load(Category.class, catId);
}

As you can see in this example, the load method takes the entity class, followed by the entity

identifier.
We could instead implement the getCategory method using Session.get:

public Category getCategory(Long catId) throws DataAccessException {
 return (Category) this.getSessionFactory().getCurrentSession()
 .get(Category.class, catId);
}

The two methods seem nearly identical, but have subtle differences. Session.load will throw an

exception if there is no row in the database that matches the specified identifier. However, when using
Spring’s persistence support, Hibernate exceptions should be automatically converted to Spring’s
consistent DataAccessException hierarchy. Session.get will return null if the entity doesn’t exist.
However, load provides performance benefits that get does not provide. For instance, load can return a
proxy rather than immediately hitting the database, which can allow multiple load operations to be
batched.

Querying for a Particular Type

A common HQL operation is to find a set of entities of a given type that match a specific condition. HQL
is fairly close to SQL semantically, except that it offers an object-oriented perspective, compared with
SQL’s more table-based approach. Here’s a very basic query:

select categories from Category categories

In this example, we are using the select keyword to indicate which items to return. We could

instead return a list of strings representing the category names of all the Category entities, as follows:

select categories.name from Category categories

CHAPTER 6 ■ DAOS AND QUERYING

94

In these examples, we use the from keyword to indicate which entity types to query against. We then
alias Category to categories, allowing us to use this alias within the select clause to further reference
the Category entity in the query.

These two queries will attempt to work with all the rows in the Category table. To filter our results,
we need to add a condition to our query. Let’s look at conditional queries next.

Using Named Parameters

Let’s jump ahead to the finder method that gets all ArtEntity instances within a particular Category:

public List<ArtEntity> getArtworkInCategory(Long catId)
 throws DataAccessException {
 return this.getHibernateTemplate().findByNamedParam(
 "select art from Category cat " +
 "join cat.artEntities art " +
 "where cat.id = :catId ",
 "catId", catId
);
}

This method uses a more complex HQL query that joins Category with ArtEntity, specifying a where
condition with a parameterized CategoryId. Joins in HQL allow you to query across multiple entities. In
this example, we are referencing the ArtEntity domain class through the artEntities property of the
Category entity.

In Hibernate, it is possible to join two entity types explicitly or implicitly. Implicit uses of join don’t
actually use the join keyword, but instead navigate across object properties and associations as part of a
query. For example, we could implicitly join Category and ArtEntity domain objects using the following
query:

from ArtEntity artEntities where artEntities.category.id = :catId

Here, we navigate across associations within the where condition. This returns the same result but
through a different approach.

For this method, we are using HibernateTemplate’s findByNamedParam method. This method takes
three parameters: the HQL query, the HQL parameter name, and the parameter itself. We recommend
using named parameters instead of positional parameters to make your code significantly clearer and
less brittle. Positional parameters rely on the order in which the parameters are passed in, which is
ambiguous and more prone to errors.

Notice that our HQL query specifies the condition where cat.id = :catId. The :catId is Hibernate’s
way of defining a named parameter in a query. This name can then be referenced as the parameter
name to the HibernateTemplate’s findByNamedParam method.

In the preceding example, we have only a single parameter, but this is not typically the case. When
you require more than a single HQL parameter, you can use the overloaded version of findByNamedParam
that takes a String array (as the second parameter) to define the parameter names you are passing into
your finder method, and an Object array for the actual parameter values. This more flexible version
works about the same as the preceding example, except the second and third parameters both take
arrays instead of a String and an Object, respectively. For instance, let’s take a look at our
authenticatePerson method in the PersonDaoImpl class:

CHAPTER 6 ■ DAOS AND QUERYING

95

public Person authenticatePerson(String username, String password)
 throws DataAccessException, AuthenticationException {

 List<Person> validUsers = this.getHibernateTemplate().findByNamedParam(
 "select people from Person people where" +
 "people.username = :username " +
 "and people.password = :password",
 new String[] {"username", "password"},
 new String[] {username, password }
);

 if (validUsers == null || validUsers.size() <= 0) {
 throw new AuthenticationException("No users found");
 } else {
 return validUsers.get(0);
 }

}

In this example, we are passing two conditions to our HQL query: username and password. The
second argument contains a String array of HQL parameter names, and the third method argument
takes a String array of values. The HibernateTemplate also offers overloaded alternatives in which you
can specify an Object or Object array for parameter values, allowing you to use any Java type as a
parameter value in an HQL query.

Querying Using Core Hibernate

In the previous section, we discussed how to execute HQL queries using the HibernateTemplate.
Although this approach works reasonably well, you probably noticed that things can get somewhat
confusing when specifying multiple named parameters. As we discussed earlier, HibernateTemplate isn’t
always the most ideal way to implement your DAOs. Let’s now look at how the authenticatePerson
method is implemented using the Hibernate Core APIs:

public Person authenticatePerson(String username, String password)
 throws DataAccessException, AuthenticationException {

 Person validUser =
 (Person) this.getSessionFactory().getCurrentSession().createQuery(
 "select people from Person people where" +
 "people.username = :username " +
 "and people.password = :password")
 .setString("username", username)
 .setString("password", password)
 .uniqueResult()
);

 if (validUser == null) {
 throw new AuthenticationException("No users found");

CHAPTER 6 ■ DAOS AND QUERYING

96

 } else {
 return validUser;
 }

}

As you can see, this form is a bit clearer and more concise than the HibernateTemplate version. The

Hibernate Core APIs provide an easy way to set named parameters, one at a time, using a chained syntax
(meaning that each Query method returns the Query instance, allowing you to invoke multiple methods
in a row). You can also return a list or call uniqueResult(), which assumes that the query will return only
a single item, allowing you to return this item directly. If you want your query to return a list, you can
invoke .list() instead of .uniqueResult().

Hibernate also provides an .iterate() method on the Query class, which can be useful if there is a
decent chance that most of the entities returned by the query are stored in cache. The .iterate()
method will return only the identifiers of each entity, rather than the entire entity itself. Assuming the
IDs are cached, this will result in a more performant operation.

Using Named Queries

Even though the Hibernate Core APIs help to simplify our implementation, the method still seems a bit
complex, due primarily to the length of the query itself, which we break into chunks for readability. We
also rely on String concatenation, which incurs a slight performance hit.

One approach to making HQL-based methods clearer is to use a named query. Named queries allow
you to externalize queries from the code itself. This can improve code clarity, while centralizing queries
either outside the code entirely or grouped within a particular part of the file.

If you use Hibernate XML mapping files, you can define named queries directly within those files.
This makes it possible to alter queries without needing to recompile your Java code. Alternatively, you
can define named queries within your code by using the @NamedQuery annotation.

Once you have specified your named queries, you can easily access them using the following syntax
(assuming the query is named my.named.query.name):

Query query = this.getSessionFactory().getSession().getNamedQuery("my.named.query.name");

Once you have a Query reference, you can work with it in exactly the same way as if you had created

the query directly in code.
We recommend that you avoid placing HQL queries directly within the DAO code. Instead, use

Hibernate’s named query feature. This allows you to centralize your HQL queries within Hibernate
mapping files or within domain class files using the @NamedQuery annotation. As we mentioned earlier,
keeping named queries within XML mapping files also lets you tweak your queries without needing to
recompile classes, which can come in handy when debugging a crisis in a development or Staging
environment.

Working with Polymorphic Queries

In Chapter 5, you learned about the different strategies for mapping a Java class hierarchy. You can see
some of the benefits of Hibernate’s support for polymorphism when you consider the querying features.

For instance, in Chapter 5, we defined a class hierarchy intended to encapsulate the different image
resolutions persisted within the gallery application: ArtData, ArtData_Gallery, ArtData_Thumbnail, and
ArtData_Storage. In this hierarchy, the latter three classes extend from the ArtData base class. Now

CHAPTER 6 ■ DAOS AND QUERYING

97

suppose that we want to find all instances that extend from ArtData. We can accomplish this with the
following query:

Select artData from ArtData artData

This will return all instances of ArtData, including entities such as ArtData_Gallery and

ArtData_Thumbnail, which extend from the ArtData parent class. Hibernate’s support for polymorphism
is extremely powerful, as it allows us to restrict or broaden a query across a class hierarchy. In fact, we
could query for all instances of every domain object in our application by running the query:

From Object

The above query would load our entire database, since every domain object implicitly inherits from

Object. Obviously, we strongly discourage you from trying this in a production application!

Persisting Data with Hibernate
Now that we’ve discussed a few options for defining finder methods using HibernateTemplate and the
Hibernate Core APIs, how do we actually persist data?

Saving and Updating Data

Our CategoryDaoImpl class defines a save method for the Category instance as follows:

public void saveCategory(Category category) throws DataAccessException {
 this.getHibernateTemplate().saveOrUpdate(category);
}

Using HibernateTemplate’s saveOrUpdate is similar to calling Session.saveOrUpdate(Object) using

the Hibernate Core APIs. Other saving options are available in the HibernateTemplate, such as merge,
save, and update, if you want more specific kinds of persisting behavior.

It is even possible to perform batch operations using Hibernate, updating multiple objects using a
where condition to determine which entities should be updated. You can also update a collection of
domain objects by iterating through the entities and calling saveOrUpdate on each entity. We will discuss
performance optimization strategies for saving objects in Chapter 9.

Handling Binary Data

Our CategoryDao is fairly straightforward, as it needs to manipulate only simple String fields. However,
since we are building a gallery application, we will need to handle large data types in order to manage
the data used to represent imagery. We could choose to store image data on the file system, storing only
path references to the location where images are stored. However, we’ve found that it is often more
flexible to persist everything in the database, ensuring your application data is completely centralized.
This also helps to reduce coupling to the file system, and can make it easier to back up and migrate data.

In the database world, large objects (LOBs) are used to represent large binary fields. Typically, LOBs
or BLOBs represent binary data while CLOBs are used to represent exceedingly large (typically more
than 4,000 characters) character data. The process for working with these field types in Spring is similar.

CHAPTER 6 ■ DAOS AND QUERYING

98

First, we need to create a DefaultLobHandler reference to be used within our inserts and queries. This
Spring abstraction is intended to simplify the manipulation of LOB fields. We can create our
DefaultLobHandler by adding the following snippet to our Spring configuration:

<bean id="defaultLobHandler"
 class="org.springframework.jdbc.support.lob.DefaultLobHandler" />

Next, we need to inject our defaultLobHandler reference into our DAO layer. We don’t need LOB

support in our CategoryDao implementation, and we haven’t defined our ArtEntityDao just yet. To
conserve space, we won’t get into the details of our ArtEntityDao here. Just keep in mind that this
interface will handle persistence operations for the ArtEntity domain object (which represents a
particular image within our gallery application). Additionally, remember that LOB fields within the
domain model should be annotated with @Lob, to indicate that the property should be mapped to a
database Lob type.

Let’s begin stubbing out our HibernateArtEntityDao implementation:

public class HibernateArtEntityDao implements ArtEntityDao {
 private HibernateTemplate template;
 private LobHandler defaultLobHandler;
 // getters and setters omitted
}

We will need to ensure our LobHandler reference is injected into our HibernateArtEntityDao class.
Next, let’s define a saveArtEntity method that takes an ArtEntity parameter, which encapsuates

information about our image as well as the image data itself. (Again, keep in mind that this is a
simplification of our actual ArtEntityDao interface and domain entity.) Our saveArtEntity method
might look like the following:

public void saveArtEntity(ArtEntity artEntity) throws DataAccessException {
 this.getHibernateTemplate().saveOrUpdate(artEntity);
}

Understanding the Benefits of the Criteria API

Although HQL and JPQL are effective and concise strategies for expressing a query, they both suffer from
a few limitations. First, because these query languages are articulated as plain text, they are prone to
errors which are unable to be caught or verified by the compiler. Methods containing significant errors
in the HQL or JPQL queries will compile perfectly, only to throw exceptions at runtime — or perform in
unexpected ways.

HQL and JPQL are also not conducive to expressing dynamic queries, in which the attributes of the
query are not fully known until runtime. For instance, if we would like our users to be able to search for
images by specifying any number of tags, it would be difficult to represent this sort of query using HQL
or JPQL. To accomplish this, we might try dynamically generating a JPQL query string by concatenating
the conditions of each tag parameter. Clearly, this is a fragile and awkward solution to this problem.

To address these limitations, Hibernate offers the Criteria API. Until recently, JPA did not include a
Criteria API, forcing developers that needed this type of functionality to go outside of the JPA standard.
However, with the release of JPA 2.0, a standards-based Criteria API is now available.

CHAPTER 6 ■ DAOS AND QUERYING

99

Using the JPA 2.0 Criteria API

We’ve focused more on Hibernate-specific querying, so let’s examine the new JPA 2.0 Criteria API. To
illustrate the Criteria API, we will define a new DAO method for our CategoryDao interface:

public List<ArtEntity> getArtEntitiesByTitle(String title);

This method will return all those ArtEntity instances that match the specified title. Obviously, we

could express this query using JPQL, however the Criteria API offers some advantages. One of the
primary benefits is that we can leverage compile-time checking to ensure that our query is valid and fits
within the constraints of our domain model. Later in this section, we will also examine some other
advantages of the Criteria API, such as applying dynamic constraints on our query, including pagination,
filtering, and ordering details.

First, let’s take a look at our query:

public List<ArtEntity> getArtEntitiesByTitle(String title) {
 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<ArtEntity> criteriaQuery =
 criteriaBuilder.createQuery(ArtEntity.class);
 Root<ArtEntity> root = criteriaQuery.from(ArtEntity.class);
 Path<String> path = root.<String>get("title");
 criteriaQuery.where(criteriaBuilder.equal(path, title));
 return entityManager.createQuery(criteriaQuery).getResultList();
}

If you consider the structure of a JPQL query, then you should be able to infer what the above

method is doing. The first line gets a reference to a CriteriaBuilder. The CriteriaBuilder class is
necessary for generating important aspects of our Criteria query, as we will see shortly. The next line
then uses our CriteriaBuilder reference to create a CriteriaQuery instance. Notice that we pass
ArtEntity.class as the single parameter to the createQuery method. We are essentially requesting that
we would like a generically typed CriteriaQuery instance, using our ArtEntity type. Our intention in
doing this is to specify that we want our query to return results of type ArtEntity. This doesn’t
necessarily imply that we are querying against an ArtEntity instance. In fact, we could specify a type of
Long.class to the createQuery method, to indicate that our query should return a Long, which is typical
when performing projection or aggregate queries.

Now that we have our CriteriaQuery instance, we need to declare what type we intend to query
against. We call the from method on our CriteriaQuery instance, specifying a parameter of ArtEntity.
This line of code in our example is similar to a JPQL clause that reads: “from ArtEntity”. In other words,
we are expressing our intention to query against the ArtEntity type. We are returned a Root instance as
a result of this method call, which is generically typed to our ArtEntity instance. The Root instance can
now be used as a means for referencing properties on the ArtEntity class that we wish to use as
conditions in our query.

The next line in our method uses our Root instance to access the title field on our ArtEntity domain
class, by calling the get method on the Root instance and specifying the string “title” (which is the
appropriate property name on the ArtEntity class). This returns a Path instance, which we can use to
represent the title property, in order to express a condition in our query. To express this condition, we
call the where method on our CriteriaQuery instance. Notice that as a parameter to the where method,
we have used a nested method call of criteriaBuilder.equal(path, title). We use the criteriaBuilder
as a factory to construct the equal condition, which returns a Predicate instance. Predicates represent
encapsulated logic that will return either true or false, and are used as building blocks in the Criteria API

CHAPTER 6 ■ DAOS AND QUERYING

100

to form complex queries. In our case, we have created a Predicate to represent the comparison logic
between the Path instance (which represents our ArtEntity.title field) and the String title parameter,
that was passed in to this method.

Now that we’ve articulated the requirements and conditions for our CriteriaQuery, we need to
actually execute our query so that we can access the results. This part of the method works in a similar
fashion to executing a JPQL query. We invoke createQuery on our EntityManager reference, passing in
our CriteriaQuery instance. The createQuery method will actually return a TypedQuery instance that is
generically typed to our ArtEntity domain class. However, to keep our method streamlined, we call
getResultList() on the method chain to directly return a List of ArtEntity instances that match our
query’s conditions.

You’re probably thinking that the above example required quite a bit of work to define a query that
might be defined in JPQL as:

public List<ArtEntity> getArtEntitiesByTitle(String title) {
 Query query = this.entityManager.createQuery(
 "select art from ArtEntity where art.title = :title "
);
 query.setParameter("title", title);
 return query.getResultList();
}

It’s true that the JPQL version is a bit more concise. However, what about our earlier concerns about

a lack of compile-time checking on the validity of our query? With the Criteria API approach, we benefit
from some assurance that the syntax of our query is verifiable, whereas in JPQL we won’t be aware of
issues until runtime. However, in our Criteria API example, we are actually short-changing ourselves a
bit. Remember that in order to represent the ArtEntity.title field as a Path reference, we used the
following code:

Path<String> path = root.<String>get("title");

This line is intuitive, but we are still opening ourselves up to the potential for error since we could

misspell our title field, or specify a domain class property that simply doesn’t exist. Additionally, when
we get into more complex queries, such as those involving associations, we could lose track of the
correct field type or plurality.

To address this problem, the JPA 2.0 Criteria API provides a MetaModel, which can be used to
describe the metadata related to your domain model. While it is possible to manually define your own
MetaModel, in order to mirror the structure of each of your domain classes, the easier bet is to use the
annotation processing feature of Java 1.6. Hibernate offers the hibernate-jpamodelgen jar, which can be
used to analyze your domain model classes and then automatically generate the sourcecode for the
MetaModel. The first step in getting this to work is to add the hibernate-jpamodelgen to your Maven
pom.xml file as a dependency:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-jpamodelgen</artifactId>
 <version>1.0.0.Final</version>
</dependency>

CHAPTER 6 ■ DAOS AND QUERYING

101

Once you’ve added this dependency, you will be able to have your MetaModel automatically
generated and updated whenever your code is compiled. While it is possible to make this process more
implicit, we recommend installing a Maven plugin to provide some level of control and configuration.
For example, you will probably want to specify where the MetaModel classes should be located. Copy the
following plugin configuration into the <plugins> block of your pom.xml:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <compilerArguments>
 <processor>
 org.hibernate.jpamodelgen.JPAMetaModelEntityProcessor
 </processor>
 </compilerArguments>
 </configuration>
</plugin>

<plugin>
 <groupId>org.bsc.maven</groupId>
 <artifactId>maven-processor-plugin</artifactId>
 <executions>
 <execution>
 <id>process</id>
 <goals>
 <goal>process</goal>
 </goals>
 <phase>generate-sources</phase>
 <configuration>
 <!-- source output directory -->
 <outputDirectory>src/main/generated-java</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.3</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/main/generated-java</source>

CHAPTER 6 ■ DAOS AND QUERYING

102

 </sources>
 </configuration>
 </execution>
 </executions>
</plugin>

It may also be necessary to add a <pluginrepositories> block to your pom.xml, if you have trouble

automatically installing the above plugins. You can add the following block, to ensure that the necessary
plugins can be downloaded:

<pluginRepositories>
 <pluginRepository>
 <id>maven-annotation</id>
 <url>
 http://maven-annotation-plugin.googlecode.com/svn/trunk/mavenrepo/
 </url>
 </pluginRepository>
</pluginRepositories>

Once you’ve updated your Maven configuration, you should be able to run mvn compile in order to

trigger the annotation processing to have your MetaModel generated. The above Maven configuration
will generate the MetaModel source to src/main/generated-java, but feel free to update the location to
suit your own needs.

Once you have generated your MetaModel, you should be able to find these classes in the appropriate
location. The MetaModel classes mirror your own domain model classes, except that an underscore is
suffixed to the class name. For instance, our ArtEntity domain class would have a corresponding
MetaModel class in the same package structure but with the name ArtEntity_. Let’s take a look at what
our ArtEntity MetaModel class looks like:

@StaticMetamodel(ArtEntity.class)
public abstract class ArtEntity_ {

 public static volatile SingularAttribute<ArtEntity, String> displayDate;
 public static volatile SingularAttribute<ArtEntity, Integer> width;
 public static volatile SingularAttribute<ArtEntity, Integer> hashCode;
 public static volatile SingularAttribute<ArtEntity, String> caption;
 public static volatile SingularAttribute<ArtEntity, Boolean>
 privilegeViewable;
 public static volatile SingularAttribute<ArtEntity, Boolean>
 generalViewable;
 public static volatile SingularAttribute<ArtEntity, Integer> version;
 public static volatile SingularAttribute<ArtEntity, Long> id;
 public static volatile SingularAttribute<ArtEntity, String> subTitle;
 public static volatile SingularAttribute<ArtEntity, String> title;
 public static volatile SingularAttribute<ArtEntity, Integer> height;
 public static volatile SingularAttribute<ArtEntity, String> description;
 public static volatile SingularAttribute<ArtEntity, ArtData_Gallery>
 galleryPicture;

http://maven-annotation-plugin.googlecode.com/svn/trunk/mavenrepo

CHAPTER 6 ■ DAOS AND QUERYING

103

 public static volatile SetAttribute<ArtEntity, Category> categories;
 public static volatile SingularAttribute<ArtEntity, ArtData_Thumbnail>
 thumbnailPicture;
 public static volatile SingularAttribute<ArtEntity, String> media;
 public static volatile SetAttribute<ArtEntity, Comment> comments;
 public static volatile SingularAttribute<ArtEntity, ArtData_Storage>
 storagePicture;
 public static volatile SingularAttribute<ArtEntity, Date> uploadedDate;

}

Notice that the class is quite simple, containing only static volatile properties that correspond to
each of our ArtEntity’s domain class properties. Since most of the fields in our ArtEntity domain class
are scalar properties, they are represented by the SingularAttribute type. However, notice that each
MetaModel property is generically typed to indicate both the domain class type (in this case, ArtEntity),
as well as the type of the field. This metadata will prove valuable for leveraging compile time checking
for all aspects of our Criteria API query — even conditions that reference particular fields.

We should also point out that the comments and categories properties are represented by the
SetAttribute type, rather than the SingularAttribute type. Unlike the other fields in the ArtEntity class,
the categories and comments properties are collection associations, represented by a java.util.Set.

Now that we have a clearer understanding of the MetaModel and how we can generate it, let’s get
back to the Criteria API to see how we can use this feature. To better illustrate some other features of the
Criteria API, we will examine a different query that will return the count of all ArtEntity instances that
fall within a minimum and maximum width and height. Let’s take a look at the method:

public Long getCountOfArtEntitiesBySize(MaxMin widthRange,
 MaxMin heightRange,
 QueryOpts queryOpts) {
 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<Long> criteriaQuery =
 criteriaBuilder.createQuery(Long.class);
 Root<ArtEntity> root = criteriaQuery.from(ArtEntity.class);
 Path<Integer> widthPath = root.get(ArtEntity_.width);
 Path<Integer> heightPath = root.get(ArtEntity_.height);
 criteriaQuery.where(criteriaBuilder.and(
 criteriaBuilder.between(widthPath,
 widthRange.getMin(),
 widthRange.getMax()),
 criteriaBuilder.
 between(heightPath,
 heightRange.getMin(),
 heightRange.getMax())));

 criteriaQuery.select(criteriaBuilder.count(root));
 Long count = entityManager.createQuery(criteriaQuery).getSingleResult();
 return count;
}

CHAPTER 6 ■ DAOS AND QUERYING

104

Unlike our previous example, this method returns a Long, since we don’t want a list of the ArtEntity
instances themselves, but rather a count of how many instances match the specified condition. Notice
that we have encapsulated the minimum and maximum values for both the height and width
respectively through a custom MaxMin class. For clarity, here is the MaxMin class (which is an inner class of
our Dao):

public static class MaxMin {

 private final int max;
 private final int min;

 public MaxMin(int max, int min) {
 this.max = max;
 this.min = min;
 }

 public int getMax() {
 return max;
 }

 public int getMin() {
 return min;
 }

}

Since our query will return a Long value, we invoke criteriaBuilder.createQuery(Long.class) to
indicate that the intended return value for our query. We use the criteriaQuery.from() method to
indicate that we wish to query against the ArtEntity class, which returns a Root<ArtEntity> instance —
just as in the previous example. However, notice that on the next line we call
root.get(ArtEntity_.width) to return a Path<Integer> reference, used to indicate the ArtEntity.width
field. Unlike in our previous example, we are using our ArtEntity_ MetaModel class to reference attributes
of the ArtEntity domain class in a consistent and type-safe way. Notice that we are returned a
Path<Integer> instance that reflects the correct generic type. If we simply specified a string value of
“width” instead of using the MetaModel, we would not have assurance that our query was accurately
reflecting the correct field types.

Next, we use a where condition in which we nest an and expression, into which we further nest two
Predicate clauses that articulate the between conditions for our query. We use our CriteriaBuilder as a
factory to generate an and Predicate, which takes a variable number of Predicate arguments — all of
which must evaluate to true in order for the query condition to be met.

Finally, we invoke criteriaQuery.select(), passing in a nested call of
criteriaBuilder.count(root). The inner expression defines an aggregate query of count, specifying our
Root instance. This essentially boils down to counting all the ArtEntity instances that match the where
condition defined above. The criteriaQuery.select() invocation is used to indicate what is to be
selected in the query, which is effectively similar to the select keyword in a JPQL query. The last step is to
use the entityManager reference to call createQuery, using our configured CriteriaQuery as a parameter,
and then chaining a call to getSingleResult(). Since this query is intended to return the result of an
aggregate query, we want to call getSingleResult(), rather than getResultList().

So far, we have seen the benefits of using the Criteria API through the assurances gained by
compile-time checking and verification of both the query structure and syntax, as well as the structure of
our domain model. Let’s look at one more example that touches on some of the benefits of the

CHAPTER 6 ■ DAOS AND QUERYING

105

CriteriaAPI in being able to express queries in which the structure, conditions, and complexity are
dynamic in nature. In this example, we define a method that allows us to specify a QueryOpts instance as
a parameter, which encapsulates ordering and pagination information, The key differentiator in this
(somewhat simplified) example, is that we are able to define a variable-length list of fields we wish to
order the results by. However, we could extend this example further, allowing us to also specify dynamic
filter criteria as well.

First, let’s examine the QueryOpts class, which is simply a wrapper for our pagination and ordering
requirements:

public class QueryOpts {
 private int pageNum;
 private int pageSize;
 private List<FieldOrder> orderList;

 public QueryOpts() {

 }

 public QueryOpts(int pageNum, int pageSize, List<FieldOrder> orderList) {
 this.pageNum = pageNum;
 this.pageSize = pageSize;
 this.orderList = orderList;
 }

 public int getPageNum() {
 return pageNum;
 }

 public void setPageNum(int pageNum) {
 this.pageNum = pageNum;
 }

 public int getPageSize() {
 return pageSize;
 }

 public void setPageSize(int pageSize) {
 this.pageSize = pageSize;
 }

 public List<FieldOrder> getOrderList() {
 return orderList;
 }

 public void setOrderList(List<FieldOrder> orderList) {
 this.orderList = orderList;
 }

 public static class FieldOrder {
 private String field;

CHAPTER 6 ■ DAOS AND QUERYING

106

 boolean ascending;

 public FieldOrder() {

 }

 public FieldOrder(String field, boolean ascending) {
 this.field = field;
 this.ascending = ascending;
 }

 public String getField() {
 return field;
 }

 public void setField(String field) {
 this.field = field;
 }

 public boolean isAscending() {
 return ascending;
 }

 public void setAscending(boolean ascending) {
 this.ascending = ascending;
 }
 }

}

Notice that the QueryOpts also contains the static inner-class FieldOrder, which is used to represent
a field name and its order direction (i.e. whether it is ascending or descending).

Now that we have a better handle on the QueryOpts class, let’s take a look at the method which
defines our dynamic query:

public List<ArtEntity> getArtEntitiesByTitle(String title,
 QueryOpts queryOpts) {

 CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
 CriteriaQuery<ArtEntity> criteriaQuery =
 criteriaBuilder.createQuery(ArtEntity.class);
 Root<ArtEntity> root = criteriaQuery.from(ArtEntity.class);
 Path<String> path = root.get(ArtEntity_.title);
 criteriaQuery.where(criteriaBuilder.equal(path, title));
 List<Order> orderList = criteriaQuery.getOrderList();
 List<Order> newOrderList = new ArrayList<Order>(orderList);

 for (QueryOpts.FieldOrder fieldOrder : queryOpts.getOrderList()) {
 Order order = null;
 if (fieldOrder.isAscending()) {
 order = criteriaBuilder.asc(root.get(fieldOrder.getField()));

CHAPTER 6 ■ DAOS AND QUERYING

107

 } else {
 order = criteriaBuilder.desc(root.get(fieldOrder.getField()));
 }
 newOrderList.add(order);
 }

 criteriaQuery.orderBy(newOrderList);
 TypedQuery<ArtEntity> query =
 entityManager.createQuery(criteriaQuery);
 query.setFirstResult(queryOpts.getPageNum() *
 queryOpts.getPageSize());
 query.setMaxResults(queryOpts.getPageSize());

 return query.getResultList();

}

Once again, we are querying for ArtEntities that match a specified title. However, this method also
takes a second parameter of type QueryOpts. Most of this method is similar to our first Criteria API
example. However, notice how we specify the “order by” criteria for our query. We call
criteriaQuery.getOrderList() in order to gain access to a List of Order classes. It is important to note
that we can’t directly change this list, but instead must create a new ArrayList, copying any Order items
from the original list into the new list. Next, we use a for loop to iterate through our “order criteria”
embedded within the QueryOpts parameter. We perform a few checks to determine whether a particular
QueryOpts.FieldOrder item is ascending or descending, and then instantiate the appropriate
javax.persistence.criteria.Order instance, using either criteriaBuilder.asc or
criteriaBuilder.desc. In either case, notice that we extract a Path instance using root.get(), passing in
the field name we wish to order by. Each newly created javax.persistence.criteria.Order instance is
added to our newOrderList.

After we have finished looping through our order requirements, we call criteriaQuery.orderBy(),
passing in our newOrderList as a parameter. This method call effectively sets our order by criteria,
overwriting any previously specified order requirements for this query.

Finally, we use our entityManager reference to create a TypedQuery<ArtEntity> reference, and then
use the pagination details embedded in our QueryOpts parameter to set the firstResult and maxResults
properties, effectively controlling the range and page-size for our query.

As you can see, the Criteria API is a powerful tool for dynamically expressing queries in an object-
oriented way. The Criteria API also supports more advanced features, such as joins and compound
predicate expressions, as well as unique capabilities, such as “query by example.” For some queries,
whether to use JPQL or the Criteria API may be a matter of style. However, we believe it is important to
have a thorough understanding of the Criteria API so that you can effectively leverage this feature —
especially in those circumstances in which JPQL doesn’t offer an elegant or viable solution.

Summary
In this chapter, we introduced some core ORM concepts, and you learned more about how Spring and
Hibernate can be used together. We also reviewed some key design patterns that are instrumental to the
way in which Spring integrates with many persistence frameworks. Through our gallery application
examples, we demonstrated how to implement an effective DAO layer. We examined several options for
integrating Hibernate—using the HibernateTemplate as well as using the Hibernate Core APIs.

CHAPTER 6 ■ DAOS AND QUERYING

108

The DAO pattern is considered a best practice for abstracting persistence-related functionality.
Using Hibernate, we demonstrated how to load entities via their identifier, save or update individual
entities, and query for domain objects using HQL. We discussed some querying techniques and
examined various approaches for performing joins, using both implicit and explicit forms. We also
contrasted implementation strategies using Spring’s HibernateTemplate and Hibernate Core APIs.
Although HibernateTemplate has played a significant role in both Spring and Hibernate’s history, its use
is becoming less important due to improvements to the Hibernate architecture after version 3.0.1.

This chapter discussed several implementation options for building our gallery application’s DAO
layer. We built on some of the concepts introduced in the previous chapter, which illustrated mapping
strategies for our application’s domain model. In the next chapter, we will build on the DAO layer
introduced in this chapter, demonstrating how the service layer can be used to define an application’s
transactional business logic.

C H A P T E R 7

■ ■ ■

109

Transaction Management

Database transactions help you group a set of operations into a single unit of work. All operations either
succeed or fail as a group.

Spring’s powerful and flexible transaction support is another factor responsible for the framework’s
success and popularity. Before Spring, complex or declarative transactional features typically required
that an organization use EJB, along with a heavyweight JEE container. Using aspect-oriented
programming (AOP) techniques, Spring helped democratize enterprise-level transactional support,
allowing developers to cleanly apply transactional rules to their code whether they were using a full-
fledged JEE application server, a lighter-weight web container, or even a stand-alone unit test.

Not only did Spring help to obviate the need for a heavyweight container, but it also provided a
generalized abstraction for transaction management. It no longer mattered whether you were using
Hibernate transactions, local database transactions, or even the Java Transaction API (JTA), which allows
for distributed transactions across multiple datasources. In much the same way that Spring provides a
generic DataAccessException hierarchy, Spring's abstraction for transaction management and
demarcation helps to simplify and decouple transactional specifics from application code and business
logic.

Much of the popularity of EJB stemmed from its transactional support. EJB provided a way to
specify transactional rules via configuration, preventing these details from adding too much complexity
to data access code. By leveraging its AOP features, Spring is able to offer similar flexibility, but without
the overhead of a heavy EJB container or the addition of complexity or features that an organization
doesn't require.

Using Spring, transactional rules can be consolidated into configuration so that code need not be
muddied with these types of concerns. Switching between a JEE application server using a JTA
datasource and a simple unit test using a local datasource is just a matter of modifying the Spring
configuration— no code needs to be altered. Spring can leverage some of the advanced features offered
by JTA when employing a JTA transaction manager. The key benefit, however, is that Spring provides a
transactional programming model that is consistent—whether you need to have transactions span
across multiple datasources (a feature offered by JTA) or across a single datasource, the way you define
these transactional concerns will always be the same.

In rare cases where you actually want to define transactional rules for your application
programmatically, Spring offers a means for accomplishing this as well. You could just rely on
Hibernate's transactional programming model, but by leveraging Spring's abstractions, you reduce your
coupling to Hibernate by basing your persistence code on generalized APIs. This might come in handy if
you decide to move away from Hibernate in the future, or (more likely) if your persistence layer utilizes
both Hibernate and JDBC.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

110

Spring allows you to control how transactions are performed at a per-method level. Transaction
management can be applied via XML configuration or using annotations. In this chapter, we will
demonstrate both approaches. However, we recommend using annotations, as this strategy is the most
intuitive, and allows transactional metadata to be embedded directly within a service layer class or
interface.

The Joy of ACID
Before we begin adding transactions to our application using Spring, let’s discuss some of the
fundamental and theoretical concepts. There’s quite a bit to know about transactions, but the most
important details to understand are encapsulated in the acronym ACID, which defines the four core
requirements of a transaction:

Atomicity specifies that all operations within a single transaction must
complete together or not at all. In other words, a transaction allows multiple
database operations to be applied together. In the event of an error, the entire
set of operations is rolled back.

Consistency refers to the requirement that transactions must transition a
database from one consistent state to another consistent state. A successful
transaction cannot leave the database in a state that violates the integrity
constraints of the database or the schema. In other words, transactions must
comply with database constraints and referential integrity rules during every
insert, update or delete before a transaction may be committed.

Isolation defines the rules about how one running transaction affects or
interacts with other concurrently running transactions. The isolation strategy
used on a transaction is very important. If the chosen isolation level is too loose,
hard-to-find bugs can be introduced, which may adversely impact the integrity
of your data. If your isolation level is too high, however, you run the risk of
slowing down your application or deadlocking your database. This setting is
both application server and database server dependent. While there are
technically eight isolation levels, generally you will only need to concern
yourself with the four that are defined by the ANSI/ISO SQL standard. You
should also note that the default isolation level varies quite a bit amongst
DBMS vendors.

Durability ensures that once a transaction is committed, the changes will not
be lost and should survive database failures.

In this chapter, we will cover the fundamentals of ACID transactions, as well as how to declaratively
apply transactions using Spring. These concepts will undoubtedly prove useful for any type of
application development, and might also come in handy during your next job interview! (Although we
recommend waiting for these topics to come up themselves in the context of a job interview—we do not
recommend starting out by confessing your love for ACID.)

ACID can be perceived as a bit trippy, but it has a way of keeping your data safe and will definitely
maintain your sanity when dealing with persistence.

So why should you care about ACID? It’s important to understand the available rules and options of
database behavior so that you can effectively leverage these features in the context of your application.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

111

These details are critical for controlling how a group of operations are applied to a database or how
concurrent database modifications can affect each other. Improper transaction management can also
adversely affect performance in an enterprise application.

Understanding Isolation Levels
The four isolation levels that you’ll encounter in practice, listed from least isolated to most isolated, are
Read Uncommitted, Read Committed, Repeatable Read, and Serializable. These isolation levels also
have an impact on concurrency. The least stringent isolation level allows for the highest number of
concurrent database operations, while the most stringent are all but guaranteed to slow down your
systems. Figure 7-1 highlights the ramifications of each isolation level including a demonstration of the
correlation between isolation level and concurrency.

Figure 7-1. Isolation levels mandate tradeoffs between consistency and concurrency

In order to explain the side effects outlined in Figure 7-1, consider the following scenario in our art
gallery application:

1. Paul opens a database transaction, T1, and SELECTs everything from the
ArtEntity table.

2. Brian initiates a separate transaction, T2, to DELETE a piece of art from the
ArtEntity table.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

112

3. Brian, still in his same T2 transaction, UPDATEs a record in the ArtEntity
table, correcting a typo.

4. Paul, still in his same T1 transaction, SELECTs all pieces of art in the ArtEntity
table a second time.

5. Brian’s transaction, T2, COMMITs.

6. Mary initiates a new transaction, T3, and INSERTs a new piece of art to the
ArtEntity table.

7. Paul, still in his same T1 transaction, SELECTs all pieces of art in the ArtEntity
table a third time.

8. Mary’s T3 transaction COMMITs.

9. Paul, still in his same T1 transaction, SELECTs all pieces of art in the ArtEntity
table a fourth time.

10. Paul’s transaction, T1, finally COMMITs.

What should Paul see in step four? What about steps seven and nine? Your database vendor will
have default behaviors defined, but it’s important to know that you have absolute control over the
outcome by choosing the isolation level you prefer for your transactions. Let’s take a look at how the four
isolation levels impact this scenario.

Serializable

The easiest isolation level to understand is serializable, which mandates complete isolation. If we choose
serializable as our isolation level, Paul will never see any of Brian’s or Mary’s changes until Paul begins a
new transaction. From Paul’s perspective, the database remains completely consistent and there are no
side effects; Paul will see the same results for his query all four times because they all take place within a
single transaction that is insulated from any other modifications. That sounds pretty ideal, right? So
what more is there to talk about? Unfortunately, there is a lot of overhead associated with this setting.
Using serializable vastly reduces the number of concurrent operations that may occur and can result in
nasty performance problems involving database locks. As such, the serializable isolation level should be
used sparingly, when the use case really requires absolute consistency and it’s acceptable to risk the
chance that concurrent transactions may be forced to abort with an error.

Repeatable Read

Relaxing isolation a bit by employing the repeatable read isolation level in our scenario would allow Paul
to see any inserts that are committed, but not updates or deletes. In order to guarantee that rereads of
the same row stay consistent, the underlying database will ordinarily implement either row-level, shared
read locks or multiversioning. Under this isolation level setting, Paul would not see Brian’s update or
delete at any point in the scenario. However, Paul will see Mary’s insert at step nine after she has
committed her transaction. This side effect—where newly inserted and committed rows are visible to
Paul’s query (step nine) that weren’t visible earlier (steps four and seven) within a single transaction
(T1)—is known as a phantom read.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

113

Read Committed

Read committed is the default isolation level used by most RDBMS vendors, including Oracle and
PostgreSQL. This isolation level states that a transaction may read only data that has been committed in
the database. When choosing read committed, Paul will see any changes made by Brian or Mary after
their respective transactions have completed and been committed. This provides some data consistency
while still delivering high concurrency. As with the repeatable read isolation level, Paul is still susceptible
to phantom reads. As was the case with the repeatable read isolation level, Paul’s query at step nine will
return a new record that wasn’t visible earlier in his transaction. When choosing read committed, Paul is
also exposed to a second type of side effect; a nonrepeatable read. A nonrepeatable read occurs when
rereads of the same row return different data within the same transaction. This becomes possible after
Brian’s update and delete are committed in step five. Unlike what happened under the serializable or
repeatable read isolation levels, these row level modifications become visible to Paul in step seven, even
though Paul read these two rows earlier and he’s still in the context of his first and only transaction, T1.
When in doubt, choose the read committed.

Read Uncommitted

On the polar opposite end of the spectrum from serializable is the read uncommitted isolation level. If
we employ read uncommitted for our scenario, there will be no transactional isolation whatsoever.
Consequently, Paul’s first three identical queries will all return different results. If Mary’s commit in step
eight succeeds, Paul’s fourth query will return the same results as his third query.

At step four, Paul sees Brian’s typo correction (SQL UPDATE) as well as the removal he performed
(SQL DELETE) before Brian’s transaction commits. This third side effect is commonly referred to as a dirty
read because Paul is reading in tentative data. If Brian’s commit fails at step five, forcing his transaction
to roll back, the data Paul is looking at will be rendered completely inaccurate. Reading in Mary’s insert
at step seven, prior to her commit, is also representative of a dirty read because that too represents
tentative data.

Choosing the read uncommitted isolation level exposes you to all three of the possible side effects.
Intuitively, this represents a strategy that is not ideal. However, there is a silver lining with the read
uncommitted isolation level. Because this isolation level offers the highest degree of concurrency, one
can expect each of Paul, Brian, and Mary’s SQL operations to be incredibly fast. You might adopt this
isolation level when you need to emphasize speed and you’re confident that your application can cope
with the side effects. As with serializable, read uncommitted should only be considered for fringe use
cases.

Controlling ACID Reflux
Transactions define how and when data is committed to a database. They are indispensable in grouping
persistence logic together, ensuring that all methods complete successfully or that the database is rolled
back to its previous state. For most operations, you also need to be concerned with transactional details,
ensuring that transactions are started at the beginning of an operation and are either committed or
rolled back when the operation completes. Spring enables these features through three core concepts:

CHAPTER 7 ■ TRANSACTION MANAGEMENT

114

• Platform transaction management refers to Spring’s abstraction for handling
commits and rollbacks. Frameworks like Hibernate and iBatis have their own
transaction implementations. Furthermore, transactions typically operate
differently in a testing environment than within an EJB server. Spring’s platform
transaction management abstraction hides these details, allowing developers to
specify transactional rules in a consistent manner.

• Declarative transaction management allows developers to specify the
transactional requirements for a particular method through metadata or
configuration. Obviously, the code to set up, commit, and roll back a given
transaction is still being executed. However, these details may be separated from
the code itself and externalized into configuration files or annotations.

• Programmatic transaction management explicitly controls the transaction
through code. Spring provides a TransactionTemplate class that can greatly
simplify the code required to apply transactional semantics to a given method.
However, this approach requires that transactional details be blended with
business logic and requires your code to directly interact with the Spring APIs.

We’ll look at each of these types of transaction in the following sections.

Platform Transaction Management

Spring offers several TransactionManager implementations, each of which fills the role of (drum roll
please) managing transactions. TransactionManager instances typically extend the
AbstractPlatformTransactionManager class, which in turn implements the PlatformTransactionManager
interface. These classes form the foundation of Spring’s transactional support, and provide the know-
how to access, initiate, rollback, and commit transactions. The interface looks like this:

public interface PlatformTransactionManager {
 TransactionStatus getTransaction(TransactionDefinition definition)
 throws TransactionException;

 void commit(TransactionStatus status) throws TransactionException;

 void rollback(TransactionStatus status) throws TransactionException;
}

There are quite a few TransactionManager implementations. For example, the
DataSourceTransactionManager is used for JDBC and iBATIS implementations. For our purposes, we are
predominantly interested in Spring’s ORM-based TransactionManager implementations:
HibernateTransactionManager and JpaTransactionManager.

You’ll even find TransactionManager implementations for JTA used by EJB. JTA is typically used to
enable transactions to span across multiple databases and even disparate technologies, such as Java
Message Service (JMS). These include the generic JtaTransactionManager and implementations for
specific EJB servers like OC4JJtaTransactionManager for Oracle’s server, WebLogicJtaTransactionManager
for BEA’s server, and WebSphereUowTransactionManager for IBM’s server.

By adding the <tx:jta-transaction-manager/> XML tag to your Spring configuration, you can
empower Spring to determine which JTA transaction manager to use, based on runtime information, so
that you don’t need to explicitly reference the platform-specific details in your configuration.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

115

You might have noticed the TransactionStatus and TransactionDefinition interfaces that are part
of the PlatformTransactionManager interface. You rarely need to use these interfaces yourself. They are
set up by Spring’s declarative transaction management (discussed in the next section), but they are still
worth knowing about, as these details help to explain how Spring’s transactional features work under the
hood.

TransactionStatus: Encapsulates key information related to an actively running
transaction, such as whether a new transaction has been created and whether
the transaction should be rolled back or committed. It also allows the
transaction to be marked as Rollback-Only. Setting a running transaction to be
Rollback-Only tells the transaction system that the transaction should be rolled
back. For example, in the event of an error condition, you might write code to
call setRollbackOnly() on a TransactionStatus instance, which will ensure that
the actively running transaction is rolled back.

TransactionDefinition: Defines the ACID properties we talked about earlier,
including details such as the isolation rules for the transaction, whether your
transaction will perform any writes (or is read-only), how long the transaction is
allowed to run before timing out, and how to handle transaction propagation.

We will learn more about how these classes are used later in this chapter when we discuss
programmatic transaction management.

Declarative Transaction Management

Declarative programming employs metadata to define the requirements for a particular set of
application logic, rather than coding the steps that define this behavior directly. Typically, you use
declarative programming within the context of a framework, which is designed to analyze the metadata
in order to tailor its behavior accordingly. Using declarative transaction management, therefore, implies
that you define the rules or attributes that compose your transactions’ behavior, rather than
interspersing this logic directly in your code. As you can probably guess, Spring applies these cross-
cutting concerns to your code by levering its excellent AOP support. However, because transactions are
such a prevalent and critical feature, the AOP details are a bit abstracted to provide a clearer and more
transaction-specific approach.

Spring has a fantastic annotation-driven approach for transaction management. An alternative is to
use an XML-driven strategy based on Spring configuration. We will discuss both of these approaches,
beginning with annotation-based transaction management, since you have seen examples of this in
earlier chapters.

Transactional Annotations

Using the @Transactional annotation, you can set some transactional behavior and attributes.
Propagation defines the transactional behavior for the specified method. This setting determines

whether a new transaction should always be created, whether a nested transaction should be created, or
even if no transaction should be created at all. Here are the Propagation values you can use in Spring:

• REQUIRED: If there’s a transaction, support it; otherwise, create a new one.

• SUPPORTS: If there’s a transaction, it will be supported, but this is not a
requirement.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

116

• MANDATORY: There must be a transaction; otherwise, throw an exception.

• REQUIRES_NEW: Create a new transaction and suspend the current one if it exists.

• NOT_SUPPORTED: Execute the code within the “transactionalized” method non-
transactionally and suspend the current transaction.

• NEVER: Throw an exception if a transaction exists.

• NESTED: Perform a nested transaction if a transaction exists; otherwise, create a
new transaction. Nested transactions offer a way to provide more granular
transactional behavior, allowing a group of inner transactions to be executed. This
can be useful, for example, for cases in which some nested transactions may get
rolled back, but without aborting the entire operation.

Isolation is the “I” in ACID, and defines how a running transaction affects (and is affected by) other
database processes occurring within the application. The settings to control isolation behavior for a
given transaction are:

• DEFAULT: Let the datastore define the isolation level.

• READ_UNCOMMITTED: This isolation level allows changes made by other running
transactions to be read by the actively running transaction, even when the other
transactions have not committed. In other words, this setting enables dirty reads.

• READ_COMMITTED: Dirty and nonrepeatable reads are not allowed, but phantom
reads are. Only changes applied by successfully committed transactions are
visible.

• REPEATABLE_READ: Indicates that dirty reads and nonrepeatable reads are
prevented but phantom reads may occur.

• SERIALIZABLE: Indicates that dirty reads, nonrepeatable reads and phantom reads
are prevented.

Spring also provides a way to specify some of the fundamental attributes of a transaction. For
instance, you can use the readOnly attribute to indicate whether a transaction is read-only (as opposed
to a transaction in which inserts or updates are performed). A readOnly value of true ensures that the
method performs only read operations.

The timeout attribute defines how long a transaction can live without committing or rolling back. If
the timeout for a running transaction elapses without the transaction completing, Spring will
automatically roll back the transaction.

Spring’s transactional support provides a means to specify how a transaction should behave if an
exception is thrown. For example, we could specify that whenever an InvalidImageException is thrown
from a method within our ArtEntityService, the currently running transaction should be rolled back.
Spring provides the attributes rollbackFor and rollbackForClassName to enable this behavior. This
setting allows you to specify an array of either classes or class names (depending on the setting used) of
exceptions that, when thrown, will trigger the currently executing transaction to be automatically rolled
back.

Similarly, you may specify the inverse of this behavior (which exceptions should not trigger a
rollback) through the use of the noRollbackForClass and noRollbackForClassName attributes. These
options work the same way as rollbackFor and rollbackForClassName, but prevent a transaction from
being rolled back if one of the specified exception classes is thrown while this transaction is being
executed.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

117

Armed with a clearer understanding of some of the configuration options for Spring transactions,
let’s take a look at how we can specify the transactional semantics for our service class. To keep things
simple, we will examine a scaled-back version of our ArtEntityService class.

class ArtEntityServiceImpl implements ArtEntityService {

 @Transactional(rollbackFor=InvalidImageExeption.class,
 readOnly=false,
 timeout=30,
 propagation=Propagation.SUPPORTS,
 isolation=Isolation.DEFAULT)
 public void saveArtEntity(ArtEntity artEntity) throws InvalidImageException {
 this.getArtEntityDao().saveArtEntity(artEntity);
 }

}

Here, we define a transactional service method that specifies a timeout of 30 seconds, and will

automatically roll back if an InvalidImageException is thrown. Notice that we have also configured the
transaction to be writable (readOnly is set to false).

Now that we’ve configured the details of our transaction, we need to set up our transaction
manager. As noted earlier, Spring provides a PlatformTransactionManager interface, along with a set of
implementations for use with different persistence strategies. For global transactions that span multiple
datasources, we would need to use Spring’s JTA support. For our example, we will use Spring’s
JpaTransactionManager. Our spring-jpa.xml should be updated to reflect the following (the important
bits for transaction support have been bolded):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <!-- JPA Entity Manager Factory -->
 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="galleryDataSource"/>

 <bean
 class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor" />

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/p
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/context
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/contextwww.s

CHAPTER 7 ■ TRANSACTION MANAGEMENT

118

<!-- Database LOB Handling -->
 <bean id="defaultLobHandler"
 class="org.springframework.jdbc.support.lob.DefaultLobHandler" />

 <!-- Read in DAOs from the JPA package -->
 <context:component-scan base-package="com.prospringhibernate.gallery.dao.jpa" />

<!-- Transaction Config -->
<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory"/>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

</beans>

The XML configuration in this example specifies our artEntityService bean, along with our

PlatformTransactionManager. We are using Spring’s JpaTransactionManager, but the way in which we are
able to declaratively configure transactions would not be different if we decide to create a JDBC
implementation, or even if we required global transactions via JTA. Spring allows us to use a consistent
strategy for specifying transactions, regardless of the underlying implementation details.

Also notice the tx:annotation-driven bean that Spring includes in its tx namespace. This XML
snippet is necessary to enable the usage of our @Transactional annotations. Without it, Spring would not
enable transactions for our ArtEntityService. The tx:annotation-driven annotation supports the
following features:

• transaction-manager: This supplies the name of the bean used for the transaction
manager. Theoretically, you can have more than one transaction manager in your
Spring application context and use only one. The default value is
transactionManager.

• mode: This specifies the type of proxying mechanism you want. You have a choice
of proxy to use Spring proxying or aspectj to use AspectJ, an industrial-strength
AOP framework. The default is proxy.

• proxy-target-class: By default, Spring creates a Java proxy object, and attaches
only the interfaces that the object implements. For example, if you have a
PersonDaoJPA class that implements a PersonDao interface, the proxying process
will create an object that implements PersonDao, adds on the implementation of
your transactional semantics, and passes the request on to your implementation.
If the class doesn’t implement any interfaces or you need the proxy to extend the
class and not just its interfaces, Spring will then use the Code Generation Library
(CGLIB) open source bytecode manipulation framework to perform the proxying.
The CGLIB approach does have a limitation: you need to put the transactional
annotations on the class itself, not on the interface.

• order: There are plenty of other frameworks that take advantage of proxying, but
to use them, you may need to explicitly order the transactional and other proxying
mechanisms. Lower order numbers are processed first.

CHAPTER 7 ■ TRANSACTION MANAGEMENT

119

Declarative Transactions via XML

Rather than using the @Transactional annotation for applying transactional semantics, you can take a
pure XML-driven approach. This approach is useful in cases where you prefer not to apply annotations,
or you can’t use annotations because you need to use JDK1.4 or you want to apply transactional
semantics to a library that you can’t change.

Coupling the tx:advice XML configuration with an XML-based AOP configuration makes for a
synergistic combination. For example, you can use method names to automatically figure out what kind
of transactionality you want to apply.

Here’s an example that specifies that methods starting with save, update, and delete require a
transaction, and everything else supports (but does not require) a read-only transaction:

<tx:advice id="txAdvice" >
 <tx:attributes>
 <tx:method name="save*" propagation="REQUIRED"/>
 <tx:method name="update*" propagation="REQUIRED"/>
 <tx:method name="delete*" propagation="REQUIRED"/>
 <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
 </tx:attributes>
</tx:advice>

tx:advice does support a transaction-manager XML attribute, but by default, it uses the name

transactionManager, just like tx:annotation-driven.
In addition to the flexible method name matching, the tx:method element has the same types of

parameters as the @Transactional annotation. You can set values for propagation, isolation, timeout,
read-only, rollback-for, and no-rollback-for. These tx:method XML attributes have the same values as
their @Transactional counterparts.

One more detail needs to be added to this example in order to make it complete. You need to use
Spring’s AOP framework to define which beans require the advice. You can accomplish this by using the
aop namespace in your Spring XML file. For example, if we wanted to apply the transactional advice to all
of the classes that are in the com.prospringhibernate.gallery.service package, we can add the
following to our Spring XML file:

<aop:config>
 <aop:pointcut id="allServices"
 expression="execution(*com.prospringhibernate.gallery.service.*.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="allServices"/>
</aop:config>

Spring AOP is pretty flexible, and even lets you use annotations to define the pointcut. If you want to

apply txAdvice to any class that is annotated with @Transactional, you can change the allServices
pointcut to this:

<aop:pointcut id="allServices"
 expression="@target(org.springframework.transaction.annotation.Transactional)"/>

You can even combine the two pointcut approaches, like so:

CHAPTER 7 ■ TRANSACTION MANAGEMENT

120

<aop:pointcut
 id="allServices"
 expression="execution(*com.prospringhibernate.gallery.service.*.*(..)) &&
 @target(org.springframework.transaction.annotation.Transactional)"/>

Let’s take a look at one more Spring AOP trick: using the bean name to define a pointcut. Here’s how

to apply a transaction to a bean named personService:

<aop:pointcut id="allServices" expression ="bean(personService)"/>

You can also use the asterisk (*) wildcard character to match against all beans that end with Service

or Dao, as follows:

<aop:pointcut id="allServices" expression ="bean(*Service) || bean(*Dao)"/>

If applying complex AOP pointcuts to ACID transactions is still a bit too mind-altering for you, you’ll

find plenty of documentation out there.
1
 However, the information you’ve gleaned here should give you

a running start in understanding how to get your ACID transactions in order.

Programmatic Transaction Management

We can’t think of many real-world use cases for working with programmatic transactions rather than
leveraging Spring’s simpler declarative transaction support. However, understanding programmatic
transactions can prove helpful in comprehending the way in which Spring transactions work under the
hood.

To demonstrate how programmatic transactions work, we will rework the ArtEntityService
example to use programmatic transactions, as follows;

public class ArtEntityServiceImpl implements ArtEntityService {

 private TransactionTemplate transactionTemplate;

 public ArtEntityServiceImpl(PlatformTransactionManager transactionManager) {
 this.transactionTemplate = new TransactionTemplate(transactionManager);
 }

 public Object saveArtEntity(ArtEntity artEntity) {
 return transactionTemplate.execute(
 new TransactionCallback() {
 public Object doInTransactionWithoutResult(TransactionStatus status) {
 try {
 this.getArtEntityDao().saveArtEntity(artEntity);

1
 If you would like to learn more about the huge and important field of transaction processing, consider reading Transaction

Processing: Concepts and Techniques by Jim Gray and Andreas Reuter (Morgan Kaufmann, 1992); Principles of

Transaction Processing, Second Edition, by Philip A. Bernstein and Eric Newcomer (Morgan Kaufmann, 2009); and Pro

JPA 2: Mastering the Java Persistence API by Mike Keith and Merrick Schincariol (Apress, 2009).

CHAPTER 7 ■ TRANSACTION MANAGEMENT

121

 } catch (ImageErrorException e) {
 status.setRollbackOnly();
 }
 return;
 }
 }
);
 }

}

In this snippet, we rely on constructor injection to provide a reference to our JpaTransactionManager

(which is an implementation of the PlatformTransactionManager interface). Using transactionManager,
we create an instance of TransactionTemplate, which we use to wrap our persistence behavior within the
scope of a transaction.

The usage of the TransactionTemplate should look very familiar to you. This is a common Spring
idiom, and works in a similar fashion to the HibernateTemplate we use within our DAO classes. The key
difference here is that we are using the TransactionTemplate to handle the boilerplate process of
transactions, rather than database connection setup and closing.

To wrap our persistence code within a transaction, we call the execute method on our
transactionTemplate property, passing in an anonymous implementation of TransactionCallback as a
parameter. In the example, our service method does not return a value, so we implement the method
doInTransactionWithoutResult. However, if we needed to return a value from our transaction, we would
instead use doInTransaction.

Within the scope of the TransactionCallback, we are calling the same persistence code that we used
in our annotation-based example. We delegate to our artEntityDao to do the heavy lifting. Notice,
however, that we catch the ImageErrorException, and should the exception get thrown, we use the
TransactionStatus parameter to rollback the transaction.

Clearly, this approach is not as clear or as elegant as using declarative transactions in Spring.
Nevertheless, it is helpful to see how the various components fit together without relying on AOP to
inject this behavior implicitly.

Transactional Examples
Now that we’ve covered the main transactional concepts, let’s go through a couple of real-world
scenarios. We’ll look at a batch application and transactions involving two datasources.

Creating a Batch Application

Batch applications can be a bit of a drag, especially with ORM frameworks. Both the database and the
ORM framework need to reserve valuable resources for each operation performed in a transaction. The
database needs to keep locks on the tables that you’ve changed. The ORM, for a variety of reasons, needs
to cache the objects that you’ve persisted and read from the database. The more operations a
transaction executes, the more resources the ORM and database need to dedicate to it.

Let’s start out with the following example, which updates a whole bunch of records:

CHAPTER 7 ■ TRANSACTION MANAGEMENT

122

@Transactional(readOnly = false, propagation = Propagation.SUPPORTS)
public void batchProcessAll() {
 int count = dao.getCount();
 // do your ACID business in a big for loop
}

Here, we’re attempting to update all of the data in a single transaction. Depending on the amount of

data and system resources, this may not be possible, or it may lead to degraded performance for our
application. Instead, we may be able to find a way to define smaller units that can be committed, which
will free up some of the resources utilized by the database and ORM framework. However, the process of
committing the transaction consumes resources as well. If we commit too often, we’ll probably decrease
performance. There’s a balance between committing too often and too little—for example, committing
after a certain number of items have been processed.

We can create a method that processes x number of units and commits after it completes. It’s
actually quite simple to set this up. We’ll choose 100 as an arbitrary number of units of work.

// no transaction on this method anymore
public void batchProcessAll() {
 int count = dao.getCount();
 for(int i=0; i<count; i+= 100) {
 doMyUnit(i, i+100);
 }
}

@Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
public void doMyUnit(int start, int finish) {
 // do your ACID business from the unit's
 // start to finish
 dao.flush();
}

Note the use of Propagation.REQUIRES_NEW. It tells Spring that a new transaction begins when the

method gets invoked and commits when the method completes. It’s just that simple to create and
commit a transaction. There are many variables, ranging from server capacity to application load, to be
able to prescribe an ideal batch size, so determining the best size for your application will likely require
some trial and error.

Using Two Datasources

Assume you have two databases, and you want to apply the right transactions to the right beans. You
need to create two different transactionManagers that must be applied to the appropriate subsets of
Spring beans. You can do that with some fancy AOP work.

Assume that you have already configured transactionManager1 and transactionManager2 beans.
You’ll need to start with the following XML:

<tx:advice id="txAdvice1" transaction-manager="transaction-manager1" >
 <tx:attributes>
 <tx:method name="save*" propagation="REQUIRED"/>
 <tx:method name="update*" propagation="REQUIRED"/>
 <tx:method name="delete*" propagation="REQUIRED"/>

CHAPTER 7 ■ TRANSACTION MANAGEMENT

123

 <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
 </tx:attributes>
</tx:advice>

<tx:advice id="txAdvice2" transaction-manager="transaction-manager2" >
 <tx:attributes>
 <tx:method name="save*" propagation="REQUIRED"/>
 <tx:method name="update*" propagation="REQUIRED"/>
 <tx:method name="delete*" propagation="REQUIRED"/>
 <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
 </tx:attributes>
</tx:advice>

<aop:config>
 <aop:advisor advice-ref="txAdvice1" pointcut-ref="allDatabaseOneBeans"/>
 <aop:advisor advice-ref="txAdvice2" pointcut-ref="allDatabaseTwoBeans"/>
 <!-- Add pointcuts here -->
</aop:config>

The tx:advice element tells Spring what needs to be done, and the aop:config element tells Spring

where it needs to be done.
The question now is what beans should have which advice? Some beans need txAdvice1; others

need txAdvice2; and others may need both. Thankfully, Spring AOP provides several mapping options.
You might chose to organize your classes into packages that differentiate between the two datasources
to which they relate and apply an expression pointcut, or you can devise logical bean names that clearly
infer which advice to apply. You can also create our own annotations, @Transaction1 and @Transaction2
for example, and use the expression="@target(...)" approach.

Let’s go through a quick bean name example. Imagine we have two datasources: datasource1 and
datasource2. Let’s say that all of the datasource1 beans have ds1 as part of their bean name. For example,
if PersonDao is intended to interface with datasource1, it would be called ds1.personDao. If PersonService
depends on personDao as well as a DAO from datasource2, it should be called ds1.ds2.personService.
Our pointcuts will look like the following:

<aop:pointcut id="allDatabaseOneBeans" expression ="bean(*ds1*)"/>
<aop:pointcut id="allDatabaseTwoBeans" expression ="bean(*ds2*)"/>

We’ve defined two pointcut expressions that utilize a bean-naming convention to properly infer

which datasource and transactionManager to utilize for a given transaction.

Summary
In this chapter, you’ve learned both the fundamentals and low-level details for managing database
transactions with Spring. We’ve explored two different avenues for applying transactions declaratively
with Spring: via annotation and through XML-based Spring configuration. It’s also possible to utilize
Spring’s transaction management programmatically, through the use of the TransactionTemplate.
However this approach couples transactional behavior with the application’s business logic.

Understanding how transactions work, along with the available configuration options, is critical for
developing and debugging multiuser applications. We’ve discussed both simple and complex scenarios

CHAPTER 7 ■ TRANSACTION MANAGEMENT

124

in this chapter, and we hope they give you a taste of what’s possible when using Spring for transaction
management.

Most important, Spring provides a consistent approach for applying transactional semantics to an
application, no matter what the architecture or environment. This means that you can configure and
code your application the same way, regardless of whether you’re deploying to a JEE app server using a
JTA datasource or to a lightweight container with a local datasource. The difference is just a matter of
configuration.

C H A P T E R 8

■ ■ ■

125

Effective Testing

Automated testing, and unit testing in particular, is now universally regarded as a best practice for
software development. A number of testing frameworks are available, and there remains plenty of room
to debate the merits of unit testing versus integration testing, whether to mock objects with interesting
behavior with frameworks like jMock or EasyMock or take a more classic approach with basic stubs,
when to apply test-driven development (TDD), whether behavior-driven development (BDD) will
become commonplace, and so on.

Throughout this book, we’ve highlighted several best practices, including layering your application
and coding to interfaces. In this chapter, we’ll demonstrate how these principles lend themselves to
building solid test coverage with proper emphasis on exercising aspects of an application in isolation.

A code base that is broken down into layers so that each layer has a unique responsibility is much
more testable than code that attempts to combine multiple aspects of functionality into a single class.
Testable code is code that is decoupled and divided into logical layers, and well-layered code is testable
because it produces small, defined parts of an application’s overall vision. By coding to interfaces and
leveraging Spring’s dependency-injection capabilities, you gain the ability to mock or stub one layer
(such as the DAO layer) when you’re testing the layer above it (in this case, the service layer that uses
DAOs).

Dependency-injection frameworks like Spring are tremendously useful for testing because they
make it relatively easy to instantiate classes directly, providing collaborators through code. With Spring
in particular, you can automatically inject dependencies within your test classes simply by specifying the
appropriate annotations. This allows you to construct an application context for your tests that uses
configuration options that may differ quite a bit from your production setup. This flexibility enables you
to test your code against a large number of potential inputs.

When it comes to verifying assertions of a persistence tier, it is important to verify the behavior of
your DAO and service classes, the configuration details and behavior of your domain classes, and even
the collaboration and wiring of dependencies.

We will skim the surface of these strategies in this chapter, but it is important to keep in mind that
an effective testing strategy should incorporate both unit and integration tests. Luckily, Spring helps to
simplify the creation of both of these kinds of tests, as well as other forms of automated testing, such as
functional testing with tools like Selenium.

CHAPTER 8 ■ EFFECTIVE TESTING

126

Unit, Integration, and Functional Testing
Spring makes it easy to test specific parts of your code without relying on an application server or other
infrastructural details. You can switch between different database implementations and datasources, or
test your DAO classes in isolation by mocking these details.

Unit testing is an effective strategy for verifying that a particular class works properly in isolation.
Assessing classes in isolation is very valuable, and there is no commensurate replacement for a good unit
test. Writing an effective unit test involves the definition of assertions regarding the behavior of specific
areas of a class in isolation. Good test coverage is related to which lines of code have their expected
behavior verified.

Unlike unit testing, integration testing typically verifies multiple components simultaneously, often
by running the same implementation layers used within the production version of an application. For
instance, a common practice for integration testing is to instantiate the Spring ApplicationContext and
test a DAO implementation using a real database along with the Spring Hibernate abstractions. The
advantage of this approach is that you are touching multiple components, ensuring that all the pieces
are working together properly. The disadvantage is that it doesn’t provide much granularity to ascertain
whether a particular component works properly on its own. For a comprehensive testing strategy, we
recommend including both integration and unit tests.

A test suite is a set of individual test classes that are designed to run together and that typically make
assertions related to a particular layer or component. For example, you can create a DAO test suite
composed of all of your DAO tests. The following example shows all you need to do to create a suite of
tests:

public void static testSuite() {
 return new TestSuite(ArtworkDao.class,
 CategoryDao.class,
 ExhibitionDao.class,
 PersonDao.class);
}

Modern IDEs (Eclipse, IntelliJ IDEA, NetBeans, and many more) and other runtime environments

(such as Ant and Maven) know how to run both individual unit tests and test suites, which can include
both unit and integration tests. It’s common to use the notion of suites to strategically bundle tests
together. For example, you might want a test suite of fast unit tests that are run on every commit and a
different test suite composed of longer-running integration tests, which are done on some scheduled
interval.

Functional tests are another strategy for verifying your application is behaving properly. Functional
tests provide the most high-level assessment of a code base, and typically require that an application run
within a production environment container—for instance, using a servlet container.

Functional tests in a web application context usually involve a series of HTTP requests and then
assertions as to the responses that should be returned. For example, a REST web service might include a
battery of functional tests that verify the data that is returned when a chunk of XML is POSTed to a
particular URL. Another type of functional test might verify certain HTML elements within a returned
HTTP response, given a particular URL.

The downside of functional tests, especially as they relate to verifying HTML markup, is that they
tend to be very brittle—meaning they are likely to break as a result of minor changes to the application.
However, functional tests do have their place, and they are often an effective tool to verify basic
assumptions regarding an application’s behavior.

CHAPTER 8 ■ EFFECTIVE TESTING

127

Using JUnit for Effective Testing
The two biggest unit testing frameworks in the Java community at present are JUnit and TestNG. For our
examples, we will use JUnit. JUnit 4’s approach is highly annotation-based. The @Test annotation is all
you need to add to define a test:

package com.prospringhibernate.gallery.test;

import org.junit.Test;
import org.junit.Assert;

public class TrivialJUnitTest {

 @Test
 public void testSimpleStuff() {
 String name = "ProSpringHibernate";
 Assert.assertEquals("ProSpringHibernate", name);
 }

}

A couple of additional basic JUnit annotations can help define the life cycle of the test. You can run

some code immediately before and after each test method using the @Before and @After annotations.
Guess which one comes before a test? You can also run code before and after all tests in a particular class
using @BeforeClass and @AfterClass. (Note that the @BeforeClass method must be static.) There’s also
an @Ignore annotation, which allows you to use a @Test annotation and not run a particular method.

Of course, the main point of a test is to set up a scenario, and then verify a group of assertions. JUnit
provides several built-in assertions, such as verifying that two values should be equal, a returned value is
not null, and so on. You’ll notice many of these annotations in the following example.

package com.prospringhibernate.gallery.test;

import org.junit.Test;
import org.junit.Ignore;
import org.junit.Assert;
import org.junit.Before;
import org.junit.BeforeClass;

public class SimpleJUnitTest {

 public static String staticName = null;
 public String memberName = null;

 @BeforeClass
 public static void initializeClass() {
 staticName = "Rod Johnson";
 }

CHAPTER 8 ■ EFFECTIVE TESTING

128

@Before
 public void initializeTest() {
 memberName = "Gavin King";
 }

 @Test
 public void simpleEqualsAssertion() {
 Assert.assertEquals("Rod Johnson", staticName);
 }

 @Test
 public void simpleBooleanAssertion() {
 Assert.assertFalse(staticName.equals(memberName));
 }

 @Test
 @Ignore
 public void dontTestThis() {
 // notice that this would fail without @Ignore
 Assert.assertEquals("Rod", memberName);
 }

}

Now let’s move beyond the basics and apply some tests to our art gallery application.

Unit Testing with Mocks

The tests in the previous examples are fairly simple, in that they don’t have any dependencies on either
the Spring container or implementations of other classes or components. Because our tests are isolated
to a specific class, they qualify as unit tests. Most of the time, you’ll need to go beyond such basic testing
to simulate the effects of two or more classes interacting with each other. Integration tests are one way to
achieve this, but that generally entails a fair amount of code and tight coupling of tests. An alternate
strategy is to use stubs or mocks.

Stubbing and mocking both attempt to simulate the behavior of a particular component or layer
within an application, without relying on an actual, full-featured implementation. This approach helps
to focus your testing concerns on the code actually being tested, rather than the details of other layers.

Stubbing usually implies that a particular component is faked, with “canned responses” being
returned so that the layer being tested is fooled into believing that it is talking to the actual live
implementation. Mocking also attempts to simulate a particular layer, but it does more than just return
canned responses. A mocked object can also be used to validate expected behavior relating to the layer it
is intended to represent. For example, it is possible to specify that a certain method is called on the mock
as well as other details that help to provide valuable assertions about how the code you are testing
integrates with the mocked layer.

Spring provides several useful mock layers, which can be used as drop-in replacements for various
layers within your application. For example, JNDI, Servlet-API, and Portlet mock layers that simulate
behavior and associated expectations for their respective layers. For mocking other components, it is
possible to use frameworks like jMock, EasyMock or MockObjects. These frameworks provide an
extensible means for defining your own mocks dynamically.

CHAPTER 8 ■ EFFECTIVE TESTING

129

For our examples, we will use the very powerful jMock framework. JMock allows you to define the
behavior for a particular class, as well as expectations for how particular methods on the class will be
called and what they will return within the context of a unit test. jMock employs a simple DSL that allows
you to specify a fairly flexible range of behavior. We’ll point out a few of the basic jMock concepts when
we look at a unit test with mocks later in this chapter.

Let’s look at a unit test that attempts to verify the behavior of our ArtworkService implementation:

package com.prospringhibernate.gallery.test;

import com.prospringhibernate.gallery.domain.Person;
import com.prospringhibernate.gallery.exception.AuthenticationException;
import com.prospringhibernate.gallery.service.ArtworkFacade;

import org.junit.Test;
import org.junit.Before;
import org.junit.runner.RunWith;

import org.jmock.Mockery;
import org.jmock.Expectations;
import org.jmock.integration.junit4.JMock;
import org.jmock.integration.junit4.JUnit4Mockery;

@RunWith(JMock.class)
public class JMockJUnitTestExample {

 Mockery context = new JUnit4Mockery();

 private Person person;
 private ArtworkFacade artworkService;

 @Before
 public void initializeTest() {
 person = new Person();
 person.setUsername("username");
 person.setPassword("goodpassword");

 // here we use jMock to create a mock based on our Interface
 artworkService = context.mock(ArtworkFacade.class);
 }

 @Test
 public void testAuthenticationSuccess() throws AuthenticationException {

 // define expectations for authenticatePerson method
 context.checking(new Expectations() {{
 allowing(artworkService).authenticatePerson("username", "goodpassword");
 will(returnValue(person));
 }});
 artworkService.authenticatePerson("username", "goodpassword");

 }

CHAPTER 8 ■ EFFECTIVE TESTING

130

 @Test (expected=AuthenticationException.class)
 public void testAuthenticationFailure() throws AuthenticationException {
 // define expectations, assuming a bad
 // username/password
 context.checking(new Expectations() {{
 allowing(artworkService).authenticatePerson("username", "badpassword");
 will(throwException(new AuthenticationException()));
 }});
 artworkService.authenticatePerson("username", "badpassword");

}

}

Notice that no external dependencies are required for this unit test. This not only helps to isolate the

code we are testing, but also significantly speeds up the test. Recall that our ArtworkService façade
depends on several DAOs, including ArtEntityDao and PersonDao, but there’s nothing in this code that
instantiates those classes before the authenticatePerson method is executed.

We declare that we are using the jMock framework by supplying the @RunWith(JMock.class)
annotation. Next, we define the context instance variable, instantiating a JUnit4Mockery instance. We
can then use the context instance variable to define the behavior and expectations of our mocked
ArtworkFacade.

We create a mocked instance by calling the mock method on our context instance variable, passing in
the interface for the type we wish to mock:

 artworkService = context.mock(ArtworkFacade.class);

This line sets our artworkService instance to a mocked implementation of our ArtworkFacade

interface. This takes care of the setup.
Now we need to delineate the behavior and expectations for the mock we just defined. This is

accomplished in a few steps. Expectations are specified by calling context.checking() and passing in an
anonymous inner class of type Expectations. The Expectations class provides most of jMock’s DSL
features, allowing us to more easily express the behavior of each method we intend to mock.

Things get interesting within this Expectations block. We can specify the behavior for each
method—even defining different behavior based on different parameters or conditions. There are
several options that can be defined in mocking our ArtworkFacade’s behavior. However, we must first set
the expectations for how our method will be called. Do we expect it to be called exactly once, more than
once, within a range, or a specified number of times? Or do we not care whether our method will be
called at all? These details are referred to as the invocation count, and represent the first part of the
jMock DSL.

In our example, we use the allowing invocation rule, which tells jMock that we don’t care too much
about the invocation count. If we did care, we might have used oneOf, which implies that we expect the
method to be called only once. Or we could have used exactly(5).of() to require that our method be
called precisely five times. Similarly, we might have used atLeast(5).of() to insist that our method be
called at least five times. jMock will automatically fail the test if the expectations you specify are not met
within the unit test.

So far, our DSL structure looks like the following:

Invocation-Count(mockInstance).method(expectedParams);

CHAPTER 8 ■ EFFECTIVE TESTING

131

In this structure, we specify the expected parameters our mocked method should receive. You can
actually define more than one rule, each specifying a different set of parameters. In fact, you don’t even
need to specify concrete parameters . You can instead specify matchers, which can be used to define
more generalized conditions for a particular behavioral rule. The role of a matcher is to allow for the
expression of flexible conditions for the expectations of a mocked method. Matchers must be nested
within a with clause:

atLeast(5).of(artworkService).
 authenticatePerson(with(any(String.class)), with(any(String.class)));

This rule states that authenticatePerson must be called at least five times, with two parameters that

must be of type String. In this case, we are using the any matcher, which allows us to specify the type
that the parameter must match. There are several other matchers—such as aNull, aNonNull, not, and
same—and you can even define your own matchers.

So, we’ve defined the basic expectation of a mocked method. But how do we express a mock’s
behavior? As you’ve probably inferred from our example, jMock allows us to define the behavior for a
particular “rule” by specifying a will call after our expectation. We define two possible outcomes for our
authenticatePerson method. The first expectation defines a “good” username and password. We follow
this expectation with the following:

will(returnValue(successfulPerson));

This will ensure that a successfulPerson instance (defined earlier) will be returned whenever

pfisher and goodPassword are provided to the authenticatePerson method in our unit test.
Similarly, we define another expectation that assumes an invalid username and password. For this

variant, we specify this will call:

will(throwException(new AuthenticationException());

This will ensure that an AuthenticationException is always thrown in our unit test, whenever an

invalid username and password is provided to the authenticatePerson method (as long as the invalid
username and password match our very stringent conditions, which require that they be username and
badpassword).

A few other variations can be used with the will call, such as returnIterator and doAll, to provide
more flexibility in defining the behavior for our mocked method given a set of conditions. There are also
a few more advanced features of jMock that allow you to constrain a set of calls to a particular sequence,
or to work with a state machine and verify certain assumptions about the state as it changes from one
call to the next. See the JMock documentation to learn more.

■ Note We encourage you to explore mocking in more detail, as it is a powerful tool in the creation of an effective

unit-testing strategy. Often, developers focus too much on integration testing, simply because unit testing can

seem more complicated when “faking” the behavior of dependencies becomes necessary. Mocking is a pragmatic

solution to easily defining behavior and expectations for dependencies, encouraging the development of more unit

tests.

CHAPTER 8 ■ EFFECTIVE TESTING

132

We’ve presented a cursory overview for unit testing a piece of code in isolation. However, an
effective testing strategy also needs to take into consideration how a particular component works within
the context of a running application. This is where integration testing comes in, and Spring serves to
simplify the development of integration tests by helping to bootstrap your test suite, resolving
dependencies, and handling persistence details, such as transactions.

Spring Dependency Injection and Testing

The Spring Framework provides a convenient layer of abstraction that drastically simplifies switching
between these testing frameworks called the TestContext Framework. This framework, which was added
as a part of Spring 3, helps to abstract away any test framework-specific details. By using Spring’s
TestContext Framework, you no longer need to worry about the specifics of a particular testing
framework. This makes it especially easy to jump from one testing strategy to another. But more
important, the TestContext Framework serves to simplify testing details, making it easier to not only
write effective unit and integration tests, but also to integrate Spring dependencies and make useful
assertions related to your persistence tier.

Spring testing includes a combination of XML and annotations to affect the way dependencies are
injected within a test class. XML configuration works in a similar fashion to the examples you’ve seen
earlier in this book. When defining integration tests, you can use the same XML code (more or less) that
you use in your application. However, it is often desirable to override certain beans, such as your
datasource, while maintaining the same wiring and implementation details for your application DAOs
and service objects. Such a strategy enables you to verify the behavior of your entire persistence tier,
while leveraging a specialized test database.

Quite a few Spring-specific annotations are available to get the test configuration stored in your
application and the test XML into a running JUnit test. The @RunWith annotation allows you to specify the
test framework you would like to use. As mentioned earlier, one of the primary benefits of using Spring’s
TestContext Framework is that it allows you to define a test class without tying your code to a particular
test framework. You can specify that a particular class is in fact a test by using the @Test annotation.
Then, to indicate which test framework should be used to run the test, you can use @RunWith, which
allows you to specify which test framework to run. For the examples in this chapter, we’re going to stick
with JUnit 4. We place the following annotation at the top of our test class:

@RunWith(SpringJUnit4ClassRunner.class)

If we wanted to switch to TestNG, we could do that by simply changing the value of this annotation.

Adding the @RunWith annotation to your unit test class will bring Spring into the picture for running the
tests and wiring the necessary dependencies. However, there are several options for how the wiring
details can be specified. The strategy you choose depends on the unique needs of your application. For
instance, if you are building a simple application with only a single datasource, then you can go with an
autowiring-by-type strategy, which will implicitly inject the class that matches the type specified in the
setter method on which the annotation is added. However, if your application uses multiple
datasources, then an autowiring-by-type approach isn’t as trivial. For those scenarios, you should use
the @Resource or @Qualifier annotations, in order to disambiguate the dependency you would like
injected.

Though it is usually preferable to let Spring handle dependency injection via configuration or
annotation, it’s also possible to make your test class implement ApplicationContextAware or to extend
AbstractJUnit4SpringContextTests, which gives you direct access to the ApplicationContext, from
which you can do a lookup using the bean name:

context.getBean(“datasource”);

CHAPTER 8 ■ EFFECTIVE TESTING

133

So now you have a handle on some of the options for injecting the layers on which your test class

depends. The question that remains is how to inject. In our gallery application, we have defined Spring
beans in an XML file named spring-master.xml, which in turn imports our spring-persistence.xml
configuration. We can import this configuration by adding the following annotation:

@ContextConfiguration(locations = {"classpath:/META-INF/spring/spring-master.xml"})

The @ContextConfiguration annotation defines the locations of your configuration files. You can

determine, on a test-by-test basis, whether to use the Spring configuration file for your full-blown
application or to define a more specific unit-testing configuration that is tailored for the needs of a
particular test.

Spring configuration via XML is handy, but now you’re probably wondering how you can access
some beans that are defined in your configuration or those that were picked up through component
scanning. Do you remember the @Autowired annotation that Spring managed beans can use? You can
use it in your test code to tell the Spring JUnit Runner that you need some Spring beans.

Here’s what the PersonDAO test code looks like when we put all of this together:

package com.prospringhibernate.gallery.test;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import com.prospringhibernate.gallery.dao.PersonDao;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"classpath:spring-master.xml"})
public class PersonDaoTest {

 @Autowired
 PersonDao personDao;

 @Test
 public void testPerson() {
 // insert test logic here
 }

}

Let’s explore what’s happening here. @RunWith tells JUnit that the test needs some extra logic in

order to be set up properly. That extra logic comes in the form of an instance of a class that implements
JUnit’s Runner interface. In our case, we have a Spring Runner called SpringJUnit4ClassRunner that knows
how to set up our application context and inject our test with all of the plumbing that it needs using the
standard Spring dependency-injection annotations, such as @Autowired. SpringJUnit4ClassRunner also
looks for some other annotations, including @ContextConfiguration and @Transactional.

As you saw in the example, @ContextConfiguration tells SpringJUnit4ClassRunner which
configuration files you need to set up your testing environment. Behind the scenes,
SpringJUnit4ClassRunner sets up and manages a Spring application context for your unit tests based on

CHAPTER 8 ■ EFFECTIVE TESTING

134

the locations you specified in the @ContextConfiguration. The TestContext Framework is responsible for
actually performing the @Autowired injection. The TestContext Framework also keeps track of the results
of the status of the current test, such as which method and class were run and which exception was
thrown as part of the test. @RunWith and @ContextConfiguration are the essential core components of
Spring JUnit4 testing.

■ Note The TestContext Framework has some performance optimizations to make sure that the framework will

load that configuration only once for all of the tests if you run multiple test classes that use the same application

context configuration. There are quite a few additional advanced features relating to the TestContext Framework

that are worth exploring if you need more advanced testing.

Testing with a Database

Now that you know how to write a JUnit test class and configure it with Spring XML, you’re ready to do
some database testing! The simplest form of database testing can be to just reuse those fancy DAOs that
you’ve been working on. You can also apply the usual Spring @Transactional annotations, along with
another annotation: @TransactionConfiguration.

@TransactionConfiguration tells the transactional Spring testing environment information about
how to get the transactionManager and whether you would like to commit or roll back the transaction
after each test.

The following test takes all of those elements and puts them to work:

package com.prospringhibernate.gallery.test;

import java.util.List;

import junit.framework.Assert;

import org.junit.After;
import org.junit.Test;
import org.junit.Before;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
Import org.springframework.test.context.transaction.TransactionConfiguration;
import org.springframework.transaction.annotation.Transactional;

import com.prospringhibernate.gallery.dao.PersonDao;
import com.prospringhibernate.gallery.domain.Person;
import com.prospringhibernate.gallery.exception.AuthenticationException;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"classpath:/META-INF/spring/spring-master.xml"})
@TransactionConfiguration(transactionManager = "transactionManager", defaultRollback = true)

CHAPTER 8 ■ EFFECTIVE TESTING

135

@Transactional()
public class TestContextJUnitIntegrationTest {

 Person person;
 PersonDao personDao;

 public PersonDao getPersonDao() {
 return personDao;
 }

 @Autowired
 public void setPersonDao(PersonDao personDao) {
 this.personDao = personDao;
 }

 @Before
 public void preMethodSetup() {
 person = new Person();
 person.setFirstName("First");
 person.setLastName("Last");
 person.setUsername("username");
 person.setPassword("goodpassword");
 person.setRoleLevel(Person.RoleLevel.ADMIN.getLevel());
 person.setVersion(1);
 personDao.save(person);
 }

 @After
 public void postMethodTearDown() {
 personDao.remove(Person.class, person.getId());
 person = null;
 }

 @Test
 public void testPersonPersisted() {
 final List<Person> people = personDao.getAll();
 Assert.assertEquals(1, people.size());
 }

 @Test
 public void testAuthenticationSuccess() throws AuthenticationException {
 Person p = personDao.authenticatePerson("username", "goodpassword");
 Assert.assertNotNull(p);
 }

 @Test (expected=AuthenticationException.class)
 public void testAuthenticationFailure() throws AuthenticationException {
 personDao.authenticatePerson("username", "badpassword");
 }

}

CHAPTER 8 ■ EFFECTIVE TESTING

136

This example is using our web application’s Spring configuration as defined in spring-master.xml,
which means that we’re using our H2 database configuration. With the @Before and @After annotations,
we’re ensuring that the state of the Person class is correct for each test method invocation. Finally, in
nice discrete units, we test the behavior of our PersonDao when making a successful call to getAll()
Person entities, a successful call to authenticate against the database, and lastly, a failed attempt to
authenticate against the user data that we have scaffolded in with the preMethodSetup() method.

Notice also that we have set defaultRollback = true, which will ensure that this method is
automatically rolled back after completion. Automatically rolling back your transactions within an
integration test is an effective strategy for ensuring that each test method returns the database to its
original, pristine state. When defining an integration test that talks to a database, it is important to
reduce the potential for database “side-effects” and to ensure that each test stands alone, without being
affected by or relying upon previously run methods.

Summary
This chapter introduced some testing strategies for Spring applications. Of course, you can do a lot more
to test with both JUnit and Spring, not to mention the really powerful testing constructs that are made
possible by the mocking frameworks we mentioned. Also, topics such as performance testing and load
testing are extremely relevant to persistence.

For more advanced integration testing with databases, we recommend you check out the DbUnit
JUnit extension. DbUnit provides excellent facilities for ensuring that your database is in a known state
in between tests, as well as tooling to aid in assembling fixture data that can be used across an entire
suite of tests.

C H A P T E R 9

■ ■ ■

137

Best Practices and Advanced
Techniques

Throughout this book, you’ve learned a lot about the workings of the Spring and Hibernate frameworks.
In this chapter, you will learn the techniques necessary for building a performant, production-ready
application. Although Hibernate and Spring are relatively easy to bootstrap, their default settings are
appropriate only for simple applications. If you are building an application with significant load or
performance requirements, you will likely need to do some fine-tuning in order to attain peak
performance. In most scenarios, you can circumvent performance issues simply by leveraging the
appropriate optimization or architectural strategies.

Lazy Loading Issues
Lazy loading has long been regarded as one of Hibernate’s most valuable features, especially with
respect to improving performance. By declaring a domain object’s association or property to be lazy, an
application can avoid undue overhead on the underlying database, which can often lead to faster
response times and smaller datasets—both favorable qualities.

Without lazy loading, a simple query may be executed over and over again unnecessarily, or worse
yet, a query for a single domain entity might force the loading of an entire object graph, as Hibernate
attempts to traverse from one association to the next.

The problem is that lazy loading is a double-edged sword. It is vital for maintaining decent loading
performance, but is also a significant risk for major performance problems. While lazy loading reduces
the amount of data (as well as the potential for table joins) loaded from the database, this laziness can be
very problematic for data that might need to be loaded from the database anyway.

This is not to imply that lazy loading is a bad feature or that it should be disabled. It is a
misunderstood problem that is very dependent on the context.

Let’s begin by looking at one of the most common and significant issues related to lazy loading that
affects persistence-based applications.

The N+1 Selects Problem

Let’s examine the way in which lazy loading works in a typical use case. In our sample application, our
Category domain object contains a one-to-many association to the ArtEntity domain object. In other
words, a Category contains a collection of ArtEntity instances:

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

138

@Entity
public class Category implements DomainObject {

 private Long id;
 private String categoryName;
 private String categoryDescription;
 private Set<ArtEntity> artEntities = new HashSet<ArtEntity>();

 . . .

 @ManyToMany
 public Set<ArtEntity> getArtEntities() {
 return artEntities;
 }

 public void setArtEntities(Set<ArtEntity> artEntities){
 this.artEntities = artEntities;
 }

 . . .

}

By default, the java.util.Set of ArtEntity entities is declared lazy. Let’s consider what happens

under the hood when we attempt to load all the artEntities for a series of categories.

entityManager.createQuery("SELECT c FROM Category c").getResultList();

Assuming there is at least one row in the Category table, the preceding statements will return a list of

Category instances. However, because our artEntities association (within the Category class) is
declared to be lazy, Hibernate will not perform a SQL join in an attempt to load data from both the
Category table and the related rows from the ArtEntity table. Instead of loading these ArtEntity rows
from the database, Hibernate populates the artEntities property for each of the returned Category
instances with a proxy object.

For collections, Hibernate provides persistent collection implementations that serve as proxies for
the collection associations in our domain model. For instance, our artEntities property is declared as a
java.util.Set. Hibernate will set this property to an instance of
org.hibernate.collection.PersistentSet, a special class designed to intercept attempts to access the
referenced collection so that a lazy collection can be initialized.

Hibernate will generate proxies for each domain object within an application, and will use these
proxies for single-ended associations that are marked as lazy. For example, we can define our many-to-
one association of commentedArt in the Comment domain object to be lazy using the following annotation:

@ManyToOne(fetch=FetchType.LAZY)
public ArtEntity getCommentedArt() {
 return commentedArt;
}

This snippet will prevent a Comment’s reference to the associated ArtEntity from being loaded from

the database until the property is accessed.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

139

The goal of these proxies is to serve as placeholders of sorts. For data that is not loaded from the
database, Hibernate can’t simply ignore these properties. Instead, a proxy can be used to defer loading
behavior. If no attempt is made to access an uninitialized, lazy property, then nothing will happen.
However, if an attempt is made to access one of these proxies, then the proxy will intercept this request
and trigger a callback into the database. The end result is that the lazy property is initialized with the
relevant data from the database.

All of this sounds pretty ideal. But let’s consider what happens if we have multiple ArtEntity
instances associated with each Category. When a given Category instance is first loaded, the artEntities
association is set to an instance of org.hibernate.collection.PersistentSet. Now imagine that we want
to iterate through all the ArtEntities for all of the Category instances returned in our original query.

for (Category category: categories) {
 for (ArtEntity artEntity: category.getArtEntities()) {
 // implicitly initialize another collection here
 System.out.println("art:" + artEntity.getTitle());
 }
}

Although this code may seem innocuous, there is actually a serious performance issue hiding

between the lines. Since the artEntities association is not yet initialized when we first retrieve each
Category instance, we are actually initializing each artEntities association within each successive
iteration of the loop. Because Hibernate has no way to infer what we are trying to do, it simply initializes
each instance as we reference it. The result is a separate SQL query for each item within the collection.
So for the preceding loop, we are actually inadvertently making (number of categories) + 1 queries!
Suddenly, lazy loading doesn’t seem like such an optimization technique anymore.

This disturbingly common scenario is known as the N+1 selects issue, in that a select query is issued
N times (one for each item returned by the original query), plus the original query to load the entity
containing the collection in the first place.

A similar predicament occurs for other associations, such as in the many-to-one reference to the
ArtEntity domain object from the Comment class. In this scenario, if a list of Comment instances were to be
loaded, an additional select query would be initiated each time an attempt was made to access the
commentedArt property. Suppose a JSP page iterated through a long list of comments in an attempt to
display related information about the comment and its associated art. This has the potential of requiring
hundreds of additional round-trips to the database!

Understanding the potential for this problem is the first step, but how do we go about preventing
the N+1 selects issue? Unfortunately, there is no single solution. (If there were, it would probably be an
implicit part of Hibernate or JPA.) Each situation may require a slightly different approach. Fortunately,
several strategies can help mitigate this potentially damaging scenario. The goal, of course, is to limit the
number of SQL queries and attempt to load all the necessary data as efficiently as possible.

Less Lazy Mappings

One solution to the N+1 selects problem is to update your mapping configuration for the affected
domain classes. The default behavior for collections is to be lazy and to initialize the collection via a SQL
SELECT when the association is accessed. This default strategy is known as select fetching, as a second
SELECT is issued in order to initialize the lazy association or property. The simplest solution is to override
this default behavior, preventing the property from being lazy in the first place.

Let’s refactor the mapping configuration affecting the artEntities association on our Category
instance, as follows:

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

140

@ManyToMany
@Fetch(FetchMode.JOIN)
public Set<ArtEntity> getArtEntities() {
 return artEntities;
}

By adding the @Fetch annotation, specifying a FetchMode of JOIN, we request that Hibernate

automatically initialize our artEntities collection by using a left outer join when a particular Category
instance is loaded. Hibernate is affected by this @Fetch directive when navigating to a particular Category
instance, loading an instance via get() or load(), or when loading Category instances via the Criteria
API. Alternatively, you can opt to specify FetchMode.SUBSELECT, which will instead load the artEntities
collection by including a SQL subselect as part of the initial query. In either case, the end result is that
the artEntities association is no longer lazy, and an additional query is not required to initialize each
artEntities association.

So problem solved, right? Not exactly. Remember how we mentioned that lazy loading is actually a
pretty important feature, and that without it, you risk inadvertently loading too much of your entire
database into memory? In other words, you may not always need the artEntities association, and in
those circumstances, you are better off keeping the property as lazy.

So, sometimes it’s good to be lazy, like on weekends and on vacation when you’re catching up on
rest. But other times being lazy can get you into trouble (especially at work). Hibernate is the same way.
The best way of solving the N+1 selects problem is to keep your associations declared lazy by default, but
override this behavior when you know the association is needed. For example, using JPQL, we could
write the following query:

List categories = entityManager.createQuery("SELECT c FROM category c

LEFT JOIN FETCH c.artEntities

WHERE c.id = :id").getResultList();

As part of this JPQL query. we issue a LEFT JOIN FETCH . This will force Hibernate to initialize our

artEntities association, overriding the default lazy behavior in the mapping file.

Batching for Performance

Another strategy for reducing the number of SQL queries required to load data is to use Hibernate’s
batching feature, which loads multiple entities or collections. Batching offers a slightly simpler solution
than controlling lazy loading. You attempt to grab data in batches to prevent this data from being loaded
in many more “single queries” later on. The advantage of batching is that it can help improve
performance without requiring significant changes to queries or code.

The @BatchSize annotation can be added to a domain entity or to a particular association. Let’s
update our artEntities association in our Category class again to see how we might be able to use
Hibernate’s batching feature:

@ManyToMany
@BatchSize(size = 10)
public Set<ArtEntity> getArtEntities() {
 return artEntities;
}

7

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

141

Now, even though our artEntities association is still lazy by default, Hibernate will get ahead of us
and attempt to initialize more than just a single artEntities collection at a time. It accomplishes this by
using a SQL in condition, passing in ten identifiers of a Category instance when loading from the
ArtEntity table.

In other words, batching works similarly to the default lazy configuration. First a Category is loaded,
then its artEntities association is loaded in a separate query (when the artEntities property is
accessed, of course). However, with batching enabled, Hibernate will attempt to load more than one
artEntities association, querying for the number of associations specified in the size attribute of the
@BatchSize annotation.

Keep in mind that @BatchSize doesn’t attempt to load multiple items within a collection. A
collection is normally initialized in entirety via a separate select. Rather, @BatchSize will load multiple
associations, to preclude initialization of other associations in our other Category instances (using our
example).

Lazy Initialization Exceptions

Another common issue is the ominous LazyInitializationException. You can probably infer what this
exception means by its name: Hibernate is unable to initialize a lazy property. What circumstances
account for such a problem?

As we discussed in Chapter 4, a domain object’s persistent state is managed through Hibernate’s
implementation of the EntityManager interface. If a new domain object is instantiated, it is considered
transient until it becomes associated with the EntityManager. Similarly, an already persistent domain
object can continue to be persistent if the EntityManager is closed, which transitions the entity to a
Detached state. However changes to this domain object will not be “recorded” until the domain object
transitions back to a Managed state by being reassociated with another EntityManager.

A domain object that has become disassociated from an EntityManager is called a detached object.
Hibernate is able to detect changes made to a detached domain object and propagate these changes to
the database once the instance is reassociated. However, there are some things that are difficult to work
around when an EntityManager is closed, and lazy properties are one of those things.

As you learned in the previous section, Hibernate implements laziness by referencing uninitialized
properties with proxies—either special persistent collection implementations or proxy classes,
depending on the type of association or property. These proxies are able to defer the loading of an
association until an attempt is made to access them. Once that happens, the proxies will access the
EntityManager and attempt to load the necessary data from the database. Obviously, this can’t happen if
the EntityManager is closed, so a LazyInitializationException is thrown.

The most common cause of a LazyInitializationException stems from failing to initialize a
collection or lazy property in a DAO or controller method, instead leaving a JSP or other view-related
technology to discover an uninitialized property. The problem is that Hibernate will close the
EntityManager by default whenever a persistent operation completes. In the case of a DAO or service
method, the EntityManager is normally closed when these relevant methods return.

The best way to prevent the LazyInitializationException is to ensure that all lazy associations and
properties that are required by the view are successfully initialized before the domain objects are passed
to the view layer. Fortunately, Spring provides some solutions that help to prevent the occurrence of
LazyInitializationExceptions, even when lazy properties are not properly initialized before passing
domain objects to the view. There are a couple of variations on the solution, but they both employ the
same general strategy: defer the closing of the EntityManager until after the view has finished rendering.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

142

Now Open Late: Keeping EntityManager Open Past Its Bedtime

Deferring the EntityManager from being closed is now typically known as the Open EntityManager In
View pattern. The simplest approach for applying this strategy is to use a servlet filter, as described in the
next section. However, if you are using Spring MVC, an alternative is to use an interceptor.

The interceptor technique essentially opens an EntityManager at the beginning of a servlet request
and binds the EntityManager to the current thread, allowing it to be accessed by Spring’s Hibernate
support classes. Then, at the end of the request, the EntityManager is closed and unbound from the
thread. This is a bit of an oversimplification, and the implementation details differ slightly, depending
on whether you are using the servlet filter or the controller interceptor. However, the basic concepts are
the same: open an EntityManager and associate it with the active thread to be used by persistence-
related methods, and then ensure the EntityManager is kept open until the request completes. Because
the request doesn’t complete until after the view rendering has finished processing, the potential for the
LazyInitializationException is significantly reduced.

Using the Open EntityManager In View pattern is relatively simple. If you are already using Spring
MVC, you can define the OpenEntityManagerInViewInterceptor class as a new bean, adding it to your
Spring MVC configuration, like so:

<bean name="openEntityManagerInViewInterceptor"
 class="org.springframework.orm.jpa.support.OpenEntityManagerInViewInterceptor"
/>

With your OpenEntityManagerInViewInterceptor defined, you then need to add this interceptor to

your list of MVC interceptors. The interceptors defined in this list will be invoked (in order) as part of the
request-processing flow of each MVC controller. Spring MVC controllers provide hooks into the life cycle
of an MVC controller, such as preHandle, postHandle, and afterCompletion. Spring 3 provides an easy
way to globally define interceptors. Let’s take a look at an MVC configuration file.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

 <context:component-scan base-package="com.prospringhibernate.gallery"
 use-defaultfilters="false">
 <context:include-filter type="annotation"/>
 expression="org.springframework.stereotype.Controller"
 </context:component-scan>

 <!—- integrates MVC Controllers via @Controller -->
 <mvc:annotation-driven/>

 <!—specifies those interceptors that will be applied to all handlerMappings -->

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/p
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/contextwww.s

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

143

 <mvc:interceptors>
 <bean
 class="org.springframework.orm.jpa.support.OpenEntityManagerInViewInterceptor"/>
 </mvc:interceptors>

 . . .

</beans>

In this example, we use the mvc:annotation-driven and component-scan features to allow us to

enable those Spring life-cycle features and to define our controllers via annotation (meaning we can add
@Controller to the class and Spring will integrate these classes as controllers, provided they are in the
appropriate package path). Also notice that we added our OpenEntityManagerInViewInterceptor inline
within the mvc:interceptors block. Any interceptor beans defined here will have the appropriate
methods invoked within the various stages of the request life cycle.

Applying the Open EntityManager Filter

If you aren’t using Spring MVC, or just don’t want to use an interceptor approach, you can instead add
the OpenEntityManagerInViewFilter to your web.xml file. The approach is roughly the same as the
interceptor technique, except the hooks for opening and closing the EntityManager occur at the servlet-
request level rather than at the controller level.

Here is how you might add the OpenEntityManagerInViewFilter to your application’s web.xml file:

<!-- binds a JPA EntityManager to the thread for the entire processing of the request -->
<filter>
 <filter-name>OpenEntityManagerInViewFilter</filter-name>
 <filter-class>org.springframework.orm.jpa.support.OpenEntityManagerInViewFilter</filter-
class>
</filter>

<!—Map the EntityManager Filter to all requests -->
<filter-mapping>
 <filter-name>OpenEntityManagerInViewFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

This snippet is an excerpt from a web.xml file that references the filter definition and mapping

necessary for integrating the OpenEntityManagerInViewFilter. It is important that you set the
appropriate filter-mapping glob pattern, as this will define to which URLs processing should be applied.

Caching
So far, we have discussed a few strategies for reducing or optimizing trips to the database. Even better
than improving the ways in which data is queried is to preclude the need for accessing the database at
all. Obviously, some database access is always needed, but caching can go quite a long way toward
minimizing database load and improving application performance.

One of Hibernate’s greatest advantages is that it gives developers many features “for free.” And one
of these free features is implicit caching. If you were to decide to implement a persistence layer using

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

144

plain JDBC, you would need to explicitly integrate caching within your DAO methods or at some lower
level of abstraction. While caching may seem trivial to implement on the surface, you will begin to
perceive the complexity when you consider the rules for invalidation (the factors that cause a particular
item in the cache to be expired), preventing conflicts, and handling a cached item’s time to live (TTL).

So if Hibernate provides all these caching features for free, what is the benefit of understanding the
mechanics of caching? Although Hibernate includes some foundational caching features, providing
basic optimizations to limit any unnecessary trips to the database, tuning its default caching behavior
can significantly improve your application’s performance.

To be able to leverage caching for improved application performance, you need to understand the
different layers of caching within Hibernate and what can actually be cached. For all domain objects,
Hibernate provides two distinct caching levels:

• The first-level, or L1, cache is provided by the EntityManager, and therefore relates
only to the limited scope of a particular user or request. The first-level cache is
designed primarily as an optimization, preventing the requerying of domain
objects that have already been loaded.

• The second-level, or L2, cache is scoped to the EntityManagerFactory, and
therefore is longer-lived and can provide caching capabilities across multiple
users and requests. The second-level cache provides the most utility and flexibility
for optimization through caching.

So, the approach is to activate the second-level cache and integrate a cache provider to start
caching. Now we need to consider what can be cached.

Hibernate caches domain objects in slightly different ways. Each top-level domain object is cached
within a different region. A region is essentially a different section or namespace, intended to partition
each entity and prevent the potential for clashes. Each domain object is persisted to a cache using its
identifier as the key. So, given a cache region and an identifier, you are able to access the data for a
particular domain object. Each domain object is cached by storing the values of its respective properties.

However, a domain object’s references and collections are persisted separately from a domain
object. In other words, the cached representation of a domain object will reference only the identifiers of
its references. For example, many-to-one associations will be persisted as a single ID, while a collection
will be persisted as a list of identifiers. Domain object collections are actually persisted within a separate
cache region, intended specifically for that particular collection. The key in this case is still the parent
domain object’s identifier, but the region is specific to the domain object and the collection name. The
value, however, is a list of identifiers, where each identifier in the list corresponds to the ID of each entity
referenced in the original collection.

Hibernate uses this strategy because it is more efficient to just store the IDs of each entity within a
collection, rather than the data of every entity in its entirety. The intention is that having the IDs should
be enough, since the full data should be cached elsewhere, within the referenced domain object’s own
cache region. Furthermore, caching references as identifiers decouples the domain objects to which they
relate, ensuring that changes to the referenced domain objects are cached only in a single location. This
is obviously far simpler than managing a complex dependency tree—especially when you begin to
consider the complexity of invalidating a particular item when it expires or when an update is made to
the database.

Integrating a Caching Implementation

Hibernate provides a generic abstraction layer for caching functionality, allowing numerous caching
implementations to be easily plugged in to the Hibernate infrastructure. There are a variety of excellent

s

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

145

caching solutions, including Ehcache, SwarmCache, JBoss Infinispan, and many more. Each caching
implementation differs slightly in the feature set it provides. For instance, some implementations offer
clustering capability, allowing multiple nodes within a cluster to share the same caching data (which can
reduce the potential for cache conflicts and stale data). Some caching solutions provide specialized
features, such as transactional behavior.

■ Note The choice of which cache provider to use depends on your requirements. Generally, we recommend

Ehcache, a flexible open source caching implementation that provides clustering capability. If your application has

requirements for a transactional cache or other specific needs, you should take a look at some of the other cache

provider choices.

Let’s revisit our persistence.xml configuration and modify it to incorporate Ehcache.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="galleryPersistenceUnit" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <!--
 value='create' to build a new database on each run;
 value='update' to modify an existing database;
 value='create-drop' to create and drop tables on each run;
 value='validate' makes no changes to the database
 -->
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.cache.use_second_level_cache" value="true"/>
 <property name="hibernate.cache.provider_class"
 value="net.sf.ehcache.hibernate.SingletonEhCacheProvider"/>
 <property name="hibernate.ejb.naming_strategy"
 value="org.hibernate.cfg.ImprovedNamingStrategy"/>
 </properties>
 </persistence-unit>

</persistence>

Here, we enable second-level caching by setting the hibernate.cache.use_second_level_cache

property on the persistence unit to true. Then we specify the cache implementation, ehcache, via the
hibernate.cache.provider_class property.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_2_0.xsd

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

146

Once you’ve activated the second-level cache and selected a cache provider, you have officially
started caching. Next, you need to configure the caching rules.

Determining Caching Rules

To configure the caching rules for your domain model, the simplest approach is to add the @Cache
annotation to your domain objects. As an example, let’s examine the caching configuration of the
Category domain object in our art gallery application:

@Entity
@Cache(region="category", usage = CacheConcurrencyStrategy.READ_WRITE)
public class Category implements DomainObject {

 private Long id;
 private String categoryName;
 private String categoryDescription;
 private Set<ArtEntity> artEntities = new HashSet<ArtEntity>();

 @Id
 @GeneratedValue
 public final Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 . . .

 @ManyToMany
 @Cache(usage=CacheConcurrencyStrategy.READ_WRITE)
 public Set<ArtEntity> getArtEntities() {
 return artEntities;
 }

 public void setArtEntities(Set<ArtEntity> artEntities){
 this.artEntities = artEntities;
 }

 . . .

}

Here, we have added a @Cache annotation in two places: at the top of the entity, which serves as the

configuration for caching the domain object itself, and above our many-to-many artEntities
association. Therefore, we have defined the caching rules for both the Category domain object itself and
the Category domain object’s artEntities collection.

In the first instance of the @Cache annotation, we also set the region attribute. This allows us to set
the region within which we will be persisting our cached data. We omitted this attribute for the
artEntities collection, which will then allow Hibernate to use the default region setting. The region
default is the class name (including the package). For collections, the region default is the full class
name, followed by .<collectionname>. So in the case of the artEntities collection, the default region

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

147

name will be com.prospringhibernate.gallery.domain.Category.artEntities. Of course, we could
choose to override this instead by specifying a region for the collection.

The @Cache annotation’s usage attribute defines the cache strategy to use for the configured entity or
collection. When using Ehcache, there are three options:

• The read-only setting should be used only when the data to be cached will never
be updated. A read-only cache strategy will provide the best performance, since
cached data will never need to expire or be invalidated.

• The nonstrict-read-write setting should be used when concurrent access of data
is unlikely, as the caching implementation will not attempt to lock the cache to
prevent contention or version mismatch.

• The read-write setting is suitable when concurrent access and updating of data is
likely, as this approach provides the semantics of a read-committed isolation
level.

Configuring Cache Regions

Next, you need to set up the configuration for the regions into which your data will be persisted. Ehcache
employs an XML configuration file that is loaded at application startup. Typically, the file is called
ehcache.xml and placed at the root of the classpath. However, you can override this default location by
setting the following properties in your persistence.xml file:

<prop key="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory
</prop>
<prop key="net.sf.ehcache.configurationResourceName">
 /path/to/ehcache.xml
</prop>

The default ehcache.xml file that ships with Ehcache includes a default cache configuration that

contains the settings that will be used for any region that is not explicitly defined. However, it is usually a
good idea to configure each cache region you plan to include in your application. Here is an example of
the definition of our cache regions for our Category domain object and the Category.artEntities
collection:

<cache name="Category"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true"
/>
<cache name="com.prospringhibernate.gallery.domain.Category.artEntities"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="false"
/>

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

148

We have defined two cache regions, as specified by the name attribute. Typically, the name attribute

for a domain object includes the fully qualified class name (including package). However, in our earlier
caching configuration of the Category domain object (the listing in the previous section), we explicitly
changed the default region attribute, using the shorter region name Category instead. We left the default
region value for the artEntities collection.

These cache region settings work as follows:

• maxElementsInMemory specifies the maximum number of cached entities to store in
this region. We used a value of 10000 for both cache regions, but it is important to
consider this number very carefully. Using too high of a value can cause
OutOfMemoryException issues, as well as degrade performance. Because object
sizes and access patterns can vary so much from application to application, it is a
good idea to experiment with these settings and profile your application to
determine optimal values.

• eternal specifies whether a cache region should “live forever.” This value can
come in handy (along with overFlowToDisk) when you want to keep your cache
prepopulated in between restarts. This is also valuable in situations when it might
take a lot of time to populate your cache. A value of true for eternal will ensure
that your cached data will persist, even when the application needs to be
restarted.

• timeToIdleSeconds specifies how long a cached item will stay in the cache when
there are no attempts to access it. For instance, if a particular Category instance is
stored in the cache but there are no attempts to load this value from the cache for
a while, then the benefit of keeping this item cached is questionable. It is a good
idea to keep this setting to around half of the timeToLiveSeconds attribute value.

• timeToLiveSeconds corresponds to an entity’s TTL—the amount of time before the
cached entity expires and the data is purged from the cache, regardless of last
access.

• overFlowToDisk specifies that if the maxElementsInMemory is exceeded, Ehcache
should begin storing overflow on disk. While this setting sounds useful, keep in
mind that persisting data on disk incurs significant performance penalties when
compared to memory storage. You are using caching because you have a database
for persisting data permanently. Of course, data cached on disk will outperform a
database, but you should still consider this setting carefully.

It is very important to carefully consider your TTL values. Setting these values too high increases the

potential for stale data and version conflicts. This risk is significantly increased in situations where an
application is deployed in a clustered configuration (but the cache for each application server node is
not shared). In a typical cluster configuration, updates made to one node will invalidate that node’s
cache, but these changes won’t propagate to the caches of other nodes in the cluster. One solution is to
use a lower TTL value for the timeToLiveSeconds attribute, which reduces the likelihood of stale data in
the cache. A better solution is to use a clusterable caching solution, which allows all the nodes in the
cluster to use a shared cache, significantly reducing the potential for conflicts and stale data. We will
discuss clustered caching strategies later in this chapter.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

149

Caching Your Queries

Much like collections caching, query caching attempts to store only the identifiers of the entities
returned by a particular query’s result. By default, queries are all cached within a single region, but you
can override this setting by specifying a region name for a particular query, forcing the query to be
cached elsewhere. The key for a particular cached query is composed of the query along with the
identifiers or values of each of the query’s parameters. This approach ensures that the results of each
cached query are cached separately. If the same query is invoked with slightly different parameters, the
cache will not be used.

While caching of your domain objects and collections is more a part of the default configuration,
query caching requires a few additional steps. First, the second-level cache must be enabled, as
described in the previous section. Next, the following property must be set to true in your
persistence.xml file:

<property name="hibernate.cache.use_query_cache" value="true"/>

Hibernate leverages an additional cache region for powering its query cache implementation: the

UpdateTimestampsCache. This cache region should also be configured explicitly in the Ehcache
configuration file. Here is a sample configuration:

<cache name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="5000"
 eternal="true"
 overflowToDisk="true"/>

Here, we specified that this cache region should be eternal. This is the recommended setting for the

UpdateTimestampsCache, but at the very least, the TTL should be longer than the TTL of any of the query
cache regions.

If you decide to use the default cache region for all query caches, you could configure the following
in Ehcache for your query cache itself:

<cache name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToLiveSeconds="120"
 overflowToDisk="true"/>

This configuration defines the cache region settings for the queries to be cached.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

150

A QUERY CACHING CAVEAT

We strongly recommend doing some performance testing before attempting to use query caching, as it can
actually degrade performance rather than improve it.

The reason query caching can sometimes cause worse performance than not using it at all is due to the
use of the UpdateTimestampsCache. This region keeps track of the most recent updates for all tables
within the application, storing timestamps for each table corresponding to the last time a particular table
was updated. When a query is invoked, even if the result data is still stored in the cache, if Hibernate
detects that a table associated with your query has changed since your query was cached, it will invalidate
the query data, and you must hit the database instead of the cache. Therefore, if your application incurs
frequent updates across any of your tables, the benefits of query caching become reduced. Furthermore,
because any update to any table also means changes to the UpdateTimestampsCache, this resource
becomes a potential for bottlenecks, due to lock contention. Suddenly, query caching doesn’t sound so
useful.

We don’t want to discourage you, however. It is important to understand the way in which the query
caching feature works, so that you can better evaluate your requirements and determine whether it is
appropriate for your application.

Caching in a Clustered Configuration

If you are building an application that is intended to handle a high volume of requests, you will likely
need to set up multiple application nodes in a clustered configuration. Although having multiple nodes
will provide more resources for your application, if each node maintains its own cache, you will begin to
strain the database. With each additional node added to the cluster, you will increase database load
commensurately, such that the number of nodes in your cluster will represent the factor of database
request volume:

(Num Nodes in Cluster) * (Requests) = Load on Database

Additionally, updates to the database by one node will not be propagated to the cache state of other

nodes in the cluster, resulting in stale reads. Obviously, the load on the database will increase in
proportion to the number of application server nodes in the cluster, but caching must also be taken into
consideration; the more effective your caching strategy, the lesser the load on the database. That said,
the database load will still be multiplied by the number of nodes, even with an aggressive caching
strategy. In effect, your caching efficacy is commensurately weakened as the number of nodes in your
cluster increases.

When building applications that have objects that receive high volumes of writes, the solution is to
remove the redundancy of maintaining a single cache per node, and instead move to a clustered caching
configuration. There are several caching implementations that provide clustering capability, including
Ehcache and SwarmCache. For our discussion, we’ll continue using Ehcache as our cache provider.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

151

Cluster Caching and Replication Mechanics

Ehcache provides three different mechanisms for synchronizing each node’s cache data. As data is
persisted to one node’s cache, the changes are broadcast to the other nodes in the cluster using a
particular replication strategy. Ehcache supports replication via JMS, RMI, JGroups, or Terracotta. For all
of these strategies, Ehcache does not attempt to use locking as a means to prevent data inconsistencies
between nodes in the cluster. This is likely done for performance considerations, and therefore your
application should be able to deal with the potential for stale data.

When used in the basic clustered configuration, Ehcache does not distribute the entirety of cached
data across each of the nodes in the cluster. Rather, each node contains a complete set of the cached
data. While this does increase memory overhead, it improves performance by reducing network
overhead. To reduce your application’s memory footprint, you should adjust the maximum number of
objects stored within each cache region. You should also consider the average size of each entity that
might be stored within a particular cache region, as this will impact the memory utilization. We have
seen memory issues creep up in cache configurations with a low number of cached items, due to the
large size of each item stored in the cache. These factors are rarely given ample consideration, but are
often the cause of significant bottlenecks.

Regardless of the replication mechanism, Ehcache provides two different strategies for actually
notifying different nodes in the cluster of changes:

• The default strategy is to send the key of the cached item that was updated, along
with the updated value. This strategy is called replicateUpdatesViaCopy, as the
updated value is sent to all the other nodes in the cluster. While this approach is
usually the fastest way to keep the different nodes in sync, it also carries the
overhead of sending the updated value over the network. In cases where the
updated value is quite large, this can have performance implications.

• An alternative is to just send a notification to the other nodes that they should
invalidate the data in their respective caches. Then once the particular cache key
has been invalidated, it will eventually be reloaded from the database on the next
attempt to access that particular entity (or collection) for each of the nodes in the
cluster. Obviously, this will incur additional load on the database—when a cache
miss occurs on each of the other nodes in the cluster, they will need to requery the
database to populate their respective caches. The advantage of this approach is
that only the cache key needs to be transmitted to the other nodes.

The default replication behavior is to notify other nodes of changes asynchronously, allowing cache

propagation to happen in the background and not affect the response time of the original operation (the
notifier). In high-concurrency scenarios in which data coherency is a top priority, Ehcache can perform
replication synchronously instead, preventing the cache operation from returning until the other nodes
in the cluster have been successfully notified. Since this will have significant performance implications,
it should be used only in specialized situations.

Configuring Replication

Ehcache clustering implementation does not require any changes to an application’s code or
architecture. You just need to modify the Ehcache configuration.

To get rolling with a clustered caching configuration for our example, we need to update our
ehcache.xml file. We will select the JGroups replication mechanism. The following snippet is suggested
by Ehcache’s documentation:

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

152

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
/>

These details specify the network and communication details for the JGroup implementation of

Ehcache’s cacheManagerPeerProviderFactory.
Next, we must add a cacheEventListenerFactory element to each of our cache regions. If we do not

specify specific configuration for each cache region, we can just add this element to the default region
configuration. Let’s configure our ArtEntity cache region as follows:

<cache name="com.prospringhibernate.gallery.domain.ArtEntity"
 maxElementsInMemory="5000"
 eternal="false"
 timeToIdleSeconds="900"
 timeToLiveSeconds="1800"
 overflowToDisk="false">

<cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true,
 replicatePuts=true,
 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true"/>
</cache>

In this configuration, we set replicateAsynchronously to true, ensuring that updates happen

asynchronously. Additionally, we set replicateUpdatesViaCopy to true, ensuring that the values of
updated cache elements are sent directly to all of the other cluster nodes. Most of the other attributes
should be fairly self-explanatory.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

153

USING AN EXTERNAL CACHING SERVER

Another caching solution that limits the potential for coherency issues is to use a stand-alone cache server.
Memcached, a popular open source memory object caching system, uses a similar strategy.

Ehcache provides a Cache Server implementation, which is a self-contained caching server that runs
inside its own JVM. Because Cache Server is not tied to any particular node within your application cluster,
there isn’t much of a risk of version conflicts between caches (as there is only a single, external cache). If
you are concerned about the caching server being a single point of failure, you can deploy it in a clustered
configuration.

Using an external caching server can reduce the potential for inconsistencies in your cached data.
However, you must weigh this against the penalty of network overhead, incurred from the fact that all calls
to the caching server must be made over the network (rather than in process). Again, we recommend that
you experiment with the various caching options, and pick the solution that is most ideal for your
application’s requirements.

Summary
In this chapter, we examined several strategies for evaluating and improving application performance.
One of the most common pitfalls for Hibernate developers is the N+1 selects issue. This problem
typically stems from a failure to properly tune a domain object’s mapping configuration or the queries
within the DAO layer. Understanding how this problem can appear, as well as how to detect it, is
important in ensuring decent ORM performance. Although tuning really depends on the unique
requirements of an application, often the best solution is to consider what data needs to be made
available within the service, controller, or view layers, and optimize your queries to load this data as
efficiently as possible. You saw that using a fetch-join is often an effective approach for initializing an
association without requiring multiple queries. Relying on Hibernate’s batching capability can also be a
decent strategy, although it isn’t always as effective.

Another technique for improving performance is to leverage Hibernate’s caching capabilities.
Properly tuning the cache can make a dramatic difference for application performance. However,
caching can also degrade performance if it is not done correctly. For example, caching too aggressively
can trigger OutOfMemoryException exceptions. Understanding the different caching configuration options
within Hibernate will help you select the appropriate behavior. It is also important to experiment with
different TTL settings.

Hibernate provides several different caching layers. The first-level cache is scoped at the
EntityManager, but rarely requires much tuning. The second-level cache provides the ability to cache
domain objects, collections, and queries. Each of these cache types is managed and cached separately.
Domain objects are keyed by their identifier, and the values of all an object’s properties are persisted to
the cache. Associations and queries, however, persist only collections of identifiers. These identifiers are
cross-referenced against the entity cache to load the actual domain object data.

Some cache implementations, such as Ehcache, are clusterable, allowing updates to the cache to be
persisted to other nodes in the cluster. However, without a way to keep the caches of other nodes within
the cluster in sync, there is the potential for significant problems, caused by version conflicts or stale
data. For instance, it is possible for an important update applied to the database to be inadvertently
rolled back. This can happen when a node’s cache is not notified of the initial update to the database.

CHAPTER 9 ■ BEST PRACTICES AND ADVANCED TECHNIQUES

154

Then, when a different user attempts to perform a write operation on the same entity, the user is
applying his updates against stale data, which effectively rolls back the initial update once the second
(stale) process is applied.

When deploying a clustered application, it is important to use a clusterable cache or a centralized
cache server that all the nodes in the cluster can share. Ehcache provides a stand-alone server product
called Cache Server. Additionally, Ehcache offers several configurable options for tuning its clusterable
features. It is important to experiment with various settings to determine the options most suitable for
your application’s requirements.

In the next chapter, we will continue to investigate advanced strategies for providing specialized
features for your persistence tier, improving performance, and utilizing best practices.

C H A P T E R 1 0

■ ■ ■

155

Integration Frameworks

Rare will be the case in which an application will require Spring and Hibernate alone. Depending on
your situation, you will likely need to integrate with multiple frameworks in order to meet your
application’s requirements. Sometimes these integration details will be a trivial matter. Other times,
integration with another framework can present its own unique set of challenges.

Two very common requirements faced by engineers today are implementing free-text search and
exposing web-based APIs. In this chapter, we’ll show you how you can leverage several frameworks to
attain these goals. To expose an API for our art gallery application, we’ll take advantage of the RESTful
web service enhancements added to Spring 3.0, as well as Dozer, Spring’s Object/XML Mapping support,
and the Data Transfer Object pattern for data marshaling. To implement free-text search, we’ll leverage
Hibernate Search, a subproject of Hibernate that provides a seamless way to integrate Lucene into a
Hibernate-based application.

RESTful Web Services with Spring
These days, the requirements for web applications have become increasingly complex. As processing
power and bandwidth increase, users’ expectations follow along, leading to more complex architectures
and more interactive and responsive features. Template-driven HTML web pages powered by
controllers and JSPs are rarely adequate anymore. Instead, today’s typical applications require
asynchronous messaging between the client and the server—often leveraging Ajax or Flash. This shift
away from pure server-side processing means that rendering the user interface is only part of the battle.
A large proportion of the work in many of today’s rich Internet applications (RIAs) often revolves around
communicating with a web service or serializing data as part of a remoting strategy.

REST, which stands for Representational State Transfer, has become increasingly popular for
implementing web services. REST is best described as an architectural style, rather than a standard or
protocol. REST leverages HTTP to provide a consistent, resource-oriented approach for representing
data. As opposed to a remote procedure call (RPC) style of communication, in which the metaphor is
more akin to a method call, REST focuses on the representation of a particular resource, which is
typically embodied as a URL. RESTful APIs leverage many of the built-in features of the Web, such as
caching, proxying, and HTTP-based authentication strategies.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

156

■ Note Roy Fielding originally coined the term REST in 2000 as a part of his doctoral dissertation. Fielding was

one of the primary authors of the HTTP specification, and REST was defined in parallel with the HTTP 1.1

specification.

Nouns, Verbs, and Content-Types

RESTful APIs are usually expressed in terms of nouns, verbs and content-types:

• Nouns are the names of resources. These names are normally expressed as URLs.

• Verbs are the operations that can be performed on a resource. The verbs are the
common HTTP verbs: GET, POST, PUT, and DELETE.

• Content-type representations refer to the data format used to enable machine-to-
machine communication. Popular representations are XML, JSON, HTML, binary
data such as images, or even RDF ontologies.

Nouns, verbs, and representations can be visualized as depicted in Figure 10-1.

Figure 10-1. A RESTafarian’s view of nouns, verbs, and content-type representations

To further illustrate the relationship between nouns, verbs, and content-type representations, let’s
assume that Apress has an API that is used for managing its books. To create the book you’re reading, we
might issue an HTTP POST on a URL like http://api.apress.com/book/. The body of that POST, as well as
the format for the data returned, is completely up to the API designer. REST doesn’t prescribe a
particular data format, so API designers must make the right choice for their situation. The API might
accept XML, JSON, or any number of data formats that can be transmitted over HTTP. The Apress API

http://api.apress.com/book

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

157

might even support multiple representations of the data, allowing consumers of the API to issue requests
to a single resource URL as either XML or JSON. You would typically handle this content negotiation by
specifying a content-type header (for example, json/text).

A well-designed API may also allow you to indicate which data representation you expect to receive
in return by supplying an Accept header. Adhering to the semantics of HTTP, the successful addition of
our book would return HTTP status code 201, created. The API would likely also provide a link to the
resource representing the newly created entity by its name,
http://api.apress.com/book/prospringhibernate, or perhaps better yet, via the ISBN-13 number,
http://api.apress.com/book/978-1430226323.

With a resource defined, a RESTful web service can use the verbs provided by HTTP to access or
manipulate the data these resources represent. For example, if you wanted to retrieve the current
representation of our book, you would issue an HTTP GET on the resource
http://api.apress.com/book/978-1430226323, specifying a content-type header as json/text. The JSON
response might look like this:

{
 "book" : {
 "ISBN-13" : "978-1430226321",
 "title" : "Code Generation in Action",
 "authors" : {
 "author" : [{
 "first" : "Paul", "last" : "Fisher"
 }, {
 "first" : "Brian", "last" : "Murphy"
 }
] },
 "publisher" : "Apress"
 }
}

Similarly, if you wanted to update the properties of this resource (to update some content related to

this book), you could issue an HTTP PUT request targeting the URL http://api.apress.com/book/978-
1430226323, passing in the updated state of the resource.

Here, we’ll focus on the features provided by Spring that simplify developing RESTful APIs. Before
we can tackle our Spring implementation though, we need to settle on a serialization strategy. In order
to transmit a rich domain model over the wire, we need to be able to flatten our object graph so that it
can be serialized and represented as XML or JSON.

Serializing the Object Graph

Despite the simplicity inherent in RESTful architectures, a challenge remains in the way in which your
domain model is serialized into whatever format your web service chooses to provide. For instance, if
you choose to represent your data as XML, there are numerous frameworks and techniques for
converting an object-oriented domain model into XML. No matter which you choose to marshal your
domain object, you will likely run into the problem of serializing too much of your object graph. This is a
side effect of another type of impedance mismatch between the object-oriented Java realm and the flat,
text-based realm of XML and JSON.

In Chapter 9, you learned about the benefits and drawbacks of lazy loading. When it comes to
marshaling your data, lazy loading can flare up again, if you’re not careful and attempt to marshal your
domain entities after your EntityManager has already been closed. However, even if the EntityManager

http://api.apress.com/book/prospringhibernate
http://api.apress.com/book/978-1430226323
http://api.apress.com/book/978-1430226323
http://api.apress.com/book/978-1430226323
http://api.apress.com/book/978-1430226323

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

158

remains open, you are bound to initialize your object graph as the marshaling process attempts to
serialize your data to the specified payload format.

Unfortunately, this is a difficult problem to solve. One solution is to plug in a specialized framework,
designed to prevent the LazyInitializationException from popping up or too much data being
inadvertently marshaled. One such solution is a framework called Gilead. Gilead attempts to clone your
domain entities into a new instance in which Hibernate proxies have been filtered out. This prevents the
potential for LazyInitializationException occurrences, as well as the likelihood of loading your entire
object graph, which causes serious database overhead and performance implications.

The problem with “nulling out” all of an entity’s associations so that it can be serialized into a more
compact and efficient format is that if this data is read back into the application and reattached to an
EntityManager, these nulled-out associations will cause Hibernate to remove important data, such as
dropping collections on a particular entity. Gilead provides several strategies for what it calls the
merging process, in which data returned to the Hibernate application is reassembled back into the
original structure. One solution attempts to keep these details in the HttpSession, which requires the
least intrusion into your application code, but can also come with performance and scalability penalties.
Another strategy requires that your domain model extend from a base class provided by Gilead. Gilead
then uses this base class as a means to stash the information required to merge the lightweight
marshaled data back into the Hibernate application. You can learn more about Gilead at
http://noon.gilead.free.fr/gilead/.

Using the Dreaded DTO Pattern

The Data Transfer Object (DTO) pattern is considered by many to be a “bad idea.” This is because it has
the potential to add significant code redundancy and complexity, leading to a higher potential for bugs
and maintenance overhead down the road. However, there are times when the DTO pattern can serve as
a viable solution, and dealing with marshaling your domain model is arguably one of those times.

The DTO pattern typically requires the creation of specialized classes intended solely for
transferring your domain objects’ data. Usually, you will create a separate package structure to help
avoid confusion. Your DTO classes will likely be smaller and more compact than your domain objects,
often replacing object references with a simple identifier, and possibly removing associations altogether.
Obviously, the specifics of your DTO layer depend on your application’s unique requirements. However,
because your DTO classes have no dependency on Hibernate, are more compact, and have far less
potential for circular references, they can help simplify the effort required by a marshaling strategy.

The primary concern raised when using DTOs is that you need to write a lot of custom code to
translate from one class hierarchy to another (from your domain model to your DTOs and back). Not
only does this translation effort require a lot of up-front development time, but it can also lead to bugs,
especially if your domain classes are changed but your DTO translation code isn’t updated accordingly.

One solution to this problem is Dozer. Dozer is a different type of mapping framework. Unlike
Hibernate, Dozer doesn’t attempt to map Java classes to a relational database. Dozer maps Java classes
to other Java classes, and it is designed especially for the domain model-to-DTO translation
requirements.

The chief advantage of a framework like Dozer is that it offloads the complex implementation
details of converting one class to another. Dozer is able to make some intelligent determinations
regarding how two classes relate. For instance, if two classes that are intended to be mapped to one
another share properties with the same name, Dozer will attempt to automatically map these properties,
unless it is told otherwise. Dozer is also able to handle conversion between types, so even if mapped
properties are not of the same type, Dozer will attempt to convert from one type to another using one of
its built-in converters. It is also possible to create your own converters, if you can’t find an applicable
converter. However, Dozer supports nested mapping behavior, so if you define the mapping behavior
between two classes, these rules will be applied at any level of conversion. In other words, even if you are

http://noon.gilead.free.fr/gilead

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

159

attempting to map two different top-level classes, Dozer will apply the mapping rules for any other
defined classes as necessary. This holds true even for nested properties and collections. When Dozer is
confronted with a mappable scenario, it will apply these rules automatically. These details are much
clearer when examining a few examples, so let’s begin integrating Dozer into our art gallery application.

Bootstrapping Dozer

To begin using Dozer, we first need to add the necessary dependencies to our Maven pom.xml file:

 <!--Dozer -->
 <dependency>
 <groupId>net.sf.dozer</groupId>
 <artifactId>dozer</artifactId>
 <version>5.2.2</version>
 </dependency>

This will provide all the necessary JARs required for Dozer integration. Once this snippet is added to

your pom.xml, you will likely need to run mvn install in order to download the necessary dependencies
into your local Maven repository.

Building the DTO Layer

Before we can go any further, we need to define our DTO classes. Typically, DTOs are similar to their
corresponding domain classes, but are simpler in nature. By removing bidirectional associations,
circular references, and unnecessary properties, a DTO class can reduce the complexity in a marshaling
strategy or a remoting implementation.

Let’s define our ArtEntityDTO class:

package com.prospringhibernate.gallery.dto;

import java.net.URL;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "artEntity")
public class ArtEntityDTO {

 private Long id;
 private String title;
 private String subTitle;
 private Date uploadedDate;
 private String displayDate;
 private Integer width;
 private Integer height;
 private String media;
 private String description;

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

160

 private String caption;
 private String galleryURL;
 private String storageURL;
 private String thumbnailURL;
 private Boolean isGeneralViewable;
 private Boolean isPrivilegeViewable;
 private Set<CommentDTO> comments = new HashSet<CommentDTO>();

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getSubTitle() {
 return subTitle;
 }

 public void setSubTitle(String subTitle) {
 this.subTitle = subTitle;
 }

 public Date getUploadedDate() {
 return uploadedDate;
 }

 public void setUploadedDate(Date uploadedDate) {
 this.uploadedDate = uploadedDate;
 }

 public String getDisplayDate() {
 return displayDate;
 }

 public void setDisplayDate(String displayDate) {
 this.displayDate = displayDate;
 }

 public Integer getWidth() {
 return width;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

161

 public void setWidth(Integer width) {
 this.width = width;
 }

 public Integer getHeight() {
 return height;
 }

 public void setHeight(Integer height) {
 this.height = height;
 }

 public String getMedia() {
 return media;
 }

 public void setMedia(String media) {
 this.media = media;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public String getCaption() {
 return caption;
 }

 public void setCaption(String caption) {
 this.caption = caption;
 }

 public String getGalleryURL() {
 return galleryURL;
 }

 public void setGalleryURL(String galleryURL) {
 this.galleryURL = galleryURL;
 }

 public String getStorageURL() {
 return storageURL;
 }

 public void setStorageURL(String storageURL) {
 this.storageURL = storageURL;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

162

 public String getThumbnailURL() {
 return thumbnailURL;
 }

 public void setThumbnailURL(String thumbnailURL) {
 this.thumbnailURL = thumbnailURL;
 }

 public Boolean getGeneralViewable() {
 return isGeneralViewable;
 }

 public void setGeneralViewable(Boolean generalViewable) {
 isGeneralViewable = generalViewable;
 }

 public Boolean getPrivilegeViewable() {
 return isPrivilegeViewable;
 }

 public void setPrivilegeViewable(Boolean privilegeViewable) {
 isPrivilegeViewable = privilegeViewable;
 }

 public Set<CommentDTO> getComments() {
 return comments;
 }

 public void setComments(Set<CommentDTO> comments) {
 this.comments = comments;
 }
}

At first glance, the ArtEntityDTO looks very similar to the ArtEntity domain class. On closer

inspection, however, you will notice that we’ve removed a few references. We no longer have a
dependency on any of the classes in the ArtData hierarchy. Instead, we have replaced references to a
particular ArtData subclass with a String that will contain a URL to the relevant image (instead of a
wrapper class that contains image metadata and the binary image data itself).

The ArtEntityDTO also omits the many-to-many association to the Category domain class. This
means we won’t be able to directly access the associated categories of a particular ArtEntity instance. In
our application, this isn’t a critical requirement. We will be able to access the ArtEntity instances
associated with a particular Category by accessing a Category instance directly and navigating to its child
ArtEntity instances.

Notice that our ArtEntityDTO still includes a comments property. This property is represented by a
java.util.Set, but rather than containing Comment domain class instances, it holds CommentDTO instances.
We haven’t defined our CommentDTO class yet, but like the ArtEntityDTO, this class will serve as a
simplified representation of a Comment entity.

One additional detail we added to the ArtEntityDTO is the @XmlRootElement(name = "artEntity")
annotation. One use case for a DTO class is to simplify the marshaling process to XML or JSON.
@XMLRootElement is a Java Architecture for XML Binding (JAXB) annotation—a standard for

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

163

object-to-XML marshaling. Later in this chapter, we will leverage JAXB for rendering an XML
representation of our domain classes, as part of a REST web service.

Although the differences between the ArtEntity domain class and the ArtEntityDTO are not
significant, the discrepancies are intricate enough to require a fairly complex mapping strategy. For
instance, consider what would be required to map a collection of Comment instances to a collection of
CommentDTO instances. Luckily, Dozer is able to handle the task of mapping and converting between these
classes without requiring much work.

Next, let’s take a look at the CommentDTO class:

@XmlRootElement(name = "comment")
public class CommentDTO {

 private Long id;
 private String comment;
 private Date commentDate;
 private String firstName;
 private String lastName;
 private String emailAddress;
 private String telephone;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getComment() {
 return comment;
 }

 public void setComment(String comment) {
 this.comment = comment;
 }

 public Date getCommentDate() {
 return commentDate;
 }

 public void setCommentDate(Date commentDate) {
 this.commentDate = commentDate;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

164

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmailAddress() {
 return emailAddress;
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public String getTelephone() {
 return telephone;
 }

 public void setTelephone(String telephone) {
 this.telephone = telephone;
 }

}

The differences between the Comment domain class and the CommentDTO class are fairly trivial. We
have removed the commentedArt property, which would create a circular reference between the
ArtEntityDTO and the CommentDTO (provided that we changed the property type from ArtEntity to
ArtEntityDTO).

Configuring Dozer with Spring

Now that we have defined our DTO classes, let’s create the mapping configuration that instructs Dozer
how to map one class to another. Dozer provides a DozerBeanMapperFactoryBean abstraction for Spring,
which is a factory bean that will help to create the Dozer mapper. The Dozer mapper relies on an XML
configuration file to learn the rules that define how the properties of one class are mapped to the
properties of another class.

First, let’s add the appropriate configuration to our spring-master.xml file:

<bean class="org.dozer.spring.DozerBeanMapperFactoryBean">
 <property name="mappingFiles" value="classpath*:/dozer-mapping.xml"/>
</bean>

This bean is actually quite flexible, and supports additional properties for defining custom
converters, event listeners, and other Dozer extension points. You can learn more about the capabilities
of the DozerBeanMapperFactoryBean on the Dozer website.

In the preceding configuration, we have specified that the Dozer mapping files should be located on
the classpath, under the name dozer-mapping.xml. This XML file defines the default behavior for Dozer

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

165

as well as the rules for mapping between one class and another. Let’s take a look at our Dozer mapping
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<mappings xmlns="http://dozer.sourceforge.net"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://dozer.sourceforge.net

http://dozer.sourceforge.net/schema/beanmapping.xsd">

 <configuration>
 <stop-on-errors>true</stop-on-errors>
 <date-format>MM/dd/yyyy HH:mm</date-format>
 <wildcard>true</wildcard>
 </configuration>

 <mapping>
 <class-a>com.prospringhibernate.gallery.domain.ArtEntity</class-a>
 <class-b>com.prospringhibernate.gallery.dto.ArtEntityDTO</class-b>
 <field>
 <a>galleryPicture.url
 galleryURL
 </field>
 <field>
 <a>storagePicture.url
 storageURL
 </field>
 <field>
 <a>thumbnailPicture.url
 thumbnailURL
 </field>
 </mapping>

 <mapping>
 <class-a>com.prospringhibernate.gallery.domain.Category</class-a>
 <class-b>com.prospringhibernate.gallery.dto.CategoryDTO</class-b>
 </mapping>

 <mapping>
 <class-a>com.prospringhibernate.gallery.domain.Comment</class-a>
 <class-b>com.prospringhibernate.gallery.dto.CommentDTO</class-b>
 </mapping>

 <mapping>
 <class-a>com.prospringhibernate.gallery.domain.Exhibition</class-a>
 <class-b>com.prospringhibernate.gallery.dto.ExhibitionDTO</class-b>
 </mapping>

</mappings>

http://dozer.sourceforge.net
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://dozer.sourceforge.netdozer.sourceforge.net/schema/beanmapping.xsd

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

166

Let’s step through the important components of this configuration. First is a configuration block
toward the top of the file. This section specifies the default global mapping behavior for Dozer.
We define a default date-format and also set the wildcard behavior to true. The wildcard behavior
determines whether Dozer will attempt to automatically map all obvious properties by default. For
instance, if wildcard is set to true and both mapped classes share properties with the same name, Dozer
will attempt to map these properties automatically. This feature can be overridden within specific
mapping rules. If wildcard is left active, you can still omit certain properties from being mapped by
using the field-exclude element. For instance, if we wanted to prevent our subTitle property from
being mapped, we could add the following snippet to the ArtEntity mapping configuration:

<field-exclude>
 <a>subTitle
 subTitle
</field-exclude>

The mapping configuration for a pair of classes is straightforward. Each mapping definition is

encapsulated in a mapping XML block. Within each block, we include a class-a element and a class-b
element, specifying the respective classes to be mapped. Although the configuration is sequential in
nature, keep in mind that Dozer is bidirectional by default. This means that rules defining how we map
from an ArtEntity class to an ArtEntityDTO class can also be applied in reverse to map from a DTO class
back to a domain class. You can require that mapping rules be applied in only a single direction by
adding the attribute type="one-way" to a mapping element.

In the case of our ArtEntity to ArtEntityDTO mapping, most of the details will be implicit since the
property names are fairly consistent between the two classes. Although the comments collection property
on the ArtEntityDTO contains elements of a different type, Dozer will automatically convert each Comment
element within the ArtEntity.comments collection to an instance of CommentDTO by applying the mapping
rules specified.

The only exception we need to explicitly define in our ArtEntity mapping rules is the conversion
between the three ArtData references into String properties. In this example, the names of the
properties are not in sync between the two classes, so we need to define a field element for each ArtData
reference. Notice that we are not only mapping properties with different names, but we are also
extracting the value of a subproperty and using this value for the converted DTO property. For instance,
in defining the mapping rule to convert the ArtEntity.galleryPicture property of type ArtData_Gallery
to the ArtEntityDTO.galleryURL property, we attempt to extract the url property from the
galleryPicture property to use as the value for the galleryURL. This is accomplished by specifying a
nested expression in the Dozer configuration:

 <field>
 <a>galleryPicture.url
 galleryURL
 </field>

The value of element a specifies a nested property, and the value of element b simply defines the

property directly. Dozer is very flexible in this regard and supports nested properties as well as indexed
properties when using arrays or collections.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

167

Making the Mapping Happen

With the configuration details out of the way, let’s try to do some mapping! The easiest way to verify that
everything is working properly is to start with a test. As discussed in Chapter 8, let’s create an integration
test. It would actually be fairly trivial to define a unit test, as our dependencies are fairly minimal.
However, since we have specified some of our Dozer setup using Spring configuration, it’s a little easier
to let Spring take care of the details.

Here is a simple test that will help ascertain whether our Dozer mapping process is working as it
should:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"classpath:/META-INF/spring/spring-master.xml"})
public class DozerMappingTest {

 private Mapper dozerMapper;
 private ArtEntity artEntity;

 public Mapper getDozerMapper() {
 return dozerMapper;
 }

 @Autowired
 public void setDozerMapper(Mapper dozerMapper) {
 this.dozerMapper = dozerMapper;
 }

 @Before
 public void preMethodSetup() {

 Comment comment = new Comment();
 comment.setComment("This is a test comment. What a cool picture!");
 comment.setCommentDate(new Date());
 comment.setEmailAddress("test@prospringhibernate.com");
 comment.setFirstName("John");
 comment.setLastName("Doe");
 comment.setTelephone("212-555-1212");

 ArtData_Thumbnail thumbnail = new ArtData_Thumbnail();
 thumbnail.setId(1L);

 artEntity = new ArtEntity();
 artEntity.setCaption("caption test");
 artEntity.addCommentToArt(comment);
 artEntity.setDescription("A very cool picture of trees.");
 artEntity.setDisplayDate("October 10th");
 artEntity.setHeight(500);
 artEntity.setWidth(300);
 artEntity.setSubTitle("This is a subtitle for a picture");
 artEntity.setTitle("This is a title of a picture");

i

mailto:test@prospringhibernate.com

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

168

 artEntity.setThumbnailPicture(thumbnail);

 }

 @Test
 public void testMappingArtEntity() {
 ArtEntityDTO artEntityDTO = this.getDozerMapper().map(artEntity,
ArtEntityDTO.class);
 Assert.assertEquals(artEntity.getTitle(), artEntityDTO.getTitle());
 Assert.assertTrue(artEntityDTO.getComments().size() > 0);
 Assert.assertTrue("artData_thumbnail should be a string value",
 artEntityDTO.getThumbnailURL().length() > 0);
 }

}

You should recognize much of the boilerplate detail from earlier testing examples. Notice that we

specify our top-level Spring configuration file using the @ContextConfiguration annotation. Most of the
code in this class is included in the preMethodSetup() method, which is annotated with the @Before
annotation to ensure it is called before our test method (which is annotated with @Test). In
preMethodSetup(), we instantiate an ArtEntity domain class, setting basic properties and associations.
Once we have configured our ArtEntity instances, the testMappingArtEntity() method is called, which
contains the code for our actual test. In this method, we call the map method on our Mapper instance,
which was injected by Spring via autowiring into the dozerMapper private property. The Dozer mapper
does all the real heavy lifting for us. We pass in our artEntity instance, which was set up in the previous
step, along with the class type to which we want to map the instance, and Dozer converts our ArtEntity
class into an ArtEntityDTO.

To ensure that all went according to plan, we assert a few properties on the mapped ArtEntityDTO
instance, verifying that the correct values are present. Although the mapping process is deceptively
simple, there is quite a bit going on behind the scenes. We now have an effective and reliable approach
for converting Hibernate domain classes into simpler DTO classes.

Leveraging Spring 3’s REST Support

Spring 3 offers numerous enhancements to MVC development. When Spring first appeared on the
scene, it was praised for its elegant, interface-driven MVC approach. Things have improved significantly
since then, helping to reduce configuration and simplify development effort.

By taking advantage of annotations, Spring now provides a much more intuitive approach for
implementing controllers. It is no longer necessary to explicitly extract request parameters and other
details from the request. Additionally, controllers are far less constrained. You have more flexibility in
defining method signatures, without needing to obey a contract for parameter types. Instead, Spring lets
you map method parameters to various aspects of the incoming request, such as query parameters,
session attributes, and even sections of the URL. This newfound flexibility is powered by annotations—
arguably a much cleaner and intuitive solution. Let’s take a look at an example:

@Controller
public class ArtEntityRestController {

 @Autowired
 private ArtworkFacade artworkFacade;

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

169

 @Autowired
 private Mapper dozerMapper;

 public static final String JAXB_VIEW = "jaxbView";

 @RequestMapping(method=RequestMethod.GET, value="/api/artEntities/{id}")
 public ModelAndView getArtEntity(@PathVariable Long id) {
 ArtEntity artEntity = this.artworkFacade.getArtEntity(id);
 ArtEntityDTO artEntityDTO = null;
 if (artEntity != null) {
 artEntityDTO = this.getDozerMapper().map(artEntity, ArtEntityDTO.class);
 }
 ModelAndView modelAndView = new ModelAndView(JAXB_VIEW);
 modelAndView.addObject("artEntity", artEntityDTO);
 return modelAndView;
 }

 @RequestMapping(method=RequestMethod.GET, value="/api/category/{category}/artEntities")
 @ResponseBody()
 public List<ArtEntity> getArtEntities(@PathVariable Long categoryId) {
 List<ArtEntity> artEntities = this.artworkFacade.getArtworkInCategory(categoryId);
 return artEntities;
 }

 public ArtworkFacade getArtworkFacade() {
 return artworkFacade;
 }

 public void setArtworkFacade(ArtworkFacade artworkFacade) {
 this.artworkFacade = artworkFacade;
 }

 public Mapper getDozerMapper() {
 return dozerMapper;
 }

 public void setDozerMapper(Mapper dozerMapper) {
 this.dozerMapper = dozerMapper;
 }

}

In this example, we have annotated our class with the @Controller annotation. As you’ll recall,

@Controller is a stereotype annotation that extends from @Component. Just as with @Service and
@Repository, @Controller helps to indicate the purpose of this class and can be managed by Spring
automatically through its component-scanning capability.

You will also notice that we have autowired our ArtworkFacade implementation and the Dozer
mapper. The real magic happens in each of the two methods defined. Both of these methods are
annotated with @RequestMapping, which tells Spring the URL mapping rules for this controller method. In
both methods, we have defined the URL with which the controller will be associated. More important,

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

170

however, is the use of the {} characters. Portions of the URL embedded within curly braces can be
referenced in the method using the @PathVariable annotation. In this way, we have implicitly extracted
portions of the URL to be injected into method parameters.

In addition to the @PathVariable annotation, Spring also offers several other options for extracting
aspects of the incoming request and mapping these values to method parameters. For example, query
parameters and session attributes can also be mapped to parameters through the appropriate
annotation. Check out the Spring documentation to learn more about implementing MVC controllers.

Marshaling Data with Spring OXM

One important detail that we can’t leave out is how we are rendering our DTOs as XML. To make this
happen, we are leveraging Spring 3’s Object/XML Mapping (OXM) support. Spring’s OXM abstraction
helps to decouple the marshaling implementation details from your application. This makes your code
more portable and also simplifies the integration of multiple marshaling strategies.

Let’s take a look at the Spring MVC configuration powering our REST service. The following is an
abridged version of our spring-web-gallery.xml file.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd

http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util-3.0.xsd">

 <bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
 <property name="mediaTypes">
 <map>
 <entry key="xml" value="application/xml"/>
 <entry key="html" value="text/html"/>
 </map>
 </property>
 <property name="viewResolvers">
 <list>
 <bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/>
 <bean
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass"
value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix">
 <value>/WEB-INF/JSP/</value>
 </property>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans-3.0.xsdwww.springframework.org/schema/contextwww.s

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

171

 <property name="suffix">
 <value>.jsp</value>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 . . .

 <context:component-scan base-package="com.prospringhibernate.gallery.restapi"/>

 <bean
class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>
 <bean
class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"/>

 <bean id="jaxbView" class="org.springframework.web.servlet.view.xml.MarshallingView">
 <constructor-arg ref="jaxbMarshaller"/>
 </bean>

 <!-- JAXB2 marshaller. Automagically turns beans into xml -->
 <bean id="jaxbMarshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="classesToBeBound">
 <list>
 <value>com.prospringhibernate.gallery.dto.ArtEntityDTO</value>
 <value>com.prospringhibernate.gallery.dto.CategoryDTO</value>
 <value>com.prospringhibernate.gallery.dto.CommentDTO</value>
 <value>com.prospringhibernate.gallery.dto.ExhibitionDTO</value>
 </list>
 </property>
 </bean>
. . .

</beans>

Let’s step through a few of the integral components. First, we have included a

ContentNegotiatingViewResolver. This bean allows us to plug in multiple ViewResolvers (which power a
particular rendering strategy), specifying which ViewResolver to use based on the content-type of the
request. There are two important properties for this bean: mediaTypes and viewResolvers. The
mediaTypes property configures the contentTypes. The viewResolvers property specifies the
ViewResolver. The order of the items within the respective properties is key, as that is how one is
associated with the other.

We’ve also integrated component-scanning, specifying the package of our REST controllers.
Additionally, we have included the necessary beans for performing request mapping via annotations.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

172

Finally, we have specified a bean for our JAXB view, using Spring’s
org.springframework.web.servlet.view.xml.MarshallingView class. This bean requires a marshaller as a
constructor argument, which we inject using a reference to the jaxbMarshaller bean defined next. The
jaxbMarshaller bean also requires a list of classes to be bound, to which we pass all of our DTO classes
(which have been properly annotated with JAXB annotations).

That’s all there is to it! We recommend that you take a look at the source code to get a clearer sense
of how the REST service and Spring’s OXM support operate.

Handling Concurrency

One of the issues we would typically run into when developing a REST web service is reliably handling
concurrent attempts to modify a particular domain entity. In our earlier REST example, we examined an
HTTP GET scenario, in which our web service only returned static representations of a particular entity
(or entities) within our database. When dealing with HTTP PUT operations (which typically implies that
a resource should be updated), things are not as simple.

Properly handling simultaneous attempts to update a particular domain entity is not always
straightforward. Depending on the approach used, there can be consequences in terms of scalability
risks, database deadlock potential, and data loss or conflict.

Optimistic Locking

For applications in which the likelihood that two simultaneous transactions should conflict is fairly
remote, Hibernate and JPA offer support for Optimistic Locking. Optimistic Locking does not pose any
constraints on accessing or writing data. Instead, the version field of the relevant domain entity is
verified before the current transaction is committed. If the value of the version field does not match the
value of the row (representing this particular domain entity) in the database, this implies that a
concurrent transaction has modified the domain entity.

When a version field is added to a domain class (by annotating a field with @Version), Hibernate will
automatically increment the value of this field on a particular domain entity whenever it is updated. We
can then leverage this feature to help prevent entities that were modified in a concurrent transaction
from having their state reverted. In other words, a typical update operation is enhanced with a SQL
condition to check the version field, such that updating the name property of an ArtEntity domain
entity would become:

UPDATE artentity SET name = ‘foo’, version = 8 where id = 4 and version = 7;

Optimistic Locking is beneficial in that it does not pose any significant constraints that could limit

scalability, such as database locks. However, this strategy will throw an exception if a version mismatch
is detected, which means that application developers must re-attempt the transaction, while trying to
reconcile the conflicting data.

Pessimistic Locking

When the potential for simultaneous modifications are more likely, you may want to consider leveraging
Pessimistic Locking instead. Pessimistic Locking uses database locks, and therefore poses greater risk for
scalability and database deadlock. The chief advantage of Pessimistic Locking is that it limits concurrent
access or modification of domain entities, which can help maintain data consistency without

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

173

complicating application code. Keep in mind, however, that the longer a pessimistic lock is held, the
greater the impact to scalability.

Locking an entity is relatively simple in JPA 2.0. You can acquire a pessimistic lock when loading a
particular entity. You can also explicitly lock an entity after it has already been loaded, by calling lock or
refresh on the entityManager instance.

For example, to acquire a pessimistic write lock (which is an exclusive lock) while loading a
particular ArtEntity instance, we could do the following:

ArtEntity artEntity = entityManager.find(ArtEntity.class, 7, LockModeType.PESSIMISTIC_WRITE)

If we had previously loaded an ArtEntity instance, and now wanted to acquire a pessimistic read

lock (which represents a shared lock), we could use the following approach:

entityManager.lock(artEntity, LockModeType.PESSIMISTIC_READ)

While it is possible to obtain multiple, concurrent read locks, there can only be a single pessimistic

write lock.

Free-Text Search
As amazing as it may sound, there are some solutions that aren’t in Hibernate’s repertoire. It’s important
to recognize those situations in which a requirement might be better solved by using a different strategy
altogether. These scenarios aren’t always that obvious, so having a solid understanding of what other
options are available can be useful.

Consider providing search-like functionality in an application. A relational database is able to
handle this functionality, but only to a point. If your application is required to provide search
functionality that extends far beyond what a simple “SQL-like query” will accommodate, it is time to
consider an alternate solution.

Users expect search features to be intelligent. For example, if you were attempting to search for
“Spring Framework” and you inadvertently typed “Sprong Framework,” you would probably expect the
application to work around your error and return your intended results anyway. This type of feature is
often referred to as fuzzy search, as it reduces the strictness of the match, allowing similarly spelled
terms to be included. This concept can also be extended to allow for synonyms. For example, a search
for “car” can also match entries containing “automobile.”

Relational databases don’t typically excel at finding groups of words within blocks of text, a feature
often referred to as free-text search. Providing this kind of search functionality within a relational
database would likely incur significant performance overhead as well as additional development time.

Finding text content that begins or ends with a particular word can be implemented using a like
condition, such as the following:

List<ArtEntity> blueEntities = entityManager.createQuery(
“select artEntities from ArtEntity artEntities where artEntities.description like ‘blue%’”
).list();

Obviously, this query is a bit contrived, as we wouldn’t likely have a hard-coded query, specifically

one that filters items with a description field that starts with “blue,” but it serves for demonstration
purposes. While this query might be reasonably performant (since we can rely on the database index to
quickly find a description that starts with an exact match of a particular word), we will begin to incur

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

174

more significant performance penalties if we attempt to find those ArtEntities with a description
containing a particular word or phrase. This sort of search operation will typically require an index scan
or table scan, which can be taxing on the database.

Furthermore, we still don’t have a strategy for determining the relevance of a particular match. If
five description fields contain the word blue, how do we determine which match is more relevant? We
could make the assumption that the more times the word blue appears within a particular description,
the more relevant it is. However, implementing this solution with Hibernate alone will likely require a lot
of extra coding, and we still have barely met the base expectations for a user’s search requirements.
What if we wanted to support fuzzy matching or handle synonyms?

The fundamental problem with using Hibernate alone to tackle search requirements is that a
relational database is not designed to provide this type of functionality. However, this is exactly the sort
of thing Apache Lucene—a powerful open source Java search framework—was intended to do.

Introducing Lucene

Lucene is a performant and full-featured information retrieval (IR) library, providing a comprehensive
API for indexing and searching operations. Indexing is a strategy used by both search engines and
databases to allow content to be found as efficiently as possible. A Lucene index is not all that different
from the index for this book. It provides a logical and systematic way to locate and access a particular
piece of data.

Indexing with Lucene

At the center of Lucene’s indexing API is the Document class. Similar to the concept of a database table, a
Document is composed of Fields, each of which contains text data extracted from the original content
intended to be indexed. Unlike a database, Lucene documents are denormalized. There is no concept of
joining, as data relationships are not indicative of IR. Instead, you can think of documents as
containers—a means for organizing content so that it can be effectively searched against later.

Each Field in a Lucene Document typically represents a particular component of the content you
wish to search. For example, if you wanted to index your personal music library, you would likely define
a document with fields for an audio track, the track’s album, the track’s artist, the file name for the track,
your notes about the track, the album’s release date, and so on. To assist with the indexing process,
Lucene provides a set of Analyzers. An Analyzer helps to break down and filter the content for each
particular field, extracting a stream of tokens. For instance, since it’s reasonable that your notes on a
particular album could contain several paragraphs of text, you would need to break down this content
into words. You might then want to break down these words into their roots, allowing you to be able to
find notes by using the word listen, even if a particular note actually contained the word listens or
listening. This process is called stemming, and helps to break down words into their root forms. An
analyzer might also filter out superfluous content, such as removing stop words, such as the and a.

The individual tokens that an analyzer extracts are known as terms. Terms are the foundational
elements that comprise an Index, and therefore are also the primary component of a search query.
Lucene uses an inverted index to optimize the manner in which content is found. An inverted index uses
the tokens extracted in the analyzer step of the indexing process as the lookup keys for a particular piece
of content. This sort of approach is more conducive to searching, as the emphasis for lookup is placed
on the individual terms or words a user might want to search for, rather than the content itself.
Additionally, Lucene is able to track the frequency of a particular token, its position in relation to other
tokens, and its offset within the original content from which it was extracted. This metadata is extremely
valuable for a host of search features.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

175

Lucene provides a series of options to customize how a particular field is indexed. For instance, it
might be more ideal for some fields to be tokenized, while others should have their content preserved in
its original form. In the music library example, you would probably want to tokenize the notes field,
since you would want to be able to search for a particular word or phrase contained in your notes.
However, you would not want to tokenize the track’s file name, as this data makes sense only as a
complete, unmodified unit.

Lucene also allows you to specify whether the original content for a particular field is stored. For
instance, while you might not want to tokenize a track’s file name, you would definitely want to store
this data. Then when a particular document is returned as part of a search result list, you could access
the file name directly so that the application could work with this data (for instance, to play the track or
locate it on your file system).

Querying with Lucene

Lucene includes a powerful querying API, providing a flexible way to specify the fields and terms for
which to search, along with the ability to define Boolean and grouping expressions.

The simplest Lucene query might look like the following:

cupcake

This would search for the term cupcake on the default field. The default field is typically specified in

the QueryParser, a Lucene class used to parse a user-defined query expression into a Query instance.
 More often, a Lucene query will target one or more fields, such as in the following example:

notes:cupcake AND album:Pepper

This will return all documents in which the word cupcake is contained in the notes field and the

word Pepper is contained in the album field. It is also possible to define this query as follows:

+notes:cupcake +album:Pepper

As you can see, you can define Boolean AND expressions by using the + prefix or by using the AND

keyword. In Lucene, a Boolean OR is the default, so you can simply specify multiple expressions together:

notes:cupcake album:Pepper

Or you can explicitly include the OR keyword:

notes:cupcake OR album:Pepper

If you want to insist that a search should not include a particular term, you can prefix it with a minus

(-) character. For example, if you wanted to ensure that your search results did not contain any tracks
played by the Beatles, you could use the following query:

notes:cupcake AND album:Pepper –artist:”The Beatles”

This query will look for a note containing the word cupcake and an album containing the word

Pepper, but the track artist can’t be The Beatles. Notice the quotes around “The Beatles” to indicate that
the artist field must match the entire phrase. So, if the artist name was specified as just Beatles, you

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

176

could still end up with a Beatles track in your search results. To prevent this scenario, you could just use
Beatles, without the quotation marks.

But what if you wanted to ensure that a misspelled artist attribution on a track in your library
wouldn’t affect the intention of your searches? To address this problem, you can use a tilde (~) character,
which lets Lucene know that you want to allow a fuzzy match:

(track:”Fixing a Hole” OR track:”Hey Jude”) AND artist:Beatles~

This query expresses your intention for a fuzzy search on the artist field. Now, even if the artist

attribution in your library is spelled as “Beetles,” it will likely be included in your search results. Notice
also the use of parentheses to group the first part of the query. This grouping specifies that the query
should return tracks that match either title, provided they both are by the artist Beatles.

If you wanted to ensure that your results contain only tracks released within a particular date range,
you could take advantage of Lucene’s date-range querying capability:

artist:Rol* AND releaseDate:[5/18/1975 TO 5/18/2010]

This query will find any track with a release date between May 18, 1975, and May 18, 2010, as long as

the artist name starts with Rol. The wildcard modifier (*) indicates that you want to match an artist given
the specified prefix.

The preceding query examples should give you a sense of some of the things possible with Lucene
query expressions. You will learn shortly how to parse these expressions into a Lucene Query. Of course,
it’s also possible to define queries programmatically, and doing so can often provide you with more
flexibility. However, defining an expression using some of the conventions shown in these examples can
give your design more clarity.

Introducing Hibernate Search

Hibernate Search is a framework that extends Hibernate in order to provide seamless integration with
Apache Lucene. It is possible for developers to integrate Lucene into their applications directly.
However, if your goal is to index the data within your domain classes, then it is a nontrivial problem to
make this integration work reliably such that changes made to your domain model are automatically
reflected in your index. Additionally, it is important that updates to the Lucene index occur within the
context of a Hibernate operation.

For example, imagine if a domain class was updated as part of a DAO method, and within this
method, a call was made to Lucene to trigger an update to the Lucene index. While this setup may work,
what would happen if the domain class update was made within the context of a transaction, and
suddenly the transaction was rolled back? Most likely, the database and the Lucene index would fall out
of sync.

Hibernate Search attempts to solve these sort of problems, offering an implementation that
integrates Lucene into the Hibernate life cycle and that respects the transactional boundaries to ensure
the respective resources stay in sync.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

177

Integrating Hibernate Search

Let’s consider the search requirements of our image gallery application. Users will likely want to be able
to find images by caption, author, title, or description, and possibly filter results by category or tag. We
also want to display results in terms of relevance, not just sorted alphabetically or by date. What
constitutes relevance is an important concern for search features, as ultimately, the success of search is
based on how expediently users are able to find what they are looking for.

To begin integrating Hibernate Search into our art gallery application, we must first update our
Maven pom.xml to include the necessary dependencies. This is easily accomplished by adding the
following snippet to our pom.xml:

<!--Hibernate Search-->
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search</artifactId>
 <version>3.2.1.Final</version>
</dependency>

Hibernate Search expects a few key configuration properties in order to define some of the basic

defaults, such as the location of the Lucene index. These properties can be specified within the
persistence.xml file. The following represents the key properties to set in order to bootstrap our
Hibernate Search integration. The important new attributes are in bold.

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

<persistence-unit name="persistenceUnit" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 <property name="hibernate.cache.use_second_level_cache" value="true"/>
 <property name="hibernate.cache.provider_class"
 value="net.sf.ehcache.hibernate.SingletonEhCacheProvider"/>
 <property name="hibernate.search.default.directory_provider"
 value="org.hibernate.search.store.FSDirectoryProvider"/>
 <property name="hibernate.search.default.indexBase" value="./lucene/indexes"/>
 <property name="hibernate.search.default.batch.merge_factor" value="10"/>
 <property name="hibernate.search.default.batch.max_buffered_docs" value="10"/>
 </properties>
 </persistence-unit>

</persistence>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_2_0.xsd

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

178

This configuration provides Hibernate Search with some of the key details required to get things
rolling, such as which directory provider to use (a Lucene configuration that delineates the strategy for
managing and storing the index) and where the index is located.

Adding Hibernate Search Annotations

With the configuration out of the way, we need to design our Lucene index, specifying the fields within
the Lucene document and defining how these fields map to the properties within each of our domain
classes. Hibernate Search is flexible in this regard, and allows you to fine-tune the requirements for every
field. However, following convention over configuration, the framework includes sensible defaults, so
you need to deal with only special requirements.

By default, each domain class that is indexed will be mapped to its own index. Each domain class
property will map to a Lucene field of the same name, unless you choose to override this default. It is
also possible to define more than one field for a particular domain class property, which is useful if you
need to use multiple indexing strategies for the same domain class property. For example, you might
want to have one field that is not tokenized but stores the content in its original form, while another field
tokenizes the content.

To map your domain class properties to a Lucene index, Hibernate Search offers a set of specialized
annotations that complement the JPA annotations we used to define our Hibernate mappings. Let’s take
a look at the ArtEntity domain class and add Hibernate Search annotations to establish our Lucene
mappings:

@Entity
@Indexed
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class ArtEntity implements DomainObject {

 private Long id;
 private String title;
 private String subTitle;
 private String uploadedDate;
 private String displayDate;
 private Integer width;
 private Integer height;
 private String media;
 private String description;
 private String caption;
 private ArtData_Gallery galleryPicture;
 private ArtData_Storage storagePicture;
 private ArtData_Thumbnail thumbnailPicture;
 private Boolean isGeneralViewable;
 private Boolean isPrivilegeViewable; // can be seen by logged-in non-administrators
(special visitors)
 private Set<Category> categories = new HashSet<Category>();
 private Set<Comment> comments = new HashSet<Comment>();

 private Integer version;

 public ArtEntity() {
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

179

 @Id
 @GeneratedValue
 @DocumentId
 public final Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Gallery getGalleryPicture() {
 return galleryPicture;
 }

 public void setGalleryPicture(ArtData_Gallery galleryPicture) {
 this.galleryPicture = galleryPicture;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Storage getStoragePicture() {
 return storagePicture;
 }

 public void setStoragePicture(ArtData_Storage storagePicture) {
 this.storagePicture = storagePicture;
 }

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn()
 public ArtData_Thumbnail getThumbnailPicture() {
 return thumbnailPicture;
 }

 public void setThumbnailPicture(ArtData_Thumbnail thumbnailPicture) {
 this.thumbnailPicture = thumbnailPicture;
 }

 @Field(index = Index.TOKENIZED, store=Store.YES)
 @Boost(2.0f)
 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

180

 @Field(index = Index.TOKENIZED, store=Store.YES)
 public String getSubTitle() {
 return subTitle;
 }

 public void setSubTitle(String subTitle) {
 this.subTitle = subTitle;
 }

 @Field(index = Index.TOKENIZED, store=Store.NO)
 public String getMedia() {
 return media;
 }

 public void setMedia(String media) {
 this.media = media;
 }

 @Field(index = Index.UN_TOKENIZED, store=Store.YES)
 @DateBridge(resolution = Resolution.MINUTE)
 public String getUploadedDate() {
 return uploadedDate;
 }

 public void setUploadedDate(String uploadedDate) {
 this.uploadedDate = uploadedDate;
 }

 public String getDisplayDate() {
 return displayDate;
 }

 public void setDisplayDate(String displayDate) {
 this.displayDate = displayDate;
 }

 @Field(index = Index.UN_TOKENIZED, store=Store.YES)
 public Integer getWidth() {
 return width;
 }

 public void setWidth(Integer width) {
 this.width = width;
 }

 @Field(index = Index.UN_TOKENIZED, store=Store.YES)
 public Integer getHeight() {
 return height;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

181

 public void setHeight(Integer height) {
 this.height = height;
 }

 @Field(index = Index.TOKENIZED, store=Store.NO)
 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Field(index = Index.TOKENIZED, store=Store.NO)
 public String getCaption() {
 return caption;
 }

 public void setCaption(String caption) {
 this.caption = caption;
 }

 public Boolean getGeneralViewable() {
 return isGeneralViewable;
 }

 public void setGeneralViewable(Boolean generalViewable) {
 isGeneralViewable = generalViewable;
 }

 public Boolean getPrivilegeViewable() {
 return isPrivilegeViewable;
 }

 public void setPrivilegeViewable(Boolean privilegeViewable) {
 isPrivilegeViewable = privilegeViewable;
 }

 @ContainedIn
 @ManyToMany(mappedBy = "artEntities")
 public Set<Category> getCategories() {
 return categories;
 }

 public void setCategories(Set<Category> categories) {
 this.categories = categories;
 }

 @ContainedIn
 @OneToMany(orphanRemoval = true, cascade = { javax.persistence.CascadeType.ALL })
 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

182

 public Set<Comment> getComments() {
 return comments;
 }

 public void setComments(Set<Comment> comments) {
 this.comments = comments;
 }

}

The Hibernate Search annotations are fairly intuitive, given the Lucene concepts introduced earlier.

Let’s examine the additions to this class, one at a time.
First, we need to annotate a class with the @Indexed annotation in order for it to be considered for

indexing. Next, Hibernate Search requires that the identifier of a domain class be annotated with
@DocumentId. The document ID is used by Hibernate Search to bridge the Lucene and Hibernate worlds.
In each index, Lucene stores a Hibernate entity’s full class name as well as its identifier. Together, they
form the basis for querying in Hibernate Search, and allow a list of documents returned by a Lucene
query to be exchanged for a list of active Hibernate entities.

Unless a domain class property is annotated with the @Field annotation, it will not be indexed. The
@Field annotation specifies that a particular domain class property be included in the Lucene index. The
annotation takes a few parameters, including the ability to override the name of the field. Of most
importance, however, are the index and store attributes. These parameters tell Lucene how to configure
the field.

As noted earlier, a field can be tokenized, which will extract the contents of a particular property
into a stream of tokens, leveraging a particular analyzer to filter out superfluous words, perform
stemming, insert synonyms, and possibly perform a range of other options, depending on the analyzer
used. A field can also be stored, which means that the original content will be inserted into the Lucene
index. Storing a field can increase the size of the index, so it is rarely a good idea for large blocks of text.
However, fields containing data that may need to be displayed by the application—such as a title, file
name, or a business identifier—should be marked as stored. Let’s look at a few examples:

• In our ArtEntity domain class, we have specified that the title property be stored
and tokenized:

 @Field(index = Index.TOKENIZED, store=Store.YES)
 @Boost(2.0f)
 public String getTitle() {
 return title;
 }

• We have specified that the width property be left untokenized, but still stored:

 @Field(index = Index.UN_TOKENIZED, store=Store.YES)
 public Integer getWidth() {
 return width;
 }

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

183

• We have set the description property to be tokenized but not stored:

 @Field(index = Index.TOKENIZED, store=Store.NO)
 public String getDescription() {
 return description;
 }

You probably also noticed the use of the @DateBridge annotation. Since Lucene typically only

manages text within its index, Hibernate Search includes a bridge strategy as way to convert nontext
data into a String (and possibly back again). Hibernate Search will use the appropriate built-in bridges
for mapping fields such as integers and longs, but for more complex data types, you can leverage a
custom bridge or use one of the bridges provided by the framework. For example, we can map our
uploadedDate property in the following way:

 @Field(index = Index.UN_TOKENIZED, store=Store.YES)
 @DateBridge(resolution = Resolution.MINUTE)
 public Date getUploadedDate() {
 return uploadedDate;
 }

This mapping parameterizes the @DateBridge so that the date value is converted to text that can be

lexicographically sorted. The date is stored within the Lucene index has a resolution of a minute. For
performance reasons, you generally want to use the largest resolution setting your application can
support (for instance, prefer a resolution of Minute over Second, or better yet, Day rather than Minute or
Hour).

The @Boost annotation can be used to boost the weighting of a particular field within the Lucene
index. For instance, to have the title field be twice as relevant as the description field, we can specify a
boost factor of 2.0:

 @Field(index = Index.TOKENIZED, store=Store.YES)
 @Boost(2.0f)
 public String getTitle() {
 return title;
 }

It is also possible to specify boost factors within a query, but in cases where you want a consistent

boost weighting, the @Boost annotation can come in handy.
As we mentioned earlier, a Lucene index is denormalized, offering no concept of implicit

relationships as found in typical relational databases. To translate some of the Hibernate association
mappings into the world of Lucene, Hibernate Search offers the @IndexEmbedded annotation.
@IndexEmbedded tells Hibernate Search to embed a particular association into the owning class. However,
because Lucene is inherently denormalized, Hibernate Search must be made aware any time the
embedded entity changes. To help track these changes, Hibernate Search provides the @ContainedIn
annotation, to mark the other side of an embedded association.

Now that you have a clearer understanding of how to annotate a domain class for indexing, let’s
examine the indexing and search processes.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

184

Putting Lucene and Hibernate in Sync

One of the primary advantages of Hibernate Search is the seamlessness of the integration between
Hibernate and Lucene. Hibernate Search relies on Hibernate events to trigger the appropriate changes
to the Lucene index as persistent state changes are made to your domain model.

In Chapter 4, we covered the JPA life cycle. In adhering to the JPA life cycle, Hibernate offers a fine-
grained event model, broadcasting specific events based on persistent state changes to a domain object.
For example, when a domain class instance is persisted, Hibernate will propagate the appropriate event.
Similarly, Hibernate will broadcast numerous other events, such as delete and update notifications,
providing a means to listen and respond to changes to your domain model. Event listeners are an
effective design pattern for defining application behavior in a decoupled way, and Hibernate Search is
able to plug in to domain life-cycle events through this powerful mechanism.

If you are building an application from scratch and are starting with an empty database, then the
process of populating the Lucene index is straightforward. When your domain object is first persisted to
the database, such as through entityManager.save(artEntity), Hibernate Search will catch the life-cycle
event and add the specified artEntity to the Lucene index. By default, each domain class will have its
own index, and all the appropriate properties will be added to the index according to the rules specified
through the Hibernate Search annotations. Because Hibernate Search takes care of keeping your
database and your Lucene index in sync, the integration between the two frameworks is intuitive and
simple.

However, there are circumstances under which you may need to index your domain objects more
explicitly. For instance, if you are integrating Hibernate Search into an existing application or working
with a legacy database, you will need to find a way to retrofit your existing data into the Lucene index.
Hibernate Search provides a more direct means of indexing your domain model as well.

Hibernate Search provides an extended version of Hibernate’s EntityManager, enhancing these core
framework classes with search-specific functionality. The enhanced version of the JPA EntityManager is
the FullTextEntityManager. Accessing this search-capable EntityManager is fairly seamless:

import org.hibernate.search.jpa.Search;

FullTextEntityManager fullTextEntityManager =
Search.getFullTextEntityManager(entityManager);

The next step is to perform the indexing. Here is how to explicitly index a single entity:

public void indexEntity(T object) {
 FullTextEntityManager fullTextEntityManager =
Search.getFullTextEntityManager(entityManager);
 fullTextEntityManager.index(object);
}

This method is intended to be added to your GenericDaoJpa class, in order to provide a generic
means to index a domain class. If you want to implement a way to index all the entities of a particular
type currently stored in the database, you could define the following method on your GenericDaoJpa
implementation:

public void indexAllItems() {
 FullTextEntityManager fullTextEntityManager =
Search.getFullTextEntityManager(entityManager);
 List results = fullTextEntityManager.createQuery("from " +
type.getCanonicalName()).getResultList();

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

185

 int counter = 0, numItemsInGroup = 10;
 Iterator resultsIt = results.iterator();
 while (resultsIt.hasNext()) {
 fullTextEntityManager.index(resultsIt.next());
 if (counter++ % numItemsInGroup == 0) {
 fullTextEntityManager.flushToIndexes();
 fullTextEntityManager.clear();
 }
 }
}

In this method, we use the FullTextEntityManager to perform a standard JPA query, which simply

lists all of the entities of the parameterized type. We then iterate through the results, indexing each
entity. However, every ten index invocations, we call fullTextEntityManager.flushToIndexes(). This
flushes the queued changes to the Lucene index, without waiting for the Hibernate Search batch
threshold to be reached. Next, we call fullTextEntityManager.clear(), which clears out the JPA
persistenceContext. This may not always be necessary, but if you are iterating through a large dataset,
you want to reduce your memory footprint as much as possible.

Building a Domain-Specific Search

Now let’s put together all the concepts we’ve covered in this chapter to offer a basic search feature that
allows end users to search across several of the ArtEntity fields using the specified search terms. Here is
an example of how this can be implemented:

public List<ArtEntity> searchForArtEntitiesByTerms(String searchTerms,

Integer startIndex,

Integer maxResults) {

 FullTextEntityManager fullTextEntityManager =
Search.getFullTextEntityManager(entityManager);
 String[] fieldsToMatch = new String[] {"title", "subTitle", "media", "description",
"caption"};
 QueryParser parser = new MultiFieldQueryParser(Version.LUCENE_29, fieldsToMatch,

new StandardAnalyzer(Version.LUCENE_29));

 org.apache.lucene.search.Query luceneQuery = null;
 try {
 luceneQuery = parser.parse(searchTerms);
 } catch (ParseException e) {
 log.error("Error parsing lucene query: " + searchTerms);
 }

 Query jpaQuery = fullTextEntityManager.createFullTextQuery(luceneQuery,
ArtEntity.class);
 if (startIndex != null && maxResults != null) {
 jpaQuery.setFirstResult(startIndex);

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

186

 jpaQuery.setMaxResults(maxResults);
 }
 List<ArtEntity> artEntities = jpaQuery.getResultList();

 return artEntities;

 }

In order to search across the ArtEntity title, subtitle, media, description, and caption fields, we

use a special Lucene query parser called the MultiFieldQueryParser. This query parser takes an array of
field names, so that all the user-specified search terms can be equally applied to each of the fields. In
other words, using the MultiFieldQueryParser in this way is equivalent to the following Lucene query,
assuming the user searched for “test”:

title: test OR subtitle: test OR media: test OR description:test OR caption:test

After parsing the Lucene query using our MultiFieldQueryParser and the specified searchTerms, we

invoke the createFullTextQuery method on our fullTextEntityManager reference. This method returns a
standard javax.persistence.Query instance, which we can use in the same manner as any JPA query. We
limit our result set using setFirstResult and setMaxResults (if these parameters are specified), and then
call getResultList() to return a List of ArtEntity instances.

One of the really interesting details here is that even though we are invoking a Lucene query, we are
working with entities at the JPA level. This means that we don’t need to worry about correlating the
results of a Lucene query to load a series of JPA entities. Hibernate Search takes care of these details for
us, providing a very powerful abstraction over Lucene to simulate a completely Hibernate or JPA-centric
world.

Summary
In this chapter, we’ve demonstrated how to integrate and extend Hibernate in order to implement more
advanced application features. We discussed some of the challenges with exposing RESTful web services
on Hibernate-powered applications, and how to simplify a serialization or marshaling strategy. We
examined Spring 3’s new MVC capabilities, as well as its OXM abstraction for providing object-to-XML
marshaling.

We also discussed the DTO pattern, and how this strategy can reduce the complexities of serializing
your domain model. However, translating a domain class to a DTO class (and back again) can be a
source of defects and maintenance problems. One solution is to use a framework like Dozer. Dozer
handles the mapping between two different classes, using convention over configuration and mapping
configuration files. By abstracting these translation details to a specialized framework, the complexities
inherent in a DTO mapping layer are significantly reduced.

Providing full-text search capability is a very important and common requirement for many
applications. Lucene is an open source Java framework that offers powerful indexing and search
capability, but can be difficult to integrate into an application without requiring significant glue code to
sync changes to the domain model with the Lucene index. Hibernate Search is a framework that bridges
the gap between these two excellent frameworks, enhancing key Hibernate framework classes to offer
Lucene querying and indexing capabilities. Hibernate Search allows developers to execute Lucene
queries within the realm of Hibernate, so that search results return standard Hibernate entities.

CHAPTER 10 ■ INTEGRATION FRAMEWORKS

187

Spring and Hibernate are amazing open source frameworks. However, building upon the
foundations of these tools is the key to successful application development. Learning best practices for
integrating your persistence tier with other frameworks is as important as learning the persistence
framework itself.

C H A P T E R 1 1

■ ■ ■

189

GORM and Grails

GORM is the end result of the synergistic combination of Spring, Hibernate, and Groovy. Built as one of
the core components of Grails—a rapid development web framework influenced by Ruby on Rails—
GORM is a different kind of ORM layer that leverages the dynamic capabilities of the Groovy language to
simplify querying and persisting an application’s domain model.

At the foundation of GORM lies the same strategy responsible for Ruby on Rails’ success: convention
over configuration. GORM drastically simplifies the amount of coding and effort required to define your
application’s persistence logic. With GORM and Grails, there is no need to define a DAO layer. Instead,
the Active Record design pattern is employed, consolidating persistence functionality into the domain
class itself without requiring up-front development to add these features. This may seem a bit like magic,
but this chapter will help you understand how GORM works under the hood, by tapping into the
dynamic features of Groovy.

Although GORM is the core persistence component within the Grails web framework, it can also be
used outside Grails. By embedding GORM within a Spring application, you can benefit from the
efficiency and terseness of Grails within a more standard architecture.

■ Note Some may argue that Grails does not quite fit into a book about Spring and Hibernate. However, the Grails

framework and GORM rely heavily on both Spring and Hibernate for much of the flexibility and persistence they

afford. The benefits of this partnership are the longevity, enterprise strength, efficiency, and flexibility offered by

Spring and Hibernate. Furthermore, SpringSource, the company behind the Spring Framework, recently acquired

G2One, the company behind much of the Grails and Groovy development, demonstrating a clear alignment and

dedication to Spring and Grails.

A Crash Course in Groovy
Grails and GORM came onto the scene as a result of the attention brought about by the success of the
Ruby on Rails framework. Ruby on Rails took the mantras of “convention over configuration” and “don’t
repeat yourself (DRY)” to a new level, significantly simplifying the effort required to create a new web
application. Some of Ruby on Rails’ success stems from the fact that Ruby is a dynamic language, which
brings a level of flexibility that is not easily attainable in the Java world. For instance, the capability to
dynamically generate new behavior at runtime, in order to provide customized persistence and querying

CHAPTER 11 ■ GORM AND GRAILS

190

functionality tailored to the specific properties of the domain model, can’t be easily replicated in Java
because the language doesn’t natively support the dynamic creation of new methods. Luckily, Groovy
came onto the scene to bring this flexibility to the Java world.

The most fundamental difference between Grails persistence and the other approaches we’ve
discussed in this book is that Grails is the only strategy that doesn’t use Java. However, Groovy code runs
in the JVM and so is bytecode-compatible with Java code. This also means that Groovy can utilize Java
libraries, making the myriad of open source Java libraries accessible to this new language.

Groovy is a dynamic language, which implies some significant differences from Java both
syntactically and in the way Groovy can be used. Here, we’ll provide a brief introduction to Groovy, to
help Java developers wrap their heads around some of the core differences between the two languages.

One of the basic features of Groovy is its ability to dynamically add or modify behavior at runtime.
As a brief, cursory example, let’s say we want to add a new method called sayHello()to our Person
instance at runtime. This could be accomplished as follows:

Person.metaClass.sayHello = {
 println("Hello")
}

Or we can make this a static method that takes a single parameter:

Person.metaClass.static.sayHello = {def name ->
 println("hello ${name}")
}

In Groovy, every class holds a reference to a corresponding metaClass instance. Method calls to a

particular class or instance are delegated to that class’s metaClass, which then calls a method named
invokeMethod, passing along the name of the method to invoke and any corresponding parameters. So
you can think of metaClass as an intermediary, or proxy of sorts, allowing more of a class’s behavior to be
determined at runtime.

By defining a new property on a particular class’s metaClass, we are effectively implementing new
behavior at runtime. Once we have defined our sayHello property to reference a closure block, future
calls to Person.sayHello() will end up being delegated to the functionality specified in our closure block.

■ Note For a given method, constructor, or property, the Groovy compiler actually generates a call to

MetaClass.invokeMethod(), passing along the object, method name, and corresponding parameters. A Groovy

object’s metaClass can then decide which code to invoke at runtime.

But what is a closure? A closure is an assignable block of code, similar in function to an anonymous
inner class in Java. Although closures are often used in a similar context to methods, a key difference is
that closures can be assigned to variables and even passed around. We will discuss closures in a bit more
detail shortly.

CHAPTER 11 ■ GORM AND GRAILS

191

Letting Your Types Loose

Groovy variables and references don’t need to be statically typed. For instance, you can define a variable
in the following way:

def myName = "Sam"

The variable myName can contain a String or can later change to an int. def defines a variable or

property without delineating a specific type. It is similar to using a type of Object in Java, but the
emphasis when using def is that the type isn’t important and may change from one context to another.

GStrings—Strings on Steroids

Groovy supports a concept called GString, which is basically a Java String on steroids. In the earlier
example, notice that we were able to create a dynamic String by writing "hello ${name}". This strategy
integrates a variable directly within a String without requiring concatenation. You can even invoke
methods directly within a ${} block.

Default Constructors in Groovy

Another key concept is that Groovy classes can take named parameters with just a default constructor.
For instance, you can instantiate a Groovy class using the following approach:

Class GroovyBean {
 String name
 String favoriteColor
}
def myBean = new GroovyBean([name: 'Joe', color: 'blue']);

There are a few important details in the preceding example. First, notice that we defined a Groovy

bean without actually defining corresponding getters and setters (and without using any semicolons!).
Groovy defines these for us behind the scenes at runtime. We could reference the name property of the
myBean instance with myBean.getName(), but myBean.name is more concise.

Also notice the shortcut we used for passing in a java.util.Map of bean properties. Maps can be
defined using the following syntax: [key: value]. A common idiom is to define an empty map as [:].
Similarly, a java.util.List can be defined using the [] notation.

Closures in Groovy

One of Groovy’s most significant features is its excellent support for closures. Closures are like methods
but can also be referenced by variables or passed as parameters into methods. For instance, you can
create a closure and store it in a variable called myClosure using the following code:

def myClosure = {def param ->
 println("The param is ${param}")
}

CHAPTER 11 ■ GORM AND GRAILS

192

Notice that closure parameters appear after the first curly brace and are then followed by ->.
Closures can be used to dramatically simplify code. For example, you can iterate through a list in Groovy
this way:

List myList = ["a","b","c"]
myList.each {curItem ->
 println(curItem);
}

This closure will be passed to the each method for every element in the list. Contrast this approach

with using a Java Iterator:

List myList<String> = new java.util.ArrayList();
myList.add("a"); myList.add("b"); myList.add("c");
Iterator<String> myIterator = myList.iterator();
while (myIterator.hasNext()) {
 String curItem = myIterator.next();
 System.out.print(curItem);
}

This is impressive, but it gets better. Imagine we wanted to iterate through a list of Strings,

returning only those items that contain the sequence cat. In Groovy, this can be accomplished quite
simply:

def stringList = ["I like dogs",
 "I like cats", "I like to scat sing",
 "What is a category", "I have gas"]
def matchingStrings = stringList.findAll {curString ->
 curString.contains("cat")
}

Invoking a closure works in a similar way to invoking a method. You simply reference the closure

property, followed by (). You can also call a closure explicitly by referencing the closure and invoking
call().

Now that we’ve covered a few basic Groovy concepts, let’s move on to building our Grails
persistence tier.

■ Note There is a lot more to learn about Groovy. We recommend you check out Beginning Groovy and Grails by

Christopher M. Judd, Joseph Faisal Nusairat, and Jim Shingler (Apress, 2008).

CHAPTER 11 ■ GORM AND GRAILS

193

Getting Grails Running
The Grails persistence solution is so dramatically different from the other DAO-based persistence
solutions that we’ve explored so far in this book that we can’t effectively build on our existing
application code base, which we have been able to do up until now. Instead, we need to start over and
architect our gallery application using the Grails approach. This may seem like a daunting task at first,
but Grails comes with many shortcut templates and scripts designed to start stubbing out code for you.
This stub code is known as scaffolding, in Grails speak.

Installing Grails

The first step is to install Grails. Head over to http://www.grails.org, and download the latest release.
Unzip the downloaded archive and copy everything to a logical location on your hard drive. Next, make
sure that everything under the bin directory is executable. If you’re using a Unix-based operating system,
you can run chmod ug+x ./* from within the bin directory.

Finally, make sure the GRAILS_HOME environment variable is set up. GRAILS_HOME should point to the
location where you installed Grails. Also, make sure that you’ve added the GRAILS_HOME/bin directory to
your PATH, so that you don’t need to specify the full path to the Grails executables each time you want to
invoke a Grails script.

If you are using a Unix-based operating system, we recommend updating your ~/.bashrc script
within your home directory so that you don’t need to do this configuration more than once. On a Mac,
you can append the following lines to your ~/.bashrc:

export GRAILS_HOME=/opt/local/share/java/grails/
export PATH=$PATH:$GRAILS_HOME/bin

After you have Grails installed, the next step is to create our gallery application.

Creating a Grails Application

Grails ships with scripts that take care of generating boilerplate code to get your application started. The
first of these scripts that we will introduce is create-app:

grails create-app grailsGallery

Here, we pass grailsGallery as the only argument. Grails will churn for a few seconds, and voilà!

You now have a new Grails application set up and ready to go.
Part of the convention-over-configuration concept is organizing and naming key parts of your

application in a standardized way. The create-app script makes this easy by setting up the Grails
directory structure for you. After the create-app script completes, you will end up with the following
directory structure:

gallery ->
 grails-app
 conf
 spring
 resources.groovy
 Bootstrap.groovy

http://www.grails.org

CHAPTER 11 ■ GORM AND GRAILS

194

 Datasource.groovy
 Urlmappings.groovy
 controllers
 domain
 i18n
 services
 taglib
 utils
 views

 scripts
 src
 java
 groovy
 test
 integration
 unit
 web-app
 css
 js
 images
 WEB-INF
 index.gsp

Most of our coding effort will be focused on the grails-app directory, which is where the majority of
our Groovy code will live. Before we start getting our hands dirty, let’s take a brief tour of the Grails
application layout.

Not surprisingly, the grails-app/conf directory holds the application’s configuration. Grails was
designed to be very modular in nature, so it isn’t always necessary to explicitly configure each one of
your dependencies. However, since Grails is really a Spring application at its core, the grails-
app/conf/spring/resources.groovy file can be used to configure your dependencies. Although this is a
Spring configuration file, you’ll notice that it isn’t in XML format. Grails provides a custom domain-
specific language (DSL) to configure your Spring beans, and since this file is essentially executable
Groovy code, it can be a lot more flexible than a standard XML-based configuration.

■ Note The Groovy default application configuration approach uses a resources.groovy file. You can instead

create a resources.xml file, which allows the use of the more standard XML-based Spring configuration.

Using the Spring DSL is fairly straightforward. As an example, suppose we want to create an e-mail
service, so that we can notify end users via e-mail when new images are added to the gallery. We want to
configure the Spring e-mail component within our resources.groovy file so that user can send e-mail
from within our application. Here is how this configuration might look:

CHAPTER 11 ■ GORM AND GRAILS

195

beans = {
 javaMailSender(org.springframework.mail.javamail.JavaMailSenderImpl) {
 host = 'smtp.prospringhibernate.com'
 }
}

The pattern is fairly intuitive. The bean name is defined first, followed by the class name within

parentheses. Properties within the bean are then configured within a closure block, which is the part of
the code within curly braces ({}).

If we want to inject our javaMailSender bean into a Grails service or controller, we can simply rely
on default autowiring by name, by declaring a property named javaMailSender within the appropriate
Grails service or controller class:

class EmailService {
 def javaMailSender
}

Similarly, if we want to reference our Grails EmailService within another bean configured within our

resources.groovy file, we use its implicit bean name—in this case, emailService. For instance, we might
define a NotificationComponent bean within our resources.groovy file as follows:

beans = {
 notificationComponent(com.prospringhibernate.NotificationComponent) {bean ->
 emailService = ref("emailService")
 bean.factoryMethod = "getInstance"
 bean.singleton = "false"
 defaultNotificationMethods = ["email", "sms"]
 }
}

Notice that we’ve declared a bean parameter at the top of the block using bean ->. By declaring a

bean parameter, we are able to specify more explicit details related to the type of bean we are
configuring. In this case, we specified a factoryMethod of getInstance, which ensures that new instances
of this bean will be instantiated by calling getInstance(). We have also specified that this is not a
singleton bean.

Also notice that we have injected a reference to our EmailService by using the convention
ref("BEANNAME"), where BEANNAME is the name of our EmailService bean. We are able to apply most of our
Spring configuration knowledge to this Groovy-based DSL. However, notice the flexibility advantage
over XML in the following example:

beans = {
 javaMailSender(org.springframework.mail.javamail.JavaMailSenderImpl) {
 if (Environment.getCurrent() == "production") {
 host = "smtp.prospringhibernate.com"
 } else {
 host = "smtp.dev.prospringhibernate.com"
 }
 }
}

Clearly, interpretable code has its benefits over static XML.

CHAPTER 11 ■ GORM AND GRAILS

196

This overview only touches on some of the configuration options for Grails. It is also possible to
configure dynamic bean names, as well as specify property placeholders and override configuration.

■ Note The grails-app/conf/Bootstrap.groovy file provides simple hooks (init() and destroy()) for

handling application startup and shutdown events. During development, Bootstrap.groovy is an effective means

for seeding your application’s database with default data.

Configuring Your Application

The grails-app/conf/Config.groovy file is a centralized location for specifying key configuration details
about your Grails application. This file contains information about the character encoding your
application should use, as well as logging details (using log4j).

Grails leverages the innate concept of environments to facilitate the creation and separation of
different development and deployment scenarios. For instance, you will likely need to use a different
database (requiring variant configuration details) for development or testing than you would for your
production deployment. These concepts are built into the Grails core, making it easy to test with a
development database and then deploy your application to production for use with the live database,
without needing to remember to swap out the configuration. Environment-specific details are present in
several key configuration files.

The Config.groovy file contains an initial block of code to specify the default server URL for
production:

environments {
 production {
 grails.serverURL = "http://www.changeme.com"
 }
}

If you want to specify a different URL for development, you can modify the configuration snippet

accordingly:

environments {
 production {
 grails.serverURL = "http://www.prospringhibernate.com""
 }
 development {
 grails.serverURL = "http://www.prospringhibernate.com"
 }
}

There are no constraints on the kinds of environments your application defines or uses. You can add

as many environments as you see fit. This can come in handy for your organization’s development
process, build cycle, or testing strategy.

http://www.changeme.com
http://www.prospringhibernate.com
http://www.prospringhibernate.com

CHAPTER 11 ■ GORM AND GRAILS

197

Configuring Your Datasource

Since most web applications require a database, Grails defines a file specifically for configuring
datasource-related details: grails-app/conf/DataSource.groovy. This file also uses a custom Groovy-
based DSL, making this configuration clear and concise. The environment concept is built into this file
as well. Properties can be configured at a global level if they apply to all environments. Environment-
specific configuration, however, should be nested within the appropriate environment block.

In the case of our gallery application, here’s what our DataSource.groovy file might look like (keep in
mind that most of this file is already created for you, so you need to configure only the details that are
specific to your application):

dataSource {
 pooled = true
 driverClassName = "org.hsqldb.jdbcDriver"
 username = "sa"
 password = ""
}
hibernate {
 cache.use_second_level_cache = true
 cache.use_query_cache = true
 cache.provider_class = 'net.sf.ehcache.hibernate.EhCacheProvider'
}
// environment specific settings
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 // one of 'create', 'create-drop','update'
 url = "jdbc:hsqldb:mem:devDB"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:file:prodDb;shutdown=true"
 }
 }
}

Notice that the dataSource property is specified at the top of the file as well as within the

environments block. Global details, such as database connection pooling settings and the JDBC driver,
are configured globally by placing these details within a top-level dataSource block. Environment-
specific details, such as the database URL for the development, test, and production environments, are
configured in the dataSource blocks within their respective environments. If you need to use a different
JDBC driver for production, you could either move these details within the appropriate environment

CHAPTER 11 ■ GORM AND GRAILS

198

blocks or simply override the globally configured details within the appropriate environment. Again, the
types of environments you can configure are not restricted: development, test, and production are just
default environments created by the Grails templates.

Mapping URLs

The last file we need to cover in the grails-app/conf directory is UrlMappings.groovy. This file provides
an amazingly flexible construct for associating URL patterns with a particular controller and action. For
example, here’s how we might relate the pretty URL /category/panoramas with the CategoryController,
specifying that the panaromas category be displayed:

class UrlMappings {
 static mappings = {
 "/$controller/$action?/$id?"{
 constraints {
 }
 }

 "/category/$categoryName"(controller: CategoryController, action: "displayCategory")

 "/"(view:"/index")

 "500"(view:'/error')
 }
}

The mapping we described is actually the second block in this example. The first component of the

mapping is the part in quotes. We are essentially defining a regular expression that starts with
/category/. The $categoryName defines a parameter name that will be passed to your controller
automatically, using the specified chunk of the URL where the parameter name resides. In our example,
the part of the URL after /category/ will be extracted and then stored in the parameter named
categoryName.

If you look at the first block in the example, you will notice the default URLMapping. In this scenario,
we are defining $controller and $action parameters. These are special keywords; instead of denoting a
particular parameter, they define the controller to which the matching request should be directed, as
well as the corresponding action. In our category listing page example, we haven’t defined a $controller
within our mapping expression, so we instead specify this explicitly, as follows:

(controller: CategoryController,action: " displayCategory")

Now that we’ve looked at the Grails application directory structure, let’s move on to defining our

Grails domain model.

CHAPTER 11 ■ GORM AND GRAILS

199

Defining the Grails Domain Model
By default, Grails generates three core layers, which resemble the tiers we’ve discussed earlier in this
book: domain, controller, and service. To provide consistency and better enforce convention, Grails
enforces a directory structure to help organize and sequester classes from each respective layer. The
domain model typically serves as the foundation for a Grails application, so it is usually the first layer to
be defined.

As you probably already guessed, the domain model classes all go into the grails-app/domain
directory. By default, all domain classes will live in the default Grails package. However, you are free to
define your own package structure, and for larger applications, this is recommended. Additionally, if you
will need to access any of your Grails code from Java, you must keep your Grails classes within a
package, or it will be difficult to access them outside the Grails/Groovy world. You can also have your
Groovy classes implement an interface that is accessible to Java, as a means to better integrate your
Grails code with Java.

Let’s begin our Grails-based gallery application by defining our Person domain entity. Grails
provides scripts to help create most of the core Grails archetypes, each corresponding to a particular
template. You can edit these templates if you want to change the way your default views or domain and
service classes are created. To do this, you will need to run grails install-templates. You will then be
able to access (and modify) the templates from within the src/templates directory. For most Grails
development, the default templates are just fine.

To create our Person domain class, run the following:

grails create-domain-class Person

Once this script completes, you will find a Person.groovy class within the grails-app/domain

directory. Grails uses Hibernate behind the scenes to persist Person instances to, and retrieve them from,
the database. Unlike Hibernate, Grails does not require any mapping files or annotations , since
convention helps Grails infer most of what it needs to handle persistence for your domain model.

Now that we’ve created our stub for our Person domain entity, let’s define the rest of the properties:

class Person {

 String firstName;
 String lastName;
 String username;
 String password;
 String email;

 Integer roleLevel;

 public static final USER_ROLE = 1;
 public static final ADMIN_ROLE = 2;
 public static final SUPERUSER_ROLE = 4;
 public static final CONTACT_USER = 16;
 public static final COMMENT_USER = 64;

 static constrants = {
 firstName(maxSize:255, unique: false, blank: false)

CHAPTER 11 ■ GORM AND GRAILS

200

 lastName(maxSize:255, unique: false, blank: false)
 username(maxSize:255, unique: true, blank: false)
 password(maxSize:25, unique: false, blank: false)
 email(email:true, blank: false, unique: false)
 roleLevel()
 }

 static mapping = {
 cache true
 }

}

The first thing you will probably notice in this class is just how concise this code is. Most of the

properties should be self-explanatory. Since we are using Groovy, there is no need to define getters or
setters (these are implicit within Groovy). Also notice that there are no properties specified for id or
version; these fields are created by Grails automatically.

Adding Constraints and Validation

Let’s now look at the constraints block. Constraints allow you to better define each field within your
domain model, providing clues and requirements to Grails as to how your database schema should be
modeled. A number of constraint options are available, but here are some of the most useful:

• blank

• minSize

• maxSize

• range

• unique

• size

• range

• inList

• email

• creditCard

• matches

• nullable

Some of these constraints can be extremely powerful. For example, the matches constraint allows
you to specify a regular expression that will be used to validate the value in the specified field, ensuring it
matches the specified regular expression.

The domain-specific constraints, such as email and creditCard, will help to ensure that a field
conforms to a valid e-mail address or credit card number, respectively.

CHAPTER 11 ■ GORM AND GRAILS

201

If you need a custom constraint, Groovy includes a construct that allows you to define your own.
You specify the property, followed by a mapping of constraint types and their corresponding values.

Here is an example:

username(blank: false, maxSize: 255, unique: true)

This will ensure that the username value cannot be left blank and that the database field has a

maximum size of 255 characters. Additionally, a unique constraint will also be added to the username
database field.

Constraints come into play when you attempt to save a domain entity to the database. If a particular
field is not validated, an error will be attached to a dynamic errors property on your domain instance.

Additionally, the constraints defined for each property, coupled with a consistent naming
convention, are assembled into error message codes that are automatically used within the default
Grails Groovy Server Pages (GSP) templates. For example, if you attempt to save a Person entity without
specifying a username, a validation error will be raised and associated within the instance’s errors
property. Afterward, this error will be properly rendered within the default GSP template, using an error
code that is defined in the application’s messages.properties resource bundle.

When a validation error code is found, Grails will attempt to look for the appropriate code within the
messages.properties file, starting with the most specific naming convention and moving toward the
more generic conventions until a match is found. This ensures that if you don’t bother adding a specific
error code in your messages.properties file, users will still see a sensible error (something to the effect
that the blank constraint for the username field has been violated). However, you can easily override this
default message by specifying a blank constraint error code that’s specific to the Person class.

Defining Associations and Properties

The Person domain entity is a fairly simplistic example, as it doesn’t really contain any associations or
customized mappings. Let’s take a look at a more complex entity to see how Grails addresses a typical
scenario. Update your domain model, and then we’ll dive deeper. Use the grails create-domain-class
script to stub out the ArtEntity, Category, and Comment classes, respectively. The Comment class would
then be modified as follows:

class Comment {

 String comment;
 Date commentDate;
 Person person;

 static belongsTo = [commentedArt: ArtEntity]

 static constraints = {
 comment(maxSize: 2000, blank: false)
 commentDate(nullable: false)
 }

 static mapping = {
 cache true
 }

}

CHAPTER 11 ■ GORM AND GRAILS

202

This class is similar to the Person entity we defined earlier. We’ve defined a few properties, as well as

a constraints block. One addition is the belongsTo field, which provides clues to Grails about the
relationship between two entities. In this example, we are defining a parent-child relationship between a
Comment and an ArtEntity. We are also defining a property called commentedArt and declaring that this
property is of type ArtEntity. We could specify additional belongsTo relationships by appending them to
this map. In each case, the key represents the property name, and the value represents the type.

■ Note The belongsTo property defines the owning side of an association. When a domain class specifies a

belongsTo property, it is not the owner of the association. The association owner is the class referenced by the

belongsTo property.

The use of belongsTo also asserts cascading rules. In the previous example, we are declaring that
ArtEntity is the parent in this relationship, meaning save and delete operations (on ArtEntity) will
cascade appropriately to related Comment instances. This relationship will become clearer after we
examine the opposing side, which is the ArtEntity domain class.

class ArtEntity {

 String title;
 String subTitle;
 Date uploadedDate;
 Date displayDate;
 int width;
 int height;
 String media;
 String description;
 String caption;
 ArtData_Gallery galleryPicture;
 ArtData_Storage storagePicture;
 ArtData_Thumbnail thumbnailPicture;
 boolean isGeneralViewable;
 boolean isPrivilegeViewable;

 static hasMany = [categories: Categories, comments: Comment]
 static belongsTo = Category

 static constraints = {
 title(blank:false, maxSize: 255)
 subTitle(blank:true, maxSize: 255)
 uploadedDate(nullable: true)
 displayDate(nullable: false)
 width(nullable: true)
 height(nullable: true)
 media(nullable: true, maxSize: 255)
 description(nullable: false, blank: false, maxSize: 2000)

CHAPTER 11 ■ GORM AND GRAILS

203

 caption(nullable: true, maxSize: 2000)

 }

 static mappings = {
 cache true
 }

}

This class follows a similar pattern, but uses the hasMany property, which defines a one-to-many

association to another class. It can also be used to declare a many-to-many association, as long as one
side of the relationship is deemed the owner of the association (through the use of belongsTo).

The hasMany relationship works in a similar fashion to the belongsTo convention. You are defining a
map in which the keys correspond to the property (that is, collection) names and the values correspond
to the domain class. In our example, we are defining two associations: comments and categories. When
Grails deciphers this property, it will create corresponding collections to be used to hold these
associations. We can define the type of collection we would like to use by explicitly declaring the
collection as a property. For instance, we define our categories association (in our ArtEntity domain
class) as a java.util.Set by explicitly defining this property:

Set categories = new HashSet();

■ Tip If you need to ensure that a collection is logically ordered, you can define a property of type SortedSet, and

then have your collection class implement the Comparable interface, in which the ordering logic is specified. For

instance, if we wanted our categories to be ordered alphabetically, we would have our Category class implement

Comparable and define a compareTo(def obj1, def ob2) method in which the ordering is based on the

category name.

Customizing Domain Class Hibernate Mappings

You probably noticed the static mappings property defined in each of our example domain classes. This
field can be used to enhance the Hibernate mapping that Grails creates and manages behind the scenes.
In our example, we just assert that the domain entity be cached, using the CacheManager specified in the
Config.groovy file. However, the mapping construct is extremely flexible and can be used to modify
many areas of the default Hibernate mapping for a particular domain class. For instance, if you need to
override the table name or the default column name or type, the mapping DSL provides a means for this
to be accomplished. It is also possible to add caching rules for collections or override the default fetching
policy for a collection, specifying whether a particular collection will be lazily or eagerly fetched. You can
even specify that one or more columns map to a particular Hibernate UserType.

In our earlier Hibernate example, we defined a hierarchy of ArtData classes (each extended from the
ArtData base class). In Grails, implementing polymorphic domain classes is even simpler. Here is our
ArtData class:

CHAPTER 11 ■ GORM AND GRAILS

204

class ArtData {

 byte[] picture;

 static mapping = {
 cache true
 }

}

And here is the ArtData_Storage class (which extends ArtData):

class ArtData_Storage extends ArtData {

}

That’s really all there is to it. By default, Grails uses the table-per-hierarchy strategy, meaning it
persists the sum of all the properties across the entire hierarchy into a single table.

Unlike with Hibernate, there is no need to explicitly define a discriminator (to help differentiate
between types), as Grails will take care of this. However, Grails is flexible enough to allow you to use a
different polymorphic strategy. For example, you could use the custom mapping DSL described earlier
like so:

static mapping = {
 tablePerHierarchy false
}

Now that we’ve defined our Grails domain model, let’s move on to persisting and retrieving this
data.

Using Active Record As an Alternative to DAOs
Throughout this book, you’ve learned how Spring simplifies the development of a persistence tier by
enforcing several key design patterns, most notably the DAO, Template, and Facade patterns. Although
Grails is built on the foundations of Spring and Hibernate, it provides an alternative to the DAO pattern
typical of most Spring applications. Following the lead of other rapid development frameworks, such as
Ruby on Rails, Grails utilizes the Active Record design pattern as the approach for handling database
persistence operations.

In keeping with the Active Record pattern, a table in the database is represented directly by a
domain class. For instance, in our gallery example, we have already defined a Person class that describes
a corresponding Person table in our database, meaning table fields and associations are represented by
properties within our Person class.

This approach doesn’t seem too different from the domain models we’ve used throughout this
book. However, the key distinction is that the domain class also serves as the wrapper around database
operations. Dynamic static methods are injected into each domain class, providing a means for querying
for instances of that class’s type. As in Hibernate, each row in our database is represented by a
corresponding instance of the appropriate domain class. However, save() and update() methods are

CHAPTER 11 ■ GORM AND GRAILS

205

injected into each domain class instance, allowing newly created or retrieved instances to be persisted
by invoking save() or update() directly on that instance.

For example, if we want to create or update a particular row in the Person table, we just call
person.save() directly on the person instance we wish to save. If we want to load a particular Person
record from the database, we simply call the static method Person.get(id), passing in the primary key
for the record we wish to retrieve.

Contrast this approach with the DAO pattern, in which we need to create a separate abstraction
layer for all database operations related to a particular domain entity. The Active Record pattern
dramatically simplifies our effort for retrieving and persisting data, since there is no need to define any
DAO classes or methods. Instead, this functionality is implicit within our domain model through
dynamic behavior that is injected into each domain class.

If we don’t need to define a DAO implementation, where do the implementations for methods like
Person.get(id) and Person.save() come from? The Active Record pattern states that we should simply
be able to define a domain model and begin calling methods on these classes to achieve the persistence
logic we are trying to build. The question remains, however: if we can simply call save() on our Person
instance, where do we define the behavior for this method? Let’s take a look under the hood of GORM to
get a better sense of how this works.

Looking Under the Hood of GORM
One of the key advantages to languages like Groovy is that they are dynamic, which means, among other
things, that you are able to define new behavior for your classes at any time. In the case of Grails and the
Active Record pattern, the framework is able to enhance your domain model with new functionality
related to persistence. This strategy is a key Groovy concept and is enabled through the use of Groovy’s
metaClass construct, as discussed earlier in this chapter.

Working with Dynamic Finder Methods

Grails injects new functionality into every domain model class to facilitate the Active Record pattern.
Unlike with the DAO approach, no methods need to be defined up front. Instead, Grails uses naming
conventions to interpret how to interact with the database. Using the name of the method invoked,
Grails intuits what type of operation to perform. This is best explained through a few examples.

Getting back to our gallery application, let’s define a simple unit test that illustrates saving and
loading our Person domain class. Since we want to demonstrate how Grails behaves within a running
application, we need to create an integration test, which actually bootstraps a Spring
ApplicationContext, so we can test functionality that relies on core Grails features such as persistence.
Grails ships with a script that creates the integration test scaffolding for us:

grails create-integration-test Person

After running this command, you will find an integration test stub under

test/integration/grailsGallery/PersonTests.groovy. In our test, we are going to verify that we can
instantiate, save, and load a Person domain entity:

CHAPTER 11 ■ GORM AND GRAILS

206

class PersonTests extends GroovyTestCase {

 ...

 void testSavePerson() {

 Person person = new Person(
 [firstName: "Sam", lastName: "Smith",
 username: "ssmith", password: "1234",
 email: "sam@notarealaddress.com",
 roleLevel: Person.ADMIN_ROLE])

 assertTrue("Person entity is valid and can be saved",
 (person.validate() && person.save()))

 assertNotNull ("person id is null", person.id)

 def loadedPerson = Person.get(person.id)

 assertTrue(
 "Person was successfully loaded",
 loadedPerson != null &&
 loadedPerson.username != null)
 }

}

This is a very straightforward test. Notice that we instantiate our Person entity using a java.util.Map

containing default properties for our Groovy class. After our Person instance is instantiated, we verify
that the instance validates and saves successfully. validate() verifies all the requirements specified
within our domain model’s constraints block. If our domain model does not validate successfully,
Grails will set an errors property on our Person instance. The errors property contains details on each
validation failure and is an implementation of the org.springframework.validation.Errors interface.
This interface is quite useful for tracking and managing form submissions, and should be familiar to
users of Spring MVC.

In the event of a validation error, we can iterate through each error to find out exactly what went
wrong:

person.errors.allErrors.each {curError ->
 log.error("Error saving Person instance: ${curError}");
}

We can also get an error count this way:

person.errors.errorCount()

■ Note A log instance variable is automatically injected in all controller and service classes, allowing you to easily

emit logging messages. This is an instance of log4j’s Logger class, and is configured in the Config.groovy file

described earlier in this chapter.

x

mailto:sam@notarealaddress.com

CHAPTER 11 ■ GORM AND GRAILS

207

Grails ships with a tag library that helps to render errors within a typical form submission.
Additionally, the default Grails templates will create GSP views that will automatically render clear error
messages in the event of any validation or save failures. Of course, default error messages can be easily
overridden by updating the messages.properties file.

At this point, you should have a solid understanding of how to go about saving and loading a
domain entity. Unfortunately, that won’t get you very far. You’ll want to be able to query the database.
To demonstrate how that works, we first need to add some data to our database.

Let’s return to the PersonTests.groovy file and define a setup() method that will be executed before
each of our tests are run and allow us to populate the database with some sample data:

void setUp() {
 def baseNames = [
 "Sam", "Bob", "Heather",
 "Steve", "Sofia"]
 baseNames.each {curName ->
 def person = new Person(
 [firstName: curName,
 lastName: curName,
 username: curName,
 password: "1234",
 email: "${curName}@apress.com",
 roleLevel: Person.USER_ROLE])
 assertTrue (
 "Person entity is valid and can be saved",
 (person.validate() && person.save()))
 assertFalse(
 "There should be no errors on the saved entity",
 person.hasErrors())
 }
}

This method is a little archaic, as we simply iterate through a java.util.List of names and create

new Person entities using these names as seed data for each field. Also notice that we’ve added a new
assertion to verify that person.hasErrors() is false. After a save operation, calling hasErrors() is a useful
idiom to ascertain that there were no errors preventing the entity from being persisted to the database.
You will see this approach used frequently within the default Grails controllers.

Now that we have a way to seed our database with some sample data, let’s see how Grails makes
querying the database very intuitive.

void testFinders() {

 def foundPeople = Person.findAllByUsername("Sam");

 /* foundPeople should reference a List
 containing one Person entity */
 assertEquals("One person found", 1, foundPeople.size())

 /* singlePerson should refer to a single Person
 entity, and the lastName property
 should be equal to Sam*/
 def singlePerson = Person.findByUsername("Sam")

CHAPTER 11 ■ GORM AND GRAILS

208

 assertEquals(
 "Lastname is Sam", "Sam", singlePerson.lastName)

 def allPeopleSorted =
 Person.list(max: 3, order: "asc",
 sort: "username", offset: 0);

 assertTrue(
 "Three people returned", allPeopleSorted.size())

 assertEquals(
 "First person in list is Sam", "Sam",
 allPeopleSorted[0].username)

}

This new method helps to illustrate a lot of the flexibility for querying data using Grails’ dynamic

finder concept. Notice that the way each method name is formatted determines the query that
eventually is generated on the database.

In our first example, we run Person.findAllByUsername("Sam"). This type of structure returns all
data that matches the field username. Notice that we use camel casing. The format might be better
expressed using the following structure:

DOMAIN.findAllBy<PROPERTYNAME>

If you look at the assertions, you will notice that this type of method will always return a collection

of objects. Conversely, our next assertion uses the format:

DOMAIN.findBy<PROPERTYNAME>

This method works in a similar fashion but will return only a single object. This claim is validated on
our assertion, as we demonstrate that the returned value is a single Person instance, instead of a
collection.

Both the findAllBy and findBy dynamic methods can also be expanded, in order to specify
modifiers on the property name or provide further constraints. For example, if we wanted to find all
users that have first and last names that start with the letter p, this could be expressed in the following
method:

Person.findAllByFirstNameIlikeAndLastNameIlike("P%", "P%");

In this example, we first specify a conditional property of firstName and then modify the condition

using Ilike. The Ilike modifier is similar to the like modifier but is case-insensitive. Next, we append
And to the method name to further constrain the query with an additional property condition.

A similar approach may be taken to find out the number of rows in the database that match a
specified set of conditions by using the countBy* dynamic finder method. Based on this example, we can
define a method-naming structure that delineates the way in which a dynamic-finder method is
formatted:

countBy/findBy/findAllBy<PROPERTYNAME><MODIFIER>AND/OR<PROPERTYNAME><MODIFIER>

CHAPTER 11 ■ GORM AND GRAILS

209

The following are some of the modifiers that can be used:

• Between

• GreaterThan

• GreaterThanEquals

• LessThan

• LessThanEquals

• Like

• Ilike

• Not

• Equal

Our next example simply calls Person.list(), which returns all the instances of the Person domain
class. However, we also pass in a Map of options that help to define constraints and sorting options on
our returned data. These options can also be used for pagination, since you can set the maximum
number of items to return (max), as well as an offset. Table 6-1 summarizes the options that can be
passed to the list() method.

Table 6-1. Options for Sorting and Paginating a Result Set

Option Purpose

sort Field to sort on

order Direction of sort (ascending or descending)

max Maximum number of items to return

offset Offset within total result set for first item returned

A Map containing the options listed in Table 6-1 will also work with the findAllBy* methods. For
instance, we could request the second page (assuming each page contains ten objects) of Person
instances, sorted by name in descending order:

def people = Person.list(sort: "name", order: "desc", max: 10, offset: 10);

CHAPTER 11 ■ GORM AND GRAILS

210

Creating Advanced Query Methods

The dynamic finder approach described in the previous section works well for most types of queries.
However, sometimes having a little more flexibility is important. Grails also provides the find() and
findAll() methods, which allow you to utilize arbitrary HQL queries. Find() returns a single entity, and
findAll() will return multiple entities. Alternatively, an even more flexible executeQuery() method
allows you to define queries that don’t return a specific domain entity.

Let’s look at an example using HQL. Suppose we want to query for all ArtEntity objects that fall
within a particular category. This could be represented using the following query:

List artEntities = ArtEntity.findAll(
 "from ArtEntity artEntity left join
 artEntity.categories as category with
 category.id = :categoryId",
 ["categoryId": category.id])

Notice that we use a left join on the Category domain object, specifying a with constraint for those
categories matching the specified category ID.

We use named parameters in this query. As in a typical HQL query, parameter names are
represented in the query by prefixing the name with a colon. The parameter name-value mappings are
then passed in as a Map (as the second parameter to the findAll query).

Using the Criteria API

Just like standard Hibernate, Grails provides a means to express queries using the Criteria API. However,
because we are using Groovy instead of Java, we can take advantage of a Criteria DSL, allowing us to
define our query criteria in a more concise and readable way. For instance, we could query for all
ArtEntity instances within one of two specified categories that also fall within a particular date range
using the following query:

def criteria = ArtEntity.createCriteria()
def currentDate = new Date()
def earlierDate = currentDate – 3
def catName1 = "autumnPicts"
def catName2 = "summerPicts"
def results = criteria.list {
 between('displayDate', earlierDate, currentDate)
 categories {
 or {
 equals("name", catName1)
 equals("name", catName2)
 }
 }
}

CHAPTER 11 ■ GORM AND GRAILS

211

The preceding example uses the Grails Criteria Builder, allowing us to express a fairly complex set of
restrictions in a very intuitive manner. If you recall the standard Hibernate Criteria API, you should be
able to infer most of what is occurring in our example. Criteria disjunctions and conjunctions can be
specified using or and and blocks, respectively. Similarly, association criteria may be expressed by
defining a block with the association name, which is what our categories block does in the preceding
example. Within our categories block is a nested or disjunction, and within that block are our equals
restrictions, allowing us to filter those categories that match either of the category names we’ve
specified.

Handling Associations in Grails
We have described how associations can be defined by using the hasMany and belongsTo conventions.
These constructs are effective for indicating how our domain entities relate to each other. Once our
domain model is defined, we need to manipulate it.

Recall that in the Hibernate world, it is important to write code to ensure that bidirectional
associations are properly managed. For instance, it is common practice to define add* and remove*
methods within a Hibernate domain class that ensure both ends of an association are properly set or
removed. Grails helps to ensure that both sides of an association are properly referenced (or
dereferenced) by providing dynamic addTo* and removeFrom* methods. For instance, if we want to add
new Comment instances to an ArtEntity, we could do so using the following code:

def loadedArtEntity = ArtEntity.findByName("Awesome Panorama");
def loggedInUser = Person.findByUsername("Sam");
Comment newComment = new Comment(
 comment: "Cool pict!",
 commentDate: new Date(),
 person: loggedInUser);
loadedArtEntity.addToComments(newComment);
if (!loadedArtEntity.hasErrors() && loadedArtEntity.save()) {
 println("new comment saved");
} else {
 println("Error saving new comment");
}

In our example, we define a new Comment and then add it to the ArtEntity comments association using

the addToComments method. We could also choose to remove a particular comment reference using the
removeFromComments method. Notice that we did not invoke save() on our new Comment instance directly.
Instead, we saved our ArtEntity instance, allowing the save operation to cascade to the comments
association since we have specified that ArtEntity is the owner of the association. This association
ownership is expressed in this line within the Comment domain class:

static belongsTo = [commentedArt: ArtEntity]

CHAPTER 11 ■ GORM AND GRAILS

212

Scaffolding and Building Your Grails Application
With our domain model defined, we can rely on Grails’ generation scripts to create scaffolded
functionality for our gallery application. You can download the full Grails-based gallery application from
this book’s web site.

To generate controllers and views for a particular domain class, make sure you are at the root of our
Grails gallery application and then run the following:

grails generate-all <<domain-class>>

Be sure to swap domain-class for the name of the domain entity for which you would like to

generate controllers and GSPs. You can also generate just the controllers or just the GSPs by calling the
following scripts, respectively:

grails generate-controller <<domain-class>
grails generate-views <<domain-class>>

We strongly recommend examining the generated controllers and views to get a better sense of how

a typical Grails application works. Keep in mind that the generated code is based on scaffolding
designed to work in a very generic way (so that it works for all types of domain models). Therefore, it is
also useful to examine the sample Grails gallery application for a slightly different perspective.

■ Note For details on Grails development, including building controllers and GSPs, see The Definitive Guide to

Grails, Second Edition, by Graeme Rocher (Apress, 2009).

You can easily start up your Grails application using a particular environment, by passing the
grails.env environment variable into the grails run-app script:

grails –Dgrails.env=development run-app

This command will automatically start up our application using the development environment

configuration. You wouldn’t normally want to run a production or staging application this way, but it is
convenient for testing purposes. Internally, Grails uses an embedded Jetty server to run your application
when you use the run-app command.

You can deploy Grails to any application server if you create a WAR file using the Grails war
command. If you want to create an application for deploying into your own application server, you
would instead run this:

grails –Dgrails.env=production war

We recommend explicitly using –Dgrails.env to specify an environment, as it supports both default

and custom environments. However, if you are using the default Grails environments, you can use this
shortcut:

grails prod war

CHAPTER 11 ■ GORM AND GRAILS

213

Defining a Transactional Service Layer in Grails
You’ve learned about transactional support throughout this book. You know how important it is to
ensure that operations within a particular method all complete (or roll back) as a single, atomic unit of
work. Grails also encourages the use of the service facade pattern, and makes defining transactional
requirements extremely easy. However, in the name of flexibility, Grails provides a couple of options for
ensuring persistent operations occur within a transactional context.

If you don’t want to create a service class, an alternative approach for ensuring persistence
operations occur within a transactional context is to enclose a block of code inside a closure and pass
this to the dynamic withTransaction method, injected to each domain class. For instance, we could
ensure an update to a category and an ArtEntity occurs within a transaction by doing the following:

Comment.withTransaction {txStatus ->
 def comments = Comment.findAllByCommentDateGreaterThan(lastWeek);
 comments.each {Comment curComment ->
 if (Comment.hasSpam(curComment)) {
 curComment.delete()
 }
 }
}

Here, we are actually defining an anonymous closure block and passing this closure to the Comment

domain object’s dynamic withTransaction method. This is a trivial example, but it illustrates how simple
defining a transaction can be using Grails.

■ Note The txStatus closure parameter is an org.springframework.transaction.TransactionStatus object,

which allows you to get information about the currently executing transaction and trigger a rollback

programmatically by calling txStatus.setRollbackOnly().

A cleaner approach is to implement a service layer and organize your transactional operations
within a service method. In Grails, you can create a new service method by running the following
command:

grails create-service servicename

This will create a new service within the grails-app/services directory. Grails has a fairly simplistic

way of declaring whether a particular service class should be transactional. Just add the following to the
top of your service class:

static transactional = true;

If transactional is set to true, your methods will all run within a transactional context. If the static

property is false, a transaction will not be used.

CHAPTER 11 ■ GORM AND GRAILS

214

Summary
In this chapter, we’ve covered some of the fundamentals for developing a web application using Groovy
and Grails. Grails provides an interesting contrast to the topics covered in the previous chapters.
Although based firmly on Spring and Hibernate, Grails utilizes Active Record as an alternative to the
DAO design pattern. This approach is more practical in Grails due to its use of the dynamic language
Groovy, allowing new behavior and methods to be dynamically defined. Through the use of convention-
over-configuration, Grails can significantly reduce the amount of effort required to get a working
application up and running.

Despite some of these differences, Spring’s profound influence is clearly present, and most of the
lessons and patterns utilized with other persistence frameworks can still be applied to Grails. You’ve
seen how some of the fundamental Spring concepts, such as dependency injection, can be further
enhanced through Groovy-based configuration and implicit, convention-based wiring.

C H A P T E R 1 2

■ ■ ■

215

Spring Roo

SpringSource has a growing track record of delivering software that removes impediments that plague
enterprise software engineers. Spring Roo is its latest ambitious attempt to bring rapid application
development (RAD) to Java developers.

In this chapter, we’re going to rebuild our art gallery application from scratch so that you can see
just how quickly Roo can jump-start a project. This will also provide you with an excellent opportunity to
compare and contrast what we’ve done by hand up to this point with everything that Roo generates
automatically. The productivity gains will be immediately obvious.

What Roo Is (and What It Is Not)
Roo’s architecture revolves primarily around Spring and AspectJ, the AOP framework that Spring uses to
express pointcuts throughout the various Spring modules. AspectJ provides a feature called inter-type
declaration (ITD), which Spring Roo uses as a part of its code-generation process. ITD allows for a clean
separation of your source code (.java files) and Roo’s generated source code (.aj Aspect ITD files).
These two source files are then combined during a compilation step to fabricate bytecode representing
all of the intended functionality.

This clean separation provides exactly what you would expect from a RAD framework: convention
over configuration is realized via the generated .aj source files, and you may code your normal .java
classes, overriding the conventions as you deem appropriate, without extending or implementing any
Roo-specific classes or APIs. As a result of this clever approach, all Roo code will look and feel completely
natural for Java developers.

While an IDE isn’t required to use Roo, IDEs like Eclipse and SpringSource Tool Suite (STS) can take
advantage of Java’s static typing to provide full integration for the conveniences like code completion.

Because of the compilation approach Roo takes, the framework imposes absolutely no
requirements on your runtime at all! It’s a simple, effective vehicle for speeding up development and
empowering developers to be productive with Java, without the learning curve associated with picking
up new languages and runtime frameworks.

The core infrastructure of Roo delivers capabilities like file monitoring, metadata management, and
type introspection. One of Roo’s greatest assets is its add-on infrastructure. Roo is a very young project,
but its library of add-ons is already impressive. Roo 1.0.x was implemented as a single classloader. As of
1.1.0, however, Roo is entirely based on OSGi.

OSGi (formerly known as the Open Services Gateway initiative, now an obsolete name) is a module
system and service platform for the Java programming language that implements a complete and
dynamic component model. These modules, referred to as bundles in OSGi parlance, can be installed,
started, updated, and uninstalled without restarting the application. Each bundle has its own

CHAPTER 12 ■ SPRING ROO

216

classloader, and bundles may interact with each other through a service registry. The modularity
provided by OSGi offers an extensible platform for Roo. All of the key components that you interact with,
such as Hibernate and automated integration testing, are actually built as OSGi bundles. This
architecture enables the community to continue to extend Roo.

At first blush, it might seem a bit strange that SpringSource has two distinct RAD frameworks in its
stable: Grails (covered in the previous chapter) and Roo. But we believe that the two are sufficiently
different to coexist. On green field projects where a team is afforded the luxury of time to learn
something new and open to using dynamically typed languages, we would be hard-pressed not to
recommend using Groovy and Grails. But if you’re working in the context of a legacy application, or just
want to stick with the tools and language you know best, Roo is a fantastic alternative. In this chapter, we
hope to show you why.

JAVA, GRAILS, AND ROO

Java enjoys a very strong foothold in the enterprise, and for good reason. Java was created by James
Gosling and first released by Sun Microsystems in 1995. Fifteen years later, its ecosystem is enormous!
Java has been used to program everything from cell phones to kitchen appliances to incredibly complex
global trading systems that require submillisecond response times. It’s frequently taught as a part of
computer science curriculums, and there are legions of engineers with extensive experience using Java in
the enterprise. This ensures easy access to talented engineers at all experience levels. Additionally, there
are many frameworks and libraries to choose from, both open source and commercial, so that you don’t
need to reinvent the flat tire every time you are presented with commonly faced problems for which design
patterns and best practices are well studied and understood. Development teams can reap prodigious time
and cost savings by reusing or extending existing software. Such system scaffolding enables you to focus
on writing code that truly differentiates your organization. All of these reasons make selecting Java as the
platform that powers a business very attractive.

Despite Java’s promise in the enterprise, all is not rosy for the individual Java programmer. As web
development in general, and open source software in particular, has blossomed over the past decade,
we’ve seen a tremendous influx of new programming languages and web frameworks (and interestingly
enough, we’re seeing old languages finding new niches as well). If you’ve spent any time exploring some
of these alternate technologies, Java’s productivity shortcomings become readily apparent. There are
many technical hurdles when programming in a Java environment that can slow down a developer. Among
them are compilation steps, a need to restart your application server to see the effect of changes, and
what many cite as the “high ceremony” aspect of Java, whereby engineers lose precious time writing and
maintaining an inordinate amount of boilerplate code.

Within the Java community, we’ve seen frameworks that employ newer scripting languages emerge,
aiming to deliver faster development models on top of the battle-tested JVM. Grails is one such framework,
written in the Groovy language, which rose to prominence under the stewardship of Graeme Rocher and
was later acquired by SpringSource.

As you learned in Chapter 11, Grails delivers increased productivity through the software design paradigm
known as convention over configuration (sometimes referred to as coding by convention). Frameworks that
apply this paradigm are often said to be “very opinionated.” They strive to reduce the number of decisions
that a developer must make in building an application, while still providing ample hooks for you to specify

CHAPTER 12 ■ SPRING ROO

217

or override behavior where your application deviates from convention. For example, in our art gallery
application, a framework using convention over configuration would ensure that the Person domain class
maps to a corresponding database table named person by default. The framework would also provide a
means to override such behavior if we knew that our database table was actually named user rather than
person.

The very nature of Groovy as a dynamically typed scripting language obviates the need for compilation
steps and, in many cases, even application server restarts. Grails further lessens the burden on developers
and addresses the hurdles mentioned earlier through heavy use of reflection and Groovy’s
metaprogramming model in order to dynamically generate code at runtime, thereby alleviating much of the
boilerplate code required for typical web applications.

Conversely, under the direction of Ben Alex, Spring Roo lets engineers leverage pure Java, complete with
all the tooling they know and love, while speeding up the development life cycle through extensive code
generation.

Creating a Domain Model with Roo
Domain-driven design (DDD) is a methodology for developing software popularized by Eric Evans in his
exceptional book Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional, 2003). DDD attempts to model real-world systems or processes in
software by focusing on and refining your application’s domain layer throughout the entire
development process. To achieve this, Evans advocates that you begin your work in a highly iterative and
interactive manner with a domain expert to define a ubiquitous language. This ubiquitous language
provides consistent terminology and definitions so that engineers and domain experts can effectively
communicate about entities in the system.

Spring Roo doesn’t explicitly advocate DDD, but since Roo places so much emphasis on your entity
layer, the principles of DDD are a natural fit. As an introduction to Roo, we’ll walk through using it to
create our art gallery applications domain, shown in Figure 12-1.

CHAPTER 12 ■ SPRING ROO

218

Figure 12-1. The art gallery domain model

Getting Started with Roo

Be sure that you have the prerequisites, Java 5 or higher and Maven 2.0.9 or higher, configured on your
system. Then download and follow the installation instructions for the stand-alone version of Roo
available at www.springsource.org/roo to ensure that roo is available on your path.

Next, create a directory on your machine for your new project, named rooGallery. Change into this
new directory and execute roo. You’ll enter the Roo shell environment and be presented with a Roo
welcome screen, as shown in Figure 12-2.

http://www.springsource.org/roo

CHAPTER 12 ■ SPRING ROO

219

Figure 12-2. The Roo shell

■ Tip As you explore Roo, you can use hint and tab completion liberally to get contextual help from Roo. Each

Roo command has an extensive list of options that you may specify. Be sure to fiddle with the intelligent tab

completion in the Roo shell as you tinker with commands to see how Roo steers you down the right path,

eliminating any need to memorize the Roo commands.

Before we create a new project, in the Roo shell, type in the osgi command and use tab completion
to see all of the options that Roo provides. One of the most basic OSGi commands supported by the
Apache Felix runtime upon which Roo is based is ps. Executing osgi ps will list all of the OSGi bundles in
the Roo runtime, along with version information and the status of the bundle, such as ACTIVE,
STARTING, and so on

CHAPTER 12 ■ SPRING ROO

220

Creating a New Project

Let’s get down to business. First, create your project using the project command at the Roo shell, as
follows:

roo> project --topLevelPackage com.prospringhibernate.gallery

Created ~/rooGallery/pom.xml
Created SRC_MAIN_JAVA
Created SRC_MAIN_RESOURCES
Created SRC_TEST_JAVA
Created SRC_TEST_RESOURCES
Created SRC_MAIN_WEBAPP
Created SRC_MAIN_RESOURCES/META-INF/spring
Created SRC_MAIN_RESOURCES/META-INF/spring/applicationContext.xml
Created SRC_MAIN_RESOURCES/log4j.properties

This command creates all of the necessary directories for a Maven project. Additionally, it sets up

your Maven pom.xml file and creates a Spring applicationContext.xml file.
From the Roo shell, execute hint to see how the messaging has updated to reflect the current

context of your application. You’ll see that you have the basic structure, but no mechanism for
persistence. So we’ll follow Roo’s suggestion and configure our JPA provider and associated database
using Hibernate and the H2 in-memory database, as follows:

roo> persistence setup --provider HIBERNATE --database H2_IN_MEMORY

You’ll notice in the resulting output that Roo creates a JPA persistence.xml configuration as well as

a database.properties file. It also modifies the applicationContext.xml file and introduces a handful of
dependencies to the pom.xml file.

After just two commands in Roo, you now have a completely configured Spring 3 and Hibernate 3.5
application. Roo has created many of the constructs we covered earlier in this book automatically with
sensible defaults, including all the Spring beans necessary for JPA and declarative transaction
management.

■ Note As someone who has been using Unix variants for almost two decades, it’s hard not to fall in love with

Roo’s interactive shell. The Roo shell is so much more than just an interface for executing commands. Whenever

you start up a Roo shell, whether it’s from a Unix prompt or within an IDE, Roo keeps tabs on the files in your

project and seamlessly makes modifications to your project on the fly in the background as you make changes to

the code. This may sound a little disturbing at first, but those ITD files we mentioned earlier localize Roo’s

changes. Roo won’t touch your Java files unless you explicitly issue commands to do so. And you, as a developer,

just need to respect Roo’s turf and shy away from editing the ITD files themselves.

CHAPTER 12 ■ SPRING ROO

221

As we’ll demonstrate later in this chapter, it is incredibly easy to override Roo’s automatically
generated behavior. All of these considerations give you a lot of choice when developing an application.
You may modify your code within your IDE as you normally would (for instance, to add fields to
entities), or you can hop into your Roo shell and create your code in a command-line savvy way. This
automation and flexibility of choice frees up precious development time to focus on what matters: the
business problem at hand.

Adding Entities

Now we’ve created a project and configured our persistence layer. Again, execute the hint command
within the shell, and you’ll see that Roo is suggesting that we begin fleshing out our domain with the
entity command. The entity command generates a simple JavaBean with JPA annotations. We’ll start
by creating our ArtEntity type using the entity command, as follows:

roo> entity --class com.prospringhibernate.gallery.domain.ArtEntity --testAutomatically

Created SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain
Created SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity.java
Created SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity_Roo_Entity.aj
Created SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity_Roo_ToString.aj
Created SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity_Roo_Configurable.aj
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/ArtEntityDataOnDemand.java
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/ArtEntityIntegrationTest.java
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/
 ArtEntityDataOnDemand_Roo_Configurable.aj
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/
 ArtEntityDataOnDemand_Roo_DataOnDemand.aj
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/
 ArtEntityIntegrationTest_Roo_Configurable.aj
Created SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/
 ArtEntityIntegrationTest_Roo_IntegrationTest.aj

The entity command gives you your first real glimpse into Roo’s impressive code generation. It

automatically created an ArtEntity.java entity bean with JPA and Roo annotations. It also created the
folder structure that corresponds to our Java packaging scheme.

At this juncture, you also get your first taste of those AspectJ ITD files we mentioned earlier. The
generated ArtEntity class itself is pretty lean, as Roo has tucked as much of the classic boilerplate code
required in a series of ITD files. Remember that everything in the .aj files will be combined with the
code you place in your .java source files at compile time.

Let’s take a look at some of what was created. Our ArtEntity.java class follows.

package com.prospringhibernate.gallery.domain;

import javax.persistence.Entity;
import org.springframework.roo.addon.entity.RooEntity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;

CHAPTER 12 ■ SPRING ROO

222

@Entity
@RooJavaBean
@RooToString
@RooEntity
public class ArtEntity {

}

By now, the @Entity annotation and its behaviors should be quite familiar to you. The @Roo

annotations warrant some explanation:

• @RooJavaBean tells Roo to generate accessors and mutators for each field present in
the ArtEntity. Those getters and setters will show up in a file named
ArtEntity_Roo_JavaBean.aj once we add some fields.

• The ArtEntity_Roo_ToString.aj source file corresponds with the @RooToString
annotation. This source file will construct a toString() method representation for
our entity by concatenating all of the field names and their values.

• @RooEntity is responsible for the majority of the generated code related to
persistence.

• The ArtEntity_Roo_Configurable.aj source file created adds Spring’s
@Configurable annotation to our ArtEntity type. This annotation allows you to
inject any types from the Spring bean factory, such as a JPA EntityManager, into
the ArtEntity type.

At this juncture, the most interesting ITD file is probably ArtEntity_Roo_Entity.aj. It contains all of
the boilerplate code you would expect to find in JPA entities. In the following listing, notice the code that
has been automatically created contains an autogenerated id, a proper version field, and an
EntityManager reference, as well as methods for operations (like persist, remove, merge, and flush) and
several convenience finders.

package com.prospringhibernate.gallery.domain;

import com.prospringhibernate.gallery.domain.ArtEntity;

import java.util.List;
import java.lang.Integer;
import java.lang.Long;
import java.lang.SuppressWarnings;

import javax.persistence.Id;
import javax.persistence.Column;
import javax.persistence.Version;
import javax.persistence.EntityManager;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.PersistenceContext;

import org.springframework.transaction.annotation.Transactional;

privileged aspect ArtEntity_Roo_Entity {

CHAPTER 12 ■ SPRING ROO

223

 @PersistenceContext
 transient EntityManager ArtEntity.entityManager;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")
 private Long ArtEntity.id;

 @Version
 @Column(name = "version")
 private Integer ArtEntity.version;

 public Long ArtEntity.getId() {
 return this.id;
 }

 public void ArtEntity.setId(Long id) {
 this.id = id;
 }

 public Integer ArtEntity.getVersion() {
 return this.version;
 }

 public void ArtEntity.setVersion(Integer version) {
 this.version = version;
 }

 @Transactional
 public void ArtEntity.persist() {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 this.entityManager.persist(this);
 }

 @Transactional
 public void ArtEntity.remove() {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 if (this.entityManager.contains(this)) {
 this.entityManager.remove(this);
 } else {
 ArtEntity attached = this.entityManager.find(this.getClass(), this.id);
 this.entityManager.remove(attached);
 }
 }

 @Transactional
 public void ArtEntity.flush() {
 if (this.entityManager == null)
 this.entityManager = entityManager();

CHAPTER 12 ■ SPRING ROO

224

 this.entityManager.flush();
 }

 @Transactional
 public ArtEntity ArtEntity.merge() {
 if (this.entityManager == null) this.entityManager = entityManager();
 ArtEntity merged = this.entityManager.merge(this);
 this.entityManager.flush();
 return merged;
 }

 public static final EntityManager ArtEntity.entityManager() {
 EntityManager em = new ArtEntity().entityManager;
 if (em == null) throw new
 IllegalStateException(
 "Is the Spring Aspects JAR configured as an AJC/AJDT aspects library?)
 ");
 return em;
 }

 public static long ArtEntity.countArtEntitys() {
 return ((Number) entityManager().createQuery(
 "select count(o) from ArtEntity o"
).getSingleResult()).longValue();
 }

 @SuppressWarnings("unchecked")
 public static List<ArtEntity> ArtEntity.findAllArtEntitys() {
 return entityManager().createQuery("select o from ArtEntity o").getResultList();
 }

 public static ArtEntity ArtEntity.findArtEntity(Long id) {
 if (id == null) return null;
 return entityManager().find(ArtEntity.class, id);
 }

 @SuppressWarnings("unchecked")
 public static List<ArtEntity> ArtEntity.findArtEntityEntries(int firstResult,
 int maxResults) {
 return entityManager().createQuery(
 "select o from ArtEntity o"
).setFirstResult(firstResult).setMaxResults(maxResults).getResultList();
 }

}

As with the @Entity annotation, this code should feel very familiar and natural. Therein lies Roo’s
beauty. It is just normal Java code. It’s no different than the code you would have needed to write on
your own. It is already adhering to best practices, and will be upgraded to apply newer Spring and
Hibernate conventions as you upgrade to newer versions of Roo. This alone is likely to save developers

CHAPTER 12 ■ SPRING ROO

225

countless hours. It will also save your company a large amount of money in reduced costs to upgrade
and fewer defects introduced by silly oversights and mistakes.

Adding Fields

The utility of the field command is fairly self-evident. With it, you can add members to a given entity.
The field command allows you to specify attributes that are translated into JPA and JSR-303
annotations.

In the series of commands that follows, we’ll add a few fields of type string and date, with some
validation checks for field sizes and whether a given column in the database should allow null values.

~.domain.ArtEntity roo> field string --fieldName name --sizeMax 50 --notNull
~.domain.ArtEntity roo> field string --fieldName title --sizeMax 255 --notNull
~.domain.ArtEntity roo> field string --fieldName subtitle --sizeMax 255 --notNull
~.domain.ArtEntity roo> field string --fieldName description --sizeMax 255 --notNull
~.domain.ArtEntity roo> field string --fieldName caption --sizeMax 255 --notNull
~.domain.ArtEntity roo> field date --fieldName createDate --type java.util.Date --notNull
~.domain.ArtEntity roo> field date --fieldName displayDate --type java.util.Date

After executing each of those commands, you should see output like the following in your Roo shell.

Each field is added to our Java class, and the ITD files are updated accordingly.

Managed SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity.java
Managed SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity_Roo_JavaBean.aj
Managed SRC_MAIN_JAVA/com/prospringhibernate/gallery/domain/ArtEntity_Roo_ToString.aj
Managed SRC_TEST_JAVA/com/prospringhibernate/gallery/domain/
 ArtEntityDataOnDemand_Roo_DataOnDemand.aj

Now our entity looks like this, complete with annotations for JSR-303 bean validation:

package com.prospringhibernate.artgallery.domain;

import java.util.Date;
import javax.persistence.Entity;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import org.springframework.roo.addon.entity.RooEntity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;
import org.springframework.format.annotation.DateTimeFormat;

@Entity
@RooJavaBean
@RooToString
@RooEntity
public class ArtEntity {

CHAPTER 12 ■ SPRING ROO

226

 @NotNull
 @Size(max = 50)
 private String name;

 @NotNull
 @Size(max = 255)
 private String title;

 @NotNull
 @Size(max = 255)
 private String subtitle;

 @NotNull
 @Size(max = 255)
 private String description;

 @NotNull
 @Size(max = 255)
 private String caption;

 @NotNull
 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date createDate;

 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date displayDate;

}

Of course, Roo can’t do everything for us. In the interest of simplicity, the framework designers

needed to pick and choose which conventions they could realistically support. As an example, in our
gallery application, we want the name field to be unique. Although this is a manual step, it can be
accomplished quite simply. As you would on any project using a bean validation implementation, just
apply the JSR-303 annotation to declare the value of the column as unique, like so:

@NotNull
@Size(max = 50)
@Column(unique=true)
private String name;

Exploring the Automatically Generated Testing Infrastructure

Now it’s time to take a look at the --testAutomatically parameter used when we created our ArtEntity
class earlier.

As we stressed in Chapter 8, unit and integration testing are essential for enterprise development
projects. Roo’s approach to configuring everything you would need in your test harnesses is another
boon for productivity. Roo created fixture data in the ArtEntityDataOnDemand_Roo_DataOnDemand.aj
source file and an integration test in ArtEntityIntegrationTest_Roo_IntegrationTest.aj. In addition,

CHAPTER 12 ■ SPRING ROO

227

two Java source file stubs were generated for us to enhance the data fixtures further and to write our own
integration tests that exercise business logic that Roo couldn’t hope to infer. This gives us some basic
test coverage with zero effort, as well as all the plumbing required to flesh out the tests on our own.
You’ll notice this exceptional attention to detail throughout your Roo experience.

Here is a snippet from the Data On Demand ITD:

package com.prospringhibernate.gallery.domain;

...

privileged aspect ArtEntityDataOnDemand_Roo_DataOnDemand {

...

 public ArtEntity ArtEntityDataOnDemand.getNewTransientArtEntity(int index) {
 ArtEntity obj = new ArtEntity();
 obj.setCaption("caption_" + index);
 obj.setCreateDate(new java.util.Date());
 obj.setDescription("description_" + index);
 obj.setDisplayDate(new java.util.Date());
 obj.setName("name_" + index);
 obj.setSubtitle("subtitle_" + index);
 obj.setTitle("title_" + index);
 return obj;
 }

 ...

 @Transactional(propagation = Propagation.REQUIRES_NEW)
 public void ArtEntityDataOnDemand.init() {
 if (data != null) {
 return;
 }

 data = com.prospringhibernate.gallery.domain.ArtEntity.findArtEntityEntries(0, 10);
 if (data == null)
 throw new IllegalStateException(
 "Find entries implementation for 'ArtEntity' illegally returned null"
);
 if (data.size() > 0) {
 return;
 }

 data = new java.util.ArrayList<com.prospringhibernate.gallery.domain.ArtEntity>();
 for (int i = 0; i < 10; i++) {
 com.prospringhibernate.gallery.domain.ArtEntity obj =
 getNewTransientArtEntity(i);
 obj.persist();
 data.add(obj);
 }
 }

}

CHAPTER 12 ■ SPRING ROO

228

This is a nice, simple approach for generating a small amount of data for each entity in a given
application, and it provides the perfect springboard to strive for complete test coverage. You may verify
that all of the generated tests are working by executing perform tests within your Roo shell or by
running mvn test from your command prompt.

Mapping Associations

The field command has some special properties that deliver support for associations between entities
as well. From the shell, you can specify one-to-many or one-to-one relationships with the reference
attribute, or you can build many-to-many mappings via the set property.

In the following example, we re-create our Category entity, and then establish a many-to-many
relationship between our ArtEntity and Category types.

~.domain.ArtEntity roo> entity --class com.prospringhibernate.gallery.domain.Category
 --testAutomatically

~.domain.Category roo> field string --fieldName name --notNull --sizeMax 50

~.domain.Category roo> field string --fieldName description --notNull --sizeMax 2000

~.domain.Category roo> field set --fieldName artEntities
 --element com.prospringhibernate.gallery.domain.ArtEntity

~.domain.Category roo> focus --class ~.domain.ArtEntity

~.domain.ArtGallery roo> field set --fieldName categories
 --element com.prospringhibernate.gallery.domain.Category

Creating the Category type is nearly identical to what we did previously to create ArtEntity, until the

last property, artEntities, which establishes a collection of ArtEntity objects. We then use the focus
command to change the context of our shell over to the ArtGallery type, and we add a collection of
Category objects, again using the set command. The tilde (~) character offers a shorthand reference for
the topLevelPackage we defined when we initiated the project.

Here’s how the many-to-many association appears within the ArtEntity class:

@ManyToMany(cascade = CascadeType.ALL)
private Set<com.prospringhibernate.gallery.domain.Category> categories =
 new java.util.HashSet<com.prospringhibernate.gallery.domain.Category>();

This, too, should be quite familiar to you by now, and Roo makes the setup trivial.

Modeling Inheritance

Now we will walk through setting up an aspect of our domain that requires inheritance. Here too, the
framework designers have elected to keep Roo simple, rather than allow enormous complexity to bleed
into the syntax in the Roo shell. Having a strong grasp of the inner workings of Spring and Hibernate
becomes vital on any real project, whether or not you’re using a RAD framework. As you’ll see, Roo will
help you stub out these classes, but you’ll still need to do a small amount of work on your own to actually
make the associations work.

CHAPTER 12 ■ SPRING ROO

229

First, the following commands create our entity and establish a one-to-many relationship between
ArtData and ArtEntity.

~.domain.ArtGallery roo> entity --class com.prospringhibernate.gallery.domain.ArtData
 --testAutomatically

~.domain.ArtData roo> field set --fieldName artEntities
 --element com.prospringhibernate.gallery.domain.ArtEntity

In order to introduce single-table inheritance between ArtData and its three subclasses—

ArtDataThumbnail, ArtDataStorage, and ArtDataGallery—we need to manually add several annotations
via either an IDE or text editor. The code in bold should be added manually.

package com.prospringhibernate.gallery.domain;

import java.util.Set;

import javax.persistence.Lob;
import javax.persistence.Basic;
import javax.persistence.Entity;
import javax.persistence.ManyToMany;
import javax.persistence.CascadeType;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;
import javax.persistence.DiscriminatorType;
import javax.persistence.DiscriminatorValue;
import javax.persistence.DiscriminatorColumn;

import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;
import org.springframework.roo.addon.entity.RooEntity;

@Entity
@RooJavaBean
@RooToString
@RooEntity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(discriminatorType = DiscriminatorType.STRING)
@DiscriminatorValue("GENERIC")
public class ArtData {

 @Lob
 @Basic(fetch=javax.persistence.FetchType.LAZY)
 private byte[] file;

 @ManyToMany(cascade = CascadeType.ALL)
 private Set<com.prospringhibernate.gallery.domain.ArtEntity> artEntities =
 new java.util.HashSet<com.prospringhibernate.gallery.domain.ArtEntity>();

}

CHAPTER 12 ■ SPRING ROO

230

You’ll also likely recall that our ArtData class and its subclasses had a BLOB field for storing the
binary representation of the images. Roo doesn’t yet support byte[] fields, but they’re simple enough to
add and annotate on our own via the adjustments shown in the preceding listing. We also need to add a
Spring bean to our application context for LOB handling.

Now let’s create the ArtDataThumbnail type, which extends ArtData.

~.domain.ArtData roo> entity --class com.prospringhibernate.gallery.domain.ArtDataThumbnail
 --extends ~.domain.ArtData --testAutomatically

The --extends parameter sets up our class hierarchy. But again, since Roo doesn’t have built-in

support for JPA entity inheritance, we need to add a @DiscriminatorValue annotation ourselves.

package com.prospringhibernate.gallery.domain;

import javax.persistence.Entity;
import javax.persistence.DiscriminatorValue;

import org.springframework.roo.addon.entity.RooEntity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;

@Entity
@RooEntity
@RooJavaBean
@RooToString
@DiscriminatorValue("THUMBNAIL")
public class ArtDataThumbnail extends ArtData {

}

Creating the ArtDataGallery and ArtDataStorage types involves the same steps. The other entities in

our model have some nuances as well. Check out the rooGallery code that accompanies the book to see
the details.

Adding Spring MVC

Once your model is in place, the next logical step is to add Spring MVC to the mix to provide a HTML or
RESTful front end for your application. Roo makes this ridiculously easy. If you don’t need fine-grained
control over each generated class, you can scaffold out the entire web front end in a single command.

controller all --package ~.web

And that’s it! In another shell or within your IDE, execute mvn tomcat:run or mvn jetty:run and

point your browser at http://localhost:8080. You should see something like the page shown in
Figure 12-3.

http://localhost:8080

CHAPTER 12 ■ SPRING ROO

231

Figure 12-3. Running our Roo application

Of course, this is only very basic scaffolding for a web application, but it proves that everything you
need for a Spring MVC web application is in place. From here, you would create more controllers or edit
the generated ones to tailor the application to the needs of your business.

Adding Service Layers and DAOs

In the pursuit of simplicity, Roo will generate only the classes that are strictly necessary. When building a
truly simple application, you can place business logic in either your controller or your domain class.

For nontrivial applications, we harbor strong preference for creating a service layer. This way, your
controllers can strictly revolve around the management of HTTP semantics and view resolution. Your

CHAPTER 12 ■ SPRING ROO

232

business logic is kept within your domain model and wrapped with a nice service layer façade as
appropriate. This is especially important when modeling code that manipulates multiple entities in the
same transaction.

Roo can’t reasonably be expected to predict the intent of your application well enough to generate
service layer classes for you. Fortunately, because Roo applications are just normal Spring projects, you
can create a service layer class, annotate it with the @Service stereotype annotation, and your Roo
application will automatically detect it and incorporate it into your application context.

As with a service layer, there’s nothing about Roo that would prevent you from wiring DAOs into
your application. The biggest shortcoming would be that the Roo add-on infrastructure doesn’t support
them, so you wouldn’t enjoy some of the benefits we’ve shown here, like automatic integration tests.

WHY NOT DAOS?

The Roo team is perfectly justified in their stance against generating DAOs by default. The Roo team
members went out of their way to explain their decision in their exceptional documentation. The following
is quoted from The Spring Roo - Reference Documentation, Chapter 3. Application Architecture, Section
3.6. Goodbye DAOs (http://static.springsource.org/spring-
roo/reference/html/architecture.html).

If we reflect for a moment on the main motivations for DAOs, it is easy to see why these are not applicable
in Roo applications:

• Separation of concern: One reason for having a DAO layer is that it allows a higher
cohesion object-oriented design to be pursued. The high cohesion equates to a
separation of concern that reduces the conceptual weight of implementing the
system. In a Roo-based application separation of concern is achieved via the
separate ITDs. The conceptual weight is also reduced because Roo handles the
persistence methods rather than force the programmer to deal with them.
Therefore separation of concern still exists in a Roo application without the
requirement for a DAO layer.

• Pluggable implementations: A further benefit of DAOs is they simplify the switching
from one persistence library to another. In modern applications this level of API
abstraction is provided via JPA. As Roo uses JPA in its generated methods, the
ability to plug in an alternate implementation is already fully supported despite

• Testing: In a normal application a DAO provides an interface that could be easily
stubbed as part of unit testing. The interesting point about testing is that most people
use mocking instead of stubbing in modern application, making it attractive to simply
mock the persistence method or two that you actually require for a test (rather than
the crudeness of stubbing an entire DAO interface). In Roo-based applications you
simply mock the persistence-related methods that have been introduced to the entity.
You can use normal mocking approaches for the instance methods on the Roo entity,
and use Spring Aspect’s @MockStaticEntityMethods support for the static finder
methods.

http://static.springsource.org/spring-roo/reference/html/architecture.html
http://static.springsource.org/spring-roo/reference/html/architecture.html
http://static.springsource.org/spring-roo/reference/html/architecture.html

CHAPTER 12 ■ SPRING ROO

233

there being no formal DAO layer. You can see this yourself by issuing the
persistence setup command and specifying alternate implementations.

• Non-JPA persistence: It is possible that certain entities are stored using a
technology that does not have a JPA provider. In this case Roo 1.0.0 does not
support those entities out of the box. However, if only a small number of entities
are effected [sic] by this consideration there is no reason one or more hand-
written ITDs could not be provided by the user in order to maintain conceptual
parity with the remainder of the Roo application (which probably does have some
JPA). If a large number of entities are effected [sic], the project would probably
benefit from the user writing a Roo add-on which will automatically manage the
ITDs just as Roo does for JPA.

• Architectural reasons: Often people express a preference for a DAO because
they’ve always done it that way. While maintaining a proven existing approach is
generally desirable, adopting Roo for an application diminishes the value of a DAO
layer to such an extent that it leaves little (if any) engineering-related reasons to
preserve it.

 It’s also worth observing that most modern RAD frameworks avoid DAO layers and add persistence
methods directly to entities. If you review similar technologies to Roo, you will see this is [sic] avoidance of
a DAO layer is commonplace, mainstream and does not cause problems.

Now You See Me, Now You Don’t—Removing Roo
One of our favorite aspects of Roo is that it’s easy to remove it from a project. Since you can use Roo on
existing legacy projects, and since it’s easy to remove any trace of Roo from your source code, there’s
very little reason not to try it out. If you get any pushback from the team or your organization, you
remove it in just a few moments, so there’s very little risk involved.

Removing Roo is a task best undertaken from an IDE that understands AspectJ, such as Eclipse or
STS. Here are the steps in Eclipse with AspectJ Development Tools (AJDT) installed:

1. Stop any Roo shells that might be running.

2. In Eclipse, within the Java Browsing perspective, right-click your project and
choose Refactor Push In.

3. You will see a dialog box listing all of the ITDs. Select OK to push all of that
code from your .aj source files into the appropriate .java source files.

4. Perform a recursive find and replace on the files in your project where you
replace the regular expression \n.*Roo.*\n with \n. This will remove all of the
Roo annotations and their import declarations.

5. Remove any Roo dependencies from your maven pom.xml file.

CHAPTER 12 ■ SPRING ROO

234

And that’s it. Because there are no runtime dependencies and because Roo is built atop standard
Java technologies, it’s easy to walk away from the framework and not lose any of the work that you’ve
done.

Summary
As you’ve seen in this chapter, although Roo isn’t yet magical enough to put programmers out of work, it
does give you an enormous jump-start in terms of raw development speed. It helps eliminate much of
the tedium associated with developing enterprise Java applications by automatically generating
boilerplate code into AspectJ ITDs and modifying your Spring application context configuration as your
project grows.

Roo boasts a strong architecture based on OSGi and add-ons. With the backing of SpringSource, it’s
likely to evolve at a frantic pace as the Roo team strives to deliver more best-of-breed solutions that
simplify the lives of developers around the globe.

One of the biggest hurdles for adopting most RAD frameworks on the JVM is that using them is a
viable option only when writing a new application or in the rare circumstance that a total application
rewrite is in order. But Roo can be introduced into an existing application without forcing any changes
to the way other team members write their code. As the framework is proven in your environment, the
productivity gains should be irrefutable, and your development team will likely embrace the positive
change. We highly recommend that you try using it to implement a new feature on your existing Spring-
and Hibernate-powered application.

■ ■ ■

235

Index

■ A

abstraction layer, 3

AbstractPlatformTransactionManager class, 114

Accept header, 157

ACID, 110–121

Active Record design pattern, 14, 189, 204–205

addCommentToArt(Comment comment) method, 74

addToComments method, 211

@After annotation, 127, 136

@AfterClass annotation, 127

afterPropertiesSet() method, 22

allowing invocation rule, 130

Analyzers, in Lucene, 174

@annotation-based dependency injection, 29–30

annotation-based metadata, 29

annotations, 39, 168, See also specific annotations

adding Hibernate Search, 178–183

for mapping rules, 6

request mapping via, 171

specifying class mappings via, 54

transactional, 115–118

AnnotationSessionFactoryBean, 90

AOP. See Aspect-Oriented Programming

application domain model, 54–61

application management

with Maven, 33–37

managed dependencies, 33–34

POM deconstruction, 35–37

standard directory structure, 35

application setup, 33–47

application management with Maven, 33–37

database integration, 40–42

Spring configuration, 37–40

web application configuration, 43–46

ApplicationContext interface, 18–20, 23, 37, 44–45

applicationContext.xml file, 220

ApplicationContextAware interface, 19

architecture, 1–15

Active-Record pattern, 14

best practices, 4–11

persistence tier, 1

consistent approach to, 1– 2

core components, 1

layers of, 5–8

testing, 10-11

service layer, 9–

Template pattern, 12–14

art gallery application

application setup, 33–47

caching, 146–151

DAO classes for, 85–92

domain model, 54–61, 69–84

integration strategies for, 155–187

with Spring Roo, 215–234

testing, 128–136

AspectJ, 215

AspectJ ITD files, 221

Aspect-Oriented Programming (AOP), 9–10, 31–32,
109

assertions, testing, 127

associations, 69–71

defining, 75, 201–203

handling, in Grails, 211

mapping, in Roo, 228

representation of, 76

■ INDEX

236

asterisk (*) wildcard character, 120

atomicity, 110

authenticatePerson method, 95

authHandler member variable, 29

automated testing, 125

automatic dependency injection, 19

@Autowired annotation, 29–30, 39, 87, 133–134

autowiring, dependency injection, 28

■ B

@Basic annotation, 74

batch applications, creating, 121–122

batch operations, 97

batching feature, 140–141

@BatchSize annotation, 140–141

bean parameters, 195

bean scopes, 22– 23

BeanFactory interface, 18–19, 45

BeanFactory PostProcessor, 90

beans, 20–22

beans namespace, 38

@Before annotation, 127, 136, 168

@BeforeClass annotation, 127

behavior-driven development (BDD), 125

belongsTo property, 202

bidirectional associations, 69, 74, 211

binary data, persisting, 97–98

@Boost annotation, 183

build attribute, 37

bundles, 215

■ C

@Cache annotation, 77, 146

cache server, external, 153

cacheEventListenerFactory element, 152

CacheManager interface, 77

cacheManagerPeerProviderFactory, 152

caching, 11, 56, 143–153

caching rules, 146–147

cluster, 151–152

configuring cache regions, 147–148

domain objects, 144

implicit, 143

in clustered configuration, 150

integrating implementation, 144–146

L1 cache, 144

L2 cache, 144

queries, 149–150

query, with HibernateTemplate, 88–89

replication mechanics, 151–152

second-level, 77

callback annotations, 63

Caroff, Yann, 17

cascading rules, 76–77, 202

categories association, 203

CGLIB bytecode enhancement, 10

child application context, 44

class dependencies, 19

class hierarchy, 78–81, 96–97

classname attribute, 42

ClassPathXmlApplicationContext implementation, 19

closures, 190–192

cluster caching, 151–152

clustered configuration, 150

code

interface-based, 27–28

testable, 125

Code Generation Library (CGLIB), 118

code injection, using AOP, 31–32

code layers, 125

coding by convention, 216

coding to interfaces, 27–28

collection caching, 77

@Column annotation, 75

comments association, 203

comments property, 162

commits, 114

commons-dbcp library, 40

@Component annotation, 88

component scanning, 38–39, 67, 87, 171

component-scanning facility, 88

concurrency, isolation level and, 111

Config.groovy file, 196

@Configurable annotation, 222

configuration

Spring, 37–40

web applications, 43–46

configuration files, 133

loading, 19

Maven, 35–37

root, 37

connection pools, 40–41

■ INDEX

237

consistency, 110

constraints, adding, 200–201

constructor injection, 20

constructor-based dependency injection, 25–26

containers, 18

content negotiation, 157

content-type header, 157

content-type representations, 156–157

@ContextConfiguration annotation, 133, 168

contextConfigLocation parameter, 44–45

ContextLoaderListener, 44

contextual sessions, 14, 90

@Controller annotation, 39, 46, 88, 143, 169

controllers, 168–169

convention over configuration concept, 74–75, 189,
215–216

Core Hibernate APIs, querying using, 95–96

create-app script, 193

createFullTextQuery method, 186

createQuery method, 99–100, 104

Criteria API, 7, 210–211

benefits of, 98

using JPA 2.0, 99–107

CriteriaBuilder class, 99, 104

criteriaBuilder.createQuery(Long.class), 104

CriteriaQuery class, 99–100

criteriaQuery.from() method, 104

criteriaQuery.getOrderList() method, 107

criteriaQuery.orderBy() method, 107

criteriaQuery.select() method, 104

cross-cutting behavior, 9–10, 31

curly braces {} characters, 169

custom logic, 22

custom scopes, 23

■ D

DAO (Data Access Object) classes

adding, in Roo, 232

building, 86–88

function of, 85

hierarchy, 57

DAO (Data Access Object) implementation

basic Hibernate, 85–92

in Hibernate, 92–97

JPA-based, 91–92

using Hibernate API directly in, 89–92

DAO (Data Access Object) layer, 1, 6–7, 85, 88, 98,
107–108

DAO pattern, 56–61, 85

data, saving and updating, 97

data persistence. See persistence

data relationships, establishing, 76–77

Data Transfer Object (DTO) classes, 159–164

Data Transfer Object (DTO) pattern, 49, 158–159

Data Transfer Objects (DTOs), rendering as XML,
170–172

DataAccessException hierarchy, 90, 93, 109

database integration, 40–42

database persistence. See persistence

database testing, 134, 136

database transactions, 109, 113, See also transaction
management

database.properties file, 220

DataNucleus, 50

datasources

configuring, in Grails, 197

integrating, 42

multiple, 87

using two, 122–123

DataSourceTransactionManager, 114

@DateBridge annotation, 183

declarative programming, 115

declarative transaction management, 4, 114–115,
119–120

declarative transactions, 9, 31

default constructors, Groovy, 191

delete method, 58

dependencies

annotation-based, 29

decoupling, 3–4

JNDI, 42

managing, in Maven, 33–34

specifying within classes, 29

wiring together, 3

dependency injection, 2, 4, 10, 24, 132–134

@annotation-based, 29–30

constructor-based, 25–26

frameworks, 125

setter-based, 24–25

via autowiring, 28

dependency lookup, 19

design patterns, 4, 5, 24, 184

Active-Record, 14, 189, 204–205

■ INDEX

238

factory, 42

proxy, 9

Template, 12–14, 85, 87

persistence, 12–14

Design Patterns:Elements of Reusable Object-Oriented
Software (Gamma et al.), 12

destroy-method parameter, 22

detached objects, 141

Detached state, 63

development environment configuration, 212

directory structure, Maven, 35

dirty reads, 113

discriminator, 81

@DiscriminatorColumn annotation, 81

discriminator field, 79

@DiscriminatorValue annotation, 81, 230

DispatcherServlet class, 44

DisposableBean interface, 22

@DocumentId annotation, 182

Document class, Lucene, 174

Does Not Exist state, 63

domain caching, 77

domain class, 69

domain model, 1, 5–6, 69–84

adding second-level caching, 77

associations and, 69–71

building, 71–84

classes, Grails, 199

creating, with Roo, 217–231

defining, 71

defining Grails, 199–204

establishing data relationships, 76–77

managing entity identifiers, 75, 76

object-oriented, 3

polymorphism and, 78–83

serialization of, 157

table structure, 71

domain objects

caching, 144

hierarachy of, 78

domain-driven design (DDD), 217

domain-specific language (DSL), 194

domain-specific search, 185, 186

don’t repeat yourself (DRY), 189

Dozer

configuring, with Spring, 164–166

integration with, 159

Java class mapping, 158

mapping, 163–168

DozerBeanMapperFactoryBean abstraction, 164

dozer-mapping.xml file, 164

DTOs. See Data Transfer Objects

durability, 110

dynamic finder methods, 205–209

dynamic queries, 98, 106

■ E

eager fetching, 11

Eclipse, 215

EclipseLink, 50, 51

Ehcache, 11, 77, 145, 147–148, 151–153

ehcache.xml file, 77, 147, 151

Enterprise JavaBean (EJB) containers, 4

Enterprise JavaBeans, 50, 109

Enterprise JavaBeans 2.0, 50

Enterprise JavaBeans 3.0, 51–52

enterprise-level features, 4

entities

finding, of particular type, 93–94

loading, 93

@Entity annotation, 6, 55–56, 64, 74, 222, 224

entity command, 221

entity equivalence, 83

entity identifiers, managing, 75–76

entity types, joining, 94

EntityManager interface, 52–53, 58–59

Hibernate Search, 184

Open EntityManager In View pattern, 142–143

OpenEntityManagerInViewFilter, 143

EntityManager.save() method, 83

EntityManagerFactory interface, 52–53

EntityTransaction interface, 53

equals() method, overriding, 83–84

errors property, 206

eternal setting, 148

exception handling, 116

exception hierarchy

Hibernate's checked, 90

Spring's, 3, 4, 7, 86, 93, 109

exceptions, unchecked, 90

exclude-filter, 39

Expectations class, 130

■ INDEX

239

Expert One-on-One J2EE Design and Development
(Johnson), 17

—extends parameter, 230

external callback methods, 63

■ F

FactoryBean interface, 42

@Fetch annotation, 140

fetching associations, 74

@Field annotation, 182

field command, 225, 228

field mappings, 56

field-exclude element, 166

Fielding, Roy, 156

fields

storing, 182

tokenized, 182

files, mapping, 65

filter-mapping glob pattern, 143

find() method, 210

findAll() method, 210

findByNamedParam method, 94

finder method, 94–95

foreign keys, 70

free-text search, 155, 173–186

Hibernate Search, 176–186

Lucene, 174–176

full-text search, domain-specific search, 185–186

FullTextEntityManager, 184–186

functional tests, 126

fuzzy search, 173

■ G

Gang of Four, 12

@GeneratedValue annotation, 56, 75

generic exception hierarchy, 4, 7, 86, 93, 109

generics, 56– 61

get() method, 93

getBean() method, 19, 23

getCurrentSession() method, 90

getResultList() method, 186

getServletContext() method, 44

getSingleResult() method, 104

getter methods, 25

Gilead, 158

global session scope, 23

Google App Engine (GAE), 51

GORM, 189, 205–211

advanced query methods, 210

Criteria API, 210–211

dynamic finder methods, 205– 209

Grails, 1, 189, 216

adding constraints and validation, 200–201

advanced query methods, 210

building application, 212

configuring application, 196

configuring datasource, 197

creating application, 193–196

Criteria API, 210–211

customizing domain class Hibernate mappings,
203–204

defining associations and properties, 201– 203

defining transactional service layer in, 213

defining, 199–204

handling associations in, 211

installing, 193

mapping URLs, 198

persistence, 190, 193

templates, 199

grails create-domain-class script, 201

Grails Criteria Builder, 211

grails run-app script, 212

GRAILS_HOME environment variable, 193

grails-app directory, 194

grails-app/conf/Bootstrap.groovy file, 196

Groovy language, 189–192, 216

closures in, 191–192

default constructors, 191

features of, 190

GStrings, 191

vs. Java, 190

variables and references, 191

GStrings, 191

■ H

hashCode() method, overriding, 83–84

.hbm.xml files, 69

Hibernate, 2–3, 41

basic DAO implementation, 85–92

checked exception hierarchy, 90

contextual sessions, 90

■ INDEX

240

conversions between domain model and
database by, 6

Criteria API, 7

data persistence with, 97–107

binary data, 97–98

development of, 50

domain model and, 69–84

earlier versions of, 90

integration of, 3–4

JPA and, 52

managing entity identifiers, 75–76

mappings, 203–204

performance and optimization features, 11

persistence with, 49–68

querying in, 92–97

for particular type, 93–94

loading an entity, 93

polymorphic queries, 96–97

using Core Hibernate, 95–96

using named parameters, 94–95

using named queries, 96

Spring and, 49

Spring's support classes, 87

unchecked exceptions in, 90

using polymorphism with, 78–83

Hibernate 3.5, 51

Hibernate Query Language (HQL), 7, 93–95, 98

Hibernate Search, 11, 176–186

adding annotations, 178–183

EntityManager, 184

integrating, 177–178

introduction to, 176

syncing with Lucene, 184–185

Hibernate Session, 89

HibernateCallback interface, 13

HibernateDaoSupport class, 87–89

HibernateTemplate, 12–14, 85–95

enabling query caching with, 88–89

executing HQL queries using, 94–95

saveOrUpdate method, 97

HibernateTransactionManager, 114

Holleran, Juergen, 17

HQL queries, 94–95

■ I

@Id annotation, 75

ID generation, 76

@Ignore annotation, 127

Ilike modifier, 208

impedance mismatch, 3

LMS. See implementations, vs. specifications, 50

implicit caching, 143

implicit polymorphism, 78

import statements, 39, 40, 55

@Indexed annotation, 182

@IndexEmbedded annotation, 183

information retrieval (IR) library, 174

inheritance, 57, 80, 228–230

@Inheritance annotation, 80

initialization, 20–21

InitializingBean interface, 22

init-method, 22

@Inject annotation, 39

instance collaboration, 26–27

integration frameworks, 155–187

integration testing, 125–132, 226

interceptors, 9, 31–32, 142

Interface21 framework, 17

interface-based code, 27–28

interfaces, benefit of, 10

internal callback methods, 63

inter-type declaration (ITD), 215

InvalidImageException, 116–117

inverted indexes, 174

invesion of control (IoC), 24

invocation count, 130

isolation levels, 110–116

Isolation transactional behavior, 116

.iterate() method, 96

it-method feature, 20

■ J

JAR files, 34

Java, 216

class hierarchy, mapping, 96–97

classes, 158

evolution of database persistence in, 49–52

Roo and, 217

shortcomings, 216

■ INDEX

241

Java 2 Platform, Enterprise Edition (J2EE), 50–51

Java Architecture for XML Binding (JAXB) , 162, 172

Java Community Process (JCP), 49

Java Data Objects (JDOs), 50–51

Java Database Connectivity (JDBC), 15, 40–41, 49

Java Message Service (JMS), 114

Java Naming and Directory Interface (JNDI), 40,
41–42, 53, 66–67

Java Persistence API (JPA), 51–52, 91

1.0, 51

2.0, 51

configruation, 53, 64–68

interface hierarchy, 52–53

life cycle of JPA entity, 62–63, 184

Spring integration, 66–68

Java Persistence Query Language (JPQL), 7, 51–52, 59,
98, 100

Java Specification Requests (JSRs), 39, 49–51

Java Transaction API (JTA), 14, 109, 114, 117–118, 124

Java Virtual Machine (JVM), 20

JavaBeans, 20

javax.persistence.EntityManager, 52

javax.servlet.ServletContextListener interface, 44

javax.sql.Datasource references, 42

JAXB annotations, 172

jaxbMarshaller bean, 172

JDBC. See Java Database Connectivity

JDBCTemplate, 90

JDK dynamic proxies, 10

JDOs. See Java Data Objects

JEE, 51

jMock framework, 129–131

JMS. See Java Message Service

JNDI. See Java Naming and Directory Interface

Johnson, Rod, 17

join keyword, 94

join tables, 70

JPA. See Java Persistence API

JPA 2.0 Criteria API, using, 99–107

JPA-based DAO implementation, 91–92

JpaTemplate, 12–14

JpaTransactionManager, 114, 117–118, 121

JPQL. See Jave Persistence Query Language

JPQL queries, 100

JSR. See Java Specification Requests

JSR 19, 50

JSR 220, 51

JSR 317, 51

JSR-330, 39

JTA. See Java Transaction API

JTA-managed transactions, 14

JtaTransactionManage, 114

JUnit, 127, 128

■ K

King, Gavin, 50

■ L

L1 cache, 144

L2 cache, 144

large objects (LOBs), 97

layering, 5

lazy loading, 11, 53, 74, 137–143, 157

batching and, 140–141

N+1 selects problem, 137–140

select fetching, 139– 140

LazyInitializationException, 141–142, 158

listener class, 63

load method, 93

load-time weaving, 53

local resource transactions, 14

LocalContainerEntityManagerFactoryBean, 66–67

LocalEntityManagerFactoryBean, 66

LocalSessionFactoryBean classes, 90

log instance variable, 206

loginUser() method, 8

lookup-method property, 19

loose coupling, 2

loosely coupled code, 27–31

loosely coupled dependency relationships, 4

Lucene, 11, 174–176, 183

indexing with, 174–175, 183

introduction to, 174

querying with, 175–176, 186

syncing with Hibernate Search, 184–185

■ M

m2eclipse plugin, 33

managed dependencies, 33–34

Managed state, 63

many-to-many associations, 70, 83, 203, 228

ManyToOne annotation, 74

■ INDEX

242

many-to-one association, 69

mappedBy attribute, 83

mapping, 75

defined, 69

files, 65

object-relational, 2–4, 14

request, 171

rules, 6

URLs, 198

mappings property, 203–204

matchers, 131

matches constraint, 200

Maven

application management with, 33–37

configuration, 102

configuration files, 35–37

managed dependencies, 33–34

plugins, 33

standard directory structure, 35

maxElementsInMemory setting, 148

MaxMin class, 104

mediaTypes property, 171

memory utilization, caching and, 151

merging process, 158

metaClass instance, 190

MetaClass.invokeMethod() method, 190

META-INF/persistence.xml file, 64

MetaModel, 100–104

mock method, 130

mocked objects, 128

mocking, 128–131

mode parameter, 118

modules, 33

MultiFieldQueryParser, 186

multiple datasources, 87

MVC controllers, 142

MVC development, Spring 3 support for, 168–170

■ N

N+1 selects problem, 137–140

name attribute, 148

@Named annotation, 39

named parameters, 94–96

named queries, 96

@NamedQuery annotation, 96

namespace support, 38

nested mapping behavior, 158

nested transactions, 116

New state, 63

nonrepeatable reads, 113

noRollbackForClass attribute, 116

noRollbackForClassName attribute, 116

nouns, 156, 157

nulled-out associations, 158

■ O

object graph, serializing, 157–158

Object/XML Mapping (OXM) support, 170–172

object-oriented domain model, 3

object-oriented languages, differences between
relational databases and, 3

object-relational mapping (ORM), 2–4, 14

objects, life cycle, 20–22

OC4JJtaTransactionManager, 114

one-to-many associations, 69, 203

one-to-one associations, 83

Open EntityManager In View pattern, 142–143

OpenEntityManagerInViewFilter class, 143

OpenEntityManagerInViewInterceptor class, 142–143

OpenJPA, 50

optimization strategies, 11

order parameter, 118

ORM templates, 14

OSGi, 215

overFlowToDisk setting, 148

■ P

packaging element, 37

parent-child relationships, 76

@PathVariable annotation, 46, 170

performance tuning, 11

persistence, 49–68

@Entity annotation and, 74

@entity-annotated POJOs, 55–56

advanced features, 11–12

evolution of, in Java, 49–52

Grails, 190, 193

importance of, 1

JPA configuration, 64–68

JPA interface hierarchy, 52–53

life cycle of JPA entity, 62–63

transitive, 76–77

■ INDEX

243

with Hibernate, 97–107

@PersistenceContext annotation, 59

persistence design patterns, 12–14

persistence logic, 12–13

persistence tier

architecture of, 1

best practices, 4

consistent approach to, 1–2

core components, 1

layers of, 5– 8

DAO layer, 6–7

domain model, 5–6

service layer, 7, 8, 9, 10

testing, 10

persistence.xml file, 64–65, 177, 220

phantom reads, 112–113

placeholder references, 41

Plain Old Java Objects (POJOs), 20, 24

@entity-annotated, 55–56

Hibernate and, 49

platform as a service (PaaS), 51

platform transaction management, 114–115

PlatformTransactionManager interface, 114–118

plugins, 33

pointcuts, 9

polymorphic queries, 96–97

polymorphism, 78–83, 96

pom.xml file, 35–37, 220

@postConstruct annotation, 21, 39

@PostLoad annotation, 63

@PostPersist annotation, 63

@preDestroy annotation, 22

predicates, 99

preMethodSetup() method, 136, 168

@PrePersist annotation, 63

primary key, 75

programmatic transaction management, 114,
120–121

programming languages, new, 216

project coordinates, 37

Project Object Model (POM), 33

Propagation transactional behavior, 115

properties element, 37

property configurations, externalizing, 38

property-placeholder, 38

PropertyPlaceholderConfigurer, 38

prototype beans, 23

proxy classes, 141

proxy design pattern, 9

proxy-target-class parameter, 118

■ Q

@Qualifier annotation, 30, 39, 88

qualifiers, 29

queries

dynamic, 98, 106

in DAO layer, 85

JPQL, 100

query caching, 77, 88–89, 149–150

Query interface, 53

querying, 7

in Hibernate, 92–97

for particular type, 93–94

loading an entity, 93

polymorphic queries, 96–97

using Core Hibernate, 95–96

using named parameters, 94–95

using named queries, 96

QueryOpts class, 105–107

QueryParser class, 175

■ R

rapid application development (RAD), 215

read committed isolation level, 113, 116

read uncommitted isolation level, 113, 116

readOnly attribute, 116

reference attribute, 228

regions, 144

relational databases, differences between
object-oriented languages and, 3

remote procedure call (RPC), 155

Remove state, 63

removeFromComments method, 211

repeatable read isolation level, 112, 116

replicateUpdatesViaCopy, 151

replication, configuring, 151–152

@Repository, 88

@Repository annotation, 61, 67, 87– 90

@RequestMapping, 169

@RequestMapping annotation, 46

request mapping, via annotations, 171

request scope, 23

resources.groovy file, 194

■ INDEX

244

resources.xml file, 194

REST (Representational State Transfer), 155

RESTful APIs, 11, 155–172

building DTO layer, 159–164

Dozer mapping process, 167–168

DTO pattern and, 158–159

nouns, verbs, and content-types, 156–157

OXM support, 170–172

serializing the object graph, 157–158

Spring 3 support for, 168–170

result sets, sorting and paginating, 209

rich Internet applications (RIAs), 155

Rollback-Only, 115

rollbacks, 114

Roo, 1, 215–234

adding entities, 221–224

adding fields, 225–226

adding service layers and DAOs, 231

adding Spring MVC, 230–231

automatically generated testing infrastructure,
226–228

commands, 219

creating domain model with, 217–231

creating new project, 220–221

DAOs and, 232–233

getting started with, 218–219

mapping associations, 228

modeling inheritance, 228–230

overview, 215–217

removing, 233–234

running application, 231

shell, 219–220

@Roo annotations, 222

@RooEntity annotation, 222

@RooJavaBean annotation, 222

@RooToString annotation, 222

root application context, 44

root configuration file, 37

Ruby on Rails, 189

run-app command, 212

@RunWith annotation, 130, 132–134

■ S

saveOrUpdate method, 97

scaffolding, 193, 212

search functionality. See free-text search

second-level caching, 77

SELECT clause, 59

select fetching, 139–140

Serializable interface, 56

serializable isolation level, 112, 116

serialization, of object graph, 157–158

@Service annotation, 88, 232

service facade, 1

service layer, 7–8, 88

adding, in Roo, 231

AOP support and, 9–10

business logic in, 85

declarative transactions and, 9

tasks of, 9

Servlet 2.5 specification, 43

servlet definition, 44–45

servlet filter, 142

ServletContextListener interface, 44

Session interface, 52

session scope, 23

SessionFactory interface, 52, 87, 90

set property, 228

SetAttribute type, 103

setRollbackOnly() method, 115, 121

setSessionFactory(SessionFactory sessionFactory)
setter method, 87

setter methods, 25

setter-based dependency injection, 24–25

single-table inheritance, 229

singletons, 22–23, 30, 53

SingularAttribute type, 103

Smalltalk, 50

SortedSet property, 203

specifications, vs. implementations, 50

Spring 3

Spring AOP framework, 119–120

Spring Framework

application context, 18–20

architecture, 12–14, 18–23

configuration, 37–40

configuration files, 133

configuring Dozer with, 164–166

as container, 3

as de facto standard, 17

dependency injection and testing, 2, 4, 10,
132–134

documentation, 17

■ INDEX

245

enterprise-level features and, 4

exception hierarchy, 86, 93

features of, 4

generic data exception hierarchy, 7

Hibernate and, 2–4, 49, 87

history of, 17

JPA integration, 66– 68

modules, 18

origins of, 17

persistence and, 49

REST support, 168–170

Template pattern, 12–14

template support in, 90

transactional support in, 9–10, 14

Spring life cycle, 20–22

Spring MVC, 4, 45–46, 230–231

Spring OXM, 170–172

Spring Roo. See Roo

Spring-based persistence tier, 1

SpringJUnit4ClassRunner, 133

spring-master.xml file, 67, 133

spring-master-web.xml, 45

spring-persistence.xml, 133

SpringSource Tool Suite (STS), 215

SQL, 93

standard implementation, 17

standards-based Java technologies, 17

static view resolution, 46

stemming, 174

stubbing, 128

■ T

table joins, 76

table-per-concrete-class polymorphism, 79

table-per-hierarchy polymorphism, 79

table-per-hierarchy strategy, 204

table-per-subclass polymorphism, 79

Template pattern, 12–14, 85

@Temporal annotation, 75

tentative data, 113

terms, in Lucene, 174

@Test annotation, 127, 132

test suites, 126

testAutomatically parameter, 226

TestContext Framework, 132–134

test-driven development (TDD), 125

testing, 125–136

database, 134–136

frameworks, 125–128

functional tests, 126

integration, 126–132

persistence tier, 10

Spring dependency injection and, 132–134

unit, 126–128

testMappingArtEntity() method, 168

TestNG, 127, 132

thread scope, 23

ThreadLocal, 14

timeout attribute, 116

timeToIdleSeconds setting, 148

timeToLiveSeconds setting, 148

TopLink, 50–51

toString() method, 222

transaction management, 109–124

abstraction for, 109

ACID, 110–121

batch applications, 121–122

declarative, 114–115, 119–120

examples, 121–123

isolation levels, 111–113

platform, 114–115

programmatic, 114, 120–121

using two datasources, 122–123

transactional annotations, 115–118

@Transactional annotation, 10, 32, 59, 115–119, 134

transactional service layer, defining, in Grails, 213

TransactionCallback, 121

@TransactionConfiguration annotation, 134

TransactionDefinition interface, 115

TransactionManager implementations, 114

transaction-manager parameter, 118

transaction-manager XML attribute, 119

transactions

declarative, 9

JTA-managed, 14

local resource, 14

read-only, 10

simplifying, 10

TransactionStatus interface, 115

TransactionTemplate class, 114, 121

transactionTemplate property, 121

@Transient annotation, 56, 74

transistive persistence, 76–77

■ INDEX

246

tx:advice element, 119, 123

tx:annotation-driven annotation, 118

<tx:jta-transaction-manager/> XML tag, 114

txStatus closure parameter, 213

■ U

ubiquitous language, 217

unchecked exceptions, 90

unidirectional associations, 69

unit testing, 125–131, 226

JUnit, 127–128

with mocks, 128–131

units of work, 122

UpdateTimestampsCache, 149–150

UrlMappings.groovy file, 198

URLs, mapping, 198

usage attribute, 147

■ V

validate() method, 206

validation, 200–201

validation errors, 206

variables, in Groovy, 191

verbs, 156–157

ViewResolvers, 171

■ W

WAR files, 43

web applications

configuration, 43–46

requirements for, 155

setup, 33–47

web services, RESTful, 155–172

web.xml file, 43–44

WebApplicationContext, 19, 44–46

web-based APIs, 155

WEB-INF directory, 43

WebLogicJtaTransactionManager, 114

WebSphereUowTransactionManager, 114

where condition, 104

wildcard behavior, 166

withTransaction method, 213

■ X, Y, Z

XML-based transaction management, 119–120

XML mapping files, 69

@XMLRootElement annotation, 162

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Architecting Your Application with Spring, Hibernate, and Patterns
	The Benefit of a Consistent Approach
	The Significance of Dependency Injection

	A Synergistic Partnership
	The Story of Spring’s and Hibernate’s Success
	A Better Approach for Integration
	Best Practices for Architecting an Application
	The Layers of a Persistence Tier
	Leveraging Declarative Transactions
	Advanced Features and Performance Tuning

	Other Persistence Design Patterns
	The Template Pattern
	The Active-Record Pattern

	Summary

	Spring Basics
	Exploring Spring’s Architecture
	The Application Context
	Beans, Beans, the Magical Fruit
	The Spring Life Cycle
	Understanding Bean Scopes

	Dependency Injection and Inversion of Control
	Setter-Based Dependency Injection
	Constructor-Based Dependency Injection
	Instance Collaboration
	Coding to Interfaces
	Dependency Injection via Autowiring
	@Annotation-Based Dependency Injection
	Set It and Forget It!

	Injecting Code Using AOP and Interceptors
	Summary

	Basic Application Setup
	Application Management with Maven
	Managed Dependencies
	Standard Directory Structure
	POM Deconstruction

	Spring Configuration
	Namespace Support
	Externalizing Property Configurations
	Component Scanning
	Import Statements

	Database Integration
	JDBC Support
	Integration with JNDI

	Web Application Configuration
	Servlet Definition
	Spring MVC

	Summary

	Persistence with Hibernate
	The Evolution of Database Persistence in Java
	EJB, JDO, and JPA
	How Hibernate Fits In

	JPA Interface Hierarchy
	The Art Gallery Domain Model and DAO Structure
	An @Entity-Annotated POJO
	Simplified DAO Pattern with Generics
	The Life Cycle of a JPA Entity

	JPA Configuration
	Bare-Bones JPA Setup
	Spring Integration

	Summary

	Domain Model Fundamentals
	Understanding Associations
	Building the Domain Model
	Convention over Configuration
	Managing Entity Identifiers
	Using Cascading Options to Establish Data Relationships
	Adding Second-Level Caching
	Using Polymorphism with Hibernate

	Summary

	DAOs and Querying
	A Basic Hibernate DAO Implementation
	Building a DAO
	Using Spring’s Hibernate Support Classes
	Enabling Query Caching with the HibernateTemplate
	Going Template-less

	Querying in Hibernate
	Loading an Entity
	Querying for a Particular Type
	Using Named Parameters
	Querying Using Core Hibernate
	Using Named Queries
	Working with Polymorphic Queries

	Persisting Data with Hibernate
	Saving and Updating Data
	Handling Binary Data
	Understanding the Benefits of the Criteria API
	Using the JPA 2.0 Criteria API

	Summary

	Transaction Management
	The Joy of ACID
	Understanding Isolation Levels
	Serializable
	Repeatable Read
	Read Committed
	Read Uncommitted

	Controlling ACID Reflux
	Platform Transaction Management
	Declarative Transaction Management
	Transactional Annotations
	Declarative Transactions via XML
	Programmatic Transaction Management

	Transactional Examples
	Creating a Batch Application
	Using Two Datasources

	Summary

	Effective Testing
	Unit, Integration, and Functional Testing
	Using JUnit for Effective Testing
	Unit Testing with Mocks
	Spring Dependency Injection and Testing
	Testing with a Database

	Summary

	Best Practices and Advanced Techniques
	Lazy Loading Issues
	The N+1 Selects Problem
	Less Lazy Mappings
	Batching for Performance
	Lazy Initialization Exceptions
	Now Open Late: Keeping EntityManager Open Past Its Bedtime
	Applying the Open EntityManager Filter

	Caching
	Integrating a Caching Implementation
	Determining Caching Rules
	Configuring Cache Regions
	Caching Your Queries
	Caching in a Clustered Configuration
	Cluster Caching and Replication Mechanics
	Configuring Replication

	Summary

	Integration Frameworks
	RESTful Web Services with Spring
	Nouns, Verbs, and Content-Types
	Serializing the Object Graph
	Using the Dreaded DTO Pattern
	Bootstrapping Dozer
	Building the DTO Layer
	Configuring Dozer with Spring
	Making the Mapping Happen
	Leveraging Spring 3’s REST Support
	Marshaling Data with Spring OXM
	Handling Concurrency
	Optimistic Locking
	Pessimistic Locking

	Free-Text Search
	Introducing Lucene
	Indexing with Lucene
	Querying with Lucene
	Introducing Hibernate Search
	Integrating Hibernate Search
	Adding Hibernate Search Annotations
	Putting Lucene and Hibernate in Sync
	Building a Domain-Specific Search

	Summary

	GORM and Grails
	A Crash Course in Groovy
	Letting Your Types Loose
	GStrings—Strings on Steroids
	Default Constructors in Groovy
	Closures in Groovy

	Getting Grails Running
	Installing Grails
	Creating a Grails Application
	Configuring Your Application
	Configuring Your Datasource
	Mapping URLs

	Defining the Grails Domain Model
	Adding Constraints and Validation
	Defining Associations and Properties
	Customizing Domain Class Hibernate Mappings

	Using Active Record As an Alternative to DAOs
	Looking Under the Hood of GORM
	Working with Dynamic Finder Methods
	Creating Advanced Query Methods
	Using the Criteria API

	Handling Associations in Grails
	Scaffolding and Building Your Grails Application
	Defining a Transactional Service Layer in Grails
	Summary

	Spring Roo
	What Roo Is (and What It Is Not)
	Creating a Domain Model with Roo
	Getting Started with Roo
	Creating a New Project
	Adding Entities
	Adding Fields
	Exploring the Automatically Generated Testing Infrastructure
	Mapping Associations
	Modeling Inheritance
	Adding Spring MVC
	Adding Service Layers and DAOs

	Now You See Me, Now You Don’t—Removing Roo
	Summary

	Index

