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1

Preface

In mobile telecommunications, ARCEP (the French Regulatory Authority for
ElectronicCommunications andPostal services) publishes an annual analysis of quality
of different mobile radio networks. For voice, the two criteria are the ability to start
up a communication and to hold it for 2 or 5 minutes as well as the audio quality
of the communication. For each data service, the transmission time and integrity of
the message (SMS, MMS) are tested in different situations: urban, semi-urban, for
pedestrians, cars, high-speed train, etc.

The results of these tests are often used as commercial arguments. On the contrary,
bad results may rapidly alter the image of a telecom operator in the public opinion
and thus lead to an economic disaster. Hence, these performance tests are a major
challenge for the whole telecom industry. The satisfaction of some of these criteria
depends directly on the number of resources allocated to the network, including the
capacity of the so-called base stations. The operatormust have some quantitativemeans
to anticipate demand and its impact on the design of its network. If we want to move
beyond the phase of divination, then modelization is needed. This is about putting
into equations, although sometimes with a kabbalistic aspect, the phenomenon which
we want to study. To each situation may correspond several models depending on
whether one is interested in the microscopic or macroscopic scale, the long or short
time behavior, and so on. Ideally, the choice should be made only based on purpose
but it is also conditioned by the technical and mathematical knowledge of the people
who build the model.

Once the problem is raised, it must be solved: in other words, if numbers are given
in input, then some numbers should pop up in output. Thanks to advances in computing,
the situation has changed dramatically in the last twenty years. It is now possible to
calculate quantities that are not only defined by explicit mathematical formulas, but
that may result from more or less sophisticated algorithms.
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A model is also often a support for simulation, in this way it creates an artificial
simplification of reality. If this method gives very often only approximate results and
is costly in computation time, it is also often the only possible.

We tried in this book to show for what purpose could stochastic models be used in
telecommunications networks, with quantitative as well as qualitive points of view.We
wanted to vary the possible approaches (discrete time, continuous time Markov chains
or processes, recurrent sequences, spatial modeling) to allow the reader to proceed with
his modelization works himself. We have not, far from it, addressed all themes and all
the technicalities on which the researchers are currently working. In particular, we did
not discuss fluid limits and Palm measures, but we hope that our readers can take the
rich literature to extend their thinking. We have tried to be as complete as possible in
the mathematical prerequisites. Proofs and results that are missing can be found easily
in many books that appear in the references. To emphasize the computational aspects
and to help our student readers, we have very often explained the algorithms that to be
implemented in order to solve a particular problem. Languages such as Octave, Scilab
or Scipy/Numpy (available through the SAGE platform) are particularly well suited
to the vector computations that appear here and allow us to instantiate the algorithms
described in a few lines only.

This book would not exist without the assistance of a considerable number of
people. The first draft of this book is a handout from Telecom ParisTech written by
L. Decreusefond, D. Kofman, H. Korezlioglu and S. Tohme. The introduction to the
martingale theory owes much to a handout from A.S. Üstünel. We have tried as much
as possible to present the underlying network protocols. It must be noted that the
decryption of standards of thousands of pages and their translation into human language
require much work and fine knowledge in a wide variety of disciplines, and as well as
infinite patience. We wish to thank C. Rigault and especially P. Martins, without whom
we would not know what POTS was and even less OFDMA.

We heartily thankN.Limnios, who offered us a beginning on this long-term venture,
as well as our colleagues C. Graham, Ph. Robert and F. Baccelli, with whom we have
had much interaction on these topics for several years. This book would not have been
what it is without the inspiration born from reading their books on these topics.

A big thanks to our partners for having supported us at difficult times. Thanks to
Adele for her help.

Our students or colleagues, E. Ferraz, I. Flint, P. Martins, A. Vergne, T. T. Vu have
reviewed and amended all or part of this opus. We thank them for participating in an
often thankless task. The residual errors are ours.

Paris, February 2012.
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Chapter 1

Introduction

1.1. Traffic, load, Erlang, etc.

In electricity, we count the amps or volts; in meteorology, we measure the pressure;
in telecommunications, we count the Erlangs.

The telephone came into existence in 1870. Most of the concepts and notations
were derived during this period. Looking at a telephone connection over a time period
of length T , we define its observed traffic flow as the percentage of time during which
the connection is busy

ρ = i ti
T

.

A priori, traffic is a dimensionless quantity since it is the ratio of the occupation time
to the total time. However, it still has a unit, Erlang, in remembrance of Erlang who,
along with Palm, was one of the pioneers of the performance assessment of telephone
networks. Therefore, a load of 1 Erlang corresponds to an always busy connection.

Time0 T

t1 t2 t3 t4

Figure 1.1. Traffic of a connection: ratio of the occupation time to the total time of observation

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal
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2 Networks Modeling and Analysis

Looking at several connections, the traffic carried by this trunk is the sum of the
traffic of each connection

ρtrunk =
connections

ρconnection.

This is no longer a percentage, but we can give a physical interpretation to this quantity
according to the ergodic hypothesis. In fact, assume that the number of junctions is
large, then we can calculate the average occupation rate in two different ways: either by
calculating the percentage of the occupation time of a particular connection over a large
period of time; or by computing the percentage of busy connections at a given time.
In statistical physics, the ergodicity of a set of gas molecules implies that the spatial
averages (for example, averages calculated on the set of gas molecules) are equal to
time averages (i.e. averages calculated over a molecule for a long period of time). By
analogy, we now assume that the same holds true for the occupation rate of telephone
connections. We, therefore, have

p = lim
T→∞

1
T

j

tj = lim
N→∞

1
N

n

Xn(t), [1.1]

whereXn = 1 if the junction n is busy at time t,Xn = 0, otherwise. Note that on the
right-hand side, the value of t is arbitrary. This implies that we have implicitly assumed
that the system is in steady state, that is statistically, its behavior does not change with
time. When the number of junctions is large, it is unrealistic to try to define a structure
of correlation between them. It is therefore reasonable to assume that a connection is
free or busy, irrespective of the situation of other connections. Therefore, at a given
time t, the number of busy connections follows a binomial distribution with parameters
N (the total number of connections) and p (calculated by equation [1.1]). The average
number of busy connections is Np at each moment.

This relation provides a simple and efficient way to estimate p. Telephone switches
have among other functions to count the number of ongoing calls at each moment. By
averaging this number over 15 seconds, we obtain a fairly accurate estimation of the
average number of simultaneous calls, that is an estimation of p.

This raises a question: How to choose T and when to carry out the measurements?
It is in fact clear that the traffic fluctuates throughout the day based on the human
activities. For we want to reduce and ensure a low failure rates, it is necessary to
consider the worst case and conduct measurements during heavy traffic periods. For
generations, the observation period has been referred to as one hour and we look at the
traffic at the busiest hour of the day.

Let us imagine for a moment that calls occur every 1/λ seconds and last exactly
1/µ seconds with µ > λ.
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t

Silence

Activity

1/λ 1/λ

1/µ 1/µ 1/µ

Figure 1.2. Deterministic calls

It is obvious that the number of calls between 0 and T is about λT and then the
occupation rate of such a line is given by

1
T
(λT × 1/µ) = λ/µ.

Of course, in reality, neither the inter-arrivals, nor the holding times are deterministic.
Let us imagine a situation in which the holding times and the idle times are independent
of each other with a distribution that is common to all busy periods and idle periods,
respectively. Mathematically speaking, (Xn, Yn, n ≥ 1) is a sequence of independent
random variables. For any n, Xn has distribution PX and Yn has distribution PY .
Assume that these two distributions have finite moments of order 1 and note

1/µ = y dPY (y), 1/τ = x dPX(x), λ =
1

1/τ + 1/µ
·

Set

T0 = 0, Tn = Tn−1 +Xn + Yn, Tn = Tn +Xn

and

X(t) =
1 if Tn ≤ t < Tn+1,

0 if Tn ≤ t < Tn.

Note that E [Tn+1 − Tn] = E [Xn + Yn] = 1/λ, so λ represents the average number
of arrivals per unit time.

The theory of renewal process, or Little’s formula (Chapter 8) show that we have
the following limit

1
T

T

0

11(X(s)) d s T→∞−−−−→ 1
µ

1
1/λ

=
λ

µ
· [1.2]
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t

Silence

Activity

Y1 Y2 Y3

X1 X2

T1 T2 T3 T4 T5

Figure 1.3. Random calls

We have shown in a particular but relatively general case that

load = average number of calls per time unit × average duration of a call.

This simple formula is important since it allows us to switch to theworld of the Internet.
The ARPANET, remote ancestor of the Internet, was born in the 1970s following the
works done for the U.S. army which required a distributed data transmission network
more resistant against a timely attack.Unlike the telephone networkwhere the resource,
that is the telephone connection, is reserved for the duration of the communication,
data networks are connectionless. The information is sent in packets of a few octets
to which we add some identifiers, each following their own path in the intricacies of
the network. The packet size, fixed or variable, large or small, is one of the issues to
be resolved in such protocols. In this context, there is no notion of connection thus the
concept of traffic must be redefined. The last equation [1.2] still has a meaning and it
is this meaning that we will retain.

Volts and amps are nothing without Ohm’s law, andmeteorology is nothing without
the equations of fluid mechanics. Erlangs are useless if we do not specify how the
arrivals occur or how long the calls last. As demonstrated in Figure 1.4, the load is
not sufficient to characterize the number of resources that are necessary to operate the
system.

The situation was rather simple until the 1990s. As far as the telephone system
is concerned, the process of call arrivals was modeled by a Poisson process (Chapter
6). This was justified by the statistical observations confirming it, and a well-known
qualitative reasoning: each telephone subscriber has a low probability to call at a
given time, but there are many (mathematically, an infinite number) subscribers. The
approximation of a binomial distribution by a Poisson distribution justifies that at
least at a given time, the number of simultaneous calls follows a Poisson distribution.
Regarding the call duration, measurements on the switches proved that it could be
considered to follow an exponential distribution with a mean of 3 minutes. Finally, the
traffic generated by a subscriber was considered equal to 0.12 Erlang in the busy hour.



Introduction 5

Time

Junction 2

Junction 1

Junction 2

Junction 1

0 T

Time0 T

Figure 1.4. Two systems are required to carry one Erlang. The first can be satisfied
with one connection. In the second system, two connections are required

In the case of data networks, despite serious doubts with regard to its validity,
the packets were always supposed to arrive according to a Poisson process and
their processing time assumed to follow an exponential distribution whose mean was
dependent on the processing speed of the routers and their average length. And then
boom! In the early 1990s, Bell Labs researchers showed in an intensive statistical
campaign thatwe cannot possibly compare the traffic in a broadband network to Poisson
traffic. In fact, if we consider the number of packets that arrive during 100 seconds, 10
seconds, . . . , 10 milli-seconds, we observe behaviors similar to that of Figure 1.5.

In the case of Poisson traffic, we observe behaviors that are visually similar to that
of Figure 1.5 for small time scales, but when we agglomerate the received packets per
period of 10 or 100 seconds, we mostly obtain a graph of the type of Figure 1.6.

This invariance of the number of packets at large time scale for the Poisson process
is explained by theorem A.36. Indeed, according to this theorem

1
λt
(N(t)− λt) t→∞−−−→ 0, that is

N(t)
t

t→∞−−−→ λ.

At the speed at which the packets are sent, λ is the order of a thousands packets per
second, hence 100 seconds can be considered as a “infinite” time and we obtain the
number of packets sent per period of 100 seconds is almost constant. Consequently,
the actual situation seems to be closer to that of a “fractal” system: the system retains the
same shape at all time scales. The researchers at Bell Labs even proposed an alternative
model in their paper, the fractional Brownian motion.

Definition 1.1.– A fractional Brownian motion of Hurst index H is a centered
Gaussian process with covariance given by

E [BH(t)BH(s)] =
1
2
(t2H + s2H − |t− s|2H).
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t

Figure 1.5. At all observable time scales, after renormalization,
the traffic recorded by time intervals resembles this one

IfH = 1/2, we get the ordinary Brownian motion, whenH > 1/2, the increments
are with positive covariance, if H < 1/2, they are with negative covariance: if the
traffic tends to increase, immediately afterwards, it will tend to decrease.

From then on, the entire academic community began to ponder this question: What
causes this fractal aspect, is the invariance true at all time scales, should the model
be fractal or multi-fractal and most of all what is the impact of this form of traffic on
the size of the queues? After 10 years of frantic research, we know how to explain the
reasons behind the fractality, but we still do not know how to control it though it may
have a major impact on the design.

To explain the fractality, it is enough to consider an emission schema for a source
such as that of Figure 1.3: when X = 1, it implies that the source is emitting at its
maximum speed, when X = 0, the source does not emit. Motivated by the statistical
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t

Np∆tq

Figure 1.6. For a Poisson traffic, the number of packets received per time interval
becomes almost invariant when the time intervals are sufficiently large

studies which prove that the length of the files available on the web has a “heavy-
tailed” distribution, that isP(X > x) ∼ x−α for α > 0, as opposed to the exponential
distribution where P(X > x) = exp(−bx), the length of the emission period is
assumed to follow a Pareto distribution, that is dPX(x) = cx−α 1[K,∞[(x), and the
same is assumed for the idle period. When we superimposed many sources of this type
and observe the steady state of this superposition, we find that the resulting process
is exactly a fractional Brownian motion whose Hurst index depends on the powers
appearing in the Pareto distributions.

In the end, all this matters only if we try to think in terms of packets. However,
the current protocols mostly try to agglomerate the packets in flows (to prioritize some
traffic for example) and thus virtually recreate the concept of connection specific to
our plain old telephone. Under these conditions, only the arrival times and lifetimes
of packets matter; however, these are less incorrectly modeled by a Poisson process
and independent lifetimes with a heavy-tailed distribution. The Poisson process has a
bright future. . .

1.2. Notations and nomenclature

T0 = 0 < T1 < . . . Tn commonly denotes the arrival times of the customers
(packets, sessions, calls, etc.) in the queuing system. The quantities Sn = Tn − Tn−1
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t

B 0.25 ( t)

t

B 0.5 ( t)

t

B 0.75 ( t)

Figure 1.7. Fractional Brownian motion for different values of H: from left to right H = 0.2;
H = 0.5; H = 0.8. Lower the value of H more irregular are the trajectories

are called inter-arrivals. The service time of the nth customer (processing time, call
duration, etc.) is denoted by σn.

To distinguish different queues, we use Kendall’s notation. A queue is a discrete
event dynamic system described by five parameters: the statistical type of inter-arrivals,
the statistical type of service time, the number of servers, the total number of resources
(servers plus size of the waiting room), and service discipline. Implicitly, the inter-
arrivals and service times are independent random variables.

For the first two points, the same abbreviations are used:
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Mλ to describe independent inter-arrivals (or service times) exponentially distributed
of parameter λ.

GI to describe independent inter-arrivals (or service times) of the same distribution.

G to describe random inter-arrivals (or service times).

Dλ to describe deterministic inter-arrivals (or service times) equal to λ.

The service discipline describes the order in which the customers are served:

FIFO or FCFS for First In First Out or First Come First Served.

LIFO LCFS or for Last In First Out. The last arrived customer is served first. Such a
disciplinemay be preemptive if the new customer interrupts the current service or
non-preemptive if otherwise. If preemptive, we can distinguish the preemptive
resume case where the service of an interrupted customer picks up where it
stopped, of the preemptive non-resume case where the service restarts at zero.

SRPT or Shortest Remaining Processing Time. The customer who has the lowest
residual service time is served first. This discipline may be preemptive or non-
preemptive.

EDF or Earliest Deadline First. Each customer has a marker of impatience. The
customer with the lowest impatience is served first.

A discipline is said to be conservative when the input traffic is equal to the output
traffic. Obviously, if the resources are finite, no discipline can be conservative (except
in the deterministic case with traffic strictly less than 1). Even with infinite resources,
a discipline is not necessarily conservative: in the EDF discipline, we can consider
removing all the customers who are not served before their impatiencemarker; the non-
preemptive resume disciplines are no longer conservative as there is more processed
load than input load.

In the absence of information on the number of resources or the service discipline,
it is understood that the number of resources is infinite and that the service discipline
is the FIFO discipline.

Example.– The M/M/1 queue is the queuing system where the inter-arrivals and the
service times are independent of exponential distribution and there is one server. The
waiting room is of infinite size and the service discipline is FIFO.

The GI/D/S/S+K queue is a queue with S servers, K places in the waiting room,
deterministic service times, independent and identically distributed inter-arrivals.
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1.3. Lindley and Beneš

1.3.1. Discrete model

We often consider the number of customers present in the system but the quantity
that contains the most information is the system load, defined at each moment as the
time required for the system to empty itself in the absence of new arrivals. The server
works at unit speed: it serves a unit of work per unit time. Consequently, the load
decreases with speed 1 between two arrivals. Figure 1.8 which represents the load over
time depending on the arrivals and required service times is easily constructed.

Definition 1.2.– A busy period of a queue is a period that begins with the arrival of
a customer in an empty system (server plus buffer) and ends with the end of a service
after which the system is empty again.

A cycle is a time period that begins with the arrival of a customer in an empty system
and ends on the next arrival of a customer in an empty system. This is the concatenation
of a busy period and an idle period, that is the time elapsed between the departure of
the last customer of the busy period and the arrival of the next customer.

Note.– In Figure 1.8, a busy period begins at T1 and ends at D4. The corresponding
cycle begins at T1 and ends at T5.

Note that as long as a service policy is conservative, the size of a busy period is
independent of it: for waiting rooms of infinite size, the busy periods have, for example,
the same length for the FIFOpolicy as that for the non-preemptive or preemptive resume
LIFO policy.

Now let us consider the system load just before the arrival of the customer n. If
Wn−1 is the system load at the arrival of the customer n − 1, it is increased by the
load provided by the customer, that is σn−1, and reduced by the service time elapsed
between the arrival times Tn−1 and Tn, that is Sn exactly. We, therefore, have a priori

Wn =Wn−1 + σn−1 − Sn.

However, if Sn > Wn+σn−1, the inter-arrival is so large that the system has emptied,
henceWn = 0 and notWn < 0. Consequently, the true formula known as Lindley’s
formula is given by

Wn = max(Wn−1 + σn−1 − Sn, 0). [1.3]

Since the server works at unit speed, the load between Tn and Tn+1 is given by

W (t) = max(Wn + σn − (t− Tn), 0).

These two equations are used to easily simulate the load in any system, irrespective
of the type of arrivals or service times or the service discipline as long as it is
conservative.
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Figure 1.8. The change in the system load with time. This graph is used to find the
departure time in the case of a FIFO discipline, therefore to represent the change

in the number of customers in the system

They are also used to qualitatively analyze the stability of the system in very general
cases. This will be dealt with in Chapter 4.
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1.3.2. Fluid model

A fluid model consists of replacing a queue which is a discrete-time event system
by a reservoir of infinite capacity which empties itself at unit speed and is fed by some
continuous data flow. We can then obtain qualitative results on models whose study
supports no other approaches. On the one hand, the method does not require precise
knowledge about the rate of the input process, and on the other hand, it is particularly
well adapted to the study of extreme cases: low and high loads, superposition of
heterogeneous traffic.

We work in continuous time and we assume that all the processes are right-
continuous with left limits. We denote:

1) S(t): the total service time for the requests arrived up to time t;

2) W (t): the virtual waiting time of a customer arriving at time t, that is the time
that the customer must wait before starting to be served;

3) X(t) = S(t)− t.

As the system has no losses, we have

W (t) = X(t)− (t−
t

0

1{0}(W (s)) d s). [1.4]

We will focus on showing an equivalent formulation of this equation.

Theorem 1.1 (Beneš Equation).– With the previous notations, we obtain the following
identity: for x ≥ 0,

P (W (t) < x) = P (X(t) < x)

− ∂

∂x

t

0

P (X(t)−X(u) < x |W (u) = 0)P (W (u) = 0) du, [1.5]

and for −t ≤ x ≤ 0,

P (X(t) < x) =
∂

∂x

t+x

0

P (X(t)−X(u) < x |W (u) = 0)P (W (u) = 0) du.

To go further, we will use the theory of reflection.

1.3.3. Reflection problem

Definition 1.3.– Let (X(t)), t ≥ 0) be a left-continuous process whose jumps are
non-negative, the pair (W,L) solves the reflection equation associated with X if:

www.allitebooks.com
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1) W (t) = X(t) + L(t), ∀t ≥ 0;
2) W (t) ≥ 0, ∀t ≥ 0;
3) L is a left-continuous, null at zero increasing process such that the measure

dL(s)(ω) is supported on the set {s : W (s)(ω) = 0}, that is L increases only at
moments whereW is zero.

Theorem 1.2.– The problem of reflection associated with X has a unique solution
given by

L(t) = sup
s≤t

X(s)−, W (t) = X(t) + sup
s≤t

X(s)−

where x+ = max(x, 0) and x− = max(−x, 0).

Proof. If (W,L) and (W̃ , L̃) are two solutions

(W (t)− W̃ (t))2 = (L(s)− L̃(s))2 = 2
t

0

(L(s)− L̃(s))d(L− L̃)(s)

= 2
t

0

(W (s)− W̃ (s))d(L− L̃)(s)

= −2
t

0

(W (s)dL̃(s) + W̃ (s)dL(s)) ≤ 0,

where we have successively used:

– the relation betweenW , X , and L (W̃ , L̃,X , respectively);

– at fixed ω, the process s → L(ω, s) is an increasing process, therefore
differentiable almost everywhere and whose derivative dL(s)(ω) is a non-negative
measure. The process L − L̃ is of finite variation and so we can apply the formula of
integration by parts A.13;

– L increases only at moments whenW is zero, therefore “W (s)dL(s)(ω) = 0”;
– W̃ is a non-negative process and dL(s) is a non-negative measure, therefore

W̃ (s)dL(s) ≥ 0 and the same holds for the other term of the last integral.

Consequently,W = W̃ and uniqueness follows.

It is enough to check whether the process sups≤tX(s)− is suitable for L. Clearly,
the L thus defined is an increasing process which is non-negative and null at 0. On the
other hand

W (t) = X(t) + L(t) = X(t)+ −X(t)− + sup
s≤t

X(s)− ≥ 0

We just have to see that L increases only in the set of zeros ofW . Let T0 be a point of
increase ofL, then for anynon-negativeh, there exists th such thatLt0−h ≤ X−

th
≤ Lt0 .
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When h tends toward 0, we have by left-continuity, Lt0 = X−
t0 = −Xt0 , therefore

Xt0 + Lt0 =Wt0 = 0. The proof is thus complete.

t

Figure 1.9. An example of a reflected process. The dark color represents the input process X;
dots represent the process L, and light color represents the process W

Corollary 1.3.– With the previous notations, we have the following identity

exp −λ
t

0

1{0}(W (s)) d s = 1− λ
t

0

eλX(s)1{0}(W (s)) d s. [1.6]
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Proof. From the relation f(t)− f(0) = t

0
f (u) du, we deduce

exp −λ
t

0

1{0}(W (s)) d s = 1− λ
t

0

e
−λ s

0 1{0}(W (u)) du 1{0}(W (s)) d s

= 1− λ
t

0

e−λ(W (s)−X(s)) 1{0}(W (s)) d s

= 1− λ
t

0

eλX(s) 1{0}(W (s)) d s.

Hence the result.

We can now show an intermediate version of the Beneš equation which is also
interesting in itself.

Theorem 1.4.– With the previous notations, we have the following identity:

E [f(W (t))] = E [f(X(t))] +E
t

0

f (X(t)−X(u)) 1{0}(W (u)) du

= E [f(X(t))] +
t

0

E [f (X(t)−X(u)) |W (u) = 0]P (W (u) = 0) du.

[1.7]

Proof. By multiplying the two terms of equation [1.6] by e−λX(t), we get

E e−λW (t) = E e−λX(t) − λ
t

0

E e−λ(X(t)−X(u)) 1{0}(W (u)) du .

More generally, for any function which is twice differentiable and bounded, we obtain
equation [1.7].

Now we can give an idea on the proof of the Beneš equation [1.5].

Note.– P (X(t)−X(u) < x|W (u) = 0) = 0 for t + x ≤ u ≤ t, since on
(W (u) = 0),

X(t)−X(u) =W (t)− L(t) + L(u) ≥ −(L(t)− L(u))

however, L(t) ≤ t, thus X(t) −X(u) ≥ −(t − u). Therefore, X(t) −X(u) cannot
be smaller than x if x itself is less than u− t, that is u ≥ t+ x.
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Proof. Proof of the Beneš equation. By multiplying the terms of [1.5] by e−λx, then
by integrating it from −t to +∞, it appears that equation [1.5] is equivalent to:

+∞

−t
e−λxP (W (t) < x) dx =

+∞

−t
e−λxP (X(t) < x) dx

−
+∞

−t
e−λx ∂

∂x

t+x

0

P (X(t)−X(u) < x|W (u) = 0)P (W (u) = 0) du dx,

according to the note above. By using the formula

+∞

0

e−λxP (X < x) dx =
1
λ
E e−λX

and an integration by parts, we obtain

E e−λW (t) = E e−λX(t)

− λ
∂

∂x

t

0

E e−λ(X(t)−X(u))|W (u) = 0 E 1{0}(W (u)) du

= E e−λX(t)

− λ e−λx
t+x

0

P (X(t)−X(u) < x|W (u) = 0)P (W (u) = 0) du
x=+∞

x=−t

+ λ2
+∞

−t
e−λx

t+x

0

P (X(t)−X(u) < x|W (u) = 0)P (W (u) = 0) du dx

= E e−λX(t)

+ λ2
+∞

0

P (W (u) = 0)
+∞

u−t
P (X(t)−X(u) < x|W (u) = 0) dx du.

Thus

E e−λW (t) = E e−λX(t)

+ λ2
+∞

0

P (W (u) = 0)
+∞

0

P (X(t)−X(u) < x|W (u) = 0) dx du

= E e−λX(t)

+ λ
+∞

0

P (W (u) = 0)
+∞

0

E e−λ(X(t)−X(u))|W (u) = 0 dx du,

always according to the initial note.
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The representation of the workload in the form of a reflected process constitutes
the basis of many convergence theorems. This formula also helps us to study the
significance of the long memory in the transmission delay. Other Markovian methods
could not process this situation.

There is a particular class of processes for which we can deduce complete results:

Definition 1.4.– A processX is said to be with independent increments if and only if,
for any 0 ≤ t1 < · · · < tn, the random variablesX(t1), X(t2)−X(t1), . . . , X(tn)−
X(tn−1) are independent. The process is said to have homogeneous increments if for
any pair (t, s) of non-negative real numbers, the distribution of X(t + s) − X(t) is
that of X(s).

Theorem 1.5.– If X(t) = S(t) − t is a process with homogeneous independent
increments and (W, L) is the solution of the reflection problem associated with X ,
we have

σ
+∞

0

e−σtE e−λW (t)−µL(t) d t = Ψ−
σ (−λ)Ψ+

σ (−µ) [1.8]

where:

– Ψ is the Lévy-Khintchine function of X defined by E esX(t) = etψ(s) which
can be written as

Ψ(s) = as+
1
2
σ2

0s
2 +

|x|<1

(esx − 1− sx) dΠ(x) +
|x|≥1

(esx − 1) dΠ(x)

for a measure Π integrating x2 ∧ 1.
– η is a Lévy-Khintchine function such that ψ(η(s)) = s.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ψ+
σ (s) =

1

1− s

η(s)

Ψ−
σ (s) = 1− s

η(s)
σ

σ −Ψ(s)

This result is complementary to the future results on the M/GI/1 queue (Chapter 5)
since such a queue is represented by a fluid model by considering

S(t) =
Tn≤t

Yn

where (Tn, n ≥ 1) is the sequence of arrival times distributed according to a Poisson
process and (Yn, n ≥ 1) is a sequence of independent random variables that are
identically distributed.
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1.4. Notes and comments

For more details on the design of telephone networks, their history and future
developments, we may refer to [RIG 98]. The original paper by Bell Labs refers
to [LEL 94], the studies which show that files have a length that follows a Pareto
distribution are available in [CRO 96]. Themathematical explanation of auto-similarity
is available in [SHE 97]. Norros is the first to have studied the impact of auto-similarity
in networkswhich can be referred to in [NOR94].Many results on statistical estimation,
as well as on the use in networks or more mathematical aspects on long-memory
processes may be found in [DOU 02].
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Epitome

– The load is also called traffic. It is defined as the average number of calls per unit
of time multiplied by the mean processing time of a call. Its unit is Erlang.

– Kendall’s notation is used to describe the different queues. The M/M/1 queue is
the queue where the inter-arrivals and the service times are independent and follow
exponential distributions. There is only one server, the queue is infinite, and the service
policy is FIFO.

– We know how to qualitatively examine theM/M /∗/∗/ FIFO queues, and to a lesser
extent, the M/GI/1 and GI/M/1 queues. For the others (other distributions of inter-
arrivals or service times, other disciplines), we often have only partial or asymptotic
results.



Part 1

Discrete-time Modeling



Chapter 2

Stochastic Recursive Sequences

The modeling of discrete-time deterministic dynamical systems is based on
recursive sequences of the form un+1 = f(un). One addresses the question of
convergence of the sequence as n goes to infinity, and the value of the limit which,
assuming that f is continuous, is necessarily the solution of the equation l = f(l).

The purpose of this chapter is to develop the tools that will enable us to answer
such questions for stochastic recursive sequences.

For example, let us consider a G/G/1 queue (which will be dealt with in section 4.1).
Denoting (ξn, n ∈ N) the sequence of inter-arrival times and (σn, n ∈ N) the
sequence of service times, the workloadWn+1 of the server at the arrival of the n+1th
customer is deduced from the workload at the arrival of the nth customer by Lindley’s
equation

Wn+1 = [Wn + σn − ξn]
+
. [2.1]

If the two sequences are independent (GI/GI/1 queue), then the sequence
(Wn, n ∈ N) is a Markov chain with values in the uncountable spaceR+. Its analysis
is impossible with the tools of Chapter 3 since we restrict it to Markov chains having
finite or countable state space.

Obviously, there can be no almost sure convergence of the sequence (Wn, n ∈ N)
toward the same limit, butwe can expect a convergence “in distribution” that isP(Wn ∈
[a, b]) n→∞−−−−→ P(W∞ ∈ [a, b]) for a random variableW∞ whose distribution must be
determined. We then say that the sequence converges toward its steady state. It is then
remarkable that by properly choosing the probability space,we canwrite a deterministic
equation, similar to the equation l = f(l), which is solved by the stationary distribution.

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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More generally, the asymptotic study is essentially based on the properties of the
recurrence function (monotonicity, continuity, etc.), on criteria of comparison with
other sequences and on the resolution, in a stochastic frame, of a fixed point-type
limiting equation (see equation [2.7]).

This chapter is therefore mainly theoretical, but introduces the necessary tools for
the study of the stability of queues, under the most general hypothesis.

2.1. Canonical space

The concept of stationarity implies invariance in time, that is : a shift in time does
not change the global picture. If the idea is easily understood, its formalization quickly
clouds the basic concept.

Let us consider the set FN of sequences of elements of a set F . The shift operator
θ on FN is then defined by

θ: FN −→ FN

(ωn, n ≥ 0) −→ (ωn+1, n ≥ 0) = (ωn, n ≥ 1).

Defined in thisway, this operator has the drawback of not being bijective: if we consider
a sequence β = (βn, n ≥ 0), all the sequences obtained by concatenation of any
element of F and β are mapped onto β by θ. To overcome this problem, it is customary
to work with sequences indexed by Z and not by N. This change has no crucial
mathematical consequence, as the indexation space remains countable. Philosophically,
however, it implies that there is no more origin of time...

The shift operator is thus defined on FZ by

θ(ωn, n ∈ Z) = (ωn+1, n ∈ Z)

and thus becomes bijective!

Now, let us suppose that F is a Polish space, and thereby that FZ is Polish. It
can therefore be equipped with its Borel sigma-field B(FZ). Throughout this chapter,
the canonical space will be Ω = (FZ, B(FZ)). For n ∈ Z, Xn denotes the “nth
coordinate” map

Xn:
Ω = FZ −→ F
ω = (ωn, n ∈ Z) −→ ωn.

Let us notice the following identity

Xk = X0 ◦ θk, for any k ∈ Z. [2.2]

www.allitebooks.com
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Definition 2.1.– Let (E, E , P) be a probability space and ψ be a measurable
mapping from (E, E) to (F, F). We denote ψ∗P the image measure of P by ψ,
that is

∀A ∈ F , (ψ∗P)(A) = P(ψ−1(A)),

where ψ1(A) = {x ∈ E, ψ(x) ∈ A}.
Definition 2.2.– A probability P on Ω is said stationary if for any A ∈ B(FZ),

P(A) = P(θ−1A).

In an equivalent manner, we have θ∗P = P.

Particularly, if one considers events of the form

A = (Xk1 ∈ A1, · · · , Xkn ∈ An),

we deduce that

P(Xk1 ∈ A1, · · · , Xkn ∈ An) = P(Xk1−1 ∈ A1, · · · , Xkn−1 ∈ An). [2.3]

A sequence of random variables satisfying [2.3] for any n, all k1, · · · , kn and all
A1, · · · , An ∈ B(F ), will be said to be stationary. In particular, if the canonical
space Ω = FZ is equipped with a stationary probability, the sequence of “coordinate”
maps is a stationary sequence of random variables.

Note.– Conversely, if the sequence (αn, n ∈ Z), defined on a probability space
(Ω̃, P̃), is stationary, we can consider Pα its distribution on FZ, that is the image
measure of P̃ by the mapping

Ω̃ −→ FZ

ω̃ −→ (αn(ω̃), n ∈ Z).

It is then easily seen that Pα is a stationary measure. In fact, it suffices to check [2.3]
for P = Pα. But this is true since

Pα(Xk1 ∈ A1, · · · , Xkn ∈ An) = P̃(αk1 ∈ A1, · · · , αkn ∈ An).

Henceforth, all the stationary sequences will be seen as a stationary probability
on FZ.

Note.– Constructing a stationary sequence is not easy in general. The simplest
example is that of independent and identically distributed random variables, as in
this case,
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P̃(αk1 ∈ A1, . . . , αkn ∈ An) =
n

j=1

Pα0(Aj),

a quantity which does not depend on (k1, . . . , kn).

Another construction of stationary sequences can be obtained from irreducible
positive recurrent Markov chains (see Chapter 3) . Let X̃ be a Markov chain onE with
transition operator Q and invariant probability π. We denote P̃ the distribution of X̃
on EN when π is the distribution of X0. We know from Kolmogorov’s Lemma that
to define a probability on EZ, it suffices to define the finite-dimensional distribution.
Now, by setting for any n-tuple of relative integers k1 < k2 < · · · < kn and all
A1, . . . , An ⊂ E,

P(Xk1 ∈ A1, . . . , Xkn ∈ An) = P̃(X̃0 ∈ A1, . . . , X̃kn−k1 ∈ An),

we define in fact the finite-dimensional marginals of a unique probability measure on
EZ. The stationarity of P thus defined is straightforward.

Let us define the quadruple O = (Ω = FZ, F = B(FZ), P, θ).

Definition 2.3.– A probability measure P on FZ is said to be ergodic if

lim
n→∞

1
n

n

i=1

Φ ◦ θi = lim
n→∞

1
n

n

i=1

Φ ◦ θ−i = EP [Φ] , P − a.s. [2.4]

for any function Φ ∈ L1(P). The quadruple O will then be said to be ergodic. A
stationary sequence (αn, n ∈ Z) is said to be ergodic if its distribution induces an
ergodic measure on FZ.

Example 2.1.– Let a and b be two real numbers. The random sequence (αn, n ∈ Z)
equal to a, b, a, b, ... with probability 1/2 and b, a, b, a, ... with probability 1/2 is
stationary (we have P (αn = a) = P (αn = b) = 1/2 for all n) and ergodic ([2.4] is
clearly verified).

Example 2.2.– The sequence (βn, n ∈ Z) equal to a, a, ..., awith probability 1/2 and
b, b, ..., b with probability 1/2 is also stationary. On the other hand, it is easily checked
that it is not ergodic since [2.4] does not hold e.g. for Φ = 1{a}.

Lemma 2.1.– Let O be an ergodic quadruple. Any event A ∈ B(FZ) such that
A = θ−1A is trivial: P (A) = 0 or 1.

Proof. For any integer n ∈ N, we define F0
n = σ{Xk, k ≤ n}, where Xn is the

nth coordinate map, andWn = E 1A | F0
n . The sequenceW is clearly a uniformly

bounded martingale, which thus converges a.s. and in L1 to 1A. Temporarily let us
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assume thatWn = W0 ◦ θn. If a sequence (un, n ∈ N) converges to a limit, then its
Cesaro averages also converge to the same limit. Thus,

1
n

n

k=1

Wk
n→∞−−−−→ 1A .

On the other hand,

1
n

n

k=1

Wk =
1
n

n

k=1

W0 ◦ θk n→∞−−−−→ E [W0] ,

according to the hypothesis [2.4]. It follows that the random variable 1A is constant,
hence the result.

It thus remains to prove that Wn = W0 ◦ θn or in an equivalent manner,
E 1A | F0

n = E 1A | F0
n−1 ◦ θ for all n. First let us observe that if φ is F0

n-
measurable, then φ ◦ θ−1 is F0

n−1-measurable. In addition, θ−1A = A is equivalent to
1A ◦θ = 1A. By definition ofWn, for all F0

n-measurable and bounded φ, we have

E [φWn] = E [φ 1A]

= E φ ◦ θ−1 ◦ θ 1A ◦θ
= E φ ◦ θ−1 1A

= E φ ◦ θ−1 Wn−1

= E φ ◦ θ−1 Wn−1 ◦ θ ◦ θ−1

= E [φ Wn−1 ◦ θ] ,

where we have twice used the invariance of P by θ, that is the stationarity. By
identification, we deduce thatWn =W0 ◦ θn.

The following result will be frequently used in Chapter 4.

Lemma 2.2 (Ergodic Lemma).– Let Y be a random variable defined on the stationary
ergodic quadruple O, P-a.s. positive and such that Y ◦ θ − Y is integrable. Then,

E [Y ◦ θ − Y ] = 0.

Proof. For all n ∈ N, the v.a. Y ∧ n is integrable and thus

E [(Y ∧ n) ◦ θ − Y ∧ n] = E [(Y ∧ n) ◦ θ]− E [Y ∧ n] = 0. [2.5]
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The sequence ((Y ∧ n) ◦ θ − Y ∧ n, n ∈ N) converges P-p.s. to Y ◦ θ− Y , and it is
easy to see that for all n,

| (Y ∧ n) ◦ θ − Y ∧ n |= | (Y ◦ θ) ∧ n− Y ∧ n | ≤ | Y ◦ θ − Y | .

The dominated convergence theorem thus implies that the null expectations of [2.5]
tend to E [Y ◦ θ − Y ], which concludes the proof.

It is important to notice (and this is its essential purpose) that the latter result holds
true even if Y is not assumed as integrable.

Definition 2.4.– A stochastic recursive sequence (SRS for short) (Wn, n ∈ N) with
values in the Polish space E, is defined on a stationary ergodic quadruple by a random
variable Y valued in E, a measurable mapping ϕ from E × F to E and the relations

W0 = Y and Wn+1 = ϕ(Wn, Xn) for n ≥ 1. [2.6]

We then say that the SRS (Wn, n ∈ N) is driven by ϕ and descends from Y . It is often
denoted WY

n , n ∈ N to emphasize the dependence on the initial condition Y .

Example 2.3.– The sequence (Wn, n ∈ N) of the workload of the G/G/1 queue
mentioned in the introduction of this chapter has such a form: we set for all n,
Xn = (σn, ξn), E = R+, F = R+ × R+ and

ϕ :
E × F −→ E

(x, (y, z)) −→ x+ y − z
+
.

Hence there are two sources of randomness in the evolution of W : the initial
condition Y and the “stimulus” represented by the sequenceX . The probability space
on whichM is defined is therefore

E × FZ, B(E)⊗ B(FZ) .

As a random variable, W takes values in EN. The law of the sequence W thus
defines a probability on EN. This space is also equipped with a shift θE defined in a
similar way to that of FZ, which we temporarily note θF . The shift θE is not bijective,
but we will not need this property for the time being. The definitions of stationarity
and of ergodicity remain valid to the identical.

The stimulus is given by the model, hence we cannot do anything but to act on
the initial condition. The question is to know whether one can choose Y as a stimulus
function so that the distribution ofW is stationary. A sufficient condition is provided
by the following theorem. It transforms an identity in distribution in to a trajectorial
identity which we hope is easier to prove.
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Theorem 2.3.– If there is a random variable Y such that

Y ◦ θF = ϕ(Y, X0), PX − a.s., [2.7]

then the SRSW defined by [2.6] admits a stationary probability.

Proof. After introducing some notations, the result is straightforward. Let us introduce
the mappings

Y : FZ −→ FZ × E
ω −→ (ω, Y (ω))

and

W : FZ × E −→ EN

(ω, η) −→ (η, ϕ(η, ω), . . .).

Hence we have the following diagram

FZ W◦Y−−−−→ EN

θF

⏐⏐ ⏐⏐
θE

FZ −−−−→
W◦Y

EN

Thenth component ofW ◦Y ◦θF (ω) isWn(Y (θFω), θFω), and that of θE ◦M ◦Y (ω)
is Wn+1(Y (ω), ω). In particular for n = 0, on the one hand we have Y ◦ θF (ω)
and on the other ϕ(Y (ω), ω0), then equation [2.7] means that these two quantities
are equal. We deduce by induction that it is also the case for all the components,
so W ◦ Y ◦ θF = θE ◦M ◦ Y . In mathematical terms, we say that the diagram is
“commutative”.

From this we can deduce that the imagemeasures ofPX by these twomappings are
identical. Let us note P as the law ofW , that is the image measure of PX byW ◦ Y .
On the one hand we have

(θE ◦W ◦ Y )∗PX = θ∗
EP

and on the other hand, as θ∗
FPX = PX ,

(W ◦ Y ◦ θF )∗PX = (W ◦ Y )∗PX = P.

We have thus proven that θ∗
EP = P, which according to Definition 2.2, means that P

is stationary.

The crucial question of the stationarity of the SRS thus amounts to the resolution
of the almost-sure equation [2.7]. We propose later in this chapter, two methods which
allow us to conclude in many cases.
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2.2. Loynes’s scheme

Here we will consider the case where the state space E is equipped with a partial
ordering (see section A.3), and admits a minimal point 0 such that 0 x for all
x ∈ E. We will assume that on E there exists a metric dE such that all -increasing
sequences converge in Ē, the adherence of E.

Definition 2.5.– A function ϕ:E × FZ → E is said -increasing when

η η =⇒ ϕ(η, ω) ϕ(η , ω),PX − a.s..

It is said continuous with respect to its first variable when for PX -almost all ω, the
function (η → ϕ(η, ω)) is continuous for the metric dE .

Theorem 2.4 (Loynes’s Theorem).– If ϕ is -increasing and continuous, the
equation [2.7] admits a solutionM∞ with values in the adherence Ē of E.

Proof. Let us recall that we have assumed that we know the stimulus through the
quadruple O, whose generic element is denoted ω. We look for a random variable Y
valued in E and satisfying [2.7]. We will get Y as the limit of a sequence converging
almost surely. To do this, we consider Loynes’s sequence (Mn, n ∈ N), defined by

M0(ω) = 0 andMn+1(ω) = ϕ(Mn ◦ θ−1(ω), θ−1ω), ∀n ≥ 1. [2.8]

By the definition of 0, we have M0 = 0 M1, and assuming that for some n > 1,
Mn−1 Mn a.s., since ϕ is increasing we have

Mn(ω) = ϕ Mn−1(θ−1ω), θ−1ω ϕ Mn(θ−1ω), θ−1ω =Mn+1(ω) PX -a.s..

Therefore, the sequence (Mn, n ∈ N) is a.s. increasing. In view of our assumption on
the increasing sequences ofE, it thus converges a.s. to the random variableM∞ = (
−sup)n∈NMn, which is valued in Ē. By continuity of ϕ, the second relation of [2.8]
implies that

M∞(ω) = ϕ M∞ ◦ θ−1(ω), θ−1ω

and as θ is bijective, we deduce thatM∞ is a solution of [2.7].

Note.– In fact, the sequenceM has an easy interpretation. Let W 0
n , n ∈ N be the

SRS descending from 0 and driven by ϕ. It is easy to verify that for all n ∈ N, a.s.

Mn =W 0
n ◦ θ−n.

Indeed, this relation is true for n = 0, and if it holds true at rank n, then a.s.

Mn+1(ω) = ϕ(Mn(θ−1ω), θ−1ω)

= ϕ(W 0
n ◦ θ−n ◦ θ−1ω, θnθ−(n+1)ω)

=W 0
n+1(θ

−(n+1)ω).
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In a concrete manner, Mn is the value at the instant 0 of the sequence W 0

when descending from 0 at the instant −n and using as stimulus, the values of
X−n, X−n+1, . . . , X0. For this reason, we call the construction of Loynes a backwards
recurrence scheme. Notice by the way, the ease brought by the construction on FZ and
not FN of the stimulus. The underlying idea is that by indexing the sequence from
−∞, we will have reached the stationary state at time 0.

n

Xn

−5 −4 −3 −2 −1 0 1

n

−5 −4 −3 −2 −1 0 1

(0 + X−5)+

(0 + X−3)+ = 0

W5

Figure 2.1. Backwards recurrence scheme ϕ(x, z) = (x + z)+

Example 2.4.– Example 2.3 is a typical example of such a construction, since the
function (x → (x+ z)+) is obviously continuous and increasing for all z ∈ R. Thus
there exists a random variable Y that is solution of [2.7], but we do not know a priori if
its distribution is “proper”, that is ifP(Y = +∞) = 0. This will be one of the subjects
of study of section 4.1.

We can now answer the question of weak convergence of an SRS descending from
the minimal state.

Corollary 2.5.– Under the assumptions of Theorem 2.4, the SRS descending from 0
and driven by ϕ converges in distribution toM∞.

Proof. Let F be bounded and continuous fromE toR. AsP is invariant through θ we
have
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E F (W 0
n) = E F (W 0

n ◦ θ−n) = E [F (Mn)]
n→∞−−−−→ E [F (M∞)] ,

hence the result.

The following result will be of crucial interest in the applications to queueing.

Theorem 2.6.– Under the assumptions of Theorem 2.4, the solutionM∞ constructed
by Loynes’s scheme is -minimal among the solutions of [2.7].

Proof. Let Y be a solution of [2.7]. We have M0 = 0 Y a.s. and Mn Y a.s.
implies that

Mn+1(ω) ϕ(Y ◦ θ−1(ω), θ−1ω) = Y (ω),P − a.s..

This inequality is preserved when taking the almost-sure limit, therefore

M∞ Y.

We can apply the previous results to E = R+ totally ordered by “≤” and
the minimal point 0. In this context, Birkhoff’s Ergodic Theorem can be seen as a
fundamental application of Loynes’s Theorem.

Theorem 2.7 (Birkhoff’s Ergodic theorem).– For any real random variable Y ∈
L1(P),

E [Y ] = lim
n→∞

1
n

n

i=1

Y ◦ θ−i,P − a.s..

Proof. Let ε > 0. We define the random variable

Y ε = Y − E [Y ]− ε

and the following random application from R+ into itself:

ϕε:x→ [x+ Y ε]+ = x− x ∧ (−Y ε) .

The function ϕε is a.s. increasing and continuous, so Loynes’s sequence
(Mε

n, n ∈ N) driven by ϕε is a.s. increasing in R+ and in view of Theorem 2.4,
tends a.s. to a random variableMε

∞ satisfying

Mε
∞ ◦ θ = ϕε (Mε

∞) = [Mε
∞ + Y ε]+ . [2.9]
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An immediate induction shows that the (Mε
n, n ∈ N) are integrable. Therefore, for all

n ∈ N we have

0 ≥ E [Mε
n]− E Mε

n+1 = E Mε
n −Mε

n+1 ◦ θ
= E [Mε

n − ϕε (Mε
n)] = E [Mε

n ∧ (−Y ε)] .

Hence, by dominated convergence,

E [Mε
∞ ∧ (−Y ε)] ≤ 0.

In view of [2.9], the event (Mε
∞ = +∞) is θ-invariant, and is thus of probability 0

or 1. ButMε
∞ = ∞ a.s. would imply that E [−Y ε] ≤ 0, an absurdity. Therefore,Mε

∞
is a.s. finite. Now, define the random mapping from R+ into itself ϕ̃ε:x → x + Y ε,
and (M̃ε

n, n ∈ N) the associated Loynes’s sequence. Notice that by construction,
M̃ε
n = n

i=1 Y
ε ◦ θ−i (with the convention 0

i=1 = 0). Moreover, as ϕ̃(x) ≤ ϕ(x)
for all x, it is easy to check by induction that M̃ε

n ≤ Mε
n a.s. for any n ∈ N. In

particular, we have M̃ε
n ≤Mε

∞ a.s. for all n ∈ N, which amounts to saying that

1
n

n

i=1

Y ◦ θ−i ≤ 1
n
Mε

∞ +E [Y ] + ε.

This is true for any ε > 0, we thus have that

lim sup
n→+∞

1
n

n

i=1

Y ◦ θ−i ≤ E [Y ],P − a.s..

The latter inequality is also verified by the integrable random variable −Y , therefore
we also have

lim inf
n→+∞

1
n

n

i=1

Y ◦ θ−i ≥ E [Y ],P − a.s.,

which concludes the proof.

Note.– Thequadruple (Ω,F ,P, θ) is stationary ergodic if, and only if, Ω,F ,P, θ−1

is so. We can therefore replace the statement of Theorem 2.7 by

E [Y ] = lim
n→∞

1
n

n

i=1

Y ◦ θi,P − a.s.,

for all real random variables Y ∈ L1(P).
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2.3. Coupling

The idea of coupling plays a central role in the asymptotic study of SRS. It is in fact
possible to state the conditions under which the trajectories of two SRS (or possibly
those of the corresponding backward schemes) coincide at a certain point. These
properties imply naturally, in particular, more traditional properties of convergence
for random sequences such as convergence in distribution.

Hereafter we only state the results that will be useful to us in the applications to
queueing, in their simplest form.

Secondly, we develop the theory of renovating events of Borovkov, which gives
sufficient conditions for coupling, and even strong backward coupling. In addition, the
results of Borovkov and Foss also allow in many cases to solve the equation [2.7],
even when the conditions of continuity and monotonicity of Theorem 2.4 are not
satisfied. Particularly, in this framework we can also deal with the intricate question
of the transient behavior depending on the initial conditions. In what follows, O =
(Ω,F ,P, θ) is a stationary ergodic quadruple.

2.3.1. Definition

We begin by defining the different types of coupling.

Definition 2.6.– Let (Wn, n ∈ N) and (Yn, n ∈ N) be two random sequences
defined on O.

1) We say that (Wn, n ∈ N) and (Yn, n ∈ N) couple if

P (Wn = Yn; ∀n ≥ N) N→∞−−−−→ 1. [2.10]

2) We say that there is a strong backward coupling between (Wn, n ∈ N) and
(Yn, n ∈ N) if

P Wn ◦ θ−n = Yn ◦ θ−n; ∀n ≥ N
N→∞−−−−→ 1. [2.11]

In what follows, we denote

τF = inf {N ∈ N;Wn = Yn, ∀n ≥ N};
τB = inf N ∈ N;Wn ◦ θ−n = Yn ◦ θ−n, ∀n ≥ N ,

the (random) indexes of coupling of the two sequences, respectively “forward” and
“backward”, setting these random variables as infinite whenever the right-hand set is
empty. We can then easily see that the forward and the strong backward coupling

www.allitebooks.com
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of (Wn, n ∈ N) with (Yn, n ∈ N) admit, respectively, the following equivalent
definitions

P (τF ≥ N) N→∞−−−−→ 0; [2.12]

P (τB ≥ N) N→∞−−−−→ 0. [2.13]

We start by noticing an immediate link between coupling and convergence in
distribution.

Theorem 2.8.– Let (Wn, n ∈ N) be a sequence with values inE, which couples with
the stationary sequence (Y ◦ θn, n ∈ N). Then,

Wn

L
n→∞−−−−→ Y.

Proof. LetG be a bounded continuous function: E → R, and G ∞ its supremum.
For all N we have

E [G(WN )]− E [G(Y )] = E [G(WN )]− E G(Y ) ◦ θN

≤ E G(WN )−G(Y ◦ θN )

= E G(WN )−G(Y ◦ θN ) 1τF>N

≤ 2 G ∞ P (τF > N) ,

and the quantity on the right-hand side tends to 0 by hypothesis.

Let us denote

τf = inf {n ∈ N;Wn = Yn} ,

the first index in which the two sequences (Wn, n ∈ N) and (Yn, n ∈ N), coincide
(setting τf = ∞ if the latter set is empty).

Note.– We can observe that two SRS driven by the same recurrence function ϕ (we
then denote them WY

n , n ∈ N and WZ
n , n ∈ N , only their initial randomvariables

possibly differentiate them) couple as soon as τf is reached. Indeed, a.s. WY
n (ω) =

WZ
n (ω) implies that

WY
n+1(ω) = ϕ(WY

n (ω), θnω) = ϕ(WZ
n (ω), θ

nω) =WZ
n+1(ω).

Consequently, for all n ∈ N, {τf ≤ n} ⊂ {τF ≤ n} or in other words

τF = τf a.s. [2.14]
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On the other hand, the two sequences WY ◦ θ−n, n ∈ N and WZ ◦ θ−n, n ∈ N
can coincide for a certain index without a strong backward coupling, as for any ω such
thatWY

n (θ−nω) =WZ
n (θ

−nω), we have

WY
n+1(θ

−(n+1)ω) = ϕ(WY
n (θ−(n+1)ω), θn(θ−(n+1)ω))

= ϕ(WY
n (θ−(n+1)ω), θ−1ω);

WZ
n+1(θ

−(n+1)ω)] = ϕ(WZ
n (θ

−(n+1)ω, θ−1ω),

and these two quantities are not equal in general.

In the case of SRS, the link between the different types of coupling is established
in the following theorem.

Theorem 2.9.– Let Z and Y be two random variables with values in E and
WZ
n , n ∈ N , an SRS descending fromZ and driven byϕ. If there is strong backward

coupling between WZ
n , n ∈ N and the stationary sequence (Y ◦ θn, n ∈ N), then

these two sequences couple,WZ
n

L→ Y and Y is a solution of [2.7].

Proof. First, for any ω ∈ θ−1 {τB <∞} (i.e. such that τB(θω) < ∞), for all n ≥
τB(θω),

Y ◦ θ(ω) =WZ
n+1 ◦ θ−(n+1)(θω)

= ϕ(WZ
n ◦ θ−n(ω), θn ◦ θ−nω)

= ϕ(Y (ω), ω).

The event θ−1 (τB <∞) is of probability 1 by hypothesis: we therefore have

Y ◦ θ(ω) = ϕ(Y (ω), ω), a.s.. [2.15]

Moreover, for any N ∈ N,

P (τB ≤ N) = P WZ
n ◦ θ−n = Y, ∀n ≥ N

= P θ−N WZ
n ◦ θ−n = Y, ∀n ≥ N

= P WZ
n ◦ θN−n = Y ◦ θN , ∀n ≥ N

≤ P WZ
N = Y ◦ θN

≤ P (τf ≤ N) .

[2.16]

But according to [2.15], (Y ◦ θn, n ∈ N) ≡ WY
n , n ∈ N the SRS descending

from Y and driven by ϕ and, therefore, we are in the case of the previous Remark:
according to [2.14], τf = τF a.s. in this case, and therefore according to [2.16],

P (τB > N) ≥ P (τF > N) .
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The right-hand term thus tends to 0 as N goes to infinity, just as the left-hand term,
which shows the coupling property. Finally, the convergence in distribution follows
from Theorem 2.8.

We end this section with the following result.

Theorem 2.10.– Let W 0
n , n ∈ N be an SRS with values inE descending from 0 and

driven by ϕ, a mapping that is a.s. -increasing and continuous. LetW be a solution
of equation [2.7] corresponding to ϕ, with values in E. Then there is an equivalence
between the forward and the strong backward coupling between W 0

n , n ∈ N and
(W ◦ θn, n ∈ N).

Proof. Wewill in fact show that τF and τB have the same distribution here.Denote once
again (Mn, n ∈ N) = W 0

n ◦ θ−n, n ∈ N the corresponding Loynes sequence, and
recall that this sequence increases a.s. towardM∞ W . In particular, for anyN ∈ N
and any n ≥ N , a.s.MN (ω) =W (ω) implies thatMn(ω) =M∞(ω) =W (ω). Thus,

P (τF ≤ N) = P W 0
N =W ◦ θN

= P (MN =W )

= P (Mn =W, ∀n ≥ N)

= P W 0
n ◦ θ−n =W, ∀n ≥ N

= P (τN ≤ N) ,

which completes the proof.

2.3.2. Renovating events

The theory of renovating events provides, as we are going to see, a simple criteria
for the strong backward coupling of an SRS with a solution of [2.7]. Throughout this
subsection, (Wn, n ∈ N) denotes an SRS defined on O = (Ω,F ,P, θ) with values in
E and driven by ϕ.

Definition 2.7.– Let N be a strictly positive integer. We say that the sequence of
measurable events (An, n ∈ N) is a sequence of renovating events of length N for
(Wn, n ∈ N) if, and only if, there exists a random variable α defined onΩ with values
in a measurable space F , and a deterministic mapping Φ:FN → E such that for all
n ≥ N , on An−N ,

Wn = Φ α ◦ θn−N , α ◦ θn−2, ..., α ◦ θn−1 .

The latter is in a sense a “memoryless property”: on An−N ,Wn does not depend
on anything but a list of N values of the stationary sequence (α ◦ θn, n ∈ N). In a
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concrete manner, if a given event occurs N time slots in the past,Wn depends on its
past only up to the moment n−N and no further.

Example 2.5.– Let us assume that (Wn, n ∈ N) is an SRS driven by ϕ. Let x ∈ E
and for all n,An = {Wn−1 = x}. It is then easy to see that (An, n ∈ N) is a sequence
of renovating events of length 1. Indeed, for any n ≥ 1, on An−1,Wn = ϕ ◦ θn−1 (x),
and the definition is matched by taking F = E, Φ as the identity on E and α = ϕ(x).
In the applications (Chapter 4), we will mainly consider this type of renovating events
in the particular case x = 0.

Definition 2.8.– A sequence of events (An, n ∈ N) is said to be θ-compatible if for
any n ≥ 0, An = θ−nA0. We can then define the sequence (An, n ∈ Z) by denoting
A−n = θnA0 for any n ≥ 0.

Example 2.6.– Let β, a random variable defined on Ω and with values in (E, E).
Then, for all B ∈ E , the sequence of events defined for all n by An = {β ◦ θn ∈ B}
is θ-compatible, since for any n, ω ∈ An amounts to β ◦ θn(ω) ∈ B, that is β ◦
θn+1 θ−1ω ∈ B or in other words, ω ∈ θAn+1. The sequence of the antecedents of a
measurable set by a stationary sequence is thus, as expected, a θ-compatible sequence.

The following theorem is due to Borovkov and Foss.

Theorem 2.11.– Let Z be a family of random variables with values in E. We assume
that all sequences WZ

n , n ∈ N , withZ ∈ Z , admit the same sequence of renovating
events (An, n ∈ N), of same length N , with the same associated random variable
α and the same associated application Φ, and that the sequence (An, n ∈ N) is
θ-compatible and such that P (A0) > 0. Then, there exists a finite random variable
W such that for all Z ∈ Z , there is strong backward coupling between WZ

n , n ∈ N
and (W ◦ θn, n ∈ N).

Proof. Let n ≥ N , i ∈ [[0, n−N ]], and k ≥ 0. The θ-compatibility implies that

A−N−i =
k≥0

θn+kAn+k−N−i

and therefore, for any Z ∈ Z , for all ω ∈ A−N−i we have for all k ≥ 0,

θ−(n+k)ω ∈ An+k−N−i

⇐⇒WZ
n+k−i(θ

−(n+k)ω)

= Φ(α ◦ θn+k−i−N (θ−(n+k)ω), . . . , α ◦ θn+k−i−1(θ−(n+k)ω))

⇐⇒ WZ
n+k−i ◦ θ−(n+k)(ω) = Φ(α ◦ θ−i−N (ω), . . . , α ◦ θ−i−1(ω)),

which is a random variable that does not depend either on Z, or on k. Thus, for any
pair of initial conditions Z and Z ∈ Z , we thus have on A−N−i,

WZ
n+k−i ◦ θ−(n+k) =WZ

n−i ◦ θ−n, ∀k ≥ 0.
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Therefore,

WZ
n+1+k−i ◦ θ−(n+k) = ϕ ◦ θn+k−i ◦ θ−(n+k) WZ

n+k−i ◦ θ−(n+k)

= ϕ ◦ θn−i ◦ θ−n WZ
n−i ◦ θ−n

=WZ
n+1−i ◦ θ−n,

which implies by an immediate induction up to the rank i that

WZ
n+k ◦ θ−(n+k) =WZ

n+i+k−i ◦ θ−(n+k) =WZ
n+i−i ◦ θ−n =WZ

n ◦ θ−n.

In other words, on A−N−i the two sequences WZ
n ◦ θ−n, n ∈ N and

WZ
n ◦ θ−n, n ∈ N are constant and equal aftern. This is true for all i ∈ [[0, n−N ]],

therefore denoting for all Z ∈ Z , τZB the backward coupling time of the sequence
(WZ

n , n ∈ N), we have

n−N

i=0

A−i−N ⊆ Bn

= τZB ≤ n, ∀Z ∈ Z WZ
n ◦ θ−n = WZ

n ◦ θ−n, ∀Z,Z ∈ Z ,

which implies that

A =
+∞

j=N

A−i =
+∞

n=N

n

i=N

A−i ⊆
+∞

n=N

Bn.

But A ⊆ θA, while A−N ⊆ A has a strictly positive probability by hypothesis. The
event A is therefore of probability 1. So the event +∞

n=N Bn is almost sure, which
means that all the sequences WZ

n , n ∈ N couple (in the strong backward sense),
with the same random variable since the sequences WZ

n ◦ θ−n, n ∈ N , Z ∈ Z are
equal from a certain time. The theorem is proved.

An immediate, but crucial corollary to the last theorem is the following sufficient
condition for the existence of a solution to the stationary equation [2.7].

Corollary 2.12.– If there exists a set of non-empty conditions Z satisfying the
hypothesis of Theorem 2.11, equation [2.7] admits a E-valued solution.

Proof. According to Theorem 2.11, for all Z ∈ Z there is a strong backward coupling
for WZ

n , n ∈ N . This implies the result in view of Theorem 2.9.



40 Networks Modeling and Analysis

The following second corollary is a criterion for the uniqueness of a solution
to [2.7].

Corollary 2.13.– If the set

Z = {solutions of [2.7] with values in E}

is non-empty and satisfies the assumptions of Theorem 2.11, it is reduced to a singleton.

Proof. For any pair of solutions Z,Z ∈ Z , the two stationary sequences

WZ
n , n ∈ N = (Z ◦ θn, n ∈ N) and WZ

n , n ∈ N = (Z ◦ θn, n ∈ N) couple
with strong backward coupling with the same stationary sequence (W ◦ θn, n ∈ N).
Hence, we naturally have Z = Z =W , P-a.s..

2.4. Comparison of stochastic recursive sequences

In this last section, we give two remarkable comparison results for stochastic
recursive sequences, which will be applied to queueing systems in Chapter 4.
Throughout this section, the Euclidean spaces RK , K ≥ 1 are equipped with the
partial ordering ≺ defined in Appendix A.

Definition 2.9.– LetW and Y be two random variables with values in RK , possibly
defined on two different probability spaces Ω and Ω̂. We say that Y dominates W
stochastically, or for the strong ordering, and we denote W ≤st Y , if for any ≺-
increasing function F :RK → R such as the following integrals exist,

E [F (W )] ≤ Ê [F (Y )] .

Notice in particular that ifW and Y are real random variables,

W ≤st Y ⇐⇒ P (W ≤ x) ≥ P̂ [Y ≤ x] for any x ∈ R. [2.17]

The following theorem is the fundamental result of the theory of stochastic comparison.

Theorem 2.14 (Strassen’s Theorem).– Let W and Y be two random variables with
values in RK . ThenW ≤st Y if, and only if, there exists a probability space on which
are defined two random variables W̃ and Ỹ , of same respective distributions as W
and Y on RK , and such that

W̃ ≺ Ỹ a.s..

Theorem 2.15.– Let α and ᾱ be two random variables defined on the stationary
ergodic quadruple (Ω,F ,P, θ), with values in Rm and integrable. Let f be a
deterministic mapping: Rd × Rm → Rd. We note (Wn, n ∈ N) and W̄n, n ∈ N
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the two SRS with values in Rd, descending from 0 and driven, respectively, by the
random mappings

x→ f(x, α) and x→ f(x, ᾱ).

If ᾱ ≤st α and f is increasing in both its arguments, then W̄n ≤st Wn for any n ∈ N.

Proof. According to Strassen’s theorem, there exists a probability space on which are
defined the sequences (αn, n ∈ N) and (ᾱn, n ∈ N), such that we have the following
identities in distribution

αn
L= α ◦ θn and ᾱn

L= ᾱ ◦ θn, for all n ∈ N,

and such that

ᾱn ≺ αn a.s. for all n ∈ N.

Let (Yn, n ∈ N) and Ȳn, n ∈ N , the two SRS defined on this new probability
space, descending from 0 and driven, respectively, by the sequences of mappings
(f(., αn), n ∈ N) and (f(., ᾱn), n ∈ N). We then have

Ȳn ≺ Yn, a.s. for any n ∈ N,

which we show by induction. We have Y0 = Ȳ0 = 0 a.s. and if Ȳn ≺ Yn for some
n ∈ N, then by the monotonicity of f , we have a.s.

Ȳn+1 = f Ȳn, ᾱn

≺ f (Yn, ᾱn)

≺ f (Yn, αn)

= Yn+1.

So Ȳn ≺ Yn a.s. for all n ∈ N on the new probability space. As Ȳn (respectively, Yn)
clearly has the same distribution as W̄n (respectively, Wn) for all n, the converse of
Strassen’s theorem allows us to conclude.

Now let us assume furthermore that the mapping f is continuous in its first
variable. According to Loynes’s theorem, Loynes’s sequences (Wn ◦ θ−n, n ∈ N)
and W̄n ◦ θ−n, n ∈ N converge a.s. to the respective minimal stationary versions
W∞ and W̄∞ of the two SRS.

Corollary 2.16.– Under the assumptions of Theorem 2.15, if Loynes’s theorem
applies to both SRS and if the minimal solutions W∞ and W̄∞ are a.s. finite, they
are such that

W̄∞ ≤st W∞.
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Proof. According to Theorem 2.15, for any increasing function F :E → R such that
the following expectations exist,

E F (W̄n) ◦ θ−n = E F (W̄n) ≤ E [F (Wn)] = E F (Wn) ◦ θ−n ,

by θ-invariance. We conclude easily by monotone convergence.

The following theorem is the special case (which will be useful to us in this form
in Chapter 4) of a more general result, which declines the comparison property of
Theorem 2.15 for a stochastic ordering involving the convex test functions, by applying
a corollary of Strassen’s Theorem for this ordering. In the sequel, if Y is a random
variable with values in RK ,K ≥ 1 and A is a sigma-field, we classically denote

E [Y | A] = (E [Y (1) | A] ,E [Y (2) | A] , . . .) .

Theorem 2.17.– We assume that the mapping f is ≺-increasing in its first argument,
and convex from Rd × Rm into Rd. Furthermore, let us assume that there exists a
filtration (Fn, n ∈ N) such that for all n ∈ N and for all i ∈ [[0, n]],

ᾱ ◦ θi = E α ◦ θi | Fn .

Under these assumptions,

E F W̄n ≤ E [F (Wn)] for all n ∈ N, [2.18]

for all F :Rd → R, ≺-increasing and convex, and such that these integrals are well
defined.

Proof. Let us fix n ∈ N. Let us show by induction on [[0, n]] the relation

W̄i ≺ E [Wi | Fn] a.s. for all i ∈ [[0, n]], [2.19]

which is of course checked for i = 0. Assuming that it is true for some i ∈ [[0, n]],
Jensen’s inequality yields that a.s.

E [Wi+1 | Fn] = E f Wi, α ◦ θi | Fn
f E [Wi | Fn],E α ◦ θi | Fn
f W̄i,E α ◦ θi | Fn

= f W̄i, ᾱ ◦ θi

= W̄i+1,

and [2.19] is proved. Therefore, we have in particular that

W̄n ≺ E [Wn | Fn] a.s.,
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which implies with Jensen’s inequality that for any increasing and convex function
F :Rd → R, if the integrals are well defined,

F W̄n ≤ F (E [Wn | Fn])
≤ E [F (Wn) | Fn] .

We conclude by taking expectations in the last inequality.

We can deduce in particular, as for Corollary 2.16,

Corollary 2.18.– Under the hypothesis of Theorem 2.17, if furthermore Loynes’s
theorem applies to both SRS, and if the minimal solutions W̄∞ andW∞ are a.s. finite,
they satisfy

E F W̄∞ ≤ E [F (W∞)] ,

for any increasing and convex function F : Rd → R, such that the expectations are
well defined.

2.5. Notes and comments

Loynes’s Theorem has been introduced in [LOY 62] in the particular case of
the G/G/1 queue. It has been generalized in the form presented here, for instance
in [NEV 84] and [BAC 02]. The proof of Birkhoff’s Ergodic Theorem that is presented
here is due to Garsia [GAR 65].

For amore complete picture on the idea of coupling, we refer the reader to [THO00]
and [BRA 90].

The theory ofRenovating events is due toBorovkov and Foss. It has been introduced
in [BOR 84], and developed in [BOR 92], [BOR 94] and [BOR 98].

For a more complete overview on stochastic comparison of stochastic recursions,
see the reference books [BAC 02] and [STO 83]. The construction presented here is
due to Baccelli and Makowski [BAC 89]. We only give here a simplifies versions of
the results therein.
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Epitome

– A stochasticRecursive Sequence (SRS) is of the formXn+1 = f(Xn, αn),where
(αn) is a stationary ergodic sequence.

– The existence of a stationary distribution for (Xn) amounts to that of a random
variable X solving the pathwise equation

X ◦ θ = f(X,α),

on the canonical space of (αn), where θ is the bijective shift operator.
– Loynes’s backward scheme guarantees the existence of a solution X (possibly

infinite) if f is a.s. increasing and continuous in its first argument.

– Borovkov andFoss’sTheory of renovating events provides conditions of existence
and uniqueness of a solution X , and for coupling to occur with the stationary version
of the SRS.

– Strassen’s Theorem allows us to compare the stationary versions of an SRS based
on the ordering of the random sequences that drive it.

www.allitebooks.com

http://www.allitebooks.org


Chapter 3

Markov Chains

To describe the evolution of a system, we must prescribe how the future depends
on the present or the past. Two major examples of such descriptions are differential
equations and recurrent sequences. When a piece of randomness is added, it leads
to stochastic differential equations (which are beyond the scope of this book) and
stochastic recurrent sequences (SRS), which we already studied in Chapter 2. Among
SRS, Markov chains are the most salient category. Behind a seemingly simple
description lies a mathematical tool which is quite efficient for applications and rich of
many properties.

Remember that it is recommended to read section A.1.1.

3.1. Definition and examples

Consider a sequence of random variables X = (Xn, n ≥ 0) with values in
E, finite or countable, and the filtration Fn = σ{Xj , 0 ≤ j ≤ n} generated by
this sequence.

Trajectories of X are elements of EN, that is to say sequences of elements of E.
The shift (see section A) is then defined by

θ:EN −→ EN

(x0, x1, . . .) −→ (x1, x2, . . .).

This shift is the non-bijective restriction to EN of the bijective flow defined on EZ

in section 2.1. As with the flow, we need to define the nth iteration of θ, denoted as θn

and defined by

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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θn:EN −→ EN

(x0, x1, . . .) −→ (xn, xn+1, xn+2, . . .).

From now on, we identify θ and θ1.

Definition 3.1.– The sequenceX is a Markov chain when for any n ≤ m, the σ-field
Fn is independent of the σ-field σ(Xm), given σ(Xn). In other words, for any bounded
functions F and G

E [F (X0, . . . , Xn)G(Xm) |Xn]

= E [F (X0, . . . , Xn) |Xn] E [G(Xm) |Xn] . [3.1]

According to Theorem A.12, we know that this property is equivalent to the
independence of the past and the future given the present, and that this can be expressed
by

E [F (X0, . . . , Xn)G ◦ θn | Fn] = F (X0, . . . , Xn)E [G ◦ θn |Xn] . [3.2]

In particular, for G = 1{y}(X1), for any integer n, we obtain

P(Xn+1 = y | Fn) = P(Xn+1 = y |Xn).

Definition 3.2.– The Markov chain X is said to be homogeneous when P(Xn+1 =
y |Xn = x) does not depend on n but only on x and y. We denote this quantity by
p(x, y) and P = (P(X1 = y |X0 = x), x, y ∈ E) is called the transition operator of
X . If E is finite, then P is identified with a matrix that has as many rows and columns
as elements in E.

Example 3.1.– Aratmoves through the labyrinth of seven squares shown inFigure 3.1.
It goes from one box to another by uniformly choosing among the possibilities given to
it, that is to say that when there are 2 (respectively 3) outputs in the box where the rat is
present, the rat goes into each possible box with a probability of one half (respectively
of a third). Its evolution has no memory: each change depends only on the current
situation, not the past. Xn is the position of the rat after its nth movement, X0 is its
initial position.

Here, E = {1, 2, 3, 4, 5, 6, 7} and the transition matrix is easily deduced from
Figure 3.1.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 1

2 0 0 0
1
3 0 1

3 0 1
3 0 0

0 1
2 0 0 0 1

2 0
1
3 0 0 0 1

3 0 1
3

0 1
3 0 1

3 0 1
3 0

0 0 1
2 0 1

2 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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4 5

1 2 3

6

7

Figure 3.1. The maze

Example 3.2.– Starting with a null score, let us throw two unbiased dice. If the sum of
their figures is different from 7, we add this amount to the current score and play again.
Otherwise the score is zeroed and the game stops.Xn represents the score after the nth
throw. We must distinguish two “states” 0 if we wantX to be an homogeneous chain.
In fact, the score can quit the 0 at the beginning but cannot leave the 0 subsequent to a
7. Hence, we take as state space E = N∪ {δ} where δ is called a cemetery point. The
transitions are thus given for all i = δ by

P(Xn+1 = i+ 2 |Xn = i) = P(Xn+1 = i+ 12 |Xn = i) = 1/36
P(Xn+1 = i+ 3 |Xn = i) = P(Xn+1 = i+ 11 |Xn = i) = 2/36
P(Xn+1 = i+ 4 |Xn = i) = P(Xn+1 = i+ 10 |Xn = i) = 3/36
P(Xn+1 = i+ 5 |Xn = i) = P(Xn+1 = i+ 9 |Xn = i) = 4/36
P(Xn+1 = i+ 6 |Xn = i) = P(Xn+1 = i+ 8 |Xn = i) = 5/36
P(Xn+1 = δ |Xn = i) = 1/6
P(Xn+1 = δ |Xn = δ) = 1.

The very definition of aMarkov chain implies that its evolution is determined by the
distribution of the initial position, denoted henceforth by ν, and the transition operator
P. This is mathematically expressed in the following theorem.

Theorem 3.1.– For any n, the joint distribution of (X0, · · · , Xn) is determined by
the distribution of X0 and P by the following formula

P(X0 = x0, . . . , Xm = xm) = ν({x0})
m−1

l=0

p(xl, xl+1),

for all n and all x0, . . . , xn in E.

Note.– In the following, Pν denotes the distribution of a Markov chain with initial
distribution ν. By abuse of notation,Px represents the distribution of theMarkov chain
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starting from x ∈ E. Since E is at most countable, we can always number the states,
using an injection between E andN . Thus we can assume that E ⊂ N. Therefore, we
can use the formalism of vectors and matrices, even if it may be necessary to handle
such objects with an infinite number of components. . .We often consider the “vector”
πn defined by πn(i) = P(Xn = i) for i ∈ E ⊂ N. It is common to consider it as a
row vector. For all n, for all j ∈ E, the relation

P(Xn+1 = j) =
i∈E

P(Xn+1 = j |Xn = i)P(Xn = i)

=
i∈E

P(Xn = i)p(i, j),

reads in matrix notation

πn+1 = πn.P thus πn = π0.P
n, [3.3]

where Pn is the nth power of P . For instance, if π0 is composed only of 0 but a 1 in
ith position (that is to say ν = Pi) then for any j ∈ E,

Pi(Xn = j) = p(n)(i, j),

where p(n)(i, j) is the term in ith row and jth column of Pn.

As Pn+m = PnPm, we deduce from [3.3] the so-called Chapman-Kolmogorov
equation

p(n+m)(x, y) =
z∈E

p(n)(x, z)p(m)(z, y), [3.4]

valid for any n,m, any initial condition and any final state. Note this equation is written
“intrinsically”, that is to say regardless of the injection mentioned above.

3.1.1. Simulation

Let us first recall how to simulate ν a distribution on a denumerable set E. The
states are supposed to be numbered with an bijection φ between E and a subset of N.
Then we put

r0 = ν({φ−1(0)}) and rn =
n

j=0

ν({φ−1(j)}) = ν(φ−1({0, . . . , n})).
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Algorithm 3.1. Realization of a random variable of distribution ν
Data: r0, r1, . . .
Result: An element of E chosen according to the distribution ν
x← sample of a uniform distribution on [0, 1];
n← 0;
while x > rn do

n← n+ 1
end
return φ−1(n)

When a Markov chain X is in state x, it moves to state y with probability p(x, y).
To move from one stage to another, we simply have to apply the previous algorithm to
the distribution µx = (p(x, y), y ∈ E).

Algorithm 3.2. Simulation of a trajectory of a Markov chain (ν, P )
Data: ν, P , N
Result: A path of length N of the Markov chain (ν, P )
Choose x0 initial condition according to ν;
for counter ← 1 to N do

Choose xcounter according to the distribution (p(xcounter−1, y), y ∈ E);
end
return x0, x1, . . . , xN

3.2. Strong Markov property

For a stopping time T , on (T <∞), we define θT by

θT (ω) = (ωT (ω), ωT (ω)+1, . . .).

For x ∈ E, the visiting times to x are defined by

τ1
x =

∞ if Xn = x for all n > 0,
inf{n > 0, Xn = x} otherwise ;

τkx =
∞ if τk−1

x = ∞ or Xn = x for all i > τk−1
x ,

inf{n > τk−1
x , Xn = x} otherwise.

Lemma 3.2.– For x fixed in E, on (τ1
x <∞), we have

τkx = τk−1
x + τ1

x ◦ θτk−
x 1. [3.5]
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Proof. If τk−1
x = ∞, then we have ∞ on both sides of the equality. If τk−1

x < ∞,

the result is immediate once we are convinced that θτ
k−1
x (ω) represents the part of the

trajectory posterior to the (k− 1)th visit to the state x. Therefore, the first visit (if any)
after the (k − 1)th is the kth visit since the beginning.

Theorem 3.3.– Let T be an a.s. finite stopping time and F : Ω → R+ an integrable
random variable. Then, we have the following identity

E F ◦ θT | FT = E [F |X0 = XT ] . [3.6]

To calculate the right hand side, we first calculate E [F |X0 = x] = φ(x) and we
set

E [F |X0 = XT ] = φ(XT ).

Proof. Since A ∈ FT , A ∩ {T = n} ∈ Fn. Moreover, using [3.2] and the properties
of conditional expectation, we have

E F ◦ θT . 1A =
∞

n=0

E F ◦ θn. 1A∩{T=n}

=
∞

n=0

E E [F ◦ θn | Fn] 1A∩{T=n}

=
∞

n=0

E E [F |X0 = Xn] 1A∩{T=n}

= E [E [F |X0 = XT ] 1A] .

The equality is true by linearity for all step functions, and thus for all positive
functions.

Note.– Let X be the Markov chain with two states 0 and 1, and transition matrix
p0,0 = 0.9, p1.1 = 1. Let T = sup{n ≥ 1, Xn = 0}. Under P0, T = Y − 1 where Y
has a geometric distribution of parameter 0.1, and therefore T is almost surely finite.
However,P0(XT+1 = 1 |XT = 0) = 1, which is different fromP0(Xn+1 = 1|Xn =
0) = 0.1.

This example illustrates that one cannot avoid the “T stopping time” hypotheses
in the strong Markov property. Here, it is clear that T is not a stopping time since to
know whether T is less than n requires knowing the trajectory after time n to be sure
that it does not return to 0 after time n.
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Example (Example 3.1 (continued)).– Suppose that there is a piece of cheese in box
3 and a battery in box 7. We want to calculate the probability that the rat could eat
before being electrocuted. Consider the two random variables

τ3 = inf{n ≥ 0, Xn = 3} and τ7 = inf{n ≥ 0, Xn = 7}.

For any i ∈ {1, · · · , 7}, set ui = Pi(τ3 < τ7). It is clear that u3 = 1 and that
u7 = 0. For i ∈ {3; 7}

ui =
7

j=1

Pi(τ3 < τ7 |X1 = j)Pi(X1 = j).

Since i is different from 3 and 7, the event {τ3 < τ7} is Pi a.s. equal to A1 where

Al = {ω, ∃i ≥ l such that ωi = 3 and ωj ∈ {1, 2, 4, 5, 6} for any l ≤ j < i}
= { after time l, we get 3 before 7 } .

As 1A1 = 1A0 ◦θ, we have

Pi(τ3 < τ7 |X1 = j) = Pj(τ3 < τ7).

Since Pi(X1 = j) = p(i, j), we see that (ui, i = 1, · · · , 7) is the solution of the
linear system

u3 = 1, u7 = 0, ui =
6

j=1

p(i, j)uj for i ∈ {3; 7}.

Solving this system gives u1 = 7/12, u2 = 3/4, u4 = 5/12, u5 = 2/3, u6 = 5/6.

Without cheese and battery, let us now calculate the mean hitting time of box 3. For
any i ∈ {1, · · · , 7}, set vi = Ei [τ3]. It is clear v3 = 0. Moreover, for i = 3, we have

Ei [τ3] =
7

j=1

Ei [τ3 |X1 = j] p(i, j).

For the trajectory ω = (1, 2, 5, 2, 5, 6, 3, . . .), τ3(ω) = 6 but τ3(θω) = 5. More
generally, given X0 = 3, we have τ3 = τ3 ◦ θ + 1. Therefore,

vi =
7

j=1

Ei [τ3 ◦ θ |X1 = j] + 1 p(i, j) =
7

j=1

p(i, j)vj + 1,

according to equation [3.2]. Hence, (vi, i = 1, · · · , 7) is the solution of a linear system
with six equations and six variables.
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3.3. Classification of states

Let Nx denote the number of visits to state x, not including the initial state

Nx =
∞

n=1

1{Xn=x} .

Lemma 3.4.– For any k, the two events {Nx ≥ k} and τkx <∞ coincide.

Proof. Nx ≥ k means that there were more than k visits to the state xwhich is exactly
equivalent to say that τkx <∞.

Definition 3.3.– A state x is called recurrent when Px τ1
x <∞ = 1. Otherwise, x

is said to be transient. TheX chain is called recurrent (respectively transient) if all its
states are recurrent (respectively transient).

Lemma 3.5.– For any (x, y) ∈ E × E, the following equality holds true,

Py(τkx <∞) = Px(τ1
x <∞)k−1Py(τ1

x <∞). [3.7]

In particular, if x = y,Px τkx <∞ = Px(τ1
x <∞)k. Moreover,

Ey [Nx] =
Py(τ1

x <∞)
1− Px(τ1

x <∞)
=

n≥1

p(n)(y, x). [3.8]

By taking the current time as that of thekth visit to the statex, according to the strong
Markov property, the past and the future given this visit are independent. Therefore,
knowing that we have already visited k times the state x, the probability that one comes
back to x a (k + 1)th time is the same as during the first visit to x we return at least
once. In addition, these two events are independent.

Proof. For k > 2, according to [3.2] and [3.6], we have

Py(τkx <∞) = Py(τk−1
x <∞, τ1

x ◦ θτk−1
x <∞)

= Ey 1{τk−1
x <∞} Py(τ1

x ◦ θτk−1
x <∞ | F

τk−1
x

)

= Ey 1{τk−1
x <∞} Py(τ1

x <∞|X0 = X
τk−1

x
)

= Ey 1{τk−1
x <∞} Py(τ1

x <∞|X0 = x)

= Ey 1{τk−1
x <∞} Py(τ1

x <∞)

= Py(τk−1
x <∞)Py(τ1

x <∞),

and we find [3.7] by induction.
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Now, according to Fubini’s theorem

Ey [Nx] =
k≥1

Py(Nx ≥ k) =
k≥1

Py(τkx <∞),

and the first equality of [3.8] follows. Also according to Fubini’s theorem and [3.4]

Ey [Nx] = Ey

∞

n=1

1{Xn=x} =
∞

n=1

Ey 1{Xn=x} =
∞

n=1

p(n)(y, x).

Hence the result.

The following theorem gives different characterizations of recurrence and
transience.

Theorem 3.6.– Let x be a fixed state. Then:

1) The following assertions are equivalent:
a) x is recurrent;
b) Px(Nx = ∞) = 1;
c) Ex [Nx] = ∞.

2) The following assertions are equivalent:
a) x is transient;
b) Px(Nx <∞) = 1;
c) Ex [Nx] <∞.

Proof. First let us show that a⇒ b. According to [3.4] and Lemma 3.5

Px(Nx > k) = Px(τkx <∞) = Px(τx <∞)k, [3.9]

and according to the monotone convergence theorem, we have

Px(Nx = ∞) = lim
k→∞

Px(Nx > k). [3.10]

The recurrence of x means Px(τx < ∞) and hence implies Nx = ∞, Px almost
surely. Therefore, x recurrent implies that Px(τ1

x < ∞) = 1. By the same argument,
x transient implies Px(τ1

x <∞) < 1.

b⇒ c. Easy when x is recurrent. For the other case, use the relation

Ex [Nx] =
k≥0

Px(τx <∞)k. [3.11]

As Nx is finite almost surely, according to [3.10], Px(Nx > k) tends to 0 when
k tends to infinity. According to [3.9] this implies that Px(τx < ∞) < 1 so that the
series converges.

c⇒ a. In both cases, relation [3.11] leads to the conclusion.
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Definition 3.4.– We say that a state x communicates with a state y, what is denoted
by x −→ y, if there is a strictly positive m integer such that p(m)(x, y) > 0. This
means that Px(τ1

y <∞) = 1.

Theorem 3.7.– If x is a recurrent state and x −→ y, then y −→ x and y is recurrent.

Starting from x, we eventually reach y. If from y there is a risk of not coming back
to x we eventually do not return to it, we therefore make only a finite number of visits
to x, and there is a contradiction with the hypothesis of recurrence about x. Moreover,
if from y we are almost certain to come back to x and that we pass an infinite number
of times by x, we are likely to pass an infinite number of times to y as well.

Proof. Let us show, by contradiction, that y communicates with x by writing the
probability of starting from x and never returning to x is greater than the probability
of the same thing but visiting y at least once

Px(τx = ∞) ≥ Px(τx ◦ θτy = ∞, τy <∞)

= Px(τy <∞)Py(τx = ∞),

according to the strong Markov property. If y does not communicate with x, this
quantity is positive which contradicts the recurrence of x. Similarly

Py(τy <∞) ≥ Py(τy ◦ θτx <∞, τx <∞)

= Py(τx <∞)Px(τy <∞) = 1,

hence y is recurrent.

Theorem 3.8.– The relation −→ restricted to recurrent states is an equivalence
relation.

Proof. Reflexivity, that is, x −→ x, is induced by the very definition of a recurrent
state. Symmetry, that is, x −→ y =⇒ y −→ x, follows from Theorem 3.7. Let x, y
and z three states of E such that x −→ y and y −→ z. By definition, there are two
positive integers which we call r and s such that p(r)(x, y) > 0 and p(s)(y, z) > 0.
The Chapman-Kolmogorov equation tells us that

p(r+s)(x, z) =
∈E

p(r)(x, )p(s)( , z).

All the terms of this sum are non-negative and there is at least a positive
term: p(r)(x, y)p(s)(y, z). Thus, we have found a positive integer, r + s, such that
p(r+s)(x, z) > 0, hence the result.
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The set of recurrent points can be partitioned into equivalence classes. By definition,
a state belonging to a class communicates with the other states of this class and does
not communicate with any recurrent state belonging to another class neither with any
transient state . In contrast, a transient state can communicate with both transient and
recurrent states.

Definition 3.5.– A subset F of E is said to be closed, if for all x and y

(x ∈ F and x −→ y) =⇒ y ∈ F.

In other words, y∈F p(x, y) = 1 for all x ∈ F .

Theorem 3.9.– A closed set of finite cardinal contains at least one recurrent point.

Proof. Let F be a closed set. If all states are transient, we have

Ey [Nx] = Py(τ1
x <∞)Ex [Nx] <∞,

for every pair (x, y) of F . Since F is finite, x∈F Ey [Nx] <∞. On the other hand

x∈F
Ey [Nx] =

x∈F
Ey

⎡
⎣
n≥0

1{Xn=x}

⎤
⎦ =

n≥0

Ey

x∈F
1{Xn=x} =

n≥0

1 = ∞,

since F is closed, thus a contradiction. Hence, there exists at least one recurrent point.

Example 3.3.– It is often easier to have a graphic representation of the transitionmatrix
of aMarkov chain. To do this, we construct a directed graph whose vertices correspond
to the states. The x, y edge (oriented) has the weight of the transition probability from
x to y. If this probability is zero, the edge does not exist. Let us consider the Markov
chain transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8 0.1 0 0.1 0 0
0 0 1 0 0 0
0 1

1000
999
1000 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Its graphic representation is that of Figure 3.2. It is clear that the sets {2, 3} and
{4, 5, 6} are closed sets. Since they are both finite, both of them contain at least one
recurrent point. Within each of them, all the points communicate with one another, so
that they are all recurrent. If the chain leaves the point 1 to point 2 or 4, it is sure not
to come back to 1 so that the probability of not returning to 1 is 2.1/10 > 0, hence 1
is transient.
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Figure 3.2. Graphic representation of a Markov chain

Let us observe that even if the setE is closed, Theorem 3.9 does not lead to a conflict
over the status of state 1. In fact, we know that there exists at least one recurrent point
in E, but we do not know which one and we cannot, a priori, say anything more since
all the states do not communicate with each other.

Example (Example 3.1 (continued)).– All the states communicate with one another
so that the only closed subset is E itself. As it is finite, there is at least one recurrent
state so that they are all recurrent.

Example (Example 3.2 (continued)).– As long as it does not reach δ, the score can
only grow, so that all the states of N are transient. δ is recurrent.

Example.– A set of N cards is mixed by cutting it into two parts which are then
interchanged. Each mixture of the set is represented by a permutation of {1, . . . , N}.
If N = 3 and the mixture is represented by (3, 2, 1), meaning that the card 3 is
in position 1, the card 2 in position 2 and the card 1 in position 3. Xn denotes the
state of the deck of cards after the nth mixing. The state space is hence the group of
permutations of {1, . . . , N}, denoted by SN . IfX0 = (3, 2, 1) and the cut is between
the first and second card, we have X1 = (2, 1, 3). In other words, we have just made



Markov Chains 57

a circular permutation on the cards but did not change their relative order. In fact, to
define the transition probabilities, let us consider the set of N elements of SN

E1 = σ ∈ SN , ∃k ∈ {1, . . . , N}, σ = (k + 1, k + 2, . . . , N, 1, . . . , k) .

When we cut the pack at the level of the kth card we apply the cycle (k + 1, k +
2, . . . , N, 1, . . . , k) to the current situation. As the choice of the location of the cut is
assumed to be uniform on {1, . . . , N} we have

P(X1 = τ |X0 = σ) =
1
N

if τσ−1 ∈ E1.

Equivalence classes of relation −→ are those of the relation σRτ ≡ τσ−1 ∈ E1.
In other words, σ communicates with τ , if and only if there exists ρ ∈ E1 such that
τ = ρσ. Hence there are (n − 1)! equivalence classes of cardinal n each. All these
classes form some closed sets of finite cardinalwhich contain all or at least one recurrent
point. As all the states communicate with each other within these classes, they are all
recurrent. Hence, the chain is recurrent.

When the state space is infinite, we cannot apply Theorem 3.9.

Definition 3.6.– A Markov chain is called irreducible when all the states
communicate. In particular, the smallest closed subspace is E itself, and all the states
have the same nature.

Note.– If the number of transient states is finite, as we pass only a finite number of
times in each of them, the Markov chain eventually enters a recurrence class and thus
remains there. Let us observe that, according to Lemma 3.7, a recurrence class is always
an irreducible subset. If the number of transient states is infinite, the above reasoning
no longer applies automatically, but the cases in which a Markov chain never enters an
irreducible closed subset, are out of our discussion. As far as we are interested in the
asymptotic behavior of Markov chains, there is no loss of generality to assume that the
Markov chains studied are irreducible.

When x is recurrent, we know that starting from x we eventually come back to x
in a finite time, but what about the average time of return to x?

Definition 3.7.– A recurrent state x is said to be

– positive recurrent if Ex τ1
x <∞;

– null recurrent if Ex τ1
x = ∞.

The chainX is called positive recurrent (null recurrent respectively) if all its states
are positive recurrent (null recurrent respectively).

The following construction is used several times thereafter.
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Definition 3.8.– Let X be an irreducible Markov chain and recurring on E and F ,
a subset of E. Set

τ1
F = inf{n ≥ 1, Xn ∈ F} and τk+1

F = τkF + τ1
F ◦ θτk

F ,

the times of the successive visits to the set F . We consider the random sequence XF ,
defined by XF

n = Xτn
F
, n ∈ N. We easily check that XF is a Markov chain on F ,

called the Markov chain restricted to F .

Theorem 3.10.– LetX be an irreducible Markov chain and F a finite subset of E. If
for any x ∈ F,Ex τ1

F <∞ then X is positive recurrent.

Proof. For any x ∈ F , define σx = inf{n > 0, XF
n = x} and for any k ∈ N∗,

Yk = τkF − τk−1
F . Since F is finite, thenXF is positive recurrentEx [σx] <∞ for any

x ∈ F . We must prove that Ex [τx] <∞. By the very definition of Yk

Ex [τx] = Ex

σx

k=1

Yk

=
n≥1

Ex

σx

k=1

Yk 1{σx=n}

=
∞

k=1

Ex

⎡
⎣Yk

n≥k
1{σx=n}

⎤
⎦

=
∞

k=1

Ex Yk 1{σx≥k} .

Using the strong Markov property, we obtain

Ex Yk 1{σx≥k} = Ex Ex Yk | FτF
k−1

1{σx≥k}

= Ex EX
τ

k−1
F

[Y1] 1{σx≥k}

≤ sup
y∈F

Ey [Y1]Px(σx ≥ k).

Since F is finite, the supremum is finite. We therefore obtain

Ex [τx] ≤ c

∞

k=1

Px(σx ≥ k) = cEx [σx] .

According to the initial observation, this proves the positive recurrence of X .
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Lemma 3.11.– Let X be a Markov chain and h:E × E −→ R, bounded. For any
integer n

E [h(Xn, Xn+1) | Fn] = P (h(Xn, .))(Xn) =
y∈E

p(Xn, y)h(Xn, y). [3.12]

Proof. Since h is bounded, we only have to compute the conditional expectation.
According to the Markov property

E [h(Xn, Xn+1) | Fn] = E [h(Xn, Xn+1) |Xn] .

Now, let φ:E → R be bounded,

E [h(Xn, Xn+1)φ(Xn)] = φ(x) h(x, y) dPXn+1 |Xn=x(y) dPXn(x)

= φ(x)
y∈E

h(x, y)p(x, y) dPXn(x)

= E [φ(Xn)P (h(Xn, .))(Xn)] .

The previous equation is true for any function, thus [3.12] holds true.

Theorem 3.12 (Foster criterion of recurrence).– LetE0 be a finite subset ofE. Assume
there exists a function h:E → R such that {x ∈ E, h(x) < K} is finite for any K
finite and that

h(y) ≥ Ey [h(X1)] for all y ∈ Ec
0.

Then, X is recurrent.

Proof. According to the hypothesis, h is lower bounded hence up to an additive
constant, we can assume h ≥ 0. Consider the stopping time τ = inf{n,Xn ∈ E0}
and the sequence Y defined by Yn = h(Xn) 1{τ>n}. Let us show that Y is a positive
supermartingale as soon as X0 ∈ Ec

0. Let x ∈ Ec
0

Ex h(Xn+1) 1{τ>n+1} | Fn = 1{τ>n+1} EXn [h(Xn+1)]

≤ 1{τ>n} h(Xn) = Yn,

since on {τ > n+ 1},Xn does not belong to E0. Thus, Y converges almost surely to
a random variable Y∞.

Suppose that X is transient. Let x /∈ E0, for any K, the set {x, h(x) < K} is
finite and is thus visited byX only a finite number of times. HenceX is not bounded.
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As Y∞ is finite, τ is necessarily finite almost surely. This means that for x /∈ E0,
Px(τ < ∞) = 1. Starting from Ec

0, the Markov chain eventually reaches E0. Either
we stay in E0 forever and as E0 is finite, E0 is recurrent and the chain is irreducible;
or the chain leaves E0 and in accordance with what we have just proved, it eventually
returns to it. The number of visits to E0 is hence infinite, which implies again that E0

is recurrent. This the Markov chain is recurrent.

3.4. Invariant measures and invariant probability

Definition 3.9.– Let E be a countable set and P a transition operator on E × E. A
positive finite measure ν on E is said to be invariant with respect to P if and only if

ν = νP that is to say ν(y) =
x∈E

ν(x)p(x, y) for all y ∈ E. [3.13]

If moreover ν(x) = 1, ν is an invariant probability.

Note.– If π0 = ν then πn = π0P
n = π0.

Theorem 3.13.– Let x be a recurrent state, then the measure ν defined by

ν(y) = Ex

⎡
⎣
τ1

x−1

n=0

1{Xn=y}

⎤
⎦ =

∞

n=0

Px(Xn = y, τ1
x > n)

is an invariant measure.

Proof. Let us first show the equality of the two expressions of ν. Since x is recurrent,
τ1
x is almost surely finite then ∪n≥1{τ1

x = n} is a partition of Ω. According to Fubini
Theorem

Ex

⎡
⎣
τ1

x−1

n=0

1{Xn=y}

⎤
⎦ =

∞

=1

Ex

−1

n=0

1{Xn=y} 1{τ1
x= }

=
∞

n=0

Ex

>n

1{τ1
x= } 1{Xn=y}

=
∞

n=0

Ex 1{τ1
x>n} 1{Xn=y} .

Under Px, X0 = Xτ1
x
= x, thus we can write ν(y) = Ex

τ1
x
n=1 1{Xn=y} ,

which gives the same calculations with a different index range

ν(y) =
∞

n=1

Ex 1{τ1
x≥n} 1{Xn=y} . [3.14]
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We have already observed that the event {τ1
x ≥ n} belongs to Fn−1 since it is the

complementary of the event {τ1
x ≤ n − 1}. For y = x, by using the properties of

conditional expectation and the strong Markov property

∞

n=0

Ex 1{τ1
x≥n} 1{Xn=y}

=
∞

n=1

Ex 1{τ1
x≥n} Ex 1{Xn=y} | Fn−1

=
∞

n=1

Ex 1{τ1
x≥n} Ex 1{Xn=y} |Xn−1

=
∞

n=1 z∈E
Ex 1{τ1

x≥n} 1{Xn−1=z} Ex 1{Xn=y} |Xn−1 = z

=
z∈E

p(z, y)
∞

n=1

Ex 1{τ1
x≥n} 1{Xn−1=z}

=
z∈E

ν(z)p(z, y).

For y = x, it is clear that ν(x) = 1 and on the other hand

z∈E
ν(z)p(z, x) =

∞

n=0 z∈E
p(z, x)Px(Xn = z, τ1

x > n)

=
∞

n=0 z∈E
Px(Xn = z,Xn+1 = x, τ1

x > n)

=
∞

n=0 z∈E
Px(Xn = z, τ1

x = n+ 1)

=
∞

n=0

Px(τ1
x = n+ 1)

= Px(τ1
x <∞) = 1.

Hence we have ν = νP , and it only remains to verify that ν(y) < ∞ for any y.
This is true for x = y. For y = x, either x does not communicate with y and hence
ν(y) = 0, or x communicates with y and as x is recurrent, according to Theorem 3.7,
y communicates x, that is to say that there existsm such that p(m)(y, x) > 0. As ν is
invariant, ν.Pm = ν, which implies that
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1 = ν(x) =
z∈E

ν(z)p(m)(z, x) ≥ ν(y)p(m)(y, x),

and therefore ν(y) <∞.

Corollary 3.14.– Let X be an irreducible recurrent Markov chain of invariant
measure ν. Let F be a subset of E and XF the chain restricted to F . Then, XF

is irreducible and recurrent and admits as an invariant measure the measure given
Theorem 3.13.

Proof. The first two points are obvious. For y ∈ F , the number of visits to y of XF

and of X are the same, hence X and XF have the same invariant measure given by
Theorem 3.13.

Theorem 3.15.– If the Markov chainX is irreducible and recurrent, then there exists
a unique (up to a multiplicative constant) invariant measure ν such that for any y,
0 < ν(y) < ∞. The uniqueness “up a to a multiplicative constant” means that if ν
and ν are two such measures then there exists c > 0 such that ν(x) = cν (x) for any
x ∈ E.

Proof. Let µ an invariant measure and let a ∈ E. Let ν be the invariant measure
constructed in Theorem 3.13 with a as starting point. By construction, ν(a) = 1 then
for any invariant measure µ, µ(a) = ν(a)µ(a). By definition, for z ∈ E\{a},

µ(z) =
y∈E

µ(y)p(y, z) = µ(a)p(a, z) +
y=a

µ(y)p(y, z).

By iterating this relation,

µ(z) = µ(a)p(a, z) + µ(a)
y=a

p(a, y)p(y, z) +
i=a y=a

µ(x)p(x, y)p(y, z).

This can be rewritten

µ(z) = µ(a)Pa(X1 = z)

+ µ(a)Pa(X1 = a,X2 = z) +Pµ(X0 = a,X1 = a,X2 = z).

By induction on n, for any n,

µ(z) = µ(a)
n

m=1

Pa(τ1
a > m,Xm = z) +Pµ

n

y=0

(Xy = a) ∩Xn = z .

The last probability is a positive term and when n tends to infinity, we recognize in
the first sum the definition of ν. Hence:

µ(z) ≥ µ(a)ν(z)for any z ∈ E.
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On the other hand, since for any n, µ.Pn = µ, we also have

µ(a) =
x

µ(x)p(n)(x, a) ≥ µ(a)
x

ν(x)p(n)(x, a) = µ(a)ν(a) = µ(a).

Therefore, the intermediate inequality is an equality and as µ(x) ≥ µ(a)ν(x),
we must have µ(x) = µ(a)ν(x) when n is such that p(n)(x, a) > 0. Given that X
is irreducible, such an integer n always exists and thus µ(x) = µ(a)ν(x) for any
x ∈ E.

Theorem 3.16.– If there is an invariant probability then all the states satisfying ν(y) >
0 are recurrent.

Proof. As ν = νPn, Fubini’s theorem implies that

x∈E
ν(x)

n≥1

p(n)(x, y) =
n≥1

ν(y) = ∞ if ν(y) > 0.

On the other hand, according to Lemma 3.5

n≥1

p(n)(x, y) =
Px(τ1

y <∞)
1− Py(τ1

y <∞)
·

As Px(τ1
y <∞) ≤ 1,

∞ ≤
x∈E

ν(x).
1

1− Py(τ1
y <∞)

.

Therefore Py(τ1
y <∞) = 1 since ν is finite, which means that y is recurrent.

Theorem 3.17.– If X is irreducible and admits ν as invariant probability, then

ν(x) =
1

Ex [τ1
x ]
.

Proof. If there exists x such that ν(x) = 0 then as for any n

ν(x) =
y∈E

p(n)(y, x)ν(y),

for any n and any y, the product of ν(y) and of p(n)(y, x) is zero. Now, the chain is
irreducible, hence for any y, there exists ny such that p(ny) > 0 so that ν(y) = 0.
Therefore ν is not a probability, thus for any x ∈ E, ν(x) > 0. According to
the previous theorem, all states are recurrent. Hence we know that ν is, up to a
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multiplicative constant, given by Theorem 3.13. This multiplicative constant c must
satisfy c y∈E ν(y) = 1,. Since we know that for any x ∈ E,

y∈E
ν(y) =

y∈E
Ex

⎡
⎣
τ1

x−1

n=0

1{Xn=y}

⎤
⎦ = Ex τ1

x ,

the result follows.

The following theorem summarizes the above mentioned principal results.

Theorem 3.18.– If X is irreducible, the three following assertions are equivalent:

1) One of the states is positive recurrent;

2) There is an invariant probability;

3) All the states are positive recurrent.

Moreover, the invariant probability is given by

ν(y) =
1

Ex [τ1
x ]

Ex

⎡
⎣
τ1

x−1

n=0

1{Xn=y}

⎤
⎦.

Proof. 1)⇒ 2). By combining Theorem 3.13 and Theorem 3.17, we see that

ν(y) =
1

Ex [τ1
x ]

Ex

⎡
⎣
τ1

x−1

n=0

1{Xn=y}

⎤
⎦ ,

defines an invariant probability. As the term on the left does not depend on x, we can
choose x = y and we find ν(y) = Ey τ1

y
−1

.

2)⇒ 3). SinceX is irreducible, we know that the invariant probability is a multiple
of that built in Theorem 3.13 and therefore π(y) > 0 for any y ∈ E. According to
Theorem 3.17, this means that all the states are positive recurrent.

3) ⇒ 1) is trivial.

Corollary 3.19.– Any irreducible Markov chain on a finite cardinal E is positive
recurrent.

Proof. There exists an invariant measure µ. As the state space is finite, we can always
normalize it by requiring

ν(x) =
1

y∈E µ(y)
µ(y),
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and we obtain an invariant probability. According to point 2) of the previous theorem,
we deduce that the Markov chain is positive recurrent.

Theorem 3.20 (Foster criterion of positive recurrence).– Assume that there exists
h:E → R and > 0 such that:

– lim infy h(y) > −∞;

– h(X1) is integrable;
– for any y ∈ Ec

0,

h(y)− ≥ E [h(X1) |X0 = y] .

Under these conditions, X is positive recurrent.

LetX be an irreducible recurrentMarkov chain on a Polish spaceE. For any x ∈ E
we put, (Y n

k , k ≥ 0) = Xk∧τ1
x

and for any n ≥ 1, we define the nth excursion Y n

of X from x by (Y n
k , k ≥ 0), where

Y n
k = Xk∧τ1

x
◦ θτn

x .

The 0th excursion coincides withX until the first visit to x, after Y 0 remains in x.
The nth excursion is a Markov chain which starts from x and follows the pattern of
the initial chain until it hits x. Then, it remains equal to x. The evolution of the chain
is then captured by Y n+1.

Y 0 Y 3

Figure 3.3. Excursions of the Markov chain of example 3.1

According to the strong Markov property, the processes (Y n, n ≥ 0) are
independent and for n ≥ 1, they all have the same law: for any functionψ:EN −→ R,

E [ψ(Y n)] = E ψ(Y 1 ◦ θτn
x ) = E ψ(Y 1) .
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Theorem 3.21.– Let X be recurrent, irreducible of invariant distribution ν. For any
initial condition x ∈ E, for any function f in L1(ν), for any function g ≥ 0 such that

y g(y)ν(y) > 0, we have

n
j=0 f(Xj)
n
j=0 g(Xj)

n→∞−−−−→ y∈E f(y)ν(y)

y∈E g(y)ν(y)
, Px a.s.

As a consequence, for f ∈ L1(ν),

1
n

n

j=0

f(Xj)
n→∞−−−−→

y∈E
f(y)ν(y), Px a.s.

We can cut any additive functional into pieces depending on each excursion.
According to the independence and equidistribution of these pieces, we can apply
the strong law of large numbers. It remains to prove that the side-effects are negligible,
that is to say that the term which depends on Y 0 and the term which depends on the
incomplete excursion disappear when divided by n.

Proof. The invariant probability is proportional to the invariant measure given in
Theorem 3.13. Thus, there exists c > 0 such that for any function g ≥ 0,

c
y∈E

g(y)ν(y) = Ex

⎡
⎣
τ1

x−1

n=0

g(Xn)

⎤
⎦ .

By homogeneity we can assume that c = 1. Let Z = (Zk, k ≥ 1) is defined by

Zk =
τk

x −1

n=τk
x

f(Xn) =
τ1

x−1

n=0

f(Y k
n ) = Z1 ◦ θτ

k
x .

According to the strong Markov property, the random variables (Zk, k ≥ 1) are
independent and identically distributed. Moreover,

Ex [|Z1|] ≤ Ex

⎡
⎣
τ1

x−1

n=0

|f(Xn)|

⎤
⎦ =

y∈E
| f(y) | ν(y) <∞,

since f ∈ L1(ν). We can therefore apply the strong law of large numbers, which states
that

1
n

τn
x −1

k=0

f(Xk) =
1
n

n

k=1

Zk
n→∞−−−−→ Ex [Z1] =

y∈E
f(y)ν(y), Px a.s. [3.15]
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If we apply this result to f ≡ 1, we obtain

τnx
n

n→∞−−−−→ 1, Py a.s. [3.16]

Let e(n) be the number of visits to x between 0 and n times. Let us observe that
e(n) is also the number of excursions starting from x completed before time n. By
definition, τe(n)

x ≤ n < τ
e(n)+1
x , therefore

τ
e(n)
x

e(n)
≤ n

e(n)
<

τ
e(n)+1
x

e(n) + 1
e(n) + 1
e(n)

.

According to [3.16], the lower and upper bounds of the previous line converge a.s.
to 1, therefore so does n−1e(n). Hence,

1
n

n

k=0

f(Xk)

=
1
n

τ1
x−1

k=0

f(Xk)
e(n)
n

1
e(n)

(Z1 + · · ·+ Ze(n)) +
1
n

n

k=τ
e(n)
x +1

f(Xk).

[3.17]

Assume that f ≥ 0. The first term tends to 0 Py-almost surely for any y ∈ E.
According to the definition of almost-sure convergence, this is equivalent to

Py

⎛
⎝lim sup

n

⎛
⎝ 1
n

τ1
x−1

k=0

f(Xk) >

⎞
⎠
⎞
⎠ = 0, [3.18]

for any > 0. Therefore, by the strong Markov property, for any > 0,

Py

⎛
⎝lim sup

n

⎛
⎝ 1
n

τe(n+1)
x −1

k=τ
e(n)
x

f(Xk) >

⎞
⎠
⎞
⎠

= Px

⎛
⎝lim sup

n

⎛
⎝ 1
n

τ1
x−1

k=0

f(Y n
k ) >

⎞
⎠
⎞
⎠

= Px

⎛
⎝lim sup

n

⎛
⎝ 1
n

τ1
x−1

k=0

f(Xk) >

⎞
⎠
⎞
⎠ = 0,
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according to the [3.18]. As

n

k=τ
e(n)
x +1

f(Xk) ≤
τe(n+1)

x −1

k=τ
e(n)
x

f(Xk),

we have

1
n

n

k=τ
e(n)
x

f(Xk)
n→∞−−−−→ 0, Py a.s.

For general f , by applying the above reasoning to |f |, we show that the first and
third terms of [3.17] tend a.s. to 0. According to the first part of the proof (see equation
[3.15]), the middle term of [3.17] tends almost surely toward y∈E f(y)ν(y). The
special case is obtained by taking g = 1.

Definition 3.10.– A state x is periodic if there exists an integer δ ≥ 2 such that

∞

k=1

Px(τ1
x = δk) = 1. [3.19]

The smallest δ satisfying [3.19] is called the period of x and we denote it as d(x).
The states that are not periodic are called aperiodic.

Example (Example 3.1 (continued)).– In this case, a moment of thought shows that
we reach only an odd-numbered box every two steps, and the same holds for even-
numbered boxes: if the rat starts in box 1, it can be in boxes 3, 5 or 7 after its second
move. Hence, the period is 2. We see that the states can be classified into two packets,
boxes {1, 3, 5, 7} on the one hand, boxes {2, 4, 6} on the other.

More generally, we have the following theorem.

Theorem 3.22.– Let X be an irreducible recurrent Markov chain of period d. Let x
be fixed in E, there exists a partition of E in d sets C0, C1, . . . , Cd−1 such that:

1) x belongs to C0;

2) Let y ∈ Cr and z ∈ Cs, if p(n)(y, z) > 0 then n = (s− r) mod d;
3) C0, . . . , Cd−1 are irreducible recurrent aperiodic classes for the Markov chain

of transition matrix P d.

The factorization is unique up to a renumbering. TheMarkov chain transitionmatrix
P d is irreducible, recurrent, aperiodic. If its initial condition is inCr for r ∈ [0, d−1],
then all its subsequent states are in Cr.

The proof of this theorem requires two technical lemmas.
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Lemma 3.23.– Let a1, . . . , an be relative prime integers, any integerm ≥ x(1+ax)
can be written as

m =
k

xkak with xk ≥ 0 for any k. [3.20]

Proof. Let us show by induction on n that if a1, . . . , an are n integers (not necessarily
relatively prime) and that m ∈ N is written as m = k xkak then we can always
find another expression satisfying the conditions of [3.20]. Specifically, there exists a
permutation σ of {1, . . . , N} into itself such that

xσ(i) ≤ min
l=σ(1),...,σ(i−1)

(al) for all l ≤ n− 1.

First assume that n = 2. Asm ≥ 0, one of the two coefficients x1 or x2 is positive.
Without loss of generality, we can always assume that it concerns x1. Let us show that
we can always assume that x1 < a2. If this is not the case, then we can write it as
x1 = ka2 + r with 0 ≤ r < a2

m = x1a1 + x2a2 + ka1a2 − ka1a2

= (x1 − ka2)a1 + (x2 + ka1)a2 = ra1 + (x2 + ka1)a2.

In conclusion, any integerm can be written asm = x1a1 + x2a2 with 0 ≤ x < b.
As a consequence, ifm ≥ a1a2, x2 must be positive.

Assume the result is shown for (n−1). Up to a renumbering, we can always assume
that x1 is positive, and apply the recurrence hypothesis tom−x1a1 and to the (n− 1)
remaining numbers. The renumbering that has been applied during this step defines
the permutation σ.

Now, if a1, . . . , an are relatively prime, Bezout’s lemma guarantees the existence
of the representation m = k xkak for any integer. According to the first part of the
demonstration, we can always assume that k≤n−1 xkak is positive and less than

sup
x

⎛
⎝a1 . . . an +

y=x

ay + . . .

⎞
⎠ ≤ a1 . . . an +

x y=x

ay + . . . = (1 + ax)− 1.

Therefore, form greater than or equal to (1 + ax), there is still an expression of
the form [3.20].

Lemma 3.24.– If x is aperiodic then there exists n0 such that if n ≥ n0 then
p(n)(x, x) > 0.
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Proof. Define the set

Ix = {n ∈ N, p(n)(x, x) > 0}.

According to the Markov property, Ix is a semi-group: if m and n belong to Ix
thenm+ n also belong to it. Indeed

p(m+n)(x, x) ≥ p(m)(x, x)p(n)(x, x).

Ix is equippedwith the usual order. Let un be the number of common divisors of the
first n elements of Ix. (un, n ∈ N) is a non-negative decreasing sequence, therefore it
is convergent, and since x is aperiodic, its limit is 1. As (un, n ∈ N) is integer valued,
there must be a rank from which it is constant, let n0 be this rank and let a1, . . . , an0

the n0 first elements of Ix. According to the previous lemma, for n sufficiently large,
n ∈ Ix.

Proof of Theorem 3.22.
Let Ky = {n, p(n)(x, y) > 0}. For two integers k and l, according to the Markov
property

Px(Xk+l = x) ≥ Px(Xk = y)Py(Xl = x).

Therefore, n can belong toKy only if d divides n+ l, that is to say, if n is written
as αdr where r ∈ {0, . . . , d− 1} is the remainder of the division of l by d. We define
Cr as the set of points of E which have the same r. These sets are clearly forming a
partition and x ∈ C0.

Letm and n such that p(m)(y, z) > 0 and p(n)(x, y) > 0. As p(n+m)(x, z) > 0, it
follows from i) that n+m ≡ s mod d and as n ≡ r mod d, the result follows.

The irreducibility follows immediately from the previous point, the aperiodicity of
the definition of the period.

We can now state the result.

Theorem 3.25.– LetX be an irreducible, positive recurrent, aperiodic Markov chain
of transition matrix P and invariant probability ν. Then,

lim
n→∞

p(n)(x, y) = ν(y), for all x and all y.
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This can be proved by coupling: two independent Markov chains of the same
transition matrix but of different initial conditions always end up meeting each other.
Let us observe that from this moment of meeting, they coincide in distribution.

Proof. On E × E, we define the Markov chain Zn = (Wn, yn) of transition matrix

p̂ (x1, x2), (y1, y2) = p(x1, y1)p(x2, y2).

In other words, bothW and Y coordinates evolve independently from one another
according to the distribution of the original Markov chain.

We first show that Z is an irreducible Markov chain. As all states are aperiodic,
according to Lemma 3.24, from a certain rankM ,

p(l)(y1, y1) > 0 and p(l)(x2, x2) > 0.

As X is irreducible and recurrent, there existsK ≥M and L ≥M such that

p(K)(x1, x2) > 0 and p(L)(y1, y2) > 0.

Therefore, the path

(x1, y1) → (x2, y1) → (x2, y2)

has a positive probability for the indexK + L+M . Indeed, according to the Markov
property

p(K+L) (x1, y1), (x2, y2) ≥ p(K)(x1, x2)p(K)(y1, y1).p(L)(x2, x2)p(L)(y1, y2) > 0.

It is clear that ν̂(x, y) = ν(x)ν(y) defines an invariant probability for the Markov
chain Z. Therefore according to Theorem 3.18, all states are positive recurrent. Let T
be the hitting time of the diagonal of E × E by Z

∆ = {(x, y) ∈ E × E, x = y}
T = inf {n > 0, Zn ∈ ∆} .

Since Z is irreducible, recurrent, the hitting time of a state (x, x) of the diagonal
is almost surely finite. Since T is the minimum of all these hitting times, it is almost
certainly finite. Let us show that on {T ≤ n}, Wn and Yn have the same distribution



72 Networks Modeling and Analysis

P(Wn = y, T ≤ n) =
x

E 1{Wn=y} 1{WT =x} 1{T≤n}

=
x

E 1{WT =x} 1{T≤n} E 1{Wn=y} | FT

=
x

E 1{WT =x} 1{T≤n} Ex 1{Wn−T =y}

=
x

E 1{YT =x} 1{T≤n} Ex 1{Yn−T =y}

= P(Yn = y, T ≤ n).

Then,

P(Wn = y) = P(Wn = y, T ≤ n) +P(Wn = y, T > n)

= P(Yn = y, T ≤ n) +P(Wn = y, T > n)

≤ P(Yn = y) +P(Wn = y, T > n).

Symmetrically, we have

P(Yn = y) ≤ P(Wn = y)P(Yn = y, T > n),

from which we deduce that

|P(Wn = y)− P(Wn = y)| ≤ P(Yn = y, T > n) +P(Wn = y, T > n).

Summing over all the possible values of y, we get

y

|P(Yn = y)− P(Wn = y)| ≤ 2P(T > n).

Since T is almost surely finite, the right-side tends to 0 when n to infinity. If we
takeW0 = x and Y having the distribution ν, we deduce

y

|p(n)(x, y)− ν(y)| n→∞−−−−→ 0.

Hence the result.

Note.– We observe that the aperiodicity hypothesis is only used to prove the
irreducibility of the Markov chain Z. To be convinced that this is essential, consider
again the example of the rat in its maze. Let us form the Markov chain Zn = (Xn, Yn)
which represents the positions of two rats released in the same maze, which evolve
independently of each other according to the same rules as before. LetC1 be the cyclic
class of 1 and C2 that of 2 for the Markov chainX . If Z starts from a state of C1 ×C2
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thenZ evolves between the states of this set and the states ofC2×C1, but never reaches
the states of C1 × C1, therefore Z is not irreducible.

In the periodic case, however, we have the following result:

Theorem 3.26.– Let X be an irreducible, positive recurrent Markov chain periodic
of period d and of invariant probability ν. Let x ∈ E and C0, . . . , Cd−1 be the cyclic
classes associated with x. If y ∈ Cr

lim
n→∞

p(nd+r)(x, y) = dν(y).

The idea is to apply the previous theorem to the Markov chain of transition
matrix P d. It is necessary to determine the invariant probability of this Markov chain.
Observe that according to Theorem 3.13, up to a multiplicative constant c, the invariant
probability of a state y is equal to c times the proportion of the number of visits to this
state between two visits to a fixed state x. As in the Markov chain of matrix P d we
divide the number of steps by d, this proportion is multiplied by d.

Proof. According to the definitions of the period and ofCk,Ck is a closed subset for the
chainXk defined byXk

n = Xnd+k for k = 0, . . . , d− 1. These chains are irreducible
and positive recurrent. According to Corollary 3.14, the invariant probability νk ofXk

is proportional to ν, that is, there exist αk such that νk(y) = αkν(y) for any y ∈ Ck.
In addition, since ν is the invariant probability of X , for any k and any l belonging to
0, . . . , d− 1,

αk = Pν(Xnd+k ∈ Ck) = Pν(Xnd+k ∈ Ck ∪ Cl) = Pν(Xnd+l ∈ Cl) = αl.

It follows that αk = d−1. The final point results from Theorem 3.25.

The final result useful for simulations is the central theorem limit which
states that:

Theorem 3.27.– LetX be a positive recurrent Markov chain of invariant probability
ν. For f : E × E → R,

Pf :
E −→ R
x −→ Pf(x) = y f(x, y)p(x, y) = Ex [f(X0, x1)]

.

For any function f such thatEν [P (f2)] <∞,
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1√
n

n

k=1

(f(Xk−1, Xk)− Pf(Xk−1))
Law−−−−→
n→∞

N (0, σ2(f)),

where N (0, σ2(f)) is a Gaussian distribution of variance given by

σ2(f) = Eν [P (f2)]− Eν [(Pf)2].

Proof. Lemma 3.12 implies that for f bounded, the process

Mf
n =

n

j=0

f(Xn, Xn+1)−
n

j=0

Pf(Xj , .)(Xj)

is a martingale. Furthermore, its increasing process is

∆ Mf
n = E (∆Mf

n )
2 | Fn

= E f(Xn, Xn+1)− Pf(Xn)
2

| Fn

= Pf2(Xn) + Pf(Xn)2 − 2Pf(Xn)2

= Γf(Xn),

where Γf = P (f2) − (Pf)2 is the carré du champ operator associated with P .
Therefore

Mf
n =

n

j=0

Γf(Xj).

By hypothesis, Γf is integrable with respect to ν, Theorem 3.21 implies that

Mf
n

n

n→∞−−−−→ σ2(f),Pxa.e.

The result follows from the central limit theorem for martingales increments.

If we take as a particular case f(Xk−1, Xk) = 1{Xk=x}, we get

P
√
n(Nn

x − π(x)) ∈ [a, b] n→∞−−−−→
b

a

exp(−x2/2σ2)
dx

σ
√
2π
,

with σ2 = ν(y)− x p(x, y)
2ν(x).
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Example (Example 3.1 (continued)).– This is the simplest case in which we have to
solve the system ν = νP and π(x) = 1. After making all the calculations,

ν =
1
8
,
3
16
,
1
8
,
3
16
,
3
16
,
1
8
,
1
16

.

Example (Example 3.3 (continued)).– It is necessary to restrict the Markov chain to
any equivalence class of the “communicate” relation. In this case, it is clear that the
invariant probability is the uniform measure on these states.

3.5. Effective calculation of the invariant probability

The principle is simple: the invariant probability is the only vector with non-
negative components, of total weight 1 which satisfies the equation ν(P − Id) = 0.
To solve such a system by computer, it is must be taken into account that this system
has co-rank 1, that is, it is necessary to remove a column of P (e.g. the last one) and
replace it with a column of 1. Let P̂ be the matrix thus obtained. We must then solve
the system

π(P̂ − Î) = b, with b = (0, . . . , 0, 1) and Î =

⎛
⎜⎜⎜⎝

1 0
1 (0) 0

(0)
. . .

0

⎞
⎟⎟⎟⎠ .

In practice, the chains that are used have a finite state space but very large cardinal
(several thousands of states). This requires the use of numerical analysis methods.

3.5.1. Iterative method

We have to solve the equation π = πP where P is the transition matrix. According
to Theorem 3.25, if the chain is aperiodic then πn+1 = πnP tends to the invariant
probability. In practice, we take any π0 and we iterate the relation πn+1 = πnP . This
process can be expensive if the calculation of the coefficients of P is long. However,
convergence is exponentially fast with scale factor given by the modulus of the second
largest eigenvalue of P .

When the chain is periodic (see the example of the rat) of period d, we must be
more cautious. Theorem 3.25 shows the sequence (πn, n ∈ N) has d cluster points.
Specifically, by definition of a cyclic class, if π0 is a Dirac mass at x, the terms πkn
have positive components only for the states of the cyclic class x, the terms πkn+j have
positive components only for the states of the cyclic classCj , for all j ∈ {1, . . . , d−1}.
Example (Example 3.1 (continued)).– Consider the initial condition π0 = (1, 0, . . .),
we then have
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v(2) = 0,
1
2
, 0,

1
2
, 0, 0, 0

v(3) =
1
3
, 0,

1
6
, 0,

1
3
, 0,

1
6

v(4) = 0,
13
36
, 0,

4
9
, 0,

7
36
, 0

v(5) =
29
108

, 0,
47
216

, 0,
79
216

, 0,
4
27

v(6) = 0,
473
1296

, 0,
131
324

, 0,
299
1296

, 0

v(7) =
997
3888

, 0,
1843
7776

, 0,
2891
7776

, 0,
131
972

.

One way to avoid this is to consider the sum of Cesaro π̂n = d−1 n
i=n−d πi. This

requires knowledge of the period, if it is not possible then we can rely on the ergodic
method.

3.5.2. Ergodic method

Theorem 3.21 states that for an irreducible and positive recurrent Markov chain of
invariant probability ν, we have for any initial condition and all x ∈ E,

lim
n→∞

1
n

n

k=1

1{Xk=x} = ν(x).

We simulate a trajectory of the Markov chain as long as possible and compute
the percentage of time that we move in the state x. Theorem 3.27 indicates that the
speed of convergence is 1/

√
n which compares very unfavorably with the previous

two methods. However, we do not store all the ν(x) but only the values of interest. It
is actually very common that only a few components of ν are interesting.

Example (FileM/GI/1/K).– In this queuing system, there is a buffer of sizeK, andXn

denotes the number of customers in the system just after the departure of the customer
n. Then (Xn, n ∈ N) satisfies the recurrenceXn+1 = min((Xn− 1)++An+1,K+
1). Hence, we have an irreducible Markov chain which is necessarily recurrent since
the state space is finite. We cannot calculate the invariant probabilities by generating
function because of the side effects. However, for dimensioning the buffer, we are
only interested in the probability of loss, that is to say ν(K + 1). It is obtained by the
following formula
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ν(K + 1) = lim
n→∞

1
n

n

k=1

1{Xk=K+1}

and

N̂ = lim
n→∞

1
n

n

k=1

Xk

is the mean number of customers in the queue at the equilibrium state.

3.6. Problems

Exercise 1.– On a chess board, we place a knight in the cornerA1. The knight moves
randomly (it chooses a move at random among those possible) and without memory.
We recall that a knight moves two squares in one direction (either horizontal or vertical)
and a square in the other direction.Using the reversibility and symmetry considerations,
calculate the average time back to square A1.

Same question, if we identify the opposite edges of the board, then the knight moves
on a torus!

Exercise 2.– Build (whenever it is possible) a Markov chain with two states such
that:

– the two states are recurrent;

– the two states are transient;

– one state is transient, and the other recurrent;

– both are transient;

– both are zero recurrent.

Exercise 3.– Consider the Markov chain with values in {1,2,3} whose transition
matrix is given by

⎛
⎝

0 1/2 1/2
f(p) 0 1− f(p)

1− f(p) 0 f(p)

⎞
⎠

where p ∈ [0, 1] and f(p) is defined by:

f(p) =

⎧
⎨
⎩
0 if p ≤ 1/4
2p− 1/2 if 1/4 < p ≤ 3/4
1 if p ≥ 3/4
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1) Give the classification of states according to the values of p;

2) For what values of p is there a probability invariant? Compute it when it exists;

3) Starting from 2, what is the mean return time to 2?
4) Let h be the function defined by

h(1) = −1, h(2) = 1, h(3) = 1.

What is the limit

1
n

n

j=1

h(Xj)

when n tends to +∞ for p < 3/4?
5) If one has an arbitrarily large number of sample paths, how do we know if p is

greater than 3/4? How do we know if p < 1/4? How can we estimate p if it is between
1/4 and 3/4?

Exercise 4.– Let X be an irreducible recurrent Markov chain on E, and F a subset
of E. Show that the chain XF

n , n ∈ N (see definition 3.8) is a Markov chain on E.

Exercise 5.– Consider the homogeneous Markov chain X with two states A and B
and transition matrix

P =
1/2 1/2
1/2 1/2 .

We seek the time of first occurrence of the sequenceABA. To do this, we construct
the process Yn = (Xn, Xn+1, Xn+2):

1) Show that Y is an homogeneous Markov chain and give its transition matrix (as
a matrix or graph);

2) Is this chain irreducible? aperiodic? positive recurrent?

3) Calculate the invariant probability of Y . We can number the states in
lexicographic order: AAA = 1, AAB = 2, . . . ;

4) Derive the average time between two occurrences of ABA;

5) We assume that X0 = A,X1 = B. Give the equations to calculate E τ1
ABA .

Exercise 6.– A device emits on a transmission line some packets of constant size.
T denotes the transmission duration of a packet. We consider a discrete-time model
of the system, that is, a model in which the time is divided into intervals of constant
length, which we assume equal to T . Each interval is called a slot. The transmission
line can introduce errors and we define a sequence (Yn) such that Yn = 1 if, at time
n + 1, the line is in a state in which it introduces errors and Yn = 0 if at time n + 1,
it is in a state where it does not introduce errors. Assume that (Yn) is a Markov chain
and invariant P (Y1 = 1 |Y0 = 1) = 0.9 and P (Y1 = 0 |Y0 = 0) = 0.1.
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The emission is made with the protocol “stop and wait”. According to this protocol,
each packetmust be acquitted. If there is no error, the packet is positively acknowledged
and the next packet can be transmitted. Otherwise, the packet must be retransmitted.
To simplify the problem, we consider that the acknowledgment arrives instantly.

1) Calculate the invariant probability distribution of Yn;

2) Assume that the packets arrive according to a geometric process. That is, at the
nth slot there is an arrival with probability q and no arrivals with probability 1 − q.
A packet can be transmitted in its arrival slot. Let Xn be the number of packets in
the system at slot n. The pair (Xn, yn) is a Markov chain. We order the states in
lexicographic order, that is to say:

0 1 2 3 4 5 6 7 8 9 . . .
00 01 10 11 20 21 30 31 40 41 . . .

3) Find Q the transition matrix of (Xn, yn);
4) Show that

ν0 = 1

ν2n = 9 3 q/1− q
2n

ν2n+1 = 9ν2n

is an invariant measure for the Markov chain (Xn, yn).
5) Find all values of q for which all states are positive recurrent. Compare the result

with the result of 1. Conclusion.

Exercise 7.– Consider a packet of N cards. To mix, we proceed as follows: one
chooses a card at random and we put that card on top of the deck.

1) How to represent the state of the deck, denoted byXn, after the nth operation?

2) By introducing the special permutations

τk =
1 2 . . . k − 1 k k + 1 . . . N
2 3 . . . k 1 k + 1 . . . N

for k ∈ {1, . . . , N}; write the transition probabilities of X .

3) Show that this chain is irreducible (first analyze small values of N as N = 4,
for example).

4) Show that after a sufficiently large number of operations we obtain a “good”
mixture, characterized by the equal probability of all possible states of the deck.

Exercise 8.– Set E = {1, . . . , 10}. We define on E, the addition modulo 10, that is
to say 10 + 1 = 1. We consider X , the Markov chain of transition matrix P = (pi,j)
given by

pi,i+1 = p, pi,i−1 = 1− p.
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We assume that p is not equal to 0 or 1:
1) Is this chain irreducible ? recurrent? aperiodic?

2) What is its invariant probability?

We now consider, X1 and X2, two independent copies of this chain. We put Y =
(X1, X2).

3) Is this chain irreducible?

4) What is its invariant probability?

5) We set Zn = Y2n. Is this chain irreducible? What are its closed subsets? Is it
recurrent? aperiodic?

Exercise 9.– Let A = {An:n ≥ 1} be a sequence of random variables independent
and identically distributed with values in Rk, let h be an application of E ×Rk in E,
let X0 be a random variable independent of the sequence A. We define the sequence
X = {Xn:n ∈ N} by X0 for n = 0 and by Xn = h(Xn−1, An), for n ≥ 1. Show
that X is a Markov chain.

3.7. Notes and comments

The number of books on Markov chains is incalculable, we cannot list them all.
Among the most recent, close or complementary to our approach, we can refer to
[BAL01,GRA08].Markov chains are still a very active field of investigation because of
their universality.Current problems focus on the calculation of the speedof convergence
to the stationary probability and its relationship to the “spectral gap”, on the reduction
of the state space to calculate easily approximates of the invariant probability, on the
applications to simulation and to statistical methods through the MCMC.
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Epitome

– A Markov chain is defined by its initial distribution ν and its transition operator
P .

– A recurrent state is a state visited infinitely often. A state is a transient when it is
visited a finite number of times.

– A chain is irreducible if all states communicate.

– A stationary measure identified with a row vector is solution of the equation
πP = π.

– If we can find π such that x∈E π(x) = 1 then π is an invariant probability, and
the chain is recurrent.

– In this case, whatever the initial condition, P(Xn = x) n→∞−−−−→ π(x).
– To calculate π, we can either solve the system πP = π, x∈E π(x) = 1 or

consider the limit of the sequence πn+1 = πnP , for any π0.



Chapter 4

Stationary Queues

In Chapters 8 and 9, it is assumed that the generic distributions of the sequences
(ξn, n ∈ N) and (σn, n ∈ N) of service and inter-arrival times are exponential. This
allows us to represent many of the models by Markov processes in continuous time.
Many quantitative results can then be obtained regarding the performances of these
systems.

Unfortunately, this hypothesis is unrealistic in many cases, and we are led
to consider sequences of random variables which are independent and identically
distributed with general distributions (GI/GI/. . . queues). The architectures of the
systems under consideration often lead to further weaken these hypotheses. In fact,
a queue often models the traffic in a node that is integrated within a network, and it
is desirable that the probabilistic characteristics of a queue are the same as that of the
following one, in other words that the input traffic of a queue be the same type as the
output traffic. However, aside from the particular case where the input is Poissonian
(then, the output is also Poissonian - see Theorem 8.8), it is easy to see that the inter-
arrivals time in the second queue (which are the intervals between the departure times
from the first queue) are not independent in general, even if the inter-arrivals in the first
queue are independent, since their order, for example, depends on the order of service
in the first queue.

It is therefore of crucial interest to consider queuing models where stationarity, but
not necessarily independence, is assumed. In this context, we can easily understand
that accurate quantitative results may be more difficult to obtain. However, in the
framework of Chapter 2 we can, in many cases, handle the study of essential questions:
existence and uniqueness of an equilibrium and qualitative study of the stationary
state (comparison of models, dependence on the distribution of the random variables
involved, etc.).

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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We first address the classical G/G/1 queue, and then the multiple server queue. The
results are primarily based on Loynes’s Theorem 2.4, and hence on the monotonicity of
the SRS involved. Then we consider several queuingmodels admitting a representation
in more complex state spaces (such as processor sharing queues or infinite servers
queues), or whose representation by an SRS is not monotonic, such as loss queues and
queues with impatient customers.

4.1. Single server queues

4.1.1. Stability

We consider a queue with a single server working without vacations, processing
jobs according to a conservative service discipline. These requests enter the system
according to a stationary point process. Specifically, we take two random sequences
(ξn, n ∈ Z) and (σn, n ∈ Z), taking values respectively in R+

∗ and R+, which
represent the intervals of time between the arrivals of the customers, and their service
time, respectively, counted in units of time.

Assumption– ((ξn, σn), n ∈ Z) is stationary and ergodic. Moreover, E[ξ0] +
E[σ0] <∞.

According to Kendall’s notation, we thus consider a G/G/1 queue. As in Chapter 2,
we can assume that the canonical probability space is Ω = FZ, where F = R+

∗ ×R+

is equipped with the product sigma-field. The probability measure P is the image
measure of the sequence of couples, and the shift towards right θ operates on the two
components simultaneously. The quadruple (Ω,F ,P, θ) hence defined is called the
Palm space of arrivals and services.

The random variables σ and ξ are defined on Ω by

σ (((ξn, σn), n ∈ Z)) = σ0 and ξ (((ξn, σn), n ∈ Z)) = ξ0,

so that for all n ∈ Z,

ξn = ξ ◦ θn and σn = σ ◦ θn.

For any n ∈ N, ξ ◦ θn is interpreted as the time between the arrivals of the nth and
the n + 1th customers (respectively denoted Cn and Cn+1) and σ ◦ θn as the service
time requested by Cn. We fix the time origin T0 = 0 at the arrival time of C0, and we
write for any n 1, Tn = n−1

i=0 ξ ◦ θi, which is interpreted as in the rest of the book,
as the arrival time of Cn.

For anyn ∈ N, letWn denote theworkload to be completed by the server,measured
in time units just before the arrival of customer Cn (i.e. at Tn−), starting from an
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arbitrary workloadW0 at T0−. The quantityWn corresponds to the sum of the service
times of the customers possibly in line, plus the service time remaining to be processed
for the customer possibly in service at this time. In the special case where the service
discipline is FCFS (First Come, First Served),Wn then represents the amount of work
having priority over that brought by Cn, or in other words, the waiting time of Wn

before reaching the server.

Lemma 4.1.– For a G/G/1 queue, the workload sequence (Wn, n ∈ N) satisfies the
following recurrence relation, commonly referred to as Lindley’s equation

Wn+1 = [Wn + σ ◦ θn − ξ ◦ θn]+. [4.1]

Proof. For any n 0, the amount of work Wn+1 equals the sum of the remaining
amount of workWn just before the arrival of Cn, plus the service time σ ◦ θn brought
by Cn, minus the amount of work Jn processed by the server between the arrivals of
Cn and Cn+1. Therefore,

Wn+1 =Wn + σ ◦ θn − Jn.

Let us observe that just after the arrival of Cn, the server has a workload of
Wn + σ ◦ θn. Thus, there are two cases:

– if Wn + σ ◦ θn ξ ◦ θn, the server is busy without interruption between the
arrival of Cn and that of Cn+1, and therefore completes an amount of work ξ ◦ θn
between these two moments. In this case, Jn = ξ ◦ θn;

– if Wn + σ ◦ θn < ξ ◦ θn, the server becomes available before the arrival of
Cn+1, who finds an empty system, and hence is served upon arrival. In particular,
Jn =Wn + σ ◦ θn.

In both cases, we obtain [4.1]

We know from Example 2.4 that there exists a unique random variableW , which
could be the limit in distribution of (Wn, n ∈ N), and thatW satisfies the equation

W ◦ θ = [W + σ − ξ]+ = ϕ(W ), a.s.. [4.2]

Let us examine the conditions under which W takes values in R+. Under these
conditions, a finite workload exists, describing the steady state of the system.

Theorem 4.2.– If

E [σ] < E [ξ] , [4.3]

the random variableW defined by [2.8] is the only a.s. finite solution of [4.2]. If

E [σ] > E [ξ] ,

there is no a.s. finite solution to [4.2].
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Proof. W can be explicitly constructed. Let us recall (see the proof of Theorem 2.4)
thatM0 = 0 a.s., and then

M1(ω) = ϕ(M0, θ
−1ω)

= [σ θ−1ω − ξ θ−1ω ]+,

M2(ω) = ϕ(M1 θ−1ω , θ−1ω)

= [σ ◦ θ−1 θ−1ω − ξ ◦ θ−1 θ−1ω ]+ + σ θ−1ω − ξ θ−1ω
+

= max
1≤k≤2

k

i=1

(σ θ−iω − ξ θ−iω )

+

,

and a simple induction shows that for any n ∈ N∗,

Mn = max
1≤k≤n

k

i=1

(σ ◦ θ−i − ξ ◦ θ−i)

+

.

Thus, the minimal solution of [4.2] is a.s. given by

W =M∞ = sup
k≥1

k

i=1

(σ ◦ θ−i − ξ ◦ θ−i)

+

. [4.4]

The random variable σ − ξ being integrable, from the Ergodic Theorem 2.7 we have

1
n

n

i=1

σ ◦ θ−i − ξ ◦ θ−i n→∞−−−−→ E [σ − ξ] a.s.. [4.5]

Denote for any n,

Sn =
n

i=1

(σ ◦ θ−i − ξ ◦ θ−i).

Let us assume that E[σ − ξ] > 0. In this case, according to [4.5], the sequence
Sn tends to +∞ almost surely. But in view of [4.4], W = lim supn S+

n , therefore
P(W = +∞) = 1. Hence there is no finite solution to [4.2] in view of the minimality
ofW .

Let us now assume thatE[σ−ξ] < 0. According to [4.5], the sequence (Sn, n ∈ N)
tends to −∞, therefore P(lim supn S+

n < +∞) = 1, that is P(W < +∞) = 1. It
remains to check thatW is the only a.s. finite solution to [4.2]. At first, let us observe
that

P (Y = 0) > 0 for any finite solution Y of [4.2]. [4.6]
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Indeed, if Y > 0 a.s. then Y ◦ θ = Y + σ − ξ a.s., which implies that

E[Y ◦ θ − Y ] = E[σ − ξ] < 0,

contradicting Lemma 2.2. On another hand,

{Y = 0} ⊂ {Y ≤W},

which implies according to [4.6] that

P (Y ≤W ) > 0. [4.7]

But on {Y W}, by monotonicity we have that

Y ◦ θ = ϕ (Y ) ≤ ϕ (W ) =W ◦ θ.

The event {Y W} is hence θ− contracting, it is therefore almost sure according to
[4.7], that is Y W a.s.. By the minimality ofW , it follows that Y =W a.s..

The case where E[σ] = E[ξ] is a limit case where a finite stationary workload can
exist or not, depending on the distributions of σ and ξ. To illustrate this fact, let us
consider two simple examples:

Example 4.1.– Let us assume that σn = ξn = 1 for any n, which amounts to σ =
ξ = 1 a.s.. Then, it is straightforward that for any x 0, the random variableW ≡ x
is a solution of [4.2].

Example 4.2.– Let us assume that (σn, n ∈ N) and (ξn, n ∈ N) are two independent
sequences of random variables independent and identically distributed, with the same
mean expectation and respective variances σ2

1 and σ2
2 . Let 0 < < 1

2 and a ∈ R∗
+ be

such that 1 − F (a) = , where F denotes the distribution function of N (0, 1). Then,
for any x > 0, there is a sufficiently large index n such that

√
n σ2

1 + σ2
2a x, and

therefore

P (W > x) ≥ P (Sn > x) ≥ P
Sn√

n σ2
1 + σ2

2

> a
n→∞−−−−→ ,

according to the Central Limit Theorem. This shows that P(W = ∞) , and
thereforeW = +∞ a.s., since the event {W = ∞} is θ-contracting.

For the remainder of this section, let us assume that the stability condition [4.3]
holds.

Theorem 4.3.– For any random variable Y , P-a.s. finite and positive, the workload
sequence (WY

n , n ∈ N)with initial valueY couples with (W◦θn, n∈N). Particularly,

WY
n

L
n→∞−−−−→W . On the other hand, there is strong backward coupling if Y W, a.s.
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Proof. Let ψ be the random mapping defined by

ψ :
R+ × Ω −→ R
(x, ω) −→ x+ (σ(ω)− ξ(ω))

and (Zn, n ∈ N), the SRS driven by ψ, with initial value Y . Theorem 2.7 shows that
on an event A of probability 1,

1
n
Zn =

Y

n
+

1
n

n

i=1

σ ◦ θi − ξ ◦ θi n→∞−−−−→ E [σ − ξ] < 0.

On A, Zn tends to −∞, thus

NY = inf{n ≥ 0, Zn < 0}

is a.s. finite. Let us observe thatWY
n = Zn > 0 for any n NY , and thatWY

N = 0.
In addition, as Y 0, an immediate induction shows that WY

n W 0
n a.s. for all n.

This implies that W 0
NY = 0 = WY

NY , from where it follows by the definition of the
SRS that W 0

n = WY
n for any n NY . For another initial condition, say Y = W ,

there exists NW < ∞ such thatWW
n = W 0

n for any n NW . For n NY ∨NW ,
WY
n = W 0

n = WW
n , which shows the coupling property between (WY

n , n ∈ N) and
(W ◦ θn, n ∈ N).

Now, let Y be a random variable a.s. upper-bounded byW . By monotonicity, we
clearly have WY

n WW
n = W ◦ θn a.s. for any n ∈ N. On θ−n{W = 0}, we

therefore have WY
n = 0, which shows that (θ−n{W = 0}, n ∈ N) is a sequence of

renovating events of length 1 for (WY
n , n ∈ N). Theorem 2.11 thus guarantees that

strong backwards coupling holds.

We now turn to the property of the queue to get empty infinitely often almost surely.
It is clear, that if the queue is empty between the arrival of Cn−1 and that of Cn, we
have Wn = 0. If (Wn, n ∈ N) was a Markov chain, the property to get empty a.s.
infinitely often would correspond to the recurrence of 0 for the chain. We show that
this property holds under condition [4.3].

Corollary 4.4.– Under the stability condition [4.3], the G/G/1 queue starting from
the initial finite workload Y upon the arrival of C0, empties P-a.s. infinitely often.

Proof. From Theorem 2.7 and [4.6], we have P-a.s.

0 < P (W = 0) = lim
n→∞

1
n

n

i=1

10 W ◦ θi

= lim
n→∞

1
n

N−1

i=1

10 W ◦ θi +
n

i=N

10 WY
i .
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In other words,
+∞

i=N

10(WY
i ) = +∞, P − a.s.,

which exactly means that the queue becomes empty an infinite number of times.

4.1.2. Comparisons of G/G/1 queues

Lemma 4.5.– Consider two G/G/1 queues, carried respectively by the random
variables (σ, ξ) and (σ̄, ξ̄), defined on their respective Palm spaces (Ω,F ,P, θ) and
(Ω̄, F̄ , P̄, θ̄). If we have

σ̄ − ξ̄ ≤st σ − ξ, [4.8]

then the respective solutionsW and W̄ of the equations

W ◦ θ = [W + σ − ξ]+ , P − a.s.

W̄ ◦ θ̄ = W̄ + σ̄ − ξ̄
+
, P̄ − a.s.

verify

W̄ ≤st W. [4.9]

Proof. Apply Theorem 2.15 to ᾱ = σ̄ − ξ̄, α = σ − ξ and ϕ(x, y) = (x+ y)+.

Note.– In particular, if we assume that (σ ◦ θn, n∈N) (respectively (σ̄ ◦ θ̄n, n∈N))
is independent of (ξ ◦ θn, n ∈ N) (resp. (ξ̄ ◦ θ̄n, n ∈ N)), it is easy to see that [4.8],
and therefore [4.9] holds under either one of the two conditions

ξ
L= ξ̄ and σ ≤st σ̄;

σ
L= σ̄ and ξ̄ ≤st ξ.

Theorem 4.6.– Consider now a G/G/1 queue driven by the random variables σ and
ξ, where it is assumed that the sequences (σ ◦ θn, n ∈ N) and (ξ ◦ θn, n ∈ N) are
independent and satisfy the stability condition E[σ− ξ] < 0. Let us define on the same
probability space, the following two alternative queues:

– The first one is a stable G/D/1 queue having the same load, where the generic
service time is given by σ̂ = E[σ] and the generic inter-arrival time by ξ. We denote
Ŵ , its stationary workload.

– The second one is a D/G/1 queue carried by ξ̌ = E[ξ] and σ. We denote by W̌
its stationary workload.
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Then, for any increasing convex function F , we have

E F Ŵ ≤ E [F (W )]; [4.10]

E F W̌ ≤ E [F (W )] . [4.11]

Proof. Theorem 2.17 is verified by setting, for Ŵ ,

α = σ − ξ, ᾱ = E [σ]− ξ and Fn = σ ξ ◦ θj ; j = 0, . . . , n

and for W̌ ,

α = σ − ξ, ᾱ = σ − E [ξ] and Fn = σ σ ◦ θi; i = 0, . . . , n .

Indeed, for example in the first such case, by independence, for any n ∈ N and any
i n, we have a.s.

E α ◦ θi | Fn = E σ ◦ θi − ξ ◦ θi | ξ ◦ θj ; j = 0, . . . , n

= E [σ]− ξ ◦ θi

= ᾱ ◦ θi.

The other case is treated similarly. We conclude with Corollary 2.18.

In this sense, determinism minimizes the average workload at equilibrium and
therefore the average waiting time if the discipline is FIFO. If we assume that in a
router, the packet processing time is proportional to its length, this means that the
average delay is minimized when taking packets of constant length.

To the limit, let us observe that the deterministic system, of inter-arrival and service
times equal to their respectivemeans admits, clearly, the only stationary solutionW = 0
a.s.

4.1.3. Representation of service disciplines

In a queueing system, the service discipline characterizes the policy applied by the
server(s) to select a customer when he (they) is (are) available, and there are several
customers in line. Note that all the results obtained so far in section 4.1 are independent
of the disciplinewe are dealingwith. Thus, to represent the service discipline in the state
of the system, we have to enrich the model, since the workload alone is not sufficient
to recover this information.
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To account for the service discipline, we represent the system in a larger state space.
Specifically, we describe the system just before the arrival of the customer Cn, n 0,
by an ordered sequence Sn, representing the residual service times of the customers in
the system at this time. In other words, ifXn is the number of customers in the system at
T−
n , for any i < n such thatCi is in the system at T−

n , we denoteϕn(i) ∈ {1, . . . , Xn},
the place of Ci in the queue in the order of priorities, the first one being occupied by
the customer in service at T−

n . For every such customer Ci, the remaining service time
at T−

n is denoted by Rn(ϕn(i)), that is

Rn(ϕn(i))

=
σ ◦ θi if Ci has not received service before T−

n ,
σ ◦ θi − γi if Ci has already received the amount of service γi < σ ◦ θi at T−

n .

For any n ∈ Z, we define Sn ∈ S (see Appendix A.3), the sequence representing
the residual service times of the customers in the system at that same time, sorted in
the reverse order of priorities, and setting to 0 the other components of Sn, that is

Sn(i) = Rn (Xn + 1− i) , i ≤ Xn and Sn(i) = 0, i > Xn,

or in other words,

Sn = Rn(Xn), Rn(Xn − 1), . . . , Rn(2), Rn(1), 0, 0, . . . .

The sequence Sn will be termed service profile of the queue at T−
n .

Now, we make precise the dynamics of the sequence of sequences (Sn, n ∈ N),
in function of the service discipline. We start with an arbitrary profile S0 ∈ S at the
arrival of C0. Let Sn be the value of the profile just before the arrival of Cn. At Tn, the
service time σ◦θn of the incoming customer is inserted in the service profile arbitrarily
in the first place, and it shifts the other terms of the sequence of one slot to the right.
By denoting Sn+ as the resulting sequence, we therefore have

Sn+ = σ ◦ θn, Sn(1), Sn(2), . . . = F 1 (Sn, σ ◦ θn) . [4.12]

Then, the service disciplineΦ is represented by amappingFΦ : S → S as follows:

1) FCFS: FFCFS is the identity since the incoming customer has the lowest priority;

2) Non-preemptive LCFS

F LCFS(u) = u(2), u(3), . . . , u N(u)− 1 , u(1), u N(u) , 0, . . . ,

since the incoming customer is inserted just after the customer in service in the order
of priorities;
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3) Preemptive LCFS: in this case,

F LCFS(u) = u(2), u(3), . . . , u Nu − 1 , u Nu , u(1), 0, . . . ,

since the entering customer shall immediately substitutes the customer in service (if
any);

4) SRPT (Shortest Remaining Processing Time): we give a preemptive priority to
the customer who has the smallest residual service time. Therefore,

F SRPT(u) =

u(2), u(3), . . . , u(i− 1), u(1), u(i), . . . , u N(u) , 0, . . .

if u(i − 1) ≥ u(1) ≥ u(i);

u(1), u(2), u(3), . . . , u N(u) , 0, . . . if u(1) ≥ u(2);

u(2), u(3), . . . , u N(u) , u(1), 0, . . . if u(1) < u N(u) .

It follows that F SRPT(u) is ordered in decreasing order whenever u is so.

5) SPT (Shortest ProcessingTime): it gives non-preemptive priority to the customer
who has the smallest residual service time. Therefore F SPT equals F SRPT except that
u(1) is inserted just before u(N(u)) even if u(1) < u(N(u)).

We can thus represent by such a permutation of S, any service discipline depending
only on the arrival dates and service requests from the customers since the last arrival
in an empty system, or at the most since the moment T0− . Such a discipline is said to
be admissible.

We denote Sn++ as the profile of the queue just after the scheduling of the
customers, so that

Sn++ = FΦ (Sn+). [4.13]

Then, the customer in service at Tn (having a residual service Sn+(Xn) at this
time) has, just before the arrival of Cn+1, a residual service time equal to

Sn+1(Xn) = [Sn+1(Xn)− ξ ◦ θn]+ .

Any customer following him (hence having a residual service time given at Tn by
Sn+(j) for some j ∈ [[0, Xn − 1]]) receives some service before Tn+1 if and only if

ξ ◦ θn >
+∞

i=j+1

Sn(i),



Stationary Queues 93

in quantity given by

⎛
⎝ξ ◦ θn −

+∞

i=j+1

Sn(i)

⎞
⎠ ∧ Sn+(j).

In other words, for any j ∈ N ,

Sn+1(j) = Sn+(j)−

⎛
⎝ξ ◦ θn −

+∞

i=j+1

Sn(i)

⎞
⎠

+

∧ Sn+(j)

=

⎛
⎝Sn+(j)−

⎛
⎝ξ ◦ θn −

+∞

i=j+1

Sn(i)

⎞
⎠

+ ⎞
⎠

+

.

We denote F 3(., ξ ◦ θn) the corresponding mapping, so that

Sn+1 = F 3 (Sn++, ξ ◦ θn) . [4.14]

Equations [4.12]–[4.14] indicate that for a fixed Φ, the sequence (Sn, n ∈ N) is
an SRS, since for any n ∈ N ,

Sn+1 = F 3(., ξ ◦ θn) ◦ FΦ ◦ F 1(., σ ◦ θn)(Sn). [4.15]

A stationary sequence of service profiles hence corresponds uniquely to a random
variable SΦ with values in S , solving the equation

SΦ ◦ θ = GΦ SΦ , [4.16]

where the mapping GΦ is defined by

GΦ:
S −→ S
u −→ F 3(u, ξ) ◦ FΦ ◦ F 1(u, σ).

Theorem 4.7.– LetΦ be an admissible service discipline. Under the stability condition
[4.3], there exists a unique solution SΦ to [4.16] such that SΦ ∈ S a.s.. In addition,
there is a strong backward coupling between the sequences SΦ,µ

n , n ∈ N and
SΦ ◦ θn, n ∈ N for any µ ∈ S such that

Z(µ) :=
i∈N∗

µ(i) ≤W a.s., [4.17]

whereW is the only a.s. finite solution of [4.2].
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Proof. Let us observe that for any n ∈ N, the workload at T−
n (starting from a given

initial condition) is deduced from Sn by

Wn =
i∈N∗

Sn(i).

Let µ ∈ S satisfying [4.17] and SΦ,µ
n be the service profile of the queue at T−

n

under the discipline Φ, when starting from the profile µ at T−
0 . We clearly have

i∈N∗
SΦ, µ
n (i) =WZ(µ)

n a.s.,

where WZ(µ)
n is the nth value of the SRS driven by ϕ defined by [4.2] and starting

from Z(µ).

Moreover, as ϕ is a.s. non-decreasing, it is easy to show by induction from [4.17]
that a.s.,

WZ(µ)
n ≤W ◦ θn, n ∈ N.

Therefore, on the event An = {W ◦ θn = 0}, we haveWZ(µ)
n = 0 and therefore

SΦ,µ
n = 0, the null sequence ofS . Thus, (An, n ∈ N) = ({W = 0} ◦ θ−n, n ∈ N) is

a stationary sequence of renovating events of length 1 for the sequence SΦ,µ
n , n ∈ N .

As P(W = 0) > 0 according to [4.6], Theorem 2.11 applied to the class of initial
conditions

Z = µ ∈ S;µ satisfy [4.17] [4.18]

implies the existence of a solution SΦ to equation [4.16] for the discipline Φ. This
solution (which reads as the limit of a sequence that is a.s. constant from a certain
rank – see the proof of Theorem 2.11) is a.s. finite, which means that its components
are a.s. finite and that it admits an a.s. finite number of components. In other words,
SΦ ∈ S a.s..

Now, let S and S be two solutions of [4.16] with values in S . By denoting

Z =
i∈N∗

S(i) and Z =
i∈N∗

S (i)

as respective workloads corresponding to these two profiles, it is easy to check with
[4.12] and [4.14] that Z and Z are two a.s. finite solutions of [4.2]. According to
Theorem 4.2, we then have Z = Z =W . Therefore,

{W = 0} ⊂ {Z = Z = 0} ⊂ {S = S }.
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Since the event on the left-hand side is of non-zero probability and the one on the
right-hand side is θ-invariant, we have S = S a.s..

Theorem 2.11 applied to the class Z particularly implies the property of strong
backward coupling for (SΦ,µ

n , n ∈ N) with (SΦ ◦ θn, n ∈ N).

4.1.4. Other features at equilibrium

For a given admissible discipline Φ, the sequence SΦ therefore provides more
information on the steady-state of the system than the workloadW . Let us show how
this information can be used to deduce from this, other characteristics of the system at
equilibrium, such as congestion and waiting time.

Let us denote (XΦ
n , n ∈ N) the sequence counting for any n ∈ N the number

of customers found in the system by Cn, starting from the initial profile SΦ. Under
these conditions, the sequence of the profiles found by the successive customers upon
arrival is stationary and equals (SΦ ◦ θn, n ∈ N). In particular, the customer Cn finds
a service profile SΦ ◦ θn upon arrival, and therefore

XΦ
n = N SΦ ◦ θn = N SΦ ◦ θn a.s. for any n ∈ N,

where N(.) is the number of non-zero coordinates of the sequence (see A.3). This
means that (XΦ

n , n ∈ N) is stationary and that a stationary congestion exists, given by
XΦ = N SΦ .

We can apply the same arguments to show the existence of a waiting time at
equilibrium, using the service profile. Let us denote TaΦ

n as the waiting time of the
customer Cn before entering service under the admissible discipline Φ (let us recall
that for Φ = FIFO,TaΦ

n =Wn).

Once again, start from the service profile SΦ. The profile of the system at the arrival
of customer Cn equals SΦ ◦ θn and becomes (SΦ ◦ θn)++ after inserting σ ◦ θn (see
[4.13]). If i is the rank of σ ◦ θn in the sequence (SΦ ◦ θn)++, then the waiting time
of Cn equals the sum j>i(S

Φ ◦ θn)++(j) of the service times of the customers
having priority upon Cn, plus those of the customers who have arrived after Cn, and
left the system before his departure (or its entry into service if the discipline Φ is
non-preemptive).

The form of this quantity may be very intricate, depending on the discipline Φ.
The crucial point is to get convinced that it depends only on SΦ

n , on σ ◦ θn and on
the service times {σ ◦ θj ; j > n} and inter-arrival times {ξ ◦ θj ; j > n} of the
customers who have arrived after Cn. In other words, there is a deterministic function
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JΦ : (R+)N × (R+)N→(R+) depending only on Φ such that for any n ∈ N, almost
surely

TaΦ
n =

j>i

SΦ ◦ θn
++

(j)

+ JΦ σ ◦ θn+1, σ ◦ θn+2, . . . , ξ ◦ θn+1, ξ ◦ θn+2, . . .

=

⎛
⎝
j>i

FΦ ◦ F 1(., σ) SΦ (j)

+ JΦ σ ◦ θ, σ ◦ θ2, . . . , ξ ◦ θ, ξ ◦ θ2, . . .

⎞
⎠ ◦ θn,

where we used [4.15]. Therefore, this again shows the existence of a stationary waiting
time

TaΦ =
j>i

FΦ ◦ F 1(., σ) SΦ (j)

+ JΦ σ ◦ θ, σ ◦ θ2, . . . , ξ ◦ θ, ξ ◦ θ2, . . . .

[4.19]

Note.– Under the stability condition [4.3], for any admissible discipline Φ there also
exists a stationary sojourn time TsΦ in the system, given by

TsΦ = TaΦ + σ. [4.20]

Example 4.2.1.– Let us write explicitly TaΦ for Φ = non-preemptive LIFO. Initially,
as the service time of the incoming customer C0 is placed directly on priority just
behind the customer already in service, the sum on the left-hand side of [4.19] equals
the remaining service time of the customer in service at the arrival of C0, given by the
last non null term of S̃LIFO, that is S̃LIFO(N(S̃LIFO)).

Then the term on the right-hand side equals the sum of the service times of the
customers already entered before C0 could reach the server. In other words,

JLIFO(. . .) =
i0−1

i=1

σ ◦ θi,

where, setting 0
j=1 = 0,

i0 = inf

⎧
⎨
⎩j ∈ N∗; S̃LIFO(N(S̃LIFO)) +

i−1

j=1

σ ◦ θj −
i

k=1

ξ ◦ θk ≤ 0

⎫
⎬
⎭

is the first index of a customer who entered after C0 and completed his service before
the next customer could enter.
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4.1.5. Optimality of SRPT

With the exhaustive representation introduced in the previous section in hand, we
now show how to compare at equilibrium, the different service disciplines. Hereafter,
“≺c” denotes the Schur-convex ordering, presented in Appendix A.3.

Theorem 4.8.– Consider a G/G/1 queue satisfying the stability condition [4.3]. LetΦ
be an admissible discipline. Then,

SΦ ≺c S
SRPT a.s.,

where SΦ and SSRPT are the only solutions of [4.16] for Φ and SRPT, respectively.

Proof. With the previous notations, we have a.s.

SΦ F 1(., σ)−→ SΦ
+

FΦ

−→ SΦ
++

F 2(., ξ)−→ SΦ ◦ θ.

Fix j∈N. If σ < SΦ(j−1), then σ ∈ SΦ
+(i); i j , whereas if σ SΦ(j−1),

we have SΦ
+(i) = SΦ(i− 1) for any i j − 1. We therefore have in all the cases,

+∞

i=j

SΦ
+(i) =

⎛
⎝σ +

+∞

i=j

SΦ(i)

⎞
⎠ ∧

⎛
⎝

+∞

i=j−1

SΦ(i)

⎞
⎠. [4.21]

Moreover, customers of service time initially equal to SΦ
++(i), i j receive during

a time interval of length ξ, a total service time at the most equal to
⎛
⎝

+∞

i=j

SΦ
++(i)

⎞
⎠ ∧ ξ.

Therefore,

+∞

i=j

SΦ ◦ θ (i) ≥

⎡
⎣

+∞

i=j

SΦ
++(i)− ξ

⎤
⎦

+

=

⎡
⎣

+∞

i=j

SΦ
+(i)− ξ

⎤
⎦

+

=

⎡
⎣min

⎧
⎨
⎩σ +

+∞

i=j

SΦ(i) ;
+∞

i=j−1

SΦ(i)

⎫
⎬
⎭− ξ

⎤
⎦

+

,

[4.22]

with [4.21].
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Now, observe that we have SSRPT
++ = SSRPT

+ by the very definition of SRPT, which
with [4.21] and [4.22] implies that SSRPT ◦ θ is ordered and that we have

+∞

i=j

SSRPT ◦ θ (i) =
+∞

i=j

SSRPT ◦ θ (i)

=

⎡
⎣

+∞

i=j

min

⎧
⎨
⎩σ +

+∞

i=j

SSRPT(i) ;
+∞

i=j−1

SSRPT(i)

⎫
⎬
⎭− ξ

⎤
⎦

+

.

[4.23]

Therefore, for any admissible Φ, on {SΦ ≺ SSRPT} we have for any j ∈ N,

+∞

i=j

SΦ(i) ≥
+∞

i=j

SSRPT(i).

This with [4.22] and [4.23] yields

+∞

i=j

SΦ ◦ θ (i) ≥
+∞

i=j

SSRPT ◦ θ (i).

Since this last equality holds for all j ∈ N, and since for j = 1,

+∞

i=1

SΦ ◦ θ (i) =
+∞

i=j

SSRPT ◦ θ (i) =W ◦ θ,

we have SΦ ◦ θ ≺ SSRPT ◦ θ. The event {SΦ ≺ SSRPT } is hence θ-contracting. In
addition, it is of positive probability, since it includes the event {W = 0}. The theorem
is proved.

The proof of the following corollary is left to the reader.

Corollary 4.9.– Let Φ be admissible. Then,

(a) XSRPT XΦ a.s., where XSRPT and XΦ denote the number of customers at
equilibrium in the system under SRPT and Φ, respectively;

(b) E TsSRPT E TsΦ , where TsSRPT and TsΦ denote the stationary sojourn
time, under SRPT and Φ, respectively (see [4.20]).
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4.1.6. GI/GI/1 queue: optimality of FIFO

Let us consider a GI/GI/1 queue where λ, µ, and ρ denote the usual parameters.
In addition to the common hypotheses, we assume that the sequences of inter-arrivals
and service times are identically distributed and are independent of each other. We
assume again that the stability condition [4.3] holds. We denote again for any n, Tan,
the waiting time ofCn before reaching the server,Tsn = Tan+σ◦θn the sojourn time
of Cn and Tn = Tn+Tsn, the departure time of Cn. Subsequently, we emphasize the
dependence on the service discipline whenever necessary by adding exponents FIFO

and Ψ to the various parameters. In particular, we know that a stationary waiting time
TaFIFO (respectively TaΨ) and a stationary sojourn time TsFIFO (respectively TsΨ)
exist under FIFO (respectively, Ψ).

Theorem 4.10.– For any convex function g:R → R and any admissible disciplineΨ
non-preemptive and independent on the service times,

E g TsFIFO ≤ E g TsΨ . [4.24]

Note.– The FIFO discipline is thus optimal for the sojourn time among all the
acceptable disciplines non-preemptive and independent of service times.

Proof. We couple two systems having the same input, the first one processed with
FIFO and the other by Ψ. We assume that C0 finds an empty system upon arrival. As
the system is stable, there exists P-a.s. a finite integer τ (common to both systems)
such that Cτ enters an empty system. Let us denote for any k 0, ψ(k) as the index
of the kth customer served byΨ, by considering that C0 is served in the “0th” position
(since it is the only one in the system upon arrival), that is ψ(0) = 0. Consider the two
following vectors of size τ

N = ((ξ0, σ0), . . . , (ξτ−1, στ−1)) ; Nψ = ξ0, σψ(0) , . . . , ξτ−1, σψ(τ−1) ,
[4.25]

which represent, respectively, during the first busy period, the inter-arrival and service
times of the customers, and the inter-arrival and service times when re-arranging the
service times following ψ. The interchange argument for i.i.d. sequences (see the
references at the end of the chapter) is the following intuitive result

N and Nψ have the same distribution. [4.26]

The underlying idea is, that as the service times are identically distributed and
are independent of everything else, we do not change the distribution of the various
parameters of the system by exchanging the service times of the customers. Everything
happens as if the server was deciding the service times of the customers by making an
independent draw of service time at each arrival in service.We stress the fact that [4.26]
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holds true provided that the service discipline is independent of the service times, as
one can easily understand.

We will add subsequently, when necessary, an argument (N) (respectively Nψ )
when the input during the first busy period is given by N (resp., Nψ). For any n ∈
[[0, τ − 1]], the moment where the customer Cn ends his service in FIFO, if the service
times follow Nψ , is given by

T FIFO
n Nψ =

n

i=0

σψ(i)

=
ψ−1(ψ(n))

i=0

σψ(i)

= T ψ
ψ(n)(N),

[4.27]

that is to say, the moment where the customer Cψ(n) ends his service in ψ if the input
is N . Therefore,

TsFIFO
n Nψ = T FIFO

n Nψ − Tn = T ψ
ψ(n)(N)− Tn. [4.28]

Until the end of the proof, denote in bold letters, the vectors of τ components
representing the different quantities for each customer of the first busy period, for
instance

T Ψ(N) = T Ψ
0 (N), . . . , T Ψ

τ−1(N) .

Notice, thatT Ψ
ψ is, by definition, the fully ordered version ofT Ψ. Hence, according

to the assertion (ii) of Lemma A.14,

T Ψ
ψ (N)− T ≺c T Ψ(N)− T = AΨ(N),

that is with [4.28],

TsFIFO Nψ ≺c TsΨ(N).

Hence, according to (i) of Lemma A.14, for any convex symmetric function
F :Rτ → R,

F TsFIFO Nψ ≤ F TsΨ(N) ,

and in particular for any convex function g:R → R,

τ−1

n=1

g TsFIFO
n Nψ ≤

τ−1

n=1

g TsΨ
n (N) .
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Finally, as the busy periods are independent and indistinguishable in distribution
according to the independence assumptions,

lim
N→∞

1
N

N

n=1

g TsFIFO
n Nψ ≤ lim

N→∞
1
N

N

n=1

g TsΨ
n (N) ,

and [4.24] follows from [4.26] and Birkhoff’s Theorem.

The proofs of the following two corollaries are left to the reader.

Corollary 4.11.– For any convex function g:R → R, the stationary waiting times
under FIFO and Ψ satisfy

E g TaFIFO ≤ E g TaΨ .

Corollary 4.12.– For any convex function g,

E g TsΨ ≤ E g TsLIFO and E TaΨ ≤ E g TaLIFO .

4.1.7. Queues with deadlines: optimality of EDF

We now assume that the customers have deadlines to enter in service. We denote
En the deadline of customer Cn andDn = En−Tn, the initial remaining time before
the deadline (termed lead time) of Cn. We assume that the sequence (Dn, n ∈ Z) is
stationary and we work on the canonical space (Ω,F , P, θ) of arrivals, services and
lead times. We denote then D the projection of (Dn, n ∈ Z) on its first coordinate,
interpreted as the lead time of customer C0.

We assume that (σn, n ∈ Z) is an i.i.d. sequence, independent of the arrival process
(and therefore of (ξn, n ∈ Z) and of (Dn, n ∈ Z)), and that the random variables ξ,
σ, and D are integrable. The deadlines of the customers are smooth, as opposed to
the case of hard deadlines (or impatience times) discussed in section 4.6. Indeed, a
customer who did not enter service before his deadline does not leave the system, but
continues to wait for his turn. The deadlines must then be seen here as indicators of
the timing requirement of the customers.

We study hereafter the capacity of the system to minimize the lateness of the
customers with respect to this requirement, by comparing the different service
disciplines. Let us assume that the stability condition [4.3] holds. We denote
again Tan the waiting time of Cn before reaching the server, and Bn =
Tn + Tan, the moment where Cn enters service. At any time t ≥ Tn,
the residual lead time (i.e. the remaining time before the deadline) of Cn at t is given
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by Rn(t) = En − t, and the lead time of Cn at the beginning of his service is hence
given by

Rn = Rn (Bn),

whereas the lateness of Cn with respect to its deadline can be written as

Ln = (Rn)
− = −Rn ∧ 0.

We define two disciplines sensitive to the deadlines:

– the Earliest Deadline First (EDF) discipline always gives priority to the customer
with the earliest deadline;

– the Latest Deadline First (LDF) discipline gives priority to the customer with the
latest deadline.

In addition, as the system is stable, there exists for any Φ a residual lead time at the
entry in service and a stationary lateness. These are given, respectively, by

RΦ = D − TaΦ and LΦ = RΦ −
.

We establish an analog of Theorem [4.10] in the case of a queue with deadlines.

Theorem 4.13.– For any convex function g:R → R and any admissible and non-
preemptive discipline Ψ, independent of the service times,

E g REDF ≤ E g RΨ . [4.29]

Proof. The notations already introduced in the proof of theorem [4.10] are not repeated
here. We note for every j ≥ 0, Cα(j) the jth customer in the order of increasing
deadlines (i.e. Dα(i) ≤ Dα(j) for i < j), and define the mapping

ζ = α ◦ ψ ◦ φ−1 ◦ α−1,

where for any k, φ(k) is the index of the kth customer served by EDF. The stopping
time τ , independent of the discipline under consideration, is defined as above, and we
define the following random vectors

N = ((ξ0, σ0, D0), . . . , (ξτ−1, στ−1, Dτ−1)) ,

N ζ = ξ0, σψ(0), D0 , . . . , ξτ−1, σψ(τ−1), Dτ−1 ,

in other words N ζ rearranges the service times according to ζ during the first busy
period. Then,N andN ζ have the same distribution as in [4.26]. For any n ∈ [[0, τ−1]],
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BEDF
α(n) N ζ =

F−1(n)−1

i=0

σζ◦α◦φ(i)

=
φ−1(n)−1

i=0

σα◦ψ◦φ−1◦α−1◦α◦φ(i)

=
φ−1(n)−1

i=0

σα◦ψ(i)

= Bψ
ζ◦α(n) (N) .

We have therefore

REDF
α(n) N ζ = Eα(n) N ζ −BEDF

α(n) N ζ

= Eα(n) N ζ −BΨ
ζ◦α(n)(N)

= Eα(n)(N)−BΨ
ζ◦α(n)(N).

[4.30]

But on the other hand, reminding the reader of the notions introduced in Appendix A.3,

Lemma 4.14.– ζ is the composition of ordering permutations of BΨ
α (N).

Proof of Lemma 4.14. The first integer n, if any, satisfying ζ(α(n)) = α(n) is such
that at the α(n)th end of service underΨ (which is also the α(n)th end of service under
EDF since ζ(k) = k for k ∈ [[0, α(n)−1]]), there are in the system two customersCi1
and Ci2 such that Di1 < Di2 and EDF chooses Ci1 whereas Ψ chooses Ci2 . In other
words, by denoting for = 1, 2, j = α−1(i ), we have BΨ

α(j2)
(N) < BΨ

α(j1)
(N)

while i2 = α(j2) > α(j1) = i1. But as EDF gives priority to Ci1 over Ci2 , we have
φ−1(j1) < φ−1(j2). So

BΨ
ζ◦α(j1)

(N) = BΨ
α◦ψ◦φ−1(j1)

(N) < BΨ
α◦ψ◦φ−1(j2)

(N) = BΨ
ζ◦α(j2)

(N).

Thus, the permutation ζ1 exchanging i and j fully orders BΨ
α (N). We conclude by

noticing that ζ reads ζ = ζp ◦ . . . ◦ ζ1, where ζi are such permutations.

According to Lemma A.14 and Lemma 4.14, we thus have

Eα(N)− BEDF
ζ◦α(N) ≺c Eα(N)− BΨ

α (N) = RΨ
α (N),

and therefore, according to [4.30],

REDF
α N ζ ≺c RΨ

α (N).

We conclude as in the proof of Theorem 4.10.
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Since g:x→ x− is a convex function, and by definition of EDF and LDF we have
particularly:

Corollary 4.15.– The average tardiness at equilibrium is minimized by EDF and
maximized by LDF, that is for any admissible discipline independent of the service
times,

E LEDF ≤ E LΨ ≤ E LLDF .

4.2. Processor sharing queue

We now introduce a system of a particular type, which has the capacity to serve
all the customers simultaneously (thus there is no waiting room). The price for such a
mechanism (whichmodels many physical systems) is that the instantaneous processing
speed for each customer is divided by the number of customers in the system. That is,
if there are p customers in the system at a given time, their respective residual service
time decrease by 1/p per unit of time.

We make the same probabilistic hypotheses, and keep the same notation as before.
Since the server is working, whatever happens, at speed unit when the system is not
empty, it is easy to be convinced that the workload sequence (Wn, n ∈ N) satisfies
Lindley’s equation [4.1]. So there exists a stationary workload to the condition [4.3].

To characterize more accurately the equilibrium state, we aim to construct the
stationary versions of remarkable characteristics, such as congestion of the system,
waiting time or sojourn time. However, the service profile at equilibrium, from which
we will deduce these quantities, has a different form for this system as for a classical
G/G/1 queue. We show here how to construct the latter, using the renovating events.

Once again, we recall the notation and definitions introduced in Appendix A.3.
We define for every n, SPS

n the service profile at T−
n , starting from an arbitrary profile

SPS
0 ∈ S , by ordering by convention, the non-zero terms of SPS

n in decreasing order.
Clearly, SPS

n ∈ S for any n ∈ N. We have the following result.

Lemma 4.16.– The sequence SPS
n , n ∈ N is recursive in S: denote for every u ∈ S

and x ∈ R+,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γi(u, x) = 1
i

⎛
⎝x−

+∞

j=i+1

u(j)

⎞
⎠ for any i ∈ N∗;

i0(u, x) = min{i ∈ N∗; u(i) ≤ γi(u, x)};
γ(u, x) = γ(i0(u, x)−1)∨1(u, x);

F PS(u, x) (k) = [u(k)− γ(u, x)]+ for any k ∈ N∗.
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For every n ∈ N, we have

SPS
n+1 = F PS(F 1 SPS

n , σ ◦ θn , ξ ◦ θn), [4.31]

where u denotes the reordered version of u in decreasing order and F 1(., σ) is defined
by [4.12].

Proof. We denote as above

SPS
n++ = F 1 SPS

n , σ ◦ θn ,

as the profile just after Tn, and the reordering of residual service times in decreasing
order.

Denote for any i ∈ N∗ such that SPS
n++(i) = 0, C̃i the customer with residual

service time SPS
n++(i) at Tn and T̃i , the virtual exit time of C̃i if no customer had

arrived after Tn. Of course, T̃i is not equal to Tn + SPS
n++(i) if Cn did not enter an

empty system.

Let us recall that N(SPS
n++) denotes the number of non-zero terms of SPS

n++. For

any i ∈ [[1, N(SPS
n++)]], C̃i and C̃i−1 both receive the amount of service SPS

n++(i) on

the interval of time [Tn, T̃i ]. Thus, the remaining service time of C̃i−1 at T̃i equals
SPS
n++(i−1)−SPS

n++(i), and this customer as well as those who follow him are served

at rate 1
i−1 on the interval T̃i , T̃i−1 . We therefore have the recurrence formula

T̃i−1 = T̃i + SPS
n++(i− 1)− SPS

n++(i) (i− 1), i ∈ [[2, N SPS
n++ ]],

from which we deduce that for any i ∈ [[1, N(SPS
n++)]],

T̃i = Tn + iSPS
n++(i) +

N(SPS
n++)

j=i+1

SPS
n++(j).

For any i, C̃i is served before Tn+1 if T̃i − Tn ≤ ξ ◦ θn, or in other words, if

SPS
n++(i) <

1
i

⎛
⎜⎝ξ ◦ θn −

N(SPS
n++)

j=i+1

SPS
n++(j)

⎞
⎟⎠.

In particular, i0 = i0 SPS
n++, ξ ◦ θn is the index of the last customer to leave the

system before Tn+1 (or 0 if there is no departure between Tn and Tn+1).
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Hence, the system is not empty just before Tn+1 if i0 < N , and in this case

C̃i, i ∈ [[1, i0 − 1]] is the family of customers present in the system at this time. For

such a customer C̃i, the remaining service time at Tn+1 equals his remaining service
time at T̃i0 minus the amount of work received between T̃i0 and Tn+1, i.e.

SPS
n++(i)− SPS

n++ (i0)−
Tn+1 − Ti0
i0 − 1

= SPS
n++(i)− γ SPS

n++, ξ ◦ θn .

Hence the result.

A stationary profile corresponds to the only solution SPS of the equation

SPS ◦ θ = GPS SPS , P − a.s., [4.32]

where GPS is the random mapping : S → S defined by

GPS(u) = F PS F 1 (u, σ), ξ .

Theorem 4.17.– Provided [4.3] holds, [4.32] admits a unique solution with values
in S .

Proof. The workload at a given time equals the sum of the terms of the service
profile at this time. Hence, as in the proof of Theorem 4.7, the same sequence
(An, n ∈ N) is a stationary sequence of renovating events of length 1 for every
sequence SPS, µ

n , n ∈ N starting from µ ∈ S such that i∈N∗ µ(i) ≤ W, where
W is the only solution of [4.2]. Here again, Theorem 2.11 implies the existence of
a solution to [4.32]. The uniqueness follows once again from the fact than any two
solutions coincide on the non-negligible event {W = 0}.

We can then argue as in section 4.1.4.

Corollary 4.18.– There exists a unique stationary congestion XPS under
condition [4.3]. In addition, for any initial condition of the familyZ (defined by [4.18]),
the sequence converges with strong backward coupling toward XPS.

Note.– As in section 4.1.4, we can also build on SPS to construct a stationary sojourn
time (or in other words, a service time) in the system. This is left to the reader.

4.3. Parallel queues

Let us now consider a system fed by a G/G/ input, but where S servers (where
S ≥ 1) process the customer requests without loss or vacations. There is a waiting
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line of unlimited capacity for each server. We allocate customers upon arrival to one of
the free servers, or if there is none, to the one having the smallest workload. Such an
assignment policy will be termed Join the Shortest Workload, or JSW for short. Once
assigned to a server, any customer remains as such until he leaves the system – hence
there is no exchange.

4.3.1. Preliminary result

We begin by introducing a technical result, useful in the following. We work on a
stationary ergodic quadruple (Ω, F , P, θ), on which two random variables α and β
are defined, integrable and with values in R+. We assume further that P (β > 0) > 0.
Let Fα, β be the random map: R+ → R+ defined for any x ∈ R by

Fα, β(x) = [x ∨ α− β]+ . [4.33]

The following result stems from Loynes theory, as for the G/G/1 queue. Its proof
is left as an exercise.

Theorem 4.19.– There exists a unique P-a.s. finite solution to the equation

Z ◦ θ = Fα, β (Z) , [4.34]

given by

Y α, β = sup
j∈N∗

α ◦ θ−j −
j

i=1

β ◦ θ−i
+

. [4.35]

In addition, for any random variable Z a.s. finite and positive, the SRS Y Z
n , n ∈ N

couples with Y α, β ◦ θn, n ∈ N , and there exists a.s. an infinity of indexes n such
that Y Z

n = 0 if, and only if

P Y α, β = 0 > 0. [4.36]

4.3.2. The service profile

We represent the systemwithS parallel queues upon the arrival of each customer by
a random variable with values in the space (R+)S (see A.3), representing the workload
of each server at that moment, arranged in the increasing order.

We start at time0with an initial stateV0 = (V0(1), . . . , V0(s)) ∈ (R+)S ,where for
every i, V0(i) represents the workload of the server having the ith smallest workload.
Then, we represent the system at the arrival of customer Cn, n ≥ 0 by the vector
Vn ∈ (R+)S , where Vn(i) is the ith smallest workload of a server just before the
arrival of Cn. We call once again Vn, the service profile at this time.
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The recurrence relation known as Kiefer and Wolfowitz’s equation is then easy to
check: for every n ∈ N,

Vn+1 = Vn + σ ◦ θn.e1 − ξ ◦ θn.1
+

. [4.37]

A service profile thus corresponds uniquely to a solution Y with values in (R+)S for
the equation

Y ◦ θ = [Y + σ.e1 − ξ.1]+ = G(Y ). [4.38]

The mapping G is clearly a.s. continuous, and it is easy to observe that it is a.s. ≺-
increasing: if u and v are such that u ≺ v in (R+)S , then for every i ∈ [[1, S]],
a.s.

G(u)(i) = [u(i) ∨ ((u(1) + σ) ∧ u(i+ 1))− ξ]+

≤ [v(i) ∨ ((v(1) + σ) ∧ v(i+ 1))− ξ]+

= G(v)(i),

[4.39]

setting u(S + 1) = v(S + 1) = ∞. Therefore, we can apply Theorem 2.4: there
exists a ≺-minimal solution Y∞, given by the almost sure limit of Loynes’s sequence
corresponding to (Vn, n ∈ N), denoted in this case (Yn, n ∈ N).

2 clients

3 clients

2 clients 4 clients

V (1) V (s)V (2) V (3)

Figure 4.1. The workload vector. The portions of the column V (i) represent the service times
of the customers who will be served by the server having a workload V (i)
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4.3.3. Stability

As for the G/G/1 queue, the a.s. finiteness of the solution Y∞ (in the sense that all
coordinates are finite a.s.) is not granted in general. We provide hereafter a stability
condition for this system, that is a sufficient condition such that Y∞ takes a.s. values
in (R+)S .

Theorem 4.20.– If

E [σ] < SE [ξ] , [4.40]

Y∞(i) <∞ a.s. for every i ∈ [[1, S]] and if

E [σ] > SE [ξ],

Y∞(i) = ∞ a.s. for every i ∈ [[1, S]].

Proof. Loynes’s sequence reads for all n ∈ N,

Yn+1 = [Yn ◦ θ−1 + σ ◦ θ−1.e1 − ξ ◦ θ−1.1]+,

which implies in particular according to [4.32] that

Yn+1(S) = (Yn ◦ θ−1(1) + σ ◦ θ−1) ∨ Yn ◦ θ−1(S) −ξ ◦ θ−1

+

. [4.41]

As for any i, (Yn(i), n ∈ N) tends increasingly a.s. to Y∞(i), taking the almost sure
limit in [4.41] yields

(Y∞(S)) ◦ θ = ((Y∞(1) + σ) ∨ Y∞(S))− ξ
+

[4.42]

= FY∞(1)+σ ,ξ (Y∞(S)),

recalling the notation [4.33]. According to Theorem 4.19, we thus have a.s.

Y∞(S) = sup
j∈N∗

(Y∞(1) + σ) ◦ θ−j −
j

i=1

ξ ◦ θ−i
+

.

Therefore, as E [ξ] ≥ 0, we have

{Y∞(S) = ∞} ⊂ {Y∞(1) = ∞}

up to a negligible event. Hence, as Y∞ is arranged in increasing order,

{Y∞(S) = ∞} ⊂ {Y∞(i) = ∞, i = 1 . . . , S}.
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Equality [4.42] implies that the event on the left-hand side is θ-contracting. So we are
in the following alternative

Y∞(i) <∞ a.s. for any i ∈ [[1, S]], [4.43]

or

Y∞(i) = ∞ a.s. for any i ∈ [[1, S]]. [4.44]

As each server works at unit speed if it has someone to serve, we have a.s. for every
n ∈ N that

S

i=1

Yn+1(i) ◦ θ =
S

i=2

[Yn(i)− ξ]+ + [Yn(1) + σ − ξ]+. [4.45]

Therefore, by denoting

Sn =
S

i=1

Yn(i),

the sum of the workloads of the servers at the arrival time of Cn, we have

Sn+1 ◦ θ − Sn =
S

i=2

[Yn(i)− ξ]+ − Yn(i) + [Yn(1) + σ − ξ]+ − Yn(1)

= −
S

i=1

(ξ ∧ Yn(i))− ((ξ − σ) ∧ Yn(1)). [4.46]

As (Yn, n ∈ N) is a.s. ≺-increasing, (Sn, n ∈ N) is a.s. increasing. Particularly, by
θ-invariance E [Sn+1 ◦ θ]− E [Sn] ≥ 0, which gives with [4.46] that

S

i=2

E [ξ ∧ Yn(i)] +E [(ξ − σ) ∧ Yn(1)] ≤ 0.

Taking the limit, by monotone convergence,

S

i=2

E [ξ ∧ Y∞(i)] +E [(ξ − σ) ∧ Y∞(1)] ≤ 0. [4.47]

So [4.44] implies that

E [σ] ≥ SE [ξ],

which shows the sufficiency of the condition.
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On the other hand, as x+ + y+ ≥ (x+ y)+ for all real numbers x and y, we have
according to [4.45] that for every n ∈ N, a.s.

Sn+1 ◦ θ ≥ [Sn + σ − sξ]+ .

Consider Loynes’s sequence M̃n, n ∈ N corresponding to the workload of a G/G/1

queue of generic inter-arrival ξ̃ = Sξ : we have M̃0 = 0 a.s. and for any n ∈ N,

M̃n+1 ◦ θ = M̃n + σ − Sξ
+

.

The mapping x → [x+ σ − Sξ]+ being a.s. increasing, as S0 = 0 = M̃0 a.s., an
immediate induction shows that Sn ≥ M̃n a.s. for every n. Let us denote M̃∞ as the
minimal solution of [4.4] for the r.v. ξ̃. According to Theorem 4.2, to the limit we obtain

that provided E [σ] > E ξ̃ = SE [ξ],

S∞ ≥ M̃∞ = ∞,

which concludes the proof.

Note.– It is easy to construct examples where Y∞ is not the only solution to [4.38]
with finite coordinates. It is possible to construct a maximal finite solution to this
equation by focusing on translated versions of Loynes’s sequence by a constant - see
the references at the end of the Chapter.

We now show that, similarly to the single server queue, the stable queue returns
almost surely infinitely often into a state of small congestion (see [4.4]).

Theorem 4.21.– Provided [4.40] holds, the minimal solution Y∞ of [4.38] satisfies

P (Y∞(1) = 0) > 0. [4.48]

In particular, there are P-a.s. an infinite number of times where the system has at less
than S customers.

Proof. According to [4.47], if we had Y∞(1) ≥ ξ − σ and Y∞(2) ≥ ξ a.s., we would
then have E [σ] ≥ sE [ξ], an absurdity. Therefore, on a non-negligible event, we have
Y∞(1) < ξ − σ or Y∞(2) < ξ, implying that Y∞(1) ◦ θ = 0.

We show in Section 4.4 that a server cannot be idle if some customer is in line in
another queue: that customer would have chosen the empty queue, which had upon his
arrival, the least workload. The event {Y∞(1) = 0} thus corresponds to the equilibrium
states at which at most S−1 servers are busy, that is, there are at most S−1 customers
in the system. We can then deduce from [4.48] that the system visits a similar state
almost surely infinitely often, as in Corollary [4.4].
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Note.– It can be verified through examples that the condition [4.40] does not imply
that

P (X∞(s) = 0) > 0,

and therefore that the system empties almost surely infinitely often: just set the pair of
real numbers (x, y), such that x > 0 and x < y ≤ 2x, and consider the deterministic
system where ξ = x, σ = y a.s. and S = 2. Then the minimal solution is the smallest
ordered pair v such that

v = (v(1) + y − x)+, (v(2)− x)+ ,

clearly given by

υ = (0, y − x).

4.3.4. Comparison of systems

As in section 4.1.2, the ≺-monotonicity of the SRS of service profiles allows us to
compare the equilibrium states of various systems under the JSW policy, according to
the stochastic orderings of the random variables under consideration.

Theorem 4.22.– Let two systems of S parallel queues driven respectively by the
random variables (σ, ξ) and (σ̄, ξ̄), possibly defined on two different quadruples.
If it holds that

σ̄, −ξ̄ ≤st (σ, −ξ),

then the respective minimal solutionsW and W̄ of [4.38] for (σ, ξ) and (σ̄, ξ̄) satisfy

W̄ ≤st W.

Proof. Apply Theorem 2.15 to ᾱ = (σ̄, ξ̄), α = (σ, ξ) and

f :
RS × R2 → RS

x, (y(1), y(2) → x+ y(1).e1 + y(2).1
+

.

We deduce easily from [4.39] that f is ≺ -non-decreasing in its two arguments.

Note.– As above, if one assumes that (σ ◦ θn, n ∈ N) (respectively σ̄ ◦ θ̄, n ∈ N )
is independent of (ξ ◦ θn, n ∈ N) (respectively ξ̄ ◦ θ̄n, n ∈ N ), then it is easily
checked that the above theoremapplies under either oneof the following twoconditions:

ξ
L= ξ̄ and σ̄ ≤st σ,

σ
L= σ̄ and ξ ≤st ξ̄.
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4.3.5. The optimal allocation

Here, we show in what sense the JSW policy is optimal. Let us consider a system
where, starting from an arbitrary service profile U at the arrival of C0, we assign
every incoming customer to the Ith server (where I is a fixed integer in [[1, S]]) in the
order of increasing workloads, rather than the first one. For this model, the sequence

Ṽ U
n , n ∈ N of service profiles satisfies the recurrence relation

Ṽ U
n+1 = Ṽ U

n + σ ◦ θn.eI − ξ ◦ θn.1
+

, a.s.. [4.49]

Let us denote as above, V U
n , n ∈ N the SRS of service profiles initially equal to

U , when applying the JSW policy. In the following theorem, “≺∗” denotes the partial
order on (R+)S introduced in Definition A.21.

Theorem 4.23.– For any random variable U with values in (R+)S , for any n ∈ N,
a.s.

V U
n ≺∗ Ṽ

U
n ; [4.50]

∀ ≥ I, V U
n ( ) ≤ Ṽ U

n ( ). [4.51]

Proof. We proceed by induction. Relations [4.50] and [4.51] are clearly satisfied for
n = 0. Suppose that they hold at rank n. Setting again u(S + 1) = ∞ for any
u ∈ (R+)S , we then have a.s. for any ≥ I ,

V U
n+1( ) = V U

n ( ) ∨ V U
n (1) + σ ◦ θn ∧ V U

n ( + 1) − ξ ◦ θn +

≤ Ṽ U
n ( ) ∨ Ṽ U

n (I) + σ ◦ θn ∧ Ṽ U
n ( + 1) − ξ ◦ θn

+

= Ṽ U
n+1( ),

and [4.51] holds at rank n+ 1. Particularly, this implies that

S

i=k

V U
n+1(i) ≤

n

i=k

Ṽ U
n+1(i) for all k ≥ I.

Therefore, it is sufficient to show that

S

i=k

V U
n+1(i) ≤

n

i=k

Ṽ U
n+1(i) for all k ≤ I − 1 [4.52]
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to check [4.50] at rank n + 1. Let us therefore fix k ≤ I − 1 and form the following
sums

S

i=k

V U
n+1(i) =

S

i=k+1

V U
n (i)− ξ ◦ θn +

+ V U
n (1) + σ ◦ θn ∨ V U

n (k)− ξ ◦ θn +
;

[4.53]

S

i=k

Ṽ U
n+1(i) =

S

i=k;k=I

Ṽ U
n (i)− ξ ◦ θn

+

+ Ṽ U
n (I) + σ ◦ θn − ξ ◦ θn

+

.

[4.54]

If V U
n (k) ≥ V U

n (1) + σ ◦ θn, then [4.53] equals

S

i=k

V U
n (i)− ξ ◦ θn + ≤

S

i=k

Ṽ U
n (i)− ξ ◦ θn

+

≤
S

i=k

Ṽ U
n+1(i) a.s.,

where we used (i) of Lemma A.15 in the first inequality. It remains only to consider
the case where V U

n (k) ≤ V U
n (1) + σ ◦ θn. Then [4.53] equals

V U
n (1) + σ ◦ θn − ξ ◦ θn +

+
S

i=k+1

V U
n (i)− ξ ◦ θn +

. [4.55]

The vector V U
n (1), V U

n (k + 1), . . . , V U
n (S) is fully ordered and a.s.

(ξ − σ, ξ, . . . , ξ) ◦ θn =

⎛
⎝ξ, . . . , ξ

I−1

, ξ − σ

I

, ξ

I+1

, . . . , ξ

⎞
⎠ ◦ θn.

Hence, according to [A.9] and [A.6],

V U
n (1), V U

n (k + 1), . . . , V U
n (S) − (ξ − σ, ξ, . . . , ξ) ◦ θn

≺c V U
n (1), V U

n (k + 1), . . . , V U
n (S)

−

⎛
⎝ξ, . . . , ξ

I−1

, ξ − σ

I

, ξ

I+1

, . . . , ξ

⎞
⎠ ◦ θn,

where≺c denotes the Schur-convex ordering. As, for any p, the functionu→ p
i=1 u

+

is symmetric and convex from (R+)p in R, according to [A.7] the sum [4.55]
satisfies a.s.
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V U
n (1) + σ ◦ θn − ξ ◦ θn +

+
S

i=k+1

V U
n (i)− ξ ◦ θn +

≤ V U
n (1)− ξ ◦ θn +

+
S

i=k+1;i=I

V U
n (i)− ξ ◦ θn +

+ V U
n (I) + σ ◦ θn − ξ ◦ θn +

≤
S

i=k;i=I

V U
n (i)− ξ ◦ θn +

+ V U
n (I) + σ ◦ θn − ξ ◦ θn +

.

[4.56]

Moreover, as V U
n (I) ≤ Ṽ U

n (I) from [4.50], the assertions (ii) and (i) of Lemma A.15
show that [4.51] implies that a.s.

V U
n + σ ◦ θn.eI − ξ ◦ θn.1

+

≺∗ Ṽ U
n + σ ◦ θn.eI − ξ ◦ θn.1

+

.

Particularly,

S

i=k;i=I

V U
n (i)− ξ ◦ θn +

+ V U
n (I) + σ ◦ θn − ξ ◦ θn +

≤
S

i=k;i=I

Ṽ U
n (i)− ξ ◦ θn

+

+ Ṽ U
n (I) + σ ◦ θn − ξ ◦ θn

+

[4.57]

andwe deduce [4.52] from [4.53, 4.55, 4.56], and [4.57]. Relation [4.50] is thus verified
at rank n+ 1.

In particular, the above result shows that, starting from the same initial service
profile and subject to the same traffic, the JSW policy optimizes the total workload
with respect to any other fixed allocation to another server, since for every I ∈ [1, S],
a.s.

S

i=1

V U
n (i) ≤

s

i=1

Ṽ U
n (i).

On the other hand, as Ṽ U
n is fully ordered, [4.51] implies that V U

n (1) ≤ Ṽ U
n (I) a.s.,

that is, the proposed waiting time to the nth customer is as well minimized.

We can extend these results to the steady state. According to [4.49], a stationary

service profile for the allocating to the Ith server is a (R+)S-valued solution to the
equation

Ṽ ◦ θ = Ṽ + σ.eI − ξ.1
+

= G̃(Ṽ ) a.s.. [4.58]
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For any u and v such that u ≺ v, for every i ≥ I , a.s.

G̃(u)(i) = [u(i) ∨ ((u(I) + σ) ∧ u(i+ 1))− ξ]+

≤ [v(i) ∨ ((v(I) + σ) ∧ v(i+ 1))− ξ]+

= G̃(v)(i),

whereas for all i < I , a.s.

G̃(u)(i) = [u(i)− ξ]+ ≤ [v(i)− ξ]+ = G̃(v)(i).

The mapping G̃ is therefore a.s. ≺ − increasing, and clearly continuous. Loynes’s
Theorem then yields the minimal solution of [4.58], given by Ỹ∞, that is the almost
sure coordinatewise limit of the corresponding Loynes sequence (Ỹn, n ∈ N) =
Ṽ 0
n ◦ θ−n, n ∈ N . According to Theorem 4.23, to the limit, the minimal solutions

satisfy a.s.

Y∞ ≺∗ Ỹ∞ and Y∞(1) ≤ Ỹ∞(I).

The JSW policy hence minimizes the total workload at equilibrium and the proposed
waiting time.

It is also immediate to observe that for everyn ∈ N, a.s.V 0
n ( ) = 0 for every < I ,

as no service is ever provided by the first I − 1 servers, always inactive. Therefore,
the restriction of Ỹ∞ to its S − (I − 1) last coordinates clearly reads as the minimal
solution of [4.38], that is the stationary profile for a JSW system of S ≡ S − (I − 1)
queues. We summarize these results in the following two corollaries.

Corollary 4.24.– For every I ∈ [[1, S]], the≺-minimal solution Ỹ∞ of [4.58] satisfies
Ỹ∞(s) <∞ a.s. provided that

E [σ] < (S − I + 1)E [ξ].

In addition, if Y∞ denotes the minimal solution of [4.38] we have

Y∞ ≺∗ Ỹ
I
∞ :

∀ ≥ I, Y∞( ) ≤ Y I
∞( ),

and in particular Y∞(1) ≤ Ỹ∞(I).

Corollary 4.25.– Let 1 ≤ S ≤ S. Denote Y S
∞ and Y S

∞ as the minimal solutions
of equation [4.38], respectively for S and S servers. Under the condition E [σ]
< S E [ξ], where both are finite a.s., they satisfy
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Y S
∞(S − i) ≤ Y S

∞ (S − i) a.s. for all i ∈ [[0, S − 1]].

The latter result states precisely the (intuitively clear) property, that in a JSWsystem,
an increase in the number of servers reduces the workload at equilibrium: if both
systems are stable, the workload of each server of the small system is larger than that
of the corresponding server (in the decreasing order of workloads) in the big system.
The last inequality means that that the waiting time is minimized by the bug system.

4.4. The queue with S servers

We now consider a system closely related to the previous one. There are S servers
processing the requests without loss nor interruptions, but the architecture of the
queueing system is different: if all S servers are busy, the customers are queued in
a single queue of infinite size, and are assigned to the first server available, on a
First come, First served basis. Notations and probabilistic hypotheses are the same as
above – we thus consider a stationary G/G /S/∞/FIFO queue.

In this section, we show that this system amounts to S parallel queues, under the
JSW policy. Particularly, the stability condition remains [4.40].

We again represent the queue by the sequence of service profiles, keeping track of
the service times of all the customers in the system at current time. Specifically, we
fix V̂0 ∈ S and we denote for every n ∈ N, V̂n the element of S which represents the
residual service time of all customers in the system at the arrival of nth customer:

(i) If the S servers are busy:
- the first S coordinates of V̂n are the residual service times of the S customers

in service, ranked in decreasing order;
- the following coordinates represent the service times requested by customers in

queue, arranged in the order of priorities. In other words, for every i ∈ [[S+1, N(V̂n)]],
V̂n(i) represents the service time of the ith customer in queue, according to the order
of arrivals. Particularly, the customer of service time V̂n (N(S + 1)) will be the next
to enter service, and so on.

(ii) If j ≤ S servers are busy, N(V̂n) = j and the coordinates V̂n(i), i ∈ [[1, j]]
represent the residual service time of the customers in service, arranged in decreasing
order.

It is then easy to see that the sequence (V̂n, n ∈ N) so defined is recursive
on the canonical space of arrivals and services, and to make the recursive function
explicit. In that purpose, we construct for every u ∈ S , the family of sets of indexes
A1(u), A2(u), . . . , AS(u) by induction, in the following manner:

– we start by setting A0
1(u) = A0

2(u) = · · · = A0
S(u) = ∅;
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V̂ (1) V̂ (2) V̂ (S)

Customers in service

V̂ (S + 1) V̂ (N(V̂ ))

Service time of the prioritary customer

Service time of the last customerarrived

Figure 4.2. The service profile of the G/G/S queue

– then, for every j ∈ [[1, N(u)− S]], we denote

ϕu(j) = Argmin
i∈[[1, S]]

⎧
⎪⎨
⎪⎩
u(i) +

k∈Aj−1
i (u)

u (S + k)

⎫
⎪⎬
⎪⎭

[4.59]

and we set
⎧
⎨
⎩
Aj
ϕu(j)(u) = Aj−1

ϕu(j)(u) ∪ {j}

Aj
i (u) = Aj−1

i (u), for every i = ϕu(j);

– we finally set

Ai(u) = AN(u)−S
i (u) for every i ∈ [[1, S]].

As usual, it is understood that k∈∅ . . . = 0 and we fix Ai(u) = ∅ if N(u) ≤ S.
We have the following result.

Theorem 4.26.– Starting from V̂0 ∈ S , we have for every n ∈ N,

V̂n+1 = Ĝ3 ◦ Ĝ2 (., ξ ◦ θn) ◦ Ĝ1 (., σ ◦ θn) (V̂n),

where the mappings Ĝ1, Ĝ2 and Ĝ3 are, respectively, defined by [4.60], [4.63]
and [4.64].

Proof. Assume that Cn finds a system having a service profile V̂n upon arrival. First,
the service time σ ◦ θn brought by Cn is placed at the place of lowest priority, in other
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words the service profile becomes at first

V̂n+ = V̂n + (σ ◦ θn) .eN(V̂n)+1 =: Ĝ
1(V̂n, σ ◦ θn). [4.60]

Then, the customers possibly in line are assigned to the various servers.

(i) If N(V̂n) < S, there are available servers at the arrival of Cn, and therefore
the service time σ ◦ θn is assigned to the first that becomes available. V̂n+ remains
unchanged since the service time of the arriving customer is by construction given by
V̂n+(N(V̂n+) + 1).

(ii) IfN V̂n+ ≥ S, there is no available server upon the arrival ofCn. It suffices to

understand the construction of the setsAi(V̂n) to write easily the recurrence function.
Let us call “server i”, i ∈ [[1, S]], the server whose customer in service has a residual
service equal to V̂n(i) upon the arrival of Cn (particularly, the server 1 has the largest
remaining workload and the serverS the smallest one at this instant). Let us also denote
C̃j , j ∈ [[1, N(V̂n+) − S]] the customer (if any) in line at the arrival of Cn, whose
service time is given by V̂n+ (i) (particularly, C̃1 is the customer on priority at this
time and C̃N(V̂n+)−S = C̃N(V̂n)+1−S is the customer Cn just arrived). Notice that

both these indexations are related to the situation at the arrival time of Cn, in other
words they depend on n.

First, notice that 1 ∈ AS(V̂n+) by definition. The first customer to possibly enter
service after the arrival ofCn is C̃1. This customer will join the first server that becomes
available, that is the server S. The second customer to enter service C̃2 will then join
the server S if

V̂n+(S) + V̂n+ (S + 1) ≤ V̂n+(S − 1),

or the server S − 1 if

V̂n+(S) + V̂n+ (S + 1) > V̂n+(S − 1).

Notice, that in the first case 2 ∈ AS(V̂n+) and in the second case, 2 ∈ AS−1(V̂n+),
by the very definition of the sets Aj(V̂n+). And so on, we observe that for every
j ∈ [[1, N(V̂n+) − S]], ϕV̂n+

(j) defined by [4.59] represents the index (upon the

arrival ofCn) of the server that actually serves the customer C̃j , as it is the first one for
which the remaining workload vanishes after the beginning of service of the customer
C̃j−1 (or after the arrival of Cn if j = 1). In other words, for any i ∈ [[1, S]] and any
j ∈ [[1, N(V̂n+)− S]],Aj

i (V̂n+) represents the set of indexes (in the indexation of the
C̃k’s) of those customers in the system after the arrival of Cn, arrived strictly before
C̃j+1, and who will enter service with server i. Therefore,Ai(V̂n+) denotes the set of
indexes of all customers present just after the arrival of Cn and who will be assigned
to server i.
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It is easy to see, as the discipline is FCFS, that the sets Aj
i (V̂n+) differ only from

Aj
i (V̂n) for the index j = N(V̂n+) − S of the customer just entered, which is added

to the set AN(V̂n)−S
ϕV̂n+

(N(V̂n+)−S)
.

Thus, between the arrivals of Cn and Cn+1, the server of index i at the arrival of
Cn provides a quantity of service equal to

ξ ◦ θn ∧

⎛
⎜⎝V̂n+(i) +

k∈Ai(V̂n+)
V̂n+ (S + k)

⎞
⎟⎠.

If ξ ◦ θn is less than the latter sum, the server i is still busy when Cn+1 enters the
system. The last customer to have come into service at server i before the arrival of
Cn+1 is then:

- the customer who was already in service at the arrival ofCn if V̂n+(i) > ξ ◦θn;
- otherwise, the customer C̃ψ(i), where

ψ(i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

⎧
⎨
⎩j ∈ Ai(V̂n+) | V̂n+(i) +

k∈Aj
i (V̂n+)

V̂n+ (S + k) > ξ ◦ θn
⎫
⎬
⎭ ,

or
maxAi(V̂n+) if the previous set is empty,

since, as easily checked, ψ(i) denotes the index of the last customer who had the time
to reach the server of index i (at the arrival of Cn) between the arrival times of Cn and
Cn+1.

In other words, for every j ∈ [[1, N(V̂n+)−S]], the customer C̃j comes into service
(with the server ϕV̂n+

(j)) before the arrival of Cn+1 if and only if j ≤ ψ(ϕV̂n+
(j));.

In both cases (i) and (ii), the sequence V̂n++ representing the service profile just
before the arrival of Cn+1 and before reordering, reads

V̂n++(i) =

⎡
⎢⎣V̂n+(i) +

k∈Aψ(i)
i (V̂n+)

V̂n+ (k)− ξ ◦ θn
⎤
⎥⎦

+

; i ∈ [[1, S]], [4.61]

and for every j ∈ [[1, N(V̂n+)− S]],

V̂n++ (S + j) =

⎧
⎨
⎩

0 if j ≤ ψ(ϕV̂n+
(j));

V̂n+(S + j) otherwise,
[4.62]

with the convention k∈∅ . . . = 0.
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As above, denote G̃2(., ξ ◦ θn) the application: (R+)N × R → (R+)N defined
by [4.61] and [4.62], and such that

V̂n++ = Ĝ2(V̂n+, ξ ◦ θn). [4.63]

Finally, we rearrange in decreasing order, the remaining service times of the
customer in service (which are the firstS coordinates of V̂n++). The possible following
non-zero coordinates represent the customers in line in the order of priorities, until the

index N V̂n++ . By denoting Ĝ3 as the mapping : (R+)N → S which arranges the

first S components of a sequence in decreasing order, and which deletes the following
null components, retaining their order (keeping only the residual services time of the
customers still in line at the arrival of Cn+1), we therefore have

V̂n+1 = Ĝ3 V̂n++ . [4.64]

Hence the result.

Define the mapping

Ψ:

⎧
⎪⎪⎨
⎪⎪⎩

S → (R+)S

u → Ψ(u) such that
Ψ(u)(i) = u(i) +

j∈Ai(u)

u(S + j) for all i ∈ [[1, S]].

In this case, for every n ∈ N and i ∈ [[1, S]], the amount Ψ(V̂n)(i) represents the
“virtual” workload of the server of index i just before the arrival of Cn, consisting in
the service times of all the customers to be served by this server. We have the following
result.

Lemma 4.27.– For any n ∈ N,

Ψ(V̂n+1) = Ψ(V̂n) + σ ◦ θn.e1 − (ξ ◦ θn) .1
+

. [4.65]

Proof. Upon the arrival of Cn,

(i) if some servers are free (i.e. N(V̂n) < S), Ψ(V̂n) is nothing but the arranged
version in increasing order of the restriction of V̂n to its first S components. Then,

V̂n+ = V̂n + σ ◦ θn.eN(V̂n)+1;

Ai(V̂n+1) = ∅, i ∈ [[1, S]],
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which implies that

V̂n+1 = V̂n + σ ◦ θn.eN(V̂n)+1 − (ξ ◦ θn) .1
+

.

Thus [4.65] is satisfied in this case.

(ii) If all servers are busy,Cn will be assigned to the server of indexϕV̂n+
(N(V̂n+)−

S). In FCFS, the assignments of the customers to the various servers do not depend
on future arrivals, hence any customer in line at the arrival of Cn remains at the same
server after the arrival of Cn, after the following arrivals, and so on until his service
(even if the server index may change through the successive arrivals). Hence, for any
server i to which Cn will not be assigned, the set of indexes of those customers to be
served by i just before the arrival of Cn, is the same as just after the arrival of Cn. In
other words,

Ψ(V̂n+)(i) = Ψ(V̂n)(i); i = ϕV̂n+
(N(V̂n+)− S).

Then, for any i the set of indexes of customers to be served by a given server just
before the arrival ofCn+1 equals that just after the arrival ofCn, fromwhichwe remove
the indexes of the customers entered in service between the two arrivals, during a time
interval of duration ξ ◦θn. On the other hand, the index of the server may possibly vary
from i to thereby following the order of the residual service times of the customers
in service upon the arrival of Cn+1. Therefore, we have

∀i = ϕV̂n+
(N(V̂n+)− S), ∃ ∈ [1, S]; Ψ(V̂n+1)( ) = [Ψ(V̂n)(i)− ξ ◦ θn]+.

[4.66]

In addition, Cn is actually assigned to the server having, upon his arrival, the least
virtual workload (made by the customers in line at the arrival of Cn), that is

Ψ(V̂n+)(ϕV̂n+
(N(V̂n+)− s)) = Ψ(V̂n)(1) + σ ◦ θn,

and therefore

∃k ∈ [[1, S]] s. t. Ψ(V̂n+1)(k) = Ψ(V̂n)(1) + σ ◦ θn − ξ ◦ θn
+

. [4.67]

Clearly, [4.66] and [4.67] also imply [4.65] in this case.

The SRSof the virtualworkloads of the servers thus satisfiesKiefer andWolfowitz’s
equation. This amounts to saying that this system is equivalent to that of S parallel
queues under the JSW policy : each queue corresponds at a given time to a given server,
and to the customers he is about to serve.
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We can now address the stability of the system. Denote Ĝ, the randommap: S → S
defined for every u ∈ S by

Ĝ(u) = Ĝ3 ◦ Ĝ2 (., ξ) ◦ Ĝ1 (., σ) u a.s.. [4.68]

A stationary service profile thus corresponds to a solution V̂ to the equation

V̂ ◦ θ = Ĝ(V̂ ) a.s.. [4.69]

Theorem 4.28.– Equation [4.69] admits a S-valued solution provided that [4.40]
holds. Otherwise, there is no S-valued solution.

Proof. Let (Vn, n ∈ N) be the sequence of the service profiles of the system of S
parallel queues and Y∞, be the minimal solution of [4.38]. Let U ∈ S be such that

Ψ(U) = Y∞ a.s.. [4.70]

We can then deduce from [4.37] and [4.65] that the SRS Ψ(V̂ U
n ), n ∈ N and

V Y∞
n , n ∈ N = (Y∞ ◦ θn, n ∈ N) coincide a.s..

Let the event

E = {Y∞(1) = 0}.

According to the previous remark, for any n ∈ N, on the event θ−nE we have

Ψ(V̂ U
n )(1) = 0,

and therefore As(V̂ U
n ) = ∅, which implies in turn that

V̂ U
n (S + 1) = V̂ U

n (S + 2) = . . . = 0,

since for any u ∈ S , S ∈ AS(u) when u(S + 1) > 0. Hence, on the event θ−nE ,

V̂ U
n+1 = V̂ U

n + σ ◦ θn.eN(V̂ U
n )+1 − ξ ◦ θn

+

= Ψ(V̂ U
n ) + σ ◦ θn.eS − ξ ◦ θn

+

first S components

, 0, 0, . . .

= Y∞ ◦ θn + σ ◦ θn.e1 − ξ ◦ θn
+

, 0, 0, . . . .

The sequence (θ−nE , n ∈ N) is hence a sequence of renovating events of length 1 for
SUn , n ∈ N , for any initial condition U satisfying [4.70]. As a conclusion,
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(i) If [4.40] is satisfied, in view of the fact that E is non-negligible according to
Theorem 4.21, the Corollary 2.12 implies the existence of a solution V̂ taking values

in S for the equation [4.69]. In addition, it is easy to show that Ψ(V̂ ) = Y∞ a.s..

(ii) If [4.40] is not verified, if [4.69] would admit a solution V̂ with values in S , a
(R+)S-valued solutionV to the equation [4.38], would clearly be given byV = Ψ(V̂ ).
This is an absurdity according to Theorem 4.20.

This completes the proof.

4.5. Infinite servers queue

Wenow consider an ideal systemwhere all the customers are served simultaneously
at full velocity. In other words, there are an infinite number of servers, so that every
customer is accepted for service upon arrival. We assume again that the input is of
the G/G/ type, and keep the same notation as before. We hence note G/G/∞, such a
system. It is easily seen that in this case, the workload sequence is not recursive, as
the amount of work processed by the server between two successive arrivals depends
on the number of customers in the system at any time between these two dates. We
give hereafter the stability condition of this system, and a representation at equilibrium
using the service profiles.

4.5.1. The service profile

Asabove,weworkon the spaceS (seeA.3).WedenoteS∞
n , the service profile atT−

n

starting from a profile S∞
0 originally. We arrange the profiles S∞

n , n ∈ N arbitrarily
in decreasing order. It is immediate to observe that the service profile sequence is
recurrent on S: for any n ∈ N,

S∞
n+1 = F 1 (S∞

n , σ ◦ θn)− ξ ◦ θn.1
+

,

where F 1(., σ ◦ θn) is defined by [4.12].

By working on the Palm space of arrivals and services, the existence of a stationary
service profile thus amounts to that of a S-valued solution S∞ to the equation

S∞ ◦ θ = G∞ (S∞), P − a.s., [4.71]

where G∞(.) = F 1(., σ) − ξ.1
+

, P-a.s.. The stability condition of the system is

given below.
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Theorem 4.29.– We assume that σ and ξ are integrable and that P (ξ > 0) > 0.
Provided that

P sup
j∈N∗

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ 0 > 0, [4.72]

equation [4.71] admits a unique S-valued solution S∞. In addition, by denoting Z,
the only solution of the equation

Z ◦ θ = [Z ∨ σ − ξ]+ , [4.73]

then for every µ ∈ S such that

µ(1) ≤ Z, [4.74]

there is a strong backward coupling between the sequences (S∞, µ
n , n ∈ N) and

(S∞ ◦ θn, n ∈ N).

Proof. Starting with any service profile at the origin, for every n ∈ N the largest
residual service time at T−

n+1 is the maximum between the largest term at T−
n and

the initial service time of Cn, minus the quantity of service provided to all customers
between Tn and Tn+1. In other words,

S∞
n+1(1) = [S∞

n (1) ∨ (σ ◦ θn)− ξ ◦ θn]+ .

Therefore, the existence of a largest residual service time amounts to that of a proper
solution to equation [4.73]. According to Theorem 4.19, this equation admits a unique
finite solution, given by

Z = sup
j∈N+

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i
+

. [4.75]

We then apply the arguments of the proof of Theorem 4.7. As u(1) = 0 implies u = 0
for any u ∈ S , denoting for all n, Bn = {Z ◦ θn = 0}, (Bn, n ∈ N) is a stationary
sequence of renovating events of length 1 for any sequence (S∞,µ

n , n ∈ N) initially
equal to µ, where µ is a S-valued random variable such that

µ(1) ≤ Z, a.s..

As [4.72] amounts to P (B0) > 0, Theorem 2.11 implies again the existence of a
solution to [4.71]. The uniqueness of the S-valued solution follows from the fact that
S(1) = Z for any solution S and therefore, that two solutions coincide and are S-
valued on the non-negligible event {Z = 0}. Finally, the property of strong backward
coupling follows from Borovkov’s Theorem, as in Theorem 4.7.
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As before, it follows naturally:

Corollary 4.30.– Provided [4.72] holds, there exists a unique stationary congestion
X∞, and any sequence of congestions starting from any µ satisfying [4.74], converges
with strong back coupling towards X∞.

Corollary 4.31.– Provided [4.72] holds, the G/G/∞ queue starting from any finite
profile empties a.s. infinitely often.

Proof. As the largest component S∞(1) of the stationary profile satisfies [4.73], it is
given explicitly by [4.75] and the assumption [4.72] implies that

P (S∞ = 0) = P (S∞(1) = 0) > 0.

We conclude with an argument similar to that of Corollary 4.4.

4.5.2. The GI/GI/∞ queue

Let us assume that the service and inter-arrival times form two independent and
identically distributed sequences, that are independent of one another (this is thus a
GI/GI/∞ system). In this particular case, the stability condition of the system can be
rewritten more explicitly.

Corollary 4.32.– In the case of a GI/GI/∞ queue, the conclusions of Theorem 4.29
and of Corollaries 4.30 and 4.31 remain valid, under the stability condition

P (σ ≤ ξ) > 0. [4.76]

Proof. It suffices to check that [4.72] is equivalent to [4.76] in this case. Of course,
[4.72] always implies [4.76] since

P (σ ≤ ξ) = P σ ◦ θ−1 − ξ ◦ θ−1 ≤ 0

and, a.s.,

sup
j∈N∗

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i ≥ σ ◦ θ−1 − ξ ◦ θ−1.

For the converse, we have a.s. for any j ∈ N∗,

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i

= σ ◦ θ−1 − ξ ◦ θ−1 +
j−1

i=1

σ ◦ θ−1 − σ ◦ θ−i − ξ ◦ θ−1 ◦ θ−i ,
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we the usual convention 0
i=1 ... = 0. Therefore, in virtue of the independence

assumptions,

P sup
j∈N∗

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ 0

≥ P {σ ◦ θ−1 − ξ ◦ θ−1 ≤ 0}

sup
j∈N∗

j−1

i=1

( σ ◦ θ−1 − σ ◦ θ−i − ξ ◦ θ−1 ◦ θ−i) ≤ 0

= P (σ − ξ ≤ 0)P sup
j∈N∗

j

i=1

( σ ◦ θ−1 − σ ◦ θ−i − ξ ◦ θ−1 ◦ θ−i) ≤ 0 .

The last probability on the right-hand side is strictly positive by applying [4.6] to the
random variables σ ◦ θ−1 − σ and ξ ◦ θ−1 and by observing that

E σ ◦ θ−1 − σ − ξ ◦ θ−1 = E [−ξ] < 0

according to Lemma 2.2. So [4.76] implies [4.72] in this case.

4.6. Queues with impatient customers

Let us consider a system with one server and of infinite capacity, in which the
customers enter according to a G/G input (we keep the same notation as in section 4.1).
It is further assumed that these customers are impatient: the customer Cn requires
to be served before his patience Dn elapses, where we assume that the sequence
((σn, ξn, Dn);n ∈ Z) is stationary. This patience time therefore sets a “deadline” at
time Tn + Dn, at which the customer leaves the system forever, if he has not been
satisfied. We note such a system as G/G/1/1+G-X where the third G characterizes the
sequence of the patience times, and where X denotes the service discipline.

We are primarily interested in two types of systems:

(i) The customer Cn requires us to enter the service booth before Tn +Dn. In such
a case, we will consider that the customer will remain in the system until the end of
his service, even if the latter occurs after Tn + Dn. Otherwise, the customer leaves
the system forever at Tn + Dn, without reaching the server. The time is then said to
be up to the beginning of service. We will then say that the queue is of type (b), as
“Beginning”, and we will note it as G/G/1/1+G(b)-X.

(ii) The customerCn requires us to have been fully served beforeTn+Dn. Otherwise,
he leaves the system forever at Tn +Dn, even if his service was initiated before that
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date. We then say that the patience time runs until the end of service, and that the queue
is of type (e) as “end”. We will denote it as G/G/1/1+G(e)-X.

Throughout this section, we work on the canonical space (Ω,F ,P, θ) of the
sequence ((σn, ξn, Dn); n ∈ Z) or in other words, on the Palm space of arrivals,
services, and patiences. The random variables σ, ξ, and D are then defined as in the
previous sections, and we assume that they are all integrable, and that P (ξ > 0) > 0.

4.6.1. The profile of service and patience times

In this section,wegive an exhaustive representationof the systembyanSRSkeeping
track of all residual service times and all residual patience times of the customers in
the system. To simplify the presentation, we consider here only a G/G/1/1 + G(b)
system with non-preemptive service discipline. It will appear, however, that similar
representations may be proposed for queues (e) and/or multiple server queues. This is
left to the reader.

As above, we denote Xn the number of customers in the system just before the
arrival of customer Cn (at T−

n ) and for any i < n such that Ci is in the system at T−
n ,

we note ϕn(i) ∈ [[1, Xn]], the place of Ci in the queue in the order of priority, the
first being occupied by the customer in service at T−

n . For each such customer Ci, we
denote :

– Rn(ϕn(i)) as the residual service time of Ci at T−
n (already defined in

section 4.1.3);

– R̃n(ϕn(i)) as the residual patience time of Ci at T−
n , i.e. the residual time at Tn

before the end of the patience of Ci. In other words,

R̃n (ϕn(i)) = Ti +Di − Tn. [4.77]

For any n ∈ N, we define νn ∈ S2 (see the formal definition of S2, and additional
notations in appendix A.3), the sequence representing the residual service and patience
times of the customers in the system at this time, arranged in the reverse order of
priorities. By convention, we set as 0, the residual patience time of the customer in
service (this customerwill not be removed anyway), and as (0, 0), the other components
of νn. In other words,

νn(i) =

⎧
⎪⎪⎨
⎪⎪⎩

Rn (Xn + 1− i) , R̃n (Xn + 1− i) for i < Xn;

Rn (Xn + 1− i) , 0 for i = Xn;
(0, 0) for i > Xn.

We call νn, the service and patience profile at T−
n .
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Let us make precise the dynamics of the profile process within the Palm space
of arrivals, services and patiences. Assume that the customer Cn finds upon arrival
a profile νn. First, the service time and the patience of Cn are inserted in the profile
arbitrarily in the first position, i.e.

νn+ = (σ ◦ θn, D ◦ θn), νn(1), νn(2), . . . =: H1 (νn, σ ◦ θn) . [4.78]

Then, as in the case of the service profiles of a G/G/1 queue, we apply to Sn+

the map H2,Φ :S2 → S2, to rearrange the components νn+ following the order of
priorities for the discipline Φ:

1) If Φ depends only on the arrivals and service times of the customers (i.e. Φ =
LIFOSRPT, etc. . . . ),H2,Φ is nothing but the “extension” of the applicationFΦ defined
in [4.13] to S2 in the sense that for any u ∈ S2,

HΦ(u)(i) = (Fφ(u1)(i), u2(j)),where j is such that Fφ(u1)(i) = u1(j),

that is the second coordinate “follows” the first one, re-arranged following FΦ.

2) The discipline Φ may also depend on the patience times of the customers:
- TheEarliest Deadline First discipline (EDF) gives a non-preemptive priority, at

the end of each service, to the customer in line whose residual patience is the shortest.
Therefore,

HEDF(u) = u(2), u(3), . . . , u(i), u(1), u(i+ 1), . . . if u2(i+ 1) ≤ u2(1) < u2(i),

in otherwords the sequence of second coordinates ofH2,EDF(u) is ordered in decreasing
order.

- The Latest Deadline First discipline (LDF) gives non-preemptive priority, at
the end of each service, to the customer in line having the largest residual patience.
Therefore,

HLDF(u) = u(2), u(3), . . . , u(i), u(1), u(i+ 1), . . . if u2(i+ 1) ≥ u2(1) > u2(i),

i.e. the second coordinates of H2,LDF(u) are arranged in increasing order.

We denote as above, for any discipline Φ,

νn++ = H2,Φ (νn+) . [4.79]

Then, the customers are served successively in the order of priorities for a duration
ξ ◦ θn. To describe this, we define for any x ∈ R+ and u ∈ S2, the sets of indexes
Bjx(u), j ∈ [[1, N(u)− 1]] in a similar way as the setsAj

i (u) of section 4.4, as follows

B0
x(u) = {0},
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and for all j ∈ N∗,

Bjx(u) =

⎧
⎪⎨
⎪⎩

Bj−1
x (u) ∪ {j} if

k∈Bj−1
x (u)

u1 (N(u)− k) < x ∧ u2 (N(u)− j) ;

Bj−1
x (u) otherwise.

Finally, we denote

Bx(u) = BN(u)−1
x (u) and ψx(u) = maxBx(u).

Let us call C̃j , j ∈ [[0, N(νn++)−1]] the customer in the system just after the arrival
ofCn, and whose service time and residual patience are given by νn++(N(νn++)−j),
so that C̃0 is the customer in service, C̃1 the following customer in the order of priority,
etc. and C̃N(νn++)−1 is the last customer in the order of priorities.

The set Bjξ◦θn(νn++) then contains all the indexes (up to j included) of those

customers whomake it to enter service before the arrival ofCn+1. Indeed, customer C̃j
can enter service before the arrival of Cn+1 if and only if the following two conditions
are met:

(i) the time needed to serve the customers on priority with respect to this customer
is less than ξ ◦ θn, that is

k∈Bj−1
ξ◦θn (νn++)

ν1
n++ (N (νn++)− k) < ξ ◦ θn;

(ii) his patience has not ended before the end of the services of the customers on
priority with respect to him, that is

k∈Bj−1
ξ◦θn (νn++)

ν1
n++ (N (νn++)− k) < ν2

n++ (N (νn++)− j) .

The integer ψξ◦θn(νn++) thus represents the largest index of a customer who came
into service before the arrival of Cn+1 (or the customer in service at the arrival of Cn
if this service has not been completed before the arrival of Cn+1).

Just before the arrival of Cn+1, the components of νn++ hence read as follows.

– First,

νn+++(N (νn++)− j) = (0, 0), j ∈ [[0, ψξ◦θn (νn++)− 1]], [4.80]

as all the customers of corresponding indexes have either finished their service, or their
patience has ended before the arrival of Cn+1.
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– The components corresponding to the customer in service at the arrival of Cn+1

are given by

ν1
n+++(N(νn++)− ψξ◦θn(νn++))

=

⎡
⎣
ψξ◦θn (νn++)

k=0

ν1
n++(N (νn++)− k)− ξ ◦ θn

⎤
⎦

+

;

[4.81]

ν2
n+++(N (νn++)− ψξ◦θn (νn++))

= ν2
n++(N (νn++)− ψξ◦θn (νn++))− ξ ◦ θn +

,
[4.82]

the last quantity being zerowhenever the customer’s patience ran out after the beginning
of his service.

– Finally, for any j ∈ [[ψξ◦θn(νn++), N((νn++)− 1]],

ν2
n+++(N (νn++)− j) = ν2

n++(N (νn++)− j)− ξ ◦ θn +; [4.83]

ν1
n+++(N (νn++)− j) = ν1

n++(N (νn++)− j) 1{ν2
n+++(N(νn++)−j)>0}, [4.84]

the possible customers having less priority than the one currently in service hence have
their service time remained unchanged, and their residual patience reduced by the time
elapsed between the two arrivals. They are eliminated (the corresponding coordinate
is set at (0, 0)) if the latter quantity is negative.

Equations [4.80–4.84] thus define a mapping H1:S2 × R+ → S2 such that

νn+++ = H3 (νn++, ξ ◦ θn) . [4.85]

Finally, νn+1 is obtained by removing the components equal to (0, 0) intercalated in
between non-zero components (which correspond to the customers served or eliminated
between the arrivals of Cn and Cn+1), keeping unchanged the order of the remaining
components. We then write

νn+1 = H4 (νn+++) . [4.86]

We have thus proven the following result.

Theorem 4.33.– The sequence (νn, n ∈ N) is recurrent for any admissible discipline
Φ: for any initial value ν0 ∈ S2, for any n ∈ N,

νn+1 = HΦ ◦ θn (νn) ,
where

HΦ = H4 ◦H3(., ξ) ◦H2,Φ ◦H1(., σ),

defined by [4.78, 4.79, 4.85] and [4.86].
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As usual, for a given admissible service discipline Φ, a stationary profile is a S2-
valued random variable νΦ satisfying the equation

νΦ ◦ θ = HΦ νΦ a.s.. [4.87]

We have the following.

Theorem 4.34.– For any admissible discipline Φ, if

P sup
j∈N∗

(σ +D) ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ 0 > 0, [4.88]

the G/G/1/1+G(b)-Φ queue admit a unique stationary profile νΦ.

Proof. Existence. According to Theorem 4.19 applied to α ≡ σ + D and β ≡ ξ,
provided that [4.88] holds there exists a unique positive random variable, solution of
the equation

Y ◦ θ = [Y ∨ (σ +D)− ξ]+ ,

given by

Y σ+D,ξ = sup
j∈N∗

(σ +D) ◦ θ−j −
j

i=1

ξ ◦ θ−i
+

.

Let us define for any u ∈ S2,

Z(u) = sup
i∈N∗

u1(i) + u2(i) , [4.89]

as the largest sum of the two coordinates of a component of u. Let χ be a S2-valued
random variable such that

Z(χ) ∈ Z := positive random variables Z s.t. Z ≤ Y σ+D,ξ a.s. . [4.90]

Let (νχn , n ∈ N) be the sequence of profiles initially equal to χ for a fixed service
discipline Φ. As we noticed during the computation of the recurrence function of
(νχn , n ∈ N), for any n ∈ N and i ∈ N∗, there exists a j ∈ N∗ such that

νχ,1n+1(i) + νχ,2n+1(i) ≤ νχ,1n+ (j) + νχ,2n+ (j)− ξ ◦ θn
+

, [4.91]

since between the arrivals of Cn and Cn+1, the residual patience of any customer
decreases from ξ ◦ θn and the residual service time is at the most constant (the index
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of the customer in the queue may change from i to j between νn+ and νn+1, based on
priorities). But according to [4.78],

νχ,1n+ (j) + νχ,2n+ (j); j ∈ N∗ = νχ,1n (j) + νχ,2n (j); j ∈ N∗ ∪ {σ ◦ θn +D ◦ θn},

which, taking the supremum, implies with [4.91] that

Z νχn+1 ≤ Z (νχ,n ) ∨ (σ ◦ θn +D ◦ θn)− ξ ◦ θn
+

a.s.. [4.92]

Therefore, for any n ∈ N such thatZ(νχn ) ≤ Y σ+D,ξ ◦θn, we obtain by monotonicity
with [4.92] that

Z νχn+1 ≤ Y σ+D,ξ ◦ θn ∨ (σ ◦ θn +D ◦ θn)− ξ ◦ θn
+

= Y σ+D,ξ ◦ θn+1,

by definition of Y σ+D,ξ . We have thus shown by induction with [4.90] that

Z (νχn ) ≤ Y σ+D,ξ ◦ θn a.s. for any n ∈ N. [4.93]

Now, set the event

A = Y σ+D,ξ = 0 . [4.94]

According to [4.93], on θ−nA we have Z(νχn ) = 0 and therefore νχn = 0, the null
sequence of S2. Therefore, (θ−nA, n ∈ N) is a sequence of renovating events of
length 1 for any initial condition χ ∈ Z as defined by [4.90]. In view of the assumption
[4.88], Corollary 2.12 implies the existence of a S2-valued solution for [4.87].

Uniqueness. Let ς be a solution of [4.87] for a fixed discipline Φ. According to [4.92],
we have a.s.

Z (ς ◦ θ) ≤ Z(ς) ∨ (σ +D)− ξ
+

. [4.95]

If we had Z(ς) > σ + D a.s. (which implies in particular that Z(ς) ◦ θ > 0 a.s.),
according to [4.95] we would have a.s. that

Z(ς) ◦ θ ≤ Z(ς) ∨ (σ +D)− ξ
+

= Z(ς) ∨ (σ +D)− ξ = Z(ς)− ξ,

and therefore E [Z(ς) ◦ θ − Z(ς)] ≤ −E [ξ] < 0, a contradiction to Lemma 2.2. We
have therefore

P (Z (ς) ≤ σ +D) > 0. [4.96]
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According to [4.95], on the event {Z(ς) ≤ Y σ+D,ξ},

Z(ς) ◦ θ ≤ Y σ+D,ξ ∨ (σ +D)− ξ
+

= Y σ+D,ξ ◦ θ.

Hence, {Z(ς) ≤ Y σ+D,ξ} is θ-contracting. On the other hand, on {Z(ς) ≤ σ +D},

Z(ς) ◦ θ ≤ [Z(ς) ∨ (σ +D)− ξ]+ = [σ +D − ξ]+

≤ Y σ+D,ξ ∨ (D + σ)− ξ
+
= Y σ+D,ξ ◦ θ,

and [4.96] implies that P Z(ς) ≤ Y σ+D,ξ > 0, so

Z(ς) ≤ Y σ+D,ξ a.s..

In other words, for any solution ς , Z(ς) belongs to the set Z , and therefore
(νςn, n ∈ N) = (ς ◦ θn, n ∈ N) admits (θ−nA, n ∈ N) as a sequence of renovating
events of length 1. According to Corollary 2.13, P (A) > 0 implies the uniqueness of
the solution νΦ.

As the queue is empty at the arrival of Cn if and only if νn = 0, and as this is true
if and only if Z(νn) = 0, we obtain as usual the following result by domination.

Corollary 4.35.– For any admissible disciplineΦ, the G/G/1/1+ G (b)-Φ queue a.s.
empties infinitely often if [4.88] holds.

As above, we can deduce the following result from Theorem 4.33.

Corollary 4.36.– There exists a unique stationary congestion XΦ and a unique
stationary workloadWΦ provided [4.88] holds.

4.6.2. GI/GI/1/1+GI queue

We can apply the same arguments as in section 4.5.2 to give the stability condition
of the system GI/GI/1/1 + GI(b):

Corollary 4.37.– For any admissible discipline Φ, the queue GI/GI/1/1 + GI (b)-Φ
is stable, and the conclusions of Theorem 4.33 and Corollaries 4.34 and 4.35 remain
valid, under the condition

P (σ +D ≤ ξ) > 0. [4.97]



Stationary Queues 135

4.6.3. Optimality of EDF

Consider the special case of a G/M/1/1+G(b) queue: the service times of the
customers (σn, n ∈ Z) are assumed to be independent and identically distributed with
an exponential distribution, and are independent of the inter-arrival times (ξn, n ∈ Z)
and of the patience times (Dn, n ∈ Z). We show in this case that the EDF discipline is
optimal, as it is the one that loses the least amount of customers, in the sense that we
are going to specify.

Let x ∈ R+ and u, v ∈ S2. We shall modify the two sequences u and v to obtain
two other ones û and v̂, as follows:

(i) We set their first non-zero first component arbitrarily equal to the first non-zero
component of v (we could have taken u either way), i.e.

û1 (N(u)) = v̂1 (N(v)) = v1 (N(v)) .

(ii) the second components of û are those of u, and second components of v̂ are those
of v.

(iii) Let

1 = min j ≥ 0; j ∈ Bjx(u) or j ∈ Bjx(v) ,

be the first index belonging toBx(u) or toBx(v).We then fix for any j < 1, û1(N(u)−
j) = u1(N(u)−j) and v̂1(N(v)−j) = v1(N(v)−j). Then, if 1 ∈ Bjx(u) = Bjx(û),
denoting

k1 = min j ≥ 0; j ∈ Bjx(v) = Bjx(v̂) ≥ 1

the first index of Bx(v), we set

v̂1 (N(v)− k1) = u1 (N(u)− 1) ,

i.e. we make the first coordinates corresponding to the first indexes ofBx(u) andBx(v)
artificially equal.

(iv) Then, we denote

2 = min j > 1; j ∈ Bjx(û) ∧min j > k1; j ∈ Bjx(v̂) ,

the second index belonging toBx(u) orBx(v), andwe start again the same construction.
If again theminimum is given by the left one,we leave the first intermediate components
unchanged, and we set

v̂1 (N(v)− k2) = u1 (N(u)− 2) = û1 (N(u)− 2) ,

where k2 is the second index of Bx(v̂), and so on until ψx(û) ∧ ψx(v̂).
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These notations are complicated, but they describe the simple idea that we can
transform step by step, starting from the last positive components, the two sequences u
and v to obtain two other sequences û and v̂, whose second components are unchanged
and whose first components corresponding to the indexes of Bx(û) and Bx(v̂), are
equal up to ψx(û) ∧ ψx(v̂).

We refer the reader to the definition of “≺” in the set S (Definition A.22). We have
the following result.

Lemma 4.38.– Let u and v be two non-null elements of S2 such that

u2 ≺ v2 in S. [4.98]

Then, for any x ∈ R+,

H3 (û, x)
2 ≺ H3 (v̂, x)

2
in S,

where H3 is defined by [4.85].

Proof. Let us observe that by the very definition of the space S2, in view of [4.98] we
necessarily have N(û) ≤ N(v̂).

Then, we show by induction that there exists, for any j ∈ [[0, ψx(û)]], a bijection

Fj :
Bjx(û) → Bjx(v̂)
i → Fj(i) ≤ i.

This property is obvious for j = 0, and if it holds for the integer j − 1 we have that
Card Bj−1

x (û) = Card Bj−1
x (v̂), thus according to the construction of û and v̂,

k∈Bj−1
x (û)

û1 (N(û)− k) =
k∈Bj−1

x (v̂)

v̂1 (N(v̂)− k) . [4.99]

In addition, j ∈ Bjx(û) means that the term on the left-hand side is less than

x ∧ û2 (N(û)− j) ≤ x ∧ v̂2 (N(û)− j) ,

in view of [4.98]. So is the case with the term on the right-hand side of [4.99], hence
there exists an integer ≤ j +N(û)−N(v̂) ≤ j such that ∈ Bx(v̂) ⊂ Bjx(v̂). The
induction is completed, by takingFj(i) = Fj−1(i) for all i ∈ Bj−1

x (û), andFj(j) = .

Therefore, ψx(û) ≤ ψx(v̂) and there exists an injection

F :
Bx(û) → Bx(v̂)
i → F (i) ≤ i.



Stationary Queues 137

The result is finally a consequence of the fact that ψx(û) ≤ ψx(v̂) and that for all
j > ψx(û), j ∈ Bx(v̂) implies that

v̂2 (N(v̂)− j) ∧ x >
k∈Bj−1

x (v̂)

v̂1 (N(v̂)− k)

≥
k∈Bx(û)

û1 (N(û)− k)

≥ û2 (N(û)− j) ∧ x,

which implies in turn that

v̂2 (N(v̂)− j) > û2 (N(û)− j) .

Therefore, any term ofH3(û, x) that is different from (0, 0) has a second component
smaller than the corresponding term of H3(v̂, x): these two terms are, respectively,
the term of same index of û and of v̂, left the same.

We can now state the main result of this section. Let Φ be an admissible discipline
that is independent of the service times of the customers. In the following, we add
exponents Φ and EDF to emphasize the dependence of the various parameters in the
service discipline. Assume that the stability condition [4.88] holds. Then there exist,
respectively underΦ and EDF, two stationary profiles νΦ and νEDF, and two stationary
congestions XΦ = N νΦ and XEDF = N νEDF . The optimality of EDF is stated
in the following terms.

Theorem 4.39.– EDF maximizes stochastically the stationary congestion for
G/M/1/1/G (b) queues: for any x ∈ R,

P XEDF ≥ x ≥ P XΦ ≥ x .

Proof. Let us place ourselves on the event

νΦ 2 ≺ νEDF 2
= ν̂Φ 2 ≺ ν̂EDF 2

.

Then, readily

H1 ν̂Φ, σ
2

≺ H1 ν̂EDF, σ
2

.

It is then easy to check by the definition of H2,., and the very definition of the EDF
discipline, that

H2,Φ H1 ν̂Φ, σ
2

≺ H2,EDF H1 ν̂EDF, σ
2

,
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as EDF arranges the terms of the sequences in the decreasing order of their second
coordinates. Therefore, Lemma 4.38 and the definition of the mappingH4 allow us to
conclude that

HΦ ν̂Φ
2

≺ HEDF ν̂EDF
2

.

The event ν̂Φ 2 ≺ ν̂EDF 2
is thus θ-contracting. As it includes the non-negligible

event A defined in [4.94], it is almost sure. In particular, the respective stationary
congestion N ν̂Φ and N ν̂EDF satisfy

N ν̂Φ ≤ N ν̂EDF a.s.. [4.100]

For both Φ and EDF, the term ν2 (N(ν)) reads as the residual service time of
a customer in service. Thus, in view of Theorem 7.3, ν2 (N(ν)) is exponentially
distributed with the same parameter as that of the initial service times, say µ, and
independent of the service time already completed for the customer in service.
Consequently, in view of the independence assumption, the non-zero terms of ν2 form
nothing but a family F ofN(ν) random variables that are i.i.d. with distribution ε(µ).

Furthermore, for any n the number N(νn) of customers in the system upon the
arrival of Cn only depends on the arrival times and patience times of the customers,
on the service times of the already departed customers and on the service time already
completed for the customer in service at this time. Again, in view of the independence
assumption, this implies that all r.v.’s of the family F are independent of N(ν).

For a moment, write ν(F) to emphasize the dependence of ν on the family F .
Then, we have that

ν̂(F) = ν(F̂),

where the family F̂ is obtained from F in the following way : if we write

F = (U(1), U(2), ..., U (N(ν))) ,

where the Ui’s are i.i.d. of distribution ε(µ), then

F̂ = Ψ(U(γ(1)), ..., U (γ (N(ν)))) ,

where :

– γ is a random permutation of 1, ..., N(νΦ) independent of F , corresponding
to an exchange of the service times of the customers waiting in line (in order to match
the upcoming service times of the customers in both disciplines);

– for all family G of N(νΦ) random variables, Ψ(G) is the family obtained by
substituting a random variable Y of distribution ε(µ) to the I-th component G(I) of
G, where Y and I are independent of the G(i)’s. Here, this component corresponds to
the residual service time of the customer in service, set to Y under both disciplines.
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It is then a simple consequence of the interchange argument [4.26] that under both
Φ and EDF,

ν(F̂) = ν(F) in distribution ,

and thus that ν̂(F) has the same distribution as ν(F).

Finally, this with [4.100] implies that for all x ∈ R,

P N νΦ ≥ x ≤ P N νEDF ≥ x .

This optimality property is crucial, in that it implies that the loss under EDF is less
than that of any other discipline independent of the service times.

4.6.4. FIFO queues

Let us consider the particular case where the server processes the requests in First
In, First Out. As we shall see, in this case the system can be described by the workload
sequence, as in a classical G/G/1 queue.

4.6.4.1. Single server (b) queue

Let us first assume that the system is G/G/1/1 + G (b)-FIFO: the patience times run
only until the beginning of the service, thus the customerCn is served until the end of his
service, without interruption, once he reached the server before his deadline Tn+Dn.
As in section 4.1, let us denote for any n,Wn as the amount of work (measured in unit
time) submitted to the server just before the arrival of Cn. In FIFO, this workload thus
represents the proposed waiting time to Cn before reaching the server.

We aim to establish the dynamics of the sequence (Wn, n ∈ N) starting from a
given initial state upon the arrival of C0. At the arrival of Cn, we are in the following
alternative:

(i) If the patience ofCn is greater than its proposed waiting time (i.e.D◦θn ≥Wn),
the customer Cn will reach the server, and thus brings a contribution of σ ◦ θn to the
workload.

(ii) Otherwise,D ◦ θn < Wn and Cn does not contribute to the workload as he will
never reach the server, even if he stays in line for a duration D ◦ θn.

Consequently, starting from an arbitrary workloadW0 just before the arrival ofC0,
we have for any n ∈ N,

Wn+1 = Wn + (σ ◦ θn) 1{[0, D◦θn]}(Wn)− ξ ◦ θn +
. [4.101]
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The sequence (Wn, n ∈ N) is hence an SRS driven by the non-monotonic random
map

ϕ:x→ x+ σ 1{[0, D]}(x)− ξ
+

a.s.,

and a stationary workloadW FIFO solves the equation

W FIFO ◦ θ = ϕ W FIFO a.s.. [4.102]

Theorem 4.40.– Under condition [4.88], [4.102] admits a unique finite solution
W FIFO, satisfying

Y σ∧D, ξ ≤W FIFO ≤ Y σ+D, ξ, a.s., [4.103]

whereY σ+D, ξ andY σ∧D, ξ aredefinedas in [4.35].Moreover, for any randomvariable
Z such that Z ≤ Y σ+D, ξ a.s., there is strong backwards coupling for WZ

n , n ∈ N
and W FIFO ◦ θn, n ∈ N .

Proof. It suffices to notice that, under FIFO, the system workload can be obtained
readily from the service and patience profile. For doing so, define for all u ∈ S2,

B0(u) = {0},

for all j ∈ N∗,

Bj(u) =

⎧
⎪⎨
⎪⎩

Bj−1(u) ∪ {j} if

k∈Bj−1∞ (u)

u1 (N(u)− k) < u2 (N(u)− j) ;

Bj−1(u) otherwise,

and finally

B(u) = BN(u)−1(u).

In other words, the set B(u) can be seen as the limit of Bx(u) as x goes to infinity.

In FIFO, the set of indexes of the customers whowill be served among those already
in the system is explicitly known at any time, and will never change except for adding
the indexes of new accepted customers. Indeed, no future customer will ever have a
higher priority than those already in the system.As a consequence of the construction of
the sets Bx(u), at equilibrium the latter set of indexes is precisely given by B νFIFO .
Therefore, the workload of the system is nothing but the sum of the service times
requested by the latter customers, or in other words the sum along B νFIFO of the first
coordinates of the terms of νFIFO, i.e.

W FIFO =
i∈B(νFIFO)

νFIFO 1
(i).
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Consequently, the existence anduniqueness ofW FIFO are straightforward consequences
of that of νFIFO, i.e. they follow from Theorem 4.34.

Now, first notice that if we had W FIFO > D a.s. (which implies in particular that
W FIFO ◦ θ > 0 a.s.), we would have

W FIFO ◦ θ =W FIFO − ξ a.s.,

a contradiction to Lemma 2.2. Hence, we have

P W FIFO ≤ D > 0. [4.104]

On another hand, recall the definition of the map ϕ of [4.102], and remark that for any
x ∈ R+, a.s.

ϕ(x) = x+ σ 1{(−∞, D]}(x) + x 1{(D,D+σ]}(x) + x 1{(D+σ,∞)}(x)− ξ
+

≤ (D + σ) 1{(−∞,D]}(x)+(D + σ) 1{(D,D+σ]}(x) + x 1{(D+σ,∞)}(x)− ξ
+

= [x ∨ (σ +D)− ξ]+

= Fσ+D, ξ(x), [4.105]

where F σ+D,ξ is defined as in [4.33]. As the latter mapping is a.s. increasing, for all
x ≤ y,

ϕ(x) ≤ FD+σ, ξ(y) a.s.. [4.106]

Consequently, on the event {W FIFO ≤ Y σ+D, ξ},
W FIFO ◦ θ = ϕ(W ) ≤ F σ+D, ξ Y σ+D, ξ = Y σ+D, ξ ◦ θ.

Hence, {W FIFO ≤ Y σ+D, ξ} is θ-contracting. But on {W FIFO ≤ D},

W FIFO ◦ θ = W FIFO + σ − ξ
+ ≤ [D + σ − ξ]+

≤ Y σ+D, ξ ∨ (D + σ)− ξ
+
= Y σ+D, ξ ◦ θ.

So [4.104] implies that P W FIFO ≤ Y σ+D, ξ > 0 and in turn, the upper bound of
[4.103]. As a consequence, the announced strong backwards coupling property follow
as usual, using Renovating events.

Regarding the lower bound, apply the same argument after remarking that for all
x ∈ R, a.s.

F σ∧D,ξ(x) = (σ ∧D) 1{(−∞,D∧σ]}(x) + x 1{(D∧σ,D]}(x) + x 1{(D,∞)}(x)− ξ
+

≤ (x+ σ) 1{(−∞,D∧σ]}(x) + 1{(D∧σ,D]}(x) + x 1{(D,∞)}(x)− ξ
+

= ϕ(x). [4.107]
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Note.– Equation [4.102] can be solved explicitly using Renovating events theory and
the upper-bound of [4.103], without using Theorem 4.34 (see the references at the end
of the chapter). This alternative proof is left as an exercise.

The loss queue

Let us now turn to a G/G/1/1 queue: the system has a single server, and no
waiting line. Consequently, the customers (entering according to a G/G input) are
either immediately served if the system is empty upon arrival, or immediately lost if
the server is busy when they arrive.

This classical system has been widely studied in the literature (see the references at
the end of the chapter), and is often called Loss queue. It is easy to see that it is in fact a
special case of G/G/1/1+G(b)-FIFO queue, where it is assumed that the patience times
are identically zero. Then, by keeping the same notation as in the previous Section, the
sequence of the workloads at the arrivals of the customers satisfies

Wn+1 = Wn + (σ ◦ θn) 1{0}(Wn)− ξ ◦ θn +
, n ∈ N, a.s..

On the Palm space of arrivals and services, a stationary workloadW 0 thus satisfies the
equation

W 0 ◦ θ = W 0 + σ 1{0}(W 0)− ξ
+
a.s.. [4.108]

The following result follows directly from Theorem 4.40:

Corollary 4.41.– If

P sup
j∈N∗

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ 0 > 0, [4.109]

[4.108] admits a unique finite solution W 0 such that W 0 ≤ Y σ, ξ , where Y σ, ξ is
defined as in [4.35].

The queue with load limitation

Another classical example of loss system can be addressed within this framework:
let us assume that the single server of the system accepts the arrival of the customers
only if the workload at this time does not exceed a given threshold, denoted as d > 0.
The server then serves the accepted customers, following any service discipline X
(preemptive or not) until the end of their service. Under the current hypotheses, and by
using the same notation, the workload sequence hence satisfies the dynamics

Wn+1 = Wn + (σ ◦ θn) 1{[0, d]}(Wn)− ξ ◦ θn +
, n ∈ N, a.s..
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The sequence (Wn, n ∈ N) for this system equals that of the system G/G/1/1+G(b)-
FIFO with the same input and for D = d a.s., even if the two systems are different in
general as they do not serve the same customers if X = FIFO. A stationary workload
for this model is a finite solution of

W ◦ θ = W + σ 1{[0, d]}(W )− ξ
+

a.s., [4.110]

and we thus have the following corollary.

Corollary 4.42.– If

P sup
j∈N∗

σ ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ −d > 0, [4.111]

[4.110] accepts a unique finite solutionW d such that

Y σ∧d, ξ ≤W d ≤ Y σ+d, ξ a.s..

Impatience until the end of service

Wenowconsider aG/G/1/1+G(e)-FIFOqueue. In this case, a customer can reach the
end of his patience, and get lost, while he is in service. Such a customer then contributes
to the workload of the server, by providing an amount of work corresponding only to
the time he has spent in service before the end of his patience. More specifically, the
workload In brought by the customer Cn upon arrival is given by

In =

⎧
⎪⎪⎨
⎪⎪⎩

σ ◦ θn, ifWn ≤ (D ◦ θn − σ ◦ θn)+;
σ ◦ θn − (Wn + σ ◦ θn −D ◦ θn) = D ◦ θn −Wn,

if (D ◦ θn − σ ◦ θn)+ < Wn ≤ D ◦ θn;
0, ifWn > D ◦ θn.

In the first case, the patience ofCn lasts beyond the end of his service. In the second
one, it ends while Cn is in service, and this customer remains in service for a period
of time of duration D ◦ θn −Wn. Finally, in the third case Cn does not have time to
reach the server before the end of his patience time. Hence, starting from a workload
W0 at the arrival of C0, for any n ∈ N,

Wn+1 = [Wn + In − ξn]
+
,

which can be rewritten in the following more compact form

Wn+1 = Wn + (σ ◦ θn − (Wn + σ ◦ θn −D ◦ θn)+)+ − ξ ◦ θn +
. [4.112]

Consequently, a stationaryworkload on thePalm space of arrivals, services and patience
times is a R+-valued random variable S that solves the equation

S ◦ θ = ψ(S) := S + (σ − (S + σ −D)+)+ − ξ
+
. [4.113]
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Theorem 4.43.– There exists an a.s. finite solution S to [4.113], such that

S ≤ Y D, σ a.s., [4.114]

where Y D, σ is defined as in [4.35]. Moreover, this solution is unique if

P sup
j∈N∗

D ◦ θ−j −
j

i=1

ξ ◦ θ−i ≤ 0 > 0. [4.115]

Proof. First, it is easy to verify that the applicationψ defined in [4.113] is a.s. increasing
and continuous. Hence we can apply Loynes’s Theorem, and obtain the minimal
solution S to [4.113], which is the almost sure limit of the corresponding Loynes’s
sequence.

According to Theorem 4.19, the unique finite solution Y D, ξ of the equation

Y ◦ θ = FD, ξ(Y )

is given by

Y D, ξ = sup
j∈N∗

D ◦ θ−j −
j

i=1

ξ ◦ θ−i
+

.

By noticing that for any x ∈ R+, a.s.

ψ(x) = ((x+ σ) ∧D) 1{[0, D]}(x) + x 1{(D,∞)}(x)− ξ
+

≤ (x ∨D) ∧ x+ σ 1{[0, D]}(x) − ξ
+

= ϕ(x) ∧ FD, ξ(x),

[4.116]

we clearly check that the event {S ≤ YD, ξ} is θ-contracting. On the other hand, we
have P (S ≤ D) > 0, since the contrary would imply that S ◦ θ = S − ξ a.s., a
contradiction to Lemma 2.2. But on the event {S ≤ D},

S ◦ θ = [((S + σ) ∧D)− ξ]+ ≤ [D ∨ YD, ξ − ξ]+ = YD, ξ ◦ θ.

This implies that a.s.,

S ≤ YD, ξ <∞.

Finally, for any solution S of [4.113], {S = S } is θ-invariant. In view of [4.114]
and of the minimality of S, this event includes {YD, ξ = 0}. It is therefore almost sure
when [4.115] holds true.

The proof of the following Lemma follows the same arguments as above, and is
left to the reader.
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Lemma 4.44.– Provided [4.115] holds,

1) for any random variableZ such thatZ ≤ Y D, ξ a.s., there is a strong backwards
coupling between the sequences WZ

n , n ∈ N and (S ◦ θn, n ∈ N);
2) moreover, if the condition [4.88] is satisfied, we have a.s.

S ≤W, [4.117]

whereW denotes the only solution of [4.102] and

S ≥ Y σ∧D,ξ, [4.118]

where Y σ∧D,ξ is defined as in [4.35].

The loss probability at equilibrium is a crucial feature of the system’s performance.
It can be intuitively defined on the Palm space of arrivals, services, and patience times
as the asymptotic proportion of lost customers in a stable system.

First, let us consider the G/G/1/G(b)-FIFO queue, and assume that the stability
condition [4.88] is verified. For any n ≥ 0, the customer Cn has a patience of D ◦ θn
and is offered a waiting time W ◦ θn, if C0 had found a workload W upon arrival .
Hence Cn is lost if and only ifW ◦ θn > D ◦ θn. Consequently, if we denote π(b) as
the loss probability for this system and

B = (x, y) ∈ (R+)2; x > y ,

we have a.s.

lim
n→∞

1
n

n

i=0

1{B} (W, D) ◦ θi = E 1{B}(W, D) = P (W > D) . [4.119]

According to [4.35] and [4.103], we therefore have that

P sup
j∈N∗

(σ ∧D) ◦ θ−j −
j

i=1

ξ ◦ θ−i > D

≤ π(b) ≤ P sup
j∈N∗

(σ +D) ◦ θ−j −
j

i=1

ξ ◦ θ−i > D .

[4.120]

Let us now get back to the system G/G/1/G(e)-FIFO. The customer Cn is lost (i.e.
his service cannot be completed) if the sojourn timeWn+σ◦θn offered to him exceeds
his patienceD ◦ θn. The stationary loss probability π(e) is given, for the same reason
as before, by

π(e) = P (S > D − σ) .
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According to [4.114] and [4.118], we therefore have that

P sup
j∈N∗

(σ ∧D) ◦ θ−j −
j

i=1

ξ ◦ θ−i > D − σ

≤ π(e) ≤ P sup
j∈N∗

D ◦ θ−j −
j

i=1

ξ ◦ θ−i > D − σ .

[4.121]

Finally, the stationary probability π̂(e) that a customer cannot even reach the server
is given by

π̂(e) = P (S > D) .

According to [4.117], we therefore have that

π̂(e) ≤ π(b).

4.7. Notes and comments

Loynes’s Theorem for the single server queuewas first introduced in [LOY 62]. The
approach we propose for the stability study, based on the study of stochastic recursive
sequences, concurs in many ways with that introduced and developed in [BAC 02].

The proof of the optimality of SRPT, as presented here, can be found in [FLI 81].
The optimality of FIFO has been treated under different aspects by several authors.
We present here a proof similar to that of [FOS 81]. The optimality of EDF for
smooth deadlines has been shown in a similar framework in [MOY 08a]. The exchange
argument is proven on p.267 of [BAC 02].

The representation of Processor Sharing queues and infinite servers queues by
profiles sequences are due to [MOY 08b].

The construction of the stationary state of the system with S parallel queues is due
to [NEV 84]. The optimal allocation results, as well as the comparison with the queue
with S servers, are original.

The construction of the stationary workload of the FIFO queue with impatient
customers follows the representation of [BAC84]. It is explicitly obtained in [MOY10],
for impatient times until the beginning and until the end of service. The optimality
of EDF for hard deadlines has been formulated in similar terms in [PAN 88.] The
description by service and patience profiles, and the proof of the optimality of EDF in
these settings, are original.
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Epitome

– In a single server queue, the stability condition is ρ < 1, where ρ is the traffic
load.

– In a queue with S servers, this condition becomes ρ < S.

– A system with S parallel queues, where each customer joins the shortest queue
in terms of workload, is equivalent to a FIFO queue with S servers. It has hence the
same stability condition.

– Packets of deterministic size minimize the average waiting time.

– The SRPT service discipline minimizes the waiting time among all admissible
disciplines.

– In the independent case, the FIFO discipline minimizes the waiting time and
sojourn time among all disciplines independent of the service times.

– The GI/GI/∞ system is stable provided P (σ ≤ ξ).
– The GI/GI/1 queue with impatient customers is stable if P (σ +D ≤ ξ), where

D is the patience time.

– The EDF discipline minimizes the lateness in the case of smooth deadlines, and
the system loss for hard deadlines.



Chapter 5

The M/GI/1 Queue

In the range of single server queues that can be studied with the stochastic tools
introduced in this book, after theM/M/1 queuewhichwill be discussed inChapter 8, the
following ones in term of generality are the GI/M/1 and M/GI/1 queues. In the latter,
the inter-arrival times (respectively, service times) are independent and identically
distributed, but not necessarily of exponential distribution.

Unfortunately, in both cases the process counting the number of customers in the
system is no longer Markov. In fact, at a given time we cannot repeat the argument of
example 7.1, as the exponential distribution is the only one that satisfies Theorems 6.6
and 7.3.

In order to circumvent this difficulty, the system is observed in discrete time, at
instants suitably chosen. In the case of the M/GI/1 queue, these are the departure times
of the customers. To keep this chapter as simple as possible, we only address the
embedded Markov chain, which gives the most important results.

5.1. The number of customers in the queue

Let us recall the main notation concerning this queue. The arrivals form a Poisson
process of intensityλ and the service times are independent and of the same distribution
Pσ , of mean 1/µ. We denote ρ = λ/µ the traffic load. For all n ≥ 1, let σn be the
service time of customer n andXn be the number of customers in the system just after
the departure of customer n. We have seen in the introduction that Xn satisfies the
recurrence equation

X1 = A1;
Xn+1 = (Xn − 1)+ +An+1, n ≥ 1,

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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where An is the number of customers arriving during the service of customer n.

Theorem 5.1.– (An, n ≥ 1) is a sequence of independent and identically distributed
random variables, of distribution given by

P(An = k) =
∞

0

exp(−λt) (λt)
k

k!
dPσ(t).

In particular,

E [An] = ρ = λ/µ.

Proof. Denote, as usual, Tn as the departure time of customern andX as the stochastic
process in continuous time counting the number of customers in the system.The process
X is adapted to the filtration

Gt = σ(N(u), u ≤ t) ∨ σ(σn, n ≥ 1).

As the Poisson process N is independent of the service times, it remains a Poisson
process of intensity λ with respect to G and thus the process (t → N(t) − λt) is a
G-martingale. As we can write

T1 = inf{t > 0, ∆X(t) = −1} and Tn+1 = inf{t > Tn, ∆X(t) = −1},

the random variables (Tn, n ≥ 1) are G-stopping times that are all constructed in the
same way

Tn+1 = Tn + T1 ◦ θTn , n ≥ 1.

According to the strong Markov property,

(T1, T2 − T1, · · · , Tn − Tn−1)

is a sequence of independent and identically distributed random variables.
Consequently, as

A1 = N (T1) ;
An+1 = N Tn+1 −N (Tn) , n ≥ 1,

the strong Markov property together with Theorem 6.7 entail that the An are
independent and identically distributed, we thus focus on A1.

By construction, A1 is the number of arrivals during the first service time, which
lasts by definition σ1 units of time. To calculate A1, we condition by the value of σ1;
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as N independent of σ1, we have

P(A1 = k) = E [E [1k(An) |σ1]]

= E [E [1k(N(σ1)) |σ1]]

= E [P(N(σ1) = t)]

= E exp(−λσ1)
(λσ1)k

k!

=
∞

0

exp(−λt) (λt)
k

k!
dPσ(t).

We then derive the mean expectation of An by its very definition. We have

E [An] =
∞

k=0

kP(An = k)

=
∞

0

exp(−λt)
∞

k=0

k
(λt)k

k!
dPσ(t)

= λ
∞

0

t dPσ(t)

= ρ,

as the last integral equals the mean expectation of a service time, i.e. 1/ µ.

We already know from Theorem 4.2 that the system is stable in the sense that there
exists a stationary workload and a stationary congestion if, and only if, the traffic load
ρ = λ/µ is strictly less than 1. As X is a Markov chain, we can specify the mode of
recurrence.

Theorem 5.2.– Let ak = P(An = k) and ρ = E[An]. Assume that

0 < a0 ≤ a0 + a1 < 1.

Then,

1) the chain X is transient if and only if ρ > 1;
2) X is recurrent if and only if ρ = 1;
3) X is positive recurrent if and only if ρ < 1.

Proof. It is obvious that X is irreducible, as it ranges in N by increments of 1 and
of −1, as the condition on a0 and a1 ensures that there can be no arrival, or more than
one arrival during a service time.
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Let us assume that ρ > 1. Let X0 = l > 0. As long as X has not decreased from
l units, i.e. as long as n is less than τ1

0 (the first hitting time of 0, see the notation of
Chapter 3), the dynamics of X is given by

Xn = l + (A1 − 1) + . . .+ (An − 1).

Let X̂n = n
j=1(Aj − 1) and τ̂0 = inf{n > 0, X̂n = 0} = τ1

l . As ρ > 1, from the
strong Law of Large Numbers,

X̂n

n
−→ ρ− 1, Pi a.s. for any i.

Therefore, for almost all sample ω, there exists N(ω) such that

n ≥ N(ω) =⇒ 0 < (ρ− 1)/2 ≤ X̂n

n
≤ 3(ρ− 1)/2. [5.1]

Consequently, the hitting time of 0 occurs before N(ω).

Let us assume that there exists a value l0 of l for which

0 < α = P(ω:N(ω) < l0) < 1. [5.2]

As X can decrease at most by one per step, if X0 = l0 and N(ω) < l0 then

X1(ω) > 0, . . . , XN(ω)(ω) > 0

and from [5.1], Xn(ω) > 0 for any n > N(ω). Consequently, starting from 0, as
the chain is irreducible there is a non-zero probability to reach l0. From this point,
with probability α the chain will never return to 0, hence 0 is transient, which by
irreducibility implies that the chain is transient.

It remains to show [5.2]. If for all i ≥ 0, N(ω) is a.s. less than i, this means that
N(ω) is a.s. null and therefore that Xn ≥ X0 for any value of n, which is contrary to
the irreducibility assumption. If for all i ≥ 0, N(ω) is a.s. greater than i, this means
that N(ω) is a.s. infinite, which contradicts the convergence of X̂n/n. Hence [5.2].

Let us finally assume that ρ ≤ 1. Take h as the identity function and F = {0} in
the Foster’s criteria. As Xn = f(X0, A1, . . . , An) is independent of An+1, for i > 0
we have

E [Xn+1 |Xn = i] = E [i+An+1 − 1 |Xn = i]

= i+E [An+1]− 1

= i+ ρ− 1,

so from Foster’s criteria, the chain is recurrent null if ρ = 1 and positive recurrent if
and only if ρ < 1.
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5.2. Pollacek-Khinchin formulas

The computation of the stationary probability in the case ρ < 1 is done by using
a subtle but widely used tool, the Laplace transform or in probabilistic terms, the
generating function. We already know that the stationary probability exists since from
the Foster’s criteria, the chain is positive recurrent. Let π be the stationary probability
and X∞ be a random variable of distribution π.

Theorem 5.3.– Let π be the invariant probability of a M/GI/1 queue of traffic load
ρ < 1. We have the following identity, known as Pollacek-Khinchin formula

k

zkπ(k) =
(z − 1)QA(z)
z −QA(z)

(1− ρ), [5.3]

where QA is the generating function of A1, that is QA(z) = E zA1 for any z.

Proof. Set

QX∞(z) = E zX∞ =
k

zkπ(k), for | z |≤ 1.

If ρ < 1, we know that Xn converges in distribution to X∞, therefore

lim
n→∞

E zXn = QX∞(z).

But

QXn(z) = E zXn+1

= E zAn+1z(Xn−1)+

= E zAn+1 E zXn−1 1{Xn>0} +P(Xn = 0)

and

E zXn−1 1{Xn>0} =
1
z

E zXn − E zXn 1{Xn=0}

=
1
z
E zXn − 1

z
P(Xn = 0).

To the limit,

QX∞(z) =
(z − 1)QA(z)
z −QA(z)

π(0). [5.4]



154 Networks Modeling and Analysis

In a neighborhood of 1,

QA(z) = 1 + (z − 1)E [A1] + o(z − 1)

= 1 + ρ(z − 1) + o(z − 1)

and

QX∞(z) = 1 +O(z − 1),

hence the term on the right-hand side of [5.4] must tend toward 1 and on the other
hand, be equivalent to (1− ρ)π(0). Therefore,

π(0) = 1− ρ.

Finally, we conclude that

QX∞(z) =
(z − 1)QA(z)
z −QA(z)

(1− ρ).

As the function QX∞(z) is expandable in series, we have

QX∞(z) = 1 +
∞

k=1

Q(k)
X∞(0)
k!

zk, [5.5]

so it is sufficient to differentiate k times QX∞ at point 0 to obtain π(k).

We aim to recover QA from the service time distribution and the intensity of
the arrival process. Let Lσ be the Laplace-Stieltjes transform of the service time
distribution, i.e. for z ≥ 0,

Lσ(z) =
∞

0

e−zt dPσ(t).

Lemma 5.4.– The generating function of the number of arrivals during a service time
in the M/GI/1 queue at equilibrium is given by

QA(z) = Lσ(λ− λz) for all z ∈ [0, 1].
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Proof. By definition, QA(z) = E zNσ , from which we deduce that

QA(z) = E E zNσ |σ

=
∞

0

E zNu |σ = u dPσ(u)

=
∞

0

E zNu dPσ(u)

=
∞

0

exp(−(1− z)λu) dPσ(u)

= Lσ(λ− λz).

Lemma 5.5 (Second Pollacek-Khinchin Formula).– If ρ < 1, the average number of
customers in steady state is given by

E [X∞] = ρ+
ρ2(1 + C2

b )
2(1− ρ)

, where C2
b =

Var[σ]
E [σ]2

, [P-K 2]

with σ a r.v. of distribution Pσ .

Proof. Recall that QA(1) = E [X∞]. In addition, by derivation in the integral we get

dLσ
d s

(s) = −
∞

0

xe−sx dPσ(x),

from where it follows that

dQA

dz
(1) = ρ.

Differentiating the latter leads to [P-K 2].

Note.– In the M/M/1 case, we have Cb = 1 and thus obtain the result known from
Chapter 8:

E [X∞] = ρ(1− ρ)−1.

Note (Optimality of determinism).– With [P-K 2], we verify the result known from
Chapter 4: ρ being fixed, the average number of customers in the system at equilibrium
is minimized for Var[σ] = 0, that is for deterministic service times.

According to Little’s Formula, we also minimize the average sojourn time at
equilibrium, and this is themain reason whywewill prefer, in packet networks, packets
of fixed size.
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Example (M/Γ/1 queue).– We denote so the queue where the service times follow a
Γ distribution, that is to say for all x,

dPσ(x) =
βα

Γ(α)
xα−1e−βx 1R+(x) dx,

where α and β are strictly positive. A quick computation shows that

E [σ] = α/β andVar[σ] = α/β2, thus C2
b = 1/α.

We see that when α becomes small and β is chosen in a way that the ratio α/β is
constant, the traffic load is constant but the average number of customers goes to
infinity. But as Var[σ] can also be written as E [σ] /β, a small α induces a small β,
hence a very high variance of service times. Given this result and the previous one on
M/D/1 queue, we see that is advantageous to limit the fluctuations of the service times.

The distributions for which C2
b is greater than 1 are called super-variants. In the

case of the Gamma distribution, this super-variance is due to the fact that the density
tends to 0 at infinity slower than the exponential one, and the probability of having
a long service time is much higher than for the M/M/1 queue. This phenomenon is
quite common and crucial in the applications to networking, for it has been observed
statistically that on the web, the files length follows a Pareto distribution, i.e. of the
form

dPσ(x) = x−α 1[K,+∞)(x) dx,

where K > 0 represents the minimum length of the files and α > 0 represents the
decay rate at infinity. The situation is even more dramatic in this case than for the
Gamma distribution, since if α < 2, the variance of σ is infinite.

Note.– Using Little’s Formula, we easily show that

E[Ta]
E[X]

=
ρ(1 + C2

b )
2(1− ρ)

,

where a linear dependence appears between the averagewaiting time and the coefficient
of variation for a fixed traffic load.

5.3. Sojourn time

To compute the stationary distribution of the sojourn time in the system, let us
build on the following observation: given that the service policy is FIFO, the customer
leaving the system leaves behind him all the customers who arrived during his stay in
the system. Therefore, for alln the number of customers at the departure time coincides
with the number of arrivals during the sojourn time, i.e.

N(Tsn) = Xn, [5.6]
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where Tsn is the sojourn time of customer n. Similarly, as the sojourn time depends
only on the customerswho arrived before customern,Tsn is independent of the number
of arrivals that occur during the stay of customer n. Knowing the distribution of X∞
at departure times by using the Pollaczek-Khinchin formula, we can deduce that of the
sojourn time. Notice, that we can decompose Tsn as the sum of the waiting time Tan
in the queue plus the service time σn.

Theorem 5.6.– If ρ < 1, then the random variables Tsn and Tan converge in
distribution to the random variables Ts and Ta, respectively. In addition, for any
s ≥ 0,

LTs(s) = E e−sTs = Lσ(s)
s(1− ρ)

s− λ+ λLσ(s)
;

LTa(s) = E e−sTa =
s(1− ρ)

s− λ+ λLσ(s)
.

Proof. Using relation [5.6], we have for all n and z,

QXn(z) = E E zN[Tn,Tn+Tsn[ |Tsn

=
∞

0

E zN[Tn,Tn+u[ |Tsn = u dPTsn(u)

=
∞

0

E zN[Tn,Tn+u[ dPTsn(u)

=
∞

0

E zNu dPTsn(u)

=
∞

0

exp(−(1− z)λu) dPTsn(u)

= LTsn(λ− λz).

AsXn converges in distribution toX∞,QXn converges pointwise toQX∞ , therefore
LTsn also admits a pointwise limit, which is equivalent to saying that Tsn converges
in distribution to Ts. As Tan = Tsn−σn, and as the distribution of σn is constant, we
deduce from this that Tan converges in distribution, to the r.v. Ta. In view of [5.3], we
deduce from this that

LTs(s) = Lσ(s)
s(1− ρ)

s− λ+ λLσ(s)
.

As Tan depends only on what happened before the arrival of customer n, Tan and σn
are independent, hence

E e−sTsn = E e−sTan E e−sσn ,

from which we deduce the desired formula for LTa.
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5.4. Tail distribution of the waiting time

If we aim to size a buffer, we need to know a priori the loss probability for each
possible value of the size. In other cases than that of the M/M/1 queue, these quantities
are not analytically tractable. However, in the general M/GI/1 case, we can access the
tail distribution of the virtual waiting time, that is to say P(Ta > x) for large x. From
there, we deduce a dimensioning of the system by choosing x such that the probability
of exceeding the threshold is less than the tolerated loss rate. By doing so, it is clearly
plausible that we oversize (sometimes significantly) the buffer.

Lemma 5.7.– For any s > 0,

E e−sTa = 1−
∞

0

P(Ta > x)se−sx dx.

Proof. From Fubini’s Theorem, we have

∞

0

P(Ta > x)se−sx dx =
∞

0

∞

x

dPTa(u) se−sx dx

=
∞

0

u

0

se−sx dx dPTa(u)

=
∞

0

(1− e−su) dPTa(u)

= 1− E e−sTa .

In other words, denoting Tac(x) = P(Ta > x), we have

LTac(s) =
1
s
(1− LTa(s)).

The asymptotic study ofLTac thus allows us to study the behavior of the tail distribution
of Ta.

Example (M/PH/1 queue).– Let us consider that a proportion p of the requests can
be processed locally in a time of exponential distribution of parameter µ1, and that the
other requests may need a remote processing, in an exponential time of parameter µ2.
We then say that the service times have a “phase”-type distribution, hence the name of
the M/PH/1 queue. We then have

1/µ = E [σ1] = p/µ1 + (1− p)/µ2 and Var[G1] = 2p/µ2
1 + 2(1− p)/µ2

2.



The M/GI/1 Queue 159

Similarly,

Lσ(s) = E e−sσ1 = p
µ1

µ1 + s
+ (1− p)

µ2

µ2 + s
.

After some algebra, we obtain

LTac∞(s) =
(ρµ2 + sρ− 1 + ρµ1)λ

µ1 µ2 + µ2 s− µ2 λµ1 ρ+ s2 − λ s+ µ1 s
.

The denominator vanishes in two real points

α+ = −1
2
(µ1 + µ2 − λ+

√
∆);

α− = −1
2
(µ1 + µ2 − λ−

√
∆),

where

∆ = (µ1 + µ2 − λ)2 − 4µ1µ2(1− ρ).

We therefore have the simple elements factorization

LTac∞(s) =
ρ

2
µ1 + µ2 − λ+

√
∆

s− α−
+
µ1 + µ2 − λ−

√
∆

s− α+
.

Note.– It is not absolutely clear that if µ1 + µ2 − λ is negative then α+ is negative.
In fact, by using the condition

ρ = λ(p/µ1 + (1− p)/µ2) < 1,

we show that µ1 + µ2 − λ is necessarily positive.

Using the Laplace inversion formulas we obtain that

P(Ta > x) =
ρ

2
(µ1 + µ2 − λ+

√
∆)eα−x + (µ1 + µ2 − λ−

√
∆)eα+x .

In fact, as x becomes large, only matters the term which has the slowest decrease, that
is the one with the exponential containing α−. Hence we have

P(Ta > x)
ρ

2
(µ1 + µ2 − λ+

√
∆)eα∞x.

This result has to be compared to that for the M/M/1 queue,

P(Ta > x) ∼ ρe−µ(1−ρ)x.
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Let us fix the unit of time so that λ = 1 and let us fix ρ,which amounts to fix the average
service time 1/µ. In this case, to ensure a probability of exceeding the thresholdx below
, we have to take

x ≥ − 1
µ− 1

ln(µ );

whereas in the case of the M/PH/1 queue,

x ≥ 1
α−

ln µ .
2

µ1 + µ2 − 1 +
√
∆

.

Fixing ρ amounts to linking the three parameters µ1, µ2 and p but there are still
two degrees of freedom which are chosen arbitrarily as µ1 and µ2. We see that the
dimensioning of theM/PH/1 queue is determined not only by ρ, but also by the product
and the sum of µ1 and µ2. In other words, the knowledge of the traffic load alone is not
sufficient to size the buffer and to guarantee a given loss. The situation is extremely
different from that of the M/M/1 queue, for which the knowledge of ρ alone is enough
to calculate the threshold.

5.5. Busy periods

Always assuming that the queue is stable (ρ < 1), a busy cycle of the queue consists
of an idle period I which ends with the arrival of a customer, followed by a busy period
U that ends when the last customer departs, leaving behind an empty system.

Given the memoryless property of the exponential distribution, I follows the same
distribution as that of an inter-arrival time, that is

P (I ≤ t) = 1− e−λt.

To analyze the busy period U , we will take time t = 0 as time origin, which is the
moment of arrival of thefirst customer in an empty system, or equivalently, the departure
of a customer leaving behind a single customer in the system. We denote in the sequel,
(X(t), t ≥ 0) the process in continuous time counting the number of customers in the
system at any time.

Definition 5.1.– An elementary busy period is the random variable U defined as
follows.

U =
inf {t > 0, Xt = 0 | X0 = 1} if ρ < 1;
∞ if ρ ≥ 1.

It is possible to generalize the definition of the busy period, if the initial time
coincides with the departure of a customer leaving behind n other customers.
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Definition 5.2.– Abusy period of initial conditionn is the randomvariableUn defined
as follows.

Un =
inf{t > 0, Yt = 0 | Y0 = n} if ρ < 1
∞ if ρ ≥ 1.

Notice that U1 ≡ U .

Theorem 5.8.– The probability distribution of Un is the convolution product of order
n of the distribution of U .

Proof. The duration of the busy period is insensitive to the service policy, provided
that it is conservative. The server serves all the customers entering the system, so it
reads as the sum of the service times of all the customers arrived in the system during
this duration.

To compute Un, we thus factorize it as follows. The n customers present at the
beginning of time will be called the fathers:

1) serve the lead customer (the first father);

2) serve all the customers who arrived during the service of the father (the sons);

3) serve all the customers who arrived during the service of the son (the grand
sons);

4) repeat the previous steps until there are no more descendants to serve;

5) repeat steps 1,2,3 and 4 above for the second father, then the third father, . . . ,
until the nth father.

On the basis of the i.i.d. nature of the service times, and the memoryless property
of the Poisson process, the duration of the time periods subsuming steps 1 to 4 for all
fathers form a n sample of the distribution of U . So the distribution of the sum is the
convolution of order n of that of U .

Note.– We have chosen a suitable way of ordering the service times in order to easily
expedite the proof of the last result. Compare this ordering to the concrete FIFO case:
the server takes care in the order of arrivals, of the n present customers at time 0, then
the ’sons’ of the first customer, i.e. the customers entered during the service of the first
father, in the order of arrivals, then the sons of the second father, and so on... so the
genealogical tree is read from left to right, then from top to bottom.

Theorem 5.9.– For any s ≥ 0,

LU (s) = E e−sU = Lσ [s+ λ− λLU (s)] . [5.7]

Proof. We factorize U in a similar manner that Un, that is:

1) serve the father, during this service, V sons have arrived;
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2) serve the first son followed by all his descendants;

3) repeat the previous step for the V − 1 sons remaining.

Therefore,

U = σ1 +
V

i=1

Φi,

where each Φi represents the service duration of the son i and its descendants, and has
the samedistribution asU from thememoryless property of the exponential distribution.
To compute the distribution of U , we first calculate the conditional distribution on V
and σ1, then we successively un-condition on V , then on σ1. For any x and k,

E[e−sU |σ1 = x, V = k] = E[e−s(x+ k
i=1 Φi)]

= e−sx
k

i=1

E[e−sΦi ]

= e−sx[LU (s)]k.

By un-conditioning on V ,

E[e−sU |σ1 = t] =
∞

k=0

E[e−sU |σ1 = t, V = k]P (V = k |σ1 = x)

= e−sx
∞

k=0

[LU (s)]k
(λx)k

k!
e−λx

= e−x[s+λ−λLU (s)].

Finally, by un-conditioning on σ1,

LU (s) =
∞

0

E[e−sU |σ1 = x] dPσ(x)

=
∞

0

e−x[s+λ−λLU (s)] dPσ(x).

Example (M/M/1 queue).– In this case, everything is easily calculable and we obtain
the following.

Theorem 5.10.– For the M/M/1 queue,

LU (s) =
1
2λ

(λ+ µ+ s)− (λ+ µ+ s)2 − 4λµ .
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By inverting LU (s) and by differentiating we obtain the density of the elementary busy
period:

g(t) =
d

d t
G(t) =

1√
ρt
e−(λ+µ)tI1 2t λµ ,

where Ik(t) is the modified Bessel function of the first kind of order k, defined by

Ik(t) =
∞

m=0

( t2 )
(k+2m)

(k +m)!m!
.

Proof. As

Lσ(s) =
µ

s+ µ
,

it follows that

LU (s) =
µ

s+ λ− λLU (s) + µ
.

Hence,

λ[LU (s)]2 − (λ+ µ+ s)LU (s) + µ = 0.

The latter equation has two solutions:

α(s) =
1
2λ

(λ+ µ+ s)− (λ+ µ+ s)2 − 4λµ ;

β(s) =
1
2λ

(λ+ µ+ s) + (λ+ µ+ s)2 − 4λµ ,

where s ∈ C, e(s) > 0 and λµ > 0.

On the other hand,LU (s) ∈ C and as the system is assumed stable, the distribution
of U is not degenerated, hence | LU (s) | ≤ 1. Therefore, only the roots of modulus
less than or equal to 1 are suitable. We shall now check whether the two roots meet
this condition.

Let us first notice that |α(s) | < |β(s) | since λµ e(s) > 0, for any s in the right
half-plane of the complex plane. When | LU (s) | = 1 (on the border of the unit disc),
we have

| (λ+ µ+ s)LU (s) | = | (λ+ µ+ s) | > λ+ µ ≥ |µ+ λLU (s)2 |.
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Hence we have two complex functions

f(z) = −(λ+ µ+ s)z;

h(z) = µ+ λz2,

which are analytic inside and on the border of a closed domain of the complex plane
defined by its contour

C = {z ∈ C; | z | = 1} {s; e(s) > 0}

and such that | f(z) | > |h(z) | on the contour. Rouché’s Theorem allows us to say
that the largest (in modulus) of the two functions (that is to say f(z)) and the sum of
the two functions have the same number of zeros in the area defined by the contour C.
However, in this area f(z) has a single zero. Hence only one of the roots α(s), β(s)
is in the area bounded by C. It must be the smallest of the two, i.e. α(s), which is
appropriate. The result is shown.

Theoretically, it is possible to obtain numerically from the analytic expression of
g(.), the distribution of G(.). However, the operation is not simple in view of the
complexity of the form of the above series. It is also theoretically possible to compute
the distribution of Un by inverting the function (LU (s))n. In practice, it is very easy
to calculate the first moment of U , as

E [U ] =
∞

0

t dPσ(t) = − d

d s
LU (s) | {s=0},

or in other words

E [U ] =

⎧
⎨
⎩

1
µ− λ

if ρ < 1;

∞ if ρ ≥ 1.

Theorem 5.11.– If ρ > 1,

P (U <∞) =
1
ρ
< 1 and P (U = ∞) = 1− 1

ρ
> 0.

Proof. Observe that

lim
s→0

LU (s) = lim
s→0

∞

0

e−sx dPσ(x) = lim
x→∞

G(x).

But the latter tends to P (U <∞). If the queue is stable (ρ < 1), the state 0 is positive
recurrent: starting from 0, the chain comes back to it almost surely after a finite time,
with a finite average excursion time. Therefore,

ρ < 1 =⇒ G(∞) = P (U <∞) = 1.
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If ρ = 1, then 0 is null recurrent. The chain returns to zero almost surely, but the
average time between two visits is infinite. We still have G(∞) = 1. Finally if ρ > 1,
then 0 is transient, and there is a non-zero probability of never returning to 0 starting
from this state. Hence,

ρ > 1 =⇒ G(∞) = LU (0) =
1
2λ

[λ+ µ− (λ+ µ)2 − 4λµ] =
µ

λ
.

Hence the result.
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Epitome

– In a M/GI/1 queue, the process counting the number of customers in the system
is not Markov.We restrict ourselves to the embedded chain taken at the departure times
of the customers.

– We can calculate all the characteristics of this queue (waiting time, sojourn time,
length of the busy period, etc.) using their Laplace transforms.

– The waiting time depends not only on the traffic load. It also depends on the
variability of the service times. Unfortunately, the variance analysis of the service
times is not enough to characterize this variability.



Part 2

Continuous-time Modeling



Chapter 6

Poisson Process

The modeling of a physical system must comply with two constraints. On the one
hand, it must reflect the reality as accurately as possible, and on the other hand, it
must have a predictive role, in other words it must provide computational tools for
the analysis. Beyond the difficulty to qualitatively and quantitatively determine the
pertinent parameters of a physical system, the experience shows that the more one
wants an accurate model, the less it will be tractable in practice.

Within the framework of queuing systems, we must, in the first place, model the
process of arrivals of the requests. The Poisson process which we study in this Chapter,
is the most frequently used model, primarily because it is one of the rare models with
which we can make computations. This modeling is found to be highly pertinent for
the telephone calls to a commutator. Unfortunately, this is not the same for other types
of network, where the traffic is much more versatile. However, as we will see at the
end of this chapter, the Poisson process can be modified, so as to reflect this versatility
to a certain extent.

The definition of a point process and the associated notations are given in A.5.2.
Let us recall that an integrable point process is a strictly increasing sequence of positive
random variables (T1, T2, . . .) such that Tn → ∞ a.s.. By convention, we adjoin the
random variable T0 = 0 a.s. to this sequence. These random variables will represent
the arrival times of requests to the system. We can also describe the sequence by the
differences in time which elapses between the successive arrivals: ξn = Tn+1 − Tn
is the nth inter-arrival time. The sequence (ξn, n ∈ N) also characterizes the point
process by the relation Tn = i≤n−1 ξi. We will finally denote N(t), the number of
points (that is, of arrivals), up to time t.

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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T0 = 0 T1 T2 T3

t

N(t) = 2

ξ0 ξ1 ξ2

N(t)

Figure 6.1. Notations related to point processes

6.1. Definitions

The Poisson process admits multiple characterizations. As each one of them can
be considered as a definition, and the others as properties, we give to all the status of
definition and then show that they are equivalent.

Definition 6.1. – The point process N is a Poisson process of intensity λ if, and only
if, the random variables (ξn, n ∈ N) are independent and of the same exponential
distribution with parameter λ.

Definition 6.2. – The point process N is a Poisson process of intensity λ if, and only
if, the following two conditions are satisfied:

1) N(t) follows a Poisson distribution with parameter λt;

2) conditionally to {N(t) = n}, the family (T1, . . . , Tn) is uniformly distributed
over [0, t].

Definition 6.3. – The point process N is a Poisson process of intensity λ if, and only
if the following two conditions are satisfied:

1) for any 0 = t0 < t1 < · · · < tn, the random variables (N(ti + 1)−N(ti), 1 ≤
i ≤ n − 1) are independent;

2) for any t, s, the random variablesN(t+ s)−N(t) follow a Poisson distribution
of parameter λs, i.e.

P(N(t+ s) − N(t) = k) = exp(−λs)
(λs)k

k!
.

Definition 6.4. – The point process N is a Poisson process of intensity λ if, and only
if, for any function f :R+ → R+ (or for any function f with compact support on
R+), the following identity holds.

E

⎡
⎣exp

⎛
⎝−

n≥1

f(Tn)

⎞
⎠
⎤
⎦ = exp −

∞

0
(1 − e−f(s))λ d s .
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Definition 6.5. – The point process N is a Poisson process of intensity λ if, and only
if, the process (N(t) − λt, t ≥ 0) is a martingale with respect to the filtration F
generated by N , i.e. Ft = σ{N(s), s ≤ t}.

In order to show the equivalence between these definitions, we must introduce three
technical results.

Lemma 6.1. – The density of the distribution of (T1, . . . , Tn) is given by

dP(T1, ..., Tn)(x1, . . . , xn) = λn exp(−λxn)1C(x1, . . . , xn) dx1 . . . dxn, [6.1]

where

C = (y1, . . . , yn) ∈ (R+)n, 0 ≤ y1 ≤ · · · ≤ yn .

In particular, Tn follows a gamma distribution with parameters n and λ, defined by

dPTn(x) = λn exp(−λx)
xn−1

(n − 1)!
1R+(x) dx. [6.2]

Proof. We proceed by identification. For all bounded measurable f ,

E [f(T1, . . . , Tn)]

= · · ·
(R+)n

f (x0, x0 + x1, . . . , x0 + . . .+ xn−1) dPξ0(x0) . . . dPξn−1
(xn−1).

Perform the change of variable

u1 = x0, u2 = x0 + x1, . . . , un = x0 + . . .+ xn−1,

whose Jacobian equals 1. The conditions x0 ≥ 0, . . . , xn−1 ≥ 0 amounts to 0 ≤ u1 ≤
u2 . . . ≤ un. We therefore have

E [f(T1, . . . , Tn)] = · · ·
(R+)n

f(un)λne−λun1C(u1, . . . , un) du1 . . . dun.

The density of the joint distribution follows from it. If f depends only on Tn,we obtain

E [f(Tn)] = . . .
0≤u1...≤un

f(un)λn exp(−λun) du1 . . . dun

=
∞

0
f(un)λn exp(−λun)

un

0
dun−1 . . .

u2

0
du1 dun

=
∞

0
f(un)λn exp(−λun)

un−1
n

(n − 1)!
dun.

The result follows.
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Lemma 6.2. – Let X be a random variable of Poisson distribution with parameter λ.
We have

E e−sX = exp(−λ(1 − e−s)).

Proof. By definition of the Poisson distribution, we have

E e−sX =
∞

k=0

e−ske−λλ
k

k!
= exp(−λ+ λe−s),

hence the result.

Lemma 6.3. – Let (U1, . . . , Un) be n independent random variables of uniform
distribution on [0, t]. Let Ū represent the reordering of the n-tuple in increasing order,
that is

Ū1(ω) ≤ Ū2(ω) ≤ . . . ≤ Ūn(ω), a.s..

The distribution of Ū is given by

dP(Ū1, ..., Ūn)(x1, . . . , xn) =
n!
tn

1C(x1, . . . , xn) dx1 . . . dxn.

Proof. Denote σ, the random variable with values in the group of permutations Sn

of [[1, n]], representing the permutation of indexes necessary to arrange the values of
Ui(ω) in increasing order, e.g. if we have

U2(ω) ≤ U3(ω) ≤ U1(ω),

σ(ω) is defined by

σ(ω) =
1 2 3
2 3 1 .

The image of i byσ(ω) is the index of the randomvariablewhich is in the ith position for
the sample ω. Therefore, by definition we have Ūi(ω) = Uσ(ω)(i)(ω). As the random
variables Ui, i ∈ [[1, n]] are independent and of the same distribution, for any τ ∈ Sn,

dP(Uτ(1), ..., Uτ(n))(u1, . . . , un) = ⊗n
i=1

1
t
1[0,t](ui) dui.

Notice, in particular, that this distribution does not depend on τ . Therefore,

P(σ = τ) = P Uτ(1) ≤ . . . ≤ Uτ(n)

= · · · 1C(u1, . . . , un) dP(Uτ(1), ..., Uτ(n))(u1, . . . , un)

= P(σ = Id).
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Thus, σ follows a uniform distribution on Sn, that is to say

P(σ = τ) =
1
n!

.

To compute the distribution of the n-tuple Ū , we partition the probability space in
∪τ∈Sn(σ = τ). For any bounded continuous function f , we have

E f(Ū1, . . . , Ūn) =
τ∈Sn

E f(Ū1, . . . , Ūn); σ = τ

=
τ∈Sn

E f(Uτ(1), . . . , Uτ(n))1C(Uτ(1), . . . , Uτ(n))

=
τ∈Sn

· · · f(u1, . . . , un)1C(u1, . . . , un) dP(Uτ(1), ..., Uτ(n))(u1, . . . , un)

=
τ∈Sn

· · · f(u1, . . . , un)1C(u1, . . . , un) ⊗n
i=1

1
t
1[0,t](ui) dui

=
n!
tn

· · · f(u1, . . . , un)1C(u1, . . . , un) du1 . . . dun.

Hence the result.

Proof of equivalence between the definitions. We are going to show the
implication chain: 6.1 =⇒ 6.2 =⇒ 6.3 =⇒ 6.4 =⇒ 6.5 =⇒ 6.1.

6.1 =⇒ 6.2 Let us first show that N(t) follows a Poisson distribution. Since it is clear
that the events {N(t) = k} and {Tk ≤ t < Tk+1} coincide, we have

P(N(t) = k) = P(Tk ≤ t < Tk + ξk+1)

= 1{x≤t} 1{x+y>t} dPTk
(x) dPξk

(y)

=
t

0

∞

t−x

λe−λy dy λk
xk−1

(k − 1)!
exp(−λx) dx

= e−λt
t

0
λk

xk−1

(k − 1)!
dx

= e−λt (λx)
k

k!
.
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For the conditional distribution, we proceed similarly:

P ((T1, . . . , Tn) ∈ A |N(t) = n)P(N(t) = n)

= P ((T1, . . . , Tn) ∈ A, Tn ≤ t < Tn+1)

= · · ·
0≤u1≤...≤un+1

1A(u1, . . . , un)1[un, un+1)(t)λ
n+1e−λun+1 du1 . . . dun+1

= λn · · ·
0≤u1≤...≤un+1

1A(u1, . . . , un)1[un,∞)(t)
∞

t

λe−λun+1 du1 . . . dun

= λne−λt · · ·
0≤u1≤...≤un+1

1A(u1, . . . , un)1[un,∞)(t) du1 . . . dun.

By dividing the term on the right-hand side by e−λt(λt)n/n!, we obtain

P ((T1, . . . , Tn) ∈ A |N(t) = n)

=
n!
tn

· · ·
0≤u1≤...≤un+1

1A(u1, . . . , un)1[un,∞)(t) du1 · · · dun,

which, in view of Lemma 6.3, means that (T1, . . . , Tn) has conditionally to
{N(t) = n}, the samedistribution as the vector (Ū1, . . . , Ūn) defined therein. In
otherwords, conditionally to{N(t) = n}, then-tuple (T1, . . . , Tn) is uniformly
distributed over [0, t].

6.2 =⇒ 6.3 Let t0 = 0 < t1 < · · · < tn be a family of n + 1 real numbers and
i0, . . . , in−1, a family of n integers. We aim to prove that

P
n−1

l=0

{N(tl+1) − N(tl) = il} =
n

l=1

P(N(tl+1) − N(tl) = il).

We can always write that

P
n−1

l=0

{N(tl+1) − N(tl) = il}

=
k∈N

P
n−1

l=0

{N(tl+1) − N(tl) = il} |N(tn) = k P(N(tn) = k).

The unique value of k for which the conditional probabilities of the latter
quantity are non-zero is k0 = l il. In order to derive the corresponding
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conditional probability, we know that the points between 0 and tn are uniformly
distributed. This quantity thus equals the probability that k points that are
uniformly distributed over an interval, divides into i1 points in the interval [0, t1],
i2 points in the interval ]t1, t2], and so on. Each point belongs to an interval of
length x length with probability x/tn,. We thus have

P
n−1

l=0

{N(tl+1) − N(tl) = il} |N(tn) = k0 =
k0!

i1! . . . in!

n−1

l=0

tl+1 − tl
tn

il

.

AsN(tn) follows a Poisson distribution with parameter λtn and k0 = n−1
l=0 i1,

we deduce that

P
n−1

l=0

{N(tl+1) − N(tl) = il}

= e−λtn
(λtn)k0

k0!
k0!

i1! . . . in!

n−1

l=0

tl+1 − tl
tn

il

=
n−1

l=0

e−λ(tl+1−tl) (λ(tl+1 − tl))il

il!
.

The probability of the intersection of events thus reads as a product of
probabilities, therefore the random variables are independent. By taking n =
2, t1 = t, t2 = t+ s, i0 = i and i1 = j, we obtain

P (N(t) = i, N(t+ s) − N(t) = j) = e−λt (λt)
i

i!
e−λs (λs)

j

j!
.

Finally, summing over all the values of i yields the desired result.

6.3 =⇒ 6.4 Notice, that taking f(s) = 1[a,b](s) leads to

n

f(Tn) = N(b) − N(a).

From Lemma 6.2, we thus deduce that the result is true for the indicator functions
and by linearity, for the piece-wise constant functions (that is to say, the linear
combinations of indicator functions). By monotone convergence, we deduce that
the result holds true for any positive measurable function.

6.4 =⇒ 6.5 It suffices to write N(t+ s) = (N(t+ s)−N(t)) +N(t) and to use the
independence of these random variables to prove that

E [N(t+ s) | Ft] = E [N(t+ s) − N(t)] +N(t) = λs+N(t),

hence the result.
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6.5 =⇒ 6.1 As N remains constant between two jumps, for any bounded f we have

f(N(t)) − f(N(s))

=
s<r≤t,∆N(r)=1

f(N(r)) − f(N(r−))

=
t

s

(f(N(r−) + 1) − f(N(r−))) dN(r)

=
t

s

(f(N(r−) + 1) − f(N(r−)))(dN(r) − λ d r)

+
t

s

(f(N(r−) + 1) − f(N(r−)))λ d r.

As the process (r → f(N(r−)) is predictable, Theorem A.34 implies that the
stochastic integral is in fact a martingale. So the process defined by

t −→ f(N(t)) −
t

0
(f(N(r−) + 1) − f(N(r−)))λ d r

is a martingale. According to Theorem 7.15, N is a Markov process of
infinitesimal generator

Af(x) = λ(f(x+ 1) − f(x)) for any bounded f : N → R.

From Theorem 7.9, Definition 6.1 is verified.

6.2. Properties

Definition 6.2 might lead to a misinterpretation, and should be clearly understood.
The latter stipulates that, conditionally to the number of points on an interval, the
points are uniformly distributed over this interval. When we observe a sample path of
the process, knowing t and the number of impacts in this interval, we should observe a
cloud of point that is uniformly distributed. However, we observe distributions that are
similar to that of Figure 6.2. This is the “clusterization” phenomenon: the arrivals give
the impression of being grouped. The same observation can be made in actual stores,
where after an idle period, many customers may arrive almost at the same time.

In fact, the very concept of uniformdistribution is vague, and should not be confused
with the constancy of the difference between the arrivals. As shown in Figure 6.2, the
uniformity in the distribution is “seen” on several sample paths: here there are almost
no parts of [0, 1] that does not have any impact in one or the other of the sample paths.
There is a primary difference between the apparent clusterization phenomenon of the
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Time

Figure 6.2. Four trajectories of a Poisson process. There are no areas of the segment that is not
covered by any one of the trajectories, but each of the trajectories present “bursts” of arrivals

Poisson process and the “bursts” phenomenon observed in the LAN-WAN Broadband.
In the first case, the instantly average throughput (calculated averaging over a large
number of sample paths) does not depend on time (as it is equal to λ) whereas in the
other case, it will largely vary over time (think of the variable throughput video traffic
flow). Thus, we cannot represent such a traffic by a Poisson process.

Theorem 6.4. – Let N be a Poisson process of intensity λ. For any function f with
compact support, we have

E

⎡
⎣exp

⎛
⎝−

n≥1

f(Tn)

⎞
⎠
⎤
⎦ = exp −

R+
(1 − e−f(s))λ d s . [6.3]

Proof. By taking f(s) = α1[a,b](s), we have

n

f(Tn) = α(N(b) − N(a)).

We know that N(b) − N(a) follows a Poisson distribution with parameter λ(b − a).
Therefore,

E

⎡
⎣exp

⎛
⎝−

n≥1

f(Tn)

⎞
⎠
⎤
⎦ =

∞

n=0

e−αne−λ(b−a) (λ(b − a))n

n!

= exp(−λ(b − a) + λ(b − a)e−α)

= exp − 1 − e−f(s) λ d s .

By independence of the increments, equation [6.3] thus holds true for the step functions.
By dominated convergence, this is also the case for the functions with compact support.
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6.2.1. Superposition, thinning

When we set the two point processes N1 and N2, the superposition of these
processes is the point process, denoted as N = N1 + N2, whose points are those
of N1 and N2. With Theorem 6.4 in hand, the following result is straightforward.

Theorem 6.5. – The superposition of two independent Poisson processes of respective
intensities λ1 and λ2 is a Poisson process of intensity λ1 + λ2.

Note. – In particular, during the superposition of two independent Poisson processes,
two clients cannot arrive simultaneously. This result holds true for any two independent
point processes.

Let us now assume that a Poisson processN of intensityλ is split into two processes
N1 and N2 according to a random draw of Bernoulli of probability p, that is to say
that at for any point of N , we decide that it belongs to N1 with probability p and to N2

with probability 1 − p. This draw is assumed as independent of everything else in the
model, and in particular of the previous draws (Figure 6.3). It is said that the Poisson
process N is thinned.

1 1 1

2 2 2 2 22 2 Time

Figure 6.3. Thinning of a Poisson process. The figure above or below each point
represents the number of flow to which this point is attributed

Theorem 6.4 ensures that a Poisson process on R+ is a special case of a spatial
Poisson process (see section 10.3). Therefore, Theorem 10.6 implies the following
result.

Theorem 6.5.1. – The processes N1 and N2 processes resulting from the thinning of
N , are two independent Poisson processes of respective intensities λp and λ(1 − p).

6.2.2. Bus paradox

This is a specific result of the one dimensional case, known as the bus paradox (or
inspection paradox). Let us interpret the points of a Poisson process as the arrival times
of buses at a given bus stop. Let

⎧
⎨
⎩
W (t) = TN(t)+1 − t,
Z(t) = t − TN(t),
ξ(t) = W (t) + Z(t) = TN(t)+1 − TN(t),

be the waiting time of the bus when arriving at the stop at time t, the time elapsed since
the last bus went by, and the length of the time interval between the bus that we take
and that we missed, respectively.
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T0 = 0 T1 T2 T3

t

ξ0 ξ1 ξ2

W (t)Z(t)

ξ(t)

Figure 6.4. Notations

x

PpZptq ď xq

1

1 ´ e´λt y “ 1 ´ expp´λxq

t

e´λt

Figure 6.5. Distribution function of Z(t)

Theorem 6.6 (Bus paradox). – W (t) follows an exponential distribution of
parameter λ and is independent of Z(t), whose distribution is given by

P(Z(t) ≤ x) = 1 − e−λx if 0 ≤ x < t;
1 if x ≥ t.

This may seem paradoxical since the average value ofWt, that is to say, the average
waiting time, is therefore 1/λ, whereas the average time between two passages of the
bus also equals 1/λ. This property is another manifestation of what is commonly called
the memoryless property of the exponential distribution, which will be discussed in
the next chapter. In fact, everything happens as if, at the moment when we arrive at the
bus stop, the counter of time which elapses between two bus arrivals was reset to zero,
and if we recounted a time of exponential distribution until the next arrival.
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Clearly speaking, this approach is mathematically wrong because if ξn follows
an exponential distribution of parameter λ for any fixed n, ξ(t) does not have the
distribution of a ξn. Indeed, the number of the buses that we have missed changes
along the samples paths. Conditionally to {N(t) = n}, ξ(t) indeed has an exponential
distribution of parameter λ, but contrary to what we might believe, when we un-
condition, the distribution of ξ(t) is no longer exponential.

Proof. Let us observe that Z(t), by its very definition, cannot be larger than t. For
0 ≤ x < t and y ≥ 0, by using the independence of Tn and ξn for any n ∈ N, we have

P(Z(t) ≤ x, W (t) > y) =
n∈N

P(Z(t) ≤ x, W (t) > y, N(t) = n)

=
n∈N

P(t − Tn ≤ x, Tn + ξn − t > y, Tn ≤ t < Tn + ξn).

For n = 0 the latter probability equals

P(t ≤ x, ξ0 > t+ y) = 0,

since we have assumed that x < t. The previous sum therefore reads

n∈N∗
1{t−u≤x} 1{u+v−t>y} 1{u≤t} dPTn(u) dPξn+1(v)

=
n∈N∗

t

t−x

λne−λu un−1

(n − 1)!

∞

t+y−u

λeλv d v du

=
n∈N∗

λne−λ(t+y)
t

t−x

un−1

(n − 1)!
du

=
n∈N∗

λne−λ(t+y) tn

n!
− (t − x)n

n!

= e−λ(t+y)

n∈N∗

(λt)n

n!
−

n∈N∗

(λ(t − x))n

n!

= e−λ(t+y)(eλt − 1 − (eλ(t−x) − 1))

= e−λy(1 − e−λx).

As limx t(1 − e−λx) = 1 − e−λt < 1, we deduce from it that there is a jump in the
distribution function of Z(t) and therefore P(Z(t) = t) = e−λt > 0.



Poisson Process 181

Note. – The mean expectation of ξ(t) is derived in the following manner.

E [ξ(t)] = E [W (t)] +E [Z(t)]

=
1
λ
+ t.e−λt +

t

0
λse−λs d s

=
1
λ
(2 − e−λt).

Therefore, as t goes large the expectation of ξ(t) tends to 2/λ and the average waiting
time, which equals 1/λ, represents half of it. This is in accordance with the intuition.

6.3. Discrete analog: the Bernoulli process

The analog of the Poisson process in discrete time is defined as follows.

Definition 6.6. – Let p ∈]0, 1[ and ξ̃n, n ∈ N be a sequence of random variables,

independent and identically distributed, having a geometric distribution of parameter
p, that is

P(ξ̃0 = k) = p(1 − p)k−1; k ∈ N∗.

We then set T̃0 = 0 and T̃n+1 − T̃n = ξ̃n for any n ∈ N. The point process
(T0, T1, . . . , Tn, . . .) hence defined is called a Bernoulli process of parameter p.

Note. – As for the Poisson process, we can define the random process Ñ with rcll
paths, defined for all t ≥ 0 by

Ñ(t) =
n∈N

1{T̃n≤t},

which counts the number of points of the process until t. It is clear that Ñ(t) follows
for any t ≥ 0, the binomial distribution B( t , p), where . denotes the entire part.

We verify hereafter that the Bernoulli process satisfies the bus paradox, similarly
to the Poisson process. By analogy to section 6.2.2, let us denote, for any k ∈ N,

W̃k = k − T̃Ñ(k), the time elapsed since the last point before k;
Z̃k = T̃Ñ(k)+1, the time to wait before the first point after k.

Bydefinition, W̃k is zerowhenever there is precisely a point atk, while Z̃k is necessarily
strictly positive. We have the following result.
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Theorem 6.6.1. – For any k ≥ 0, W̃k follows the geometric distribution with
parameter p and is independent of Z̃k, whose distribution is given by

P(Z̃k = i) =

⎧
⎨
⎩
p(1 − p)i if i < k;
(1 − p)i if i = k;
0 if i > k.

Proof. The scheme of proof is the same as that of Theorem 6.6. Let us fix j ∈ N∗. It is
clear by definition that Z̃k cannot be greater than k. Moreover, for any i < k, Z̃k = i
if Ñ(k) is strictly positive (else k = i) and strictly less than k − i, because there is no
point between times k − i and k. Therefore,

P(Z̃k = i, W̃k = j) =
1≤n≤k−i

P(Z̃k = i, W̃k = j, Ñ(k) = n)

=
1≤n≤k−i

P(T̃n = k − i, ξ̃n = i+ j)

=
1≤n≤k−i

P(T̃n = k − i)p(1 − p)i+j−1,

by independence. But Tn = k − i amounts to saying that there is a point at k − i (and
therefore a success to a Bernoulli draw of parameter p) and if k − i− 1 > 0, that there
has been n − 1 successes during the previous k − i − 1 independent Bernoulli draws.
In other words,

P(T̃n = k − i) = pP(B = n − 1) = pCn−1
k−i−1p

n−1(1 − p)k−i−1−(n−1),

where B is a random variable of binomial distribution B(k − i − 1, p) and by setting
possibly C0

0 = 1. Therefore, for any i < k, we have

P(Z̃k = i, W̃k = j) =
1≤n≤k−i

pCn−1
k−i−1p

n−1(1 − p)k−i−1−(n−1)p(1 − p)i+j−1

= p2(1 − p)i+j−1

0≤n≤k−i−1

Cn
k−i−1p

n(1 − p)k−i−1−n

= p(1 − p)j−1p(1 − p)i, [6.4]

according to Newton’s binomial formula. Moreover, Z̃k = k means that Ñ(k) = 0,
and therefore

P(Z̃k = k, W̃k = j) = P(ξ̃0 = i+ j)

= p(1 − p)i+j−1 = p(1 − p)j−1(1 − p)i.
[6.5]

From [6.4] and [6.5], we deduce that Z̃k and W̃k are independent and follow the
announced distributions.
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This memoryless property can be easily understood: a random variable ξ̃i counts
the number of independent Bernoulli trials needed to achieve a success. The r.v. W̃k

counts the number of trials that are still required from k to obtain the first success
after k. The trials being independent, we clearly see that, here again, the waiting time
“capitalized” since the last success up to k does not increase the probability of success
at each attempt after k, and therefore W̃k has the same distribution as anyone of the
ξ̃i’s.

The latter result is thus intuitively clear, and gives an insight on the bus paradox in
continuous time. In fact, the Poisson process is nothing but a somewhat “macroscopic”
version of a Bernoulli process. More precisely, we set λ > 0 and for any n ∈ N∗ such
that λ/n < 1, we denote Ñn, a Bernoulli process of parameter λ/n and of associated
variables ξ̃n0 , ξ̃

n
1 , . . .. Finally, for any n we define the point process N̄n as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ̄ni = ξ̃ni /n, i ∈ N;

T̄n
0 = 0, T̄n

i+1 − T̄n
i = ξ̄ni , i ∈ N;

N̄n(t) =
i∈N

1{T̄n
i ≤t} .

Starting from a Bernoulli process of parameter λ, in order to obtain N̄n, we divide
the probability of occurrence of a point at any time by n and we compensate by an
“acceleration of the time”, by a factor n, by dividing the inter-points times by n. We
therefore have the following result.

Theorem 6.6.2. – The sequence of processes N̄n, n > λ converges in distribution
to the Poisson process of intensity λ.

Proof. The concept of convergence in distribution for processes is quite heavy to define,
and is beyond the scope of this book. We will not get into these technicalities here. In
fact, in our case it suffices to check that the inter-points of N̄n tend in distribution to
those of the Poisson process of intensity λ. This is clearly the case since for any i ∈ N
and any t,

P(ξ̄ni > t) = P(ξ̃ni > nt) = 1 − λ

n

nt

,

and the latter quantity tends to e−λt as n goes large.

6.4. Simulation of the Poisson process

Definition 6.1 allows us to simulate trajectories of a Poisson process of intensity λ,
by simply making successive draws of random variables of exponential distribution of
parameter λ.



184 Networks Modeling and Analysis

Algorithm 6.1. A sample path of a Poisson process (method 1)
Data: λT
Result: a trajectory (tn, n ≥ 1) on [0, T ] of a Poisson process of intensity λ.
t ← 0; n ← 0;
while t ≤ T do

x ← drawing of a ε(λ);
t ← t+ x;
tn ← t;
n ← n+ 1

end
return t1, t2, . . . , tn

Definition 6.2 enables us to simulate a trajectory on [0, t] by making a draw of
a Poisson distribution of parameter λt, whose result is denoted k, then to carry out
k uniform draws on [0, t]. Once arranged in increasing order, the smallest of
these draws can be assimilated to the first point T1, the second smallest to T2, and
so on.

Algorithm 6.2. A sample path of a Poisson process (method 2)
Data: λT
Result: a trajectory (tn, n ≥ 1) on [0, T ] of a Poisson process of intensity λ.
n ← A random variable of Poisson distribution of parameter λT ;
for i = 1, . . . , n do

ui ← drawing of a U([0, 1]);
end
(t1, . . . , tn) ← Sorting in increasing order of (u1, . . . , un);
return t1, t2, . . . , tn

In both methods, if we wish to extend the trajectory on [t, t+s],we restart the same
procedure only on [t, t+ s], as Definition 6.3 guarantees that the trajectory on [t, t+ s]
is independent of that on [0, t].

Method 1 is the most advantageous for the “large” values of λ, as to simulate
a Poisson distribution for a large λ happens to be impossible as long as exp(−λ)
becomes smaller than the numerical precision of the computer. But, as we see in
Chapter 10, the 2nd method is the only one which fits to the simulation of a spatial
Poisson process.
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Figure 6.6. Graph of λ and of its inverse (in dotted line)

6.5. Non-homogeneous Poisson process

Definition 6.7. – N is a non-homogeneous Poisson process of intensity λ(s) d s,
where s ranges over R+ if, and only if for any function f : R+ → R+,

exp

⎛
⎝−

n≥1

f(Tn)

⎞
⎠ = exp − (1 − e−f(s))λ(s) d s . [6.6]

This definition should be related to Definition 6.4. If λ is a constant function then
we retrieve the definition of a Poisson process of intensity λ. This class of processes
models traffics in which the flow varies over time, but in a deterministic manner. We
always assume that λ is a rcll function.

Let us set

a(t) =
t

0
λ(s) d s;

τ(t) = inf{s ≥ 0, a(s) ≥ t}.

The graph of τ is obtained by taking the symmetric to that of a with respect to the first
bisector. By definition, for all t, a(τ(t)) = t. The inverse relation τ(a(t)) = t holds
true only if λ does not vanish on an interval. In fact, in the latter case, a presents an
interval of constancy and τ is no longer continuous.
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Theorem 6.6.3. – LetN be a non-homogeneous Poisson process of intensity λ(s) d s.
Then the process N defined by

Ñ(t) =
s: ∆N(s)=1

1{a(s)≤t}, [6.7]

is a homogeneous Poisson process of intensity 1.

In other words, when N jumps at an instant t, Ñ has a jump at the instant a(t).

Proof. It is sufficient to show that M(t) = N(τt) satisfies the properties of Definition
6.3. For all 0 = t0 < t1 < . . . < tn, we have

M(ti+1) − M(ti) =
n

1[τti
, τti+1 ](Tn).

As τ is deterministic, by definition of the non-homogeneous Poisson process,

E

⎡
⎣exp

⎛
⎝−

j

αj(M(tj+1) − M(tj))

⎞
⎠
⎤
⎦ =

=E

⎡
⎣exp

⎛
⎝−

n j

αj 1{[τtj
, τtj+1 ]}(Tn)

⎞
⎠
⎤
⎦

=exp

⎛
⎝−

j

τtj+1

τtj

(1 − e−αj )λ(s) d s

⎞
⎠

=exp

⎛
⎝−

j

(1 − e−αj )[a(τtj+1) − a(τtj )]

⎞
⎠

=exp

⎛
⎝−

j

αj(tj+1 − tj)

⎞
⎠ ,

hence the result.

With the previous notations, we deduce from the latter result the algorithm of
simulation of a non-homogeneous Poisson process.
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Algorithm 6.3. A sample path of a trajectory of a non-homogeneous Poisson
process

Data: a, T
Result: a trajectory (tn, n ≥ 1) on [0, T ] of a Poisson process of intensity

λ(s) d s.
s1, . . . , sn ← simulation of a Poisson process of intensity 1 on a(T );
return ti = a(si), i = 1, . . . , n

Theorem 6.7. – The point process N is a non-homogeneous Poisson process of
intensity λ(s) d s if, and only if, the process

Ñ : t −→ N(t) −
t

0
λ(s) d s

is a martingale.

Proof. Let f be a function with compact support. According to Itô’s Formula A.15,

exp
t

0
f(r) d Ñ(r) = 1 +

t

0
exp

s

0
f(r) d Ñ(r) f(s) d Ñ(r)

+
t

0
exp

s

0
f(r) d Ñ(r) ef(s) − 1 − f(s) dN(s).

In view of Theorem A.34, the stochastic integral of the term on the right-hand side is
a martingale, thus by taking the mean expectation, it remains

E exp
t

0
f(r) d Ñ(r)

= 1 +E
t

0
exp

s

0
f(r) d Ñ(r) (ef(s) − 1 − f(s)) dN(s)

= 1 +E
t

0
exp

s

0
f(r) d Ñ(r) (ef(s) − 1 − f(s))λ(s) d s .

By letting φ(t) = exp( t

0 f(r) d Ñ(r)), we have

φ(t) = 1 +
t

0
φ(s)u(s) d s,

where u(s) = (ef(s) −1− f(s))λ(s)). By solving the differential equation, we obtain

φ(t) = exp
t

0
ef(s) − 1 − f(s) λ(s) d s ,
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that is, by simplifying both sides by exp(− t

0 f(s)λ(s) d s),

E exp
t

0
f(r) dN(r) = exp

t

0
ef(s) − 1 λ(s) d s .

Conversely, by applying [6.6] to

f =
n−1

i=0

αi1(ti, ti+1],

we obtain

E exp −
i

αi(N(ti+1) − N(ti))

= exp −λ
i

∞

0
1 − e−αi1(ti, ti+1](s) d s .

Notice now that the function s → (1 − e−αi1(ti, ti+1](s)) vanishes outside the interval
(ti, ti+1] and equals 1 − e−αi on this interval. We thus have

E exp −
i

αi(N(ti+1) − N(ti)) = exp −
i

1 − e−αi

ti+1

ti

λ(s) d s .

We thus conclude that the Laplace transform of the random vector (N(ti + 1) −
N(ti), 1 ≤ i ≤ n − 1) is the product of the Laplace transform of each component
(as it is written as a product of functions that depends each only on one of the αi’s),
so the random variables are independent. By a monotone class argument, we deduce
that N(t + s) − N(t) is independent from Ft = σ(N(r), r ≤ t). In the case where
n = 2, t1 = a, t2 = b, the previous formula yields

E [exp (−α (N(b) − N(a)))] = exp −(1 − e−α)
b

a

λ(s) d s.

Hence,N(b)−N(a) follows aPoisson distribution of parameter
b

a
λ(s) d s. Therefore,

E [N(t+ s) − N(t) | Ft] = E [N(t+ s) − N(t)] =
t+s

t

λ(s) d s,

so Ñ is a martingale.
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6.6. Cox processes

The Cox processes are Poisson processes for which the intensity is random. From
what is mentioned above, we see that this amounts to putting a probability measure on
the set D of positive and rcll functions.

Definition 6.8. – LetM be a random variable with values in D. The point processN
is a Cox process of intensityM if, and only if, for any function f with compact support,

E exp −
n

f(Tn) |M = exp − (1 − e−f(s))M(s) d s .

Consequently, to derive the Laplace transform, it is necessary to un-condition with
respect to M , thus

E exp −
n

f(Tn) = E exp − (1 − e−f(s))M(s) d s .

The previous martingale results can be extended without any change, but on the
filtration, which must be taken as equal to F0 = σ(M), Ft = σ(M)∨σ(N(r), r ≤ t).

The example of Cox process which we will be the most useful to us is that of
MMPP; see section 7.6.

6.7. Problems

Exercise 10. – Let N be a Poisson process of intensity λ, we denote Tn as the nth
instant of jump. By convention, T0 = 0. Let (Zn, n ≥ 1) be a sequence of random
variables of same distribution such that, for any n, Tn and Zn are independent. Let g
be the density of the common distribution of the Zn’s.

1) Show that for any function f ,

E[f(Tn, Zn)] =
+∞

0
f(t, z)g(z)λe−λt (λt)

n−1

(n − 1)!
d z d t.

2) Deduce that

E

⎡
⎣
n≥1

f(Tn, Zn)

⎤
⎦ = λ

+∞

0
f(t, z)g(z) d z d t.

3) We assume that the telephonic communications of a subscriber lasts for a random
time of exponential distribution of about three minutes in average. These durations are
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independent of each other. In the last century, the cost of communication was based on
its duration t according to the following formula.

c(t) = α if t ≤ t0, and c(t) = α+ β(t − t0) if t ≥ t0.

Deduce from the above that the average cost of one complete hour of communication
is given by

λ
1

0
c(t)λe−λt d t,

with λ = 20. (Hint: Consider Zn = Tn+1 − Tn and explain why we can apply the
previous result).

Numerical application: for local calls, in 1999, we had the following parameters:
t0 = 3 minutes, α = 0,11 euro and β = 0,043 euro per minute. For national calls,
t0 = 39 seconds and β = 0,17 euro per minute. α was the same. For reduced price,
divide β by 2. By applying t0 = 1 minute and α = 0,15 euro, how much is the price
of the extra second in mobile telephony in a package, whose amount for 1 hour of
communication was 23,62 euros?

Exercise 11. – An ATM records the beginning and ending times of queries of the
customers, but of course not their arrival times in the queue. A new busy cycle having
started at 7: 30, we have recorded the following:

Customer number Beginning of service End of service

0 7:30 7:34

1 7:34 7:40

2 7:40 7:42

3 7:45 7:50

Let us assume that the arrivals take place according to a Poisson process, what can
we say about the arrival time T1 of customer 1? In particular, give its mean expectation.

Exercise 12. – An insurance company must pay for claims at a rate of 5 per day. We
assume that the instants of occurrence of disasters follow a Poisson process, and that
the total amounts of damages are independent of each other, of exponential distribution
with an average of 500 euros. We introduce (Xi, i ≥ 1), a sequence of i.i.d. random
variables, of exponential distribution of average 1/µ = 3,000 euros, and a Poisson
process N of intensity λ = 5 days−1, independent of the Xi’s.

1) What does Z = N(365)
i=1 Xi represent?

2) Calculate the average total annual amount spent by the insurance company.

3) Calculate E[e−sZ ].
4) Infer the variance of Z.
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6.8. Notes and comments

For more detailed results on the point processes in any dimension, we refer the

reader to [LAS 95, BRA 81, DAL 03]. For the convergence in distribution of point

processes, see [ROB 03, appendix D].
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Epitome

– A Poisson process is a process that represents a random flow with an average

flow that is constant over time.

– Its intensity λ represents the average number of points per unit of time.

– The superposition of two Poisson processes is a Poisson process. The thinning of

a Poisson process form several Poisson processes.

– A Poisson process represents very well the events linked to human activity

(telephone calls, arrival times in a store, logging session of a mail, opening of

web page, etc.), but not the activity of a machine (sending of packets, signaling

messages, etc.).



Chapter 7

Markov Process

The Markovian modeling of a dynamic system often leads to a Markov chain, for
which the sojourn time in each state becomes random. In many cases, this description
is insufficient to establish interesting mathematical properties. In that purpose, we
introduce the formalism of Markov jump processes, with their semi-groups and
infinitesimal generators.

To go one step further and, in particular, to prove several crucial results such as
PASTA or its avatars, we need to see a Markov process as the solution of a martingale
problem. In this chapter, we review these different characterizations, and show that
they are in fact equivalent.

Throughout this chapter, E denotes a state space that is at the most countable, and
equipped with the discrete topology.We refer the reader to the definitions and notations
of Appendix A.1.

7.1. Preliminaries

We start by stating two technical Lemmas on the exponential distribution, which
will be useful in the following.

Lemma 7.1.– Let U and V be the two independent random variables, of respective
distributions ε(λ) and ε(µ), where λ, µ > 0. Then,

(i) P (U ≤ V ) = λ/(λ+ µ);
(ii) U ∧ V ∼ ε(λ+ µ).

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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Proof.

(i) The density of the random couple (U, V ) is given for all (u, v) by

f(U,V )(u, v) = λe−λuµe−µv 1R+(u) 1R+(v).

By denoting the subset A = {(u, v) ∈ R2;u ≤ v}, we can write

P (U ≤ V ) =
A

f(U,V )(u, v) du d v

=
+∞

0

λe−λu
+∞

u

µe−µv d v du

=
+∞

0

λe−(λ+µ)u du

=
λ

λ+ µ
.

(ii) It suffices to see that for any x ≥ 0,

P (U ∧ V ≥ x) = P ({U ≥ x} ∩ {V ≥ x}) = e−λxe−µx = e−(λ+µ)x.

Hence the result.

Lemma 7.2 (Memoryless property of the exponential distribution).– LetU be a random
variable of distribution ε(λ), where λ > 0, and t ≥ 0. Then, conditionally to {U ≥ t},
the random variable U − t has the same distribution ε(λ).

Proof. It is sufficient to compute, for any x ≥ 0, the conditional probability

P (U ≥ t+ x | U ≥ t) =
P (U ≥ t+ x)

P (U ≥ t)
=
e−λ(t+x)

e−λt = e−λx.

The life duration of a human being is not exponentially distributed. Indeed, if it
was so the latter result would imply that the probability of reaching the age of 90 for a
human of 80 years old equals the probability that a new-born reach the age of 10 years
old! This is, of course, not the case.
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7.2. Pathwise construction

Definition 7.1.– Let ν be a probability measure on E and Q = q(x, y), x, y ∈ E
be a family of real numbers such that

q(x, y) ≥ 0 for any (x, y) ∈ E and
y=x

q(x, y) = 1 for any x ∈ E. [7.1]

The Markov process X with parameters (ν, Q) is constructed as follows:

– X(0) is a random variable of distribution ν;

– if X(0) = x0, let ξ1 = T1 be a random variable independent of X(0) and of
distribution ε(q(x0, x0)). Then, we set

X(t) = x0 for all t < T1.

Then we let X̂1 be a random variable independent of (X(0), T1) and such that

P(X̂1 = y) = q(x0, y);

– if X̂1 = x1, we let ξ2 be a random variable independent of (X(0), ξ1, X̂1) and
of distribution ε(q(x1, x1)). Then, we set

X(t) = x1 for all T1 ≤ t < T2.

– We continue this construction on and on.

Note.– A random variable of exponential distribution with parameter 0 must be
understood as almost surely infinite. Hence any point x ∈ E such that q(x, x) = 0 is
a “graveyard” point: when it has been reached, the process never get out of it.

Example 7.1 (M/M/1 queue).– In this model, arrivals occur according to a Poisson
process of intensity λ > 0, and the service times are i.i.d. with exponential distribution
of parameter µ. We consider the process (X(t), t ≥ 0) counting the number of
customers in the system at any time. The state space E is that of natural integers.

If there are i = 0 customers in the system at a given time, the next event is a
departure or an arrival. In view of Theorem 6.6, the next arrival will occur after a
period of exponential distribution with parameters λ. In addition, Theorem 7.3 below
shows us that the next departure will take place after a time exponentially distributed
with parameter µ. From (ii) of Lemma 7.1, the sojourn time in state i then follows
an exponential distribution with parameter λ + µ, thus q(i, i) = λ + µ for i = 0. If
i = 0, there cannot be any departure, so q(0, 0) = λ. Again, in view of Lemma 7.1
the probability of moving from state i to state i+ 1 corresponds to the probability that
a random variable of exponential distribution with parameter λ be less than a random
variable of exponential distribution with parameter µ, thus

q(i, i+ 1) =
λ

λ+ µ
and q(i, i− 1) =

µ

λ+ µ
.
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Time0

E

X̂0 = x
ξ0

X̂1 ξ1

X̂2 ξ2

X̂3 ξ3

X̂4

T̂1 T̂2 T̂3 T̂3

Figure 7.1. The path of a Markov process with parameters (ν, Q)

If i = 0, we obtain
q(0, 1) = 1,

as the only possible move from state 0 is toward state 1.

Hence we have to prove our statement on the distribution of residual service times.
It is not clear at this point, whether the departure process is Poisson, since there are no
departures when the queue is empty. Hence we cannot a priori apply Theorem 6.6 in
a straightforward way. However, within a busy period the departure times behave as a
Poisson process. We formalize this idea in the following theorem.

Theorem 7.3.– F any t ≥ 0, letR(t) be the residual time at t before the next departure.
Then, conditionally to {X(t) > 0}, the random variable R(t) follows the distribution
ε(µ).

Proof. We denote T0 < T1 < · · · the successive departure times, and for any t ≥ 0,
Bt ∈ N∗, the index of the last customer who entered an empty system before t. In
other words, TBt represents the starting time of the last busy period started before t.
From there, we mark the departure times of the server by a point process as follows

T̃ t0 = TBt ;

T̃ tk = TBt+k−1; k ∈ N∗,
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the k-th departure time of the server since the beginning of the last busy period started
before t. We also denote for any s ≥ TBt ,

M t
s =

k∈N∗
1{T̃ t

k≤s}

and for any u ≥ 0,

M̃ t
u = M t

TBt+u.

The notations are a bit complicated, but the idea is simple: the point process
M̃ t
u, u ≥ 0 marks the departure times since the beginning of the last busy period

started before t, at which we set the origin of the time scale. The number of departures
between the beginning of the busy period and t is given by M̃ t

t−TBt
. On {X(t) > 0}, the

system is never empty between TBt and t and therefore, for any 1 ≤ k ≤ M̃ t
t−TBt

+1,

T̃ tk − T̃ tk−1 = σBt+k−1,

the service time of the k− 1th customer since the beginning of the busy period. These
service times are independent of each other, independent of the past before TBt , and
all of distribution ε(µ) for k ≤ M̃ t

t−TBt
. So, conditionally to {X(t) > 0}, the process

(M̃ t
u, u ≥ 0) is equal in distribution on the interval [0, T̃ t

M̃t
t−TBt

] to a a Poisson process

with parameter µ, for which T̃0 < T̃1 < · · · represent the points and ξ̃0, ξ̃1, . . . the
sizes of the inter-points. We can hence write that for any x,

P (R(t) ≥ x |X(t) > 0)

=
k∈N

P {T̃k + ξ̃k − (t− TBt) ≥ x} ∩ {T̃k ≤ t− TBt < T̃k+1} ,

and we can proceed as in the proof of Theorem 6.6, to conclude.

Embedded Markov Chain

Given the independence assumptions, it is clear that the sequence (X̂n, n ≥ 0) is a
Markov chain with transition matrix Q̂ defined by

Q̂(x, y) =
q(x, y) if x = y

0 if x = y.

The latter is called embedded Markov chain of the Markov process. There cannot be
any transition from one state to itself sinceX is observed only when it changes states.

Definition 7.2.– A Markov process X is called irreducible (respectively recurrent,
transient) if and only if the embedded chain X̂ is irreducible (respectively recurrent,
transient).
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Time

W (t)

TBt = T̃ t0
t T̃ t1

R(t)

T̃ t2 T̃ t3

Time0

M̃ t

1

2

3

Figure 7.2. Notations

Equivalent construction

Another equivalent construction is possible. It is more artificial, however it leads
to more simple proofs for several mathematical properties.

Definition 7.3.– A process X with parameters (ν,Q) is said regular if

q ∞ = sup
x∈E

q(x, x) <∞.

Let X be a regular Markov process with parameters (ν,Q). We set

q̃(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

q(x, x)
q ∞

q(x, y) if x = y,

1 − q(x, x)
q ∞

if x = y.
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Let X̃ be theMarkov chain with initial distribution ν and transition matrix Q̃, andN be
a Poisson process of intensity q ∞, independent of X̃ . The process Y (t) = X̃N(t) has
same distribution asX . Indeed, the paths of this processmay stay for several transitions
in the same state. Let x ∈ E and

τxc = inf{t > 0, Y (t) = x};

τ̃xc = inf{n > 0, X̃n = x}.

Conditionally to X̃(0) = x, τ̃xc is independent of N and follows a geometric
distribution with parameter q(x, x)/ q ∞. But

P(τxc ≥ t |Y (0) = x) = P

⎛
⎝

τ̃xc

j=1

ξj ≥ t

⎞
⎠ ,

where the ξj’s are the inter-points of N , so the random variables are independent of
each other and independent of τ̃xc , and of exponential distribution of parameter q ∞.
From Lemma 7.1, we deduce that the sojourn time in the state x follows an exponential
distribution with parameter q(x, x). In addition, when X̃ jumps, we observe that

P X̃1 = y | X̃1 = X̃0 = x =
q̃(x, y)

1 − q̃(x, x)
= q(x, y) = P X̂1 = y | X̂0 = x .

Note.– We also deduce from this construction that at any fixed s, there is no jump
almost surely, i.e. P(∆X(s) > 0) = 0. Indeed,

P(∆X(s) > 0 = 0) ≤ P(∆N(s) = 1)

= E 1s(x) dN(x) = 1s(x) q ∞ dx = 0.

Therefore,P⊗d s-almost surely,X(s) = X(s−). Indeed, the Lebesgue measure does
not see the jumps since they are in quantity at the most countable.

7.3. Markovian semi-group and infinitesimal generator

Definition 7.4.– LetX be a process with values in E and with rcll (right continuous
with left-hand limits) paths, and let Ft = σ{Xu, u ≤ t}. The process X satisfies the
(simple) Markov property if for any t, s ≥ 0, we have

E [f(X(t+ s)) | Ft] = E [f(X(t+ s)) |X(t)] . [7.2]

The process X is called homogeneous when for any t ≥ 0, for any x ∈ E,

E [f(X(t+ s)) |X(t) = x] = E [f(X(s)) |X(0) = x] . [7.3]
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Let X be a process with rcll paths satisfying [7.2] and [7.3]. For all f ∈ l∞(E)
and all x, y ∈ E, we set

Pt(x, y) = P(X(t) = y |X(0) = x);

Ptf(x) =
y∈E

f(y)Pt(x, y) = E [f(X(t)) |X(0) = x] .

Theorem 7.4 (Kolmogorov’s equation).– For any t ≥ 0, Pt is continuous from
l∞(E) into itself. Moreover, for any t, s ≥ 0, Pt+s = PtPs = PsPt.

Note.– The latter is an identity between operators, that is for any f ∈ l∞(E) and any
x ∈ E,

Pt+sf(x) = Pt(Psf)(x),

or between matrices (although the notion of matrix of infinite size remains unclear):

Pt+s(x, y) =
z∈E

Pt(x, z)Ps(z, y).

The family (Pt, t ≥ 0) is then called a semi-group of operators: the stability property
for “◦” is similar to that of a group, but each element of the family does not necessarily
admit a symmetric element for “◦”.

Proof of Theorem 7.4. Fix t ≥ 0. First, from the definition of Pt we have

Pt 1 = 1 and |Ptf | ≤ Pt|f |.

Moreover, according to the properties of conditional expectation, Ptf ≥ 0 for any
f ≥ 0. So in particular, f ≤ g implies Ptf ≤ Ptg. Therefore if f is bounded, so is
Ptf

|Ptf(x)| ≤ Pt|f |(x) ≤ Pt( f ∞ 1)(x) = f ∞Pt 1(x) = f ∞.

Hence, Pt is continuous from l∞(E) to itself. Moreover,

σ(X(0)) ∨ Ft = Ft,

and according to the interlocking property of conditional expectations, we have for all
s ≥ 0 that

Pt+sf(x) = E [f(X(t+ s)) |X(0) = x]

= E [E [f(X(t+ s)) | Ft] |X(0) = x]

= E [(Psf)(X(t) |X(0) = x]

= Pt(Psf)(x).

The second identity is obtained by conditioning to Fs.
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Notice that by dominated convergence, Ptf(x) tends toward f(x) for any x ∈ E,
since the process X has rcll paths.

Definition 7.5.– We say that a semi-group P is strongly continuous if for any f ∈
l∞(E),

lim
t→0

sup
x∈E

|Ptf(x) − f(x)| = 0.

Definition 7.6.– Let P be a strongly continuous semi-group. Let DomA be the set of
functions f for which for all x ∈ E, t−1 (Ptf(x) − f(x)) has a limit when t tends to
0. The infinitesimal generator A of the semi-group P is defined on DomA and for all
x ∈ E by

Af(x) = lim
t→0

1
t
(Ptf(x) − f(x)). [7.4]

Theorem 7.5.– Let P be a strongly continuous semi-group of infinitesimal
generator A.

(a) For all f ∈ DomA and t ≥ 0, the function

x→
t

0

Psf(x) d s

belongs to DomA and

Ptf − f = A
t

0

Psf d s. [7.5]

(b) For f ∈ DomA and t ≥ 0, the function Ptf belongs to DomA and

d

dt
Ptf = APtf = PtAf. [7.6]

(c) For f ∈ DomA and t ≥ 0, the following identity holds.

Ptf − f =
t

0

APsf d s =
t

0

PsAf d s. [7.7]

Proof. Fix t ≥ 0. By definition of A, we must show that

1
h

(Ph − Id)
t

0

Psf(x) d s converges as h→ 0.
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But

(Ph − Id)
t

0

Psf(x) d s =
t

0

PhPsf(x) d s−
t

0

Psf(x) d s

=
t

0

Ps+hf(x) d s−
t

0

Psf(x) d s

=
t+h

h

Psf(x) d s−
t

0

Psf(x) d s

=
t+h

t

Psf(x) d s−
h

0

Psf(x) d s.

As P is a strongly continuous semi-group, the continuity at 0 implies that at any point
s, that is to say that for all f ∈ l∞(E), the mapping (s → Psf) is continuous from
R+ to l∞(E). We thus have the following limit.

lim
h→0

1
h

t+h

t

Psf(x) d s−
h

0

Psf(x) d s = Ptf(x) − f(x).

For h > 0, we set Ahf = h−1(Phf − f). It is easily seen that

AhPtf = h−1(Pt+hf − Ptf) = Pt(h−1(Phf − f)) = PtAhf.

As f ∈ DomA, Ahf tends to Af as h tends to 0, therefore AhPtf also converges,
which amounts to say that Ptf belongs to DomA and that [7.6] holds. Finally, the
identity [7.7] is an immediate consequence of [7.5] and [7.6].

This can be interpreted very easily. Informally, [7.6] implies that

Ptf = exp(tA)f.

The sense of the latter expression is well-known if A is a matrix. The fact that A can
be an operator (a matrix of “infinite size”) requires some mathematical adjustment, but
the key point is there. Written in this way, it becomes obvious, for instance, thatA and
Pt commute (see [7.6]) and that

A−1f =
∞

0

Ptf d t,

keeping in mind the value of
∞
0

exp(at) d t when a is negative.
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Theorem 7.6.– LetX beaprocesswith values inE, with rcll trajectories and satisfying
properties [7.2] and [7.3]. The pair (ν, A) completely determines the distribution of
X . Particularly, for any integer n ≥ 1, for any bounded functions fj , j = 1, . . . , n
defined on E and for any t1 < · · · < tn,

E

⎡
⎣

n

j=1

fj(X(tj))

⎤
⎦

=
E

Pt1(f1Pt2−t1(f2 . . . Ptn−1−tn−2
(fn−1Ptn−tn−1

fn)) . . .)(x) d ν(x).

[7.8]

Proof. In view of Theorem 7.5, P fully determines A. Assume for a while that [7.8]
holds. By applying it to fj = 1Aj , where Aj is any subset of E, we see that the term
on the left-hand side equals

P(X(t1) ∈ A1, . . . , X(tn) ∈ An).

Finite-dimensional distributions of X are hence completely characterized by (ν, A).
According to the extension Theorem, we deduce that the distribution of X is fully
determined by (ν, A). It remains to show [7.8]. For n = 1, this is the very definition
of P . Let us assume that the result holds true for some n ≥ 1. By conditioning and
according to the definition of P , we have

E

⎡
⎣
n+1

j=1

fj(X(tj))

⎤
⎦ = E

⎡
⎣

n

j=1

fj(X(tj))E [fn+1(X(tn+1)) | Ftn ]

⎤
⎦

= E f1(X(t1)) . . . fn−1(X(tn−1))(fnPtn+1−tnfn+1)(X(tn)) .

As fnPtn+1−tnfn+1 is bounded, the result follows by induction.

Theorem 7.7.– LetX be a process with values in E, having rcll paths and satisfying
the properties [7.2] and [7.3]. The processX satisfies the strong Markov property: for
any stopping time τ , for any bounded function F :D(R+, E) → R,

E [F (θτX) | Fτ ] = E [F (X) |X(0) = X(τ)] . [7.9]

Proof. Let us assume at first that τ takes its values in the countable setT = {tj , j ≥ 1}.
The events {τ ≤ t} and {τ > t} belong, by definition of a stopping time, toFt. Hence,

{τ = t} =

⎛
⎝{τ ≤ t} ∩

s<t, s∈T

{τ > s}

⎞
⎠ ∈ Ft.
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We can then follow the proof of the strong Markov property for Markov chains (see
(3.6)), replacing n by tn, to obtain that for any function f ∈ l∞(E),

E [f(X(τ + s)) | Fτ ] = E [f(X(τ + s) |X(τ)] = Psf(X(τ)). [7.10]

Now, for τ an arbitrary stopping time, we consider the sequence of stopping times
{τn, n ≥ 1} defined by

τn =
∞

k=0

k + 1
2n

1[k2−n, (k+1)2−n](τ).

This sequence converges decreasingly toward τ . As X has right-continuous paths,
X(τn + s) tends a.s. to X(τ + s). Therefore, for any A ∈ Fτ ⊂ Fτn , by dominated
convergence we have that

E [f(X(τ + s)) 1A] = lim
n→∞

E [f(X(τn + s)) 1A]

= lim
n→∞

E [Psf(X(τn)) 1A] = E [Psf(X(τ)) 1A] .

Consequently, [7.10] remains true for any stopping time τ .

By successive conditioning, for 0 < s1 < · · · < sk, we therefore have that

E

⎡
⎣

k

j=1

fj(X(τ + sj)) | Fτ

⎤
⎦ = (Psk−sk−1

fk . . . Ps1f1)(X(τ))

= E

⎡
⎣

k

j=1

fj(X(τ + sj)) |X(τ)

⎤
⎦ .

But in view of [7.8], we also have

E

⎡
⎣

k

j=1

fj(X(sj)) |X(0) = x

⎤
⎦ = (Psk−sk−1

fk . . . Ps1f1)(x).

Therefore,
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E [F ◦ θτ |X(τ) = x] = E [F |X(0) = x] ,

for all functions F of the form j fj . By monotone class, this result remains true for
all bounded functions from D(R+, E) to R, hence [7.9].

Definition 7.7.– Let X be a regular Markov process of parameters (ν, Q). For f ∈
l∞(E), we set

AQf(x) = q(x, x)
y=x

(f(y) − f(x))q(x, y).

By identifying f as the column vector (f(x), x ∈ E) (after rearranging the elements
of E, which is possible since there is an injection from E into N), we can rewrite the
previous identity as a matrix product, by introducing the matrix AQ, defined by

AQ(x, y) =
−q(x, x) if x = y;
q(x, y)q(x, x) if x = y.

[7.11]

Notice in particular that AQ(x, y) = (AQ 1y)(x) for any x, y.

Theorem 7.8.– Let X be a regular Markov process with parameters (ν, Q). The
process X satisfies the simple Markov property [7.2] and the homogeneity property
[7.3]. The associated semi-group is strongly continuous. Its infinitesimal generator is
AQ, and its domain is l∞(E).

Proof. Let us start from the second pathwise construction of X . In this case, the
knowledge of Ft amounts in particular to that of the number of jumps of N before t
and the value of X after the last jump of N before t. By the very construction of the
paths of X , these two quantities are the only ones that are useful for determining the
sequel of the trajectory. Therefore, we have that

E [f(X(t+ s)) | Ft] = E f(X(t+ s)) |N(t), X̃N(t)

=
n≥0

E f(X(t+ s)) 1{N(t+s)−N(t)=n} |N(t), X̃N(t)

=
n≥0

E f(X̃N(t)+n) 1{N(t+s)−N(t)=n} |N(t), X̃N(t) .

As X̃ and N are independent and N has independent increments, we have

E [f(X(t+ s)) | Ft] =
n≥0

Q̃(n)f(X̃N(t))e− q ∞ s ( q ∞s)n

n!
.
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Moreover,

E [f(X(t+ s)) |X(t)]

=
n≥0

E E f(X(t+ s)) 1{N(t+s)−N(t)=n} |N(t), X(t) |X(t)

=
n≥0

E E f(X̃N(t)+n) 1{N(t+s)−N(t)=n} |N(t), X̃N(t) |X(t)

= E

⎡
⎣
n≥0

Q̃(n)f(X̃N(t))e− q ∞ s ( q ∞s)n

n!
|X(t)

⎤
⎦

=
n≥0

Q̃(n)f(X̃N(t))e− q ∞ s ( q ∞s)n

n!
,

in view of the first part of the proof, and the fact that X(t) = X̃N(t). The simple
Markov property is thus satisfied. We can also deduce from the last equation, that

E [f(X(t+ s)) |X(t) = x] =
n≥0

Q̃(n)f(x)e− q ∞ s ( q ∞s)n

n!
.

The term on the right-hand side does not depend on t, so the homogeneous property
holds as well.

Theorem 7.9.– Let X be a process with values in the E, satisfying [7.2] and [7.3].
Let ν be the distribution of X(0), and A its infinitesimal generator. Then the process
X is a Markov process with parameters (ν, QA), where

QA(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

|A(x, x)| if y = x;

A(x, y)
|A(x, x)| if y = x.

[7.12]

Proof. Let us set T0 = 0 and for any integer n,
⎧
⎨
⎩
Tn+1 = inf{t > Tn, X(t) = X(Tn)}
ξn = Tn+1 − Tn,

X̂n = X(Tn),

with the usual convention inf ∅ = ∞.

Let x ∈ E and for any u ≥ 0, g(u) = P(T1 > u |X0 = x). Let us show that
g is a solution of the functional equation characteristic of the exponential function.
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According to [7.2] and [7.3], we have

g(u+ v) = P(T1 > u+ v |X0 = x)

= E 1{X(s)=x, s∈[0,u]} 1{X(t)=x, t∈[u,u+v]}

= E 1{X(s)=x, s∈[0,u]} E 1{X(t)=x, t∈[u,u+v]} | Fu
= E 1{X(s)=x, s∈[0,u]} E 1{X(t)=x, t∈[0,v]} |X0 = x

= E 1{X(s)=x, s∈[0,u]} g(v)

= g(u)g(v).

As g is bounded, we deduce from this the existence of a q(x) ≥ 0, such that

g(u) = exp(−q(x)u).

The sojourn time in the initial state thus follows an exponential distribution.

By definition of a stopping time, the event {T1 > u} belongs to Fu. Moreover, on
{T1 > u}, X(u) = X(0) and thus

P(X̂1 = y, T1 > u |X(0) = x) = Ex 1[u,∞)(T1)Ex 1{y}(X̂1) | Fu

= Ex 1[u,∞)(T1)Ex 1{y}(X̂1) |X0 = x .

As the quantity P(X̂1 = y |X0 = x) is deterministic, it goes off the expectation.
Therefore, setting

P(X̂1 = y |X(0) = x) = q(x, y),

we can write

P(X̂1 = y, T1 > u |X(0) = x) = q(x, y) exp (−(q(x)u)). [7.13]

We deduce from [7.13] that conditionally toX(0) = X̂0, X̂1 and T1 are independent.
Hence, we have obtained what we aimed for, at least until the first jump of X: a
sojourn time of exponential distribution of parameter depending on the initial state,
then a choice of the new state independently of the sojourn time.

Let us now assume that for a given n, for j ≤ n− 1, for any y ∈ E and any u ≥ 0,
the following identity holds.

P(X̂j+1 = y, ξj > u | X̂0, . . . , X̂j , T1, . . . , Tj)

= q(X̂j , y) exp(−q(X̂j , X̂j)u).
[7.14]
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Figure 7.3. Graphic representation of the transition rates of the M/M/1 queue

Given that the knowledge of X̂0, . . . , X̂n, T1, . . . , Tn amounts to that of the whole
past of the process until Tn, we have

P(X̂n+1 = y, ξn > u | X̂0, . . . , X̂n, T1, . . . , Tn)

= P(X̂n+1 = y, ξn > u | FTn).

According to the strong Markov property (see Theorem 7.7), the latter quantity can be
transformed as follows.

P(X̂n+1 = y, ξn > u | FTn) = P(X̂n+1 = y, ξn > u | X̂n)

= PX̂n
(X̂1 = y, ξ0 > u)

= q(X̂n, y) exp(−q(X̂n, X̂n)u),

from [7.13]. Relation [7.14] is verified at rank n. In means in particular that we can
construct the trajectories of X as in Definition 7.1. By identification, [7.12] follows
from [7.11] and Theorem 7.8.

Example (Example 7.1 continued: M/M/1 queue).– In view of [7.11] and the results
of Example 7.1, the infinitesimal generator of the process counting the number of
customers in the M/M/1 queue is given for any i ∈ N by

⎧
⎨
⎩
A(i, i+ 1) = λ,
A(i, i) = −(λ+ µ 1[1,+∞)(i)),
A(i, i− 1) = µ if i > 0.

We often prefer the following matrix representation:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ+ µ) λ (0)

. . .
(0) µ −(λ+ µ) λ

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
,

or the graphic representation of Figure 7.3.
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Theorem 7.10.– LetX be a regular Markov process of parameters (ν, Q). We denote
X̂ , its embedded chain. The following properties are equivalent:

(i) X̂ is irreducible;

(ii) For any x, y ∈ E, there exists t > 0 such that pt(x, y) > 0;
(iii) For any x, y ∈ E, for any t > 0, pt(x, y) > 0.

Proof. In view of the second pathwise construction of X , the chain X̃ is independent
of N , hence

pt(x, y) = P(X(t) = y |X(0) = x)

=
∞

n=0

P(X(t) = y, N(t) = n |X(0) = x)

=
∞

n=0

P(N(t) = n)P(X̃n = y | X̃0 = x)

=
∞

n=0

e− q ∞t ( q ∞t)n

n!
Q̃(n)(x, y).

By the definition of irreducibility, the equivalence becomes straightforward.

Invariant probability

Definition 7.8.– A measure µ on E is said invariant for the Markov process X , if
X(0) ∼ µ implies that X(t) ∼ µ for any t ≥ 0.

Theorem 7.11.– Let X be a regular Markov process with parameters (ν, Q). A
measure µ is invariant, if and only if it satisfies the equations

Af dµ = 0, for any f ∈ l∞(E). [7.15]

In matrix notation, the latter amounts to µA = 0, where µ is the row vector (µ(x), x ∈
E) and 0 = (0, 0, ...).

Proof. Fix t ≥ 0. That X(t) and X(0) have the same distribution, amounts to

E [f(X(t))] = E [f(X(0))],

for any f ∈ l∞(E). But

E [f(X(t))] = E [E [f(X(t) |X(0)]] = E [Ptf(X(0))] =
E

Ptf(x) dµ(x).
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So µ is an invariant measure if and only if

E

Ptf(x) dµ(x) =
E

f(x) dµ(x).

Differentiating the latter equation, we deduce [7.15]. Conversely, if [7.15] holds, then
in view of [7.7] and Fubini’s Theorem,

E

(Ptf(x) − f(x)) dµ(x) =
E

t

0

PsAf(x) d s dµ(x)

=
t

0 E

PsAf(x) dµ(x) d s

= 0.

As E is discrete, [7.15] can be rewritten as

x∈E z∈E
A(x, z)f(z) µ(x) = 0,

which, by taking f = 1y , yields to

x∈E
µ(x)A(x, y) = 0 for all y ∈ E.

In the matrix language, this exactly means that the product of the row vector µ by the
matrix A is zero.

Similarly to the discrete case, let us set

τ1
x = inf {t > 0, X(t) = x} ,

with the convention τ1
x = ∞, if X(t) = x for all t > 0.

Theorem 7.12.– Let X be a regular, irreducible and recurrent Markov process.
There exists a unique invariant measure up to a multiplicative factor. This measure
is proportional to one of the following three measures:
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(i) for any y ∈ E,

µ(y) = Ex

τ1
x

0

1{X(s)=y} d s , [7.16]

where x is an arbitrary fixed element of E;

(ii) for any y ∈ E,

µ(y) = µ̂(y)/q(y, y),

where µ̂ is an invariant measure of the embedded chain X̂;

(iii) a solution µ to the matrix equation µ A = 0.

Proof. To prove the item (i), we have to check that for any t > 0, for any f ∈ l∞(E),

E

Ptf(x) dµ(x) =
E

f(x) dµ(x). [7.17]

But according to [7.16], we have that

E

Ptf(y) dµ(y) =
y∈E

Ex

τ1
x

0

Ptf(y) 1{X(s)=y} d s

=
y∈E

Ex

∞

0

Ptf(X(s)) 1{X(s)=y} 1{s<τ1
x} d s

= Ex

∞

0

E [f(X(s+ t)) | Fs] 1{s<τ1
x} d s

=
∞

0

Ex E f(X(s+ t)) 1{s<τ1
x} | Fs d s

=
∞

0

Ex f(X(s+ t)) 1{s<τ1
x} d s

= Ex

τ1
x+t

t

f(X(s)) d s

= Ex

τ1
x

t

f(X(s)) d s + Ex

τ1
x+t

τ1
x

f(X(s)) d s .
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In view of Markov property and noticing that, by definition of τ1
x , the right-continuity

of X implies that X τ1
x = x, we obtain that

E

Ptf(y) dµ(y) = Ex

τ1
x

t

f(X(s)) d s + Ex

t

0

f(X(s)) d s

= Ex

τ1
x

0

f(X(s)) d s

=
y∈E

Ex

τ1
x

0

f(X(s)) 1{X(s)=y} d s

=
y∈E

Ex

τ1
x

0

f(y) 1{X(s)=y} d s

=
E

f(y) dµ(y).

Concerning the item (ii), let us recall that with the notations of Chapter 3,

τ̂1
x = inf{n > 0, X̂n = x}.

By using the first pathwise construction of X , we obtain that

Ex

τ1
x

0

1{X(s)=y} d s =
∞

n=1

Ex ξn 1y(X̂n−1) 1{n≤τ̂1
x} .

The event {n ≤ τ̂1
x} is the complementary of {τ1

x < n} = {τ1
x ≤ n−1}, so it is F̂n−1

measurable (with obvious notations). Thus by construction,

E ξn | F̂n−1 = E ξn | X̂n−1 =
1

q(X̂n−1, X̂n−1)
.

From this, we deduce that

Ex ξn 1y(X̂n−1) 1{n≤τ̂1
x} = Ex E ξn | F̂n−1 1y(X̂n−1) 1{n≤τ̂1

x}

=
1

q(y, y)
Px(X̂n−1 = y, τ̂1

x ≥ n),

and we get

Ex

τ1
x

0

1{X(s)=y} d s =
1

q(y, y)

∞

n=1

Px(X̂n−1 = y, τ̂1
x ≥ n) =

1
q(y, y)

µ̂(y),

where µ̂ is a stationary measure of X̂ . The proof is complete, as item (iii) has already
been shown in Theorem 7.11.
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Example (Example 7.1 continued: M/M/1 queue).– For this example, the system

(π(0), π(1), · · · , π(i), · · · )

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ+ µ) λ (0)

. . .
(0) µ −(λ+ µ) λ

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

is equivalent to the equations

−λπ(0) + µπ(1) = 0

λπ(0) − (λ+ µ)π(1) + µπ(2) = 0

...

λπ(i− 1) − (λ+ µ)π(i) + µπ(i+ 1) = 0

...

By adding these equations successively by pairs, we obtain that

−λπ(0) + µπ(1) = 0,−λπ(1) + µπ(2) = 0, . . .− λπ(i) + µπ(i+ 1) = 0,

that is for any integer i,

π(i+ 1) = ρπ(i) with ρ = λ/µ,

or in other words

π(i) = ρiπ(0).

We know from the study of the G/G/1 queue in Section 4.1, and from the particular case
of M/GI/1 treated in Chapter 5, that the queue is stable, in that the process counting
the number of customers is recurrent, if and only if ρ < 1. Indeed, provided that the
latter holds true, the normalization equation

i∈N

π(i) = 1

implies that the unique invariant probability is given for all i ∈ N by

π(i) = ρi(1 − ρ).

In other words, the size of the system at equilibrium follows a geometric distribution
with parameter ρ, shifted from 1.
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Given the strongMarkov property of Theorem 7.7, the proof of the following result
is exactly similar to its analog in the discrete case, i.e. Theorem 3.22.

Theorem 7.13.– Let X be a regular, irreducible, and recurrent Markov process. We
denote π, its only invariant probability. For any f ∈ L1(π), we have

lim
t→∞

1
t

t

0

f(X(s)) d s =
x∈E

f(x)π(x).

Note.– This Theorem provides an interesting technique for approaching π. In fact,
it suffices to simulate a trajectory of the process following, for instance, the pathwise
construction presented in the beginning of this chapter, and to compute the proportion
of time spent by the process in each state. This will provide an approximation of π in the
long run, allowing then to compute the expectations of several more general functions
at equilibrium . It remains to determine what “long” means, that is to determine the rate
of this convergence. This is beyond the scope of this book, but is however an important
topic in current research.

Theorem 7.14.– Let X be a regular irreducible Markov process on E and x ∈ E. If
X is transient, then

pt(x, x) −→
t→∞

0.

If X is recurrent of invariant probability π, then

pt(x, y) −→
t→∞

π(y) for all y ∈ E and Ex τ1
x =

1
π(x)

.

Proof. We develop the proof only in the recurrent case, the transient case is addressed
similarly. Let h > 0 and Xh

n = X(nh). According to Theorem A.12,

E f(Xh
n) |Xh

j , j = 0, · · · , n− 1 = E f(Xh
n) |Xh

n−1

= E [f(X(nh)) |X((n− 1)h)] = Phf(X((n− 1)h)).

The sequence Xh is a thus a Markov chain with transition operator Ph. In view of
Theorem 7.10,Xh is irreducible and according to [7.17], π is an invariant probability
for this chain. According to Theorem 3.26, for any x ∈ E,

pnh(x, y)
n→∞−−−−→ π(y).

Since we have

|pt(x, y) − ps(x, y)| =
t

s

Apu(x, y) du

≤
t

s

|Apu(x, y)| du

≤ q ∞(t− s),
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we deduce that

|pt(x, y) − π(y)| ≤ q ∞|t− nh| + |pnh(x, y) − π(y)|.

Let > 0, and fix h such that h||q||∞ < and n0 such that

n ≥ n0 =⇒ |pnh(x, y) − π(y)| ≤ .

If t ≥ n0h, then for some n such that |t− nh| ≤ h, we have |pt(x, y) − π(y)| ≤ 2 .
Thus,

lim
t→∞

pt(x, y) = π(y).

We know that the invariant probability is proportional to the measure defined in
[7.16]. But

y∈E
Ex

τ1
x

0

1{y}(X(s)) d s = Ex τ1
x ,

hence by applying [7.16] for y = x, we get

π(x) =
1

Ex [τ1
x ]
,

hence the result.

7.4. Martingale problem

Definition 7.9.– Let ν be a probability measure on the countable space E, and A a
continuous operator from l∞(E) in itself, that is for some c > 0, for any f ∈ l∞(E),

Af ∞ = supx∈E |Af(x)| ≤ c f ∞.

Then, we denote

A ∞ = sup
f ∞=1

Af ∞.

Theorem 7.15.– The process X is a regular Markov process with initial distribution
ν and infinitesimal generatorA, if and only if the distribution ofX(0) is ν and for any
bounded function f , the process

Mf: t→ f(X(t)) − f(X(0)) −
t

0

Af(X(s)) d s

is a local martingale, whose quadratic variation is given for all t by

Mf,Mf
t =

t

0

Af2(X(s)) − 2f(X(s))Af(X(s)) d s. [7.18]
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Proof. Let f ∈ l∞(E). Assume at first that the processes

t→
t

0

Af(X(s)) d s and t→
t

0

Af2(X(s)) d s

are bounded. Notice that the process (s → Af(X(s))) is adapted. For any s ≥ 0, we
have

E Mf (t+ s) | Ft

= E [f(X(t+ s)) | Ft] −
t+s

0

E [Af(X(u)) | Ft] du

= E [f(X(t+ s)) |X(t)] −
t

0

Af(X(u)) du−
t+s

t

E [Af(X(u)) | Ft] du

= Psf(X(t)) −
t

0

Af(X(u)) du−
s

0

PuAf(X(t)) du.

From [7.5],

Psf(X(t)) −
s

0

PuAf(X(t)) du = f(X(t)),

thus

E Mf (t+ s) | Ft = f(X(t)) −
t

0

Af(X(u)) du = Mf (t),

which means thatMf is a martingale.

Now, for any f ∈ l∞(E) and any t ≥ 0, f2(X(t)) is integrable. On the one hand,
in view of the argument of the first part of this proof, we can write

f2(X(t)) − f2(X(0)) =
t

0

Af2(X(s)) d s+Mf2
(t). [7.19]

On the other hand, Itô’s Formula for rcll martingales with finite variation (Theorem
A.23), gives

f2(X(t)) − f2(X(0)) = 2
t

0

f(X(s−)) dMf (s)

+ 2
t

0

f(X(s−))Af(X(s)) d s+ [f ◦X, f ◦X]t.

[7.20]
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By comparing equations [7.19] and [7.20] and by definition of the quadratic variation,
we deduce that

[f ◦X, f ◦X]t =
t

0

Af2(X(s)) d s− 2
t

0

f(X(s−))Af(X(s)) d s.

As this process is continuous and adapted, it is predictable, hence [7.18]. Notice, that
we can replace f(X(s−)) by f(X(s)) in the second integral, since there is no fixed
jump in s, and hence d s-almost surely X(s−) = X(s) (see the Note at the end of
section 7.2).

We now address the general case. Let for any integer n,

τn = inf{t ≥ 0,
t

0

|Af(X(s))| d s > n or
t

0

|Af2(X(s))| d s > n}

andMf
τn

(t) = Mf (τn∧t). Let us notice that by construction, |Mf
τn

(t)| ≤ 2 f ∞ +n,
thereforeMf

τn
is uniformly integrable. In addition, since A is continuous from l∞(E)

into itself, τn tends toward infinity, so {τn, n ≥ 1} reduces Mf . We observe finally
that for any stopping time τ ,

Mf
τ (t) = f(X(t ∧ τ)) − f(X(0)) −

t∧τ

0

Af(X(s)) d s

= f(Xτ (t)) − f(Xτ (0)) −
t∧τ

0

Af(Xτ (s)) d s,

where Xτ (s) = X(τ ∧ s). Therefore, we can apply the above argument toMf
τn

and
Xτn . As a result, Mf

τn
is a square integrable martingale whose quadratic variation is

given by [7.18].

For the converse, let us take for granted Lemma 7.16 below. We will show that for
any f ∈ l∞(E), for any t, s ≥ 0,

E [f(X(t+ s)) | Ft] = lim
n→∞

(Id−n−1A)−[ns]f(X(t)). [7.21]

The conditional expectation given Ft appears as depending only on X(t) and on s,
implying homogeneity and the simple Markov property. Let A be the infinitesimal
generator of X . According to the first part of this proof,

t→
t

0

(A−A )f(X(s)) d s

is a martingale which is null at 0. In addition, this process is continuous and has finite
variations. This implies that the process is null P ⊗ dt-almost surely. Moreover,

(A−A )f(x) = lim
t→0

1
t

t

0

(A−A )f(X(s)) d s = 0,
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hence A = A . Finally, as A is continuous from l∞(E) into itself and

sup
x∈E

|a(x, x)| = sup
x∈E

|A 1{x}(x)| ≤ c,

we conclude that X is a regular Markov process.

We now show [7.21]. By possibly studying X locally, we can always assume that
Eλ, f is a uniformly integrable martingale. Applying [7.22] for λ = n, we obtain that

f(X(t)) = E
∞

0

e−ns((n Id−A)f)(X(t+ s)) d s | Ft .

Applying this result to (Id− 1
nA)−1f yields

Id− 1
n
A

−1

f(X(t)) = nE
∞

0

e−nsf(X(t+ s)) d s | Ft

= E
∞

0

e−sf(X(t+ s/n)) d s | Ft .

It follows by induction that for any integer k,

Id− 1
n
A

−k
f(X(t))

= E
∞

0

. . .
∞

0

e−(s1+...+sk)f(X(t+ n−1(s1 + . . .+ sk))) d s1 . . . d sk | Ft .

Let {Zk, k ≥ 1} be a sequence of independent random variables, independent of X ,
and of exponential distribution with parameter 1. For any non-zero u, the strong Law
of Large Numbers states that

u
1
nu

nu

j=1

Zj
n→∞−−−−→ uE [Z1] = u.

We therefore have

∞

0

· · ·
∞

0

e
−(s1+···+s

nu
)
f(X(t+ n−1(s1 + · · · + sk))) d s1 . . . d sk

= E

⎡
⎣f

⎛
⎝X

⎛
⎝t+ u(nu)−1

nu

j=1

Zj

⎞
⎠
⎞
⎠
⎤
⎦ n→∞−−−−→ f(X(t+ u)),

and obtain [7.21] by dominated convergence.
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Note.– The derivation of the quadratic variation is interesting in itself, as it is one of
the keystones of many approximation methods for processes, such as fluid limits, mean
fields and diffusion approximations.

Lemma 7.16.– Let X be a rcll process. For any f ∈ l∞(E), the process

Mf: t→ f(X(t)) − f(X(0)) −
t

0

Af(X(s)) d s

is a local martingale if, and only if, for any λ ∈ R, the process

Eλ, f: t→ e−λtf(X(t)) +
t

0

e−λs(λf(X(s)) −Af(X(s))) d s

is a local martingale. In particular, if the sequence {τn, n ≥ 1} reduces Eλ, f , we
obtain that

f(Xτn(t)) = E
∞

0

e−λs(λf(Xτn(t+ s)) −Af(Xτn(t+ s))) d s | Ft . [7.22]

Proof. By possibly studyingX locally, we can always assume that the processesEλ, f

and Mf are uniformly integrable. We set for any t ≥ 0, U(t) = exp(−λt). This
process is continuous and with bounded variation, so according to the integration by
parts Formula, we have for any t,

U(t)Mf (t) =
t

0

U(s) dMf (s) −
t

0

Mf (s)λe−λs ds. [7.23]

By assumption, Mf is a martingale, hence so is the case for U dMf by the very
construction of the stochastic integral. Let us now notice that

t

0

s

0

Af(X(u)) duλe−λs d s =
t

0

Af(X(u))
t

u

λe−λs d s du

=
t

0

Af(X(u))(e−λu − e−λt) du.

[7.24]

Substituting [7.24] into [7.23], we see that the process

t→ U(t)Mf (t) +
t

0

Mf (s)λe−λs ds

= e−λtf(X(t)) +
t

0

f(X(s))λe−λs d s−
t

0

Af(X(s))e−λs d s

is a martingale, hence the result.
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7.5. Reversibility and applications

In this section, (X(t), t ≥ 0) is a homogeneousMarkovprocess, regular, irreducible
and recurrent with rcll paths on the countable space E, having transition operator Q
and infinitesimal generatorA. Hereafter, we will say that (X(t), t ≥ 0) is stationary if
it admits an invariant probability π and if the distribution of X(0) is π. Without loss
of generality, we may assume that π(x) > 0 for any x ∈ E.

Definition 7.10.– Assume that (X(t), t ≥ 0) is stationary. For any T > 0, the
reversed process of (X(t), t ≥ 0) from T is the process X̄T (t), t ∈ [0, T ] defined
for any t ∈ [0, T ] by

X̄T (t) = X((T − t)−) = lim
s t

X((T − s)).

Let us recall (see the Definition A.5 for more details) that l2(N, π) is the Hilbert
space of square integrable sequences for the measure π.

Lemma 7.17.– The generator A is a continuous operator from l2(N, π) into itself.
Therefore it admits an adjoint Ā in l2(N, π), defined by

Ā(x, y) = A(y, x)
π(y)
π(x)

.

Proof. Let us recall that A(x, x) = − y=xA(x, y) < 0, thus we have

y∈E
|A(x, y)| = 2|A(x, x)|.

Therefore, the measure ν defined by

ν(y) =
1

2|A(x, x)| |A(x, y)|, for any y ∈ E,

is a probability measure on E. Consequently,

⎛
⎝
y∈E

A(x, y)f(y)

⎞
⎠

2

≤ 4A(x, x)2

⎛
⎝
y∈E

|A(x, y)|
2|A(x, x)|f(y)

⎞
⎠

2

≤ 2|A(x, x)|
y∈E

|A(x, y)||f(y)|2

≤ 2 A ∞
y∈E

|A(x, y)||f(y)|2,
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from Jensen’s inequality and the regularity of A. Therefore,

x∈E
(AF )(x)2π(x) ≤ 2 A ∞

x∈E y∈E
|A(x, y)||f(y)|2π(x)

= 2 A ∞
y∈E

(1 + |A(y, y)|)π(y)f(y)2

≤ 2 A ∞(1 + A ∞) f 2
l2(π).

Thus, A is continuous from l2(N, π) into itself, hence so is the case for the adjoint Ā
of A, defined for any u, v ∈ l2(N, π) by

Au, v l2(N, π) = u, Av l2(N, π). [7.25]

Furthermore,

Ā(x, y) = A(y, x)
π(y)
π(x)

,

since as Ā(x, y) = (Ā 1{x})(y), taking u = 1{y} in [7.25] gives

A 1{y} (x)π(x) = Ā 1{x} (y)π(y),

that is

A(x, y)π(x) = Ā(y, x)π(y).

The proof is complete.

Theorem 7.18.– Under the ongoing assumptions, for any T > 0 the process
X̄T (t), t ∈ [0, T ] is a Markov process having rcll paths, and of infinitesimal

generator Ā.

Proof. The paths of X̄T (t), t ≥ 0 are a.s. right-continuous, since by almost sure
existence of a left-hand limit at any point for X , we have a.s.

lim
h 0

X̄T (t+ h) = lim
h 0

lim
h 0

X(T − (t+ h) − h )

= lim
0
X(T − (t+ )) = X(T − t)− = X̄T (t).

The existence of a left-hand limit is proven similarly. Hence it suffices to take the
left-hand limit at T − t to make the paths of the reversed process rcll.

With Theorem 7.15 in hand, we must prove that for any f ∈ l∞(E),

t→ f(X̄T (t)) − f(X̄T (0)) −
t

0

Āf(X̄T (r)) d r
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is a local martingale. The filtration is of course that generated by the paths of X̄T and
not those of X , that is F̄t = σ{X̄T (s), s ≤ t}. By using a monotone class argument,
it is necessary and sufficient to prove that for 0 ≤ s1 < . . . < sn ≤ s < t, for any
bounded function ϕ : En → R, we have

E f(X̄T (t)) − f(X̄T (s))

−
t

s

Āf(X̄T (r)) d r ϕ(X̄T (s1), · · · , X̄T (sn)) = 0.

As X is Markov, this identity can be rewritten as

0 = E f(X(T − t)) − f(X(T − s)) −
t

s

(Āf)(X(T − r)) d r

× E ϕ(X̄T (s1), · · · , X̄T (sn)) |X(T − s) ,

which, according to Theorem A.7, is in turn equivalent to the fact that for any
bounded ψ,

E f(X(T − t)) − f(X(T − s))

−
T−s

T−t
(Āf)(X(r)) d r ψ(X(T − s)) = 0.

[7.26]

By introducing the semi-group associated withX and recalling that by stationarity, the
distribution of X(T − s) is that of X(0), that is to say π, we obtain on the one hand,

E [(f(X(T − t)) − f(X(T − s)))ψ(X(T − s))]

=
E

ψPt−sf dπ −
E

fψ dπ
[7.27]

and on the other hand, from [7.25] and [7.5],
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E
t

s

Āf(X(T − r)) d r ψ(X(T − s)) =
E

t

s

Pr−sψĀf d r dπ

=
t−s

0 E

PrψĀf dπ d r

=
t−s

0 E

APrψf dπ d r

=
E

t−s

0

APrψ d rf dπ

=
E

(Pt−sψ − ψ)f dπ.

[7.28]

By substracting [7.28] to [7.27], we obtain [7.26].

Let us notice in particular, that the generator of X̄T (t), t ≥ 0 does not depend
on T , which will be crucial in the construction hereafter.

Definition 7.11.– The process (X(t), t ≥ 0) is said to be reversible, if it is stationary
and for any T > 0, of same distribution as its reversed process on [0, T ].

For any T > 0,X(0) and X̄T (0) have the same distribution π. As the distribution
of a Markov process is fully determined by its generator and its initial distribution,
we deduce from Theorem 7.18 that (X(t), t ≥ 0) is reversible if and only if for any
x, y ∈ E,

π(x)A(x, y) = π(y)A(y, x). [7.29]

This relation, known as local balance equation, is a “mirror” property: the transition
rate from x to y equals that from y to x.

The following result will be used in Chapter 8.

Lemma 7.19.– Let X be a Markov process on E with generator A and let π, a
probability on E. Define Â(x, y) for any x, y ∈ E such that x = y by

Â(x, y) =
A(y, x)π(y)

π(x)
.

Then, if for all x ∈ E,

y=x

Â(x, y) =
y=x

A(x, y),

then π is the stationary probability of X .
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Proof. For all x ∈ E,

πA(x) =
y∈E

π(y)A(y, x)

= π(x)A(x, x) +
y=x

π(y)A(y, x)

= π(x)A(x, x) +
y=x

π(x)Â(x, y)

= π(x)

⎛
⎝−

y=x

A(x, y) +
y=x

Â(x, y)

⎞
⎠

= 0.

It is a straightforward corollary of the latter result that anyMarkov process satisfying
to a local balance equation is stationary, and hence reversible.

Corollary 7.20.– For any Markov process X on E, if there is a probability π
satisfying [7.29], then X admits π as stationary probability.

Proof. Lemma 7.19 is satisfied for Â = A.

Birth and Death processes

An important class of Markov processes, including most of the processes studied
in the following, enjoys the reversibility property automatically when there exists an
invariant probability: these are the birth and death processes.

Definition 7.12.– A homogeneous Markovian process (X(t), t ≥ 0) with values in
E, where E = N or [[0, n]], is said to be a birth and death process if its infinitesimal
generator is tridiagonal on E, that is for any x ∈ E,

A(x, y) = 0 for any y such that | y − x |≥ 2.

This terminology is inherited from that of population dynamics. If (X(t), t ≥ 0)
represents the size of a given population at any time, the jumps of (X(t), t ≥ 0) only
occur at instants of birth (from x to x+ 1) or death (from x to x+ 1).

Theorem 7.21.– Any stationary birth and death process of distribution π is reversible.
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Proof. As A is tridiagonal, it suffices to check that

π(x− 1)A(x− 1, x) = π(x)A(x, x− 1)

for any x ∈ E, which we verify by induction. Initially,

π(0)A(0, 1) = −π(0)A(0, 0) = π(1)A(1, 0),

since πA(0) = 0. Then, if

π(x− 1)A(x− 1, x) = π(x)A(x, x− 1)

for an index x ≥ 1 such that x+ 1 ∈ E, then

π(x)A(x, x+ 1) = π(x)(−A(x, x) −A(x, x− 1))

= −π(x)A(x, x) − π(x− 1)A(x− 1, x)

= π(x+ 1)A(x+ 1, x),

since πA(x) = 0. The proof is complete.

The following theorem allows us to derive easily many stationary distributions in
practical cases.

Theorem 7.22 (Kelly’s Theorem).– Let (X(t), t ≥ 0) be a reversible Markov process
onE, of infinitesimal generatorA and of invariant probabilityπ. LetF ⊂ E. We define,
for a certain α ≥ 0, the following matrix Ã on E × E:

Ã(x, y) =
αA(x, y) if x ∈ F, y ∈ E \ F ;
A(x, y) if not for x = y;

Ã(x, x) = −
y=x

Ã(x, y) for all x ∈ E.

Then, the Markov process X̃(t), t ≥ 0 of generator Ã is reversible and of invariant

probability π̃ given for any i ∈ E by

π(x) =
Cπ(x) if x ∈ F ;
Cαπ(x) if x ∈ E \ F,

where C = k∈F π(k) + α k∈E\F π(k) −1
is the normalization constant.

Proof. That π̃ defines a probabilitymeasure onE is straightforward. It is thus sufficient
to check that it is reversible, which is immediate by observing that

π̃(x)Ã(x, y) = αCπ(x)A(x, y) = π̃(y)Ã(y, x),

for any x ∈ F and y ∈ E \ F .
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In particular, if we set α = 0, we prevent the process from leaving the subset F
while keeping the reversibility property. We will see an application of this result in
Chapter 9.

7.6. Markov Modulated Poisson Processes

The Markov Modulated Poisson Processes (MMPP) correspond to a class of
Markov processes generalizing the Poisson process, while keeping most of its tractable
characteristics. They naturally appear in themodeling of overflow systems, see Chapter
9. It was once thought they could serve asmodels for data streams. Even if this approach
seems to become obsolete, it is however interesting; see Chapter 1.

Definition 7.13.– Let (J(t), t ≥ 0) be a stationary Markov process with values in
E = [[1,m]]. LetQ its infinitesimal generator and ν its stationary probability. Let λ be
a function from E to R+. The point processN is an MMPP with parametersQ and Λ
if and only if, for any function f with compact support,

E exp −
t

0

f(s) dN(s) = E exp −
t

0

1 − e−f(s) λ(J(s)) d s .

Note.– An MMPP is thus nothing but a Cox process whose intensity, varying over
time, depends on the evolution of a Markov process with finite state space.

The latter definition means that when the phase process J is in phase j, the points
ofN follow a Poisson process of intensity λ(j). When the phase process changes state,
according to the dynamics induced by its infinitesimal generator, the intensity of the
Poisson process changes. Figure 7.4 shows a sample path of a 2-phase MMPP.

Time

Jt

1

2

Figure 7.4. A sample path of a 2-phase MMPP

The process N alone is not Markov. To see this, remark that at any time t, the
remaining time before its next point is exponentially distributed, but with a parameter
depending on the phase. However, the couple process (N, J) is Markovian and its
generator reads as a block matrix. To see this, denote Λ, the diagonal matrix whose
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coefficient in (i, i) is λ(i). With these notations, the infinitesimal generator of (N, J)
is given by

⎛
⎜⎜⎜⎜⎝

Q− Λ Λ
0 Q− Λ Λ

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠
.

Indeed, the events are of two types: arrival or phase change.Anarrival causes a transition
from the state (i, φ) toward (i + 1, φ). A phase change leaves the first component
unchanged and modifies the second one. We deduce from this a simulation algorithm
of a trajectory of an MMPP. We always assume that the state space is E = [[1, m]].

Algorithm 7.1. Construction of a trajectory of an MMPP

Data:m, Q, λ, {i0}, T
Result: A trajectory (tn, n ≥ 1) on [0, T ] of an MMPP (m, Q, λ) of initial

state {i0}.
for i = 1, . . . , m do

ri0 = λi;
for j = 1, . . . , m do

ri, j = ri, j−1 + q(i, j);
end

end
Phase ← i0;
t← 0;
n← 0;
while t ≤ T do

x← sample of a r.v. of distribution Exp λ(Phase) + j q(Phase, j) ;

t← t+ x;
u← sample of a r.v. uniformly distributed on [0, 1];
if u ≤ ri0 then

tn ← t
else

j ← 1;
while u > ri, j do

j ← j + 1;
end
Phase ← j;

end
n← n+ 1

end
return t1, t2, . . . , tn
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Example 7.2.– A typical example of MMPP is given by the overflow process of a
Mλ/Mµ/S/S queue. In such a system, if some server is available, there is no overflow.
If all servers are busy, new arrivals are rejected and form the overflow process. To
represent this system with an MMPP, it suffices to consider as phase process J , the
process counting the number of busy servers, and the function λ defined by

λ(i) =
0 if i < S

λ if i = S.

Indeed, the “arrival” process in the overflow system is that of the original queue, since
all the corresponding customers find a full system, and are thus lost by the queue, and
re-directed toward the overflow system.

Superposition of MMPP

To be applicable in practice (if one think of a network, for instance), a class of
processes must be stable by superposition: if we superpose two processes of the same
class (i.e. Poisson, Cox, MMPP), it is desirable that the “sum” process be of the same
class. We already know that the Poisson processes satisfy this property. We will extend
this to the case of MMPP. This requires to introduce new notations.

Definition 7.14.– Let A and B be two square matrices, respectively of size n and p.
The Kronecker product of A and B, denoted A ⊗ B, is the square matrix of size np
given by

A⊗B =

⎛
⎜⎝
A(1, 1)B A(1, 2)B . . . A(1, n)B

...
...

...
A(n, 1)B . . . . . . A(n, n)B

⎞
⎟⎠.

The Kronecker sum is then defined by

A⊕B = (A⊗ Idp) + (Idn⊗B).

In particular, if A is diagonal it can be associated with function

a :
[[1, n]] −→ R
i −→ A(i, i).

For two diagonal matricesA1 andA2 corresponding to two functions a1 and a2 defined
respectively on [[1, n1]] and [[1, n2]], the matrix A1 ⊕A2 corresponds to the function

a1 ⊕ a2:
[[1, n1]] × [[1, n2]] −→ R
(i, j) −→ A1(i, i) +A2(j, j) = a1(i) + a2(j).
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Theorem 7.23.– Let J1 and J2 be two independent Markov processes of respective
characteristics (E1, A1, ν1) and (E2, A2, ν2). The “couple” process J = (J1, J2)
is a Markov process of characteristics (E1 × E2, A1 ⊕A2, ν1 ⊗ ν2) .

Proof. First, it is obvious that the state space is E = E1 × E2. In view of Theorem
7.15, it suffices to demonstrate that for any function f ∈ l∞(E), the process

t → Θf (t) = f(J1(t), J2(t)) −
t

0

(A1 ⊕A2)f(J1(s), J2(s)) d s

is a martingale. Let us first assume that f = f1 ⊗ f2 with f1 and f2 bounded. Since J1

and J2 are Markov processes for i = 1, 2, we can write for any t ≥ 0 that

fi(Ji(t)) = fi(Ji(0)) +
t

0

Aifi(Ji(s)) d s+Mi(t),

whereM1 andM2 are martingales. Itô’s formula then gives

f1(J1(t))f2(J2(t)) − f1(J1(0))f2(J2(0))

=
t

0

f1(J1(s))A2f2(J2(s)) d s+
t

0

f2(J2(s))A1f1(J1(s)) d s

+
s≤t

∆f1(J1(s))∆f2(J2(s)) +M(t),

where M is a martingale. As J1 and J2 are independent, they have almost surely no
common jumps, hence the second last term is zero. We can therefore write

f1(J1(t))f2(J2(t)) − f1(J1(0))f2(J2(0))

=
t

0

(A1 ⊕ A2)(f1 ⊗ f2)(J1(s), J2(s)) d s+M(t).

The result is hence proven for f = f1 ⊗ f2. By linearity, for all f = n
k=1 f1k ⊗ f2k

and all bounded ψ ∈ Ft, we thus have

E Θf (t+ s)ψ = E Θf (t)ψ for any s ≥ 0. [7.30]

For any bounded function f , there exists a sequence of functions (f l, l ≥ 1) of the
form f l = nl

k=1 f
l
1k ⊗ f l2k and tending uniformly to f . As A1 and A2 are Markov

kernels, Aif ∞ ≤ fi ∞. Therefore, by dominated convergence, Θfk

converges in
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l∞(E) to Θf . As ψ is bounded, [7.30] is also true for any bounded f , therefore Θf is
a martingale. Finally,

ν1 ⊗ ν2(A1 ⊕A2) = ν1 ⊗ ν2(A1 ⊗ Id2 + Id1 ⊗A2)

= ν1A1 ⊗ ν2 + ν1 ⊗ ν2A2

= 0,

and ν1 ⊗ ν2 is thus an invariant measure for the process (J1, J2).

It is interesting to write “by hand” the generator of the process product, and obtain
the form A1 ⊕A2 (see exercise 15).

Theorem 7.24.– Let Ni, i = 1, . . . , K be independent MMPP such that for any i,
Ji takes values in Ei = [[1, mi]], is of infinitesimal generator Ai and of invariant
probability νi. We note Λi as the diagonal matrix of arrival rates for the MMPP Ni.

The superposition process N of the Ni’s is an MMPP process of J phases, whose
infinitesimal generator is given by

A = A1 ⊕A2 ⊕ · · · ⊕AK

and rate function λ = λ1 ⊗ λ2 ⊗ · · · ⊗ λK . The invariant probability of the phases
process is ν1 ⊗ · · · ⊗ νK .

Let us give an insight on the case of two MMPP. As long as neither one of the
phases processes changes phase, customers arrive according to the superposition of
two independent Poisson processes, i.e. a Poisson process of “sum” intensity. Hence,
we have a Poisson process on random intervals, whose intensity is modulated by the
couples of underlying phases. All combinations of phases are a priori possible, thus
there arem1m2 possible phases and intensities, which reflects the fact that λ is defined
on the product space E1 × E2. Then, we have to check that the overall phase process
is indeed a Markov process.

The argument using Laplace transforms presented hereafter is more abstract,
although it is, by far, easier than this sketch of proof.

Proof. We address only the case K = 2, the general case follows by induction.
From the definition of an MMPP, for i = 1, 2 and for any bounded f1, f2, we have
for any t ≥ 0,

fi(Ni(t)) = fi(N i(0)) +
t

0

fi(N i(s))λi(Ji(s)) d s+M i(t),
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where M i is a martingale. Since the processes are independent, the martingales M i

are independent and thus their mutual quadratic variation is zero. Therefore, according
to the integration by parts formula [A.13],

f1(N1(t))f2(N2(t)) − f1(N1(0))f2(N2(0))

=
t

0

f2(N2(s)) dM1(s) +
t

0

f1(N1(s)) dM2(s)

+
t

0

f1(N1(s))f2(N2(s))(λ1(J1(s)) + λ2(J2(s))) d s.

From Theorem A.32, we have thus proven that

t −→ (f1 ⊗ f2) N1(t), N2(t) −(f1 ⊗ f2) N1(0), N2(0)

−
t

0

(f1 ⊗ f2) N1(s), N2(s) λ1(J1(s)) + λ2(J2(s)) d s

is a martingale. By density, this result holds true for all bounded functions on N×N,
especially for functions of the form (n1, n2) → f(n1 +n2)with f bounded fromN to
R. It follows that the processN1+N2 is aCox process of compensatorλ1(J1)+λ2(J2).
In view of Theorem 7.22, this corresponds to the intensity process associated with the
couple process (J1, J2).

PASTA property

We conclude this chapter with a generalization of the PASTA property for MMPP.

Theorem 7.25 (PASTA modified).– Let N = (E, J, ν) be an MMPP and
(ψ(t), t ≥ 0), a FN -predictable and bounded process. Then,

lim
t→∞

1
Nt

t

0

ψ(s) dNs =
1

j∈E λ(j)ν(j)
lim
t→∞

1
t

t

0

ψ(s)λ(J(s)) d s, [7.31]

provided these two limits exist.

Proof. In view of Theorem A.37, as ψ is bounded, we have that

lim
t→∞

1
N(t)

t

0

ψ(s) dN(s) = lim
t→∞

t
t

0
λ(J(s)) d s

1
t

t

0

ψ(s)λ(J(s)) d s.

Since J is an ergodic Markov process, we also have

lim
t→∞

1
t

t

0

λ(J(s)) d s =
j∈E

λ(j)ν(j),

hence the result.
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7.7. Problems

Exercise 13.– Let (J(t), t ≥ 0) be the Markov process with values in {A,B} and
whose infinitesimal generator is given by

−σA σA
σB −σB .

1) Determine the stationary probability π of J .

2) What is the distribution of the sojourn time in state A? We now construct an
arrival process as follows: there are no arrivals during the periods where J(t) = A, and
during the periods where J(t) = B, the arrivals follow a Poisson process of intensity
λ. Let us denote Nt the number of customers arrived up to time t. It is assumed that
there cannot be simultaneously a phase change (i.e. a change of state of the process J)
and an arrival.

3) Write down the non-zero coefficients of the infinitesimal generator of theMarkov
process (J,N).

4) Does this process admit a stationary probability?

This process called IPP (Interrupted Poisson Process) is a possible model for human
voice (where the phases A represent the silent periods and the phases B the periods of
talking). We aim to study the IPP/M/1/1 queue, setting 1/µ as the mean service time.
To do so, we study the process (X, J), where X represents the number of customers
in the queue. We list the states in lexicographic order, i.e.

(0, A), (0, B), (1, A), (1, B).

5) Write the infinitesimal generator of (X, J).
6) Does this process admit a stationary probability? Make explicit the values of

three out of its components in function of the fourth one.

7) Express the stationary probability of X using that of (X, J).

We now assume that

λ = 3, µ = 1, σA = 1, σB = 2.

8) Calculate the stationary probabilities of (X, J), and then that of X .

9) What is the blocking probability at equilibrium?

10) What is the loss probability at equilibrium?

Exercise 14.– We recall that for any integer n and any positive real number β,

+∞

0

xnβe−βx dx =
n!
βn

.
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We consider a queue where the service times are independent and identically
distributed. A request has a probability p that its service time follow an exponential
distribution with parameter µα, and a probability q = 1 − p that its service time
follow an exponential distribution with parameter µβ . Formally, ifX1 andX2 are two
independent random variables of exponential distribution with respective parameters
µα and µβ , if Y is a random variable independent of X1 and X2 such that

P (Y = 1) = p = 1 − P (Y = 0),

then the service duration reads as the random variable

X = XY = X11{Y=1} +X21{Y=2}.

The arrivals follow a Poisson process of intensity λ. There is a single server and a
buffer of sizeK.

1) Show that the average service time is given by

p
1
µα

+ q
1
µβ

,

which will be denoted 1/µ.
2) Show that the variance of the service time is given by

p
2
µ2
α

+ q
2
µ2
β

− 1
µ2
.

Finally, to study the performances of this queuing system, we consider the Markov
process X representing the number of customers in the system and the phase of the
customer in service. The state space is hence

E = {0} ∪ (i, γ), 1 ≤ i ≤ K + 1, γ ∈ {α, β} .

For instance, X being in state (5, α) means that there are four customers in the buffer
and that the customer in service is in phase α, so that his service time follows an
exponential distribution of parameter µα.

3) ForK = 0, write down the infinitesimal generator of X .

4) ForK = 0, calculate the loss probability in steady state.

5) Compare to the corresponding result for the M/M/1/1 queue having the same
load.

From now on, we assume that the buffer size is infinite.

6) What is the condition of existence of a stationary probability? (No computation
needed!)
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7) What is the mean number of customers in the system in steady state?

8) If µα = 1 and µ is fixed, what is the relation between p and µβ?

9) Represent the changes in the average number of customers when p varies from
0 to 1/µ.
10) Write down the non-zero coefficients of the infinitesimal generator of X .

11) Let π be the vector representing the stationary probability. We set x0 = π(0)
and xi = (π(i, α), π(i, β)). Write down the equations satisfied by the xi’s, by using
products of block matrices.

Exercise 15.– Let J1 = (E1, A1, ν1) and J2 = (E2, A2, ν2) be two independent
Markov processes. Write “by hand” the generator of the couple process J = (J1, J2),
to corroborate the conclusion of Theorem 7.22.

7.8. Notes and comments

There exist in the literature, many books on Markov processes with discrete state
spaces and their applications to queuing.Moreor less in chronological order, let us quote
non-exhaustively [KLE 76, CIN 75, KEL 79, ASM 03]. These books do not address the
martingale problems, due to their complexity. However, this tool is the basis of many
of the fluid limits, and diffusion approximation results for queuing systems. Several
wonderful examples can be found in [ROB 03]. Other reference books on this subject,
with a strong mathematical background, are [BRÉ 81, DEL 76, ETH 86, JAC 79].

We have deliberately chosen this approach which is a little more formal than that
used in the chapter on Markov chains, for its elegance as well as to pave the way for
those readers who would want to get into the theory ofMarkov processes in continuous
state spaces, which is more difficult.

To learn more about the MMPP, we refer the reader to [FIS 93, NEU 94] and the
references therein. The approach developed here, based on martingales, is original.
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Epitome

– AMarkov processwith values in a discrete state space is a processwhose paths are
made of jumps regulated by a Markov chain, and of constancy intervals of exponential
distributions. The parameter of each exponential distribution depend on the state.

– Its infinitesimal generatorA is a (possibly infinite) matrix whose coefficients may
be interpreted as follows:

- A(x, x) is the opposite of the parameter of the exponential distribution
governing the sojourn time in state x. Beware of the minus sign!

- A(x, y)/|A(x, x)| is the probability that the process goes to y when it leaves x.
– The nature of the states (recurrent, transient) of the Markov process is the same

as that of the embedded Markov chain.

– The stationary probability π is obtained by solving the equations πA = 0 and

x∈E π(x) = 1 where π is written as a row vector.

– The stationary probability is invariant by multiplication of all the coefficients of
A by the same positive number. However the dynamics changes: the sojourn times in
each state change accordingly, and the transitions remain the same. In the modeling of
queuing systems, we use this fact by choosing the mean service length as time unit,
that is µ = 1.

– If the process is irreducible, recurrent and of invariant probability π we have

1
t

t

0

f(X(s)) d s t→∞−−−→
x∈E

f(x)π(x);

P(X(t) = y |X(0) = x) t→∞−−−→ π(y), ∀x, y ∈ E.

– The excursion duration from a given point x to itself can be deduced from the
invariant probability

Ex τ1
x =

1
π(x)

.

– The paths of a Markov process are simulated using the construction of
Definition 7.1.



Chapter 8

Systems with Delay

All actual telecommunication systems are loss systems, since all the buffers have
finite, and hence limited capacity. By system with delay, we mean a system in which
the dimensioning is such that the loss caused by the overflow is negligible, and for
which the relevant criterion for assessing the performances, is the waiting time.

Before we start a detailed study of these systems, we first introduce a well-known,
general and very useful relation called Little’s Formula.

8.1. Little’s Formula

We consider a system with delay, in which the customers arrive at times
(Tn, n ≥ 1), spend in the system sojourn times given by (Wn, n ≥ 1) and leave
the system at times (Dn = Tn + Wn, n ≥ 1). We denote N as the point process
of arrivals, D as the departure process and X , the process counting the number of
customers in the system. At time 0, the system is assumed to be empty, i.e. X(0) = 0.
The key point is that the system is conservative : all the incoming work is processed
by the server(s).

Theorem 8.1 (Little’s Formula).– We assume thatN is asymptotically linear, i.e. there
exists λ > 0 such that

N(t)
t

t→∞−−−→ λ a.s.

and that the sequence W is ergodic, i.e.

1
n

n

j=1

Wj
n→∞−−−−→ W a.s..

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal
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Under these assumptions, we have

X = lim
t→∞

1
t

t

0
X(s) d s = λW.

The existence of the latter limit is shown in the following proof.

Proof. Let us fix t ≥ 0 and apply the integration by parts Formula A.13 to the processes
X and t → t. As the second process is continuous, there are no quadratic variation
terms and we have

tX(t) =
t

0
X(s) d s +

t

0
s dX(s).

But the jumps of X are those of N and D, hence

t

0
X(s) d s =

t

0
(t − s) dN(s) −

t

0
(t − s) dD(s)

=
Tn≤t

(t − Tn) −
Tn+Wn≤t

(t − Tn − Wn).

We must now distinguish between the customers who left the system before t, and
those who entered before t, but left the system after t. We have

t

0
X(s) d s =

Tn+Wn≤t

(t − Tn − (t − Tn − Wn)) +
Tn+Wn>t,Tn≤t

(t − Tn)

=
Tn+Wn≤t

Wn +
Tn+Wn>t,Tn≤t

(t − Tn).

For all instantsTn such that (Tn+Wn > t, Tn ≤ t), we clearly have 0 ≤ t−Tn ≤ Wn,
therefore

Tn+Wn≤t

Wn ≤
t

0
X(s) d s ≤

Tn+Wn≤t

Wn +
Tn+Wn>t,Tn≤t

Wn =
Tn≤t

Wn.

By the definition of N(t),

Tn≤t

Wn =
N(t)

n=1

Wn,

hence
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1
t
Tn≤t

Wn =
N(t)
t

1
N(t)

N(t)

n=1

Wn
t→∞−−−→ λW,

according to the two assumptions.

It remains to be proved that we have the same limit for the lower bound. This
requires controlling the number of customers who entered before t and have not yet
left the system at this time. Let us observe that

Wn

n
=

1
n

⎛
⎝

n

j=1

Wj −
n−1

j=1

Wj

⎞
⎠

=
1
n

n

j=1

Wj − n − 1
n

1
n − 1

n−1

j=1

Wj

n→∞−−−−→ 0, a.s..

Therefore,

Wn

Tn
=

Wn

n

N(Tn)
Tn

n→∞−−−−→ 0.λ = 0, a.s..

Let us fix the sample path. For any ε > 0, there exists m (depending on the path)
such that Wn ≤ εTn for n ≥ m. For n ≥ m,

Tn + Wn ≤ (1 + ε)Tn.

If n ≥ m and Tn ≤ t(1 + ε)−1, then customer n has left before time t. Hence,

Tn+Wn≤t

Wn ≥
N(t(1+ε)−1)

j=m

Wj =
N(t(1+ε)−1)

j=1

Wj −
m−1

j=1

Wj .

The same argument as for the upper bound thus gives

lim inf
t→∞

Tn+Wn≤t

Wn ≥ λW (1 + ε)−1.

As this result holds true for any ε > 0, we deduce from it that it is still true for ε = 0.
The result follows by comparison of limits.

Example.– Take as “system” in Little’s Formula, the server of a single server queue.
The sojourn time in this “system” hence equals the service time. As there is 0 or 1
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customer in service, the mean number of customers correspond to the rate of occupancy
of the server, denoted by τ . Little’s Formula entails that

τ = λ × 1 / µ.

In other words, the traffic load ρ is the proportion of time where the server is busy.

Example.– Let us come back to relation [1.2], associated with Figure 1.3. We view
this as a system inwhich thenth customer arrives at timeTn, and leaves at timeTn+Yn.
The sojourn time of customer n is hence Yn. According to the strong Law of Large
Numbers,

Tn
n

=
1
n

n

j=1

(Xj + Yj)
n→∞−−−−→ 1

µ
+

1
τ

almost surely. [8.1]

Denoting N as the number of arrivals up to time t, we clearly have

Tn ≤ t < Tn+1 ⇐⇒ N(t) = n,

hence

N(t)
TN(t)+1

≤ N(t)
t

≤ N(t)
TN(t)

.

As N(t) tends to infinity almost surely, the Theorem of limits by comparison together
with [8.1] implies that N(t) / t tends to

1 / (1 / µ + 1 / τ) = λ.

By construction, X represents the proportion of time when the server is active, and
according to Little’s formula we obtain that

X =
λ

µ
.

Hence we have shown in this case that the traffic load equals the product of the average
number of arrivals with the average processing time.

Note.– Notice, that nothing in the assumptions of Little’s Formula is mentioned about
the service discipline. This means for instance that the average sojourn time is the same
in the FIFO discipline as in the LIFO discipline. This paradoxical phenomenon means
only that the average sojourn time provides a very poor information on the behavior
of system. However, it is often very easy to calculate. In fact, a qualitative difference
between the various service disciplines will appear when considering convex functions
of the sojourn time (see section 4.1.6). In particular, the latter implies a difference in
the variance and more generally, in the distribution of the sojourn time.
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8.2. Single server queue

Theorem 8.2.– Consider a Mλ / Mµ / 1 /∞-FIFO queue, and set ρ = λ /µ. In the
sense of Theorem 4.2, the stability condition is given by

ρ < 1. [8.2]

In that case, the invariant probability π is given by

π(n) = ρn(1 − ρ), n ∈ N.

In particular, the average number of customers in the system in steady state is given
by ρ(1 − ρ)−1.

Proof. We saw in example 7.1 that the process X = (X(t), t ≥ 0) denoting the
number of customers in the system (also called congestion process of the system) is a
Markov process of infinitesimal generator

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ + µ) λ (0)

. . .
(0) µ −(λ + µ) λ

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The stationary probability π of X has been explicitly given using the tools developed
in Chapter 7 (see the derivation after Theorem 7.12). We obtain that for any integer i,

π(i) = ρiπ(0).

It then follows from the normalization constraint that under condition [8.2], we have

π(0) =
1

i∈N ρi
= 1 − ρ,

and therefore for any i ∈ N,

π(i) = ρi(1 − ρ).

This means in other words that under condition [8.2] which is, according to Theorem
4.2, the stability condition of the system (and thus of recurrence of the state 0 forX), the
only stationary probability of X is the distribution of a random variable X∞ = Z − 1,
where Z follows the geometric distribution of parameter 1 − ρ.
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In particular, the average number of customers in the system at equilibrium is given
by

E [X∞] = E [Z − 1] =
1

1 − ρ
− 1 =

ρ

1 − ρ
. [8.3]

Throughout the remainder of this section, we assume that the stability condition
[8.2] is met.

For this system, an interesting performance measure is the proportion of customers
entering an empty system, or (equivalently, as we shall see) the proportion of time
during which the server is idle. By recalling that we denote T1 < T2 < . . . , as the
arrival times of the customers in the queue, the asymptotic proportion of customers
entering an empty system is given by

lim
N→∞

1
N

N

n=1

1{0} X(T−
n ) = lim

T→∞
1
T

T

0
1{0}(X(t−)) dt

= lim
T→∞

1
T

T

0
1{0}(X(t)) dt

= E[1{0} (X∞)]

= π(0) = 1 − ρ,

[8.4]

where thefirst almost sure equality follows from thePASTAproperty for themeasurable
function 1{0} (see Theorem A.38), the second one, from the fact that X has a.s. rcll
paths, and the third one, from the ergodicity of the process X (Theorem 3.22). For
instance, a systemof load 1 / 2 is hence busy half of the time, and on a long time interval,
half of the customers find an empty system (and are hence immediately attended) upon
arrival.

Waiting time - sojourn time

Let us now address the waiting time (i.e. the time spent in the waiting room) and
the sojourn time (i.e. the total time spent in the system) of the customers in the system.
We adopt again the notation of Chapters 4 and 5, and denote for any n ≥ 1, Tan as
the waiting time of customer Cn (which coincides in FIFO, with the workload of the
server at the arrival of Cn, as studied in Chapter 4) and Tsn as the sojourn time of Cn

in the whole system (waiting room + service).

According to Theorem 4.2, provided [8.2] holds there exists, for any admissible
service discipline, a stationary waiting time Ta and consequently, a stationary sojourn
time Ts in the system, given by Ts = Ta + σ. Little’s formula entails
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E [Ts] =
E [X∞]

λ
=

1
µ − λ

, [8.5]

with [8.3]. We therefore have

E [Ta] = E [Ts] − E [σ] =
1

µ − λ
=

ρ

µ − λ
. [8.6]

Even though the average congestion [8.3] depends only on the traffic load ρ, we
can compare the waiting and sojourn times of two systems having the same traffic
load Mλ / Mµ / 1 and Mαλ / Mαµ / 1, where α is a positive parameter. By adding the
exponent α to the parameters of the second system, we deduce from equations [8.5]
and [8.6] that

E [Tsα] =
1
α
E [Ts] and E [Taα] =

1
α
E [Ta] .

Thus, the average waiting and sojourn times are, for instance, divided by 2 as soon as
the service and inter-arrival times are divided by 2. The output parameters hence keep
the time scale factor of the input parameters.

Note.– The same volume of information can thus be transmitted by packets of average
size m emitted at a rate λ, or by packets of average size αm emitted at a rate λ /α.
The traffic load ρ, and as we saw above, the average number of customers waiting in
line remain the same.

Therefore, the greater the size of the packets, the larger the needed size of the buffer
will be (a concrete buffer is not infinite!!). This is not obvious a priori, because the
total amount of bytes transmitted is the same!

At constant traffic load, the average size of the packets also has an influence on the
limit sojourn time, see [8.5]. Transmitting the information in larger packets therefore
entails large transmission times. It seems that the solution would be to choose small
packets. Unfortunately, even that solution has drawbacks. Indeed, a packet consists of
useful material, and control informations (origin, destination, type, etc.). As the control
informations are generally of constant size for a given protocol, limiting the packet size
then amounts to limiting the proportion of useful material on the whole information.
Therefore, smaller the packets, more is the decrease in the efficiency (defined as the
ratio of useful information provided out of the size of the packet).

Recall, that in Chapter 5 we derive explicitly the distribution of the stationary
waiting and sojourn times through their Laplace transforms. By specializing the results
of Theorem 5.6 to the case where the service times follow the distribution ε(µ), we
obtain the following.
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Theorem 8.3.– The stationary waiting time Ta and the stationary sojourn time Ts in
an M /M / 1 queue admit, respectively, the Laplace transforms defined for all s by

E e−sTa = (1 − ρ)
µ + s

µ(1 − ρ) + s
; [8.7]

E e−sTs = (1 − ρ)
µ

µ(1 − ρ) + s
. [8.8]

The PASTA property also allows us to show that the stationary distribution of the
congestion process coincides with that of its embedded chain.

Lemma 8.4.– Under the condition [8.2], the Markov chain X = (X(T−
n ),

n ≥ 0) is irreducible, positive recurrent and of stationary distribution π.

Proof. It is obvious that the chain is irreducible and recurrent, so let π be its invariant
distribution. According to Theorem 7.13, for all f ∈ l∞(N) we have that

1
N

N

n=1

f(X(T−
n )) N→∞−−−−→

N
f dπ.

As N(t) takes values in N and tends to infinity as t tends to infinity, we have by
extraction

1
N(t)

N(t)

n=1

f(X(T−
n )) t→∞−−−→

N
f dπ.

But in view of Theorem A.38,

lim
t→∞

1
N(t)

N(t)

n=1

f(X(T−
n )) = lim

t→∞
1

N(t)

t

0
f(X(s−)) dN(s)

= lim
t→∞

1
t

t

0
f(X(s−)) d s =

N
f dπ.

By identification, it follows that π = π.

Note.– Setting up a connection is an investment that must be profitable. Therefore, the
connection should be used asmuch as possible, in otherwords it should carry on a traffic
load as close as possible to 1. Unfortunately, according to [8.6], such a load induces
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some significant delays, and hence a limited quality of service. Fortunately, in real life
the connections are loaded at 10% of their capacity.

8.3. Multiple server queue

We now turn to the Markovian queue with S servers (S ≥ 1) and waiting room
of unlimited capacity, denoted by Mλ / Mµ /S / ∞-FIFO in the usual nomenclature.
This model is represented by the process X(S)(t), t ≥ 0 , thereby counting the total
number of customers in the system, with values in N. This process is naturally Markov,
we determine hereafter its infinitesimal generator:

– for any i ∈ [[1, S]], if the process is in state i there are i customers in the system,
who are all in service. So the sojourn time of the process in state i (which will
denoted by Yi for any i) is the minimum of a random variable U ∼ ε(λ) counting
the current inter-arrival time, and i random variables independent and identically
distributed V1, V2, . . . , Vi of distribution ε(µ), counting the residual service times
of the i customers in service. Then, the process jumps to i − 1 if Yi = Vk for some k
and to i + 1 if Yi = U ;

– for all i > S, in state i all the S servers are busy, so i−S customers are waiting.
Thus, Yi equals the minimum of S random variables V1, V2, . . . , VS of distribution
ε(µ) and of the random variable U having distribution ε(λ), keeping the previous
notations. The process then jumps to i − 1 or to i + 1 as in the previous case;

– The sojourn time Y0 in 0 has the distribution ε(λ), and the process almost surely
leaves 0 to go to 1.

According to Definition 7.1, the transition matrix Q(S) of the process hence reads
as follows.

– q(S)(0, 0) = λ and q(0, 1) = 1;

– for all i ∈ [[1, S]], q(S)(i, i) = iµ + λ and the only non-zero transitions are

q(S)(i, i + 1) =
λ

iµ + λ
and q(S)(i, i − 1) =

iµ

iµ + λ
;

– for all i > S, q(S)(i, i) = Sµ + λ and the only non-zero transitions are

q(S)(i, i + 1) =
λ

Sµ + λ
and q(S)(i, i − 1) =

Sµ

Sµ + λ
.

Therefore, in view of [7.11] the process X(S)(t), t ≥ 0 is Markov, with
infinitesimal generator given by
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A(S) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ + µ) λ
0 2µ −(λ + 2µ) λ (0)

. . .
(0) Sµ −(λ + Sµ) λ

Sµ −(λ + Sµ) λ
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The proof of the following Theorem uses the same arguments as that of Theorem 8.2,
it is hence left to the reader.

Theorem 8.5.– Under the stability condition

ρ < S, [8.9]

the only stationary probability π(S) of the process X(S)(t), t ≥ 0 reads

π(S)(0) =
S−1

k=0

ρk

k!
+

SρS

S!(S − ρ)

−1

;

π(S)(i) =
ρi

i!
π(0) for all i ∈ [[1, S − 1]];

π(S)(i) =
ρi

Si−SS!
π(0) for all i ≥ S.

[8.10]

Under condition [8.9], we can deduce from Theorem 8.5, as in [8.4], the limiting
rate of customers who must wait to be attended. It is given by the so-called Erlang-C
Formula

lim
N→∞

1
N

N

n=1

1{[S,+∞)} X(S)(Tn−) = E 1{[S,+∞)} X(S)
∞

=
+∞

i=S

π(S)(i) =
π(S)(0)
S!S−S

+∞

i=1

ρ

S

i

=
S−1

k=0

ρk

k!
+

SρS

S!(S − ρ)

−1
SρS

S!(S − ρ)

=: C(S, ρ).

We can therefore implement a simple algorithm for dimensioning a multiple server
queue, being fixed a quality of service constraint in terms of proportion of customers
put on hold.
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Algorithm 8.1. Dimensioning of a multi-server system with guaranteed holding
rate

Data: ρ, p
Result: The optimal number of servers S, given a traffic load ρ and the

guarantee of a proportion p of users put on hold.
S ← 1;
until

p <
S−1

k=0

ρk

k!
+

SρS

S!(S − ρ)

−1
SρS

S!(S − ρ)

do
S ← S + 1;

end
return S

The average number of customers in the system at equilibrium is given by

E X(S)
∞ =

∞

i=0

iπ(S)(i)

= π(S)(0)
S

i=0

iρi

i!
+

SS−1ρ

S!

∞

i=S+1

i
ρ

S

i−1

= π(S)(0)ρ
S−1

i=0

ρi

i!
+

SS−1

S!
d

dx

∞

i=S+1

xi
ρ

S

= π(S)(0)ρ
S−1

i=0

ρi

i!
+

ρS

S!
S2 − Sρ + S

(S − ρ)2
.

According to Little’s Formula, the sojourn timeTs(S) and waiting timeTa(S) in steady
state therefore have the following respective mean expectations

E Ts(S) =
π(S)(0)

µ

S−1

i=0

ρi

i!
+

ρS

S!
S2 − Sρ + S

(S − ρ)2
; [8.11]

E Ta(S) =
1
µ

π(S)(0)
S−1

i=0

ρi

i!
+

ρS

S!
S2 − Sρ + S

(S − ρ)2
− 1 . [8.12]

Relation [8.12] allows one to dimension a system, having guaranteed an averagewaiting
time.
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Algorithm 8.2. Dimensioning of a multi-server system with guaranteed waiting
time

Data: ρ, µ, Ts
Result: The optimal number of servers S given the traffic load ρ and a

guaranteed average waiting time Ts.
S ← 1;
until

Ts <
1
µ

⎡
⎣

S−1

i=0

ρi

i!
+

SρS

S!(S − ρ)

−1 S−1

i=0

ρi

i!
+

ρS

S!
S2 − Sρ + S

(S − ρ)2
− 1

⎤
⎦

do
S ← S + 1;

end
return S

In addition, as in the case of the single server queue, we can derive the distribution
of the stationary waiting time through its Laplace transform:

Theorem 8.6.– If ρ < S, the waiting time Tan converges in distribution to Ta(S),
whose Laplace transform is given by

E e−sTa(S)
= 1 − C(S, ρ) + π(S)(0)

ρS

S!
Sµ

s + (S − ρ)µ
, [8.13]

which is equivalent to saying that

dPTa(S)(x) = (1 − C(S, ρ))δ0(x) + π0
ρS

S!
Sµ exp(−(S − ρ)µx)1R+(x) dx.

Note.– The last relationmeans that thewaiting time is zerowith probability 1−C(S, ρ)
(which is obvious) and that conditionally to being positive, Ta(S) is exponentially
distributed with the parameter (S − ρ)µ.

Proof. As the service times follow exponential distributions, conditionally to the fact
that all servers are busy, the inter-departure times are all exponentially distributed with
parameters Sµ, and independent of each other. We therefore have that

Wn
law=

X̂n−S+1

j=1

ηj 1{X̂n≥S},
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where (ηk, k ≥ 0) is a sequence of random variables independent and identically
distributed of exponential distribution with parameter Sµ. Therefore,

E e−sWn |X̂n =
Sµ

s + Sµ

X̂n−S+1

1{X̂n≥S} + 1{X̂n<S} .

From Theorem 8.5, X̂n converges in distribution to X . As this conditional expectation
is a bounded function of X̂n if ρ < S, E e−sWn converges simply for any s toward

E
Sµ

s + Sµ

X̂n−S+1

1{X̂n≥S} + 1{X̂n<S} = E e−sTa(S)
.

We therefore obtain

E e−sTa(S)
= 1 − C(S, ρ) +

∞

j=S

ρ

S

Sµ

s + Sµ

j−S+1

= 1 − C(S, ρ) + π(S)(0)
ρS

S!
Sµ

s + Sµ

∞

j=0

ρµ

s + Sµ

j

= 1 − C(S, ρ) + π0
ρS

S!
Sµ

s + (S − ρ)µ
.

8.3.1. Comparison of systems

Starting from a simple queue, we compare hereafter qualitatively three types of
operations aiming to improve the performances of the system: the multiplexing of the
resources, the parallelism, and the speed of execution.

We consider the following four systems, all subject to Poisson arrivalswith intensity
λ, of customers requesting service times of distribution ε(µ). Hence, the traffic load
always equals ρ = λ/µErlang, and it is assumed that ρ < 2. We assume further that all
considered servers work in FCFS, and that the waiting rooms are always of unlimited
capacity:

– system a has one server working at unit speed, and hence corresponds to a simple
Mλ / Mµ / 1 queue;

– in system b, the customers are redirected with probability 1 / 2 (independently
from a customer to the other, and independently of all other random variables) toward
one or the other of two independent systems operating in parallel, each of those having
one server working at unit speed. According to Theorem 6.6, each of the two parallel
queues is hence a Mλ

2
/ Mµ / 1 queue;
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– system c is a single queue with two servers, each of those working at unit speed.
c is hence exactly a Mλ / Mµ / 2 queue;

– finally, system d has one server working at double speed: the customer Cn who
requires a service time σn actually needs only a duration σn/ 2 to be serviced. It is then
easy to see that the service times of the customers are i.i.d of distribution ε(2µ), and d
hence corresponds to a Mλ / M2µ / 1 queue.

In the following, we add respectively the exponents a, b, c, and d to the
characteristics of the different systems.

According to [8.5], the average sojourn time of a customer at equilibrium in the
system d is given by

E [Tsd] =
1

2µ − λ
, [8.14]

whereas in a, provided ρ < 1,

E [Tsa] =
1

µ − λ
. [8.15]

We now consider the system b. Let X1 and X2 denote, respectively, the processes
counting the number of customers in each queue and, for any t,

Xb
t = X1

t + X2
t

λ
µ

λ
1/2

1/2

µ

µ

System A System B

λ
µ

µ

λ
2µ

System C System D

Table 8.1. Comparison of four systems. The traffic load is ρ in a and ρ / 2 in the other three
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represent the total number of customers in the system at t. As ρ < 2, X1 and X2 are
ergodic, and by denoting X1

∞ and X2
∞ as their limits in distribution, we have

lim
t→∞

1
t

t

0
Xb

s ds = lim
t→∞

1
t

t

0
X1

s ds + lim
t→∞

1
t

t

0
X2

s ds

= E X1
∞ + E X2

∞

=
λ / 2

µ − λ / 2
+

λ / 2
µ − λ / 2

=
2λ

2µ − λ
,

[8.16]

in view of [8.3]. According to Theorem 4.20, there exists provided ρ < 2 a stationary
waiting time, and hence a stationary sojourn time Tsb for this system, defined by the
almost sure limit

lim
N→∞

1
N

N

n=1

Tsbn = E [Tsb] ,

where for any n, Tsbn denotes the sojourn time proposed to the nth customer. Little’s
formula applies to this system. With [8.16] we therefore have that

E [Tsb] =
2

2µ − λ
. [8.17]

Finally, from [8.11],

E [Tsc] =
1
µ
π(0) 1 + ρ +

ρ2

2
4 − 2ρ + 2
(2 − ρ)2

=
1
µ

2 − ρ

2 + ρ

4
(2 + ρ)(2 − ρ)

=
4µ

(2µ − λ)(2µ + λ)
.

[8.18]

Gathering [8.14, 8.15, 8.17] and [8.18], we obtain that provided ρ < 2,

E [Tsb] − E [Tsc] =
2λ

(2µ − λ)(2µ + λ)
;

E [Tsc] − E [Tsd] =
1

2µ + λ
.

Consequently, we have that

E [Tsd] < E [Tsc] < E [Tsb] < E [Tsa] ; [8.19]

E [Tsd] <
1
2
E [Tsa] , [8.20]
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where [8.20] and the last inequality of [8.19] make sense only if ρ < 1. When
considering the time spent in the system, it is then preferable to double the speed
of execution than doubling the number of resources, which is in turn more efficient
than two parallel systems. In addition, according to [8.20], doubling the speed of service
achieves more than the double of the system efficiency.

8.4. Processor sharing queue

We briefly address the case of the Markovian Mλ / Mµ / PS queue, studied in the
general case in section4.2.Customers enter the systemaccording to aPoissonprocess of
intensity λ, requesting service times of distribution ε(µ), and are immediately attended
by a processor sharing server : all are served simultaneously, at a rate that is inversely
proportional to the number of customers in service.

Let us denote XPS, the process counting the number of customers in the system. It
is easily seen that this process is Markov, and to give its generator. For all t ≥ 0, we
denote as above:

– W (t), the residual time at t before the next arrival;

– R(t), the residual time at t before the next departure.

Let i ≥ 1. On the event XPS(t) = i , let us denote R1(t), R2(t), . . . , Ri(t),
the residual service times of the i customers in service at t, in time unit. According to
Theorem 7.3, these service times are independent and of distribution ε(µ). As long as
there is no new arrival after t (i.e. up to t+W (t)), the server works at a speed of 1 / i,
which multiplies the time scale by this factor. Thus, from the perspective of the server,
the residual service times of the customers follow the distribution ε(µ / i) and then:

(i) if minj=1, ..., iRj(t) ≤ W (t), the server works at the same speed until the next
departure, which takes place before the next arrival, and thereforeR(t) is the minimum
of i independent random variables of distribution ε(µ / i);

(ii) if W (t) < minj=1, ..., iRj(t), at time t + W (t) a new arrival occurs and hence
there are i+1 customers in the system. Again, according to Theorem 7.3, the statistics
of the system do not change if we draw once again the service times of the i + 1
customers, according to the distribution ε(µ). ThereforeR(t) has the same distribution
as the minimum of i+1 independent random variables with distribution ε(µ / (i+1))
unless there is another arrival before the next departure, in which case we draw once
again the i + 2 service times according to the same distribution ε(µ), and so on.

In conclusion, in all cases the distribution of R(t) follows, conditionally to
XPS(t) = i , the distribution ε(µ). As W (t) follows for all t the distribution ε(λ),

as is the case for the previous systems, we obtain the following result.

Theorem 8.6.1.– The processXPS has the same distribution as the congestion process
X of the Mλ / Mµ / 1 queue. It therefore admits the same stationary distribution,
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provided ρ < 1. Especially, according to Little’s formula the average sojourn time
in steady state is the same as that of the M/M/1 queue.

Note.– This does not mean that the processes X and XPS have the same paths
almost surely! This is obviously not the case, and the latter identity holds true only in
distribution.

8.5. The M / M / ∞ queue

The M / M / ∞ queue is obviously a theoretical illusion, because no system can
have an infinite number of servers. However, this object is used in several situations
(at least for comparison), for example in Theorem 10.14.

Let (X∞(t), t ≥ 0) be the process counting the number of customers in the system
(and thus, in service). As above, it is easily checked that for any i ∈ N,

– the process X∞ stays in state i during a time of distribution ε(iµ + λ);
– it leaves state i to go to state i+1 with probability λ / (λ + iµ) and provided that

i ≥ 1, to state i − 1 with probability λ / (λ + iµ).

Consequently, the process (X∞(t), t ≥ 0) is Markov, with infinitesimal generator

A∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ + µ) λ
0 2µ −(λ + 2µ) λ (0)

. . .
. . .

. . .
(0) iµ −(λ + iµ) λ

(i + 1)µ −(λ + (i + 1)µ) λ
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The theory developed in Chapter 7 does not apply as such, because the coefficients of
the infinitesimal generator are unbounded. By using awidely different representation of
this queue (see Example 10.3), we can still deduce that the only stationary probability
π∞ of (X∞(t), t ≥ 0) reads

π∞(i) =
ρie−ρ

i!
for all i ∈ N,

setting as above ρ = λ /µ.

Note.– Notice however that π∞ is as a matter of fact the only solution of the system
⎧
⎨
⎩

πA∞ = 0,

i∈N

π(i) = 1.
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This result means in other words, that the limiting size of the system X∞
∞ follows

a Poisson distribution with parameter ρ. In particular, the average size of the system at
equilibrium equals

E [X∞
∞ ] = ρ. [8.21]

8.6. The departure process

Consider one of the three models considered in the previous sections (single,
multiple or infinite server queue). We show hereafter, that whenever the stability
condition is met, the distribution of the departure process is identifiable.

Let us recall that we denote for any n ∈ N, Tn as the instant of the nth arrival,
and Tn as the instant of the nth departure. We still denote (N(t), t ≥ 0) as the arrival
process and (D(t), t ≥ 0) as the departure process, that is for any t,

D(t) =
n∈N

1Tn≤t .

At first glance, we might think that the departure process is such that the time
between two departures is of distribution ε(µ). We will see that this is not the case.

Let us start with a heuristic on the M / M / 1 queue to deny this idea. Let us place
ourselves at a departure time, say Tn, the departure time of Cn. So Tn+1 equals

– Tn + σn+1, if Cn+1 is in the queue at the departure of Cn;

– Tn+1 + σn+1, if Cn leaves an empty system behind.

So, if we assume that Tn+1 − Tn is independent of the past of Tn (property that
shall be demonstrated hereafter), we have that

E Tn+1 − Tn = E [σn+1] + E Tn+1 − Tn 1X(Tn)=0

=
1
µ

+
1
λ
P(X(Tn) = 0),

according to Theorem 6.7. Thus, at equilibrium the average time between two
departures equals

1
µ

+
1
λ
π(0) =

1
λ
,

as much as the average time between two arrivals!

The following Theorem makes this result precise, and shows that in steady state,
the departure process is in fact, like that of arrivals, a Poisson process of intensity λ.
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Theorem 8.7 (Burke’s Theorem).– In steady state, the departure process is a Poisson
process of intensity λ. Moreover, for any s ≥ 0, the departures times after s are
independent of the arrival times before s, i.e. σ(D(u); u ≥ s) is independent of
σ(N(u); u ≤ s).

Proof. In all the cases, the congestion process (X(t), t ≥ 0) is a birth and death process
(see section 7.5). It is therefore reversible, with stationary probability π. In particular,
by assuming that X has the initial distribution π, it has for any U ≥ 0 the same
distribution as its reversed process X̄U (t), t ≥ 0 .

It is clear that for any n ∈ N, Tn (respectively Tn) is the nth instant of downward
(respectively upward) jump of the process X . Moreover, for any U ≥ 0 the instants
of downward jumps from X up to U correspond to the instants of upward jumps of
the reversed process: the original process decreases by one when the reversed process
increases by one. Specifically, if we denote

T̃n = Tn ∧ U, n ∈ N,

as the points of the process (D(t), t ≥ 0) restricted to [0, U ], we first have

T̃1 = inf{t ≤ U ;X(t) = X(t−) − 1}
= S − sup{s ≤ U ;X(S − s) = X (S − s)− − 1}

= S − sup{s ≤ U ; X̄U (s) = X̄U (s−) + 1}.
The latter supremum is the last upward jump instant of the reversed process before U .
Since X is reversible, this sup equals in distribution the last upward jump instant of
X (i.e. the last arrival) before time U , that is TN(U). According to Theorem 6.7, we
therefore have the following identity in law

T̃1
L= U − TN(U)

L= U ∧ Y1,

where Y1 is a random variable of distribution ε(λ). Similarly, we can show that

T̃2 − T̃1
L= U − T̃1 ∧ Y2,

where Y2 is independent of Y1 and of distribution ε(λ), and so on.

This shows that (D(t), t ≥ 0) is equal in distribution to a Poisson process on
[0, U ]. As this is true for any U ≥ 0, (D(t), t ≥ 0) is a Poisson process. Finally, the
independence property results, naturally, from that of the arrival process.

8.7. Queueing Networks

In this section, we present the main stability results on the simplest model of
queueing networks, that is a set of queues in which customers leaving a queue may join
another one, to receive a new service.
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8.7.1. Open Jackson networks

We first consider the following system:

– a Poisson process of intensity λ > 0, which is interpreted as the arrival process
from the outside into the system;

– a set of N queues, where the i-th queue is of type . / Mµi /Si / ∞-FIFO : the
customers entering the i-th queue request for service times that are independent and
identically distributed of distribution ε(µi), to a group of Si servers. The distribution
of inter-arrival times in the queue is not known a priori because it depends on the other
queues, as we shall see;

– a Markovian matrix P of size N + 1 : for any i ∈ [[0, N ]], Pij ∈ [0, 1] and
N
j=0 Pij = 1. The matrix P is called the routing matrix of the system: as soon as a

customer has finished his service in the queue i, he makes a draw that is independent
of all the other parameters, in order to decide the next queue in which he will request a
service. For any j ∈ [[0, N ]], he then joins the queue j with probability Pij . The “queue
0” represents here the “outside” of the system: customers moving from 0 to j arrive
directly from outside into the queue j, and those going from i to 0 leave the system
after having visited the queue i. Let us notice, that if Pii > 0 for some i, a customer
may get back in the same queue i just after having received service in the same queue.
Let us assume that P satisfies the following two conditions

P00 = 0, [8.22]

and for any i ∈ [[1, N ]], there exists n ∈ N and a n-uple {i1, i2, . . . , in} of elements
of [[1, N ]] containing i and such that

P0i1Pi1i2 . . . Pin1 in
Pin0 > 0. [8.23]

Condition [8.23] thus ensures that any queue i is part of a possible path, going from
the outside to itself.

The system is described by the process

(X(t), t ≥ 0) = ((X1(t), X2(t), . . . , XN (t)), t ≥ 0) ,

where for any i, Xi(t) counts the number of customers in the i-th queue at time t.
As the traffic in each queue depends on the other queues, it is easy to see that each
process (Xi(t), t ≥ 0) alone is not Markov. This is the case, however, for the process
(X(t), t ≥ 0), as will be shown in the following lemma. We denote (see the notations
of appendix A) for any i ∈ N,

ei = (0, . . . , 0, 1
i

, 0, . . . , 0)

and for any k ∈ N,

µi(k) = µi(k ∧ Si).
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µ1

µ1

µ1

File 1

µ2

µ2

µ2

File 2

λp01

λp02

P21

P20

P12

P10

Figure 8.1. An open Jackson network with two queues

Lemma 8.8.– The process (X(t), t ≥ 0) describing the open Jackson’s network is
Markov, of infinitesimal generator Aoj defined for any x = (x(1), . . . , x(N)) by

⎧
⎨
⎩
Aoj(x, x + ej − ei) = µi(x(i))Pij ;
Aoj(x, x + ej) = λP0j ;
Aoj(x, x − ei) = µi(x(i))Pi0,

all the other coefficients Aoj (x, y) being zero and the diagonal coefficients Aoj(x, x),
equal to the opposite of the sum of the Aoj(x, y) for y = x.
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Proof. Let us assume that the process (X(t), t ≥ 0) is in state x at t. Then, the process
may directly leave x only to go to the following states:

1) x + ej − ei if x(i) > 0 and if a customer in service in queue i completes his
service, and then goes to the queue j;

2) x− ei if x(i) > 0 and if a customer in service in queue i completes his service,
and then leaves the system;

3) x + ej if a customer enters from outside toward the queue j.

According to Theorem 6.6, the process of arrivals from the outside toward the queue
j is Poisson of intensity λP0j . The residual time before the next point of this process
therefore follows the distribution ε(λP0j). Then, the residual time before the next end
of service among the x(i) ∧ Si services currently in queue i follows, as seen above,
the distribution ε((x(i) ∧ Si)µi) = ε(µi(x(i))). By denoting for any i the event

Bi = {The first service that ends is a service of queue i},

the probability that the process actually leaves x for x−ei+ej (respectively x−ei) is
given byP(Bi∩{ the customer leaves i for j}) = P(Bi)Pij (respectivelyP(Bi)Pi0).
This concludes the proof, in view of the above-mentioned properties of exponential
distributions.

We will need the following technical result in order to characterize the steady state
of (X(t), t ≥ 0).

Lemma 8.9.– The system

λj = λP0j +
N

i=1

λiPij , [8.24]

of unknown (λ1, λ2, . . . , λN ) and called traffic equation, admits a unique solution in
(R+)N .

Proof. As thematrixP isMarkovian, there exists a uniqueMarkov chain (Mn, n ∈ N)
with values in [[0, N ]] and with transition matrix P . For any pair (i, j) of elements
of [[1, N ]], there exists according to [8.23] two finite families {i1, . . . , in} and
{j1, . . . , jp} of elements of [[1, N ]], including i and j, respectively, and such that

P0i1 . . . Pin−1inPin0 > 0 and P0j1 . . . Pjp−1jpPjp0 > 0.

Therefore, with the notations of Chapter 3, there exists an integer q < n + p such that
the probability p(q)(i, j) that (Mn, n ∈ N) goes from i to j in q steps verifies

p(q)(i, j) ≥ P0i1 . . . Pin−1inPin0P0j1 . . . Pjp−1jpPjp0 > 0.
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The Markov chain (Mn, n ∈ N) is thus irreducible on the finite state space [[0, N ]].
Hence it is positive recurrent, and according to Theorem 3.16, there exists up to a
multiplicative coefficient, a single stationary measure ν on [[0, N ]] which, represented
as a row vector, satisfies the matrix equation

ν = νP. [8.25]

On the other hand, if {λ1, . . . , λN} is a solution of [8.24], as P is a Markov
matrix,

N

i=1

λiPi0 =
N

i=1

λi

⎛
⎝1 −

N

j=1

Pij

⎞
⎠

=
N

i=1

λi −
N

j=1

N

i=1

λiPij

=
N

i=1

λi −
N

j=1

(λj − λP0j)

= λ
N

i=1

P0i

= λ,

[8.26]

in view of [8.22]. This shows that {λ1, . . . , λN} is a solution to [8.24] if and only if
Λ = (λ, λ1, . . . , λN ) is a solution to [8.25]. The single solution of equation [8.24] is
the only invariant measure having λ as first component.

For any i ∈ [[1, N ]], we know from the results of section 8.3 that providedλi < µiSi,
the congestion process of the Mλi / Mµi /Si queue admits the invariant probability πi

given by

πi(0) =
∞

k=0

(λi)k
k
j=1 µi(j)

−1

; [8.27]

πi(k) =
(λi)k
k
j=1 µi(j)

πi(0), i ≥ 1. [8.28]

We can therefore state the following result.
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Theorem 8.10.– Let {λ1, . . . , λN} be the unique solution of the traffic equation
[8.24]. It is assumed that the stability condition

λi < µiCi, i ∈ [[1, N ]], [8.29]

holds. Let πi be the probability measure on N defined by equations [8.27] and
[8.28]. Then the process (X(t), t ≥ 0) describing the open Jackson network admits
on NN the only stationary probability πoj defined for any x = (x(1), . . . ,
x(N)) ∈ NN by

πoj(x(1), . . . , x(N)) =
N

i=1

πi(x(i)). [8.30]

Proof. We aim to apply Lemma 7.19. Define, for any x and y ∈ NN ,

Â(x, y) =
πoj(y)Aoj(y, x)

πoj(x)
, x = y,

where πoj is the probability measure defined by [8.30] and Aoj is the infinitesimal
generator defined in Lemma 8.8. So, for any i and j such that i = j and any x such
that x(j) ≥ 1,

Â(x, x − ej + ei) =
πoj(x − ej + ei)Aoj(x − ej + ei, x)

πoj(x)

=
πi(x(j) − 1)πi(x(i) + 1)

πj(x(j))πi(x(i))
µi(x(i) + 1)Pij

=
µj(x(j))

λj

λi
µi(x(i) + 1)

µi(x(i) + 1)Pij

=
λi
λj

µj(x(j))Pij ;

and similarly, for any i and j,

Â(x, x + ei) = λiPi0;

Â(x, x − ej) =
µj(x(j))

λj
λP0j , for any x such that x(j) ≥ 1.

Let us form the following sums for any x ∈ NN .
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y=x

Â(x, y) =
N

j=1

N

i=1; i=j

Â(x, x − ej + ei) +
N

i=1

Â(x, x + ei) +
N

j=1

Â(x, x − ej)

=
N

j=1

⎛
⎝µj(x(j))

λj
λP0j + λi

N

i=1; i=j

µj(x(j))
λj

Pij

⎞
⎠ +

N

i=1

λiPi0

=
N

j=1

µj(x(j))
λj

(λj − λjPjj) +
N

i=1

λiPi0

=
N

j=1

µj(x(j))(1 − Pjj) + λ,

where the second last equality is a consequence of the traffic equation, and the last one
results from equation [8.26]. On the other hand,

y=x

Aoj(x, y)

=
N

i=1

N

j=1; j=i

Aoj(x, x − ej + ei) +
N

i=1

Aoj(x, x − ei) +
N

j=1

Aoj(x, x + ej)

=
N

i=1

µi(x(i))(1 − Pii) +
N

j=1

λP0j

=
N

i=1

µi(x(i))(1 − Pii) + λ

=
y=x

Â(x, y).

We conclude with Lemma 7.19.

The latter, which is a classical result of queueing theory, is called “Theorem of the
Product Form”: if the open Jackson network is stable, it behaves just like a system of
N independent queues in equilibrium, where the i-th queue is a Mλi / Mµi /Si queue.
This fairly counterintuitive result has a clear interest in simulation: it indicates that
the study of a Jackson network in steady state boils down to that of N multiple server
queues. At equilibrium, everything happens just as if the N queues would function
independently, and similarly to a classical Markovian queues (although each queue
alone is not an M / M / queue).
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Burke’s Theorem applied to each ofN queuesMλi / Mµi /Si, i = 1, . . . , N , would
entail that the output rate of queue i equal λi, and thus that the input rate in queue j be
given by

λP0j +
N

i=1

λi,

that is λj , according to the traffic equation. The result is hence consistent.

At any time t, conditionally to X(t) = (x(1), x(2), . . . , x(N)), we can show
by the usual techniques on the exponential distribution, that the residual time to the
first output from queue i to the outside after t, follows the distribution ε(µi(x(i))Pi0).
Consequently, the residual time before the next output from the network taken as a
whole to the outside, after t, follows the law ε( N

i=1 µi(x(i))Pi0). It is thus natural to
define the instantaneous output rate at t by the random variable

D(t) =
N

i=1

µi(Xi(t))Pi0.

The average output rate at equilibrium is hence given by

E [D(∞)] = E
N

i=1

µi(Xi(∞))Pi0

=
(x(1), ..., x(N))∈NN

N

i=1

µi(x(i))Pi0π
rj(x(1), . . . , x(N)),

where X(∞) = (X1(∞), . . . , XN (∞)) is a random variable distributed following
πrj on NN . We then have the following analog of Burke’s Theorem.

Theorem 8.11.– In an open Jackson network at equilibrium, the average output equals
the intensity of the arrival process, i.e.

E [D(∞)] = λ.

8.7.2. Closed Jackson networks

The closed Jackson network is similar to the open network, except that we assume
now that the network is not “fed” by an exogenous Poisson process, in that no queue is
linked to the outside. Here, K customers (where K is fixed) move forever from queue
to queue in a network of N queues . / Mµi /Si, which is connected as the previous one.
The system is hence fully described by:

– K, the size of the population of the network;
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– N queues . / Mµi /Si;

– a routing matrix P, Markovian and of size N and satisfying an irreducibility
property similar to [8.23]: for any i and j ∈ [[1, N ]], there exists n ∈ N and a n-tuple
{i1, i2, . . . , in} of elements of [[1, N ]] containing i and j, and such that

Pi1Pi1i2 . . . Pin1 in
> 0. [8.31]

Consider the set

A = x = (x(1), . . . , x(N)) ∈ NN ;
N

i=1

x(i) = K .

The process (X(t), t ≥ 0) defined as in the previous section is Markov on A, and of
generator Acj defined for all x ∈ A such that x(i) ≥ 1 and x(j) ≤ K, by

Acj(x, x + ej − ei) = µi(x(i))Pij ,

where all the other terms are zero except the diagonal one, which is the opposite of the
sum of the other terms in the same line. The transitions for x such that x(i) ≥ 1 for
some i, or x(j) = K for some j can be obtained similarly.

As above, the introduction of a Markov chain on [[1, N ]] with transition matrix P
allows to conclude that there exists, up to a multiplicative coefficient, a single solution
Λ ∈ (R+)N to the matrix equation

Λ = ΛP. [8.32]

We then have the following result.

Theorem 8.12.– The process (X(t), t ≥ 0) describing the closed Jackson network
admits a unique stationary probability πcj, defined for any x ∈ A by

πcj(x(1), . . . , x(N)) = C

N

i=1

x(i)

=1

λi
µi( )

,

where C is the normalization constant

C =

⎛
⎝

(x(1), ..., x(N))∈A

N

i=1

x(i)

=1

λi
µi( )

⎞
⎠

−1

,

and Λ = (λ1, λ2, . . . , λN ) is an arbitrary solution to [8.32].
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Proof. We follow the same argument as in the previous proof, i.e. we apply Lemma
7.19. Define Â as above, i.e. for any x, y ∈ A,

Â(x, y) =
πcj(y)Acj(y, x)

πcj(x)
, x = y.

Then, we form the following sums for any x ∈ A such that x(j) < K and x(1) > 0
(the other cases can be treated accordingly).

y=x

Â(x, y) =
N

j=1

N

i=1; i=j

Â(x, x − ej + ei)

=
N

j=1

N

i=1; i=j

πcj(x − ej + ei)Acj(x − ej + ei, x)
πcj(x)

=
N

j=1

N

i=1; i=j

λj
λi

Pjiµi (x(i))

=
N

i=1

1
λi

µi (x(i))
N

j=1; j=i

λjPji

=
N

i=1

1
λi

µi (x(i)) (λi − λiPii)

=
N

i=1

µi (x(i)) (1 − Pii) ,

where the second last equality is a consequence of the traffic equation [8.32]. On the
other hand,

y=x

Acj(x, y) =
N

i=1

N

j=1; j=i

Acj(x, x − ej + ei)

=
N

i=1

µi(x(i))(1 − Pii)

=
y=x

Â(x, y).

Hence, the result.

A closed Jackson network is much less comfortable to study than in the open case.
One can in fact observe that, unlike the open case, the previous form is not a product
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form because of the expression of the constantC. In addition, the numerical calculation
of this constant for a large network is computationally very expensive.

8.8. Problems

Exercise 16.– We consider the M/M/1 queue with the following service discipline:
a proportion p of the customers (the “polite” ones) is placed normally in line, while a
proportion q = 1 − p of “rude” ones double everyone, and take the first place in the
queue. The class (“polite” or “rude”) of a given customer is independent of its arrival
time. This discipline is non-preemptive, that is to say that one does not interrupt the
current service. The intensity of the overall arrival process is λ and the average service
time is 1 / µ.

We denote (X(t), t ≥ 0), the number of customers in the system (queue + server)
at time t.

1) Give the infinitesimal generator of X. Is it different from that of the M / M / 1
queue with the FIFO discipline (First In First Out)?

2) Deduce the stability condition of the system and the steady-state distribution of
X .

3) What is the average waiting time in steady state?

4) What is the nature and intensity of the arrival process of the “rude” customers?

5) Denote W p, the waiting time of a given polite customer, X as the number of
customers in the system upon his arrival and N(W p), the number of “rude” customers
who arrive during his waiting time. Show that we have in law,

W p L=
X

j=1

ηj +
N(Wp)

l=1

σl, [8.33]

where (ηj , j ≥ 0) and (σl, l ≥ 0) are two sequences independent of each other and
of X , of independent r.v., exponentially distributed with parameter µ.

6) Explain why X and N(W p) are independent conditionally to W p.

7) We assume now that X has the stationary distribution identified in (2). Prove
that

E

⎡
⎣

X

j=1

ηj

⎤
⎦ =

ρ

(1 − ρ)µ
.

8) Show that

E e−s
N(W p)
l=1 σl |W p = v = e−λqv s

µ+s .
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9) Show that if X follows the stationary distribution identified in (2), we have

E e−λqWp s
µ+s E e−s X

j=1 ηj |W p .

(the explicit form of E e−sWp

is not requested explicitly).

10) Deduce, by differentiation, the average waiting time of a “polite” customer.

11) We denote W i, the waiting time of a “rude” customer in steady state and W , the
waiting time of an any customer in steady state - we take for granted that the waiting
time of the nth rude customer converges in distribution to W i, and similarly for W .
Explain why it holds true that

E [W ] = pE [W p] + qE W i .

12) Deduce the average waiting time of a “rude” customer.

Exercise 17.– Consider a gas station with 2 pumps and a waiting slot:

In
Waiting Pump 2 Pump 1

Out

Figure 8.2. Gas bar with three pumps in series

Customers arrive at the station according to a Poisson process of intensity λ. If
both pumps are free, the customer goes to pump 1. If the pump 1 is taken, the customer
goes into pump 2. If both pumps are busy the customer moves into the waiting place. If
the waiting room is busy, the customer pass his way. A customer in pump 2 must wait
until the pump 1 is free to exit the gas station. In the case, where the customer at pump
2 finishes before the one at pump 1, the two comes out together from the gas station
when the customer at pump 1 has finished. If there is, at that time, a customer waiting,
he will instantly go into pump 1 and begins filling his container. In the case where the
pump 1 is free but the pump 2 is busy, no one can enter into pump 1. The time to fill
the containers follow an exponential distribution with parameter µ.

We model this system by a Markov process X = (X1, X2, X3) where X1 is 0 or
1 and represents the number of customers at pump 1, X2 represents the number of
customers at pump 2 and X3 is the number of customers in the waiting place (X3 is
thus 0 or 1).

1) What is the state space of X?

2) Write the components of its infinitesimal generator.

3) Is there a stationary probability?
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4) If yes, what are the equations that characterize it?

5) What is the percentage of customers who cannot enter the station?

6) What is the percentage of customers who cannot enter the station because it is
badly done, i.e. customers who cannot be serviced even though pump 1 is free.

Exercise 18.– In a store, customers, on an average of 20 per hour, arrive at the cash
desk according to a Poisson process. As long as there are less than two customers in line,
there is only one cash desk open. The service times at this cash desk are exponentially
distributed and the average service time is 5 minutes.

As soon as three customers are in line, a second cash desk opens. The two cash
desks share the same queue. The second cash desk closes when there is not more
than two customers waiting. We note Xt as the number of customers in the system at
time t.

1) Write the infinitesimal generator of X .

2) Find the stationary probability if there is any.

3) What is the average number of customers in the system?

4) What is the average number of customers in line?

5) What is the average waiting time?

6) What is the percentage of time when the second desk is open?

Exercise 19.– A banking agency has S = 5 employees. The average number of calls
is 20 per hour, the average duration of a call is 6 minutes. Arrivals form a Poisson
process of intensity λ and service times are independent and exponentially distributed.
In questions 1–5, it is not requested to demonstrate the formulas, just to give them and
to perform the numerical computations. Note, that en route several partial results are
used several times.

1) If there is no possibility of waiting, what is the percentage of those customers
whose call fails due to the lack of a free employee?

2) The agency is now equipped with a device to put on hold, that is a record that
makes the customers wait until a consultant is free. We assume that all the customers
wait as long as necessary. What is the probability that a given customer has to wait?

3) Is it equal to the probability of blocking in the system without waiting? Why?

4) What is the average waiting time?

5) What is the probability that the waiting time exceed 2 minutes?

Now, we remove the stand by system and consider that a percentage 100.p of calls
require rerouting to a more specialized treatment center. At the level of the PABX (and
of the N allocated links), this results in an occupation of two connections: one for the
incoming calls, the other one for the rerouted calls. We denote X1 as the number of
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direct calls, using a single connection and X2, the number of calls that need two links.
The number N of links is to be determined.

X1 is limited by S the number of advisers, whereas X2 is only limited by the
conditionX1+2X2 ≤ N.Weconsider, in fact, that the dimensioning of the specialized
processing center is such that the calls that are intended for it actually reach it, and we
neglect the time needed for the local advisor to decide about the rerouting. We assume
that whenever all advisors are busy, the incoming calls are directed to the specialized
processing center.

6) Write down the infinitesimal generator of X = (X1, X2).
7) Does the process X admit a stationary probability?

8) Write down the equations allowing us to determine it.

9) At fixed N , what is the size of the matrix to invert?

Exercise 20.– Derive [8.21] using Little’s formula.

8.9. Notes and comments

We have only given a glimpse of the study of Markovian queues with infinite buffer.
This subject has been a topic of wide interest for many researchers, and there is a huge
amount of literature on this issue.

In particular, we have not addressed the very interesting topic of elastic traffic and
processor-sharing queues. This rich framework is very well studied in [BON 11], and
provides a formula for the waiting time, which is insensitive to the distribution of the
service times.

The study of product form networks is based mainly on Kelly’s Lemma, which can
be found in [KEL 79]. The local balance equation that it induces is often too restrictive
to be satisfied. Many weaker versions exist, that are still less restrictive than the global
equations solving πA = 0. Many examples can be found in [CHA 99].
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Epitome

– The stationary probability of the M / M / 1 queue of arrival intensity λ and average
service time 1 / µ is given by

π(0) = 1 − ρ, π(n) = ρn(1 − ρ), where ρ = λ /µ.

– The waiting time in the steady state equals 0 with probability 1−ρ. Conditionally
on being strictly positive, the waiting time follows an exponential distribution with
parameter µ − λ. Its mean expectation is thus 1 / (µ − λ).

– In the M / M / S queue, the stability condition is ρ < S. The stationary probability
is given by [8.10].

– In an open Jackson network ofN queues, the stationary probability of the system
is the product of the stationary probabilities of N M / M / 1 queues, taking as input
parameters, the components of the solution of the traffic equation [8.24].



Chapter 9

Loss Systems

9.1. General

A loss system is a system that has fewer resources (servers and possibly, buffer)
than potential users, and where all the customers arriving at a time when the system
resources are taken, are lost. Therefore, we need to find out the adequate number of
resources in order to loose as few requests as possible. In the following, we always
denote by

– N(t), the number of customers who tried to enter the system up to t (those will
be termed arrived customers);

– Y (t), the number of customers who have actually entered the system (called
entered customers) before t. Therefore,

Xd(t) = N(t)− Y (t)

is the number of customers lost up to t.

– X(t), the number of customers present in the system (server + waiting line) at
time t.

– S, the number of servers and C, the number of places in the waiting line.

Example 9.1.– The second generation mobile phone network, known as GSM, is
technically based on TDMA (Time Division Multiple Access). For a given frequency,
we divide time into periods of equal and constant duration, known as slots. The slots
are gathered in packets of eight to form a frame. The voice call is digitized in a way that
routing a call amounts in fact to carrying information bits. To route a call, the octets of
a call are grouped by packets, and we attribute to a call a slot set during the whole call
duration. On Figure 9.1, the fourth slot is assigned to the incoming call.

Stochastic Modeling and Analysis of Telecom Networks                  Laurent Decreusefond and Pascal Moyal

© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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1 frame

A traffic channel

Figure 9.1. Principle of TDMA

A transceiver device can route only 8 calls simultaneously. Therefore, what matters
to the operator is to determine the number of devices for each base station, that is the
antennas that decorate the roofs of our buildings. In fact, to account for the signaling,
a single device permits to route 7 simultaneous calls, 14 for a double device and 21 for
a triple one, and so on.

Example 9.2.– The multiplexer is one of the key elements of data networks. It permits
us to route the calls arriving from N input ports to N output ports. Since a single output
port can be requested simultaneously by multiple flux, it is important to install a buffer
to temporarily store the data until the channel is free. The problem here is to determine
the buffer size, so that the loss probability of incoming bits shall be below a certain
threshold. This threshold depends on the nature of the data flow. Roughly speaking,
voice and video flow can allow the loss of about one per thousand, while the data flow
cannot allow any loss. In practice, we consider that something that happens with a
probability of less than one per billion does not actually happen.

These two examples are similar but the second raises two major problems: (i) it is
not obvious to choose an input traffic model which can reflect the differences (in the
throughput, for instance, just to name one of them) existing between the flow of voice,
video and speech. In addition, the very small order of the targeted loss probability
renders any simulation tedious, and then requires an accurate analytical model.

This also requires to distinguish between three quantities of interest:

Definition 9.1.– The congestion or blocking probability of a system with S + C
resources is the asymptotic proportion of time when all resources are busy, that is

PB = lim
T→∞

1
T

T

0
1{X(t)=S+C} d t.
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Time

X(t)

T1 T2 T3 T4 T5 T6

Figure 9.2. Occupation of the D/D/1/1 queue

The loss probability is the blocking probability from the customers perspective, i.e.

Pl = lim
t→∞

1
N(t)

N(t)

j=1

1{X(T−
j )=S+C} . [9.1]

The overflow probability exists in fact only when the number of resources is infinite,
and is defined by

PS = lim
T→∞

1
T

T

0
1{X(t)>S} d t.

In general, these three probabilities are distinct. Indeed, let us consider a system
with a single server, with deterministic arrivals and service times, of respective duration
ρ < 1 and 1.

By its very definitions, the blocking probability equals the percentage of shaded
area, that is ρ. But the loss probability is zero, as no customer finds a busy server upon
arrival. However, if the arrivals were Poisson, the loss and blocking probabilities would
coincide in view of the PASTA property.

Theorem 9.1.– If the arrivals form a Poisson process, then PB = Pl.

Proof. It suffices to apply Theorem A.38 for

ψ(s) = 1{X(s)=S+C} .

The loss probability is by far, themost important indicator, but also themost difficult
to assess. The blocking and the overflow probabilities are much more easily calculable,
and are therefore often used as a substitute for the loss probability.
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9.2. Erlang model

We assume that the arrivals occur according to a Poisson process of intensity λ,
that the service times are independent and identically distributed of distribution ε(µ),
and that the capacity of the waiting line is zero, that is C = 0, so that any customer
is attended if and only if some server is free upon his arrival, and lost otherwise.
We study in other words the Mλ/Mµ/S/S queue, and denote as usual the traffic
load ρ = λ/ µ.

The system is described by the process (Xe(t), t ≥ 0) counting the number of
customers in the system. On its state-space [[0, S]], (Xe(t), t ≥ 0) has the same
transitions as the process X(S)(t), t ≥ 0 describing the Mλ/Mµ/S/∞ queue (see
section 8.3), except for the state S, that the process leaves only to jump into S − 1,
as no customer is then accepted. The infinitesimal generator of (Xe(t), t ≥ 0) is thus
given by

Ae =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
µ −(µ + λ) λ

. . . (0)

kµ −(λ + kµ) λ

(0)
. . .

(S − 1)µ −((S − 1)µ + λ) λ
Sµ −Sµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The process is ergodic in that it is valued in a finite state space, and it is easy to compute
its stationary probability πe, which satisfies

πe(i) =
λ

iµ
πe(i− 1), i ∈ [[1, S]];

S

i=0

πe(i) = 1,

which is equivalent to

πe(i) =
ρi/i!

S
k=0 ρk/k!

for i ∈ [[0, S]]. [9.2]

Moreover, as (Xe(t), t ≥ 0) is a birth and death process, it is reversible.
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Note.– We can also derive the invariant probability by noticing that the Mλ/Mµ/S/S
queue is nothing but a Mλ/Mµ/∞ queue that is constrained not to exceed S customers.
In other words, (Xe(t), t ≥ 0) is the truncated version, forced to stay in [[0, S]], of
the reversible process (X∞(t), t ≥ 0) representing the number of customers in the
Mλ/Mµ/∞ system. We thus find πe with Kelly’s Lemma (Theorem 7.22): for any
i ∈ [[0, S]],

πe(i) =
1

S
i=0 π∞(k)

π∞(i)

=
ρi/i!

S
k=0 ρk/k!

.

According to [9.1], the loss probability for the Erlang model reads

lim
n→∞

1
n

n

j=1

1{S} X T −
j = lim

t→∞
1
t

T

0
1{S}(X(s−)) ds

= πe(S).

We have therefore established the following result.

Theorem 9.2.– The loss probability of the Mλ/Mµ/S/S queue of load ρ reads

Er[ρ, S] =
ρS/S!
S
i=0 ρi/i!

.

Note.– It can be proven, that the loss probability does not depend on the distribution
of service times: this expression remains valid for a M/GI/S/S queue.

For the numerical assessment of this probability, we can use the following
approximation

Er[ρ, S] ≈ exp S log
ρu

S
+ S − ρu

u + ρu(1− u)2

S
,

with u given by

u =
(S + ρ + 1)− (S + ρ + 1)2 − 4ρS

2ρ
.

We can also use the recurrence relation

1
Er[ρ, S]

= 1 +
S

ρEr[ρ, S − 1]
.
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In practice, after estimating ρ, we have to find the smallest S such that Er[ρ, S] is below
the desired threshold, to ensure a given quality of service. It is generally assumed that
this threshold is of 0.001 for the telephone network and 0.02 for the GSM network.
The algorithm is as follows.

Algorithm 9.1. Calculating the number of servers to ensure a given loss
probability
Data: ρ,
Result: S such that Er[ρ, S] ≤
S ← 0;
x ← 1;
until x < −1 do

S ← S + 1;
x ← 1 + S

ρ x;

end
return S

For a loss of one per thousand, the number of required servers required is (very)
approximately equal to ρ+3

√
ρ. If the arrivals and service times were deterministic, ρ

would represent the number of simultaneous calls, therefore also the number of needed
servers. The term 3

√
ρ is then interpreted as a guarantee against the random fluctuations

of traffic.

9.3. The M/M/1/1 + C queue

We now consider a queue with one server working in FCFS, and whose waiting
room has a limited capacity C. As usual, the arrival process is Poisson of intensity λ,
and the customers request service times that are independent and identically distributed
of distribution ε(µ). We denote ρ = λ/µ the traffic load.

The process (Xc(t), t ≥ 0) counts the number of customers in the system and takes
values in [[0, 1 + C]]. It satisfies the following dynamics:

– for any i ∈ [[0, C]], the sojourn time in i and the probabilities of jumps starting
from i are clearly the same as for the Mλ/Mµ/1/∞ queue;

– once in 1+C, the system is full and can no longer accept customers. The process
can leave this state only for the state C, after a sojourn time equal to the residual service
time of the customer in service, i.e. of distribution ε(µ).

It is hence easy to see that (Xc(t), t ≥ 0) is Markov, and admits in [[0, 1 + C]] the
infinitesimal generator
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Ac =

⎛
⎜⎜⎜⎜⎜⎝

−λ λ
µ −(λ + µ) λ (0)

. . .
(0) µ −(λ + µ) λ

µ −µ

⎞
⎟⎟⎟⎟⎟⎠

.

As the process (Xc(t), t ≥ 0) takes values in a finite set, it is ergodic and therefore
has a unique stationary probability πc. The process is reversible, as (Xc(t), t ≥ 0) is
a birth and death process. The probability πc can be derived by solving

πcAc = 0;
πce = 1.

We obtain that for any i ∈ [[0, 1 + C]],

πc(i) = ρiπc(0)

=

⎧
⎪⎨
⎪⎩

ρi − ρi+1

1− ρC+2 if ρ = 1;

1
C + 2

if ρ = 1,

[9.3]

observing by the way, that πc is the uniform probability in [[0, 1 + C]] in the critical
case ρ = 1.
Note.– In the sub-critical case ρ < 1, πc can be obtained as well from Kelly’s Lemma
(Theorem 7.22), remarking that (Xc(t), t ≥ 0) is the truncation at [[0, 1 + C]] of the
reversible process X counting the number of customers in the Mλ/Mµ/1/∞.

Theorem 9.3.– In a Mλ/Mµ/1/1+C queue, the loss probability is given by the formula

Pl =
ρC+1−ρC+2

1−ρC+2 if ρ = 1;
1

C+2 if ρ = 1.

Proof. The loss probability for this system is given by the asymptotic rate of lost
customers, i.e. of customers finding a full system upon arrival. According to the PASTA
property and the ergodicity of (Xc(t), t ≥ 0), it reads

lim
N→∞

1
N

N

n=1

1{1+C}(Xc(Tn−)) = lim
T→∞

1
T

T

0
1{1+C}(Xc(t)) d t

= E 1{1+C} (Xc
∞)

= πc(1 + C).

The result then follows from [9.3].
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If the traffic load ρ is strictly less than 1, the loss probability can be compared to
the overflow probability of the corresponding Mλ/Mµ/1/∞ queue. The probability that
the latter system has a congestion greater than or equal to 1 + C in steady state can be
written (with the notations of section 8.2) as

P (X∞ ≥ 1 + C) =
∞

i=1+C

π(i) = (1− ρ)
∞

i=1+C

ρi = ρ1+C , [9.4]

whereas

Pl = πc(0)ρ1+C < ρ1+C . [9.5]

Therefore, it is possible to estimate the loss of a finite buffer system by the overflow
probability of the corresponding infinite buffer queue. In doing so, we overestimate the
loss according to equations [9.4] and [9.5]. However, this may be the only computation
that is feasible in practice, since the infinite buffer queue is generally easier to describe
using known probability distributions. Moreover, a dimensioning that is pessimistic
as long as it is not exaggerated, gives a stronger guarantee against the fluctuations in
traffic and the uncertainties in the estimation of the traffic load.

Buffer dimensioning

It is interesting to know what the optimal buffer size is that we should display
to guarantee the user a quality of service in terms of packets loss probability. We
can already check the intuitively clear result, that the loss probability is a decreasing
function of the number of servers. In fact, the function defined for any ρ ∈ R + \{1}
given by

fρ :
R → R
x → ρx+1−ρx+2

1−ρx+2

admits as derivative the function defined for any x by

fρ(x) =
(ln ρ)ρx+1

(1− ρx+2)2
(1− ρ) > 0,

and the same results holds true, of course, for ρ = 1.

The optimal dimensioning of the buffer is hence given by the following algorithm
(in the case ρ = 1).
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Algorithm 9.2. Derivating the minimal size of the buffer that guarantees a loss
probability Pl ≤ ε

Data: ρ, ε
Result: K such as Pl ≤ ε
K ← 1;
until

ε <
ρK+1 − ρK+2

1− ρK+2

do

end
return K ← K + 1

Note.– Similar computations and results can be obtained for several servers, i.e. for a
M/M/S/S+C queue (see Exercise 23). We have chosen the single server case to simplify
the formulas.

9.4. The “trunk” effect

Let us apply our results to the GSM network. In the language of the protocol, a slot
is called a TCH (traffic channel). We usually consider that the traffic load per cell-phone
is of 0.025 Erlang and that the admissible loss probability is about 0.02. Based on the
above, we obtain the following results:

Number of transceivers 1 2 3 4 5 6 7

Number of TCH 7 14 22 29 37 45 52
Capacity 2.9 8.2 15 21 28 35.5 42

Traffic carried by TCH 0.41 0.59 0.68 0.72 0.76 0.79 0.81
Number of Cell-phones 116 328 596 840 1128 1424 1680

This table calls at least for two comments. First, it is important to have in mind
the great variability of the results. A reasonable increase in the number of resources
induces a large increase in capacity. For example, if one goes from 1 to 2 transmitters
and receivers, the capacity is multiplied by almost 3. To dispose more traffic, we do
not need to proportionally scale up the number of TCH: to dispose 42 Erlang instead
of 21, we need 52 instead of 2∗29 = 58.

The other point is known as “trunk” effect: the greater the number of servers,
the more important the charge passed by each server. In economics, this is the same
principle as the “economies of scale.” Therefore, when the loss threshold is fixed, we
will prefer a small number of systems having a large number of servers to a large
number of systems with a small number of servers.
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9.5. Engset model

In order to use the Erlang model, it is necessary to implicitly assume that the number
of potential sources is very large, if not infinite, as is the case, for example, in Telephone
networking. However, when the number of sources is small compared to the number
of servers, and in the case where a source in service cannot issue another request until
the end of service of the previous one for the same source, we can no longer consider
that the intensity of arrivals of the customers is independent of the state of the system.

In the model known as Engset, we assume that we have M independent sources,
each generating requests according to a Poisson process of intensity λ. The system
has S servers (where S ≤ M ), the distributions of service times are always assumed
as exponential with parameter µ, and the waiting room is still of size 0. Unlike the
Erlang model, when k sources are “in service”, only M − k sources are likely to make
a request. Therefore the instantaneous rate of arrivals is (M − k)λ. In fact, X is a
Markov process of infinitesimal generator A given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 λ0

µ1 −(µ1 + λ1) λ1

. . . (0)

µk −(λk + µk) λk

(0)
. . .

µS−1 −(µS−1 + λS−1) λS−1

µS −µS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have set λi = (M − i)λ and µi = iµ for all i. The invariant distribution of
this process is defined, satisfies as usual the system

νA = 0⇐⇒ −λ0ν0 + µν1 = 0;
λi−1νi−1 − (λi + µi)νi + µi+1νi+1 = 0, i ∈ [[1, S − 1]].

Using the normalization constraint π.e = 1, this leads to

νi =
ρiCi

M
S
j=0 ρjCj

M

i ∈ [[0, S]],

setting as usual ρ = λ/ µ.

Theorem 9.4.– In the Engset model, the loss probability is given by

Eng[ρ, S, M ] =
ρSCS

M−1
S
j=0 Cj

M−1ρj
.
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Proof. From the very construction of the model, the arrival process is a Poisson process
whose intensity varies over time as a function of X(s): it is given by

Λ(t) =
t

0
(M −X(s))λ d s.

As jumps of N(t) are of height 1, the quadratic variation of the martingale N − Λ
is also Λ. Consider the bounded adapted process ψ(s) = 1{X(s)=S} . According to
Theorem A.37,

Pl = lim
t→∞

1
N(t)

t

0
ψ(s−) d N(s) = lim

t→∞
1

Λ(t)

t

0
ψ(s) dΛ(s)

= lim
t→∞

t

Λ(t)
1
t

t

0
ψ(s)(M −X(s))λ d s.

As X is ergodic, we have the following almost sure limits

1
t
Λ(t) t→∞−−−→

⎛
⎝M −

S

j=0

jν(j)

⎞
⎠ λ;

1
t

t

0
ψ(s)(M −X(s))λ d s

t→∞−−−→ λ(M − S)ν(S).

Therefore,

Eng[ρ, S, M ] =
λ(M − S)ν(S)

λ
S
j=0(M − j)ν(j)

=
ρSCS

M−1
S
j=0 ρjCj

M−1

.

In other words, the loss probability of a system of M machines equals the blocking
probability of a system of M − 1 machines, the rest remaining unchanged.

9.6. IPP/M/S/S queue

The above results can make believe that the loss probability depends only on the
load. This is not the case in general, as we can see in the following example.

An IPP (Interrupted Poisson Process) is a special case of MMPP process (see 7.6),
where the phase process J has two states A and B. The infinitesimal generator of J is
of the form

QJ =
−σA σA
σB −σB

,



282 Networks Modeling and Analysis

where1/σA and1/σB are the average sojourn times in the phasesA andB, respectively.
Its invariant probability, denoted by ν, is easily calculated. We obtain

ν(A) =
σB

σA + σB
and ν(B) =

σA
σA + σB

.

The IPP/M/S/S queue is thus the modified version of the Erlang model with S servers,
without buffer, and where the arrival process is the IPP described above. The process
X counting the number of busy servers (and hence, of customers in the system) is not
Markov alone, but the process (X, J) is. We number the states in lexicographic order
and we denote Λ as the matrix of intensities of arrivals, i.e.

Λ =
λA 0
0 λB

.

The average intensity of the arrival process is hence given by

λ = λA
σB

σA + σB
+ λB

σA
σA + σB

· [9.6]

The infinitesimal generator of (X, J) thus reads

A =

⎛
⎜⎜⎜⎜⎝

QJ − Λ Λ
µ Id (QJ − Λ − µ Id) Λ

2µ Id (QJ − Λ − 2µ Id) Λ
. . .

. . .
. . .

Sµ Id (QJ − Sµ Id)

⎞
⎟⎟⎟⎟⎠

.

The Markov process is of finite state space, of course irreducible, therefore it admits
as invariant probability π the solution of the usual system πA = 0 and π.e = 1. To
simplify the calculations, we introduce the two-component row vectors

xn = π(n, A), π(n, B) , n = 0, · · · , S.

The equations corresponding to πA = 0 thus become S couples of equations

x0(QJ − Λ) + µx1 = 0;

x0Λ + x1(QJ − Λ− µ Id) + 2µx2 = 0;

...

xS−2Λ + xS−1(QJ − λ− (S − 1)µ Id+SµxS = 0;

xS−1Λ + xS(QJ − Sµ Id) = 0.
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From the first (S − 1) equations, we obtain

x1 =
1
µ

x0(QJ − Λ);

x2 = − 1
2µ

(x0Λ + x1(QJ − Λ− µ Id));

...

xS = − 1
Sµ

(xS−2Λ + xS−1(QJ − λ− (S − 1)µ Id));

xS = xS−1Λ(QJ − Sµ Id)−1.

Let us set

R0 = Id,

R1 =
1
µ
(QJ − Λ),

Rn = − 1
nµ

Rn−2Λ + Rn−1(QJ − λ− (n− 1)µ Id) , n = 2, · · · , S.

[9.7]

We can then write

xn = xn−1Rn, n ≥ 1

and

x0(RS −RS−1Λ(QJ − Sµ Id)−1) = 0.

We thus obtain two equations for the two components of x0. In fact, only one suffices
since if the system was of rank 2, the only solution would be 0, which is excluded. We
deduce form this the following resolution algorithm.

Algorithm 9.3.Computation of the invariant probability of the IPP/M/S/S queue.
Data: Λ, µ, S, QJ

Result: pi such that πA = 0 and π.e = 1
Compute R1, · · · , RS from [9.7];
x0(0, A)← 1;
Find x0(0, B) such that x0 satisfies x0(RS −RS−1Λ(QJ − Sµ Id)−1) = 0;
Compute xn = xn−1Rn for n = 1, · · · , S;

Compute m = S
n=0 xn.e;

π → π;
return π
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Theorem 9.5.– In an IPP/M/S/S queue with invariant probability π, the loss
probability is given by

λA
λ

π(S, A) +
λB
λ

π(S, B), [9.8]

where λ is the average intensity given by [9.6].

Proof. We apply Theorem 7.24 to ψ(s) = 1{S}(X(s)). It follows that the loss
probability is given by

1
λ

lim
t→∞

1
t

t

0
1{S}(X(s))λ(J(s)) d s =

1
λ
(λAπ(S, A) + λBπ(S, B)).

Hence the result.

Setting the traffic load is equivalent to setting λ, but according to the relative values
of λA, λB , σA, and σB we get very different loss probabilities, as shown in Table 9.1.
We have chosen to set S = 10 servers and a traffic load of 5 Erlang. Erlang-B formula
would give a loss of 0.018.

Parameters loss blocking

σA = 1/2 σB = 1/2
λA = 10 λB = 0 0.1 0.05

σA = 9/10 σB = 1/10
λA = 50 λB = 0 0.66 0.07

σA = 99/100 σB = 1/100
λA = 500 λB = 0 0.96 0.01

σA = 9/10 σB = 1/10
λA = 1 λB = 5.4 0.02 0.05

Table 9.1. Loss probability at constant load in an IPP/M/S/S queue

It appears from reading this table thatwe can increase the loss probability by keeping
a constant load. We might think that the determining factor then becomes the variance
of the arrival process, since as we increase the latter, the loss increases. This is certainly
a good criterion but it is unfortunately not the only one. Setting the variance and the
traffic load amounts to impose two equations satisfied by the four parameters. This
leaves two degrees of freedom which can be used to make the loss probability vary in
any direction.

Let us also observe that the blocking probability is very far from the loss probability,
and hence there is a huge mistake in assimilating these two quantities.
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9.7. Generalized Erlang models

9.7.1. Guard channels

The mechanism of guard channels is well known by the operators, and allows to
define a priority among multiple streams without increasing in a dramatic manner the
loss probability of the stream having the lowest priority.

We illustrate this concept by using the management of handover in the GSM
network. When a user moves while giving a call from his cell phone, there may come a
time when the BTS that managed the call loses the radio connection with this mobile.
It is, therefore, necessary to skip the connection to another BTS. This phenomenon,
called handover, requires heavy operations on the control plan, and the operator must
ensure that there are sufficient resources in the new cell, to handle this new call.

When taking into account the mobility of users, it is necessary to introduce the
sojourn duration in the cell of each user. It is preferable, in order to be able to perform
the calculations (and quite reasonable statistically), to assume that the crossing time
of a cell for a given user follows a an exponential distribution with parameter α. The
call duration of a mobile seen from the BTS then follows the minimum between the
call duration, and its sojourn time on the cell. Given the properties of the exponential
distribution, this call duration hence follows an exponential distribution of parameter
µ + α. The probability that a user “leaves” the cell before the end of his call equals
the probability that a random variable exponentially distributed with parameter µ is
less than a random variable exponentially distributed with parameter α parameter. It is
hence given by

θ =
µ

µ + α
.

Let us consider a set of cells with identical characteristics, and track the inputs and
outputs in a given cell. In Figure 9.3, λf is the rate of new calls (also termed “fresh
calls”), λHo represents the average number of hand-over calls coming into the cell
under study, and p is the loss probability in the cell.

As the system is designed such that p is negligible when compared to 1, we have
at equilibrium

λHo (λf + λHo)θ, that is λHo
θ

1− θ
λf .
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Cell

Fresh calls Finished calls

Hand-over

λf

λHO

Calls in HO

(λf+λHO)(1−p)(1−θ)

(λf+λHO)(1−p)(1−θ)

Figure 9.3. Input–output of a cell

The total traffic load to be handled by the BTS is thus approximately given by

ρ = (λf + λHo)×
1

µ + α

= λf (1 +
θ

1− θ
)

1
µ + α

= λf
1

1− θ

1
µ + α

= λf
µ + α

µ

1
µ + α

=
λf
µ

.

However, we cannot apply the Erlang formula for dimensioning the system with
hand-overs since the handover calls have a higher requirement in terms of quality of
service. It is indeed much more unpleasant to have interrupted the communication,
than not being able to initiate one.

To take this difference into account, let us fix two different target loss probabilities:
f for the fresh calls, and Ho for the hand-over calls. According to the remark above,

we consider that

Ho < f.

The problem arising is to dimension the system in a way that the loss of fresh calls
(respectively, of hand-over calls) does not exceed the target loss probabilities, i.e.

Pl(Ho) < Ho; Pl(f) < f. [9.9]

First approach: over-dimensioning

A first approach consists of not distinguishing between both types of calls, and
dimensioning the system in order to achieve a global loss less than Ho.
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0 1 2 S−g S−g+1 S

λ+ λ+

µ+ 2µ+

λHO λHOλ+

Sµ+(S − g)µ+

Figure 9.4. The transition of the process “number of busy servers” with guard channels

The system clearly is aM/M/S/S queue, with S as the number of channels, λf+λHo

as intensity of the arrival process and 1/(α + µ) as average call duration.

Set for instance Ho = 10−4; f = 10−2, λf = 10 calls/min, λHo = 4 calls/min,
1/µ = 2 min and 1/α =5 min. Consequently,

ρ =
λf + λ20

α + µ
= 20 Erlang.

Then, Erlang-B formula yields that 39 channels are necessary to achieve the target loss
probability. This meets the requirement [9.9], but over-dimension the system, since the
fresh calls have a weaker loss constraint.

Second approach: parallel systems

Asecond ideawould be to split the resources into two poolsworking independently:
a first pool of channels is reserved for the fresh calls, and a second one, to the hand-over
calls.

So both parallel systems are again Erlang models, where the arrival intensities are
given by λf and λHo, respectively and the average service times still equal 1/ (α +µ).
By applyingErlang-B formula to both systems,weobtain that 23 channels are necessary
for the first system, and 17 for the second one in order to meet condition [9.9]. So 40
channels in total, which is worth than the first approach!

Third approach: guard channels

To give priority to the handover calls, we decide to modify the access control: we
choose g < S, where the number of free servers is greater than g, we accept new
calls and handover calls. As soon as it remains less than g available channels, we no
longer accept the fresh calls to give priority to the handover calls. To derive the loss
probability, we represent the system by the process X counting the number of busy
servers at all times. This is a Markov process whose transitions can be represented by
the diagram 9.4 where λ+ = λf + λHo and µ+ = µ + α.

From there, we deduce the invariant probability ν, then the loss probabilities for
the various types of call using the PASTA property. As the arrival process of fresh calls
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is always Poisson of intensity λf , Theorem A.38 implies that the loss probability for
fresh calls is given by

Pl(f) =
S

j=S−g

ν(j)

and that of hand-over calls, by

Pl(Ho) = ν(S).

We obtain the numerical results of Table 9.2, for the same numerical values as in
the first two approaches. It is quite remarkable that for small values of g, we give to

S 30 32 34 34
g 0 2 4 3

Pl(f) 0.8457% 1.0275% 1.0332% 0.6584%
Pl(Ho) 0.8457% 0.0278% 0.0008% 0.0028%

Table 9.2. Loss of new calls and handover calls according to the number of guard channels.

handover calls a loss probability which is much less than that of the new calls, without
excessively penalizing the latter. We only need 34 channels in total using this access
control, that is 5 channels less than with the first approach!

9.7.2. Multi-class system

In many situations, customers do not request the same amount of resources. In
this case, we use the multi-class Erlang formula. Consider a system with K classes of
customers and S resources. Class i customers arrive according to a Poisson process of
intensity λi and their communication lasts an exponential time of parameter µi. We set
ρi = λi/µi. A class i customer consumes si resources. The numbers of customers ni

of each class, i ∈ [[1, K]], are subject to the constraint

K

i=1

nisi ≤ S.

We study the process X , counting the number of busy resources. Its state space is

A =

⎧
⎨
⎩(n1, · · · , nK) ∈ NK ,

k

j=1

njsj ≤ S

⎫
⎬
⎭ .
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Theorem 9.6.– The invariant probability of this system is given by

ν(n1, · · · , nK) =
1
G

k

j=1

ρnj/nj !

for any n = (n1, · · · , nK) ∈ A, where G is the normalization constant

G =
(n1, ··· , nK)∈A

k

j=1

ρnj/nj !.

Proof. If S = ∞, the components of X are independent Markov processes evolving,
respectively, as the number of busy servers in a Mλi/Mµi/∞ queue. So, these are
reversible processes (see Definition 7.11) with invariant distribution νi, a Poisson
distribution with parameter ρi (see section 8.5). The process X is hence reversible,
with an invariant probability that is the tensor product of these probabilities.

For finite S, X is just the restriction to A of the previous dynamics. Thus Kelly’s
Lemma (Theorem 7.22) applied to E = NK , F = A and α = 0, yields the result.

Denote as usual, ei the ith vector of the canonical basis of RK . A call of class i is
lost whenever X ∈ A, but X + ei /∈ A. Therefore, according to the PASTA property,
the loss probability of class i reads

Pl(i) =
n∈A,n+ i /∈A

ν(n1, · · · , nK).

Example 9.3 (Interface A-bis).– The recent advances in voice coding imply that,
in situations where one TCH per frame was necessary at the time to handle a
communication, only half a frame is now necessary. However, some calls always need
a full slot. As the latter result applies for integer numbers of resources, it is necessary
to count the number of busy half-slots here. So we split the customers in two classes,
one with s1 = 1 and the other one with s2 = 2. Let us take a cell with 30 TCH, that
is 60 half-slots. The following table shows the loss probability of each class according
to the traffic loads

9.8. Hierarchical networks

We have already seen that the greater the number of servers, the lower the loss
probability. A good measure of this gain can be the cost of transported Erlang: let us
consider a system with S servers and without waiting room, and for which we set an
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Traffic load of calls of class 1
10 20 30 40

Traffic load 10 0.004% 0.24 2.47% 8.34%
of calls 0.1% 0.55% 5.29% 16.71%

of class 2 20 2.62% 7.48% 13.9% 20.62%
5.53% 14.99% 26.54% 37.66%

Table 9.3. Loss rates of the various classes based on the traffic load

5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

S

profitability

Figure 9.5. The profitability in function of S

upper bound α for the loss probability. The maximum traffic load ρS,α that can pass
through this system is defined by the equation

Er[ρS,α, S] = α.

The system profitability is then defined as the ratio of ρS,α by S, i.e.

R =
ρS,α

S
.

As shown in Figure 9.5, the profitability increases with the number of servers.

However, if we take into account the cost of installing a server, there comes a
time when the increase in costs compensates an increase in the profitability gain. The
solution implemented in the conventional telephone network consists of organizing
the network hierarchically. Subscribers are connected to a switch termed switch of
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level 0, and then level 0 switches are connected to a level 1 switch, in lesser numbers.
We can continue up to level 3 in the hierarchy. For the record, of its golden age, the
switched French Telephone network use to include approximately 1500 switches of
level 0, some hundreds of switches of levels 1 and 2, and 7 switches of level 3.

The establishment of communication was done by always trying to use junctions
of the lowest level possible. If there was a free junction between two switches of level
0, the latter was used. Otherwise, the switch of level 0 was sending the management
of the call to the switch of level 1, which itself was trying to route the call by staying
at its level, and so on.

If the RTC itself is now obsolete, the fact remains that many of its inventions have
been incorporated into modern systems, especially the guard channels and hierarchical
networks.

Let us take the case of the GSM network. In urban areas, the cells, i.e. the areas
managed by an antenna or base station, are small and the hand-overs become frequent
for users as “fast” as motorists, for instance. Hence, we add several more powerful
antennas, which cover a wider area and will offer two types of services: (i) support the
calls of the fast mobiles, so as to reduce the frequency of hand-overs and (ii) route the
overflow calls of the original smaller cells (termed micro-cells) that they cover.

One question arises: dimensioning the number of transceivers in the cell of the
highest level (termed macro-cell). Indeed, the overflow process of a micro-cell is not
a Poisson process, but an MMPP (see Example 7.2). For the micro-cell of index i,
the phase process of the overflow process has as infinitesimal generator Qi, that
of the number of customers in a Mλi/Mµi/Si/Si queue, and as rate function λi
given by

λi(j) = 0 for j < Si and λi(Si) = λ.

In view of Theorem 7.23, the phase process of the whole MMPP (consisting of the
superposition of the overflow processes of all micro-cells), denoted J , has a generator
Q = Q1 ⊕ . . .⊕QK and a rate function λ = λ1 ⊗ . . .⊗ λK .

Therefore, the dimensioning of the macro-cell is equivalent to studying an
MMPP/M/S/S queue. Let us denote X as the number of busy servers. This process
is not Markov alone, because without knowing the phase, we cannot know how long
will it take for the next arrival to occur. However, in this case the couple process (X, J)
is Markov. Its infinitesimal generator A is written in blocks, as follows
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q − Λ Λ
µIm Q − Λ − µIm Λ

2µIm Q − Λ − 2µIm Λ (0)
. . . . . . . . .

SµIm Q − Λ − SµIm Λ
(0) SµIm Q − Λ − SµIm Λ

. . .
SµIm Q − SµIm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The invariant probability π satisfies as usual

πA = 0, πe = 1,

where e is the vector with (S + 1).m components all equal to 1. There, m denotes
the number of phases of the overflow process, i.e. m = (S + 1)K . Set xi =
(π(i, 1), · · · , π(i, m)) for i ∈ [[0, S]]. The xi’s are thus solutions to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(Qmc − Λmc) + θx1 = 0;

x0Λmc + x1(Qmc − Λmc − θIm) + 2θx2 = 0;

...

xn−1Λmc + xn(Qmc − Λmc − nθIm) + (n + 1)θxn+1 = 0, n ≥ 1;

...

The last equation is

xL−1Λmc + xL(Qmc − LθnIm) = 0. [9.10]

From these equations, we obtain
⎧
⎪⎨
⎪⎩

xn = x0Rn with R−1 = 0, R0 = Im,

Rn+1 = − 1
θ(n + 1)

(Rn−1Λmc + Rn(Qmc − Λmc − nθIm)),
[9.11]

which determines the xi’s according to x0. It remains to determine x0, and we have
two possibilities.

Method 1 The stationary probability of the number of busy servers in each cell is
given by the Erlang formula

ν(i) =
ρi/i!
S
j=0 ρj/j!

.

Since the cells are independent of each other, the stationary probability of the
phase process is the tensor product of K vectors

νmc = ν ⊗ ν ⊗ ...⊗ ν.
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Microcell 1 Microcell 2 Microcell K

...

...

1

S1

...

...

1

S2

λ2λ1 . . . . . .
...
...

1

SK

λK

1

...

...

S

Superposition of the overflow processes

Figure 9.6. The traffic carried by the macro-cell is the sum of the overflow traffic of micro-cells

Observe that for all j ∈ [[0, S]]K ,

S

n=0

π(n, j) = νmc(j).

Then, we introduce fn as the row vector with m components of which only the
nþis not 0 but 1. We also introduce en as the transpose of fn. The last relation
then reads

L

n=0

x0Rn.ej = νmc(j).
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As ej .fj is the matrix whose only non-zero coefficient is the coefficient (j, j),
we have

m

j=1

ej .fj = Idm.

On the other hand,

νmc =
m

j=1

νmc(j)fj .

We thus have

x0

L

l=0

Rl = νmc. [9.12]

Method 2 By putting [9.11] in [9.10], we obtain

x0(RL−1Λmc + RL(Qmc − Lθ)) = 0.

This equation determines all the components of x0 but one. Then, it is necessary
to use the normalization condition to calculate its value.

Finally, from Theorem 7.25, the loss probability is given by

Pl = (νmcΛmce)−1xLΛmce, [9.13]

where e = m
n=1 en.

9.9. A model with balking

In this system, we model a forced limitation of the system workload, by introducing
an access control, rather that limiting the system capacity: the more the system is
congested, the less chance the customers have of entering into it.

With the usual notation, we consider a Mλ/Mµ/1/∞ queue, in which the arriving
customers make a toss (independent from one customer to another, and from all
other parameters) to determine whether they enter the system or not. We denote
(Xr(t), t ≥ 0) as the process counting the number of customers in the system (the
exponent r will be added to all parameters). For the nth arriving customer, the draw is
a Bernoulli experience of probability p(Xr(T −

n )), hence depending on the congestion
at the arrival of the customer. If the Bernoulli variable equals 1, then the customer
enters the system and will wait until the end of its service. Otherwise, the customer
does not even enter the system, and is lost forever. It is thus pure good sense to assume
that the function p(.) is decreasing.
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Note.– The expression of p(.) that is mainly considered in the literature is

p(n) =
1

n + 1
. [9.14]

Hereafter, we will call “entering customer”, an arriving customer who actually
enters the system. We aim to describe the steady state of the system by studying the
process (Xr(t), t ≥ 0). Let us begin bynoticing the following analog of the bus paradox
(Theorem 6.6).

Lemma 9.7.– Let for any t, W̃ (t) be the residual time at t before the next arrival of
an entering customer . Then, for any i ∈ N, W̃ (t) follows the distribution ε(λpi)
conditionally to Xr(t) = i, that is for any x ≥ 0,

P W̃ (t) ≤ x |Xr(t) = i = 1− e−λpix.

Proof. Let us again denote T0 = 0 and T1, T2, . . . the arrival times of the customers,
for any t ≥ 0, N(t) be the number of customers arrived up to t and Z(t), the number
of arrivals necessary to see the first actual entering customer after t. It is then easily
checked that

W̃ (t) = TN(t)+Z(t)−x.

On the other hand, Z(t) follows conditionally to {Xr(t) = i}, a geometric
distribution with parameter pi, as after t, each customer enters with probability pi
independently of the others, up to the first actual entry after t. We can thus write for
any x,

P W̃ (t) ≥ x |Xr(t) = i

=
k≥1

P W̃ (t) ≥ x |Z(t) = k; Xr(t) = i P (Z(t) = k |Xr(t) = i)

=
k≥1

P W̃ (t) ≥ x |Z(t) = k; Xr(t) = i (1− pi)k−1pi

= pi
k≥1

(1− pi)k−1P TN(t)+k − t ≥ x

= pi
k≥1

(1− pi)k−1
∞

j=1

P (Tj+k − t ≥ x; N(t) = j) .

[9.15]
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First, according to Theorem 6.6,

pi

∞

j=1

P (Tj+1 − t ≥ x; N(t) = j) = pie
−λx. [9.16]

On the other hand,

pi
k≥2

(1− pi)k−1P (Tk − t ≥ x; N(t) = 0)

= pi
k≥2

(1− pi)k−1P (Tk ≥ t + x; ξ1 > t)

= pi
k≥2

(1− pi)k−1{P (ξ1 > t + x) + P (Tk ≥ t + x; t < ξ1 < t + x)}

= pi
k≥2

(1− pi)k−1e−λ(t+x)

+pi
k≥2

(1− pi)k−1
t+x

t

λe−λu
∞

t+x−u

λk−1 vk−2

(k − 2)!
e−λv d v d u

= e−λ(t+x)(1− pi) +
t+x

t

λe−λu(1− pi)e−λpi(t+x−u) d u

= −pie
−λ(t+x) + e−λte−λpix. [9.17]

Then,

pi
k≥2

(1− pi)k−1
∞

j=1

P (Tj+k − t ≥ x; N(t) = j)

= pi
k≥2

(1− pi)k−1
∞

j=1

P (Tj ≤ t; Tj + ξj+1 > t + x)

+pi
k≥2

(1−pi)k−1
∞

j=1

P (Tj+k ≥ t + x; Tj ≤ t; t < Tj + ξj+1 ≤ t + x) .

[9.18]



Loss Systems 297

But as in the proof of Theorem 6.6,

pi
k≥2

(1− pi)k−1
∞

j=1

P (Tj ≤ t; Tj + ξj+1 > t + x)

= pi
k≥2

(1− pi)k−1e−λ(t+x)(eλt − 1)

= (e−λx − e−λ(t+x))(1− pi),

[9.19]

while

pi
k≥2

(1− pi)k−1
∞

j=1

P (Tj+k ≥ t + x; Tj ≤ t; t < Tj + ξj+1 ≤ t + x)

= pi

t

0

∞

j=1

(λj
uj−1

(j − 1)!
)e−λu

t+x−u

t−u

λe−λv

∞

t+x−u−v

∞

k=2

((1− pi)k−1λk−1 wk−2

(k − 2)!
)e−λw dw d v d u.

=
t

0
λe−λpi(t+x−u)

t+x−u

t−u

λ(1− pi)e−λ(1−pi)v d v d u

= (e−λte−λpix − e−λ(t+x))
t

0
λeλu d u

= e−λpix − e−λx − e−λte−λpix + e−λ(t+x).

[9.20]

By collecting [9.16], [9.17], [9.18], [9.19], and [9.20] in [9.15], we finally obtain that

P W̃ (t) ≥ x |Xr(t) = i

= pie
−λx − pie

−λ(t+x) + e−λte−λpix + (e−λx − e−λ(t+x))(1− pi)

+ e−λpix − e−λx − e−λte−λpix + e−λ(t+x)

= e−λpix.
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As we did before, we deduce from Lemma 9.7 that the process (Xr(t), t ≥ 0) is
Markov of generator Ar that is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λp0 λp0
µ −(λp1 + µ) λp1
0 µ −(λp2 + µ) λp2 (0)

. . .
. . .

. . .
(0) µ −(λpi + µ) λpi

µ −(λpi+1 + µ) λpi+1

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can then verify that whenever the stability condition

∞

i=1

ρi
i−1

j=0

pj < +∞ [9.21]

holds, the unique stationary probability πr of the congestion process is defined by

πr(0) =

⎛
⎝1 +

∞

i=1

ρi
i−1

j=0

pj

⎞
⎠

−1

;

πr(i) = ρi

⎛
⎝

i−1

j=0

pi

⎞
⎠ π(0), i ≥ 1. [9.22]

Note.– In the classical case where

pi =
1

i + 1
, i ≥ 0,

we have π(i) = e−ρρi/i!, for any i ≥ 0. This means that the stationary congestion
X∞ follows a Poisson distribution P(ρ), just as the infinite server queue.

Loss probability

We need to enrich our model in order to derive the loss probability of the system.
So we define the process (Y (t), t ≥ 0) by induction on the arrival times as follows: we
first set

Y (t) = 0; t ∈ [0, T1],

then for any i ≥ 1,

Y (Ti) =
1 if the customer Ci enters the system;
0 otherwise,
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and

Y (t) = Y (Ti), t ∈ [Ti, Ti+1].

It is then easily seen that the couple process ((Xr(t), Y (t)), t ≥ 0) is Markov on N×
{0, 1}. Indeed, it is a process with rcll paths (as (Y (t), t ≥ 0) is piecewise constant),
of which we can write the generator Ãr as follows:

– for any i ≥ 0, the process may leave the state (i, 0) for the state (i + 1, 1) if an
arrival of an entering customer actually occurs, and if i ≥ 1, for state (i− 1, 0) if the
current service ends. So,

Ãr((i, 0), (i + 1, 1)) = λpi;

Ãr((i, 0), (i− 1, 0)) = µ for i ≥ 1.

– The process has the same transitions from (i, 1) to (i + 1, 1) and (i − 1, 1).
Another possible jump is done from (i, 1) to (i, 0), i.e. when a customer arrives and
does not actually enter. Thus,

Ãr((i, 1), (i + 1, 1)) = λpi;

Ãr((i, 1), (i, 0)) = λ(1− pi);

Ãr((i, 1), (i− 1, 1)) = µ for i ≥ 1,

where we apply a result similar to Lemma 9.7 for the second transition.

We solve the system

π̃rÃr = 0;
π̃re = 1,

where Ãr is the generator of the process on N×{0, 1} and π̃r is a probability measure
on N× {0, 1}.

Let us denote Xr
∞ and Y r

∞ as the limiting r.v.’s for the two processes, if any. So, if
it exists, π̃r should satisfy for any i ∈ N to

πr(i) = P (Xr
∞ = i) = P (Xr

∞ = i; Y r
∞ = 0) + P (Xr

∞ = i; Y r
∞ = 1)

= π̃r(i, 0) + π̃r(i, 1). [9.23]

In particular, under the stability condition [9.21], the series involved in the computation
of π̃r are necessarily summable, by [9.23]. Therefore, in that case a unique solution
to the previous system necessarily exists, and the process ((Xr(t), Y (t)), t ≥ 0) is
ergodic. Let us now observe that for any i ∈ N,

µπr(i + 1)− λpiπ
r(i) = 0,
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which gives with [9.23] that

µπ̃r(i + 1, 0) + µπ̃r(i + 1, 1)− λpiπ̃
r(i, 0)− λpiπ̃

r(i, 1) = 0. [9.24]

Further, it appears from the form of the generator Ãr that

−λpiπ̃
r(i, 0)− µπ̃r(i, 0) + λπ̃r(i, 1)− λpiπ̃

r(i, 1) + µπ̃r(i + 1, 0) = 0,

which, combined with [9.24], implies that for any i ≥ 0,

π̃r(i + 1, 0) = (ρpi + 1)π̃r(i, 0) + ρ(pi − 1)π̃r(i, 1);

π̃r(i + 1, 1) = −π̃r(i, 0) + ρπ̃r(i, 1).

Therefore, we have the recursive matrix relation

π̃r(i + 1, 0)
π̃r(i + 1, 1) =

ρpi + 1 ρ(pi − 1)
−1 ρ

π̃r(i, 0)
π̃r(i, 1) [9.25]

= Mi
π̃r(i, 0)
π̃r(i, 1) . [9.26]

Let us denote for any i ≥ 1,

Ai =
i−1

j=0

Mj

and A1
i (respectively, A2

i ) the first (respectively, second) row of Ai, and recall relations
[9.23] and

i∈N

(π̃r(i, 0) + π̃r(i, 1)) = 1.

The probability π̃r is hence completely defined by

π̃r(i, 0)
π̃r(i, 1) = Ai

π̃r(0, 0)
π̃r(0, 1)

= Ai π̃r((0, 0))
1
−1 +

0
πr(0) , i ≥ 0;

π̃r(0, 0) = 1−
i∈N

A1
i

0
πr(0) + A2

i
0

πr(0)

·
i∈N

A1
i

1
−1 + A2

i
1
−1

−1

.
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Hence, we can assess numerically π̃r by estimating the values of the series of the
previous formula. According to the PASTA property and the ergodicity of the process
((X(t), Y (t)), t ≥ 0), the loss probability is thus given by the formula

P r
l = lim

N→∞
1
N

N

n=1

1{0}(Y (T −
n ))

= lim
N→∞

1
N

N

n=1

∞

i=0

1{(i, 0)} Xr(T −
n ), Y (T −

n )

=
∞

i=0

lim
T→∞

1
T

T

0
1{(i, 0)}((Xr(t), Y (t))) d t

=
∞

i=0

π̃r((i, 0)).

9.10. A call center with impatient customers

We have seen that the Erlang model can represent a call center with S servers,
where the customer calls are dropped whenever all lines are taken. As we shall see
here, we can enrich the previous model in the case where the customers can be put on
hold. It is then consistent to assume that customers are likely to become impatient, and
hang up before having their call connected.

The model we chose is that of a queue with infinite capacity and impatient
customers: more precisely, we consider a Mλ/Mµ/S/S+Mα queue, that is the inter-
arrival times and durations of calls are exponential, and the patience times of the
customers (Dn, n ∈ Z) before reaching an operator are independent and identically
distributed of distribution ε(α), where α > 0.

Let us stress the fact, that the customers are not impatient anymore as soon as they
access an operator, so any customer who has not hung up before this time, continues
his call until it ends: with the terminology of section 4.6, the patience runs until the
beginning of service. Throughout this section, customers are served in FCFS.

Denote (X i(t), t ≥ 0) as the process counting the number of customers in the
system at any time (and add the exponent i for “impatience” to all parameters of
the system). At t, X i(t) counts the number of customers in service and of waiting
customers, irrespective of the fact that they will reach the server or not. This process
may leave the state i ∈ N to visit the following states:
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– the state i + 1, if an arrival occurs,

– the state i− 1, if i ≥ 1 and a service ends, or provided i > S, if the patience of
some customer in line has expired.

Since the residual patience time of the i − S waiting customers are independent and
follow at any times the ε(α) distribution, it is easily checked that (X i(t), t ≥ 0) is
Markov, with infinitesimal generator given by

– Ai(i, i + 1) = λ for any i ≥ 1;
– Ai(i, i− 1) = iµ for any i ∈ [[1, S]];
– Ai(i, i− 1) = Sµ + (i− S)α for any i ≥ S + 1.

We can then compute, as usual, the stationary probability πi of (X i, t ≥ 0)

πi(i) =
ρi

i!
πi(0) for any i ∈ [[0, S]];

πi(i) =
λi−SρS

i−S
j=1(Sµ + jα)S!

πi(0) for any i ≥ S + 1;

πi(0) =
S

i=0

ρi

i!
+

∞

i=1

λiρS

i
j=1(Sµ + jα)S!

−1

.

Estimate of the loss probability

As in the Erlang model, we aim to dimension the system by determining the optimal
value of S to ensure a target loss probability. The exact computation of this probability
is tedious, and is based on technical arguments which are beyond the scope of this
book. We can nevertheless give a heuristic estimate.

In this system, the customer Cn is lost if, and only if, it finds in the system a waiting
time Wn greater than its patience time Dn. The loss probability is hence given by

P i
l = lim

N→∞
1
N

N

n=1

1{[0,Dn]}(Wn).

According to the results of section 4.6, as [4.97] clearly holds, there exists a
stationary waiting time Ta. The r.v. Ta and D are clearly independent (once again,
see the constructions of stationary waiting times in Chapter 4), Theorem 2.7 implies
that
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P i
l = P ((Ta, D) ∈ {(x, y); x ≥ y})

=
R+

x

0
αe−αy dy PTa(dx)

= 1− LW∞(α),

where LW∞ is the Laplace transform of W∞.

A

C

B

Figure 9.7. Single hub

9.11. Problems

Exercise 22.– We consider the following concentrator/hub:

Class 1 customers are those who use the connections A and C. Class 2 customers
are those using the connections B and C. We denote SA, SB , SC as the capacities of
each one of the links. We set X = (X1, X2), with Xi(t) the number of class i calls
in progress at t. Arrivals of calls of class i form a Poisson process of intensity λi,
for i = 1, 2. The call durations of class i customers are exponentially distributed of
average 1/µi. We set ρi = λi/µi.

1) We assume at first that SA = SB = SC =∞. Write the infinitesimal generator
of X.

2) What is its stationary probability?

3) Show that it is reversible.

4) Describe the state space S when the capacities are finite.

5) Deduce the stationary probability π of X when all the capacities are finite.

6) Show that the probability P i
B of blocking (and thus, of loss) of calls of class i is

of the form

pi = 1− (n1,n2)∈Si π(n1, n2)

(n1,n2)∈S π(n1, n2)
,

where Si is a subset of S which we will specify.
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7) Numerical application: SA = SB = 2, SC = 3, ρ1 = ρ2 = 2. Compute p1.

8) Compare the loss probability to the quantity

1− (1− E[ρ1, SA])(1− E[ρ1, SC ]).

What does the latter represent?

Exercise 23.– Consider the process X counting the number of customers in a
Mλ/Mµ/S/S+C queue.

1) Show that X is Markov, and give its generator.

2) Show that there exists a unique stationary probability π, and express π.

3) Give the loss probability of the system.

9.12. Notes and comments

The explicit computations for the dimensioning of GSM networks with hand-overs
can be found in the lectures notes of X. Lagrange, those for the A-bis interface were
proposed by N. Dailly. The dimensioning of hierarchical networks is an old problem.
The old methods were based on the equivalent trunk method of Kuczura and Wilkinson
(see [ITU]). The approach using MMPP processes is due to [MEI 89]. Its application
to mobile networks is inspired by [LAG 96].
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Epitome

– The loss probability equals the blocking probability, only if the arrival process is
Poisson. In other cases, one can refer to Theorem A.34.

– In the M/M/S/S queue, the loss probability is given by Erlang-B formula

Er[ρ, S] =
ρS/S!
S
i=0 ρi/i!

.

– In the Engset model, the loss probability is given by

Eng[ρ, S, M ] =
ρSCS

M−1
S
j=0 Cj

M−1ρj
,

where S is the number of servers and M represents the number of sources.

– The loss probability depends not only on the load, see the case of the IPP/M/S/S
queue.



Part 3

Spatial Modeling



Chapter 10

Spatial Point Processes

10.1. Preliminary

In radio communications, the distance between the transmitter and the receiver plays
a crucial role. To evaluate the performance of radio-cellular protocols, it is customary
to consider that the access points or base stations are evenly distributed in a hexagonal
pattern; see Figure 10.1.

R

Figure 10.1. Hexagonal network of base stations

The mobile phones are often modeled by a continuum: a call can be transmitted
from a point x with an infinitesimal probability dx. This approach which is very
macroscopic prevents very precise and realistic calculations. For the last few years,
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under the influence of works of F. Baccelli, the models stemming from stochastic
geometry are gaining more and more attention. They enable us to represent the reality
more precisely and make calculations more rigorously.

10.2. Stochastic geometry

The concept of configuration is specified in example A.1. Let us recollect the
definition, and see section A.1.2 for details.

Definition 10.1.– A configuration is a locally finite set of points of a set E: there is a
finite number of points in any bounded set. We denote NE as the set of configurations
of E.

Example 10.1 (Bernoulli Process).– The Bernoulli point process is a process based
on a finite set E = {x1, · · · , xn}. Each of these points is ON, independently of others
and with probability p. If we introduce A1, · · · , An random independent variables of
Bernoulli distribution with p parameter, we can write

N =
n

i=1

Aiδxi .

Table 10.1. On the left, the set E. In the middle and on the right, two possible realisations.
In full (red), the ON points

Example 10.2 (Binomial process).– The number of points is fixed to n and µ, a
probability measure on R2 is given. According to µ, the atoms are drawn randomly
independent of each other.

We can easily calculate that

P(N(A) = k) =
n

k
µ(A)k(1− µ(A))n−k,

and for the disjoint sets A1, · · · , An
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P(N(A1) = k1, · · · , N(An) = kn) =

(k1 + . . . + kn)!
k1! . . . kn!

µ(A1)k1 . . . µ(An)kn . [10.1]

10.3. Poisson process

The point process, mathematically the richest, is the spatial Poisson process which
we recognise as that which generalizes the Poisson process on the real straight line
introduced in Chapter 6.

Definition 10.2.– Let µ be a Radon measure on a Polish space E that is µ(Λ) < ∞
for every compact set Λ ⊂ E. The Poisson process with intensity µ is defined by its
Laplace transform: for any function f : E → R+,

E exp(− f d N) = exp −
E

(1− e−f(s)) d µ(s) .

To clarify that the intensity measure is µ, we will often index the expectation by
µ.From the definition of a Poisson process, we immediately infer the Campbell formula
by differentiation.

Theorem 10.1 (Campbell Formula).– Let f ∈ L1(E, µ),

Eµ f d N =
E

f d µ

and if f ∈ L2(E × E, µ⊗ µ), then

Eµ

⎡
⎣
x=y∈N

f(x, y)

⎤
⎦ =

E×E

f(x, y) d µ(x) d µ(y).

Note.– Particularly, for f = 1A whereA is a compact ofE, we notice thatE [N(A)] =
µ(A). If µ = λ d x, then λ represents the average number of customers per unit area.

An alternative definition is as follows:

Theorem 10.2.– Let µ be a Radon measure on a Polish space E. The Poisson process
with intensity µ is the probability measure on NE such that:

– For every compact set Λ ⊂ E, N(Λ) follows a Poisson distribution with
parameter µ(Λ).

– For Λ1 and Λ2 two disjoint subsets of (E, B(E)), the random variables N(Λ1)
and N(Λ2) are independent.
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From this second definition, we immediately deduce the result of the following
result of uniformity.

Theorem 10.3.– Let N be a Poisson process with intensity µ. LetΛ ⊂ E be a compact
set. Given that N(Λ) = n, the atoms are distributed according to a binomial process
for µΛ(A) = µ(A ∩ Λ)/µ(Λ).

Proof. Let A1, · · · , Am be a partition of Λ or (k1, · · · , km) such that k1 + . . . +
km = n.

P(N(Ai) = ki, i = 1, · · · , m N(Λ) = n)

=
P(N(Ai) = ki, i = 1, · · · , m, N(Λ) = n)

P(N(Λ) = n)

=
P(N(Ai) = ki, i = 1, · · · , m)

P(N(Λ) = n)

=
exp(− m

i=1 µ(Ai))
m
i=1

µ(Ai)ki

ki!
exp(−µ(Λ))µ(Λ)n

n!

=
n!

k1! . . . km!

m

i=1

µ(Ai)
µ(Λ)

ki

.

[10.2]

According to [10.1] for µΛ, we see that, given the number of atoms in Λ, they are
distributed according to a binomial process.

From this result, we deduce a way to simulate a Poisson process on any set Λ, such
that µ(Λ) is finite.

Algorithm 10.1. Simulation of realisation of a P.P.(µ) on a set Λ.
Data: µ, Λ
Result: n= realisation of a random variable with Poisson distribution(µ(Λ))
for i = 1 to n do

Xi = draw a point with distribution µ/µ(Λ)
end
return n, Xi, i = 1, · · · , n

Example 10.3 (M/M/∞ queue).– The M/M/∞ queue is the queue with Poisson
arrivals, independent and identically distributed from exponential distribution service
times, and an infinite number of servers (without buffer). It is initially a theoretical
object which is particularly simple to analyze and also a model to which we can
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compare other situations. Due to the independence of the inter-arrivals and service
time, according to the second characterization of Poisson processes, the process

N =
n≥1

δ(Tn, Sn)

where Tn is the instant of nth arrival and Sn the nth service time, is a Poisson process
with dµ(t, x) = λ d t⊗ µe−µx d x intensity in E = R+ ×R+.

Time

Service time

t
Exit of Exit ofcustomer 2 customer 3

Figure 10.2. The M/M/∞ queue as a Poisson process in R+ × R+. Customers still
in use at time t are those that correspond to points in the shaded trapezoid

The customers who are still in service at the time are those who correspond to the
points in the shaded trapezium.

We deduce that X(t), the number of busy servers at time t follows a Poisson
distribution with parameter

t

0

∞

t−s

µe−µx d x λ d s = λ
t

0
e−µ(t−s) d s = ρ(1− e−µt),

where ρ = λ/µ. If the system is not empty at time 0, we must add X(t) the number
of initial customers still in service at time t. If X0 follows a Poisson distribution with
parameter ρ0, the number of customers in service at time t follows a Poisson distribution
with parameter ρ0e−µt because each and every customer has a probability e−µt of
being still in service and the total is thus the thinning of a Poisson random variable. In
conclusion, X(t) then follows a Poisson distribution with parameter ρ+(ρ0−ρ)e−µt.
Irrespective of the value of ρ0, the stationary probability of X is a Poisson distribution
with parameter ρ.
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Note.– Let us illustrate some of the differences between a Poissonian model and a
hexagonal model for wireless networks. In a hexagonal model, the average number of
users per unit of area is the inverse of the area of a hexagon. If the radius of the hexagon
is R, this gives an average density of 2/(3

√
3)R−2. In a Poissonian model, the average

number of users per unit of area is λ. In the same way as for comparing two queues,
the load must be identical to compare two spatial systems, and the average number of
users must be identical. We must therefore choose λ and R2 such that λR2 = 2.3−3/2.

One of the essential parameters is as we have said, the distance. In particular, a
short distance between resources ensures a better coverage, but creates interferences.
In a hexagonal model, if the cell radius is R, the distance between nearest neighbours is
R
√

3. Let us calculate this quantity in the case of a Poisson process with λ d x intensity
on R2. Let x ∈ R2 be any point in the plane

Dx(N) = d(x, N) = inf{ x− y , y ∈ N}.

It is clear that we have

P(d(x, N) ≥ τ) = P(N(B(x, τ)) = 0)

= exp(−λπτ2).

Therefore

E [Dx] =
+∞

0
P(Dx ≥ τ) d τ

=
+∞

0
exp(−λπτ2) d τ

=
+∞

0
exp(−u2/2)

1√
2λπ

d u

=
1

2
√

λ
,

because we recognise the semi-integral of the Gaussian density with variance λ. Using
the Palm theory, we could show that this result holds true for the distance at any point
of the process and its nearest neighbour. In conclusion, if λR2 = 2/33/2, we obtain
that the average distance in the Poisson model is approximately 0.8R, and that is
much less than the distance in the hexagonal model. For the interferences, which are
inversely proportional to the distance, the Poisson model is thus more pessimistic than
the hexagonal model.

Example 10.4 (Mean Interference).– At a point x of the plane, the interference
created by other mobiles is expressed by

I(x, N) =
y∈N

h(y)P (y)l( y − x ),
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where P (x) is the power of the signal emitted by the mobile in y, l is a function of R+

in R+ which we generally take from the form

l0(r) = r−γ or l1(r) = min(1, r−γ). [10.3]

The second formulation gives less elegant formulas but is more realistic (a signal
is not going to be amplified on the grounds that the receiver is very close to the
transmitter) and avoids indefinite integrals. The random variables (h(y), y ∈ N) are
generally identically distributed (the same distribution as that of a random variable
H), independent of each other and independent of N . They represent the loss factor
induced by the fading (the attenuation due to local movements of the receiver) and
shadowing (signal attenuation due to obstacles between the transmitter and receiver).
In general, the fading is modeled by a a random variable exponentially distributed
with one parameter. The shadowing is represented by a log-normal distribution, i.e. the
exponential of a Gaussian variable.

Campbell’s formula indicates that

Eµ [I(x)] = E [H] P (y)l( y − x ) d µ(y).

Then, assume that power is the same for all the mobiles and that µ is proportional to the
Lebesgue measure, that is d µ(x) = λ d x. We immediately observe that the previous
quantity is not dependent on x, hence the result

Eµ [I(0)] = PE [H] l( y )λ d y = λE [H]
∞

0
l(r)r d r.

If we take path-loss model as in [10.3], we obtain for a cell of radius R > 1

Eλ [I(0)] = E [H] λ π +
π

γ − 2
(1−R2−γ) .

For large R, this quantity is approximately equal to E [H] πλγ for γ > 2.
Example 10.5 (Interference distribution).– Now, suppose that the random
variables (h(x), x ∈ R2) are independent of the same distribution. For s real positive

E exp(−s h(x)l( x ) d N(x))

= E E exp(−s h(x)l( x ) d N(x)) |N(Λ)

= E
x∈N

exp(−sl( x )y) dPH(y) ,
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since given the number of points in Λ, the atoms are independent of each other. By
denoting LH as the Laplace transform of H , we obtain

E exp(−s h(x)l( x ) d N(x)) = E
x∈N

LH(sl( x ))

= E exp(
Λ
lnLH(sl( x )) d N(x))

= exp(−
Λ
1− eln LH(sl( x )) d µ(x))

= exp(
Λ
(lnLH(sl( x ))− 1) d µ(x)).

For Rayleigh fading, H is exponentially distributed with parameter 1. If we assume
that µ = λ d x and that the path-loss is given by l0, all calculations are feasible and we
obtain the following formula (see [HAE 08, equation (3.21)])

LI(0)(s) = exp(−πλsδ
πδ

sin(πδ)
),

where δ = 2/γ. Then we know that this corresponds to a stable distribution of
characteristic exponent δ; see [SAM 94].

Most of the properties of real Poisson process are transferred to the spatial Poisson
process.

Theorem 10.4 (Integration).– LetN1 andN2 be two independent Poisson processes
with respective intensities µ1 and µ2, their superposition N defined by

f d N = f d N1 + f d N2

is a Poisson process with intensity µ1 + µ2.

Definition 10.3.– Let N be a Poisson process with intensity µ and p : E −→ [0, 1].
The (µ, p)-thinned Poisson process is the process where an atom of the Poisson process
N in x is kept with probability p(x).

Theorem 10.5 (Thinning).– A (µ, p)-thinned Poisson process is a Poisson process of
intensity µp defined by

µp(A) =
A

p(x) d µ(x).

Note.– This result is interesting in the framework of modeling. If the users are
represented by the points of a point Poisson process, only those that emit at a given
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Table 10.2. A realisation of a Poisson process (on the left) and one of its thinning with
p = 2/3 (on the right). Filled circles correspond to kept points

time concern the operator. We can assume that each user has a probability p to emit
at any given time irrespective of other mobiles. Theorem 10.5 indicates that the active
users are scattered in the plane according to a Poisson process of intensity λp.

Theorem 10.5 is a special case of the displacement theorem.

Definition 10.4.– Let (Ω , A , P ) be a probability space and (F, F) a Polish space.
A displacement is a measurable application Θ of Ω ×E −→ F such that the random
variables (Θ(ω , x), x ∈ E) are independent. For A ∈ F , we have

θ(x, A) = P (ω : Θ(ω , x) ∈ A).

Thus θ(x, A) represents the probability that the point x is displaced in A. More
mathematically, if we denote by Θ(ω , .)∗µ the image measure of µ through the
application Θ(ω , .), we have

EP [Θ∗µ(A)] = EP 1{Θ(ω , x)∈A} d µ(x)

= P (Θ(ω , x) ∈ A) d µ(x) = θ(x, A) d µ(x).

This means that

EP 1A dΘ∗µ =
A

θ(x, d y) d µ(x).

Therefore, for a non-negative function f , we obtain

EP f dΘ∗µ = f(y)θ(x, d y) d µ(x). [10.4]
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Definition 10.5.– A displacement is said to be conservative when, for any compact
Λ ⊂ E

EP [Θ∗µ(Λ)] =
Λ F

θ(x, d y) d µ(x) = µ(A).

This signifies that on average, the total mass of the point process is preserved.

Let Θ be a displacement such that Λ F
e−f(y)θ(x, d y) d µ(x) = µ(A) and N be

a point process, the displaced point process NΘ is defined by

NΘ(ω ) =
x∈N

δΘ(ω , x).

Theorem 10.6 (Displacement).– Let N be a Poisson process with intensity µ on E
and Θ be a conservative displacement from E to F . The process NΘ is a Poisson
process with intensity µΘ defined by

µΘ(A) =
E

θ(x, A) d µ(x).

Proof. First, assume that f has a compact support denoted by Λ. We know that given
N(Λ), the atoms of N are independent, distributed according to µ/µ(Λ). Therefore,
we can write

E F exp(−
Λ
d N) =

∞

n=0

e−µ(Λ)µ(Λ)n

n! En

n

j=1

e−f(xj) d µ(xj)
µ(Λ)

·

According to the construction of NΘ, the random displacement is independent of
N , thus, we have

E exp(− f d NΘ) = EP

⎡
⎣

∞

n=0

e−µ(Λ)

n! En

n

j=1

e−f(Θ(ω , xj)) d µ(xj)

⎤
⎦

=
∞

n=0

e−µ(Λ)

n!
EP

⎡
⎣

En

n

j=1

e−f(Θ(ω , xj)) d µ(xj)

⎤
⎦.
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By definition of a displacement, the random variables (Θ(ω , xj), j = 1, · · · , n) are
independent. By using [10.4],we obtain,

E exp(− f d NΘ) =
∞

n=0

e−µ(Λ)

n!
EP

E

e−f(Θ(ω , x)) d µ(x)
n

=
∞

n=0

e−µ(Λ)

n!
e−f d µΘ

n

= exp −µ(Λ) +
Λ F

e−f(y)θ(x, d y) d µ(x) .

As Θ is conservative, we obtain

E exp(− f d NΘ) = exp −
F

(1− e−f(y))
Λ

θ(x, d y) d µ(x) ,

so Nθ is definitely a Poisson process with intensity µΘ.

We obtain the general case for f , by truncation ( apply the previous result to fΛ =
f 1Λ) and by a limit procedure (consider an increasing sequence of compacts (Λn, n ≥
1) such that ∪nΛn = E. Note that the existence of such a sequence is ensured by the
Polish character of E.).

of Theorem 10.5. We consider F = E ∪ ∆ where ∆ is an external point. With
probability p(x), the atom x stays in x, with the complementary probability, it is
moved to ∆. This displacement is conservative as we keep the same number of atoms.
The restriction at E of the process thus obtained is the thinning of the initial process.
Theorem 10.5 is then a direct consequence of Theorem 10.6.

By applying Theorem 10.6 to the function (x ∈ Rd → rx) where r ∈ R+, we
obtain a scaling property which is very useful in many applications.

Corollary 10.7.– Let N be a Poisson process with intensity µ on Rd. Let r > 0, Nr

is the dilation of N process defined by

N (r) =
x∈N

δrx.

The process Nr is a Poisson process with intensity µ(r) where µ(r)(A) = µ(A/r)
for any A ∈ B(E).
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Corollary 10.8.– Let N be a Poisson process with intensity λ d x on Rd. The
process of modules is independent of the process of arguments. The first is a Poisson
process with intensity 2λπr d r, and the second is a Poisson process of intensity
(2π)−1 1[0, 2π](θ) d θ.

Proof. Theorem 10.6 implies that

N̂ =
x∈N

δ x ,Arg(x)

is a Poisson process with λr 1[0, 2π](θ) d r d θ intensity. Hence, we have the result.

Example 10.6 (OFDMA protocol).– Let us illustrate these results in the special
case of OFDMA protocol. In this protocol, time and frequency bands are cut into
pieces called subcarriers. To a communication, one or more subcarriers are allocated.
In practice, the allocation is for a period of a few slots and the assignments are therefore
similar to that of Figure 10.3.

Time
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Figure 10.3. Division and allocation in time-frequency space for the OFDMA protocol

For radio communications, it is imperative that the signal to noise plus interference
ratio (SINR) be large enough, so that communication can be established. Note Pe

the transmitted power, A the attenuation factor due to fading and shadowing, γ the
coefficient of path-loss, and η the minimal value of admissible SINR to establish a
communication. The capacity formula of Shannon stipulates that for a user wishing to
transmit at rate C, the required number of subcarriers is given by

Q(x) =

⎡
⎢⎢⎢⎢⎢

C

W log2 1 +
A Pe

x γ

⎤
⎥⎥⎥⎥⎥
1{APe x −γ>η},
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where W is the bandwidth of each subcarrier. The minimal SINR ratio varies between
0.001 (excellent channel) and 0.1 (worse conditions). In order to simplify the analysis,
we assume that the assignments are made for each slot. We want to determine the
probability that the number of available subcarriers is greater than the number of
subcarriers required.

We assume that the access point is located at the origin of the plane and that the users
are spatially distributed according to a Poisson process with intensity λ d x. A simple
model to represent the active users is to assign to each user, a probability of activity
p possibly depending on its position and to consider that the activity or inactivity of a
mobile is independent of each others. On the basis of Theorem 10.2, the point process
of active users is still a Poisson process with intensity λ p(x) d x. The total number
of subcarriers required is then

M =
Λ

Q(x) d N(x),

where Λ is the domain that represents the cell covered by the access point in (0, 0). By
assuming that A and Pe are deterministic and independent of x, based on the Campbell
formula, we get

E [M ] = λ
Λ

Q(x)p(x) d x.

If A and Pe depend on x and on a randomness source independent of N , we have a
similar expression

E [M ] = λ
Λ

Q(x)p(x) d x.

It is often impossible to explicitly calculate the laws of randomvariables constructed
from a point process such as M . The stochastic analysis gives us the tools to obtain
some information on these distributions (we refer the reader to section 10.4 for the
notations and proofs).

Theorem 10.9.– Let N be a Poisson process with intensity µ on E. Let F ∈ DomD
such that E [F ] = 0. We, therefore, have the following inequality

dTV(PF , N (0, 1)) ≤ E 1−
E

DxF DxL−1F d µ(x)

+
E

E |DxF |2|DxL−1F | d µ(x),

where dTVrepresents the total variation distance between two probability measures,
and N (0, 1) is the centered Gaussian measure on R.
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Corollary 10.10.– Let N1, · · · , NK be independent spatial Poisson processes with
respective intensity λi d x, on a bounded domain Λ. Let F be a functional of the form

F =
K

i=1

Ni(Λ)

n=1

Y i
n

where (Y i
n, i, n ∈ N) are independent variables whose distribution does not depend

on anything other than the index exponent, that isY i
n andY i

m have the same distribution
but it is not necessarily the case for Y i

n and Y j
n . Let

c2 =
K

i=1

λi(Λ)
R

m2 dPY i
1
(m),

where λi(Λ) = Λ λi d x is the area of Λ multiplied by λi. We obtain

dTV(Dist.((F − E[F ])/c), N (0, 1)) ≤ 1
c3

K

i=1

λi(Λ)
R

m3 dPY i
1
(m) .

In particular,

P(
F − E[F ]

c
≥ x)−

∞

x

eu
2/2 du√

2π
≤ 1

c3

K

i=1

λi
Λ

dx
R

m3 dPY i
1
(m) .

Proof. As the individual Poisson processes are independent of each other, the process

K

i=1 (x,m)∈Ni

δx,m

is a Poisson process on R+ ×R with intensity

K

i=1

λi dx⊗ dPY i
1
(m).

In this case, the gradient operator is defined by

Dx,mF (ω) = F (ω + δx,m)− F (ω).

The functional F is rewritten

F =
Λ R

m d(
K

i=1 (x,m)∈Ni

δx,m)

whereΛ is the domain of the plane onwhichwework. Therefore,we haveDx,mF = m.
The result follows from Theorem 10.9.
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Example (Continuation of example 10.6).– Initially,we assume that fading is constant.
This is an unrealistic hypothesis but serves to illustrate the complexity of the problem.
In this case, for each mobile, Q does not depend on anything other than its position.
We thus have a set of concentric rings around the base station in each of which the
number of subcarriers required is the same. In fact,

Q(x) = k ⇐⇒ k − 1 <
C

W log2 1 +
A Pe

x γ

≤ k ⇐⇒ Rk−1 < x < Rk,

where R0 = 0, Rk = APe
(2C0/(kW )−1)I

1/γ

. The maximum radius RM is defined by

the relation

A Pe

RM
γ

= η, thus RM =
A Pe

η

1/γ

.

Similarly, the maximum number of subcarriers required is NM = Q(RM ). It
is instructive to study the variations of the average number of subcarriers required
according to the variations of certain parameters. Let us fix C = 200 kb/s, W = 250
kHz, A = 20, 000, and λ = 0.01 mobile per square meter.

According to the second characterisation of the Poisson process, the number of users
in the ring k which is denoted by Nk follows a Poisson distribution with parameter
λπ(R2

k − R2
k−1). Moreover, the random variables (Nk, k ≥ 1) are independent

because the rings are disjoint. The number of subcarriers required is thus for each slot
N = k kNk. Therefore,

E [N ] = λπ
k

k(R2
k −R2

k−1) and Var(N) = λπ
k

k2(R2
k −R2

k−1).

Such a random variable follows a distribution called compound Poisson distribution.
Weknowhow to calculate theLaplace transformeasily but that does not give the explicit
expression of the probability that N is equal to k. We can also numerically calculate its
distribution by convolution of the distributions of each of the dilated Poisson random
variables which composes it. Nevertheless, the size of the calculations is quickly
prohibitive, we therefore resort to approximations. For a Poisson random variable
of parameter λ, we know that when λ tends toward infinity, the distribution of this
suitably normalised variable tends toward a Gaussian distribution. The disadvantages
of this approach are twofold. On the one hand, we do not know what λ big signifies,
that is to say, from which values of λ the approximation is valid. On the other hand, the
approximation is, according to the values of λ sometimes pessimistic, and sometimes
optimistic as shown in Figure 10.4.
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r

Outage probability

Figure 10.4. Outage probability with respect to r. The solid line represents the exact value, in
dotted line, the Gaussian approximation. Curve obtained for γ = 3.5 and λ = 0.02

To address the first difficulty, one can use the previous results. By taking Y k
n = k

for any n, we notice that the c2 of Theorem 10.10 is equal to Var(N). We, therefore,
have

dTV Dist.(
N −E [N ]

c
), N (0, 1) ≤ λπ k k3(R2

k −R2
k−1)

(λπ k k2(R2
k −R2

k−1))3/2

=
1√
λ

k k3(R2
k −R2

k−1)√
π( k k2(R2

k −R2
k−1))3/2

·

In other words, the convergence toward the Gaussian distribution is of the order of
1/
√

λ as expected. This theoretical bound is in fact very pessimistic as proved by
Figure 10.4.

However, the advantage of this result is that it provides an explicit bound. Table
10.3 shows a high sensitivity of the average number of required subcarriers with respect
to the variations of γ.

The same calculations show such a high sensitivity to variations in λ, the average
number of active users per unit of area. However, these two parameters are particularly
delicate to estimate, especially the coefficient γ, which largely depends on the
environment (rural, urban, semi-urban, suburban, skyscrapers, etc.). It is, therefore,
of crucial importance to have dimensioning that is robust to the variations of these
parameters.

Theorem 10.11.– LetN be aPoisson processwith intensityµ onE andΛ be a compact
of E. Let F : NΛ → R such that

DxF (NΛ) ≤ β, (µ⊗P)− a.e. and
E

|DxF (NΛ)|2 d µ(x) ≤ α2, P− a.e..
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γ
η 2.5 3 3.5 4
0.1 2.103 334 98 38
0.01 9.105 105 3.103 56
0.001 5.106 5.105 105 555

Table 10.3. Average number of subcarriers required depending on η (first column) and γ,

For any r > 0, we have the following inequality

P(F (NΛ)−E [F (NΛ)] > r) ≤ exp − r

2β
ln(1 +

rβ

α2 ) ·

Example (Continuation of example 10.6).– In the case of interest, the maximum
number of subcarriers required is limited, and it only depends on the characteristics
of the network (transmitting power, bandwidth of the subcarrier, etc.). Therefore,
DxN ≤ NM and if E is the cell, we can choose α2 = N2

Mµ(E) = λπR2
MN2

M

in Theorem 10.11. We thus obtain

P(N −E [N ] > r) ≤ exp − r

2N2
M

log(1 +
r

λπR2
M

) .

With respect to the Gaussian approximation, in this formula we need not calculate the
variance of N , just the average is sufficient.

γ Exact Gaussian Concentration Error

2.5 2.060 2.056 2.357 0.14
2.6 1.420 1.417 1.682 0.18
2.7 1.010 1.006 1.243 0.23
2.8 738 735 948 0.29
2.9 553 549 745 0.35
3 423 420 600 0.42

3.5 146 142 276 0.9
4 69 66 177 1.57

Table 10.4. Dimensioning by the three methods for different values of γ. For all values of γ,
λ = 0.01. The last column contains the relative over sizing between what is obtained by the

concentration inequality and the exact calculation

We observe that dimensioning by the Gaussian approximation is optimistic,
which is absolutely forbidden. The over-dimensioning induced by the inequality of
concentration is reasonable in most cases. Although it is clearly large, this can be seen
as a guarantee against the inaccuracies in the measurements of λ and γ and against the
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epistemic errors, i.e. error in the model. If we consider a situation with different classes
of users with different rates and integrate considerations about fading and shadowing
to the model, exact calculations become impossible but the concentration inequality
can still be easily established.

10.4. Stochastic analysis

We now establish the proofs of Theorems 10.9 and 10.11.

Lemma 10.12 (Girsanov’s theorem).– Let N and N be two point Poisson processes,
with respective intensity µ and µ . Let us assume that µ µ and let us denote
p = d µ / d µ. Let Λ be a compact of E. Moreover, if p belongs to L1(µΛ), then for
every bounded function F , we have

E [F (NΛ)] = E F (NΛ) exp ln p d NΛ +
Λ
(1− p) d µ .

Proof. We verify this identity for the exponential functions F of the form
exp(− f d N) with f at compact support. On the basis of Definition 10.2

E exp(− f d NΛ) exp
Λ
ln p d NΛ + (1− p) d µ

= E exp(− (f − ln p) d NΛ) exp(
Λ
(1− p) d µ)

= exp(− (1− exp(−f + ln p)) d µ +
Λ
(1− p) d µ)

= exp(−
Λ
(1− e−f )p d µ)

= E [F (NΛ)] .

As a result, the measures on NE , PNΛ
, and RdPNΛ where

R = exp ln p d NΛ + (1− p) d µ

have the same Laplace transform. Therefore, they are equal and the result follows for
any bounded function F .

In what follows, for a configuration η

η + δx =
η, if x ∈ η,

η ∪ {x}, if x ∈ η.
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Similarly,

η − δx =
η\{x}, if x ∈ η,

η, if x ∈ η.

As µ is assumed to be diffuse E [N({x})] = µ({x}) = 0. Therefore, for fixed x,
almost surely, η does not contain x.

Definition 10.6.– Let N be a Poisson process with intensity µ. Let F : NE −→ R
be a measurable function such that E F 2 < ∞. We define DomD as the set of
square integrable random variables such that

E
E

|F (N + δx)− F (N)|2 d µ(x) < ∞.

For F ∈ DomD, we set

DxF (N) = F (N + δx)− F (N).

Example.– For example, for f deterministic belonging to L2(µ), F = f d N
belongs to Dom D and DxF = f(x) because

F (N + δx) =
y∈N∪{x}

f(y) =
y∈N

f(y) + f(x).

Similarly, if F = maxy∈N f(y) then

DxF (N) =
0 if f(x) ≤ F (N),
f(x)− F if f(x) > F (N).

In both cases, if f is bounded, DF is bounded too.

One of the essential formulas for the Poisson process is the following.

Theorem 10.13.– Let N be a Poisson process with intensity µ. For any random field
F : NE × E → R such that

E
E

|F (N, x)| d µ(x) < ∞
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then

E
E

F (N, x) d µ(x) = E
E

F (N\x, x) d N(x) . [10.5]

Proof. According to the first definition of the Poisson process, for f with compact
support and Λ a compact E, for any t > 0,

E exp(− (f + t 1Λ) d N) = exp(−
E

1− e−f(x)−t 1Λ(x) d µ(x)).

According to the theorem of derivation under the summation sign, on one hand, we
have

d

dt
E exp(− (f + t 1Λ) d N)

t=0
= −E e− f dN 1Λ d N ,

and on the other hand,

d

dt
exp(−

E

1− e−f(x)−t 1Λ(x) d µ(x))
t=0

= −E e− f dN+f(x) 1Λ(x) d µ(x) .

As f d N − f(x) = f d(N − δx), [10.5] is true for functions of the form
1Λ e− f dN . We admit that this is enough as far as the result is true for all the F
functions such that both the members are well defined.

Let µ be a Radon measure on a Polish space E and Λ be a compact of E. We
introduce the Glauber-Poisson process, which is denoted by NΛ, whose dynamics is
as follows:

– NΛ(0) = η ∈ NΛ,

– Each atom of η has a life duration, independent of that of the other atoms,
exponentially distributed with parameter 1.

– Atoms are born at moments following a Poisson process with intensity µ(Λ). On
its appearance, each atom is localised independently from all the others according to
µ/µ(Λ). It is also assigned in an independent manner, a life duration exponentially
distributed with parameter 1.
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Algorithm 10.2. The first k transitions of a trajectory of a Glauber process
associated with a Poisson process with intensity µ, on a domain Λ, of initial
condition N
Data: µ, Λ, N , k
Result: T1, · · · , Tk = birth moments. Nj = NΛ(Tj), j = 1, · · · , k
T0 ← 0;
N0 ← N ;
for n = 1 to k do

Ln ← drawing of a ε(µ(Λ) + Nn−1(Λ));
Tn ← Tn−1 + Ln;
r ← µ(Λ)/(µ(Λ) + Nn−1(Λ));
U ← drawing of a U([0, 1]);
if U ≤ r then

X ← drawing of a random variable of distribution µ/µ(Λ);
Nn ← Nn−1 + δX ;

end
if not κ ← drawing of a U({1, · · · , Nn−1(Λ)});
Nn ← Nn−1 − δxκ ;

end
return T1, · · · , Tk

Λ

Time0

NΛ(t)

t

Figure 10.5. Realisation of a trajectory of NΛ

At every instant, NΛ(t) is a configuration of E. We first observe that the total
number of atoms of NΛ(t) follows exactly the same dynamics as the number of busy
servers in a M/M/∞ queue with parameters µ(Λ) and 1.

Theorem 10.14.– Assume that NΛ(0) is a point Poisson process with intensity ν. At
each instant t, the distribution of NΛ(t) is that of a Poisson process with intensity
e−tνΛ +(1− e−t)µΛ where νΛ is the restriction from ν to Λ. Particularly, if νΛ = µΛ,
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the distribution of NΛ(t) does not depend on t and is equal to µΛ. We denote EµΛ [X]
as the expectation of a random variable X under this induced probability.

Proof. For two disjoint parts A and B of Λ, by construction, the processes GA and
GB are independent and follow the same dynamics as that of a M/M/∞ queue with
respective parameters (µ(A), 1) and (µ(B), 1). The result follows from the properties
of the M/M/∞ queue established in Example 10.3.

As all the sojourn time are exponentially distributed, NΛ is a Markov process with
values in NE . Far from the idea of developing the general theory of Markov processes
in the space of measures, we can study its infinitesimal generator and its semi group.

Theorem 10.15.– LetΛ be a compact of E. The infinitesimal generator ofNΛ is given
by

− LΛF (N) =
Λ
(F (N + δx)− F (N)) d µ(x)

+ (F (N − δx) − F (N)) d N(x), [10.6]

for F bounded from NΛ into R.

Proof. We reason in the same way as that of the Markov process. At a time t, there
may be a either a death or a birth. At the time of a departure, we choose the uniformly
killed atom among the existing atoms. The death rate is thus η(Λ) and every atom has
a probability η(Λ)−1 of being killed. Therefore, the transition η toward η − δx take
place at rates of 1 for any x ∈ η. The birth rate is µ(Λ) and the position of the new
atom is distributed according to the measure µΛ/µ(Λ) so the transition η toward η+δx
occurs at a rate d µΛ(x) for each x ∈ Λ. From it, we deduce [10.6].

Theorem 10.16.– The semi-group PΛ is ergodic. Moreover, LΛ is invertible from L2
0

in L2
0 where L2

0 is the subspace of L2 of the random variables with null expectation
and we have

L−1
Λ F =

∞

0
PΛ
t F d t. [10.7]

For any x ∈ E and any t > 0,

DxP
Λ
t F = e−tPΛ

t DxF. [10.8]
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In addition,

EµΛ
Λ
|Dx(L−1

Λ F (N))|2 d µ(x) ≤ EµΛ
Λ
|DxF (N)|2 d µ(x) . [10.9]

Proof. Denote (x1, · · · , xn) the atoms ofNΛ(0) and (Y1, · · · , Yn) some independent
random variables exponentially distributed with parameter 1. We set

NΛ(0)[t] =
i=1

1{Yi≥t} δxi ,

the measure consisting of the atoms of NΛ(0) surviving at time t. The distribution of
NΛ(t) is that of the independent sum of a Poisson process with intensity (1− e−t)µΛ
and of NΛ(0)[t]. According to Lemma 10.12, we know that for any F ∈ L1

E(1−e−t)µΛ
[F (NΛ)] = EµΛ F (NΛ) exp(ln(1− e−t)N(Λ) + e−tµ(Λ)) .

Therefore, for any bounded function F and any η ∈ NΛ, we have the following identity

PΛ
t F (η) = E F (NΛ(t)) |NΛ(0) = η

= E F (η[t] + NΛ) exp(ln(1− e−t)N(Λ) + e−tµ(Λ)) . [10.10]

Set

R(t) = exp(ln(1− e−t)N(Λ) + e−tµ(Λ)).

On the one hand, we have R(t) ≤ eµ(Λ) and on the other hand, according to definition
10.2, E [R(t)] = 1, and this for any t ≥ 0. As NΛ(0) has a finite number of atoms,
NΛ(0)[t] almost surely tends toward the zero measure when t tends toward infinity. By
dominated convergence, we deduce that

PΛ
t F (η) t→∞−−−→ EµΛ [F (NΛ)]

that is to say, PΛ is ergodic. The property [10.7] is a well-known relation between the
semi-group and infinitesimal generator. Formally, without worrying about the integral
convergence, we have

LΛ(
∞

0
PΛ
t F d t) =

∞

0
LΛPΛ

t F d t

= −
∞

0

d

dt
PΛ
t F d t

= F −E [F ] = F,

according to ergodicity of PΛ and as F is centered.
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Let NΛ(t, NΛ) denote the value of NΛ(t) when the initial condition is NΛ. We can
write

DxP
ΛF (t) = E NΛ(t, NΛ + δx) −E NΛ(t, NΛ) .

Let Yx be the life duration of the atom located in x. If Yx ≥ t then the atom is still
alive at t, thus NΛ(t, NΛ + δx) = NΛ(t, NΛ) + δx. If the atom is already dead at t
then NΛ(t, NΛ + δx) = NΛ(t, NΛ). As Yx is by construction, independent of NΛ and
NΛ, it is legitimate to write

E F (NΛ(t, NΛ + δx) |NΛ −E F (NΛ(t, NΛ) |NΛ

= E 1{Yx≥t}(F (NΛ(t, NΛ + δx))− F (NΛ(t, NΛ)) |NΛ

+E 1{Yx≤t}(F (NΛ(t, NΛ))− F (NΛ(t, NΛ))) |NΛ ,

= e−tE DxF (NΛ(t, NΛ)) ,

hence we have the result. According to the representation [10.10] and Jensen’s
inequality, we see that

PΛ
t F

2 ≤ PΛ
t F 2. [10.11]

Therefore,

Λ
|Dx(L−1

Λ F (NΛ))|2 d µ(x)

=
Λ
|Dx

∞

0
PΛ
t F (NΛ) d t|2 d µ(x)

=
Λ
|

∞

0
e−tPΛ

t DxF (NΛ) d t|2 d µ(x)

≤
Λ

∞

0
e−t|PΛ

t DxF (NΛ)|2 d t d µ(x)

≤
Λ

∞

0
e−tPΛ

t |DxF (NΛ)|2 d t d µ(x)

=
Λ

∞

0
e−tE |DxF |2(NΛ(t)) |NΛ(0) = NΛ d t d µ(x),

where we have successively used equations [10.7] and [10.8], Jensen’s inequality and
[10.11]. As NΛ(t) has the same distribution as NΛ(0) if this one is chosen as a Poisson
process with µΛ intensity, when we take expectations of each side, we obtain the
following identity
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EµΛ
Λ
|Dx(L−1

Λ F (NΛ))|2 d µ(x)

= EµΛ
Λ

∞

0
e−t|DxF |2(NΛ(t)) d t d µ(x)

=
Λ

∞

0
e−tEµΛ |DxF |2(NΛ) d t d µ(x)

= EµΛ
Λ
|DxF (NΛ)|2 d µ(x) .

Hence, we have the result.

Theorem 10.17.– Let F and G be two functions belonging to DomD. The following
identity is satisfied

EµΛ
Λ

DxF (NΛ) DxG(NΛ) d µ(x) = EµΛ [F (NΛ)LΛG(NΛ)] .

In particular, if G is centered

EµΛ [F (NΛ)G(NΛ)] = EµΛ
Λ

DxF (NΛ) Dx(L−1
Λ G)(NΛ) d µ(x) .

[10.12]

Proof. Let F and G belong to Dom D, according to [10.5] twice and the definition of
LΛ, we have

EµΛ
Λ

DxF (NΛ) DxG(NΛ) d µ(x)

= EµΛ
Λ
(F (NΛ)− F (NΛ − δx))(G(NΛ)−G(NΛ − δx)) d NΛ(x)

= EµΛ [G(NΛ)LΛF ] + EµΛ G(NΛ)(F (NΛ + δx)− F (NΛ)) d µ(x)

− EµΛ G(NΛ − δx)(F (NΛ)− F (NΛ − δx)) d NΛ(x)

= EµΛ [G(NΛ)LΛF (NΛ)] .

The result follows.
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Proof of Theorem 10.11. Let Λ be a compact of E, a bounded function F of zero
expectation. According to Theorem 10.17, we can write the following identities

EµΛ F (NΛ)eθF (NΛ)

= EµΛ Dx(L−1
Λ F (NΛ)) Dx(eθF (NΛ)) d µ(x)

= EµΛ
Λ

Dx(L−1
Λ F (NΛ))(eθDxF (NΛ) − 1)eθF (NΛ) d µ(x) .

The function (x → (ex − 1)/x) is continuously increasing on R; therefore, we have

EµΛ F (NΛ)eθF (NΛ)

= θ EµΛ
Λ

Dx(L−1
Λ F (NΛ)) DxF (NΛ)

eθDxF (NΛ) − 1
θDxF (NΛ)

eθF (NΛ) d µ(x)

≤ θα2 eθβ − 1
θβ

EµΛ eθF (NΛ) .

This implies that

d

dθ
logEµΛ eθF (NΛ) ≤ α2 eθβ − 1

β
·

Therefore,

EµΛ eθF (NΛ) ≤ exp
α2

β

θ

0
(eβu − 1) d u .

For x > 0, for any θ > 0,

P(F (NΛ) > x) = P(eθF (NΛ) > eθx)

≤ e−θxE eθF (NΛ) ≤ e−θx exp
α2

β

θ

0
(eβu − 1) d u . [10.13]

This result is true for any θ, so we can optimize with respect to θ. At fixed x, we
search the value of θ which cancels the derivative of the right-hand-side with respect
to θ. Plugging this value into [10.3], we can obtain the result.

Proof of Theorem 10.9. We can always assume that F ∈ Dom D is of null expectancy.
We, respectively, note φ and φc , as the cumulative distribution function (the
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complementary cumulative distribution function, respectively) of a reduced centered
Gaussian random variable, that is

φ(x) =
1√
2π

x

−∞
e−u2/2 d u, φc(x) =

1√
2π

∞

x

e−u2/2 d u.

For r > 0, let us consider ψr, as solution of the differential equation

x.y(x)− y (x) = φc(r)− 1[r,∞[(x), for all x ∈ R.

We can choose

ψr(x) =
√

2πex
2/2φ(x)φc(r) if x ≤ r,√

2πex
2/2φc(x)φ(r) if x ≥ r.

Note that

|ψr(x)| ≤ φ(r) and |ψr (x)| ≤ 2. [10.14]

We can then use the Stein method. It is sufficient to note that

φc(r)−P(F ≥ r) = EµΛ 1[r,∞[(F )− φc(r)

= EµΛ [F ψr(F )− ψr(F )]

= EµΛ Dxψr(F )DxL
−1
Λ F d µ(x) −EµΛ [ψr(F )] ,

[10.15]

according to [10.12]. According to the Taylor’s formula with integral remainder, we
have

Dxψr(F ) = ψr(F (NΛ + δx))− ψr(F (NΛ)) = ψr(F (NΛ))DxF (NΛ)

+ (DxF (NΛ))2
1

0
ψr (F (NΛ) + (1− u)F (NΛ + δx))(1− u) d u.

[10.16]

Plugging [10.16] into [10.15] and using [10.9] and [10.14], we get

|φc(r)−P(F ≥ r)| ≤ φ(r)EµΛ |1− DxF DxL
−1
Λ F d µ(x)|

+ 2 EµΛ

1

0
(1− u) d u |DxF (NΛ)|2|DxL

−1
Λ F | d µ(x) .

The result follows.
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10.5. Problems

Exercise 23.– We continue the study of OFDMA protocol. Now, we consider the
Rayleigh fading. This signifies that the number of subcarriers claimed by a user at
position x becomes

N(x) = min(NM ,

⎡
⎢⎢⎢⎢⎢

C

W log2(1 +
K Fx

x γ
)

⎤
⎥⎥⎥⎥⎥
) if KFx x −γ > SNRmin,

where Fx is the coefficient of Rayleigh fading. From the standpoint of modeling, this
signifies that to each atom of the Poisson process we add a mark representing the
Rayleigh fading of that user. We generally assume that

– Fx and Fy are random independent variables, if x and y are different,

– for any x ∈ R2, Fx follows an exponential distribution with parameter 1.

The model is now therefore a marked point process where the measures are of the form

ξ̃ =
x∈ξ

δx,m

with dPM (m) = exp(−m) 1R+(m) d m.

1) Give the average number of full sub-carriers required for every moment in the
cell under integral form. Use the same decomposition principle as before to calculate
this integral explicitly. We recall that the Gamma function is defined by

Γ(z) =
∞

0
e−mmz−1 d z.

2) For k = 1, · · · , NM , what is the distribution of the number of users who require
k sub-carriers at a given time?

3) Check this results on the simulations.

4) Calculate through simulation the probability of outage for values of S going
from Smin to Smax with a step of 10.

5) What is the value of the inequality of concentration in this new model ?

6) We fix a threshold of loss equal to 0.01, calculate the number of resources
necessary to obtain a loss below this threshold by simulation andusing the limit obtained
by the inequality of concentration.

7) Calculate the probability of outage for λ, λ+10%, λ+20% through simulation.
Compare with the limit of concentration obtained for λ.
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8) Same question by varying γ of 10%, 20%.

9) Your conclusions.

Numerical values

C 200 kb/s
W 250 kHz
K 106

γ 2.8
R 300 m
λ 0.01 m−2

SINRmin 0.1
p 0.01

Smin 30
Smax 100

Exercise 24.– We consider X as the process representing the number of busy servers
in a Mλ/Mµ/∞ queue. We say that f : N→ R is c-Lipschitz if

f(n + 1)− f(n) ≤ c, for any n.

1) Express X(t) under an integral form with respect to a Poisson process on
R+ ×R+.

We introduce D as the operator of difference associated with the Poisson process.
Let f be c-Lipschitz.

2) Show that for any (s, z) ∈ R+ ×R+,

|Ds,zf(X(t))| ≤ c 1[0, t](s)

and that

|Ds,zf(X(t))|2λ d s dPσ(z) ≤ λc2t.

3) Deduce a concentration inequality for f(X(t)).

10.6. Notes and comments

The basic references for this chapter are [LAC 09a, BAC 09b]. For many results on
the interferences in a Poissonian framework, one can consult [EDT 08]. The results of
stochastic analysis are inspired by [HOU02,WU00]. The introduction of theGlauber’s
dynamics as an Ornstein-Uhlenbeck process is new. Another approach of Malliavin
calculus for the Poisson processes can be found in [NUA 95, MIC 09].
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Epitome

– A Poisson point process allows us to represent the mobiles at a given time or
access points in a mathematically usable manner.

– Campbell’s formula enables us to easily calculate the functional expectations of
a Poisson process. It enables us to link to the model known as fluid model.

– In the same way as in dimension 1, the superposition of two independent Poisson
processes is a Poisson process.

– The theorem of displacement stipulates that when we move the atoms of a Poisson
process independently of each other with the same statistics, the result is still a Poisson
process whose intensity we know to calculate.

– The stochastic analysis allows us to establish the inequality of concentration.
This identity is useful to bound the overshot probabilities and thus define robust
dimensioning.



Appendix A

Mathematical Toolbox

Mathematical concepts and theoremshave their existence and their own interests.As
regards modeling, mathematics mainly become a toolbox to solve practical problems.
To make good food, it still necessary to know the ingredients available. We review in
this chapter the mathematical theorems used in the rest of this book.

A.1. Probability spaces and processes

A.1.1. Countable spaces

The concept of countability plays an important role in probability if only because the
property of measurability is stable only by countable union. It is therefore interesting
to clarify some results related to this concept.

Definition A.1.– A set E is a finite cardinal with n elements if there exists a bijection
from E into the set {1, · · · , n}.
Definition A.2.– A set E is called countable (or countably infinite) if there exists a
bijection from E into N, the set of natural integers.

Example.– 2N, the set of integers is countable.P(N), set of subsets of N, is not since
it can be bijectively mapped to the set of real numbers R. Indeed, for a subset A of N,
we can define a sequence (χA(n), n ≥ 0) by

χA(n) =
1 if n ∈ A,

0 otherwise.

Then, with this sequence, we can associate the real number xA defined by xA =
n≥1 2−nχA(n). In the reverse direction, to a real number of [0, 1], we can associate
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N

N

0 1
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2

3
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6

Figure A.1. Bijection from N × N to N

its proper dyadic development, that is x = n≥1 xn2−n with xn ∈ {0, 1} for any n.
This defines a set by taking

A =
n : xn=1

{n}.

Therefore, there exists a bijection from P(N) into {0, 1}N and then P(N) is not
countable.

Theorem A.1.– If X and Y are countable then X × Y and X ∪ Y are countable.

These two properties are based on the main result which states that there exists a
bijection from N × N into N. The bijection is constructed as shown in Figure A.1.
For example, the element (2, 0) is sent to 3 and the element (0, 2) is sent to 5.

Corollary A.2.– The set of relative integers Z is countable.

The following theorem is far from being trivial.

Theorem A.3.– If the set X can be embedded in the set Y and Y can be embedded in
X , then there exists a bijection from X into Y .

Corollary A.4.– The set of rational numbers Q is countable.

Proof. There exists an injection from N in Q and by construction of Q, there exists
an injection of Q in Z×Z, which according to the above theorem is in bijection with
N. Therefore, Q is in bijection with N.
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Note.– Most of the processeswehave to dealwith take their values in atmost countable
spaces. Owing to etymology, this means that we can number the elements of these sets.
Let E be an at most countable set and ix ∈ N be the index corresponding to x ∈ E.
Conversely, xi the ith element of E is the element x of E such that ix = i. When
E is a discrete subset of R, the numbering may be chosen as the canonical order. It
often becomes a little tricky when, for example E is a product space as in the case of
the queue MMPP/M/S/S, but this difficulty is more relevant to data representation for
computer calculations rather than to mathematics itself.

Example.– Let E = {0, 1} × {a, b, c}. This set contains six elements which can be
ordered in the lexicographic order

(0, a) ≺ (0, b) ≺ (0, c) ≺ (1, a) ≺ (1, b) ≺ (1, c).

This induces i(0, c) = 3 and x4 = (1, a).

A function from E to R is characterized by its “graph” ((x, f(x)), x ∈ E) but as
E is countable, we can consider this set as the column vector whose ixth component
is f(x). A measure on a countable space is characterized by its value on singletons
therefore identified as a vector π = (π(ix), x ∈ E). This vector is usually written as
a line vector since measures and functions are in duality: the integral of f with respect
to the measure π is written as

f d π =
x∈E

f(x)π(x) = (π(x1), · · · , π(xn), · · · )

⎛
⎜⎜⎜⎜⎝

f(x1)
...

f(xn)
...

⎞
⎟⎟⎟⎟⎠

,

where the row vector and column vector are multiplied according to the rules of matrix
multiplication. It is sometimes convenient to think in terms of functions, particularly for
mathematical proofs, sometimes more convenient to use the vector notation, especially
for computations. When we handle functions, it is more natural to denote the states by
x, y, and so on. When one refers to vectors, it is customary to number the states by i,
j, and so on.

A.1.2. Polish spaces

Polish spaces are a class of topological spaces general enough to make probability
theory rigorous without superfluous difficulty.

Definition A.3.– A Polish space E is a space with a distance d which satisfies the
following two properties:

– It is complete: every Cauchy sequence converges.
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– It is separable: there exists a sequence (xn, n ≥ 1) of elements of E dense in E,
that is to say, such that for any x ∈ E, for any > 0, there exists some xn such that
d(xn, x) < .

Example.– The spaces R, Rn, Cn are Polish spaces for the common distance.
Countable dense families are Q, (Q)n, (Q + iQ)n.

Example.– More generally, we shall have to handle infinite sequences of real numbers.
When the size of a “vector” becomes infinite, it creates problems of summability or
“boundedness”. If E is a countable space, we often consider the sub-spaces of the set
of real sequences indexed by E, set denoted by RE . The two subsets of RE which are
the most important for us, are l∞(E) and l2(E).

DefinitionA.4.– LetE be countable. The set l∞(E) is the set of real valued sequences
indexed by E which are bounded, that is

u = (u(x), x ∈ E) ∈ l∞(E)⇐⇒ sup
x∈E

|u(x)| < ∞.

The norm on l∞(E) is denoted by u ∞ = supx∈E |u(x)|. The space (l∞(E), ∞)
is a complete normed vector space, hence what is called a Banach space. Let φ be a
bijection betweenN andE andEn = φ({0, · · · , n}). The set n≥0 QEn is countable
and dense, therefore (l∞(E), ∞) is Polish.

Definition A.5.– Let E be a countable set and π a measure on E. The set l2(E, π)
is the set of real-valued sequences indexed by E which are square integrable for π,
that is

u = (u(x), x ∈ E) ∈ l2(E)⇐⇒
x∈E

|u(x)|2π(x) < ∞.

The norm on l2(E, π) is denoted by u 2 = ( x∈E |u(x)|2π(x))1/2. The space
(l2(E, π), 2) is a vector space with a scalar product

u, v l2(E, π) =
x∈E

u(x)v(x)π(x),

which generalizes the scalar product of vectors in Rn. In addition, (l2(E), 2) is
complete for this scalar product, so it is an Hilbert space. The set n≥0 QEn is dense
in (l2(E, π), 2), hence (l2(E, π), 2) is Polish.

Example.– The space of continuous functions on [0, T ] with values in R is also a
Polish space for the distance induced by the uniform norm

d(f, g) = sup
0≤t≤T

|f(t)− g(t)|.

It is well known that this space is complete. According to the Weierstrass theorem,
polynomials with rational coefficients form a countable dense family. Indeed, the set
of polynomials with coefficients of degree at most k is in bijection with Qk+1 therefore
the union of these sets is a countable union of countable sets, so it is countable.
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Example.– The space D([0, T ], R) of right-continuouswith left-limits functions (rcll
for short) is usually equipped with the distance

d(f, g) = inf
φ∈HT

sup
0≤t≤T

|f(t)− g(φ(t))|,

where HT is the set of homeomorphisms (continuous bijections with a continuous
inverse) of [0, T ] into itself. This space is complete and the family of polynomials with
rational coefficients is still dense.

The last example is that of configurations on a Polish space E.

Definition A.6.– A configuration on E is a locally finite set of points of E. Locally
finite means that there is a finite number of points in any bounded subset of E. We
denote by NE the set of configurations on E.

The set {(n, 0), n ∈ N∗} is a configuration. But, the set {(1/n, 0), n ∈ N∗} is
not a configuration because there is an infinite number of points in the interval [0, 1]
(see Figure A.1).

Figure A.2. Example and counter-example of configurations

We denote ξ as the generic element of the set of configurations. Each ξ is a set,
that is ξ = {x1, x2, · · · }, but we also identify it with a point measure: ξ = x∈ξ δx.
Depending on the context, one or the other representation is the most convenient. The
empty configuration denoted by ∅ corresponds to the zero measure, this should not be
confused with the Dirac measure at 0. Since any configuration has at most a countable
numbers of elements, we can index them by the integers but there is no preferential
order: x1 can represent any of the atoms of ξ. Therefore, it is best to keep the set
notation as often as possible. For f : E → R, we set (regardless of the convergence
of the series for the time being)

f d ξ =
x∈ξ

f(x).

For A a set of E, ξ(A) is the number of points in ξ ∩A. We also denote |ξ| = ξ(E) as
the total number of points in ξ. It may happen that |ξ| is infinite. Finally, ξB denotes
the restriction of ξ to B: ξB(A) = ξ(A ∩B).

Definition A.7.– Let E be a Polish space, a point process N on E is a random
variable with values in the set NE of configurations on E.
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Definition A.8.– Let E be a Polish space and NE be the set of configurations on E.
The configurations sequence (ξn, n ≥ 1) converges to the configuration ξ in a vague
sense if for any continuous function f from E into R with compact support,

f d ξn
n→+∞−−−−−→ f d ξ.

This almost means that the positions of the atoms of ξn tend to those of atoms of ξ
but some “mass” may escape to infinity

δn
n→+∞−−−−−→ ∅ because for f with compact support f(n) n→+∞−−−−−→ 0.

Theorem A.5.– The space NE equipped with the vague convergence is Polish.

In order to construct the distance on NE , we consider a dense sequence (xn, n ≥ 1)
of elements in E. We denote Bn,q = {x ∈ E, dE(x, xn) < 1/q} the open ball
centered at xn with radius 1/q. The countable family of functions (fn, q = 1Bn, q , n ≥
1, q ≥ 1) generates the σ-field B(E). For two configurations ω and η of NE , we set

d(ω, η) =
n≥1 q≥1

2−(n+q)ζ( fn, q(d ω − d η)),

where ζ(x) = |x|/(1 + |x|). This distance induces the same topology as the vague
topology: convergent sequences are the same in both cases. To construct a dense
countable family, we can mimic what we did for continuous functions. Since E is
Polish, there exists a dense countable family Q = (xn, n ∈ N). The set of finite
simple point measures whose atoms belong to Q plays the same role as polynomials
with rational coefficients.

A.1.3. Stochastic processes

A stochastic process is a family of random variables indexed by T = N or T = R+,
more rarely by Z or R. These random variables are assumed to be defined on the same
space Ω and take their value in the same Polish space E, which means that we have an
application X

X : Ω× T −→ E

(ω, t) −→ X(ω, t).

We can consider X as a random variable with values in the space of applications from
T in E, a set commonly denoted by ET

X : Ω −→ ET

ω −→ (t → X(ω, t)).
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In this description, the value of X(ω) is called the trajectory of X , it is the set of
elements of E obtained for fixed ω by varying t in T.

The first description is the most natural since it corresponds to the idea we have
of a dynamical system: a sequence of values indexed by time. The second and more
abstract description is used to build the rigorous mathematical framework.

It is well known that in probability theory, the space Ω is often loosely defined
but what really counts is the value space of the random variables. To make life easier,
it is common to consider that Ω is already the value space. Then, the random object
under consideration is itself a trajectory. The value at time t is then represented by the
coordinate application

Xt : ET −→ E

ω −→ Xt(ω) = ω(t).

When the index set is countable, EN naturally inherits the product topology from that
of E and that makes it a Polish space. The distribution of X is then determined by the
finite-dimensional distributions. This means that two processes X and Y such that

Law(X0, · · · , Xn) = Law(Y0, · · · , Yn) for any n ≥ 0,

have the same distribution. However, it is not enough that for any n, Xn has the same
distribution as Yn. For instance, if the Yn are independent copies of X and Xn = X
for any n then P(X1 = X2) = 0 and P(Y1 = Y2) > 0, which prevents equality in
distribution of these two processes.

The situation ismore complex if the index space is uncountable,ER+
is not naturally

equipped with a topology. There are two essential examples whose properties are
presented below: the space of continuous functions and the space of rcll functions.
In both cases, the distribution of a process is determined by the finite-dimensional
distributions: two processes X and Y have the same distribution if and only if

Law(Xt1 , · · · , Xtn) = Law(Yt1 , · · · , Ytn) for any t1, · · · , tn ∈ T.

A.1.4. σ-fields

Definition A.9.– A σ-field E of a set E is a set of subsets of E which satisfies the
following three properties:

– ∅ ∈ E ,
– if A ∈ E then Ac ∈ E ,
– if (An, n ≥ 1) is a countable family of elements of E then n≥1 An is an element

of E .
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Sets of a σ-field are often called measurable sets.

Example.– The most simple examples of σ-fields are the coarse σ-fields: E = {∅, E}
and the σ-field of all subsets of E, that is E = P(E).
Note.– For a discrete random variable, we want to calculate quantities such asP(X =
i), that is to say to calculate the probability of the singleton {i} under the distribution
of X . It is then necessary that all singletons are measurable sets. As in a countable
space, a set is the at-most countable union of its singletons, by stability of a σ-field by
countable unions, we see that if the singletons are measurable, all sets are.

The situation is totally different for uncountable spaces. We still want singletons
to be measurable but they are not sufficient to describe any set as a countable union.
In addition, it may be shown that unless we abandon the axiom of choice, we cannot
reasonably build a measure on the set of all subsets of an uncountable space. That is
why the notion of generated σ-filed plays a key role in the following.

Definition A.10.– Let C ⊂ P(E), σ(C), called the σ-filed generated by C, denotes
the smallest σ-field containing C.
Example A.1.– For a set of A ∈ E, σ(A) = {∅, A, Ac, E}.
Definition A.11.– For a Polish set E, we denote B(E) the Borelian σ-field of E
generated by the open sets of E.

Definition A.12.– For an application X of E in Rd, we denote σ(X) as the smallest
σ-field such that X is measurable from (Rd, σ(X)) into (Rd, B(Rd)).

Lemma A.6.– Let X be measurable from (E, {∅, A, Ac, E}) into (F, F), another
Polish space. Then there exists f1 and f2 in F such that

X(ω) =
f1 if ω ∈ A,

f2 if ω ∈ Ac.
[A.1]

Proof. Let ω1 ∈ E. As X is measurable B = X−1({X(ω1)}) is one of the four
following sets {∅, A, Ac, E}. As ω1 belongs to B, B cannot be empty. If B = E,
this means that for any ω ∈ B = E, X(ω) = X(ω1) therefore X is constant. The
random variable X is of the form [A.1] with f1 = f2 = X(ω1). If B = A with
X(ω) = X(ω1) for any ω ∈ A. Let ω2 ∈ Ac, the set C = X−1({X(ω2)}) cannot
be equal to Ac and therefore X(ω) = X(ω2) for any ω ∈ Ac. Therefore, X is of the
form [A.1] with fi = X(ωi).

More generally, we have the following theorem.

Theorem A.7.– Let X : E −→ (F, F) and Y : E −→ (R, B(R)) where E and
F are two Polish spaces. The random variable Y is σ(X) measurable if and only if
there exists ψ : (F, F) −→ (R, B(R)) measurable such that Y = ψ(X).
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Proof. The σ-field generated by X necessarily contains the sets of the form X−1(A)
for A ∈ F . As this set of sets constitutes a σ-field, σ(X) = {X−1(A), A ∈ F}. If
Y is of the form 1B then Y −1({1}) = B belongs to σ(X). Thus, there exists C ∈ F
such that B = X−1(C). Therefore, we have Y = 1C(X).

Now let Y be a simple function, that is Y = n
i=1 αi 1Ai with Ai ∩ Aj = ∅ and

αi − αj = 0 for i = j. Since Ai = Y −1({αi}), by the same reasoning, we construct
C1, · · · , Cn F -measurable sets such that Y = ( n

i=1 αi 1Ci)(X). Let Y be an F -
measurable non-negative random variable, we know that there exists a sequence of
simple function (Yn, n ≥ 1) which converges almost surely to Y . We have previously
built ψn such that Yn = ψn(X). As Yn converges to Y , ψn converges on the image
of E by X . Unfortunately, there is no guarantee that this set is measurable. To avoid
this problem, we set ψ = lim supn ψn. As any upper limit of measurable functions
is measurable, this function is measurable. In addition, when ψn converges to ψ, the
upper limit too. In conclusion, we have built ψ measurable such that Y = ψ(X).

Definition A.13.– A π-system is a set of subsets stable by finite intersection.

Definition A.14.– A λ-system D is a set of subsets stable by monotone limits:

– If An ⊂ An+1 ∈ D then ∪nAn ∈ D;

– if B ⊂ A with A, B ∈ D then A\B ∈ D.

We finish this section by a theorem known as monotone class theorem which is
thoroughly used to establish some formulas.

Theorem A.8.– Let C be a π-system and D a λ-system of a Polish space E. If C ⊂ D
then σ(C) ⊂ D.

A.2. Conditional expectation

For a Polish space (E, E) , L2(E, E , P) denotes the space of square integrable
random variables: the random variables such that E X2 < ∞. For F sub-σ-field
of E , the theory of Hilbert spaces states that we can define the orthogonal projection
of L2(E, E , P) onto L2(E, F , P).

Definition A.15.– Let X ∈ L2(E, E , P), we denote E X | F , the so-called
conditional expectation of X given F , defined as the orthogonal projection of X on
the Hilbert space L2(E, F , P).

By definition of an orthogonal projection, this means that

E X | F is F -measurable and E ZX = E ZE X | F , [A.2]
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for any bounded, F -measurable, random variable Z. By analogy with the non-
conditional case, we introduce the conditional probability given (a σ-field) F , by

P(A | F) = E 1A | F .

Note that the conditional expectation and the conditional probability are random
variables.

Example.– Let F = {∅, A, Ac, Ω} where A ∈ E . F is a sub-σ-field of E . Let us
calculate E X | F for X ∈ L2(E, E , P). According to Lemma A.6, if Z is an F -
measurable random variable then it can be written as

Z = a 1A +b 1Ac for some a, b ∈ R.

Therefore E X | F can also be written as c 1A +d 1Ac , and it is sufficient to determine
the constants c and d. By replacing E X | F by c 1A +d 1Ac in [A.2] we get for any
a and any b,

E (a 1A +b 1Ac)(c 1A +d 1Ac) = ac P(A) + bd P(Ac).

Therefore

E X(a 1A +b 1Ac) = ac P(A) + bd P(Ac).

This must be true for any a and b, thus

E X | F =
E X 1A

P(A)
1A +

E X 1Ac

P(Ac)
1Ac .

In particular, for X = 1C , C ∈ E

P(C | F) = P(C |A) 1A +P(C |Ac) 1Ac .

The following results are easy to prove.

Theorem A.9.– Let X be a random variable of L2(E, E , P) and F a sub-σ-field of
E . We have the following properties:

1) If X ≥ 0 a.s. then E X | F ≥ 0;

2) E |E X | F | ≤ E |X| ;
3) for any X ∈ L1(E, E , P), there exists a unique random variable, denoted by

E X | F , that satisfies [A.2];

4) if X is F -measurable and Y E measurable such that XY ∈ L1 then
E XY | F = XE Y | F ;

5) if X ∈ L1 is independent of F then E X | F = E X ;

6) if F ⊂ G ⊂ E then for any X ∈ L1,

E E X | G | F = E E X | F | G = E X | F .
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A.2.1. Independence and conditioning

The following results on conditional independence are less known but absolutely
essential to establish economically different forms of Markov property.

Definition A.16.– Let F1, · · · , Fn, G ⊂ E be n σ-fields. The σ-fields F1, · · · , Fn

are conditionally independent given G when

P ∩nj=1 Bj | G =
n

j=1

P( Bj | G) a.s. [A.3]

for any Bj ∈ Fj , j = 1, · · · , n.

An infinite family of σ-fields (Fr, r ∈ T ) is conditionally independent given G if
[A.3] is true for all finite subfamily.

Theorem A.10.– Let F , G and H be three σ-fields of (E, E). The following three
properties are equivalent:

1) F andH are conditionally independent given G;
2) For any H ∈ H, P(H | F ∨ G) = P(H | G), a.s.;

3) H and F ∨ G are conditionally independent given G.

Proof. Assume F and H are conditionally independent given G. For F ∈ F , G ∈ G
and H ∈ H, we have

E P(H | G) 1F 1G = E P(H | G)P(F | G) 1G
= E P(H ∩ F | G) 1G

by definition of conditional independence. According to Property 4 of Theorem A.9

E P(H ∩ F | G) 1G = E 1H 1F∩G .

Note that

D = F ∨ G, E P(H | G) 1M = E 1H 1M .

Hence, C = {M = F ∩G, F ∈ F , G ∈ C} ⊂ D. It is obvious that C is a π-system.
By linearity and monotone convergence, it appears that D is a λ-system. According to
Theorem A.8, D contains the σ-field generated by C. Moreover, F ⊂ C and G ⊂ G,
therefore C contains F ∨ G. This means that for any M ∈ F ∨ G,

E P(H | G) 1M = E 1H 1M .

As P(H | G) is F ∨ G measurable, Point 2 is satisfied.
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If Point 2 is satisfied, for any F ∈ F and any H ∈ H, we get

P(F ∩H | G) = E P(F ∩H | F ∨ G) | G
= E 1F P(H | F ∨ G) | G
= E 1F P(H |G) | G
= P(H |G)P(F | G).

This proves the independence of F andH given G.

According to Point 2, H and F ∨ G are conditionally independent given G if and
only if P(H | F ∨ G) = P(H | G) for any H ∈ H. This is exactly the same condition
as that which inducesF andH are conditionally independent given G. The equivalence
of Point 1 and Point 3 follows.

The reasoning of the first stage is called a “monotone class argument”. It won’t be
detailed any more since the principle is always the same.

TheoremA.11.– LetG, H, F1, · · · ,Fn, · · · be σ-fields. The following statements are
equivalent.

1) The σ-fieldsH and n Fn are conditionally independent given G.
2) For any integer n, the σ-fieldsH andFn+1 are conditionally independent given

G ∨ F1 ∨ . . .Fn.

Proof. IfH and n Fn are conditionally independent given G thenH and any σ-field
generated by a finite subfamily of Fj are conditionally independent given G. Apply
Theorem A.10 with F = n

j=1 Fj then F = n+1
j=1 Fj , we get

P(H | G) = P

⎛
⎝H | G ∨

n

j=1

Fj

⎞
⎠ and P(H | G) = P

⎛
⎝H | G ∨

n+1

j=1

Fj

⎞
⎠.

By applying again Theorem A.10 with F = Fn+1, we deduce the point 2.

In the reverse direction, assume that for any n ≥ 0, for any H ∈ H, we have

P

⎛
⎝H | G ∨

n

j=1

Fj

⎞
⎠ = P

⎛
⎝H | G ∨

n+1

j=1

Fj

⎞
⎠.

By transitivity of the relation of equality, we then have

P(H | G) = P

⎛
⎝H | G ∨

m

j=1

Fj

⎞
⎠ for all m.



Mathematical Toolbox 351

According to Theorem A.10, H and m
j=1 Fj are conditionally independent given G.

By the definition of conditional independence for an infinite number of σ-fields, Point
1 follows.

A.2.2. Markov property

We now introduce the shift operator (θt, t ∈ T). Assume that we have a family
of random variables with values in E, indexed by T countable or not. Aside from
topological considerations, the trajectories of this process are elements of ET, the set
of applications of T in E.

Definition A.17.– For any t ∈ T, the shift operator θt is defined by

θt : ET −→ ET

(ω(s), s ∈ T) −→ (ω(t + s), s ∈ T).

✍ The trajectory θtω is the trajectory that begins at time t and is indexed by the elapsed
time between the present instant and t. A random variable σ(X(u), t ≤ u)-measurable
is then written as F (ω) = ψ(θtω) with ψ-measurable. A set of σ-fields (Ft, t ∈ T) of
a Polish space (E, E) is a filtration whenever t ≤ t =⇒ Ft ⊂ Ft .

Definition A.18.– A family of random variables X = (X(t), t ∈ T) with values in
E, is Markov process when the following conditions hold.

– X(t) is Ft measurable for any t ∈ T.

– The σ-fields Ft and σ({X(s)}) are conditionally independent given X(t) for
any t ≤ s ∈ T.

Theorem A.12.– If X is a Markov process then for any t ∈ T, the σ-fields Ft

and σ({X(s), s ≥ t}) are conditionally independent given X(t). Moreover, for any
bounded function ψ from (E, E) in R, we have the following identity.

E ψ ◦ θt | Ft = E ψ ◦ θt |Xt . [A.4]

✍ This property means that past and future are conditionally independent given the
present. At time t, to determine the evolution of X , it suffices to know the value of X
at t, no matter how it got there.

Proof. By a monotone class argument in the case where T = R+, by definition in the
case T = N, it is necessary and sufficient to show that the σ-fieldsFt and σ{X(s), s ∈
{t = t0 < t1 < . . . < tn}} are conditionally independent given X(t).

We know that for any j, σ(X(tn)) and Ftn−1
are conditionally independent given

X(tn). Now, Ft0 ∨ n−1
j=1 σ(X(tj)) is a sub σ-field of Ftn−1

since X(tj) is Ftj
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(therefore Ftn−1
)-measurable. According to Theorem A.11 with F = σ(X(tn)) and

G = σ(X(tn−1)), the σ-fields Ft and σ(X(tn)) are conditionally independent given
σ(X(t), · · · , X(tn−1)). By applying again Theorem A.11 with F = Ft and G =
σ(X(t)), we see that the σ-fields Ft and σ{X(s), s ∈ {t = t0 < t1 < . . . < tn}} are
conditionally independent given X(t).

To prove the second point, observe that ψ ◦θt is s≥t Fs-measurable. On the other
hand, as E ψ ◦ θt |X(t) is Ft-measurable, it is enough to show that for any F ∈ Ft,

E E ψ ◦ θt |X(t) 1F = E ψ ◦ θt 1F .

However, according to the properties of conditional expectation and the first part of the
proof, we have

E E ψ ◦ θt |X(t) 1F = E E ψ ◦ θt |X(t) E 1F |X(t)

= E E ψ ◦ θt 1F |X(t)

= E ψ ◦ θt 1F ,

hence the result.

A.3. Vector spaces and orders

In the Euclidean space Rp, for any x, y ∈ Rp and λ ∈ R,

x = (x(1), x(2), · · · , x(p)),

λ.x = (λx(1), · · · , λx(p)),

x + y = (x(1) + y(1), · · · , x(p) + y(p)).

We also denote

– the first vector of the canonical basis of Rp by e1 = (1, 0, 0, · · · , 0);
– the 1-vector by 1 = (1, 1, · · · , 1);

– the positive part of X ∈ Rp as X+ = X(1)+, X(2)+, · · · , X(p)+ ;

– X̄ the vector whose coordinates are the coordinates of X sorted in increasing
order.

We then note (R+)p, as the set of vectors with (R+)p whose coordinates are arranged
in increasing order.
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Definition A.19.– A relation “≤” on a set E defines a ordering if any:

(i) reflexive: for any x ∈ E, x ≤ x;

(ii) transitive: for all x, y, z ∈ E, x ≤ y and y ≤ z implies x ≤ z;

(iii) anti-symmetric: for all x, y ∈ E, x ≤ y and y ≤ x implies y = x.

The lag is then said to be total if x ≤ y or y ≤ x for all x, y ∈ E, partial otherwise.

We define a first partial ordering on Rp, denoted by “≺”, by the following relation

X ≺ Y ⇐⇒ X(i) ≤ Y (i) for any i = 1, · · · , p. [A.5]

In particular, (R+)p admits of course the point≺-minimal 0 = (0, · · · , 0). Moreover,
reasoning coordinate by coordinate, it is easy to see that all≺-increasing and bounded
sequences converge.

The Schur-convex ordering, denoted by ≺c is another (quasi-) partial ordering on
Rp, especially used in economics.

Definition A.20.– Let u and v be two vectors of Rp. We say that u ≺c v if
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p

i=1

u(i) =
p

i=1

v(i),

p

i=k

ū(i) ≤
p

i=k

v̄(i), k = 2, · · · , p.

✍ We can hence compare u and v by the Schur-convex ordering if u and v represent
two distributions of p components of the same total mass. Then u ≺c v means that u
divides a larger mass on more components than v. The relation “≺c” is almost a partial
ordering in the sense that where u ≺c v and v ≺c u imply that u and v are equal up to
a permutation of their coordinates.

Let Sp be the set of permutations of [[1, p]]. For any element x ∈ Rp and any
γ ∈ Sp, we set

xγ = (x(γ(1)), x(γ(2)), · · · , x(γ(p))).

Definition A.21.– Let E be a set. A function F : Rp → E is called symmetric if
F (x) = F (xγ) for all x ∈ Rp and γ ∈ Sp. Let γ ∈ Sp and x ∈ Rp. We say that γ is
an ordering permutation of x if x is not totally ordered and if γ(i) = j and γ(j) = i
for a certain couple (i, j) such that i < j and x(i) > x(j), and γ(k) = k for any
k ∈ {i, j}.

The following proof is left to the reader.
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Lemma A.13.– For any x, y ∈ Rp

x ≺c y ⇐⇒ −x ≺c −y. [A.6]

Lemma A.14.– (i) For any x, y ∈ Rp,

x ≺c y ⇐⇒ F (x) ≤ F (y),

for any convex and symmetric functionF : Rp → R; [A.7]

(ii) For any x, y ∈ Rp, for any permutation γ ordering x,

xγ − ȳ ≺c x− ȳ. [A.8]

In particular

x̄− ȳ ≺c x− ȳ. [A.9]

We now introduce the ordering≺∗ on (R+)p, which is a variant of the Schur-convex
ordering.

Definition A.22.– Let u and v ∈ (R+)p. We denote u ≺∗ v if

p

i=k

u(i) ≤
p

i=k

v(i), for any k ∈ [[1, p]].

We can verify practically that ≺∗ defines a partial ordering on (R+)p. In addition,

Lemma A.15.– Let u, v ∈ (R+)p such that u ≺∗ v. Then,

(i) for any x ∈ R,

[u− x.1]+ ≺∗ [v − x.1]+;

(ii) for any i ∈ [[1, p]] such that u(j) ≤ v(j), for any y ∈ R+,

u + y.ej ≺∗ v + y.ej .

Proof. (i) The result is trivial if u(p) ≤ x. Otherwise, for any k ∈ [[1, p]], there exists
≥ k such that

p

i=k

(u(i)− x)+ =
p

i=

(u(i)− x) ≤
p

i=

(v(i)− x) ≤
p

i=k

(v(i)− x)+.
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(ii) For any k > j,

p

i=k

(u + y.ej)(i) =
p

i=k

u(i) ∨ u(j) + y +
p

i=k+1

u(i)

≤
p

i=k

v(i) ∨ v(j) + y +
p

i=k+1

v(i)

=
p

i=k

(v + y.ej)(i),

while for any k ≤ j,

p

i=k

(u + y.ej)(i) =
p

i=k

u(i) + y ≤
p

i=k

v(i) + y =
p

i=k

(v + y.ej)(i).

Several SRS that are discussed in Chapter 4 take vector-values with an unbounded
number of components. So, we introduce the spaceS of almost-null positive sequences,
that is to say that all components are null from a certain rank and positive before this
index

S := {u ∈ (R+)N
∗
, ∃N(u) ∈ N, u(i) = 0∀ i > N(u)

and u(i) > 0 ∀ i ≤ N(u)}. [A.10]

In other words, N(u) is the number of non-zero coordinates of u. For any u ∈ S , we
note u, the version of u arranged in descending ordering, that is

u(i + 1) ≤ u(i) for all i ∈ N.

We generalize the definition of the partial ordering “≺” and “≺c” to S .

Definition A.23.– Let u, v ∈ S , ũ and ṽ the restrictions of u and v to their N(u) ∨
N(v) first coordinates.

(i) We say that u ≺c v if ũ ≺c ṽ, in other words,

u ≺c v ⇐⇒

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

i∈N∗
u(i) =

i∈N∗
v(i)

∞

i=j

u(i) ≥
∞

i=j

v(i) for all k ∈ N∗.
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(ii) We say that u ≺ v if ũ ≺ ṽ, in other words,

u ≺c v ⇐⇒ u(i) ≺ v(i) for any i ∈ N∗.

We define similarly the set of sequences with values in (R+)2. Any element u of
(R2)N

∗
is denoted as

u := ((u1(1), u2(1)), (u1(2), u2(2)), . . .).

Equivalently, we can write u as

u = (u1, u2),

where

u1 = (u1(1), u1(2), . . .) and u2 = (u2(1), u2(2), . . .)

are two elements of RN∗
.

We then define

S2 := {u ∈ (R+)2
N∗

, ∃N(u) ∈ N, u1(i), u2(i) = (0, 0) ∀ i > N(u)

and u1(i) > 0, u2(i) > 0 ∀ i < N(u) and u1 (N(u)) > 0, u2 (N(u)) = 0},
[A.11]

the set of sequences whose coefficients are equal to (0, 0) from a certain rank N(u)+1,
with values in R∗

+
2

up to rank N(u) − 1 and the first component is positive up to
rank N(u) (the second being zero).

A.4. Bounded variation processes

In stochastic calculus, we often meet functions of bounded variation. It turns out
that each such function may be written as the difference of two increasing functions and
it is known that monotone functions have nice differentiability properties. We can thus
write down a change of variable formula (a precursor of the celebrated Itô formula)
for bounded variation processes (i.e. random processes whose sample-paths are a.s. of
bounded variation) which is of constant use in stochastic calculus.

Definition A.24.– Let [a, b] ⊂ R, a subdivision π of [a, b] is a finite set of points
π = {t0, · · · , tn} such that

a = t0 < t1 < . . . < tn = b.

We denote |π| as the step of the subdivision defined by |π| = supti∈π |ti+1 − ti|. The
set of subdivisions of [a, b] is Π[a,b].
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Definition A.25.– Let f : [a, b]→ R, f is of bounded variation when

Var[a,b](f) = sup
π∈Π[a,b] ti∈π

|f(ti+1)− f(ti)| is finite.

Note.– Increasing functions are of bounded variation, so are Lipschitz functions.

Theorem A.16.– If [c, d] ⊂ [a, b] and f is of bounded variation on [a, b] then f is of
bounded variation on [c, d]. Moreover,

Var[a,c](f) + Var[c,b](f) = Var[a,b](f).

Proof. Left to the reader.

Theorem A.17 (Jordan decomposition).– Let f be of bounded variation on [a, b],
there exists one and only one pair of functions (g, h) such that

1) f = g − h + f(a);
2) g and h are increasing;

3) g(a) = h(a) = 0;
4) Var[a,b](f) = Var[a,b](g) + Var[a,b](h).

Proof. Set

g(x) =
1
2
(f(x)− f(a) + Var[a,x](f)) and h(x) =

1
2
(f(a)− f(x) + Var[a,x](f)).

It is immediate that

g(a) = h(a) = 0, f = g − h + f(a).

Since

|f(x)− f(y)| ≤ Var[x,y](f) = Var[a,y](f)− Var[a,x](f),

g and h are increasing. Therefore,

Var[a,b](g) = g(b)− g(a) and Var[a,b](h) = h(b)− h(a).

Hence Var[a,b](f) = Var[a,b](g) + Var[a,b](h).

It remains to show uniqueness. Assume that there exists another pair (g1, h1)
satisfying the same properties. Let x < y, since g1 is increasing, g1(y) − g1(x) ≥ 0.
On the other hand,

g1(y)− g1(x) = f(y)− f(x) + h1(y)− h1(x) ≥ f(y)− f(x),
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since h1 is increasing. Thus, we can say that

g1(y)− g1(x) ≥ max(0, f(y)− f(x))

=
1
2
(f(y)− f(x) + |f(y)− f(x)|).

For any subdivision of [x, y], we then have

g1(y)− g1(x) ≥ 1
2
(f(y)− f(x) +

i

|f(ti+1)− f(ti)|)

=
1
2
(f(y)− f(x) + Var[x,y](f))

=
1
2
(f(y)− f(x) + Var[a,y](f)− Var[a,x](f))

= g(y)− g(x).

The function β ≡ g1 − g is increasing. In addition, the relation

f ≡ g − h + f(a) ≡ g1 − h1 + f(a)

implies that h1 ≡ h + β and β(a) = 0. Finally, the constraint

Var[a,b](f) = Var[a,b](g1) + Var[a,b](h1),

implies that

g1(b)− g1(a) + h1(b)− h1(a) = g(b) + h(b).

Now g1(b) − g1(a) + h1(b) − h1(a) = g(b) + h(b) + 2β(b). Hence β is the null
function, which means that g ≡ g1 and h ≡ h1.

Let us turn now to the differentiability properties of monotone functions. The main
theorem is the Lebesgue differentiation theorem.

Theorem A.18 (Lebesgue differentiation theorem).– Let [a, b] be a compact
interval of R and f be an increasing function on [a, b]. The function f is differentiable
almost everywhere (with respect to the Lebesgue measure) on [a, b], f is an integrable
function and

b

a

f (t) d t ≤ f(b)− f(a). [A.12]

Note.– The derivative is defined in the usual sense as a limit of growth rates but
the usual theorem which says that f(b) − f(a) = b

a
f (t) d t is no longer true. To

explain from where we get this apparent deficit, let us use a modified version of the
Radon-Nikodym theorem.
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Theorem A.19.– Let µ and ν be two σ-finite measures. There exist two measures νa
and νd such that

1) ν ≡ νa + νd,

2) νa is absolutely continuous with respect to µ, i.e. there exists h ∈ L1(µ) such
that

νa(B) =
B

h d µ,

3) νd is singular with respect to µ, that is to say there exists a measurable set N
such that νd(N c) = 0 and µ(N) = 0. In other words, the support of νd is included in
a µ-negligible set.

The second ingredient is the Stieltjes integral.

Definition A.26.– For g ∈ Cc(R) and f right continuous and increasing, we define
the integral of g with respect to f , denoted by g d f , as the limit (if it exists) of

i

g(ti)(f(ti+1)− f(ti)),

when the step of subdivision tends to 0.

Note.– The existence of the limit is ensured under the hypothesis that f and g does
not have the same points of discontinuity.

Finally, the Riesz theorem ensures that there exists a measure λf such that

g d f = g d λf for all g ∈ Cc(R).

Theorem A.20.– For f and λf thus defined, we have

λf ([a, b]) = f(b)− f(a) and λf ([a, b]) = f(b)− f(a−),

where f(x−) = limy↑x f(y) and f(x+) = limy↓x f(y) = f(x) since f is right
continuous.

Proof. We consider the sequence of functions (hn, n ≥ 1) (see Figure A.3) defined
by

hn(x) = 1 for a +
1
n
≤ x ≤ b,

hn(x) = n(x− a) for a ≤ x ≤ a +
1
n

,

hn(x) = 1− n(x− b) for b ≤ x ≤ b +
1
n
·
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a ba− 1/n b + 1/n

Figure A.3. Continuous function approaching 1]a,b]

The sequence (hn, n ≥ 1) converges a.s. to 1[a,b] and |hn| ≤ 1, thus by dominated
convergence, we have

hn d λf
n→∞−−−−→ λf ([a, b]).

By choosing the particular subdivision {t0 = a, t1 = a +1/n, t2 = b, t3 = b +1/n},
we obtain

f a +
1
n

− f(a) + f(b)− f a +
1
n

+ f b +
1
n

− f(b)

≤ hn d f.

Since 0 ≤ hn ≤ 1, for every subdivision, we have

hn(ti)(f(ti+1)− f(ti)) ≤ f a +
1
n

+ |π| − f(a)

+ f(b + |π|)− f a +
1
n

+ f b +
1
n

− f(b) .

Therefore,

hn d f ≤ f(b + |π|)− f(b) + f b +
1
n

− f(a).

For any n, hn is increasing and non-negative, therefore by monotone convergence,
hn d f converges to h d f on one hand. On the other hand, the above bounds show

that, given the right continuity of f ,

lim
n→∞

hn d f = f(b)− f(a).

Hence, we have shown that f(b) − f(a) = λf [a, b]. The other identity is proved
similarly.
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L

U

(0 0)

(t t)

D

,

,

Figure A.4. Decomposition of [0, t]2

By combining the last two theorems, we obtain the following description.

Theorem A.21.– Let f be right continuous and increasing, null at −∞. There exists
h locally integrable and νf a measure singular with respect to the Lebesgue measure
such that

f(x) =
x

−∞
h(u) d u + νf ([−∞, x]).

Note.– Hence, the subset of differentiability of f does not exhaust all the mass,
that is why we get relation [A.12]. On the other hand, since h is locally integrable,
the dominated convergence theorem ensures that the function x → x

−∞ h(u) d u is
continuous thus if f is discontinuous at x0, we necessarily have ∆f(x0) = νf ({x0}).
Theorem A.22 (Integration by parts).– Let f and g be two right continuous
functions of bounded variation on [0, t]. Then,

f(t)g(t)− f(0)g(0) =
t

0
f(s−) d g(s) +

t

0
g(s−) d f(s) + [f, g]t, [A.13]

where

[f, g]t =
0≤s≤t

∆f(s)∆g(s) and ∆f(s) = f(s)− f(s−).

Proof. We compute the integral of d λf ⊗ d λg on the square [0, t] × [0, t] in two
different ways. First, it comes from Theorem A.20 that

[0,t]2
d λf ⊗ d λg = (f(t)− f(0))(g(t)− g(0)).
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Second, we decompose the square in upper and lower triangles (U and L, respectively)
and the diagonal D. We apply to both triangles Fubini’s theorem. In the case of the
triangle L, we get

L

d λf ⊗ d λg =
t

0

s−

0
d λg d λf (s)

=
t

0
(g(s−)− g(0)) d λf (s)

=
t

0
g(s−) d λf (s)− g(0)(f(t)− f(0)).

Likewise, we obtain

U

d λf ⊗ d λg =
t

0
f(s−) d λg(s)− f(0)(g(t)− g(0)).

The diagonal D is of Lebesgue measure zero thus the integral on D of the measure
d λf ⊗ d λg is reduced to the integral of its singular part

D

d λf ⊗ d λg =
D

d νf ⊗ d νg =
0≤s≤t

∆f(s)∆g(s),

according to remark A.4. By summing these three equalities, we obtain [A.13].

The next theorem is a change of variables theorem. In one dimension, the common
change of variables theorem states that

F (g(t))− F (g(0)) =
t

0
d(F ◦ g)(s) =

t

0
F (g(s))g (s) d s. [A.14]

This is actually the application of the relation f(t)−f(0) = t

0 f (s) d s to the identity
(F ◦ g) = F ◦ g.g . In the case of functions of bounded variation, we do not have
the first relation and the second relation seems difficult to verify. However, we obtain
a result similar to [A.14].

Theorem A.23.– Let g be a right continuous function of bounded variation and F be
a function of class C1, we have,

F (g(t))− F (g(0)) =
t

0
F (g(s−)) d g(s)

+
0≤s≤t

F (g(s))− F (g(s−))− F (g(s−))∆g(s). [A.15]
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Note.– In particular, if g is continuous we obtain the usual result.

Proof. We prove [A.15] for F (x) = xn, by induction on n using the integration by
parts formula. By linearity, [A.15] is true for polynomials. We then approach any C1

function by a sequence of polynomials and pass to the limit in both sides to obtain the
result for F of class C1.

A.5. Martingales

A.5.1. Discrete time martingales

Definition A.27.– A (Xn, n ≥ 0) sequence of real random variables, integrable is
called a martingale (respectively, a sub-martingale or supermartingale) if:

1) for any n, Xn is Fn-measurable and integrable;

2) E Xn+1 | Fn = Xn a.s. (respectively, E Xn+1 | Fn ≥ Xn or
E Xn+1 | Fn ≤ Xn).

Example.– A typical example is that of a sequence of independent random variables.
Let (ξi, i ≥ 1) be i.i.d. random variables with E ξi = 0, then the sequence defined
by X0 = 0, Xn = n

i=1 ξi, is an Fn = σ(ξ0, · · · , ξn) martingale: Since ξn+1 is
independent of Fn, we have

E
n+1

i=1

ξi | Fn = E Xn + ξn+1 | Fn = Xn + E ξn+1 = Xn.

Definition A.28.– Let τ be a random variable with integer values τ , it is a stopping
time when for any n ∈ N,

{ω : τ(ω) = n} ∈ Fn.

Theorem A.24.– Let (Xn, n ≥ 0) be a martingale and τ be a stopping time. Then
(Xτ

n , n ≥ 1), where Xτ
n is defined by Xτ∧n is a martingale.

Proof. We have

Xτ∧n =
n−1

m=0

Xm 1{τ=m} +Xn 1{τ≥n} .

Therefore, Xτ∧n is Fn-measurable. Since |Xn| is a sub-martingale, for m ≤ n, for
any Fm-measurable, non-negative, random variable Ym, we have

E |Xm|Ym ≤ E |Xn|Ym .
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Therefore,

E |Xτ∧n| ≤
n−1

m=0

E |Xm| 1{τ=m} + E |Xn| 1{τ≥n}

≤
n−1

m=0

E |Xn| 1{τ=m} + E |Xn| 1{τ≥n} ≤ E |Xn| < +∞.

Moreover,

Xτ∧(n+1) −Xτ∧n = Xn+1 1{τ≥n+1}−Xn 1{τ>n} = 1{τ>n}(Xn+1 −Xn).

Hence,

E Xτ∧(n+1) −Xτ∧n|Fn = 1{τ>n} E Xn+1 −Xn | Fn = 0.

The result follows.

Definition A.29.– If τ is a stopping time, Fτ denotes the σ-field defined by

A ∈ Fτ ⇐⇒ A ∩ (τ ≤ n) ∈ Fn,

for any n ≥ 0.

LemmaA.25.– Let τ be a stopping time andX be anFτ -measurable random variable.
Then,

X 1{τ≤n}

is Fn-measurable for any n ∈ N.

Proof. Let A ∈ Fτ and X = 1A. Then the conclusion is trivially true. By linearity,
it is also true for finitely valued random variables (i.e. random variables with a finite
number of outcomes). If X is arbitrary, then there exists a sequence of finitely valued
Fτ -measurable random variables (Xk, k ≥ 1), which converges to X almost surely.
Therefore,

X 1{τ≤n} = lim
k→∞

Xk 1{τ≤n}

belongs to Fn.

Theorem A.26.– Let (Xn, n ≥ 0) be a martingale (respectively, a sub-martingale)
and τ1 ≤ τ2 be the two stopping times such that for i = 1, 2,

E |Xτi | < ∞ and lim inf
n−→∞ {τi>n}

|Xn| dP = 0.

Then, we have

E Xτ2 | Fτ1 = Xτ1 , P a.e.



Mathematical Toolbox 365

Proof. Let us first assume that τ2 ≤ k where k ∈ N is a constant. We have |Xτ2 | ≤
|X1|+ · · ·+ |Xk|, therefore Xτ2 is integrable. For n ≤ k and A ∈ Fτ1 , we have

E Xk 1A =
k

j=0

E Xk 1A∩{τ1=j} =
k

j=0

E Xj 1A∩{τ1=j} = E Xτ1 1A .

This entails that

E Xk | Fτ1 = Xτ1 .

Let us define the martingale Xτ2
m by Xτ2∧m. Then Xτ2

k = Xτ2∧k = Xτ2 . Reasoning
along the same lives yields to

E Xτ2 | Fτ1 = Xτ1

almost-surely. For the general case, according towhatwe have just seen, for any m ≥ n,
we have

E Xτ2∧m | Fτ1∧n = Xτ1∧n.

Hence, for B ∈ Fτ1 ,

E Xτ2∧m 1B∩{τ1≤m} = E Xτ1∧m 1B∩{τ1≤m} .

By dominated convergence, the right hand side of this equality converges to
E Xτ1 1B . Therefore, the left hand side also converges. Furthermore, we can write

E Xτ2∧m 1B∩{τ1≤m} = E Xτ2 1B∩{τ2≤m,τ1≤m}

+ E Xm 1B∩{τ1≤m}∩{τ2>m} .

When m goes to infinity, the first term of the right-hand-side converges (dominated
convergence) thus the second term must also converge. In this case, we can replace the
limit of this term with the lim inf that is zero according to the hypothesis and the result
follows.

Definition A.30.– A process (An, n ≥ 0) is said to be predictable when An is Fn−1
measurable for any n ≥ 1.

TheoremA.27 (Doob decomposition).– Let (Xn, n ≥ 0) be a sub-martingale. Then
there exists a martingale (Mn, n ≥ 0) and (An, n ≥ 0) sequence predictable and
increasing such that

Xn = Mn + An, A0 = 0.

Furthermore, this decomposition is unique.
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Proof. Assume that there exist two decompositions as above, denoted by (M, A) and
(M , A ). Then, (An −An, , n ≥ 0) is a predictable martingale, so it is constant. By
hypothesis we have A0 = A0, hence the uniqueness.

We define the sequence An by its increments

∆An = An+1 −An = E Xn+1 −Xn | Fn and A0 = 0.

Since X is a sub-martingale, ∆An is non-negative and therefore An is non-negative
and increasing. By definition of conditional expectation, ∆An isFn measurable hence
An+1 also. Thus, A is a predictable process. It results from the chain of inequalities

0 < E An =
n−1

p=1

E E ∆Xp | Fp = E Xn −X0 ≤ E |Xn|+ |X0| ,

that A is integrable. Finally, we define Mn by Mn = Xn − An. The integrability of
M follows from those of A and X . In addition, a simple calculation

E ∆Mn | Fn = E ∆Xn | Fn −E ∆An | Fn = 0,

shows that Mn is a martingale.

Let a and b be two real numbers such that a < b, we define the following stopping
times:

τ1 = inf{k > 0, Xk ≤ a},
τ2 = inf{k > τ1, Xk ≥ b},
...

τ2m−1 = inf{k > τ2m−2, Xk ≤ a},
τ2m = inf{k > τ2m−1, Xk ≥ b},

where any one of these variables is infinite as soon as the set on which the minimum
index is calculated, is empty. Then, for a n ∈ N, we consider the sets

βn([a, b]) =
0 if τ2 > n,

max{m, τ2m ≤ n} otherwise.

That is to say βn is the number of [a, b]-crossings of X up to time n.

Lemma A.28.– Let (Xn) be a sub-martingale,

E βn([a, b]) ≤ 1
b− a

E (Xn − a)+ .
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Figure A.5. Upcrossings of a martingale

Proof. The number of crossings of X through [a, b] is the same as that of (Xn − a)+

through [0, b − a]. Hence, we assume that (Xn, n ≥ 0) is positive sub-martingale,
a = 0 and we want to show that

E βn([0, b]) ≤ E Xn

b
· [A.16]

Set

φi =
1 if τ2k+1 < i ≤ τ2k+2,

0 if τ2k+2 < i ≤ τ2k+3.

We easily see that

βn([0, b]) ≤
n

i=1

1
b
(Xi −Xi−1)φi

and

{φi = 1} =
m even

[{τm < i}\{τm+1 < i}] ∈ Fi−1.
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Therefore, we have

bE βn([0, b]) ≤
n

i=1

E 1{φi=1}(Xi −Xi−1)

≤
n

i=1

E 1{φi=1}(E Xi | Fi−1 −Xi−1)

≤
n

i=1

E E Xi −Xi−1 | Fi−1

because E Xi | Fi−1 −Xi−1 ≥ 0. Since E X0 ≥ 0, we have

bE βn([0, b]) ≤ E Xn −E X0 ≤ E Xn

Hence, the result.

Theorem A.29.– Let X be a sub-martingale such that supn E X+
n < +∞, then

(Xn, n ≥ 0) converges almost surely to a random variable X∞ such that E |X∞| <
+∞.

Proof. If Xn does not converge a.s. then

P(lim sup Xn > lim inf Xn) > 0.

Moreover,

(lim sup Xn > lim inf Xn) =
a,b∈Q

(lim sup Xn > b > a > lim inf Xn),

thus there exists a couple of rational numbers (a, b) such that

P(lim sup Xn > b > a > lim inf Xn) > 0.

Therefore, there exists a A measurable of positive probability such that

for all ω ∈ A, lim sup Xn > b and lim inf Xn < a.

This means that for ω ∈ A, limn→+∞ βn([a, b]) = +∞ hence, according to the
monotone convergence theorem,

lim
n→+∞

E βn([a, b]) = E lim
n→+∞

βn([a, b]) =∞.



Mathematical Toolbox 369

We also know that

E βn([a, b]) ≤ 1
b− a

E (Xn − a)+]

≤ 1
b− a

(E X+
n + |a|)

≤ 1
b− a

(sup
n

E X+
n + |a|) < ∞.

We thus obtain a contradiction when n tends to infinity. This entails that (Xn, n ≥ 1)
converges almost surely to a random variable denoted by X∞. In addition,

E |Xn| = E X+
n + E X−

n = E X+
n + E X+

n −Xn

= 2E X+
n −E Xn ≤ 2E X+

n −E X1 ,

because (Xn, n ≥ 0) is a sub-martingale. We deduce that supn E |Xn| is finite,
which by Fatou’s lemma allows us to conclude that

E |X∞| = E | lim inf Xn| ≤ lim inf E |Xn| ≤ sup
n

E |Xn| < ∞.

Hence the limit random variable X∞ is integrable.

Corollary A.30.– A non-negative supermartingale converges almost surely.

Proof. If X is a non-negative supermartingale then −X is a sub-martingale with
(−Xn)+ = 0, thus we can apply the previous theorem to −X .

A.5.2. Continuous time martingales

Definition A.31.– Filtration (Ft, t ∈ R+) is an increasing family of σ-fields. It is
said to be right-continuous when

s>t

Fs = Ft, for any t ∈ R+.

It is said to be complete when all the negligible sets belong to F0.

It is assumed that in the following, all the filtrations encountered are complete and
right-continuous.

Definition A.32.– Let (Ω,F = (Ft, t ≥ 0), P) be a filtered space. A process M =
(M(t), t ≥ 0) is an F -martingale (respectively, sub-martingale, supermartingale)
when for any 0 ≤ s ≤ t, M(t) ∈ L1(P)

E M(t) | Fs = M(s) (respectively ≥ M(s) and ≤ M(s)). [A.17]
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We admit that any martingale admits a version with rcll trajectories. There are two
basic types of martingales: the continuous martingales and the purely discontinuous
martingales. The continuous martingales whose archetype is the Brownian motion are
not of finite variation. Martingales on which we will focus are martingales of finite
variation hence discontinuous.

Example A.2 (Poisson process).– Let N be a Poisson process on R+ with intensity
measure µ. The process M(t) = N(t) − µ([0, t]) is a martingale for the filtration
generated by the trajectories of N : Ft = σ(N(u), u ≤ t). Indeed, for any Poisson
process (see Chapter 6), N(t)−N(s) is independent of Fs hence

E N(t)−N(s) | Fs = E N(t)−N(s) = µ([s, t]).

The result follows.

The concept of stopping time requires a slight adaptation.

Definition A.33.– A random variable τ with values in R+ ∪ {∞} is an F -stopping
time when for any t ≥ 0, the event (τ ≤ t) belongs to Ft.

The σ-fieldFτ is the σ-field of events A ofF∞ such that for any t ≥ 0, A∩ (τ ≤ t)
belongs to Ft.

The stopping and convergence theorems mentioned in the section about discrete
martingales stay unchanged for R+-indexed martingales. In particular, if M is a
martingale and T a stopping time, the process

MT = {M(t ∧ T ), t ≥ 0}

is a martingale. The martingale property is often formally verified, but it is possible
that the random variables manipulated are not integrable. To circumvent this problem,
we introduce the concept of local martingale.

Definition A.34.– AnF -martingale M is called closed if there exists M∞ ∈ L1 such
that for any t ≥ 0, we have

M(t) = E M∞ | Ft .

Definition A.35.– An adapted process with rcll trajectories is a local martingale if
there exists an increasing sequence of stopping time (Tn, n ≥ 1) a.s. tending to infinity
such that for any n, MTn is a closed martingale. It is said that the sequence of stopping
time (Tn, n ≥ 1) reduces M .

Theorem A.31.– Let M be a local martingale. If there exists Z ∈ L1 such that
M(t) ≤ Z for any t ≥ 0 then M is a martingale.
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Proof. Let (Tn, n ≥ 1) be a sequence of stopping times which reduces M . For 0 ≤
s ≤ t, we have

M(s ∧ Tn) = E M(t ∧ Tn) | Fs .

As Tn tends to infinity, s ∧ Tn = s for n sufficiently large (depending on ω) then a.s.,
M(s∧Tn) tends to M(s). By dominated convergence, we get M(s) = E M(t) | Fs .

Definition A.36.– The predictable σ-field is the σ-field on Ω×R+ generated by the
adapted and continuous process. It is also generated by adapted and left-continuous
processes as well as the processes of the form

u(ω, t) = 1[a, b](t)α(ω) with α ∈ Fa.

Theorem A.32.– Let M be a martingale of finite variation. Let u be a predictable
process such that

E
∞

0
|u(s)| dVar(M)(s) < ∞.

The process

Mu(t) =
t

0
u(s) d M(s)

is a martingale.

The integral with respect to M is a Stieltjes integral as defined in section A.4.

Proof. According to the hypothesis on u and the properties of the Stieltjes integral,
the integrability of Mu(t) is guaranteed. It remains to prove [A.17]. For u simple
predictable, that is u(ω, t) = 1[a, b](t)α(ω) with α ∈ Fa, for 0 ≤ s ≤ a ≤ t ≤ b, we
have

Mu(t) = α(M(t)−M(a)) and Mu(s) = 0.

Hence,

E Mu(t)−Mu(s) | Fs = E α(M(t)−M(a)) | Fs

= E E α(M(t)−M(a)) | Fa | Fs

= E αE (M(t)−M(a)) | Fa | Fs

= 0,

since M is a martingale. It is then sufficient, on the same principle, to discuss other
cases according to the relative positions of a, s, t, b. By passing to the limit, the result
is valid for all predictable processes satisfying the integrability property.
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tT0 = 0 T1 T2 T3 T4 T5

N(t)

Figure A.6. A sample-path of a point process

Of all the martingales, those arising from point processes particularly interests us.

Definition A.37.– A point process indexed by R+ is a strictly increasing sequence
(Tn, n ≥ 1) of non-negative random variables. We set

N(t) =
n≥1

1[0,t](Tn),

the number of points before t. We say that the point process is integrable if E N(t) <
∞ for any t ≥ 0. In particular, this implies that Tn tends to infinity almost surely.

From the knowledge of Tn, we find easily the trajectory of N . From the trajectory
of N , the times Tn are nothing but its instants of jumps. Thus, there is equivalence
between a purely atomic measure on R+ and the associated process N . We use the
term of point process interchangeably to one or the other of these objects.

Definition A.38.– Let N be an integrable point process. We call the compensator
of N an increasing predictable process A, null at time 0 such that N − A is a local
martingale.

Example.– It comes from Example A.3 that the compensator of the Poisson process
is the process A(t) = µ([0, t]).

Theorem A.33.– Let N be a point process such that supt E N(t)2 < ∞ and A be
its compensator. The process ((N −A)2(t)−A(t), t ≥ 0) is a martingale.
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Proof. According to Theorem A.22

(N(t)−A(t))2 = 2
t

0
N(s−)(d N(s)− d A(s)) +

s≤t

∆N(s)2.

As a point process has jumps of height 1,

∆N(s)2 = ∆N(s) and
s≤t

∆N(s) = N(t).

Therefore,

(N(t)−A(t))2 −A(t) = 2
t

0
N(s−)(d N(s)− d A(s)) + (N(t)−A(t))

= 2U1(t) + U2(t).

According to Theorem A.32, U1 is a martingale, and according to the definition of A,
U2 as well.

Definition A.39.– A marked point process R with values in Polish E is a sequence
of random variables ((Tn, Zn), n ≥ 1), where 0 < Tn ≤ Tn+1 and Zn ∈ E for any
n. It is said to be integrable when E ∞

n=1 1[0, t](Tn) < ∞. We use the notation

n≥1

ψ(Tn, Zn) =
R+×E

ψ(s, z) d R(s, z).

Note.– A point process is nothing but a point process marked with E reduced to a
singleton.

Definition A.40.– The filtration canonically associated with a marked point process
R is defined by

Ft = σ{R([0, s]×B), s ≤ t, B ∈ B(E)}.

The predictable σ-field associated with a marked point process R is the σ-field on
Ω×R+ × E generated by the processes of the form

ψ(ω, s, z) = α(ω) 1[a, b](s)g(z),

with g bounded measurable function (E, B(E)) in (R, B(R), α ∈ Fa.

Definition A.41.– A random measure on R+ × E is called predictable if for any
B ∈ B(E), process

t → R([0, t]×B)

is F -predictable.
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Definition A.42.– Let R be a marked point process. We note Qn the distribution
of (Tn+1, Zn+1) given Hn = (Tj , Zj , j = 1, · · · , n). For ψ non-negative and
predictable, we define

t

0 E

ψ(s, z) d ν(s, z)

=
n≥0

t

0 E

ψ(s, z)
1

Qn([s, ∞]× E)
1[Tn, Tn+1](s) dQn(s, z). [A.18]

Theorem A.34.– Let R be a marked point process. For any predictable process ψ
such that

sup
t

E
t

0 E

ψ2(s, z) d ν(s, z) < ∞, [A.19]

the process

Mψ : t −→
t

0 E

ψ(s, z) d R(s, z)−
t

0 E

ψ(s, z) d ν(s, z)

is a local martingale. In addition, ν is the only predictable measure that satisfies this
property. Moreover, in this case,

Mψ, Mψ (t) =
t

0 E

ψ2(s, z) d ν(s, z). [A.20]

Proof. On the interval [Tn, Tn+1], the process

t →
t

0 E

ψ(s, z) d ν(s, z)

isHn measurable, therefore it is predictable. Let us now show that for ψ non-negative
and predictable, we have E Mψ(t) = 0. Since ψ is predictable

E ψ(t, z) 1[Tn, Tn+1](t) |Hn = ψ(t, z)E 1[Tn, Tn+1](t) |Hn .

On the other hand, the distribution of Tn+1 given Hn is by definition the marginal
distribution on R+ of Qn, hence

E 1[s,∞](Tn+1) |Hn =
∞

s E

dQn(r, τ) = Qn([s, ∞]× E).
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Therefore,

E
n≥1

t

0 E

ψ(s, z)
1

Qn([s, ∞]× E)
1[Tn, Tn+1](s) dQn(s, z)

=
n≥1

E
t

0 E

ψ(s, z)
1

Qn([s, ∞]× E)
E 1[Tn, Tn+1](s) |Hn dQn(s, z)

=
n≥1

E
t

0 E

ψ(s, z)
1

Qn([s, ∞]× E)

∞

s E

dQn(r, τ) dQn(s, z)

=
n≥1

E
t

0 E

ψ(s, z) dQn(s, z)

=
n≥1

E
t

0 E

E ψ(Tn+1, Zn+1) |Hn

= E
t

0 E

ψ(s, z) d R(s, z) .

[A.21]

For ψ simple, non-negative and predictable, for t > r > 0 and Y non-negative and
Fr-measurable positive, the process

s → ψ(s, z)Y 1[r, t](s)

is still predictable. By passage to the limit, this remains true for ψ non-negative and
predictable. Therefore,

E Mψ(t)−Mψ(r) | Fr

= E
t

0
1[r, t](s)

E

ψ(s, z)(d R(s, z)− d ν(s, z)) | Fr . [A.22]

Moreover, for Y ∈ Fr, according to [A.21]

E
t

0 E

Y 1]r, t](s)ψ(s, z)(d R(s, z)− d ν(s, z)) = 0.

Therefore, E Mψ(t) −Mψ(r) | Fr = 0 and Mψ is a martingale. By arguing as in
Theorem A.33, we obtain [A.20]. All the above makes sense only if the expectations
are finite, of which one knows nothing a priori for any predictable ψ. Finally to make
sense of these calculations, we consider the sequence

τn = inf{t,
t

0 E

ψ(s, z)(d R(s, z) + d ν(s, z)) > n},
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and we apply the reasoning of [A.21] on [0, t ∧ τk] instead of [0, t]. All expectations
are finite and we have a perfectly rigorous calculation. Equation [A.22] becomes

E Mψ(t ∧ τk)−Mψ(r ∧ τk) | Fr

= E
t∧τk

0
1[r, t∧τk](s)

E

ψ(s, z)(d R(s, z)− d ν(s, z)) | Fr .

We deduce that Mψ is a local martingale. Condition [A.19] allows us to pass to the
limit in the expectations of the final result.

We admit the following result whose proof is based on Theorem A.27 but is much
more technical.

Theorem A.35.– A sub-local martingale M admits a decomposition as

M(t) = X(t) + A(t),

where X is a local martingale and A an increasing predictable process null at 0. The
process A is often denoted by M, M .

For properties of PASTA type, we need the following theorem whose very technical
proof is omitted.

Theorem A.36.– Let M be a martingale. If M, M (t) tends to infinity when t tends
to infinity then

M(t)
M, M (t)

t→∞−−−→ 0.

Corollary A.37.– Let R be a marked point process on E and ν its compensator. We
denote byN the associatedpoint processN(t) = R([0, t]×E).Letψ : Ω×R+×E →
R be a predictable process. Assume that there exists c > 0 such that almost-surely for
any t ≥ 0,

t

0 E

(1 + ψ2(s, z)) d ν(s, z) ≤ c ν([0, t]× E). [A.23]

Then, almost-surely, we have

lim
t→∞

1
N(t)

t

0
ψ(s, z) d R(s, z)− 1

ν([0, t]× E)

t

0
ψ(s, z) d ν(s, z) = 0.

[A.24]
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✍ This formula is the basis for all PASTA type properties that appear in this book. It
links the averages computed over large populations of users and the averages computed
over long periods.

Proof. To simplify the notations, we set

ν(t) = ν([0, t]× E) and νφ(t) =
t

0
φ(s, z) d ν(s, z).

First observe that according to Theorem A.36

1
ν(t)

(N(t)− ν(t)) t→∞−−−→ 0, [A.25]

therefore,

N(t)
ν(t)

t→∞−−−→ 1. [A.26]

This induces that

νψ(t)
N(t)

=
ν(t)
N(t)

νψ(t)
ν(t)

≤ ν(t)
N(t)

1
ν(t)

t

0 E

(1 + ψ2)(s, z) d ν(s, z).

According to equations [A.23] and [A.26], this quantity is bounded uniformly with
respect to time. By writing,

1
N(t)

t

0 E

ψ(s, z) d R(s, z)=
ν(t)
N(t)

νψ
2
(t)

ν(t)

× 1
νψ2(t)

t

0 E

ψ(s, z)(d R(s, z)− d ν(s, z)) +
νψ(t)
N(t)

.

We deduce from the above that there exists r > 0 such that

lim sup
t→∞

1
N(t)

t

0 E

ψ(s, z) d R(s, z) ≤ r. [A.27]

With these results of domination, we can now calculate the limit we’re really
interested in.

1
N(t)

t

0
ψ d R− 1

ν(t)

t

0
ψ d ν

=
1

N(t)

t

0 E

ψ d R
ν(t)−N(t)

ν(t)
+

νψ
2
(t)

ν(t)
1

νψ2(t)
ψ(d R−d ν).

Thus [A.37] follows from Theorem A.36, [A.25], [A.26], and [A.27].
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Note.– We observe that if ψ is bounded then [A.23] is automatically satisfied.

The following theorem is a direct application of Theorem A.34. It states that the
averages calculated in terms of customers are equal to the time averageswhen the arrival
process is a Poisson process (hence the name of this property: Poisson Arrivals See
Time Averages, PASTA for short). We will look at Figure 9.2 and its useful comments
to see that this is not always the case.

Theorem A.38 (PASTA property).– If N is a Poisson process with λ intensity then

lim
t→∞

1
N(t)

nTn≤t

ψ(Tn) = lim
t→∞

1
t

t

0
ψ(s) d s,

as soon as one of the two limits exists.

A.6. Laplace transform

Definition A.43.– Let Y be a random variable with values in R+. The Laplace
transform of the distribution of Y is a function with value in R+, defined for any
s ∈ R+ by

LY (s) = E e−sY .

Lemma A.39.– The Laplace transform has the following properties:

1) it characterizes the distribution: if Y and Z are two random variables such that
LY (s) = LZ(s) for any s, then Y and Z have the same distribution.

2) in particular, it characterizes everymoment of the distribution: ifY hasmoments
of order n then LY is n-times differentiable at 0, and for any k = 1, · · · , n,

E Y k = (−1)kL(k)
Y (0).

3) if Y1, Y2, · · · , Yn are n independent random variables admitting a Laplace
transform in s, then the Laplace transform of i=1 Yi is defined in s and equals

L n
i=1 Yi

(s) = Πn
i=1LYi(s).

4) Let (Yn, n ∈ N) and Y , random variables admitting Laplace transform on a
common open set. We then have the following equivalence:

Yn
n→∞−−−−→ Y in distribution ⇐⇒ LXn

n→∞−−−−→ LX simply.
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A.7. Notes and comments

The conditional expectation is a classic topic in the teaching of advanced
probability. There are many references. We were particularly inspired by [KAL 98,
CHU 01]. A presentation of the measure theory and Hilbert spaces may be found in
[RUD 80, YOS 95]. Everything concerning the compensators of point processes appear
completely in [JAC 79] under the disguise of “multivariate point processes”. We can
also refer to [LAS 95]. The general theory of integration with respect to a martingale
can be found in many books for the continuous case, books that deal with the general
case, that is to say rcll trajectories are much rarer and more difficult to access, see for
instance [BRA 81, LED 76, JAC 79].
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