
www.allitebooks.com

http://www.allitebooks.org

Tapestry in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Tapestry in Action
HOWARD M. LEWIS SHIP

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2004 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-11-7

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

www.allitebooks.com

http://www.allitebooks.org

 To my parents, who bought me my first computer when I was 13
and had no idea what they had started

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

PART 1 USING BASIC TAPESTRY COMPONENTS1

1 ■ Introducing Tapestry 3

2 ■ Getting started with Tapestry 38

3 ■ Tapestry and HTML forms 92

4 ■ Advanced form components 133

5 ■ Form input validation 169

PART 2 CREATING TAPESTRY COMPONENTS............................213

6 ■ Creating reusable components 215

7 ■ Tapestry under the hood 269

8 ■ Advanced techniques 322

PART 3 BUILDING COMPLETE TAPESTRY APPLICATIONS381

9 ■ Putting it all together 383

10 ■ Implementing a Tapestry application 403

brief contents

www.allitebooks.com

http://www.allitebooks.org

viii BRIEF CONTENTS

APPENDIXES

A ■ Getting involved with Tapestry 479

B ■ Building the examples with Ant 485

C ■ Tapestry component reference 493

D ■ Tapestry specifications 516

www.allitebooks.com

http://www.allitebooks.org

ix

foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the title xxvii
about the cover illustration xxviii

PART 1 USING BASIC TAPESTRY COMPONENTS1

1 Introducing Tapestry 3

1.1 What are web applications? 5

1.2 What are Java servlets? 7

Understanding servlet multithreading 9 ■ Managing server-side
state 10 ■ Using Struts with servlets 12 ■ Understanding the
limitations of servlets 12

1.3 Why do we need Tapestry? 16

What is a framework? 16 ■ What is a component? 17
What is Tapestry? 18 ■ Comparing Tapestry to Swing 21

1.4 Understanding Tapestry’s goals 22

Simplicity 22 ■ Consistency 22 ■ Efficiency 23
Feedback 23

contents

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

1.5 How does Tapestry work? 25

What’s in a Tapestry application? 27 ■ Tapestry’s Model-
View-Controller (MVC) pattern 29 ■ Tapestry classes 33

1.6 Using Spindle 35

1.7 Summary 37

2 Getting started with Tapestry 38

2.1 Introducing the Hangman application 39

Determining the application flow 41 ■ Creating page
mockups 42 ■ Defining the domain objects 44
Defining the pages 49

2.2 Developing the Home page 51

Understanding the Home page specification 52 ■ Rendering the
Home page 54 ■ Defining the Home page class 57
Examining the Visit object 60

2.3 Implementing the Home page using standard
servlets 62

2.4 Developing the Guess page 65

Displaying the remaining guesses 73 ■ Generating the guessed
word display 79 ■ Selecting guesses 83

2.5 Developing the Win and Lose pages 89

2.6 Configuring the web.xml deployment descriptor 89

2.7 Summary 91

3 Tapestry and HTML forms 92

3.1 Understanding HTML forms 93

3.2 Creating a simple login form 96

Implementing the Login page class 99 ■ Using specified
properties 101

3.3 Understanding the Form component 103

Developing forms without Tapestry 103 ■ Developing forms
with Tapestry 105 ■ Handling form submissions 108

3.4 Using basic form control components 109

Understanding the essentials 110 ■ The Checkbox
component 111 ■ Radio and RadioGroup components 111

CONTENTS xi

Select and Option components 113 ■ Submit and ImageSubmit
components 118

3.5 Creating a to-do list 120

Defining the data object 121 ■ Creating the ToDo HTML
template 122 ■ Specifying properties in the page
specification 125 ■ Initializing the toDoList property 126
Handling reordering 127 ■ Deleting completed items 128
Triggering stale links 129

3.6 Summary 132

4 Advanced form components 133

4.1 Introducing the advanced form components 134

4.2 Creating drop-down lists with PropertySelection 134

Adding priority levels to the ToDo application 136 ■ Updating
the HTML template 138 ■ Implementing the page class 139
Implementing the model 140 ■ Using enums instead of
integers 144

4.3 Recording data in the form with Hidden 148

4.4 Looping within a form using ListEdit 151

Using the ListEditMap 153 ■ Using ListEdit in the ToDo
application 154

4.5 Handling file uploads 160

4.6 Creating pop-up date selections using DatePicker 165

4.7 Summary 168

5 Form input validation 169

5.1 Validating user input 170

Using FieldLabels in conjunction with ValidFields 173
Using validators 173 ■ Using validation delegates 174
Using helper beans 178

5.2 Building the Register page 179

Creating the Register HTML template 181 ■ Creating the
Register page specification 189

5.3 Validating input based on regular expressions 195

5.4 Customizing label and field decorations 199

5.5 Enabling client-side validation 202

xii CONTENTS

5.6 Handling form-level validations 205

5.7 Using validation without ValidField 208

5.8 Summary 211

PART 2 CREATING TAPESTRY COMPONENTS 213

6 Creating reusable components 215

6.1 Creating simple template components 216

6.2 Creating the component specification 219

Specifying the component’s Java class 219 ■ Discarding the
component’s body 220 ■ Forbidding informal parameters 221
Declaring parameters 222 ■ Reserving names 230

6.3 Creating the Digit and Scaffold components 230

Specifying the digit parameter 232 ■ Using the digit
parameter 232 ■ Creating the template 233 ■ Using the Digit
component 233 ■ Using the Scaffold component 234

6.4 Creating the Letter component 234

Specifying the Letter component 235 ■ Implementing the Letter
component 236 ■ Using the Letter component 237

6.5 Building the Spell component 238

Implementing the Spell component 239 ■ Using the Spell
component 240

6.6 Building the Border component 242

Creating the Border template 243 ■ Creating the Border
specification 244 ■ Using the Border component 244

6.7 Creating interactive, reusable components 246

Introducing the Pet Store image map 246 ■ Specifying the
DirectArea component 247 ■ Implementing the DirectArea
component 248 ■ Using the DirectArea component 252

6.8 Using component libraries 254

Declaring libraries 254 ■ Referencing library components 256

6.9 Packaging components into libraries 261

Creating the library specification 262 ■ Creating the library
specification 264 ■ Creating the FormError component 264
Using the FormError component 267

6.10 Summary 268

CONTENTS xiii

7 Tapestry under the hood 269

7.1 Processing requests 270

7.2 Understanding the application servlet 271

Servlet request processing 271 ■ Understanding server-side
state 272 ■ Managing server-side state in a cluster 274

7.3 Understanding the Tapestry engine 277

7.4 Understanding engine services 279

What’s the problem with application URLs? 279 ■ How does
Tapestry handle application operations? 280 ■ Using the home
service 281 ■ Rendering pages with the page service 283
Linking to listener methods with the direct service 284
Creating bookmarkable links using the external service 290

7.5 Page rendering in detail 291

Using markup writers 292 ■ Going beyond HTML 295
Understanding the page-rendering sequence 297
Using page-rendering events 297

7.6 Loading and pooling pages 299

Retrieving pages from the pool 300 ■ Creating new page
instances 302 ■ Returning pages to the pool 304

7.7 Using persistent page properties 306

7.8 Using specified properties 308

7.9 Localizing Tapestry applications 309

Using Java localization 310 ■ Using Tapestry’s localization
features 311

7.10 Summary 321

8 Advanced techniques 322

8.1 Creating new engine services 323

Defining a banner ad system 324 ■ Defining the data
model 326 ■ Accessing the data model as an application
extension 328 ■ Implementing the BannerAd component 329
Implementing the banner service 332 ■ Creating the library
specification 336 ■ Building a banner ad application 337

8.2 Client-side scripting 339

Defining the CreditCardField component 341 ■ Working with
the Body component 344 ■ Creating the Tapestry script

xiv CONTENTS

specification 345 ■ Creating the CreditCardField
specification 355 ■ Creating the CreditCardField
component 356 ■ Using the component 368

8.3 Integrating with JavaServer Pages 369

Redirecting to a JSP 369 ■ Linking JSPs to Tapestry
pages 371 ■ Submitting JSP forms into Tapestry 375

8.4 Summary 379

PART 3 BUILDING COMPLETE TAPESTRY APPLICATIONS 381

9 Putting it all together 383

9.1 Introducing the Virtual Library 384

9.2 Performing searches 385

Changing the table sort order 387 ■ Paging through the
results 387

9.3 Logging in and registering 388

9.4 Borrowing books 389

9.5 Getting details about books and persons 390

Viewing book details 390 ■ Viewing a person 392

9.6 Managing your books 393

Editing a book 394 ■ Deleting a book 395 ■ Returning
books 395 ■ Adding a new book 396 ■ Editing your
profile 396 ■ Giving away books 396

9.7 Administering the Virtual Library 399

Editing users 399 ■ Editing publishers 400 ■ Transferring
books 400

9.8 Summary 402

10 Implementing a Tapestry application 403

10.1 Looking at the application layers 404

10.2 Organizing EJB access 406

Handling authentication 407 ■ Accessing Enterprise
JavaBeans 407 ■ Tracking user identity with the Visit
object 407 ■ Understanding page inheritance 410

CONTENTS xv

10.3 Implementing the Search page 413

Identifying application-specific components 415 ■ Referencing
the engine 416 ■ Specifying the page class and properties 417
Performing searches 418

10.4 Implementing the BookMatches page 419

Handling paging and column sorting 420 ■ Using the Browser
component 425 ■ Executing queries and re-queries 426

10.5 Implementing the Browser component 430

Specifying Browser’s parameters 430 ■ Getting results from the
BookQuery bean 432 ■ Rendering the Browser
component 433

10.6 Implementing the ColumnSorter component 434

Creating the ColumnSorter HTML template 434 ■ Specifying
ColumnSorter parameters 435 ■ Responding to the user 437

10.7 Implementing the Border component 438

Handling user login 442 ■ Linking to MyLibrary 443

10.8 Authenticating the user 445

Remembering the user 446 ■ Clearing the password field 447
Invoking the login operation 449

10.9 Creating bookmarkable links 449

Creating the BookLink component 450 ■ Displaying the Book
on the ViewBook page 451 ■ Creating the PersonLink
component 453 ■ Displaying the Person 455

10.10 Editing a Book 457

Tracking the Book ID 459 ■ Generating dynamic
JavaScript 460

10.11 Giving books away 463

10.12 Editing the publishers 464

Constructing the EditPublishers template 464 ■ Declaring
properties for the EditPublishers page 465 ■ Creating the
ListEditMap 467 ■ Updating the publishers 469

10.13 Editing the list of users 470

Creating the ListEditMap subclass 471 ■ Handling the form
submission 472

xvi CONTENTS

10.14 Creating the web deployment descriptor 474

Deploying web applications as root 476 ■ Deploying an
enterprise application as root 476

10.15 Wrapping it all up 477

appendix A: Getting involved with Tapestry 479

appendix B: Building the examples with Ant 485

appendix C: Tapestry component reference 493

appendix D: Tapestry specifications 516

index 537

xvii

foreword
My involvement with Tapestry began in the autumn of 2001. I read about the

framework in an article in ONJava magazine. At the same time, our company

was poised to begin several new web projects, and we were looking for a way to

avoid the problems inherent in building complex web pages and forms with

the standard tools. We analyzed a large number of frameworks, but Tapestry

immediately attracted our attention, with its unique development method and

its helpful community.

 The first glance was not misleading—Tapestry proved to be a powerful and

helpful instrument in practice as well. The component structure was not sim-

ply an add-on but was entrenched in the philosophy of the framework. We

also discovered that Tapestry offered a number of other powerful features that

proved to be critical in our work. For example, it allowed a clean separation

between Java and HTML, and made it possible for the design work on the

application to continue well after the code had been completed—and it could

be performed by designers who never had to know anything about Tapestry. It

provided internationalization capabilities well beyond simply replacing text

with its translation. The framework was designed with EJBs and clustering in

mind, and integrated with them effortlessly.

 Today our company has libraries containing hundreds of Tapestry compo-

nents. Some of these are simple, such as a Login component that manages

authentication using HTTP cookies. Others are far more complex, constructed

xviii FOREWORD

from smaller components and full of intricate JavaScript, such as a tool for

dynamically defining web forms. All of these components can simply be taken off

the shelf and plugged into our latest application with ease. We do not have to

worry how the various components will work together—we know that they will do

so by design.

 During the two years we have worked with Tapestry, its development has not

stood still. While the earlier versions of the framework concentrated on deliver-

ing power, version 3.0 (described in this book) concentrates on both delivering

maximum ease of use for programmers and enhancing their productivity. It low-

ers the entry requirements, decreases the amount of developer effort needed,

and makes the framework as easy to use as a scripting language for simple appli-

cations. The result is that you can achieve the same results as before but with

much less coding.

 The majority of these improvements have occurred and moved forward due

to feedback and ideas from Tapestry users and contributors. The active commu-

nity surrounding the framework helps it remain focused on resolving the prob-

lems developers encounter in the real world. A major commendation for

encouraging and integrating the contributions must also go to Howard Lewis

Ship, the author of this book. As the creator and original designer of Tapestry,

he has made a remarkable effort to listen to users, understand their needs, and

address their requirements. The other Tapestry contributors have followed his

lead and have extended the framework to provide support for a variety of new

functionality areas. The community has also been instrumental in the process

that made Tapestry a part of the Apache Jakarta family. With this step, it became

a companion project of other popular projects, including Struts, Tomcat, and

log4J. All of these factors ensure that Tapestry will persist in its evolution and will

continue to improve the ways in which it makes the life of web developers easier

and more productive.

 This book will allow you to delve into a different, better world of web develop-

ment than the one you have known. It will show you an innovative approach for

creating and organizing your applications, enable you to develop more robust

and scalable code, and make previously difficult tasks much simpler. After you

get to know Tapestry, you will start looking at web development in a very differ-

ent way. Enjoy!

 THEODORE TONCHEV

 “MINDBRIDGE”

 TECHNICAL DIRECTOR, RUSHMORE DIGITAL

xix

preface
From the fall of 1998 through late 1999, I worked on a mix of interesting

projects for my then-employer, Primix, a Boston Internet consulting firm. The

first of these was a standard CRUD (Create Read Update Delete) application,

and it used servlets and JavaServer Pages (JSPs). Despite the fact that we were

a small team (just three or four of us at various times) working on a very mod-

est application, it seemed like we were constantly having to reinvent the wheel.

I’d had some exposure to Apple’s WebObjects framework, and the difference

between the two approaches was like night and day: Not only did WebObjects

have better tool integration, including a WYSIWYG (What You See Is What You

Get) HTML editor, it was easier to use even without the extra tools, just by edit-

ing the underlying template and configuration files. We were a small, smart,

experienced team—but working with servlets and JSPs was always an uphill

battle compared to using WebObjects.

 A major part of this problem was impedance; each developer worked in his

or her own corner of the application and had a particular way of working. Dif-

ferent developers used different naming conventions and solved similar prob-

lems in different ways—which caused extra grief when new developers cycled

through the team, or when we had to venture outside our little fiefdoms to fix

bugs. Remember, this was a time before J2EE servers really existed, before cus-

tom JSP tag libraries, before Sun had even started promoting the Model 2 design

pattern. It was also obvious that WebObjects, with its notion of components and

www.allitebooks.com

http://www.allitebooks.org

xxi

acknowledgments
Working on this book has been the highlight of my career to date. I’ve never

before had the opportunity to be so focused and so self-directed for such a long

time. I would never have had this opportunity without the support and friend-

ship of Timothy Dion, the CTO of Primix, who gave me the green light to work

on Tapestry in the first place, as well as the support to release it as open source.

Just as instrumental was my good friend Gregory Burd, who championed Tap-

estry within Primix and put it into play for its first big engagement.

 The Tapestry crew—Theodore Tonchev, Richard Lewis-Shell, David Solis,

Neil Swinton, Harish Krishnaswamy, and Geoff Longman—have been tireless

supporters of Tapestry, and good friends, many of whom I’ve yet to meet in

person! Thanks as well to Andrew C. Oliver for sponsoring Tapestry in the

Apache Jakarta project.

 Writing a book is a group effort—without the tireless help from the crew at

Manning, this book would never have reached your hands. Both Marilyn

Smith and Liz Welch provided endless assistance with grammar and style, as

well as much valuable advice. Tiffany Taylor’s eagle eyes spotted an embar-

rassing number of typos and inconsistencies. Denis Dalinnik did a standout

job of typesetting. Special thanks to Jackie Carter, for keeping me honest and

keeping me focused on the reader. Thanks also to my technical reviewers, espe-

cially Bill Lear, Ryan Cox, Adam Greene, and Joel Trunick—they pushed me

to create a better book than I would have thought possible. Thanks as well to

xxii ACKNOWLEDGMENTS

Mary Piergies for keeping it all organized, to Clay Andres for getting the whole

thing started, and to publisher Marjan Bace for the vote of confidence.

 Special thanks go to my wife, Suzanne, who has encouraged me every step of

the way on this long process. Suzanne’s support has never wavered, even as this

project consumed my time, attention, energy, and the dining room table (my

workspace) for months on end. Suzanne has indulged my need to talk about

Tapestry and this book long past the point where anyone else would have run

screaming from the room, and I love her for that, and for her boundless enthusi-

asm. We are stylin’, baby!

xxiii

about this book
Tapestry is a comprehensive web application framework for the Java pro-

gramming language. Tapestry is based on components, highly reusable build-

ing blocks that can be quickly and easily combined to form pages within your

application. By using and reusing components, and creating your own com-

ponents, you can create richly interactive, robust applications with only a

modest effort.

 Tapestry’s basic style is to break problems into smaller and smaller units;

this complements a team development environment where different develop-

ers work on different parts of the application. The framework makes it easy

for both Java and HTML-only developers to work together without acciden-

tally undermining each other’s work.

 When building a web application with any technology, you will be faced

with a constant stream of questions: How do I figure out what the user has

requested? Where can I store this bit of information? How can I safely add this

new functionality? How can I make my application scale? In too many envi-

ronments, it’s easy to make the wrong decision when confronted with any of

these, and many other, development-time questions. It’s too easy to take a

quick-and-dirty detour down the wrong path, which ultimately comes back to

bite you when you are least prepared to deal with it.

 The central goal of Tapestry is to make the easiest choice the correct choice.

Over the course of this book, we’ll show you how to build applications using

xxiv ABOUT THIS BOOK

Tapestry, but we will also show you the hidden traps and tangles that Tapestry

helps you to avoid.

Roadmap

■ Chapter 1 introduces web applications in general. We begin to describe
where Tapestry fits into the overall scheme of things and expand on the
basic goals achieved by the framework.

■ Chapter 2 sets the stage, describing the implementation of a simple web
application that plays the word game Hangman. Here we introduce many
of the major concepts of Tapestry.

■ Chapters 3 through 5 describe how Tapestry handles HTML form input,
including the framework’s sophisticated form-validation subsystem.

■ Chapter 6 describes how to build basic reusable components and how to
package them into component libraries.

■ Chapter 7 delves into the inner implementation of Tapestry, shedding
light on how the framework addresses scalability issues, localization, and
the lifecycle of pages.

■ Chapter 8 describes advanced components, including components that
create client-side JavaScript. We also discuss integrating Tapestry with a
traditional servlets-and-JSPs application.

■ Chapters 9 and 10 describe the Virtual Library, a complete J2EE example
application using Tapestry for the presentation layer and a mix of session
and entity EJBs for the application layer. We include several real-world
examples that illustrate how to build and polish a Tapestry application.

Who should read this book?

This is a book about getting things done using the Tapestry framework; as such,

it will appeal to Java web developers looking for a better, easier way to build web

applications. Because Tapestry is explicitly designed to support team develop-

ment of web applications, this book will also be of interest to managers looking

for a better way to leverage their team’s efforts.

 This book is targeted at people who have at least gotten their feet wet in terms of

Java web application development (or perhaps have already taken the full plunge).

Therefore, we assume that you are at least somewhat acquainted with a number of

concepts and technologies. Obviously, an understanding of the Java programming

language is a prerequisite, as well as familiarity with such key Java APIs as the

ABOUT THIS BOOK xxv

collections framework. You should also be clear on the distinction between Java

interfaces and Java classes.

 Much of Tapestry concerns the moving of information from one object to

another; this is facilitated using JavaBeans properties. The core concept of the

JavaBeans framework is that an object can be treated as if it was a Map, as a collec-

tion of named properties that can be read or updated without knowing the actual

class of the object. More information about JavaBeans is available at http://

java.sun.com/products/javabeans/docs/.

 You should be familiar with the basic set of HTML tags, including <body>,

, <a>, <form>, and <input>. You must also be familiar with URLs and query

parameters and the difference between HTTP GET and HTTP POST.

 Many of the artifacts of a Tapestry application are XML documents. You

should be familiar with basic XML usage and syntax.

 Some of the later examples show how to implement client-side logic. This

requires an understanding of JavaScript (the scripting language that executes

within a client web browser) as well as the Document Object Model, the data

structure representing a web page inside a web browser.

Code conventions and downloads

This book includes copious examples, which include all the Tapestry application

artifacts: Java code, HTML templates, and XML specification files. Source code in

listings or in text is in a fixed width font to separate it from ordinary text. Addi-

tionally, Java method names, component parameters, object properties, and

HTML and XML elements and attributes in text are also presented using fixed

width font. Java method names will generally not include the signature (the list

of parameter types).

 Java, HTML, and XML can all be quite verbose. In many cases, the original

source code (available online) has been reformatted, adding line breaks and

reworking indentation, to accommodate the available page space in the book. In

rare cases, even this was not enough, and listings will include line continuation

markers. Additionally, comments in the source code have been removed from

the listings.

 Code annotations accompany many of the source code listings, highlighting

important concepts. In some cases, numbered bullets link to explanations that

follow the listing.

 Tapestry is an open-source project, released under the very liberal Apache

Software License. Directions for downloading Tapestry, in source or binary form,

xxvi ABOUT THIS BOOK

are available from the Tapestry home page: http://jakarta.apache.org/tapestry/.

Documentation available from the home page also identifies how to download

the source code via CVS so that you can build the framework locally, if you are

so inclined.

 The Tapestry distribution includes the Virtual Library application described

in chapters 9 and 10.

 The source code for all examples in this book is available from Manning’s web

site: www.manning.com/lewisship/. To run the examples, you need to download

Tapestry and the Tomcat servlet container. Appendix B contains the details.

Author Online

The purchase of Tapestry in Action includes free access to a private web forum run

by Manning Publications, where you can make comments about the book, ask

technical questions, and receive help from the author and from other users. To

access the forum and subscribe to it, point your web browser to www.man-

ning.com/lewisship. This page provides information on how to get on the forum

once you are registered, what kind of help is available, and the rules of conduct

on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-

ingful dialogue between individual readers and between readers and the author

can take place. It is not a commitment to any specific amount of participation

on the part of the author, whose contribution to the forum remains voluntary

(and unpaid). We suggest you try asking the author some challenging questions,

lest his interest stray! The Author Online forum and the archives of previous

discussions will be accessible from the publisher’s web site as long as the book is

in print.

About the author

Howard Lewis Ship is the lead developer for the Tapestry project. He cut his

teeth writing customer support software for Stratus Computer, but eventually

traded PL/1 for Objective-C and NextStep before settling into Java. Howard is

currently an independent open-source and J2EE consultant, specializing in cus-

tomized Tapestry training. You can find Howard on the web at http://howard-

lewisship.com. In the real world, he lives in Quincy, Massachusetts, with his wife

Suzanne, a novelist.

xxvii

about the title
By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research

in cognitive science, the things people remember are things they discover dur-

ing self-motivated exploration.

 Although no-one at Manning is a cognitive scientist, we are convinced that

for learning to become permanent it must pass through stages of exploration,

play, and, interestingly, re-telling of what is being learned. People understand

and remember new things, which is to say they master them, only after actively

exploring them. Humans learn in action. An essential part of an In Action guide

is that it is example-driven. It encourages the reader to try things out, to play

with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our

readers are busy. They use books to do a job or solve a problem. They need

books that allow them to jump in and jump out easily and learn just what they

want just when they want it. They need books that aid them in action. The

books in this series are designed for such readers.

xxviii

about the cover illustration
The figure on the cover of Tapestry in Action is a “Gonaquesa Baylando,” a

dancing woman of the Gonaqua tribe in Africa. The Gonaquas were herders

and farmers living on the southern coast of the continent near the Cape of

Good Hope in what is today South Africa. The illustration is taken from a

Spanish compendium of regional dress customs first published in Madrid in

1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who

colored this illustration by hand, the “exactitude” of their execution is evident

in this drawing. The “Gonaquesa Baylando” is just one of many figures in

this colorful collection. Their diversity speaks vividly of the uniqueness and

ABOUT THE COVER ILLUSTRATION xxix

individuality of the world’s towns and regions just 200 years ago. This was a time

when the dress codes of two regions separated by a few dozen miles identified

people uniquely as belonging to one or the other. The collection brings to life a

sense of isolation and distance of that period—and of every other historic period

except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at

the time, has faded away. It is now often hard to tell the inhabitant of one conti-

nent from another. Perhaps, trying to view it optimistically, we have traded a cul-

tural and visual diversity for a more varied personal life. Or a more varied and

interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of

the computer business with book covers based on the rich diversity of regional

life of two centuries ago‚ brought back to life by the pictures from this collection.

www.allitebooks.com

http://www.allitebooks.org

Part 1

Using basic Tapestry
components

Chapters 1 through 5 introduce you to the basic concepts of Tapestry.

You’ll learn how Tapestry defines an application, a page within an application,

and a component within a page. These chapters gradually expose you to the

more complicated challenges in developing web applications and explain how

Tapestry meets these challenges.

3

Introducing Tapestry

This chapter covers

■ Understanding web applications

■ The goals of Tapestry

■ Using the Model-View-Controller pattern

■ Essential Tapestry classes and interfaces

4 CHAPTER 1

Introducing Tapestry

“… and we’re going to implement it as a web interface,” your boss announces, and
you start to get that sick feeling in your stomach. You had only been half-listening,
daydreaming about the clever, graceful user interface you were going to create. But
now you’re in unknown territory; you might as well be fresh out of school! Your men-
tal roadmap to the application starts to lose focus; you can still see the islands of code
and functionality, but now you imagine a dark, churning sea between them. How
are you going to get this to work as a web application?

If you are used to creating traditional desktop applications, switching over to devel-

oping web applications can be a journey into unfamiliar territory. Web applications

turn everything you know upside down—in desktop applications, your code is in

the driver’s seat, ultimately controlling every pixel visible to your single user, and

the application is all-knowing about every mouse movement or key press. In web

applications, your code is just part of an overall picture involving a variety of com-

puters and network communications… and your code must support multiple simul-

taneous users. This book describes how to use the Tapestry web application

framework to ease your transition into the web application development space.

 The Tapestry framework is more than a crutch for new web developers; even

seasoned developers and project leaders will find advantages to building their

applications using it. Tapestry allows true black-box code reuse within and

between applications; it addresses the concerns of large teams of developers with

mixed skill sets; it has support for application internationalization as a central

feature, not an afterthought. This book shows you how to leverage Tapestry to

produce a more sophisticated, more robust application faster and more easily

than you might suspect.

 Tapestry is an open source, Java web application framework designed from

the ground up to help you deliver the best web applications possible. It allows

new developers to get up to speed easily, creating working applications with a

surprisingly small amount of Java code. It includes numerous features that

address the issues encountered during team development of large, complex,

internationalized applications. Tapestry is open-ended—it doesn’t shoehorn you

into any one category of web application, which means you can build your own

Amazon, Slashdot, Yahoo!, or eBay with it. Tapestry is designed to plug into

whatever form of back-end systems you use, with a minimum of fuss.

 This is a framework that lets you have it both ways: you create a web applica-

tion, but you don’t have to throw away everything you’ve previously learned

about coding just because you are creating a web application instead of a tradi-

tional desktop application. The cornerstone of Tapestry is letting you write

What are web applications? 5

applications in terms of objects, methods, and properties—not in terms of URLs

and query parameters and Java servlets.

1.1 What are web applications?

In the earliest days of the World Wide Web, the majority of web sites were

entirely static, unchanging. Many early sites were created entirely by hand, by

folks using simple text editors to directly edit the HTML of individual pages.

Other sites were created in a batch mode, where a source file or database would

be transformed into HTML. In fact, the original purpose of the Web was to

allow physicists to easily share their publications; physics papers written using

LaTeX (a special-purpose typesetting language) were translated into HTML for

instant sharing.

 Web sites didn’t stay static for long; instead, they transformed into web appli-
cations. A web application is interactive; the end user will see links that may be

clicked and HTML forms that may be filled out. These links and forms become

requests sent to a server, which will respond with a new HTML page, often cre-

ated (from a template) on the fly, as a personalized response to a specific request.

 Figure 1.1 illustrates the general flow of a web application, which is divided

into four steps:

1 A request is received by the server. Information in the request is used to

dispatch control to the correct application code.

2 Application-specific code executes. This code interprets the information

available to it in the URL and query parameters, and executes some

application-specific logic. This includes deciding what response to send

back to the client.

Figure 1.1

Web applications are built

around a cycle; a request is

received, application-

specific code is executed,

and a response is rendered,

eventually appearing in the

client’s web browser.

6 CHAPTER 1

Introducing Tapestry

3 A response is rendered. The response includes links and forms that will

result in new request cycles.

4 The response is visible in the client web browser. Users now have a

chance to see the results of the action they initiated. In addition, any

client-side logic is activated.1 The user may click links or submit forms,

resulting in a new request cycle.

Web applications are written in the context of the underlying network protocol

connecting the client web browser (such as Microsoft Internet Explorer or

Netscape Navigator) and the web server: the Hypertext Transport Protocol

(HTTP). HTTP is a stateless protocol, meaning that each request is completely

independent of any requests that come before or after it. There is no explicit

concept of user identity in HTTP or even, at the protocol level, any way to identify

that a series of requests comes from a single user. The stateless nature of HTTP is

an important factor in its success; a stateless protocol is much easier to imple-

ment in a web browser or a web server.

 For dynamic, interactive web applications, the inherent statelessness of HTTP

creates new challenges. End users are not concerned with this; they simply

expect to progress from a catalog page to a shopping cart page to a checkout

page. Creating a stateful application from a stateless protocol is a concern for the

application developer and involves issues not present in a desktop application.

By comparison, imagine writing a document by launching a text editor applica-

tion, loading a file, typing a single sentence, saving the file, and then shutting

down the application before repeating the whole process for the next sentence.

For a web application, each request is like one sentence in that document…and

part of the request had better be which document is being edited and where in the

document the new sentence goes. A desktop application automatically has a kind

of continuity that must be specifically engineered into a web application.

 This same basic web application flow can be implemented in many different

environments and languages. In the early heyday of web applications, scripting

languages such as Perl were most often used to implement the application-

specific code. Over time, as web applications evolved from clever novelties into

critical enterprise infrastructure, the implementation choice for web applications

shifted to more powerful, higher-level languages. The Java programming

1 This takes the form of JavaScript programs embedded within the HTML that execute within the cli-
ent’s web browser.

What are Java servlets? 7

language is especially well suited for web application development because of its

standard web application framework, the Java Servlet API.

1.2 What are Java servlets?

The Java Servlet API is an open standard, created by Sun, for creating web

applications using the Java programming language. A servlet is an object

responsible for receiving a request from a client web browser and returning a

response—an HTML page to be displayed in the browser. The Servlet API

defines an interface and base class for servlets, as well as interfaces for several

other supporting objects, such as the HttpServletRequest (which represents a

request and allows the servlet to access query parameters). Vendors, both open

source and proprietary, provide the actual server code and the implementations

of the standard interfaces.

 Servlets are most often paired with JavaServer Pages (JSPs) in order to gener-

ate a response. JSPs are a standard templating technology for servlets. A JSP is a

mix of ordinary, static HTML with additional, specialized tags and directives that

provide dynamic output, such as including the current user’s name or the con-

tents of an online shopping cart. Under the hood, each JSP is converted into a

Java servlet that is compiled and loaded into memory. More information about

servlets and JSPs is available online and in print, including Web Development with
JavaServer Pages.2

 A servlet operates within a servlet container. The servlet container serves as a

bridge between HTTP and the Java servlet code that you, as the developer, will

write. The servlet container is responsible for instantiating and initializing your

servlets as needed. Servlet containers may be standalone, such as Apache Tom-

cat, or may be one part of an overall application server, such as BEA WebLogic,

IBM WebSphere, or the open source JBoss application server.

 The servlet container is responsible for selecting the correct servlet to invoke

based on the URL of the request; a single web application will contain many serv-

lets. The web application’s deployment descriptor (an XML file packaged with the

application) gives the name and Java class for each servlet and identifies which

URLs are mapped to which servlets. For example, your application may have a reg-

istration page containing an HTML form enabling new users to register (supply-

ing their name and email address or other data). That form will submit to the

2 Duane K. Fields, Mark A. Kolb, and Shawn Bayern, Web Development with JavaServer Pages, 2nd Edition
(Greenwich, CT: Manning Publications, 2001).

8 CHAPTER 1

Introducing Tapestry

/addCustomer URL, which is mapped to the addCustomer servlet, which is instan-

tiated as the AddCustomerServlet class. The deployment descriptor will include

the following elements describing the addCustomer servlet’s configuration:

<servlet>
 <servlet-name>addCustomer</servlet-name>
 <servlet-class>com.mycompany.AddCustomerServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>addCustomer</servlet-name>
 <url-pattern>/addCustomer</url-pattern>
</servlet-mapping>

Figure 1.2 shows how the application request cycle applies to servlets.

 As can be seen from this example, each servlet represents a particular opera-
tion within the overall web application. The AddCustomerServlet class will include

code that reads the query parameters submitted with the form and uses those

values to create some kind of Customer object that can be stored into a database.

Additional logic must decide what form of response to display—normally a con-

firmation page, but possibly the original page containing the form if an error

occurred when creating the customer.

 This operation-centric approach can work well for many parts of a web appli-

cation. In this example, there is only one registration page, and so only one

place from which the addCustomer servlet can be invoked. If the original registra-

tion page must be redisplayed (to present the user with an error message), there

is no guesswork about what page to use; it will always be Registration.jsp.

 When an operation can be associated with many different application pages,

the operation-centric approach can start to become a burden. For example,

many applications include pages that display long lists of information and allow

Figure 1.2 Incoming requests to the server are dispatched to a particular servlet instance. The

servlet forwards to a JSP that renders the response sent back to the client web browser.

What are Java servlets? 9

users to navigate through the results one page at a time. Such pages include

links to operations such as “next page of results” or “previous page of results.”

 Using servlets, it becomes necessary to somehow identify not just the opera-

tion, but to where the operation should be applied. Are we displaying the prod-

uct catalog page, or the shopping cart page, or the related-items page? Now we

need a way to identify the page; a common approach is to add a query parame-

ter to the URL to identify that page.

 Multiplexing operations onto multiple pages is just one factor a servlet devel-

oper must keep in mind. Another is dealing with the multithreaded environment

in which a servlet object operates.

1.2.1 Understanding servlet multithreading

Within a servlet container each servlet is instantiated exactly once; all requests

mapped to the servlet’s URL pattern will be passed through to the service()

method of a single servlet object.3

 Servlet containers are multithreaded, which is to say they contain multiple

threads of execution, allowing requests from several client web browsers to be

processed simultaneously—a critical factor for building scalable web applica-

tions. Despite this, servlets are still single instances, shared between the threads.

Servlet instances must be thread-safe; instance variables can’t be used either for

temporary storage during a single request or for persistent storage between

requests, because any information stored in an instance variable is likely to be

overwritten by other threads.

 Servlets are the odd-man-out in the object-oriented world; they are techni-

cally still objects but largely fall short of the accepted definition of an object: a

combination of operations and state. Servlets aren’t allowed to directly store state

in their own instance variables. Local variables are fine for some things, but

there are specific cases where local variables are not applicable, such as forward-

ing to a JSP to render a response.

 JSPs, like servlets, are stateless and multithreaded; therefore, there’s no way

that a servlet could, for example, set a property of a JSP to the current user’s

name. Instead, the Servlet API object HttpServletRequest is used to store such

transient information. One aspect of the request object is that it can be used to

store named attribute values. The servlet can store values into the request before

forwarding to a particular JSP to render the response, as shown in figure 1.3.

3 Your servlet code will be inside the doGet() or doPost() method that is invoked by the ser-
vice() method.

www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 1

Introducing Tapestry

This is an example of the servlet “pushing” data into the JSP via the HttpServlet-

Request. The servlet and JSP are intimately tied together; they must agree on

exactly which attributes will be stored into the request object, and there’s no

room for error on the naming (username is not the same as userName, for exam-

ple). Overall, the HttpServletRequest provides a flexible solution for managing

transient information; as we’ll see, a similar solution addresses the more compli-

cated problem of persistent server-side state.

1.2.2 Managing server-side state

The single attribute that most widely separates a static web site from a true web

application is server-side state. Amazon has a shopping cart that remembers what

items you’ve placed in it from one request to the next. Google remembers enough

about your query to allow you to page through the list of results. Any application

will need to identify you as a particular user and remember some amount of

information about the activities you’ve performed while visiting the site.

 For a web application to be truly interactive and personalized, it must have a

way of identifying the user from one request to request, and a way to store infor-

mation on the server about that particular user. This is not necessarily the same

thing as authentication; the application may not be able to match the requests to

Figure 1.3 A servlet can store a request attribute before forwarding to the JSP; the

JSP can then read the attribute and incorporate it into the response.

What are Java servlets? 11

a particular user account or credit card number, but that shouldn’t prevent the

application from tracking short-term information, such as the contents of a

shopping cart in an e-commerce application—information that needs to persist

from one request to the next.

 So, if HTTP is stateless, how can an application store any state at all? What’s

needed is some form of identifier to be created on the server, sent back to the cli-

ent, and returned to the server as part of subsequent requests. Fortunately, most

client web browsers support HTTP cookies; a cookie is a small string stored within

the browser. The server can invisibly include a cookie value in a response,4 and

the client browser will send the cookie value back up to the server in each subse-

quent request—exactly what is required to support server-side state. A series of

such linked requests forms a session.

 For servlets, server-side state is stored in the HttpSession object. Like the

HttpServletRequest, the session object may store named attribute values; the dif-

ference is that such values are stored on the server between requests. For example,

the ShoppingCart object created and stored in the session by the addToShopping-

Cart servlet will later be available to the checkout servlet responsible for collect-

ing payment information, even though the user may do quite a bit of browsing

around the product catalog in between those two operations.

 Sessions are not created until specifically requested; the HttpServletRequest

object includes a method, getSession(), for creating the session as needed.

Some people or organizations do not allow HTTP cookies (most browsers allow

support for cookies to be turned off, for privacy and security reasons). With a lit-

tle extra effort, it is still possible to support stateful servlet applications even when

the client does not support cookies.5

 Support for servlets and JSPs is a standard feature for all popular application

servers, and many developers do manage to create successful web applications

using just the standard servlet technology. At the same time, there is a growing

acknowledgement that servlets are just the starting point for Java web applica-

tions, as evidenced by an increasing number of popular frameworks. This goes

beyond just Tapestry and includes other frameworks such as Turbine (http://

jakarta.apache.org/turbine/), Maverick (http://mav.sourceforge.net/), WebWork (http://

www.opensymphony.com/webwork/) and, most prominently, Struts.

4 The HTTP cookie is part of the HTTP “envelope” around the HTML “message”; it isn’t part of the
HTML and won’t be visible even if the user views the HTML source of a rendered page.

5 The servlet container can encode the session ID into the application’s URLs to provide session continuity.

12 CHAPTER 1

Introducing Tapestry

1.2.3 Using Struts with servlets

Struts, like Tapestry, is an open source framework available from the Jakarta

project, at http://jakarta.apache.org/struts/. Struts is an extension to standard

servlets, rounding out rough edges and adding a few much-needed abstractions

that simplify servlet coding. A comprehensive guide to Struts is available in Struts
in Action.6

 A Struts application uses a single servlet to represent all possible operations.

The servlet uses a set of Struts-specific configuration files to dispatch incoming

requests to a particular Struts Action object. Like servlets, Struts Actions are mul-

tithreaded and stateless. Struts also includes a set of JSP tag libraries that sim-

plify and standardize the creation of dynamic web pages, especially with respect

to creating URLs for links and form submissions.

 Struts uses its configuration files to loosely couple Actions to the JSPs that

render responses (and makes it easier to use another templating system, such as

Velocity). JSPs are assigned logical names in the Struts configuration that can be

referenced from an Action; if the JSP is moved or renamed, the side effects are

isolated to just the Struts configuration file, not the Java code for the Action.

The same mechanism also makes it easier to chain together a series of Actions;

for example, the one Action can be used to update some server-side state and

can forward to a second Action that stores information into the HttpServlet-

Request before forwarding to a JSP to render the response; this useful pattern is

easier to accomplish in Struts than with ordinary servlets.

 Struts includes a standard mechanism for converting form submissions into

objects, which works by matching query parameter names against JavaBean

properties of a user-defined form object. The latest release of Struts comple-

ments this with a rules-based input-validation system.

 Struts standardizes some common patterns and techniques that would other-

wise need to be re-invented by each developer, but it is still fundamentally similar

to ordinary servlet development. Whether developing using just servlets or with

servlets augmented by Struts, you will still encounter some significant limitations

in the basic development model that you must overcome.

1.2.4 Understanding the limitations of servlets

There is a qualitative difference between the kind of servlet application seen in

demos and tutorials and true enterprise applications. Demo applications are

6 Ted Husted et al., Struts in Action (Greenwich, CT: Manning Publications, 2002).

What are Java servlets? 13

small, focused, and limited in scope; they are often created in a short period of

time by a single individual, who fills the roles of application architect, HTML

developer, and Java developer simultaneously.

 By contrast, development of a full-scale application entails a number of real-

world concerns:

■ A large number of developers (HTML and Java) may be working in parallel.

■ Individual developers will have varying levels of skill and understanding.

■ The HTML portions of the application may be developed by team mem-
bers with little or no knowledge of Java or JSPs (or even by a completely
separate, isolated team).

■ Large applications (with hundreds of distinct pages) may be so complex
that individual developers will understand only a small portion of the
overall application.

■ Successful applications will, almost by definition, grow and expand in com-

plexity to meet new customer requirements.

These concerns manifest themselves in a number of common antipatterns, which

we describe next.

Weak binding

The most fundamental issues with building, maintaining, and extending a web

application using servlets surround two related problems: weak binding and

unwanted dependencies. In a servlet application, the connections between pages

are weak because those connections are expressed as URLs, not as method invo-

cations or object properties. At the time that a JSP renders a link (or form) con-

necting to another page in an application, all it is doing is outputting a string as

the href attribute of an HTML <a> hyperlink tag (or the action attribute of an

HTML <form> tag). This is another difference between desktop applications and

servlet applications: Changing a method signature in an object of a desktop

application will create errors in code elsewhere in the application that uses the

old method signature. The integrated development environment (IDE) will

clearly show those errors, and you can find and fix all of them before running

and testing your application.

 In a servlet application, the connection between two servlets is reduced to a

string within a JSP. The JSP must include a URL string (for the target servlet) in

the response sent to the client web browser. Where does that URL string come

from? The developer manually inserts it into the JSP, after consulting the web

14 CHAPTER 1

Introducing Tapestry

deployment descriptor (or Struts configuration file) to find the operation map-

ping to link to. Assuming the developer introduces no typos, the link between

pages should be functional—but there’s no way to be absolutely sure without actu-

ally running the application. This servlet-to-servlet linkage is a weak binding;

the Java compiler or other tools cannot validate (at build time) that the URLs are

correct and functional; validation can occur only at runtime.

 Weak URL bindings don’t really show their teeth until the application is

altered in some way, such as a change to the signature of an application opera-

tion; for example, an operation URL may change (i.e., /addCustomer to /addRetail-

Customer), or the query parameters passed in the URL may change (i.e., productId

to sku). Such a change in signature will require a hunt throughout the application

for references to the old operation signature, to update it to the new signature.

In other words, there are unwanted dependencies between the pages that link to

operations and the implementations of the operations themselves.

Team conflicts

Weak bindings can provoke one form of team conflict; another example occurs

between the HTML developers and the Java developers. It is too easy for an

HTML developer to make a minor change to a JSP that “breaks” the page in

some way. In most environments, the entire application would need to be built,

deployed, and executed in order for the offending change to be noticed. Only

recently have JSP-aware HTML editors become available; when used, these edi-

tors can provide a real-time WYSIWYG view of application pages—but it is not a

given that HTML developers will have access to such tools or be fully proficient

using them. This can leave HTML developers in a situation where they need to

build, deploy, and run the live application to see the effects of their changes—a

solution that may not be practical unless the HTML developers are co-located

with the Java developers.

 Another form of team conflict concerns choke points in the application—shared

files or Java classes that many Java developers will need to frequently update. A

key example of this is the web deployment descriptor, the file used to define serv-

lets and URL mappings. As each developer adds a new servlet, the file must be

updated; with many developers doing similar work in parallel, the opportunity

for conflicts is inevitable. Struts reduces the level of contention for the web

deployment descriptor by allowing multiple configuration files to express the

same kind of information, but there’s still room for conflicts elsewhere.

What are Java servlets? 15

Bad coding shortcuts

Creating servlet applications can be a code-intensive process; this can lead to

developers taking bad coding shortcuts. A common example is merging data-

base access code directly into a JSP. Initially this seems like a good idea, since it

locates the code for database access directly with the JSP that will present the

results of the query to the user.

 Unfortunately, this approach leads to horrific problems in a running applica-

tion. It makes the JSP very fragile in the face of any change to the underlying

data model. The query will simply throw an exception at runtime if a table or

column name changes. It is unlikely that shortcut code will take advantage of

database connection pools, but will instead create, use, and close a connection

inline. While this works fine in testing, it falls flat in the face of a high volume

of concurrent users. Finally, a shortcut approach will likely not include a

try…finally block to ensure that the connection is closed when done; this can

lead to database connection leaks, another way to bring a production application

to its knees.

 Here are other common coding shortcuts:

■ Failure to properly localize output in an internationalized application

(including failure to use localized date and number formatters).

■ Not using HttpServletRequest.encodeURL() to encode the session ID into
application URLs, which breaks the application for users who do not have
HTTP cookies enabled.

■ Not properly filtering output to convert reserved HTML characters (such
as < and >) to HTML entities; this results in visual oddities in the client
web browser.

■ Using short, unqualified names for HttpServletRequest and HttpSession

attributes, resulting in naming conflicts and overwritten data.

Many other examples abound but require considerably more background mate-

rial to fully describe. The point of this section was not to launch a diatribe

against servlets—servlets are a powerful tool for creating web applications.

Instead, we want to focus on the areas where servlets require too much effort or

expertise on the part of the developer to be used effectively, especially in large

and complex applications.

16 CHAPTER 1

Introducing Tapestry

1.3 Why do we need Tapestry?

Tapestry exists to simplify Java web application development. All the features of

this framework are designed to make it simpler to create robust applications that

are easier to construct, debug, maintain, and extend than traditional servlet

applications. Tapestry extends your reach, allowing you to create more powerful,

more useful, more interactive applications faster than you would using ordinary

servlets. In addition, you’ll have greater confidence that your application will be

free of bugs. Also, Tapestry reduces the level of contention between team mem-

bers (both Java and HTML) working on a shared project.

 Ultimately, Tapestry applications are still servlet applications. With enough

code, and enough time to debug that code, there’s nothing (from an end user’s

point of view) that a Tapestry application can do that a servlet application can’t.

Tapestry applications still follow the request cycle in figure 1.1; a request is

received, some kind of server-side processing occurs, and a response is sent back

to the client web browser. The difference is that Tapestry allows you to write far

less code, and the code you do write is simpler and more natural because Tapes-

try excuses you from concerns about multithreading.

 Tapestry recasts the stateless, operation-centric Servlet API into a stateful,

component-centric model, the familiar coding pattern used in traditional desk-

top applications. The approaches you are accustomed to taking—such as com-

bining operations and data together to form objects, using components and

inheritance, storing information in instance variables, and so forth—all of these

are hallmarks of Tapestry application development as well. This will not seem

remarkable if you haven’t done any work with servlets before; if you have, you’ll

be surprised by the things you don’t see in a Tapestry application: the HttpSession

and HttpServletRequest objects, or any thought of URLs or query parameters;

all of these things are pushed down into the bowels of the Tapestry framework,

where the details are handled robustly, efficiently—and invisibly.

1.3.1 What is a framework?

A framework is a set of cooperating classes that make up a reusable design for a

specific category of software. A framework is different from a toolkit; a toolkit is a
collection of individually reusable classes, each performing a small, isolated

function that is applicable to a wide variety of uses. By contrast, a framework

…dictates the architecture of your application. It will define the overall structure,
its partitioning into classes and objects, the key responsibilities thereof, how the
classes and objects collaborate, and the thread of control. A framework predefines

Why do we need Tapestry? 17

these design parameters so that you, the application designer/implementer,
can concentrate on your application. The framework captures the design deci-
sions that are common to its application domain.7

Frameworks are very useful; instead of your having to start with a clean slate, the

design is partially filled in and the path to follow is clear. Many design decisions

are already made for you, decisions that leverage the combined experience of

the frameworks’ authors and users. A framework also provides a significant cod-

ing head start in the form of reusable classes, utility classes, and base classes for

you to extend. Ideally, you simply have to fill in the blanks, connect a few dots,

and provide some application-specific subclasses. The end result is less code for

you to write and more consistency between applications, not just from the devel-

oper’s point of view but from the end users’ perspective as well.

 Many frameworks, including Tapestry, incorporate a component object

model, which we will look at in the next section. This approach allows you to eas-

ily mix and match off-the-shelf objects with objects you create yourself.

1.3.2 What is a component?

A component is an object that fits into an overall framework; the responsibilities of

the component are defined by the design and structure of the framework. A

component is a component, and not simply an object, when it follows the rules of

the framework. These rules can take the form of classes to inherit from, naming
conventions (for classes or methods) to follow, or interfaces to implement. Compo-

nents can be used within the context of the framework. The framework will act as

a container for the component, controlling when the component is instantiated

and initialized, and dictating when the methods of the component are invoked.

 A component framework is a useful thing; components, more so than objects, can

be easily combined to perform complex operations or to create entirely new compo-

nents. The rules of the framework dictate how components can be used together. A

component object model is the portion of the framework that defines the rules for how

individual components may be combined for such purposes. The framework’s com-

ponent object model also dictates the responsibilities and lifecycles of containers
(components that are constructed from other components) and contained objects.

 The JavaBeans framework is a good example of a component framework—

it’s very general and adaptable. Following the basic naming convention for

7 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Reading, MA: Addison-
Wesley, 1994).

18 CHAPTER 1

Introducing Tapestry

methods specified by the framework (the well-known getters and setters naming

conventions) makes it possible for components created at different times and by

different authors to be seamlessly combined together at runtime. The JavaBeans

framework’s component object model is structured around an event-notification

system. Individual components may be event producers or event consumers.

Another standard naming convention allows objects and components to register

for event notifications in a generic fashion.

 Originally, the JavaBeans framework was intended for use in developing

graphical user interfaces (GUIs) for desktop applications; the components were

expected to be visual objects, such as buttons and text fields, that could be

manipulated in a visual GUI editor. Ultimately, the JavaBeans framework proved

to be just as useful for nonvisual objects and is nowadays frequently used as the

basis for other frameworks—including Tapestry.

 The component approach has been widely used in many environments to

support traditional GUI development, including Java’s AWT and Swing. Using a

component approach for web applications is less widespread but is not original

to Tapestry. As far back as 1994, NeXT’s WebObjects framework integrated a

component object model with graphical editor tools and an object relational

database layer (to handle long-term data persistence, much like entity Enter-

prises JavaBeans in a Java 2 Enterprise Edition application).

 In WebObjects, components were responsible for both generating portions of

an HTML page and responding to user requests, and the framework was respon-

sible for hiding the details of HTTP and server-side state management. This

approach to componentizing web application behavior matches the high-level

design goals of Tapestry, though the overall design and implementation of the

two frameworks are completely different.

1.3.3 What is Tapestry?

The Tapestry framework is a layer between a Java servlet container and a Tapes-

try application. Tapestry is not a standalone server; it is an extension to servlets

and works within existing servlet containers (such as Tomcat) or application serv-

ers (like JBoss, WebSphere, or WebLogic), which include a servlet container. Fig-

ure 1.4 shows how Tapestry fits into the overall picture; the application consists

of pages, which are themselves constructed from reusable components. The

application operates within the application server. To the application server, the

application is just another servlet.

 Web applications are typically implemented in terms of three layers, each

addressing a different concern within the overall application:

Why do we need Tapestry? 19

■ The presentation layer is responsible for receiving incoming HTTP requests and

forming HTML responses.

■ The application layer is responsible for all business logic; this is often imple-
mented using Enterprise JavaBeans (EJBs).

■ The database layer is responsible for storing data persistently.

Tapestry is only the presentation layer of an application. By this, we mean that

Tapestry deals only with presenting information to an end user, as HTML,8 and

8 Actually, very little of Tapestry is HTML specific. Tapestry is equally at home creating Extensible
Markup Language (XML), Extensible Hypertext Markup Language (XHTML), or Wireless Markup
Language (WML). A suite of WML-related components is included with the framework.

Figure 1.4 Tapestry applications run within a servlet container or application server; inside

the server, the application consists of individual pages built from components. The Tapestry

application servlet links the requests from the servlet container to the pages and

components of the application.

www.allitebooks.com

http://www.allitebooks.org

20 CHAPTER 1

Introducing Tapestry

handling input from the user in the form of clickable links and HTML forms.

Tapestry doesn’t know, or care, about the application layer, the domain logic, or

the source of information. A Tapestry application can be built on top of anything

from a flat-file database, to a relational database accessed via Java Database Con-

nectivity (JDBC), all the way up to a globe-spanning network of EJBs. Tapestry

doesn’t mandate anything about these aspects of your application; it is con-

cerned solely with how the presentation layer is organized.

 The Tapestry framework fills a gap that is often missing in web application

development: It provides a consistent structure, a skeleton for developers to work

with. Too often, each developer is left to manage on his or her own, a freedom

that is missing from other engineering disciplines and one that entails a high

degree of risk. Imagine building a skyscraper by dividing the job into construct-

ing individual floors and instructing each worker to design and build a single

floor, with the intention of using a crane to stack them all up at the end. Each

worker is provided with a rough sketch of the finished building and told what

kind of work will be done on that floor: “We’ll be putting the accounts payable

department here,” or “This is where the company cafeteria will go.” You can

imagine the kind of disaster that would result; free of any constraints, each

worker would use different materials and a different layout. Elevator shafts

wouldn’t line up, some workers would forget to leave room for electrical wiring

or plumbing…and some might even forget to put in windows!

 And yet many web applications are developed under a similar kind of chaos.

Specifications are incomplete; different developers approach similar problems in

different ways. Some developers are unaware of important details of the project

or of the many minor details of web application development. Skills sets vary, so

some developers excel at writing client-side JavaScript, others are good at inter-

acting with back-end systems—but project management may treat the develop-

ers as completely interchangeable. Too often, the success or failure of entire

projects rests on the shoulders of a “SWAT team” that must glue all the bits and

pieces of code together at the last minute.

 Continuing with the skyscraper metaphor, Tapestry changes the picture sig-

nificantly. Instead of starting with individual two-by-fours, the workers start with

the empty shell of each floor, with most of the plumbing and wiring already in

place. It just becomes a matter of installing those fixtures and features unique to

that floor, all with the knowledge that everything will stack up properly at the

end of the project. Translate floor to page, fixture to component, and install to con-
figure, and you’re well on your way to understanding what Tapestry offers you as

a developer.

Why do we need Tapestry? 21

 Tapestry is not a panacea for all development problems; however, it does pro-

vide a consistent way to describe the implementation of a web application project

and the interaction between elements of the project provided by different devel-

opers. Web applications don’t have elevator shafts, but they do have, for example,

consistent navigation bars, or embedded search forms, or login buttons. These

elements can be implemented as Tapestry components, tested separately, and

reused on every page, thus guaranteeing both a consistent visual look and a con-

sistent interactive behavior.

1.3.4 Comparing Tapestry to Swing

Tapestry represents a different way of assembling web applications, one based on

combining and configuring components. Tapestry development is much closer

in style to creating an application using the Swing GUI framework than tradi-

tional web application development with servlets and JSPs.

 Developers who are familiar with creating desktop applications (using Swing

or AWT or even toolkits for other languages and environments) are often left in

the lurch when transitioning over to web applications. The familiar patterns of

development don’t translate well. For desktop applications, you expect to com-

bine and configure existing components to create your application. You expect

individual components to encapsulate both output (what gets drawn to the

screen) and input (what happens when the user types or clicks the mouse). The

components, and the framework they build upon, shield the developer from the

minute details of the desktop environment: It is rare that you need to be con-

cerned with event queues or pixel-oriented screen updates when developing a

Swing application because the JButton component already knows how to draw

on the screen and respond to user input. Traditional servlet development

doesn’t contain anything similar; servlets and JSPs are always custom written and

tied directly to the overall application.

 Tapestry restores this style of development. Tapestry pages consist of compo-

nents that are configured and connected to one another. The framework allows

you to create components, pages, and applications without any awareness of serv-

lets. Like Swing developers, Tapestry developers know objects such as HttpSession,

HttpServletRequest, and HttpServlet are present; there just isn’t any pressing

need to access those objects—that’s Tapestry’s responsibility, encapsulated within

the framework and the Tapestry components. Tapestry performs all the neces-

sary dispatching of incoming requests and uses an event-notification system to

get application-specific code executed.

22 CHAPTER 1

Introducing Tapestry

1.4 Understanding Tapestry’s goals

At the core of Tapestry’s design is a vision: It should be easier for you to do the

right thing than the wrong thing—Tapestry should allow you to avoid the pitfalls

and antipatterns prevalent in traditional web application development. You

should end up with a robust, scalable, maintainable application not because the

framework merely allows it, but because the framework makes that the clearest,

simplest option to follow. This vision is expressed in terms of four goals that

influence the design and implementation of the framework: simplicity, consis-

tency, efficiency, and feedback.

1.4.1 Simplicity

Tapestry applications contain a surprisingly small amount of Java code. The

stateless, operation-centric programming model used by normal servlet applica-

tions requires far too much Java code—code to extract and interpret query

parameters from the request, code to manage data stored as session attributes,

and so on—code for all the uninteresting plumbing. At the center of all this

plumbing is the small amount of application-specific logic: what to do with the

data once it has been extracted, translated, converted, and validated. In a Tapes-

try application, the Java code you write is just that application-specific logic (in

the form of a listener method, as you’ll see in chapter 2). Combining a generic

component with the application-specific listener method is a simple and elegant

way to structure an application. All that plumbing is no longer your responsibil-

ity; it’s all buried inside the Tapestry framework.

 You tell the framework what needs doing, and it takes care of the details. For

example, rather than write code to build and format a URL with query parame-

ters, you just use an existing component and configure it to execute a method

you supply when it is triggered. Likewise, Tapestry’s HTML form support takes

care of reading object properties when a page is rendered, but also reads and

interprets query parameters and updates object properties when a form is sub-

mitted (this is covered in chapters 3, 4, and 5).

1.4.2 Consistency

Consistency on a large team project can be a godsend. If you’ve ever been

brought into an existing project, or have even filled in temporarily for another

team member on a project, you’ve likely experienced “impedance frustration.”

That is, each developer names things a little differently, solves problems a little dif-

ferently, puts code in different places, and so forth. Before you can be productive

Understanding Tapestry’s goals 23

in another developer’s code, you have to figure out that developer’s style, and

that causes frustration.

 With Tapestry, you get a consistent environment and approach across pages,

even when different pages are the responsibility of different developers. There’s

little or no guesswork when adding new links or forms to pages; they all work

pretty much the same way because they are based on the same reusable compo-

nents. Tapestry makes it easy to create new components for common functionality

in an application. The application behaves consistently and is coded consistently

because of reuse of both components and code.

1.4.3 Efficiency

It is important that Tapestry applications be scalable; there’s no point in creating a

web application if it can’t handle a reasonable number of concurrent users on rea-

sonable hardware. Internally, Tapestry uses object pools and caches to minimize

the amount of processing that must occur during a request. For example, Tapestry

will read each XML specification file and each HTML template exactly once and

store the file’s contents for later use within the application. In addition, the frame-

work is structured so that expensive application operations (for example, perform-

ing a Java Naming and Directory Interface [JNDI] lookup to resolve an EJB’s home

interface) can be performed once and cached for fast access when needed again

elsewhere within the application. You’ll see examples of this in chapter 10.

 Tapestry applications have been compared to equivalent servlet or Struts

applications and found to have similar performance curves. Such results match

the traditional wisdom that the presentation layer is rarely the application per-

formance bottleneck; the time it takes to process a request and render a response

is usually gated by the speed with which data can be obtained from the applica-

tion’s back-end database.

1.4.4 Feedback

In most web application frameworks, when something goes wrong in your code

or in the framework code, you will see a stack trace in the web browser. Suddenly,

you are forced to play detective, working backward from the cryptic clues pro-

vided in the stack trace to the problem. Does your code contain an error? Is

there a typo in a deployment descriptor? An error communicating with your

application server? A deployment problem with an EJB? You can waste large

amounts of valuable developer time tracking down often-trivial problems.

 The main code path into a Tapestry application has multiple layers of excep-

tion catching and reporting that ensure that a reasonable exception report is

24 CHAPTER 1

Introducing Tapestry

displayed either in the client web browser or in the server’s console. Figure 1.5

shows the initial portion of such an exception report (this exception was pro-

voked by introducing a typo into the HTML template for the Hangman applica-

tion, described in detail in chapter 2).

Figure 1.5 The Tapestry exception report page starts by identifying the nested exceptions, providing

a stack trace for the most deeply nested exception. The exception also identifies the file and line

associated with the error. In this case, line 27 of file Home.html had a typo: listenersstart instead of

listeners.start.

How does Tapestry work? 25

 Tapestry’s approach is to provide you with as much information as possible

to help you rapidly fix the problem. This is represented by five factors visible

in figure 1.5:

■ Tapestry has worked through the stack of exceptions, starting with org.

apache.tapestry.BindingException and digging down to ognl.NoSuch-

PropertyException.

■ For each exception, it has displayed the exception message and all the
properties of the exception (binding and location for the BindingException,
and target for NoSuchPropertyException).

■ The report identifies the exact file and line that is in error—the location
property of the BindingException indicates that the error is on line 27 of
file Home.html.

■ The stack trace for the deepest exception, NoSuchPropertyException, is the
most relevant, and that’s the only one displayed.

■ Tapestry has attempted to describe in the exception message exactly what

went wrong.

Stack traces and exceptions are not always enough. Sometimes to understand a

problem you need to know more about the request and general environment. As

shown in figure 1.6, the exception report continues with exhaustive output

about the key Servlet API objects (HttpServletRequest, HttpSession, HttpServ-

let, and HttpServletContext), followed by a listing of all Java Virtual Machine

(JVM) system properties. Collecting this kind of information would normally

require restarting the application and using the Java debugger. Tapestry saves

you time by providing all this useful information immediately, at the time of the

initial error, which means less time tracking down bugs and more time for

everything else.

 With these four central goals in mind, it’s now time to start describing, at a

high level, how Tapestry operates.

1.5 How does Tapestry work?

Tapestry is an extension that builds on the standard Java Servlet API. Tapestry

still uses a servlet and still interacts with all the Servlet API objects: HttpServlet-

Request, HttpSession, and so forth. Tapestry applications are still servlet applica-

tions and can be deployed into any standard servlet container, such as Apache

Tomcat, Jetty, Resin, WebLogic, or WebSphere. The framework is code compatible

26 CHAPTER 1

Introducing Tapestry

with Java Development Kit (JDK) 1.2 and Servlet API 2.2,9 which allows Tapestry

to be used in virtually any recent Java application server.

9 Tapestry includes a servlet filter that performs a redirect of the initial application request to the Tap-
estry application servlet; servlet filters are a feature of Servlet API 2.3. Chapter 10 discusses the need
for this filter and how to make use of it.

Figure 1.6 The exception report includes a vast amount of information about the Request, Session,

Servlet, ServletContext, and all JVM system properties—the kind of information you would normally

need to collect using the Java debugger.

How does Tapestry work? 27

 Tapestry applications consist of any number of pages, where the pages are

each constructed from individual, reusable, configurable components. Table 1.1

defines the terms used to describe Tapestry applications.

Your Tapestry application includes templates and specifications for these ele-

ments. Those elements work together to form your GUI.

1.5.1 What’s in a Tapestry application?

Like other servlet applications, Tapestry applications are most commonly distrib-

uted as Web archives (WARs). A WAR is a variation of an ordinary Java archive

(JAR) file. A JAR file is used to store Java class files, but a WAR file stores a mix of

files: Primarily it stores HTML files, stylesheets, and images that will be directly

accessible to a client web browser using a URL. Like a JAR file, a WAR file contains

many files organized into many folders within the WAR.

 A deployed web application is also called a web application context. The

default name of the context is based on the name of the WAR. Figure 1.7 dia-

grams a deployed web application, the Virtual Library application described in

chapters 9 and 10. The Virtual Library is deployed as vlib.war, which will

define a web application context URL as /vlib. Static files (those images and

stylesheets) are accessible at URLs that extend from the context URL, such as

http://server/vlib/images/search.png (which accesses a file stored as images/

search.png inside vlib.war).

Table 1.1 Basic terms used when describing Tapestry applications

Term Description

Page Applications consist of a collection of uniquely named pages; each page has a tem-

plate and contains other components.

Template An HTML template for a page (or a component). In Tapestry, a template contains ordi-

nary HTML markup, with certain tags marked with a special attribute to indicate they

are placeholders for components.

Component A reusable object that may be used as part of a Tapestry page. Components generate

HTML when a page is rendered and may also participate when a link or form in the

rendered page is triggered. Components may also be used to construct new compo-

nents.

Parameter Components have parameters, which link properties of the component to properties of

the page (or of domain objects accessible from the page). Components mostly read

their parameters, but some components (often related to HTML forms) can update

their parameters and thus update the page properties bound to the parameter.

28 CHAPTER 1

Introducing Tapestry

WARs also contain a WEB-INF folder; this includes private resources that are not

made visible to clients. A servlet application will store class files and libraries

inside the WEB-INF folder. Tapestry applications go further, storing additional

artifacts and resources in the WEB-INF folder:

■ The compiled Java classes are stored in the WEB-INF/classes folder.

■ The WEB-INF/lib folder stores JAR files needed by the application’s classes.
In a Tapestry application, the WEB-INF/lib folder will contain the Tapestry
framework JAR (e.g., tapestry-3.0.jar) as well as a number of supporting
libraries needed by the framework.

■ Page specifications are stored in the WEB-INF folder, with a .page extension.

■ Page templates are stored in the root context folder (that is, directly within
vlib.war) with an .html extension.

■ Component specifications are stored in the WEB-INF folder with a .jwc
extension.

■ Component templates are stored in the WEB-INF folder with an .html
extension.

■ The WEB-INF folder also contains the web deployment descriptor, web.xml.

This file defines, to the servlet container, all of the servlets and URL map-

pings contained in the WAR. A Tapestry application uses only a single serv-

let but still requires a deployment descriptor.

Figure 1.7 The WAR file, vlib.war, defines a context, /vlib. Resources inside the WAR file can be

referenced by extending the URL for the context itself.

How does Tapestry work? 29

Appendix B discusses the example web applications for this book; it includes

details on how to build and deploy the examples on your own workstation. It also

goes into some detail about the directory layout for the examples, and how the

Ant build tool is used to compile, package, and deploy the examples.

1.5.2 Tapestry’s Model-View-Controller (MVC) pattern

Perhaps the most successful design pattern in GUI development is the Model-

View-Controller pattern (MVC). Most GUI frameworks, including Swing, use

some variation of MVC. The MVC pattern divides up each user interaction within

the application into three categories of objects:

■ Model—The Model object is used to store information that will ultimately

be presented to the user (and possibly edited). These objects are often

domain objects—objects that represent the specific application domain,

such as a Customer, Order, or Product (in an e-commerce application).

The Model should be completely independent of the GUI. In Java applica-

tions, the Model is often a JavaBean.

■ View—The View object is responsible for presenting data obtained from
the model in a format appropriate to the application. In a web application,
a simple View may do no more than write a string into the rendered page;
a very complex View may create a graphic chart based on data in the
Model, and an editable View may write a text field or other form element
into the response.

■ Controller—The Controller object has two functions: First, it bridges

between the Model and the View, reading data from the Model and provid-

ing it to the View. Second, it is responsible for interpreting user input and

updating the Model in response; in a web application, the Controller will

service incoming requests (including form submissions).

As shown in figure 1.8, the Model and View have no direct connection; instead,

the Controller mediates between the two and has the added responsibility of pro-

cessing user input.

 The MVC pattern is useful because it emphasizes separation of concerns, a
powerful concept that supports more flexible, more robust development. The

Model and the View are kept entirely separate; they may be developed at dif-

ferent times, by different developers, and tested independently. The Model

has no knowledge that it is part of a GUI or any type of application. The Con-

troller is responsible for monitoring the Model and informing the View of rel-

evant changes when the Model changes. Typically, the Model includes an

www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 1

Introducing Tapestry

event mechanism so that any changes will be propagated, through the Con-

troller, to the View. A single Model may be represented by multiple Views,

either as different options or simultaneously in multiple windows. A common

example is to display tabular data as both a table and a chart—that’s two dif-

ferent Views of the same Model. The MVC design pattern has been battle-

tested in countless applications.

Using servlets as Controllers

Within the realm of typical servlet applications, the MVC pattern typically

takes on the form shown in figure 1.9. In a servlet application, servlets play

the role of Controller. A servlet will receive a request from the client and will

perform an operation on the Model, the domain-specific objects for the appli-

cation. For example, the request may be a form submission, and the Control-

ler servlet will update properties of the Model domain objects and store them

into a database.

 The Controller servlet will then load up the HttpServletRequest with

attributes needed by the View to render a response, in effect “pushing” informa-

tion from the Model into the View. The View itself will be a JSP (or some other

form of template) and can draw information from the domain objects (the

Model) as it renders the response to be returned to the client.

 Tapestry makes use of a common variant of MVC, where the View “pulls”

information out of the Model (rather than having the Controller push informa-

tion into the View). The View still has no explicit knowledge of the application; it

Figure 1.8

Using the Model-View-

Controller pattern separates

the View and the Model,

which have no direct

knowledge of each other.

The Controller mediates

between the two and

handles user input.

How does Tapestry work? 31

just knows where it can read (and occasionally write) data. The Controller is still

responsible for handling user input, as well as for establishing the relationships

between Model and View.

The component as Controller

As shown in figure 1.10, a Tapestry component fills the role of Controller,

mediating between pure-domain objects in the Model (the LineItem and Prod-

uct objects, in this example) and components contained within its HTML tem-

plate (TextField and Insert). Most often, this pattern applies to pages (pages

are still Tapestry components), but in many cases, a component will have its

own template, containing further components, and support its own interac-

tions with the user.

 The page establishes relationships between the Model and the View in terms

of property expressions. Property expressions are implemented using another open

source framework, the Object Graph Navigation Language (OGNL), a very pow-

erful Java expression language.

 The page exposes the Model objects to the View components by providing

JavaBeans properties (such as the lineItem property in figure 1.10)—but

that’s just a starting point. Properties of the Model objects are bound to the

components—when the page renders, the TextField component will read the

quantity property of the LineItem object, and the Insert component will read

the name property of the Product object. This approach of navigating the

Figure 1.9 The servlet, as Controller, receives the request. It locates and updates the domain

objects, possibly reading and updating database data. The Controller servlet selects a View (a JSP)

to render the response. The View draws data from the domain objects as it renders, and the final

response page is sent to the client.

32 CHAPTER 1

Introducing Tapestry

object graph to reach relevant properties is possible only because the page

and all the components are stateful objects—JavaBeans with properties that

can be read and updated. The page, in its role as Controller, is responsible for

making these connections between the domain objects (the Model) and the

components (the View).

Figure 1.10 Model-View-Controller in Tapestry: The page is the Controller, LineItem

and Product are domain objects forming the Model, and the TextField and Insert

components are the View. The TextField component is bound to the quantity property

of the LineItem object (which it both reads and updates), and the Insert component is

bound to the name property of the Product object.

How does Tapestry work? 33

OGNL OGNL is a separate open source project distributed with, and heavily uti-
lized by, Tapestry. OGNL’s primary purpose is to read and update Java-
Beans properties of objects. A basic form of OGNL expression is a chain of
property names, separated with periods, as in lineItem.product.name.
This OGNL expression is roughly equivalent to the Java expression get-
LineItem().getProduct().getName() or getLineItem().getProd-
uct().setName(), depending on whether the expression is being used
to read or update a property. However, that’s just the start of what
OGNL can do. It is an extremely powerful expression language, mimick-
ing (and in some cases exceeding) the capabilities of Java language ex-
pressions. It predates the expression language introduced with the Java
Standard Tag Library (JSTL) and is both easier to use and more power-
ful. OGNL is the creation of Drew Davidson and Luke Blanshard. Full
documentation for OGNL, as well as source and binary downloads, is
available at http://www.ognl.org.

The page also fulfills its role as the Controller by providing the logic that occurs

when links within the page are clicked, or when forms within the page are sub-

mitted. This logic is provided in the form of listener methods, short methods

implemented in the page class that are invoked by the Tapestry framework.

1.5.3 Tapestry classes

The Tapestry framework consists of over 400 classes and interfaces—fortu-

nately, when building your own applications with Tapestry, you’ll most often

need to be concerned only with the handful of classes, interfaces, and methods

shown in figure 1.11.

 At the root of the hierarchy is the IRender interface,10 implemented by all

objects that can render HTML. Components are the main objects that can ren-

der, but not the only ones: for example, static HTML from a page or component

template is wrapped up as an object that implements the IRender interface.

Two key interfaces: IComponent and IPage

Two key interfaces are IComponent and IPage, which define Tapestry components

and pages, respectively. All Tapestry code is coded against interfaces, not imple-

mentations; therefore, IComponent is consistently used throughout the framework

as a parameter type or return value, never AbstractComponent, an implementation

10 All Tapestry interfaces start with a leading I, as in IRender or IComponent. The only exceptions are
event interfaces, such PageDetachListener. These are named as such for compatibility with Java-
Beans naming conventions for event listener interfaces.

34 CHAPTER 1

Introducing Tapestry

of IComponent. The AbstractComponent class is the base class for implementing

components. AbstractComponent is an abstract class; it defines but does not

implement the renderComponent() method. Subclasses of AbstractComponent

implement this method, producing all HTML output in Java code.

Figure 1.11 Here are the key interfaces, classes, and methods provided in the

Tapestry framework.

Using Spindle 35

 BaseComponent extends AbstractComponent, adding initialization logic that

knows how to locate and read a template. Most components you create will sub-

class BaseComponent. We discuss creating components in chapters 6 and 8.

 In Tapestry, pages are specialized components with additional responsibili-

ties; this is shown by having IPage extend IComponent, and by having BasePage

subclass BaseComponent. When creating new pages, you will always create sub-

classes of BasePage.

Three useful interfaces: IRequestCycle, IMarkupWriter, and IEngine

Most Tapestry pages and components can be coded with references to just three

additional interfaces:

■ IRequestCycle—A request cycle stores information about the current

request. It tracks the active page involved in the request and is used to

orchestrate the rendering of a response. The request cycle may also be

used to access the Servlet API objects (HttpServletRequest, HttpSession,

and HttpServletResponse) in the rare event that such access is necessary.

■ IMarkupWriter—A markup writer is used to produce HTML output when a
page is rendering a response. It operates much like a java.io.PrintWriter
but includes additional methods useful for creating markup output (con-
taining XML-style elements and attributes).

■ IEngine—The engine is a central object with several related responsibili-

ties, the core around which a Tapestry application hangs. Primarily, the

engine is responsible for maintaining server-side state, but it also acts as a

gateway to a number of subsystems used internally by Tapestry.

Most of the examples in the first few chapters are limited to just these interfaces;

as we get under the hood in chapters 6 through 8, a few additional interfaces will

be introduced.

1.6 Using Spindle

In this book, we’ll be sticking close to the source with our many example Tapestry

applications, presenting the different artifacts (the HTML templates, the XML

specifications, and the Java code) in listings. If your development environment of

choice is Eclipse (http://www.eclipse.org), you should check out Spindle, the Tapes-

try plug-in for Eclipse. Spindle blends customized wizards and editors for Tapestry

applications into the Eclipse IDE. Spindle streamlines Tapestry application devel-

opment in a number of ways:

36 CHAPTER 1

Introducing Tapestry

■ Spindle scans all types of input files for a wide variety of errors, including

invalid OGNL expressions, unresolvable class names, invalid or unknown

component IDs, and so forth.

■ Errors are identified in the Eclipse Tasks view.

■ Errors are indicated with markers in the editor gutter.

Figure 1.12 shows an example, where some errors have been introduced into

part of the example J2EE application described in chapters 9 and 10.

 Spindle takes Tapestry to an even higher level of productivity, because it can

catch errors at build time that ordinarily aren’t caught until runtime. Like Tapes-

try, Spindle is distributed as a free, open source project. Spindle is available at

http://sf.net/projects/spindle and was developed by Geoff Longman.

Figure 1.12 Using Spindle, errors in your templates and specifications are highlighted in the

editor and listed in the Tasks view.

Summary 37

1.7 Summary

Ordinary Java web applications are code heavy: Adding a new interaction (such as

a link or form) to a page requires creating new classes—new servlets (or new Struts

Actions) to handle the interaction. Quite a bit of cookie-cutter code must be writ-

ten just to establish the context of the interaction—which server-side objects

should be affected and how. You, the developer, are responsible for making a series

of small decisions: what to name the new servlet, what URL pattern to map to the

servlet, what to name any query parameters, and what information to store in

those parameters. Additionally, you must make coordinated changes to Java code,

to the JSP, and to the web deployment descriptor. This is all unavoidable, simply

an offshoot of the operation-centric approach mandated by the use of servlets, and

the way in which servlets within an application are weakly bound to one another.

 Tapestry applications flip this situation on its ear; a Tapestry application con-

sists of a tiny amount of application-specific code within a web of objects, meth-

ods, and properties, and uses XML specifications and OGNL expressions, not

Java code, to tie it all together. Tapestry extends your reach as a developer

because of all the decisions you don’t have to make and all the code you don’t

have to write and test. You get to concentrate on the critical aspects of your own

application without having to address all the generic concerns of structuring a

servlet application.

 In the next chapter, we’ll put together a small Tapestry application to demon-

strate concretely how the framework’s component-based approach to develop-

ment really does simplify and accelerate application development.

38

Getting started
with Tapestry

This chapter covers

■ Creating HTML templates, page specifications,

and page classes

■ Using Tapestry components inside an HTML

template

■ Creating clickable links

■ Encoding extra information into link URLs

■ Configuring Tapestry applications for deployment

Introducing the Hangman application 39

In the first chapter, we made a number of claims about what Tapestry is capable of;

now it is time to start backing up those claims with hard code. Launching into a

complete Java 2 Enterprise Edition (J2EE) application right here would be a bit

premature; instead, we’ll start with more of a toy, an application that plays the sim-

ple word game Hangman.† In effect, Hangman is a “scale model” of a real Tapestry

application; it demonstrates the basic capabilities of the framework and will give

you an initial sense for what developing Tapestry applications is all about. Along

the way, you’ll see how to:

■ Separate business logic from presentation logic, within the Model-View-

Controller (MVC) pattern (described in chapter 1)

■ Combine HTML templates, page specifications (in XML), and Java classes
to form pages within the application

■ Create HTML hyperlinks that activate application logic when clicked

■ Encode custom application data into HTML hyperlinks

■ Manage server-side state information

■ Configure a Tapestry application for deployment inside a servlet container

More importantly, you’ll see quite a bit about the work you don’t have to do,

because the framework takes care of it for you.

 Appendix B covers how to obtain the source code for all the examples in the

book, as well as how to build the examples on your own computer and deploy

them into the Tomcat servlet container (Tomcat is an open source servlet con-

tainer available from http://jakarta.apache.org/tomcat). Once Tomcat is running

and you have downloaded the source code, you can launch the Hangman appli-

cation by opening a web browser to http://localhost:8080/hangman1/app.

2.1 Introducing the Hangman application

Hangman is a simple word game for two players, played on a piece of paper or

on a chalkboard. One player selects a secret target word; the other player attempts

to guess the word. To start, you draw an empty gallows. The guessing player

selects a letter from the alphabet; if the letter appears in the target word, the

other player writes the letter in each position of the target word that the letter

appears in. Each unsuccessful guess is marked by adding a line to a stick figure

† An even simpler example of a “Hello World” Tapestry application is available at http://www.manning.
com/lewisship/helloworld. The helloworld.war file is pre-compiled and pre-built, containing all the
necessary Tapestry libraries and deployment descriptors. It may be downloaded directly into your
servlet container, Tomcat or otherwise, and accessed as http://localhost:8080/helloworld/app.

www.allitebooks.com

http://www.allitebooks.org

40 CHAPTER 2

Getting started with Tapestry

on the gallows: the head, torso, and then the limbs. The game is over when the

word is guessed or the stick figure is completed.

 The Tapestry Hangman application captures all of this functionality and, at

the same time, attempts to capture the classic look of playing the game by hand

on a chalkboard. The user interface makes use of images to represent the letters

and other artifacts of the game, to provide a “hand–scrawled” look and feel. Fig-

ure 2.1 shows the middle of a game of Hangman; the player has made several

wrong guesses, so parts of the stick figure are filled in, and one letter (A) has

been guessed correctly so far.

 At this point, all we have is a general idea for the application; before we can

get to the coding stage, we must formalize this general idea into something a bit

more concrete—and that begins with identifying the application flow.

Figure 2.1 A Tapestry Hangman game in progress. The player has successfully

guessed the letter A, but has also guessed E, P, and V, which are not in the target

word. An important aspect of this application is the look and feel, which should

resemble a game played by hand on a chalkboard.

Introducing the Hangman application 41

2.1.1 Determining the application flow

The application flow is a model of how the end user will navigate through the

application. Determining the flow occurs very early in the development cycle; it

is driven by the specific requirements and use cases of the application. Applica-

tion flow is the most abstract model of the application; it identifies the different

pages in the application and how they are connected, but rarely has to precisely

identify what is on any particular page. Key aspects of the application user inter-

face are discernable from the flow diagrams, such as the need for common navi-

gation menus or specific links between individual pages.

 The flow of the Hangman application is quite simple: From the Guess page,

the user makes guesses at the target word, eventually winning or losing the

game. Figure 2.2 is a state diagram for this simple application; when the applica-

tion is launched, the user is presented with a Start page (figure 2.4); from there,

he or she can start a new game, making guesses that eventually reach either a

win or a loss; from there, the player can restart the game with a new target word.

 From this simple description, you can see that we’ll have four distinct pages in

the application:

Figure 2.2

The player starts the

game and makes

guesses, eventually

reaching the win or lose

page, from which the

player can start a new

game (with a new word).

42 CHAPTER 2

Getting started with Tapestry

■ Start—A welcome page to greet players before starting a new game

■ Make Guess—The main page, from which players may guess letters of the
target word

■ Win—The page reached after the target word is successfully guessed

■ Lose—The page reached after players have exhausted their guesses

Once the application flow has been determined, the next step is to prototype

what the individual HTML pages will look like.

2.1.2 Creating page mockups

Page mockups are static HTML pages that represent what the active pages from

the running application will look like. These are ordinary HTML pages with

placeholder values representing the content that will eventually be generated

dynamically by the application. The point of creating the mockups is to give

the HTML developers a chance to work out the look and feel of the application,

right down to fonts, colors, and graphics, without concern for how the applica-

tion will be implemented.

 Figure 2.3 shows the mockup for the Guess page in an HTML editor. The

HTML source is shown in the upper pane, and the WYSIWYG preview appears in

the lower pane. This mockup will eventually be converted for use as the Guess

page’s HTML template.

 Page mockups should display all the features of the running application,

especially such features as error messages that are included only conditionally.

For example, a mockup may include a snippet for an error message:

 Placeholder for error message.

This snippet is important for two reasons: It clearly identifies how a real error

message should be displayed, and it identifies exactly where within the page the

error message should be displayed. In the Guess page mockup, the Guess and

Choose sections demonstrate what the page looks like in the middle of a game,

with some letters of the target word filled in and several letters from the alphabet

already guessed. Having clear examples of these dynamic aspects of the page will

be invaluable to the Java developer when he or she is converting the mockup

into a usable HTML template.

 It is not an absolute requirement that you create a mockup for every page in

the application; often, mockups for only a handful of key pages will suffice, and

Introducing the Hangman application 43

developers can use these core mockups as templates for the remaining applica-

tion pages.

 As you’ll see shortly, converting these HTML mockup pages into usable Tapes-

try page templates requires a minimal number of unobtrusive changes. A

mockup is converted into a page template by adding instrumentation: Additional

tags and tag attributes are used to identify and configure Tapestry components

within the template. This instrumentation is designed to be nearly invisible. Tap-

estry’s approach stands in stark contrast to the use of JSPs, where the conversion

Figure 2.3 The page mockup for the Guess page in an HTML editor.

44 CHAPTER 2

Getting started with Tapestry

from HTML mockup to JavaServer Page (JSP) is a one-way process. Once the

HTML mockup page has been converted to a JSP, it will not preview correctly in a

standard HTML editor, making all subsequent changes to the JSP that much

more difficult. Within Tapestry, a page template can still be edited by an HTML

developer using standard HTML editing tools; in effect, the mockups evolve into

the HTML page templates yet can still be treated as mockups.1

 This is an important aspect of Tapestry because late changes to application

flow and look and feel are simply a reality when creating web applications—

there’s always a last-minute change: a new page to add, a background color to

change, or a column width to tweak. Even in an impossibly idealized project, one

where no late changes ever occurred, a subsequent release of the application

would inevitably update the application flow and at least some aspect of the look

and feel. Tapestry accommodates these kind of late cycle changes quite well

because of how unobtrusive the instrumentation (the additional tags and tag

attributes used to identify components within a template) is. Much more work

can be done by an HTML developer using standard HTML editing tools, without

the involvement of Java developers.

 Meanwhile, even as the HTML developers are working on the mockups, the

Java developers should be getting a head start on the design of the actual appli-

cation, and that begins with identifying the domain objects.

2.1.3 Defining the domain objects

The architects and developers on the Java side of the team are ultimately

responsible for the running application; in most applications, this becomes a

question of linking a user interface to your domain objects. Domain objects are the

objects of the middle tier, the application tier, in the overall application—they

are the entity objects for data stored in a database, or objects that implement

your business’s specific processes. Common problems to solve involve what infor-

mation is stored by these objects, how the different objects are related, and how

they are read from, or stored into, a database.

 Even in a simple application such as Hangman, which does not make use of a

database, there are still domain objects, and still advantages (in accordance with

the MVC design pattern) to keeping these objects well separated from any code

directly related to the user interface.

1 Tapestry isn’t magic, and there are some limitations on maintaining full WYSIWYG previews of
HTML templates once more sophisticated custom components are created and used within a page
template; this subject is covered in chapter 6.

Introducing the Hangman application 45

 The two domain objects used in the Hangman application are WordSource

and Game. The first, WordSource, is simply a wrapper around a list of words read

from a text file and is used to dole out random words for the player to guess.

Game is a bit more interesting; it encompasses all the logic about the game. Spe-

cifically, the Game object knows:

■ The target word the player is attempting to guess

■ Which of the 26 letters of the alphabet the player has already guessed

■ Which letters of the target word have been filled in by successful guesses

■ How many incorrect guesses remain

■ If the player has won the game (by guessing all the letters in the target word)

As promised, the implementation of the Game class (in listing 2.1) knows nothing

about Tapestry or any other user interface.

package hangman1;

public class Game
{
 private String _targetWord;
 private int _incorrectGuessesLeft;
 private char[] _letters;
 private boolean[] _guessed = new boolean[26];
 private boolean _win;

 public boolean isWin()
 {
 return _win;
 }

 public char[] getLetters()
 {
 return _letters;
 }

 public int getIncorrectGuessesLeft()
 {
 return _incorrectGuessesLeft;
 }

 public boolean[] getGuessedLetters()
 {
 return _guessed;
 }

Listing 2.1 Game.java: domain object for the Hangman application

Returns true
once word has
been guessed

Returns array
of letters in
the word

Returns 26 flags:
letters guessed
by player

46 CHAPTER 2

Getting started with Tapestry

 public void start(String word)
 {
 _targetWord = word;
 _incorrectGuessesLeft = 5;
 _win = false;

 int count = word.length();

 _letters = new char[count];

 for (int i = 0; i < count; i++)
 letters[i] = '';

 for (int i = 0; i < 26; i++)
 _guessed[i] = false;
 }

 public boolean makeGuess(char letter)
 {
 char ch = Character.toLowerCase(letter);

 if (ch < 'a' || ch > 'z')
 throw new IllegalArgumentException(
 "Must provide an alphabetic character.");

 int index = ch - 'a';

 if (_guessed[index])
 return true;

 _guessed[index] = true;

 boolean good = false;
 boolean complete = true;

 for (int i = 0; i < _letters.length; i++)
 {
 if (_letters[i] != '_')
 continue;

 if (_targetWord.charAt(i) == ch)
 {
 good = true;
 _letters[i] = ch;
 continue;
 }

 complete = false;
 }

 if (good)

Starts
a new
game

Processes
a player’s
guess

Introducing the Hangman application 47

 {
 _win = complete;

 return !complete;
 }

 if (_incorrectGuessesLeft == 0)
 {
 _letters = _targetWord.toCharArray();

 return false;
 }

 _incorrectGuessesLeft--;

 return true;
 }
}

The makeGuess() method is invoked to process a player’s guess. It updates the

target word and other properties and returns true if more guesses are allowed. It

returns false if the player has either won or lost the game.

 The Game class must provide some support for the user interface, but it does

so in a generic fashion without being tied to the interface; it’s the Model in the

MVC pattern described in chapter 1. This support takes the form of JavaBeans

properties that are exposed to the user interface, such as the number of incorrect

guesses remaining or the list of letters already guessed. These properties are

bound to Tapestry component parameters, allowing those components to dis-

play the number of guesses remaining, the partially guessed word, or the list of

remaining unguessed letters. In addition, Game provides methods that can be

invoked by the user interface code to start a new game or to process a guess

made by the player.

 A second class, WordSource, is also used. WordSource is responsible for provid-

ing a random word for the player to guess. The source of the words is a small file,

WordList.txt, packaged with the WordSource class. The WordSource class is pro-

vided in listing 2.2.

package hangman1;

import java.io.IOException;
import java.io.InputStream;

Listing 2.2 WordSource.java: domain object for the Hangman application

Processes
a player’s
guess

48 CHAPTER 2

Getting started with Tapestry

import java.io.InputStreamReader;
import java.io.LineNumberReader;
import java.io.Reader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class WordSource
{
 private int _nextWord;
 private List _words = new ArrayList();

 public WordSource()
 {
 readWords();
 }

 private void readWords()
 {

 try
 {
 InputStream in =
 getClass().getResourceAsStream("WordList.txt");
 Reader r = new InputStreamReader(in);
 LineNumberReader lineReader = new LineNumberReader(r);

 while (true)
 {
 String line = lineReader.readLine();

 if (line == null)
 break;

 if (line.startsWith("#"))
 continue;

 String word = line.trim().toLowerCase();

 if (word.length() == 0)
 continue;

 _words.add(word);
 }

 lineReader.close();
 }
 catch (IOException ex)
 {
 throw new RuntimeException(
 "Unable to read list of words from file WordList.txt.",

Introducing the Hangman application 49

 ex);
 }

 // Randomize the word order

 Collections.shuffle(_words);

 }

 public String nextWord()
 {
 if (_nextWord >= _words.size())
 {
 _nextWord = 0;
 Collections.shuffle(_words);
 }

 return (String) _words.get(_nextWord++);
 }
}

When WordSource is instantiated, it reads the list of words. Later, the nextWord()

method is invoked to get a new word for the player to guess. The method is

designed to not repeat a target word until every word in the list has been guessed.

 As with the Game class, this class has no direct connection to Tapestry—these

objects fit firmly into the Model category within the MVC pattern. This kind of

decoupling from the user interface is very important, because it means the Game

and WordSource classes can be tested without having to run the Tapestry applica-

tion, which in turn means the code can be fully tested inside an automated test

suite. Making code testable is always a worthy goal, because no matter how sim-

ple the code is, when you write tests, you find bugs.
 Once all the details of the domain objects are worked out, the next step is to

begin work on the pages that will interact with those domain objects.

2.1.4 Defining the pages

Like any other Tapestry application, the Hangman game consists of a set num-

ber of pages, which are themselves composed of components. In a Tapestry

application, each page is constructed by combining three related artifacts: an

HTML template, a page specification, and a Java class.2

2 Refer back to section 1.5.1 to see how to properly package these artifacts for use within a servlet con-
tainer. Appendix B provides examples of how to set up your development workspace and how to use
Ant to build and deploy the WAR.

50 CHAPTER 2

Getting started with Tapestry

 Each Tapestry page has a specific, unique name. The page name is used to

locate the page specification and HTML template. Part of the page specification

is the name of the Java class to instantiate; this is called the page class, and it will

include properties and methods specific to your application.

 The Hangman application contains only four pages: Home, Guess, Lose, and

Win, corresponding to the four pages identified in the application flow state dia-

gram (figure 2.2). The Home page here is the same as the Start page in figure 2.2.

By default, when a Tapestry application is first launched, the framework renders

the page named Home. Although there are several options for changing this

behavior, the simplest approach is to follow Tapestry’s naming convention—by

naming the first page a user will see Home.

 Creating a functioning Tapestry page starts with the HTML mockup for the

page. This mockup must be instrumented to act as an HTML template instead of

a mockup. Instrumenting a mockup inserts additional attributes and tags in

the mockup that tell Tapestry which parts of the template are dynamic compo-

nents. Most of a template, however, is exactly the same as the mockup—simple,

static HTML.

NOTE In real projects, the mockups are not always available when needed by
the Java developers creating the pages. In this situation, the Java devel-
opers will create simple, minimal HTML templates—just enough to wire
up the functionality of the application. When the mockup is ready, some
careful cut and paste from the mockup into the minimal HTML tem-
plate will convert it to use the desired application look and feel.

Once the HTML template is instrumented, a page specification (a short XML docu-

ment) can be created. The page specification has a number of responsibilities

(many of which will be discussed in later chapters). Its most basic responsibility is

to identify which Java class is to be instantiated as the page. In chapter 1, we

described Tapestry as being a component object framework; this means that

each component fits into an object hierarchy, either as a container of other com-

ponents or as a containee of a specific component—or, in many cases, as both

container and containee. Pages are still components, sitting at the root of the

component object hierarchy.

 As you’ll see, the page class is specific to the application and contains a mix-

ture of properties and methods that support both the rendering of the page and

any user interaction in the page. Ultimately, the behavior of the page is defined

by the page’s properties and methods, combined with the components contained

Developing the Home page 51

within the page—including the templates, properties, and methods of those

components. This may seem a bit dizzying in theory, but in practice it all comes

together simply and seamlessly. For our first example, let’s start with the Home

page—the simplest page in the Hangman application.

2.2 Developing the Home page

The Hangman application’s Home page has only one small bit of user interac-

tion: a link that starts a new game. This interaction is triggered by clicking the

Start image, shown in figure 2.4. Like any page, the Home page is a combination

of an XML page specification, an HTML template, and a Java class. Our first

steps into Tapestry will be to examine how these three artifacts are combined to

form a simple page.

Figure 2.4 The Home page of the Tapestry Hangman application. The player may

click the word Start to begin a game.

52 CHAPTER 2

Getting started with Tapestry

 The Home page is displayed when the application is first launched. The Web

archive (WAR) for the application must be deployed into the servlet container,

and the servlet container must itself be running. This WAR will contain the Tap-

estry framework JARs, the page templates and specifications, the static image

files (and other assets), and the compiled Java classes (this is discussed in

chapter 1, section 1.5.1). When the user launches the application (by opening a

web browser to http://localhost:8080/hangman1/app), the framework responds

by rendering the Home page.

 The first step in rendering a page is to create an instance of the page. The

framework reads the Home page’s specification and HTML template and uses

this information to create the page instance. A Tapestry page is not a single

object; the page object is the root of a tree of objects, including Tapestry compo-

nents from the page’s template, the contents of the HTML template, and a num-

ber of objects used to connect the individual pieces together. There’s no special

assembly stage for Tapestry applications, nor are there any special build steps or

compilation—all that is necessary is to package the specifications, templates, and

Java classes inside the WAR.

NOTE You might be concerned about performance, given all this talk of pars-
ing specifications and templates and instantiating trees of objects—but
don’t be. This parsing occurs very quickly, and, unlike with JSPs, there’s
no time spent compiling generated Java source code (JSP compilation
causes a noticeable delay the first time a JSP is used within a traditional
servlet application). In line with Tapestry’s efficiency goal, all the speci-
fications and templates are read and parsed just once, and then cached
for fast access when needed again in future requests. Page instances are
also stored and reused in later requests.

Let’s dive a little deeper and see exactly how the Home page’s specification is

used by the framework.

2.2.1 Understanding the Home page specification

The framework’s first step toward instantiating the Home page is to locate and

read the page’s specification. Page specifications are validated XML files (with a

.page extension) that are stored in the WEB-INF folder of the web application.

The page specification’s first responsibility is to identify the page class it needs to

instantiate—it has other many other, optional responsibilities that we’ll cover

Developing the Home page 53

later in this chapter and in subsequent chapters. Listing 2.3 contains the com-

plete specification for the Home page of the Hangman application.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="hangman1.Home"/>

This is about as simple as a page specification can get; its only purpose is to

identify the page class, hangman1.Home. This is a Java class written for the Hang-

man application, which will be the runtime representation of the page (see sec-

tion 2.2.3 for more details). By convention, the class name for a page is the same

as the page’s name (though often stored inside a Java package), but of course,

you are free to ignore this convention and name pages and classes differently. It’s

important, however, that the <!DOCTYPE> declaration be exactly as shown in list-

ing 2.3.

WARNING Use the correct <!DOCTYPE>. Tapestry uses a validating XML parser to
read specifications. Tapestry is purposely finicky about the public ID

(the first string after PUBLIC), since it uses the known public ID to access
a copy of the document type definition (DTD) inside the framework’s
JAR rather than access it over the Internet using the system ID. The
public ID must exactly match the value in listing 2.3, or an Application-
RuntimeException is thrown. For example, changing Foundation to
Floundation will result in an exception report with this error message: Doc-
ument context:/WEB-INF/Home.page has an unexpected public id of ‘-//Apache
Software Floundation//Tapestry Specification 3.0//EN’. Watch out for typos;
this is one area where a little cut and paste will save you some grief.

In addition, there is nothing that keeps a single page class from being used for

multiple pages. Each page will have a distinct instance of the page class, just as

each component in a page is a distinct instance of a component class.

Listing 2.3 Home.page: specification for the Home page

54 CHAPTER 2

Getting started with Tapestry

2.2.2 Rendering the Home page

After parsing the page specification, Tapestry locates the HTML template for the

Home page. The HTML template, which is named Home.html, is located in the

root of the web application archive. This template is shown in listing 2.4.

<html>
<head>
<title>Tapestry Hangman</title>
<link rel="stylesheet" type="text/css" href="css/hangman.css"/>
</head>
<body>
<table>
<tr>
 <td><img alt="[Tapestry Hangman]"
 src="images/tapestry-hangman.png" width="197" height="50"
 border="0"/>
 </td>
 <td width="70" align="right"><img height="36" alt="5"
 src="images/Chalkboard_3x8.png" width="36" border="0"/>
 </td>
 <td><img alt="Guesses Left" src="images/guesses-left.png"
 width="164" height="11" border="0"/>
 </td>
</tr>
<tr>
 <td>
 </td>
 <td>
 </td>
 <td>
 </td>
</tr>
</table>

<a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.start">
 <img src="images/start.png" width="250" height="23"
 border="0" alt="Start"/>
</body>
</html>

The majority of the HTML template is standard, static HTML; only a single Tap-

estry extension beyond ordinary HTML is used, showing up in the portion of the

template that provides the link to start the game.

Listing 2.4 Home.html: HTML template for the Home page

Dynamic
portion of
template

Developing the Home page 55

 The <a> tag declares a Tapestry component within the template, giving us our

first whiff of a dynamic web application rather than a static web page. The attribute

jwcid is the indicator that Tapestry uses to identify components within the tem-

plate. The name jwcid is simply Java Web Component ID. The component is type

DirectLink, one of over 40 components provided with the Tapestry framework.

 The example here is an implicit component, where the type of component and

its configuration are declared directly in the HTML template. The @ symbol

indicates to Tapestry that the component is implicitly declared. Later in this

chapter, we’ll show examples of declared components, which have their type and

configuration stored inside the page specification.

 The DirectLink component is used to create a particular type of callback into

the application. This component is one of the two primary ways that interaction

occurs in Tapestry; the other is user-submitted forms (which are covered starting in

chapter 3). The DirectLink component renders an HTML <a> element, supplying a

URL that, when clicked by the end user, causes a specific listener method of the

page to be executed (we’ll discuss what a listener method is shortly, in section 2.2.3).

 The position of the DirectLink component within the template is delineated

by the <a> and tags. Everything else in this HTML template is static

HTML—text that is sent through to the client web browser unchanged. Just the

portion rendered by the DirectLink component is dynamic. Figure 2.5 shows

how the dynamic and static portions of the template are integrated together to

form the complete response.

 The Home page’s HTML template is divided into five individual “chunks.”

Each chunk is either a block of static HTML, the start tag for a component (rec-

ognized by Tapestry because of the presence of a jwcid attribute), or the match-

ing end tag for a component. Chunk b is the portion of the HTML template

that precedes the DirectLink component. Chunk c is the component itself.

Chunk d is the portion of the page enclosed by the DirectLink. Chunk e is the

close tag for the DirectLink component. Chunk f is the remainder of the tem-

plate after the DirectLink.

 Chunks that are enclosed directly within a component’s start and end tags are

part of that component’s body. This is a very important part of Tapestry: Com-

ponents control if and when their bodies are rendered. We’ll frequently refer to

the body of the component: This is the static HTML and other components that

are enclosed between a component’s start and end tags.

 In this example, chunk d, containing the tag, is the entire body of the

DirectLink component. The page itself has a body, the top-level static chunks

(chunks b and f) and the components that aren’t enclosed by other components

56 CHAPTER 2

Getting started with Tapestry

(chunk c). When the page renders, it renders just the chunks in its body. Static

HTML chunks render as themselves; they are passed on through to the client web

browser unchanged. Components are responsible for rendering themselves and

their body.

 Figure 2.5 references two methods related to the DirectLink component: render-

Component() and renderBody(). The renderComponent() method is implemented

by components that render in Java code (rather than using their own template).

The method is invoked by the component’s container, in this case the Home

page itself, as part of the Home page’s render.

 The second method, renderBody(), is inherited by the DirectLink component

from the AbstractComponent base class. The component invokes this method

from its own renderComponent() method to render the text and components in

its own body—the static tag enclosed by the DirectLink’s <a> and tags.

 In this case, the body of the DirectLink is simple, static HTML. That’s often

not the case; a component may contain a mix of static HTML and other compo-

nents. Tapestry figures it all out, properly slotting each chunk of the page’s tem-

plate into the body of the correct component. Rendering a page is a recursive

process, since components may themselves have their own templates, containing

other components. Chapters 6 and 8 go into great detail about creating new

components, including components that have their own template.

 Tapestry’s HTML template parser is very forgiving; although the examples in

this book all follow Extensible HTML (XHTML) conventions, the template parser

can handle the kind of HTML you’ll find in the wild: unquoted attribute values,

Figure 2.5 The Home page template is broken into chunks of static HTML and component tags.

Static HTML chunks render as themselves; the DirectLink renders in code, in its

renderComponent() method, and causes its body (the tag) to render by invoking its

renderBody() method.

Developing the Home page 57

mixed uppercase and lowercase, single or double quotes, unquoted attribute val-

ues, and lots of additional whitespace. As elsewhere in Tapestry, if the parser is

unable to parse a template it will throw an exception providing line-precise

reporting of the problem.

 The last piece of the Home page puzzle is the page class; this is where we put

our application-specific logic—the code that will actually start a new game.

2.2.3 Defining the Home page class

So, what happens when the user clicks the link that was created when the page

rendered? In Tapestry, that’s the million-dollar question,3 the point where all

this talk of simplicity, consistency, and components starts to make a difference.

Here’s the short answer: You tell the component about a method in your page

class to execute, and it executes the method when the link is clicked. Now, let’s

see what this looks like in practice. We’ll start with listing 2.5, the source code for

the Home page class.

package hangman1;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;

public class Home extends BasePage
{
 public void start(IRequestCycle cycle)
 {
 Visit visit = (Visit)getVisit();

 visit.startGame(cycle);
 }
}

A page class has many responsibilities defined by the framework, including the

ability to act as a container of other components. Fortunately, the BasePage class,

from which the Home class extends, contains the code needed to fulfill all these

responsibilities; for the Home page, all we need to add is the little bit of application-

specific logic to be executed when the Start link is clicked. That logic shows up as

a method, start(), implemented by the Home page class.

3 Since Tapestry is open source, money is not the best way to gauge status. Perhaps this should be the
“million download question” instead!

Listing 2.5 Home.java: Java class for the Home page

58 CHAPTER 2

Getting started with Tapestry

 The start() method is a listener method, a method that will be invoked in

response to a user clicking a particular link. Its implementation is to defer to the

Visit object to actually start a new game—we’ll discuss what the Visit object is

shortly; for the moment, we’ll concentrate on how it is that the start() method

is invoked when a user clicks the link.

 Listener methods are ordinary instance methods, implemented by the page’s

class, that have a specific method signature:

public void method(IRequestCycle cycle)

The method must always be public, return void, and take a single parameter of

type IRequestCycle.

 Tapestry components may have any number of parameters, both optional

and required. The DirectLink component has several optional parameters and

one that’s required (listener). The binding for the listener parameter was pro-

vided in the Home page’s HTML template:

<a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.start">
 . . .

TIP Tapestry checks that there’s a binding for each required parameter. If
you remove the listener attribute from the HTML template for the
Home page, the page will not display. Instead, you’ll get an exception
report with this message: Required parameter listener of component Home/
$DirectLink is not bound. Home/$DirectLink is the name of the page and
the ID of the component.

The DirectLink component’s listener parameter is used to find the listener

method it should execute when the end user clicks the link visible in his or her

web browser. The ognl: prefix on the attribute value informs Tapestry that the

value is an Object Graph Navigation Language (OGNL) expression to be evalu-

ated, rather than a literal string constant. In Tapestry terminology, the expres-

sion listeners.start is bound to the DirectLink’s listener parameter.

WARNING Don’t forget the ognl: prefix. If you omit the prefix, Tapestry treats the
value as a string literal. Removing the prefix from the DirectLink’s lis-
tener parameter will result in an error like this when you click the link:
Parameter listener (listeners.start) is an instance of java.lang.String, which does
not implement interface org.apache.tapestry.IActionListener. When you see

Developing the Home page 59

exceptions such as this, or perhaps ClassCastExceptions within your
own code, the likely cause is a missing ognl: prefix.

How does the OGNL expression listeners.start end up executing this method?

All pages and components inherit a property, listeners, from the AbstractCompo-

nent base class. The listeners property contains a nested property for each lis-

tener method implemented by the class. Underneath the covers, there’s an

interface, IActionListener, and a little bit of Java reflection used to connect the

DirectLink component with the page’s listener method; this is shown in figure 2.6.

 A class may have any number of listener methods, each with a unique and

individual name. Listener methods inherited from superclasses are also available

through the listeners property.

WARNING If your OGNL expression references a listener method that doesn’t exist,
you’ll get an exception when you click the link. For example, changing
the expression to ognl:listeners.star results in an exception with
this message: Unable to resolve expression ‘listeners.star’ for hangman1.Home@
19b808a[Home]. You’ll also see an ognl.NoSuchPropertyException for
the property star.

An invalid listener method will result in the same exception: This will
occur if the method is not public or has the wrong method signature.

Sit back and think about this for a moment: We’ve just extended the behavior of

this page within the application by writing a very short method, the start() lis-

tener method. The provisions we’ve made in the HTML template to get this

Figure 2.6 The Tapestry servlet receives and interprets the incoming request and invokes

trigger() on the DirectLink component. The DirectLink invokes the listener method provided by

the page. After the method is invoked, a page is rendered, forming the HTML response sent back to

the client web browser.

60 CHAPTER 2

Getting started with Tapestry

listener method to execute on cue are so minor that they’re barely worth consid-

ering. The Hangman application’s Home page is unusual in that it has just the

single bit of behavior—but you can imagine a more complicated page with many

links (and, as you’ll see in chapter 3, forms); adding each new bit of behavior is

still just…adding another listener method.

 This gets to the heart of the Tapestry goals described in chapter 1:

■ Simplicity—Adding new operations takes minimal code and minimal

changes to the HTML template.

■ Consistency—Add as few or as many operations as you like, and the pro-
cess stays the same. Look at any page in the application, and it still looks
the same.

■ Feedback—By working with the framework, errors in Java code, in the

template, or in the specification are detected and verbosely reported by

the framework.

A good practice is to keep listener methods short and focused on simply interfac-

ing Tapestry components with business logic stored in domain objects. That’s

demonstrated here by having the start() listener method simply find the Visit

object and let it do the work of actually starting a new game.

2.2.4 Examining the Visit object

The Visit object is an application-wide space for storing application logic and

data. This object is accessible from all pages and components within the appli-

cation and contains information specific to a single client of the web applica-

tion. A single Visit object instance is shared by all pages within the application.

The object fulfills much the same role as the HttpSession does in a typical serv-

let application, and in fact, the Visit object is ultimately stored as an Http-

Session attribute.

 All web applications eventually store some form of client-specific server-side

state. The HttpSession acts like a map, storing named attributes. Simple as this

seems, in real applications, a considerable amount of code must be written to

retrieve attribute values from the HttpSession, cast them to the right type, create

them on the fly as needed, and delete them when they are no longer needed.

 Here again, Tapestry steps in to rethink this approach in terms of objects,

methods, and properties. In chapter 7, we’ll cover how Tapestry allows page

properties to be stored persistently between requests, which is appropriate for

values that are used only within a single page.

Developing the Home page 61

 For more general data, used throughout an application, Tapestry allows for a

single Visit object. Tapestry doesn’t know or care about the type of the Visit

object. There is no specific Visit class defined by the framework; each applica-

tion defines its own Visit class. The accessor method for the Visit object pro-

vided by the page (defined by the interface IPage and implemented by the class

BasePage) doesn’t specify the type of the object:

public Object getVisit();

It then becomes a matter of casting to the application-specific type:

Visit visit = (Visit)getVisit();

The Visit object is automatically created by the framework the first time it is ref-

erenced; you must configure Tapestry, providing the name of the class to instan-

tiate (this may be configured inside the web deployment descriptor; see section 2.6).

Once the Visit object is created, it is stored in the HttpSession for persistent

access in later requests.

 Developer code never has to worry about the HttpSession. The HttpSession

itself is created only as needed. A stateless application is more efficient than a

stateful one, and a Tapestry application will operate in a stateless mode until

there is actual server-side state to store. The framework takes care of this transi-

tion automatically, which would be very cumbersome to accomplish in ordinary

servlet code because each and every servlet would need custom logic to check for

the existence of the session and create it only as needed.

 For our Hangman application, the Visit object is responsible for controlling

page flow. It acts as a façade around the WordSource and Game objects, handles the

process of starting a new game, and processes guesses made by the player. The

Visit class for the Hangman application is provided in listing 2.6.

package hangman1;

import org.apache.tapestry.IRequestCycle;

public class Visit
{
 private WordSource _wordSource = new WordSource();
 private Game _game = new Game();

 public void startGame(IRequestCycle cycle)
 {
 _game.start(_wordSource.nextWord());

Listing 2.6 Visit.java: controller object for the Hangman application

Invoked by
Home page
listener method

 b

62 CHAPTER 2

Getting started with Tapestry

 cycle.activate("Guess");
 }

 public void makeGuess(IRequestCycle cycle, char ch)
 {
 if (_game.makeGuess(ch))
 return;

 cycle.activate(_game.isWin() ? "Win" : "Lose");
 }

 public Game getGame()
 {
 return _game;
 }
}

The startGame() method is invoked by a listener method on the Home page
to start a new game. It is also invoked by listener methods on the Win and
Lose pages.

The makeGuess() method is invoked by a listener method on the Guess page; the
listener method passes in the character to be guessed and the request cycle (so
that the Visit object can activate the Win or Lose page, if necessary).

The Game object is exposed as a read-only property of the Visit object. You’ll see
references to the properties of the Game object in the template as ognl:visit.
game.property.

When the Home page invokes the startGame() method on Visit, Visit gets a

random word and sets up the Game instance with it by invoking Game’s start()

method. The call to activate() is used to change the active application page;

the active page is responsible for rendering the response. Initially, the Home

page is the active page, because it contains the DirectLink component that was

triggered. Invoking the activate() method allows the correct page, the Guess

page, to render the response.

2.3 Implementing the Home page using
standard servlets

Despite the fact that the previous discussion about the DirectLink component,

listener methods, and the Visit object was unavoidably long-winded, in the end

we’ve shown that creating a link and getting an application-specific method to

execute when the link is clicked is extremely simple.

 b

Invoked by
Guess page
listener
method

 c

Provides
game
property

 d

 b

 c

 d

Implementing the Home page using standard servlets 63

 Let’s see what would be involved in accomplishing the same thing using stan-

dard servlets and JSPs. In this simple example, the JSP is very straightforward—so

much so that it could as easily be an entirely static HTML page. The DirectLink

component is replaced by a standard HTML link to a servlet we’ll provide:

Of course, this example is not representative. Most application operations will

involve quite a bit more: more servlets to implement the operation, more query

parameters to fill in the details, and more code to build and interpret the

URLs—all things that the Tapestry framework provides you for free.

 Regardless, this example uses a very simple operation with no parameters.

We still need to add a few lines to the application’s web deployment descrip-

tor, web.xml:

<servlet>
 <servlet-name>startGame</servlet-name>
 <servlet-class>StartGameServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>startGame</servlet-name>
 <url-pattern>/startGame</url-pattern>
</servlet-mapping>

Finally, we need the actual servlet, shown in listing 2.7.

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class StartGameServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession(true);

 Visit visit = new Visit();
 session.setAttribute("visit", visit);

Listing 2.7 StartGameServlet.java: hypothetical servlet for starting a game

Gets or creates
the session

 b

Stores Visit
for later

 c

64 CHAPTER 2

Getting started with Tapestry

 visit.startGame();

 RequestDispatcher d =
 request.getRequestDispatcher("/Guess.jsp");
 d.forward(request, response);
 }
}

This accesses an existing HttpSession for the client or creates a new one if necessary.

We store the Visit object as a session attribute so that it can be accessed in later
requests or by a JSP.

As in the Tapestry Hangman application, the hypothetical servlet Visit object is
responsible for selecting a random word to guess.

The RequestDispatcher object is used to bridge from the servlet to a JSP that can
render the response.

This servlet creates a Visit instance, similar in scope and implementation to

the Visit object used in the Tapestry application. Once created, the Visit

object is stored in the HttpSession, where it will be available in subsequent

requests. The implementation of this Visit class may use the same Game and

WordSource domain objects used by the real Tapestry application.

 Extending this comparison from one single interaction to the innumerable

interactions in a typical web application underscores the amount of developer

effort needlessly wasted on most web applications. You are forced to drop out

of the world of objects and methods and deal directly with aspects of the

HTTP protocol and the Servlet API. You must define a URL to trigger your

operation, create a new servlet class to perform that operation, and record the

mapping from the URL to the servlet in the web.xml deployment descriptor.

In a team environment, you will be competing with your fellow developers to

update the deployment descriptor and to lay claim to the possible URLs for

the application.

 Certainly, as you become more experienced writing servlet-based applica-

tions, you will find shortcuts to help you streamline this effort. Unfortunately,

different developers are quite likely to create their own suite of shortcuts. In a

large team effort, getting the bits and pieces of the application written by dif-

ferent developers interoperating properly can become quite a challenge

because of the impedance caused by all of the developers’ individual schemes.

When using Tapestry, this is rarely an issue because Tapestry defines a standard

Chooses random
word to guess

 d

Forwards to
the Guess.jsp
page

 e

 b

 c

 d

 e

Developing the Guess page 65

way for different parts of the application to interoperate—using objects, meth-

ods, and properties.

 Now that we’ve seen how the Home page and the Hangman application’s

Visit object work together to start a new game, we can continue to the Guess

page, the primary page in the Hangman application.

2.4 Developing the Guess page

The Guess page is the central page for the Hangman application; it allows the

player to guess at letters of the target word. Figure 2.1 shows an example of the

Guess page in action.

 The page has a number of responsibilities:

■ It displays the number of guesses remaining (as a number) as well as

the number of incorrect guesses so far (as the growing stick figure).

■ It displays the partially guessed target word, with lines replacing the as-yet
unguessed letters.

■ It displays a grid of remaining letters to guess; each letter is a clickable link.

■ It supports the “hand-scrawled” look and feel, using custom images to dis-

play numbers and letters.

To accomplish all these tasks, we’ll be introducing several new concepts for Tap-

estry specifications, HTML templates, and Java classes, as well as new Tapestry

components. We’ll start with the full listings for the HTML template, the page

specification, and the page class, and then show how the different responsibili-

ties we’ve listed are implemented—as Tapestry markup in the HTML template

combined with entries in the page specification and code in the Java class. We’ll

begin with listing 2.8, the HTML template for the Guess page.

<html>
<head>
<title>Tapestry Hangman</title>
<link rel="stylesheet" type="text/css" href="css/hangman.css"/>
</head>
<body>
<table>
<tr>
 <td><img alt="Tapestry Hangman" src="images/tapestry-hangman.png"
 width="197" height="50" border="0"/>
 </td>

Listing 2.8 Guess.html: HTML template for the Guess page

66 CHAPTER 2

Getting started with Tapestry

 <td width="70" align="right"><img jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image='ognl:getAsset("digit" +
 visit.game.incorrectGuessesLeft)'
 height="36" src="images/Chalkboard_3x8.png" width="36"
 border="0"/>
 </td>
 <td><img alt="Guesses Left" src="images/guesses-left.png"
 width="164" height="11" border="0"/>
 </td>
</tr>
<tr>
 <td>
 </td>
 <td>
 </td>
 <td><img jwcid="@Image"
 image='ognl:getAsset("scaffold" +
 visit.game.incorrectGuessesLeft)'
 alt="[Scaffold]" src="images/scaffold.png" border="0"/>
 </td>
</tr>
</table>

<table>
<tr valign="center">
 <td width="160">
 <p align="right"><img alt="Current Guess"
 src="images/guess.png" align="middle" width="127" height="20"
 border="0"/></p>
 </td>
 <td><span jwcid="@Foreach" source="ognl:visit.game.letters"
 value="ognl:letter"><img jwcid="@Image"
 image="ognl:letterImage" alt="ognl:letterLabel" height="36"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/>

 <!--- Additional letters from the mockup --->
 <img height="36" alt="A" src="images/Chalkboard_1x1.png"
 width="36" border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_1x5.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/><img height="36" alt="_"

 b

 c

 d

 e

Developing the Guess page 67

 src="images/Chalkboard_5x1.png" width="36"
 border="0"/>

 </td>
</tr>
<tr>
 <td valign="top">
 <p align="right"><img alt="Choose" src="images/choose.png"
 height="20" width="151" border="0"/></p>
 </td>
 <td width="330"><a href="#"
 jwcid="select" class="select-letter"><img jwcid="@Image"
 image="ognl:guessImage" alt="ognl:guessLabel" height="36"
 src="images/Chalkboard_5x3.png" width="36"
 border="0"/>

 <!-- Additional selectable letters from the mockup. --->

 <img height="36" alt="B"
 src="images/Chalkboard_1x2.png" width="36" border="0"/>
 <img height="36" alt="C"
 src="images/Chalkboard_1x3.png" width="36" border="0"/>
 <img height="36" alt="D"
 src="images/Chalkboard_1x4.png" width="36" border="0"/>
 <img height="36" alt="-" src="images/letter-spacer.png"
 width="36" border="0"/>
 <img height="36" alt="F"
 src="images/Chalkboard_1x6.png" width="36" border="0"/>
 <img height="36" alt="G"
 src="images/Chalkboard_2x1.png" width="36" border="0"/>
 <img height="36" alt="H"
 src="images/Chalkboard_2x2.png" width="36" border="0"/>
 <img height="36" alt="I"
 src="images/Chalkboard_2x3.png" width="36" border="0"/>
 <img height="36" alt="J"
 src="images/Chalkboard_2x4.png" width="36" border="0"/>
 <img height="36" alt="K"
 src="images/Chalkboard_2x5.png" width="36" border="0"/>
 <img height="36" alt="L"
 src="images/Chalkboard_2x6.png" width="36" border="0"/>
 <img height="36" alt="M"
 src="images/Chalkboard_3x1.png" width="36" border="0"/>
 <img height="36" alt="N"
 src="images/Chalkboard_3x2.png" width="36" border="0"/>
 <img height="36" alt="O"
 src="images/Chalkboard_3x3.png" width="36" border="0"/>
 <img height="36" alt="P"
 src="images/Chalkboard_3x4.png" width="36" border="0"/>
 <img height="36" alt="Q"
 src="images/Chalkboard_3x5.png" width="36" border="0"/>

 e

 f

 g

68 CHAPTER 2

Getting started with Tapestry

 <img height="36" alt="R"
 src="images/Chalkboard_3x6.png" width="36" border="0"/>
 <img height="36" alt="S"
 src="images/Chalkboard_4x1.png" width="36" border="0"/>
 <img height="36" alt="T"
 src="images/Chalkboard_4x2.png" width="36" border="0"/>
 <img height="36" alt="U"
 src="images/Chalkboard_4x3.png" width="36" border="0"/>
 <img height="36" alt="V"
 src="images/Chalkboard_4x4.png" width="36" border="0"/>
 <img height="36" alt="W"
 src="images/Chalkboard_4x5.png" width="36" border="0"/>
 <img height="36" alt="X"
 src="images/Chalkboard_4x6.png" width="36" border="0"/>
 <img height="36" alt="-" src="images/letter-spacer.png"
 width="36" border="0"/>
 <img height="36" alt="Z"
 src="images/Chalkboard_5x2.png" width="36" border="0"/>

 </td>
</tr>
</table>
</body>
</html>

This Image component selects and displays the correct image identifying the
number of incorrect guesses remaining to the player.

The second Image component selects and displays an image for the man on the
scaffold, showing how many incorrect guesses the player has made so far.

These components display the target word, with underscores marking unguessed
letters within the word.

This portion of the template is marked for removal (using the special $remove$
value for the jwcid attribute). The tags within the exist for
WYSIWYG preview but must be removed because they conflict with the dynamic
content provided by d.

These components provide an array of clickable letters, allowing the player to
guess the next letter in the target word.

This portion of the template is also marked for removal.

This page was converted directly from the HTML mockup; the bulk of the tem-

plate consists of placeholder values (for the number of guesses, for the stick fig-

ure, for the partially guessed word, and for the grid of guessable letters) that will

actually be discarded in favor of dynamically generated HTML. We’ll go into

more detail on each portion of the HTML template shortly.

 g

 b

 c

 d

 e

 f

 g

Developing the Guess page 69

 Listing 2.9 is the page specification for the Guess page.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="hangman1.Guess">

 <component id="selectLoop" type="Foreach">
 <binding name="source" expression="visit.game.guessedLetters"/>
 <binding name="value" expression="letterGuessed"/>
 <binding name="index" expression="guessIndex"/>
 </component>

 <component id="select" type="DirectLink">
 <binding name="listener" expression="listeners.makeGuess"/>
 <binding name="parameters" expression="letterForGuessIndex"/>
 <binding name="disabled" expression="letterGuessed"/>
 </component>

 <context-asset name="digit0" path="images/Chalkboard_1x7.png"/>
 <context-asset name="digit1" path="images/Chalkboard_1x8.png"/>
 <context-asset name="digit2" path="images/Chalkboard_2x7.png"/>
 <context-asset name="digit3" path="images/Chalkboard_2x8.png"/>
 <context-asset name="digit4" path="images/Chalkboard_3x7.png"/>
 <context-asset name="digit5" path="images/Chalkboard_3x8.png"/>

 <context-asset name="scaffold5" path="images/scaffold.png"/>
 <context-asset name="scaffold4" path="images/scaffold-1.png"/>
 <context-asset name="scaffold3" path="images/scaffold-2.png"/>
 <context-asset name="scaffold2" path="images/scaffold-3.png"/>
 <context-asset name="scaffold1" path="images/scaffold-4.png"/>
 <context-asset name="scaffold0" path="images/scaffold-5.png"/>

 <context-asset name="space" path="images/letter-spacer.png"/>
 <context-asset name="dash" path="images/Chalkboard_5x3.png"/>

 <context-asset name="a" path="images/Chalkboard_1x1.png"/>
 <context-asset name="b" path="images/Chalkboard_1x2.png"/>
 <context-asset name="c" path="images/Chalkboard_1x3.png"/>
 <context-asset name="d" path="images/Chalkboard_1x4.png"/>
 <context-asset name="e" path="images/Chalkboard_1x5.png"/>
 <context-asset name="f" path="images/Chalkboard_1x6.png"/>
 <context-asset name="g" path="images/Chalkboard_2x1.png"/>
 <context-asset name="h" path="images/Chalkboard_2x2.png"/>
 <context-asset name="i" path="images/Chalkboard_2x3.png"/>
 <context-asset name="j" path="images/Chalkboard_2x4.png"/>
 <context-asset name="k" path="images/Chalkboard_2x5.png"/>

Listing 2.9 Guess.page: specification for the Guess page

 b

 c

 d

 e

70 CHAPTER 2

Getting started with Tapestry

 <context-asset name="l" path="images/Chalkboard_2x6.png"/>
 <context-asset name="m" path="images/Chalkboard_3x1.png"/>
 <context-asset name="n" path="images/Chalkboard_3x2.png"/>
 <context-asset name="o" path="images/Chalkboard_3x3.png"/>
 <context-asset name="p" path="images/Chalkboard_3x4.png"/>
 <context-asset name="q" path="images/Chalkboard_3x5.png"/>
 <context-asset name="r" path="images/Chalkboard_3x6.png"/>
 <context-asset name="s" path="images/Chalkboard_4x1.png"/>
 <context-asset name="t" path="images/Chalkboard_4x2.png"/>
 <context-asset name="u" path="images/Chalkboard_4x3.png"/>
 <context-asset name="v" path="images/Chalkboard_4x4.png"/>
 <context-asset name="w" path="images/Chalkboard_4x5.png"/>
 <context-asset name="x" path="images/Chalkboard_4x6.png"/>
 <context-asset name="y" path="images/Chalkboard_5x1.png"/>
 <context-asset name="z" path="images/Chalkboard_5x2.png"/>

</page-specification>

The <component> element is used to declare components. The type of compo-
nent and the configuration of the component’s parameters go here, in the page
specification.

The <context-asset> element defines an asset file that is stored within the web
application context. This first set of assets includes the digits used to display the
number of remaining incorrect guesses. These assets are given logical names
that are referenced in the Java page class.

The second group of <context-asset> elements defines the images used for the
stick figure.

The remaining <context-asset> elements define the images used for the letters of
the alphabet, as well as a blank space image and the underscore image (as dash).

This is a much longer specification than for the Home page, and it demonstrates

a couple of new features: the ability to define the type and configuration of com-

ponents in the specification rather than in the HTML template, and the ability to

define assets, which are named references to static files such as images or

stylesheets. Again, we’ll revisit the relevant portions of this specification shortly.

 Finally, listing 2.10 is the source for the Guess class: the Java class for the

Guess page.

package hangman1;

import org.apache.tapestry.IAsset;
import org.apache.tapestry.IRequestCycle;

 e

 b

 c

 d

 e

Listing 2.10 Guess.java: Java class for the Guess page

Developing the Guess page 71

import org.apache.tapestry.html.BasePage;

public class Guess extends BasePage
{
 private char _letter;
 private boolean _letterGuessed;
 private int _guessIndex;

 public void initialize()
 {
 _letter = 0;
 _letterGuessed = false;
 _guessIndex = 0;
 }

 public char getLetter()
 {
 return _letter;
 }

 public void setLetter(char letter)
 {
 _letter = letter;
 }

 public String getLetterLabel()
 {
 return ("" + _letter).toUpperCase();
 }

 public IAsset getLetterImage()
 {
 if (_letter == '_')
 return getAsset("dash");

 return getAsset("" + _letter);
 }

 public boolean isLetterGuessed()
 {
 return _letterGuessed;
 }

 public int getGuessIndex()
 {
 return _guessIndex;
 }

 public void setLetterGuessed(boolean letterGuessed)
 {
 _letterGuessed = letterGuessed;
 }

Resets page
properties

 b

Converts letter
property to an
image

 c

72 CHAPTER 2

Getting started with Tapestry

 public void setGuessIndex(int guessIndex)
 {
 _guessIndex = guessIndex;
 }

 public IAsset getGuessImage()
 {
 if (_letterGuessed)
 return getAsset("space");

 String name = "" + getLetterForGuessIndex();

 return getAsset(name);
 }

 public char getLetterForGuessIndex()
 {
 return (char) ('a' + _guessIndex);
 }

 public String getGuessLabel()
 {
 if (_letterGuessed)
 return " ";

 char ch = Character.toUpperCase(getLetterForGuessIndex());

 return new Character(ch).toString();
 }

 public void makeGuess(IRequestCycle cycle)
 {
 Object[] parameters = cycle.getServiceParameters();
 Character guess = (Character) parameters[0];

 char ch = guess.charValue();

 Visit visit = (Visit) getVisit();

 visit.makeGuess(cycle, ch);
 }
}

This method is invoked when the page is created and at the end of each request,
to reset any properties back to pristine values, ready for the next request.

This method creates a read-only, synthetic property, letterImage, that provides
the correct image for whatever the letter property currently is.

Likewise, this guessImage property returns the correct image based on the guess-
Index and letterGuessed properties.

Converts
guessIndex
property to
an image

 d

Listener
method
invoked when
a letter is
clicked

 e

 b

 c

 d

Developing the Guess page 73

This listener method is invoked when a letter image is clicked; it exists to deter-
mine the correct parameters to pass to the Visit object’s makeGuess() method.

Guess is a typical Tapestry page class; it contains properties and methods that

support the rendering of the page as well as listener methods activated by links

on the page.

2.4.1 Displaying the remaining guesses

The first dynamic bit is the part of the HTML template that displays the number

of incorrect guesses remaining to the player:

<img jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image='ognl:getAsset("digit" +
 visit.game.incorrectGuessesLeft)'
 height="36"
 src="images/Chalkboard_3x8.png"
 width="36" border="0"/>

This snippet has an array of responsibilities:

■ It must render an HTML tag and fill in a number of attributes

dynamically.

■ It must convert the incorrectGuessesLeft property of the Game object into
a string, as the alt attribute.

■ It must select the correct image file to display the number of guesses left

and build a URL to that file (as the src attribute).

Earlier we saw how the DirectLink component on the Home page inserted an

<a> tag into the response sent to the client web browser. The Image component,

another standard Tapestry component, is actually much simpler; it inserts an

 tag, generating the tag’s src attribute from its image parameter. Here we

want it to provide the correct image (one of the hand-drawn digits) and the cor-

responding alt value.

NOTE To support WYSIWYG editing, the HTML template uses an tag,
knowing that the component will, at runtime, render an tag. The
Image component will override the src attribute in the template, which
is also here just to help with the WYSIWYG preview of the template.

In a Tapestry template, each component must have properly balanced start and

end tags. An alternative, used here, is to include an XML-style empty tag, one

 e

74 CHAPTER 2

Getting started with Tapestry

that ends with />. Tapestry is flexible about attribute quoting; because the image

parameter’s expression uses double quotes, the entire expression is enclosed in

single quotes.

WARNING Match your open and close tags. You must supply a matching close tag
for each component’s start tag. Tapestry even checks that all the start
tags and end tags on a page properly nest (it is forgiving for all tags that
aren’t components). Changing the end of the tag from /> to just
> will result in the following exception: Closing tag </td> on line 13 is im-
properly nested with tag on line 12. Tapestry matched the </td> on
line 13 with the <td> on line 12 (before the tag) and realized that
the tag hadn’t yet been closed, even though it’s a component.

The first OGNL expression, visit.game.incorrectGuessesLeft, is very straight-

forward; it retrieves the incorrectGuessesLeft property from the Game object

(via the Visit object). The incorrectGuessesLeft property (a number) is con-

verted to a string and becomes the value for the tag’s alt attribute. In the

client web browser, this value becomes the tooltip for the image and is also used

for accessibility (visually impaired users may have the value read to them by

their computer).

 The other expression, for selecting the image is more complicated. It also

obtains the incorrectGuessesLeft property, but then it uses that value as a parameter

when invoking the getAsset() method on the page. This underscores why OGNL

is so useful and powerful; without OGNL, this access and manipulation would

have to occur in Java code. Using OGNL, we are able to assemble the complete

string and invoke a Java method, getAsset(), on our page, all in one step. The

invoked method returns the asset object representing the image to use, which is

ultimately converted into a URL by the Image component and inserted in the

HTML response as the src attribute of the tag.

NOTE Using OGNL expressions where possible allows you to assume a rapid
application development cycle, free from the normal edit/compile/de-
ploy cycle that occurs with Java code. You can simply edit your tem-
plates and specifications in place to see changes.4 Later, you can recode

4 It is possible to disable the normal caching that occurs inside Tapestry so that templates and specifi-
cations are reread for each new request. This allows changes to templates and specifications to take
effect immediately. Consult the Tapestry reference documentation, distributed with the framework,
for the details.

Developing the Guess page 75

OGNL expressions as Java methods for greater application efficiency.
Another good option, when not prototyping, is to move nontrivial
OGNL expressions into the page specification (an example of this is
shown in section 2.4.3); this results in a much improved separation of
the View from the Model and application logic, which ultimately yields a
more maintainable application.

Tapestry allows you, as the developer, to decide how pure a separa-
tion between the View and the Model you will maintain. At one extreme,
the pragmatic view, you may put as much logic (in the form of OGNL ex-
pressions) as you want directly into the HTML template. This pushes to-
gether purely presentation-oriented aspects of the application (such as
layout and fonts) with the behavioral aspects of the application (shown
in this example as references to page properties, including visit and
visit.game). Such an approach is perfectly acceptable for prototypes,
or for small projects where a strong separation between developers isn’t
realistic. Most of the examples in this book use this pragmatic approach
simply because it puts related information side by side, making it easier
to comprehend.

At the other extreme, the purist view, your HTML template contains
only placeholders for components; all details about the component con-
figuration are stored outside the template, in the page specification.
This is critical on larger projects, where a division can be expected be-
tween the HTML developers responsible for page mockups and the
Java developers responsible for converting the mockups into a working
application. Minimizing how much of the application’s implementation
is exposed to the HTML developers reduces the potential for conflicts
between the Java developers and the HTML developers.

Assets are any kind of file that may be distributed as part of the WAR; the most com-

mon types of assets are images and stylesheets. The Image component’s image

parameter expects an asset object (an object that implements the IAsset interface),

not a string, and this pairs up with the getAsset() method, which returns just such

an object. The getAsset() method is inherited from the AbstractComponent base

class; it allows access to the named assets defined in the page specification.

 The names of the assets come from the <context-asset> elements in the page

specification (in listing 2.9). What’s happening is a mapping from a logical name

(such as x or dash) to a particular file (such as images/Chalkboard_4x6.png or

images/Chalkboard_5x3.png). The assets abstraction has some other important

uses related to localization and to packaging components into reusable libraries.

Those uses are covered in more detail in chapters 6 and 7.

76 CHAPTER 2

Getting started with Tapestry

Defining assets in the page specification

The page specification for the Guess page declares assets for the letters, digits,

and underscore as well as all the images of the stick figure on the gallows. The

Guess page specification includes the following lines to declare the six digits

used in the user interface:

<context-asset name="digit0" path="images/Chalkboard_1x7.png"/>
<context-asset name="digit1" path="images/Chalkboard_1x8.png"/>
<context-asset name="digit2" path="images/Chalkboard_2x7.png"/>
<context-asset name="digit3" path="images/Chalkboard_2x8.png"/>
<context-asset name="digit4" path="images/Chalkboard_3x7.png"/>
<context-asset name="digit5" path="images/Chalkboard_3x8.png"/>

WARNING Tapestry checks that a file matching the provided asset path exists.5

This check occurs when the page specification is first read and takes
place regardless of whether anything ever uses the asset. Putting a typo
into one of the names in the previous snippet results in the following
exception: Unable to locate asset ‘digit0’ of component Guess as context:/imag-
es/Challkboard_1x7.png.

Here, we can see how the aliasing is useful. The letters and numbers were ini-

tially drawn onto a grid, and a slicing tool was used to generate a set of individ-

ual files from the cells of the grid. The filenames provided by the slicing tool are

not intuitive (they are based on the position in the grid, rather the value of the

image, and so are somewhat arbitrary), but the use of assets allows the code to

reference them using more friendly names. Of course, we could have simply

renamed the files output by the slicing tool, but by leaving the names as is, we

can change the original letter grid image and then use the same slicing tool to

regenerate all the images without having to go through the painful renaming

process a second time. Tapestry has provided a little bit of abstraction and flexi-

bility that ultimately makes the build process for this application more agile,

because an annoying manual step (renaming the files) is not necessary.

 Assets also provide a separation of concerns, dividing the HTML developers

from the Java developers. For example, an HTML developer may decide to redo

the graphics for the page and use a new tool to generate the images of the dig-

its—which would result in new filenames, possibly even new types (perhaps GIF

or JPEG), but no change to the logical names of the assets. Either the HTML

5 This applies to the context assets defined here and the private assets we’ll discuss in chapter 6. A third
asset type, the external asset, is not checked.

Developing the Guess page 77

developer or the Java developer would need to update the page specification to

change the filenames, but there would be no change to the HTML template or

even to the Java class (if the Java class ever accessed any assets by name).

 Now that we have a way of mapping from logical names to actual asset files,

we still need a way to figure out which logical name, and thus, which asset,

should be used when displaying the remaining guesses.

Calculating the right asset

Displaying the digit image is a matter of selecting the correct asset as the image

parameter to the Image component. This occurs in the HTML template using an

OGNL expression:

image='ognl:getAsset("digit" + visit.game.incorrectGuessesLeft)'

Here, OGNL has done something fairly complex: building up the name of the

asset and invoking the page’s getAsset() method. There are penalties, however:

This chunk of text is somewhat unwieldy and forces us to use single quotes, since

the expression itself contains double quotes. Putting OGNL expressions into your

template, especially expressions of this complexity, is not much better than put-

ting Java scriptlets into a JSP: Such OGNL expressions strongly tie together the

presentation of the page with the implementation.

 One option would be to move more of this logic into equivalent Java code.

This can be easily accomplished by referencing a new, read-only property in the

HTML template:

<IMG jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image="ognl:digitImage"
 height="36"
 src="images/Chalkboard_3x8.png"
 width="36" border="0"/>

We would then implement an accessor method for this new digitImage property

in the Guess class:6

public IAsset getDigitImage()
{
 Visit visit = (Visit)getVisit();
 int guessesLeft = visit.getGame().getIncorrectGuessesLeft();

 return getAsset("digit" + guessesLeft);
}

6 Because this approach is only hypothetical, you won’t see this method in the Guess class in listing 2.10.

Reference to the page’s
digitImage property

78 CHAPTER 2

Getting started with Tapestry

Another option, which we’ll explore shortly, is to move the OGNL expression into

the page specification. The decision to use OGNL expressions, Java code, or

some mix of the two is left to you, according to your personal taste and the par-

ticular situation. The modest runtime performance penalty for using OGNL is

easily offset by increased developer productivity.

Using informal component parameters

If you check the description for the Image component in appendix C, you’ll see

that it defines two possible parameters: a required image parameter and an

optional border parameter. However, if you run the application and view the

source of the page, you’ll see that the other attributes included in the tag

in the template (alt, width, and height) are still present in the tag ren-

dered by the Image component. How can this be?

 The majority of Tapestry components, including Image and DirectLink, allow

informal parameters. Informal parameters are additional parameters for the com-

ponent beyond those that are formally declared by the component. These addi-

tional parameters are simply added to the rendered tag as additional attributes.

Informal parameters can be unevaluated static values, such as for width, or

expressions, such as for alt. Some informal parameters are discarded so that

they don’t conflict with attributes rendered directly by the component. For exam-

ple, it doesn’t matter that the template provides a value for the src attribute (in

the tag for the Image component); the value in the template is discarded

because the Image component will itself generate an src attribute from the asset

provided in the image parameter. The src value in the template exists to support

WYSIWYG previewing of the template; its value is discarded in favor of the real,

dynamic URL computed on the fly in the live application. Only components that

map directly to an HTML tag will accept informal parameters; each component

indicates within its own component specification whether it accepts or discards

informal parameters.

 So, when the Image component renders, it will mix and match the informal

parameters with the HTML attributes it generates from formal parameters. This

is a capability missing from JSP tags, where specifying an undeclared JSP tag

attribute is simply an error. With JSP tags, you are limited to just the attributes

explicitly declared for the tag, no more.

Displaying the right stick figure image

Continuing with the rest of the Guess page, the next dynamic section of the

HTML template is also related to the incorrectGuessesLeft property; it is used

Developing the Guess page 79

to display one of several images for the gallows, showing increasing amounts of

the stick figure as the incorrectGuessesLeft property drops toward zero.

<img jwcid="@Image"
 image='ognl:getImage("scaffold" +
 visit.game.incorrectGuessesLeft)'
 alt="[Scaffold]"
 src="images/scaffold.png"

 border="0"/>

Again, we use the same trick; we come up with a logical name for the image

asset and map that logical name to an actual file by way of the <context-asset>

elements in the page specification. This is a good, simple example of the MVC

pattern in action; the Model in this case is the Game object and its incorrect-

GuessesLeft property, but there are two Views of the data: the first as a digit, the

second as the stick figure on the gallows.

 The remaining dynamic portions of the page are more complex and require

using multiple components in concert to produce the desired output.

2.4.2 Generating the guessed word display

The next section of the Guess page displays the target word the player is

attempting to guess, or at least as much of the target word as the player has

guessed so far. Generating this portion of the page starts with the Game object,

which has a property, letters, for just this purpose. The letters property is an

array of each letter of the target word as an individual character. Each unguessed

letter in the target word is replaced with an underscore character.

 As with the previous examples, we can’t simply output the individual letters as

characters. To keep the hand-scrawled look and feel, each letter must be trans-

lated to the correct image. The template uses two different components to gen-

erate the display: a Foreach component (which performs a kind of loop)

enclosing another Image component. The two components work together to dis-

play one letter after another.

<span jwcid="@Foreach"
 source="ognl:visit.game.letters"
 value="ognl:letter">
<img jwcid="@Image"
 image="ognl:letterImage"
 alt="ognl:letterLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

80 CHAPTER 2

Getting started with Tapestry

Looping with the Foreach component

Foreach is a looping component; it iterates over the list of values provided by its

source parameter7 and updates its value parameter for each value from the

source before rendering its body. This is a crucial feature of Tapestry component

parameters; by binding a property to a component parameter, the component is

free not only to read the value of the bound property, but also to update the

property as well.

 The Foreach component is represented in the template using a tag,

which is very natural: The HTML tag is simply a container of other text

and elements in a page. It doesn’t normally display anything itself, but is com-

monly used in conjunction with a stylesheet to control how a portion of a page

is rendered.

 Although the Foreach’s location in the template is specified using a

tag, when it renders, it does not produce any HTML directly; it simply renders

the text and components in its body repeatedly. The sequence is shown in

figure 2.7.

 So, the Foreach component will render its body many times, but that doesn’t

help the Image component display the correct letter image. Just before the

Foreach renders its body (on each pass through the loop), it sets a property of the

page to the next letter in the word (from the array of characters provided by the

Game object). The trick is to convert this letter into the correct image. The Guess

page class includes a property, letter, which is bound to the Foreach compo-

nent’s value parameter so that it can be updated by the Foreach:

private char _letter;

public char getLetter()
{
 return _letter;
}

public void setLetter(char letter)
{
 _letter = letter;
}

7 The Foreach component is flexible about how it defines “a list of values.” It may be an array of objects,
or a java.util.List, or even a single object (which is treated like an array of one object).

Developing the Guess page 81

NOTE In chapter 3, we’ll see how Tapestry can automatically create properties
at runtime (and the benefits of doing so beyond less typing). For now,
we’ll mechanically code these properties ourselves by supplying the in-
stance variable and pair of accessor methods.

Figure 2.7 The Foreach component reads a list of values bound to its source

parameter from a domain object (which is often the page that contains the

component). For each item in the list, it updates a domain object property bound

to its value parameter, and then renders its body. Components within its body

can get the value from the domain object property.

82 CHAPTER 2

Getting started with Tapestry

Translating letters to images

Once again, we are using assets to obtain the correct image to display within the

page. The assets for the letters a through z are named, simply, a through z. How-

ever, there’s a gotcha for the underscore character; its asset name is dash.

 The Guess page class implements another method to provide the asset to display:

public IAsset getLetterImage()
{
 if (_letter == '_')
 return getAsset("dash");

 return getAsset("" + _letter);
}

This simple method captures the special rule about replacing the underscore

character with the asset named dash. The Foreach component is responsible for

invoking setLetter() with the correct letter well before getLetterImage() is

invoked by the Image component.

NOTE Because this method is public and follows the naming convention for a
JavaBeans property, it can be referenced in the HTML template as
ognl:letterImage. This is a common approach in Tapestry—creating
synthetic properties, properties that are computed on the fly, rather than
just exposing a value in an instance variable.

The letters in the list (provided by the Game object) are all lowercase, but the tool-

tip (generated from the tag’s alt attribute) looks better if the letter is

uppercase. This is another, minor example of the Controller (the page) mediat-

ing between the Model (the Game object) and the View (the Image component

within the HTML template). This case conversion is accomplished by binding the

value for the alt parameter to the letterLabel property of the page. The

getLetterLabel() accessor method simply converts the letter to uppercase and

returns it as a string:

public String getLetterLabel()
{
 char upper = Character.toUpperCase(_letter);

 return new Character(upper).toString();
}

Removing unwanted portions of the template

If you examine the complete HTML template in listing 2.4, you’ll see that just

after the tag for the Foreach component is a long chunk of additional

Developing the Guess page 83

images—images for additional letters from the target word, as dashes. These

images were copied over from the original HTML mockup and are left in place so

that the HTML template will still preview properly. Without these additional

images, the target word will appear as a single underscore, which may not be

enough to validate the layout of the page. At the same time, these extra images

must not be included in a live, rendered page or the target word will appear to

be six letters longer than it actually is.

 Earlier, you saw that Tapestry will drop unwanted HTML attributes that are

provided in HTML tags to support WYSIWYG preview. This is a larger case, where

an entire section of HTML is dropped. The block to be removed is surrounded by

a tag:

 . . .

The special component ID, "$remove$", is the trigger for Tapestry’s template

parser that this portion of the HTML template should be discarded. This is a

second aspect of instrumenting an HTML mockup into an HTML template:

marking portions of the mockup for removal, yet leaving them in for preview-

ing purposes.

 So far on this page, we’ve covered just output-only behaviors: displaying

the right digit image, or the right letter from the target word. The most

involved part of the page comes next—the part that allows players to select

letters to guess.

2.4.3 Selecting guesses

This portion of the page is a grid of letters that the player may click on to make

guesses. As usual, the letters are represented as images, to keep with the hand-

scrawled look and feel. As the player makes guesses, the guessed letter is erased,

and one or more positions in the target word are filled in or another segment is

added to the stick figure.

 To accomplish this, we’ll use a combination of components: another Foreach

to iterate over the different letters of the alphabet, a DirectLink to create a

link, and an Image to display either the image for the letter or the image for a

blank space for an already guessed letter. The three components appear in the

HTML template:

<a href="#"
 jwcid="select"
 class="select-letter">
 <img jwcid="@Image"

84 CHAPTER 2

Getting started with Tapestry

 image="ognl:guessImage"
 alt="ognl:guessLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

Two of these components look a little sparse compared to previous examples;

that’s because we’ve chosen to use the declared component option for them

rather than configure them in-place as implicit components. For a declared com-

ponent, we just put the component ID in the HTML template. Tapestry recog-

nizes that the value for the first jwcid attribute is just an ID and not a

component type, because it does not contain the @ character (as the previous

usages of components have done). For a declared component, the element in the

HTML template is simply a placeholder; the jwcid attribute provides a compo-

nent ID that is used to link to a <component> element in the page specification.

The type and configuration of the component is provided in the page specifica-

tion itself:8

<component id="selectLoop" type="Foreach">
 <binding name="source" expression="visit.game.guessedLetters"/>
 <binding name="value" expression="letterGuessed"/>
 <binding name="index" expression="guessIndex"/>
</component>

<component id="select" type="DirectLink">
 <binding name="listener" expression="listeners.makeGuess"/>
 <binding name="parameters" expression="letterForGuessIndex"/>
 <binding name="disabled" expression="letterGuessed"/>
</component>

The information that goes into the specification is the same as what would be put

directly into the HTML template, but the format is slightly different. In the

HTML template, we must mark OGNL expressions with the ognl: prefix; but in

the XML we have a specific element, <binding>, that is always an OGNL expres-

sion (other elements are used for literal strings and other variations). There is no

difference to Tapestry whether a component is declared in the specification or in

8 The template may still specify additional formal and informal parameters. In keeping with the goal
to provide the clearest separation of presentation and logic, the informal parameters, which are most
often related purely to presentation, should go in the template, and the formal parameters, which are
most often related to the behavior of the component, should go in the page specification.

Developing the Guess page 85

the HTML template; here, the sheer number of parameters for the two compo-

nents indicated that specification was a better home for the component configu-

ration than the HTML template.

WARNING Mistakenly using the ognl: prefix inside a page or component specifica-
tion will create an OGNL expression that is invalid. You’ll see an exception,
such as Unable to parse expression ‘ognl:visit.game.guessedLetters’. The fact that
the ognl: prefix shows up in the exception message as part of the expres-
sion is the indicator that you included the prefix where it is not allowed.

Once again we are combining the behaviors of different components and using

the page to mediate between them. We are also making use of new features of

the Foreach and DirectLink components by binding additional parameters of

the components.

Getting the images for the letters

The source of all this data is the guessedLetters property of the Game object; this

is an array of 26 flags, one for each letter in the alphabet. Initially, all the flags

are false, but as the player makes guesses, the corresponding flags are set to true.

 The Foreach component will loop through the 26 flags and set the letter-

Guessed property of the page to true or false on each pass through the loop. In

addition, binding the index parameter of the Foreach component directs it to set

the guessIndex property of the page. This value starts at zero and increments

with each pass through the loop. The other components simply translate from

this ordinal value to a letter in the range of a to z. This functionality is imple-

mented by additional properties and methods in the Game class, as shown in the

following snippet:

private boolean _letterGuessed;
private int _guessIndex;

public boolean isLetterGuessed()
{
 return _letterGuessed;
}

public void setLetterGuessed(boolean letterGuessed)
{
 _letterGuessed = letterGuessed;
}

public int getGuessIndex()

86 CHAPTER 2

Getting started with Tapestry

{
 return _guessIndex;
}

public void setGuessIndex(int guessIndex)
{
 _guessIndex = guessIndex;
}

public char getLetterForGuessIndex()
{
 return (char) ('a' + _guessIndex);
}

Getting the right letter image for the current letter within the loop is very similar

to the previous examples. Although the dash will never occur, we do have to sub-

stitute a blank image for any letter that has already been guessed:

public IAsset getGuessImage()
{
 if (_letterGuessed)
 return getAsset("space");

 String name = "" + getLetterForGuessIndex()

 return getAsset(name);
}

That covers how we get the image for each letter display, but what about the link

that the player uses to make a guess?

Handling the links for guesses

Were we to display the link for guesses using ordinary servlets, we’d define a

query parameter whose value is the letter selected; that is, we would encode the

letter into the URL. Since we’re using Tapestry, we don’t want to think in terms of

query parameters, but instead, we want to think of objects and properties—but

we still want the URL to carry this piece of information. When we render the link,

we know which letter the link is for, and when the link is clicked, we need that

information back. In Tapestry terms, we need to invoke a specific listener

method (as before on the Home page) but also propagate along some additional

data: the letter selected by the player.

 We’ll use a DirectLink component, as we did with the link on the Home page,

but with two differences. First, we only want to display the link itself (the <a> and

 tags) some of the time; we want to omit the link for letters that have already

been guessed (the positions that show up as blank space), because letters may

Developing the Guess page 87

only be guessed a single time. Second, we need a way to know which letter has

been selected. The DirectLink component includes formal parameters to satisfy

both of these needs.

 The disabled parameter is used to control whether the link renders the <a>

and tags. The disabled parameter is optional, and by default, the link is

enabled. A DirectLink component will always render its body, regardless of the

setting of the disabled parameter. The Guess page binds the disabled parame-

ter to the letterGuessed property of the page—the same property that is set by

the Foreach component and used in the getGuessImage() method:

<binding name="disabled" expression="letterGuessed"/>

This ensures that once a letter has been guessed, there will not be another link

for that letter. Shortly, we’ll see how we also ensure that the guessed letter is

replaced by a blank space. Once again, we are working at the level of objects and

properties, and not treating all of this HTML rendering as just a text processing

problem. A common, ugly “JSP-ism” is to use embedded scriptlets to avoid writ-

ing the open and close tags, wrapping the <a> and tags inside conditional

blocks, which can be a messy affair.

 The DirectLink embodies the Tapestry philosophy, solving a similar problem

using JavaBeans properties and Tapestry component parameters. Every compo-

nent decides, in its own code, whether to render; the DirectLink has a small con-

ditional statement to control whether an <a> element is rendered—but that’s

Java code in a Java file, not cluttering up a JSP. The end result is a cleaner, sim-

pler, easier-to-use solution.

 To identify which letter is actually clicked by the player, we will use yet

another component parameter, named parameters. We can bind a single value,

or an array, or a java.util.List to the parameters parameter, which, like the

disabled parameter, is optional (we didn’t use it before with the Start link on the

Home page). The collection of values provided by the parameters parameter is

recorded into the URL constructed when the DirectLink component renders.

When the link is submitted, the array of parameters is reconstructed and is avail-

able to the listener method.

 For this case, we use a single value, provided by the property letterForGuessIndex:

<binding name="parameters" expression="letterForGuessIndex"/>

Each time the DirectLink component renders, within the Foreach component

loop, the value for the letterForGuessIndex property will reflect the current letter

88 CHAPTER 2

Getting started with Tapestry

in the loop and the URL written into the HTML response will be different, as a

portion of the URL will be an encoding of the letterForGuessIndex property.

 When the link is clicked, the listener method can get the parameters back:

public void makeGuess(IRequestCycle cycle)
{
 Object[] parameters = cycle.getServiceParmeters();
 Character guess = (Character) parameters [0];

 char ch = guess.charValue();
 Visit visit = (Visit) getVisit();

 visit.makeGuess(cycle, ch);
}

The parameters encoded into the URL by the DirectLink are available in the lis-

tener method as an array of object instances, which can be obtained from the

getServiceParameters() method of the IRequestCycle object. Even when, as in

this case, there’s only a single parameter value, an array is returned. The lone

character value is the first and only element in the array.

 In addition, the value has been converted from a scalar type, char, to a wrap-

per object type, Character, but it is a simple chore to convert it back. The param-

eter value is not simply converted to a string; it retains its original type (which is

encoded into the URL along with the value). You can see a bit of this in the web

browser’s Address field in figure 2.1; the URL shown contains much information

used by Tapestry, but at the end is cp, an encoding of character p (the player had

just clicked the letter P). Chapter 7 discusses how Tapestry encodes information

into URLs.

 From here, it’s simply a matter of obtaining the Visit object and letting it do

the rest of the processing of the player’s guess, which may result in a win or a loss

or more guessing. Because we pass the request cycle to the Visit, this object is

fully capable of selecting which page will render the response by invoking the

activate() method on the request cycle.

 Adding this new interaction, the handling of guesses by the player, involved

little more than creating the new listener method and pointing the DirectLink

component at the method. Without Tapestry, this same functionality would

entail not only writing a servlet and registering it into the web deployment

descriptor, but also creating code to generate the hyperlink in the first place.

This latter code could take the form of Java scriptlets in the JSP, or a new JSP

tag in a JSP tag library. In either case, the HTML in the JSP file would deviate

Configuring the web.xml deployment descriptor 89

further from ordinary HTML, and the ability to preview the web page would be

diminished. With Tapestry, the HTML template will continue to look and act

like standard HTML.

 Instead, we are making use of existing components, the DirectLink, and a

consistent approach to encoding data into the URL. Once again, we’re seeing the

consistency goal: Anywhere in the application where we have a link that needs to

pass along some data in the URL, we can use and reuse the same tool, the

DirectLink component and its parameters parameter. In addition, because Tap-

estry properly encodes the data type with the data (rather than just converting

all the parameters to strings), we can consistently pass any type of data in the

URL: strings, characters, numbers, or even custom objects.

 That wraps up the Guess page; we’ve discussed how to extract information

from the Game domain object and present it in various ways and also figured out

how to react to user input. We’ve kept the domain logic (in the Game and Word-

Source objects) separate from the presentation logic (the Guess page class,

HTML template, and page specification), using listener methods and the Visit

object as the bridge between the two aspects.

2.5 Developing the Win and Lose pages

The other two pages in the application, Win and Lose, are displayed when the

player successfully guesses the word, or when the player exhausts all his or her

incorrect guesses. There is nothing new on these pages; they duplicate bits and

pieces of the Home and Guess pages. In fact, there’s a bit of unwanted duplica-

tion in the HTML templates: the Java code and the page specifications. In

chapter 6 we’ll see how easy it is to create new components that encapsulate

this functionality and remove this duplication. Remember: More code means

more bugs!

 Our Hangman application is nearly complete; all that’s left is to fulfill our

contract with the servlet container and create a deployment descriptor for the

Hangman application WAR.

2.6 Configuring the web.xml deployment descriptor

All of these HTML templates and page specifications do not automatically

become a web application. We still need a servlet to act as the bridge between the

Servlet API and the Tapestry framework. Fortunately, this does not require any

coding, since the framework includes the necessary servlet class. All that’s neces-

Summary 91

deployment descriptor will be detected immediately at startup; this is an even bet-

ter idea for more advanced applications that use an application specification.9

2.7 Summary

In this chapter, we’ve seen the basics of creating a web application using Tapes-

try. A Tapestry application is divided into individual pages; those pages are con-

structed by combining components, an overall HTML template, and a small

amount of Java code. Tapestry leverages the Model-View-Controller pattern to

isolate domain logic from the user interface. We’ve also begun to see the “light

touch” of Tapestry, where simple properties and short Java methods are woven

together to create very complex, dynamic, interactive user interfaces.

 This simple application demonstrates some of the key patterns that occur

when developing in Tapestry. It shows how components interact with each other

by reading and setting properties. It shows how the page can act as a Controller,

coordinating the domain logic and mediating between its embedded compo-

nents. We’ve also demonstrated how easy it is to add new interactions to a page,

in the form of listener methods.

 We’ve begun to demonstrate how Tapestry, by excusing developers from mun-

dane “plumbing” tasks, really frees up developer energies. It enables you to

implement more complicated behaviors in much less time and be more confi-

dent that your code is bug free. Tapestry can give projects the one thing money

truly can’t buy: time—time to test and debug back-end code, time to locate and

fix performance problems, even time to add new features.

9 Application specifications are an optional file described in chapter 6. They are needed only to access
some advanced feature of Tapestry, such as referencing a component library.

TEAM LinG - Live, Informative, Non-cost and Genuine!

92

Tapestry and
HTML forms

This chapter covers

■ How HTML forms work

■ Creating simple forms using Tapestry

components

■ Creating page properties using property

specifications

■ Creating forms containing loops

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding HTML forms 93

Handling links and images is a good start, but the lifeblood of any real web appli-

cation is the HTML form. Individual links, as in the Hangman example from chap-

ter 2, provide a limited form of interactivity: Users will click a link, or they won’t.

HTML forms provide a rich form of expression for the user—the ability to enter

specific values in fields, whether by typing in a text field, clicking a check box, or

selecting an option from a drop-down list.

 Tapestry’s approach to handling HTML forms follows its general philosophy

of hiding the details of HTTP and the Servlet API and operating in terms of

objects, methods, and properties. In Tapestry, a group of components work

together when a form is submitted to update page properties before invoking a

listener method.

 In this chapter, we’ll cover components for creating basic HTML form ele-

ments, including text fields, radio buttons, and check boxes. In chapter 4, we’ll

examine more advanced form-related components that include additional cli-

ent- and server-side support. Chapter 5 discusses Tapestry components devoted

to validating user input.

 The source for the examples for this chapter and the following chapters is

available online (see appendix B). Once you deploy the samples into Tomcat,

you can access them by opening a web browser to http://localhost:8080/examples/

app. You will find a listing of the examples, organized by chapter.

3.1 Understanding HTML forms

HTML forms allow us to gather complex information from users of our web

applications. The use of forms is ubiquitous on the Web. Without support for

forms, the Web would never have exploded; limited to just hyperlinks, it would

likely have stayed as passive, static hypertext—an interesting toy, but with no

possibility of creating an Amazon or an eBay. Without forms, there would be no

way to build any of the interesting e-commerce, content management, or com-

munity sites.

 HTML forms are significantly different from forms within a desktop applica-

tion. In a desktop application, each component (text field, check box, push but-

ton) interacts with the application completely independently of the others. The

user may update one field without changing the value for another field. The

code for a desktop application is informed of every key press or mouse click, a

luxury not possible with HTML forms. HTML forms are displayed to the user,

who may use the mouse or the Tab key to move between the form controls and

enter values. When the user clicks the submit button, the values for all of the

TEAM LinG - Live, Informative, Non-cost and Genuine!

94 CHAPTER 3

Tapestry and HTML forms

fields and controls within the form are packaged together in a single request to

the server. The server sees only the final result, not the individual mouse move-

ments and key presses, or even the individual changes to fields.

 Within an HTML form, various HTML elements work together. The outer-

most element, <form>, groups together the many other elements it encloses

between its start and end tags. Other elements within <form> are used to create

types of form controls; these are listed in table 3.1.

Each of these form control elements has a name attribute. When the form is sub-

mitted, the value for each control is submitted as a query parameter using the

control’s name. Figure 3.1 shows how this comes together; when the page con-

taining the form is rendered, a name is assigned to each element. Once the form

is submitted, these values are provided in the form submission and available

through the Servlet API’s HttpServletRequest object. Figure 3.1 shows a single

form; beginning at the top center, the form starts as HTML: <form> and <input>

tags. The client web browser uses these to construct form controls (radio buttons,

text fields, and so forth) for the user to directly interact with. When the user fin-

ishes entering information and clicks the submit button, the request includes the

values for those fields as query parameter values. Within the Servlet API, those

query parameters are accessible via the HttpServletRequest object.

Table 3.1 Elements used to create form controls

HTML element Control type

<input type="checkbox"> Check box (toggles on or off)

<input type="radio"> Radio selection (user selects one value from a list of values)

<input type="text"> Simple text input field

<input type="password"> Password field (text field where user input is obscured)

<input type="hidden"> Hidden field (not visible to the user)

<input type="submit"> Form submit button; sends the request to the server

<input type="reset"> Reset button; returns all fields to initial values

<input type="image"> Image map field; submits form and identifies where, within the

image, the user clicked

<input type="file"> File upload

<select> Drop-down list or multiple-selection list

<textarea> Multiline text input field

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding HTML forms 95

In a servlet application, the next step is to access those query parameters and use

them to update domain object properties. (This may involve some conversions,

such as parsing string values into numbers.) One of the stumbling blocks when

you’re using servlets is ensuring that the form control names used in the Java-

Server Page (JSP) match the query parameter names referenced in the servlet

code. With servlets, you are responsible for coming up with appropriate names

and keeping the JSP and the servlet synchronized with respect to those names.

Expecting form control names in the JSP to stay synchronized with Java code in a

servlet is an example of weak binding (discussed in chapter 1) between the JSP

and the servlet.

 Tapestry adds a layer beyond the query parameters—a layer of components.

The form control components read page properties when rendering the initial

HTML. The same components come back into play when the form is submitted

to read the query parameters and update the page properties.

 The framework takes care of all the mundane plumbing: providing names for

form control elements, writing HTML, and reading query parameters. There is

never a danger of the HTML template for a form getting out of synchronization

Figure 3.1 The form and the data it contains are represented in different ways at different times.

The form starts as HTML sent via HTTP to the web browser. The web browser displays controls the

user can interact with. The form submission contains the values entered by the user, which finally

show up as Java objects.

TEAM LinG - Live, Informative, Non-cost and Genuine!

96 CHAPTER 3

Tapestry and HTML forms

with the code that handles the form submission because that logic is distributed

into the very components that render the form’s HTML in the first place.

 All of this means that by the time your form’s listener method is invoked, the

components will have already updated all of your domain objects’ properties to

match the values entered by the user. The listener method can simply use those

properties to accomplish the operation the form is intended for, whatever that

may be.

 To appreciate how all these concepts fit together, we’ll start with a simple exam-

ple before getting into the nitty-gritty of the individual Tapestry components.

3.2 Creating a simple login form

One of the most common, and basic, uses of HTML forms is to authenticate a

user: collecting a username and password to identify the specific user to the

application. An e-commerce application will need to know who, specifically, the

user is before processing an order; most other categories of applications have a

similar need to know the identity of the user. We’ll start our discussion of Tapes-

try HTML form support with a simple version of such a form, shown in figure 3.2.

The HTML template for this page is provided in listing 3.1.

Figure 3.2 The Login page after the user has entered an incorrect username

and password.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a simple login form 97

<html jwcid="@Shell" title="Login">
<body>

Error Message

<p/>

<form jwcid="@Form" listener="ognl:listeners.login">

<table>
<tr>
 <th>User Name:</th>
 <td>
 <input type="text" jwcid="@TextField"
 value="ognl:userName"
 size="30"/></td>
</tr>
<tr>
 <th>Password:</th>
 <td>
 <input type="password" jwcid="@TextField"
 value="ognl:password"
 hidden="ognl:true"
 size="30"/>
 </td>
</tr>
<tr>
 <td><input type="submit" value="Login"/></td>
</tr>
</table>

</form>

</body>
</html>

The Shell component is a standard Tapestry component for rendering the
<html>, <head>, and <title> elements. It has a number of other uses, as you’ll see
later, such as simplifying references to Cascading Style Sheets (CSS).

Listing 3.1 Login.html: HTML template for the Login page

 b

 c

 d

 e

 f

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

98 CHAPTER 3

Tapestry and HTML forms

If there is an error, such as an unrecognized password, then the page will be
redisplayed with a non-null value in its message property. This block of the tem-
plate is used to format and display that message.

A Form component, not a simple <form> element, must be used, and must
enclose the other form control components. The component will render the URL

for the form submission, in much the same way as a DirectLink component. The
provided listener will be invoked when the form is submitted.

The TextField component will read the userName property when the page ren-
ders. When the form is submitted, it will update the same property.

This TextField component is configured, via its hidden parameter, as a password
field. Tapestry uses one component, TextField, for both ordinary and password
text fields.

Like the DirectLink component used in the Hangman application in chapter 2, a

Form component has a listener parameter bound to an application-provided

listener method. This particular Form component encloses some static HTML

and two form control components. Both of these components are TextFields.

The first TextField component edits the userName property of the page. The sec-

ond TextField component edits the password property of the page and also ren-

ders as a password field (where the characters typed by the user are not visible).

As in previous examples, additional attributes are provided so that the element

will preview correctly in an HTML editor.

 In most web application frameworks (including Jakarta Struts), you are

responsible for orchestrating things so that the names of HTML form elements

(and thus the names of query parameters supplied when the form is submitted)

match the names of domain object properties. This kind of “engineered coinci-

dence” creates unwanted dependencies between the text fields and the domain

objects and can open up other limitations. (For example, what if there is no spe-

cific property? What if different fields update different objects?) Tapestry avoids

these dependencies; the component ID, the name of the query parameter, and

the Object Graph Navigation Language (OGNL) expression used to read and

update the property will all be different, and the developer will be concerned

only with the OGNL expression.

 We’ve also introduced two new components that are not related to forms. The

Shell component is a handy shortcut for outputting the <html>, <head>, and

<title> elements for a page. The Conditional component evaluates a condition

(an OGNL expression) and either renders its body (the portion of the page tem-

plate enclosed by its start and end tags) or skips over its body. Here, the Condi-

tional component is used to display an error message if the message is not null.

 c

 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a simple login form 99

Conditional is very flexible as to what types are acceptable for its condition

parameter. Here the parameter is bound to a string property, and the Condi-

tional treats null or the empty string as false and a non-empty string as true.

 As with the Hangman application pages in chapter 2, understanding the

Login page involves more than just the HTML template; the application-specific

code for the form submission is in the Java class.

3.2.1 Implementing the Login page class

Listing 3.2 shows the Java side of the form: the implementation of the Login

page class and, specifically, the listener method invoked by the Form component.

package examples;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;

public abstract class Login extends BasePage
{
 public abstract String getUserName();
 public abstract String getPassword();
 public abstract void setMessage(String message);

 public void login(IRequestCycle cycle)
 {
 if (isValidLogin(getUserName(), getPassword()))
 {
 cycle.activate("Main");
 return;
 }

 setMessage("Invalid user name or password.");
 }

 private boolean isValidLogin(String userName, String password)
 {
 return "tapestry".equalsIgnoreCase(userName);
 }

}

These methods are abstract because Tapestry will create the actual properties at
runtime (it will create a subclass with the necessary methods and fields). This is
controlled by the page’s specification.

Listing 3.2 Login.java: Java class for the Login page

 b

 c

 d

 e

 f

 g

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

100 CHAPTER 3

Tapestry and HTML forms

The listener method is invoked when the form is submitted, after the properties
have been updated.

The abstract methods are used to access the information submitted with the form.

On success, the Main page is activated; a real application would do a lot more
bookkeeping here.

On error, the message property is updated. The active page is not changed, so
the Login page will be redisplayed (showing the error message, and the user-
name and password entered by the user).

This is just a placeholder for the work a real application would perform; presum-
ably, the code would use information in a database to authenticate that the user-
name is known and that the password is valid.

By the time the Form’s listener method has been invoked, the properties of the

page (userName and password) will already have been updated with values pro-

vided by the user and submitted in the request as query parameters. The listener

method is not responsible for extracting query parameters or any of the other

plumbing normally associated with processing a form submission. In this simpli-

fied example, a valid login will result in sending the user to the Main page of the

application (not shown in this example). An invalid login will present the Login

page again, with a visible error message.

 Here you see the simplicity and consistency goals pop up again; form submis-

sions result in updates to properties of the page, followed by the invocation of

the listener method for the Form component. There’s no question about query

parameter names—the information submitted in the form just shows up as prop-

erties that are accessible to the listener method. Any question of accessing the

information submitted in the form becomes simple access to page properties set

by the form control components. All the HTML forms in your application will be

variations on this same basic pattern. Forms will always operate consistently

because there’s just one approach, and the normal stumbling blocks (such as

what to name form controls and query parameters) just aren’t your concern;

they’re entirely under the control of the Tapestry framework.

 An additional look at listing 3.2 shows one oddity: The class itself is abstract

and has abstract methods for accessing the userName, message, and password

properties. These methods are abstract because we are letting Tapestry create the

properties dynamically at runtime as specified properties.

 c

 d

 e

 f

 g

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a simple login form 101

3.2.2 Using specified properties

Creating JavaBean properties for a typical JavaBean object is normally straight-

forward. A property consists of a private instance variable and a pair of accessor

methods (one to read the value, one to update the value):

private Type _myProperty;

public Type getMyProperty()
{
 return _myProperty;
}

public void setMyProperty(Type newValue)
{
 _myProperty = newValue;
}

The naming of the methods is defined by the conventions of the JavaBeans frame-

work. In fact, the JavaBeans framework works backward from the method names

(setMyProperty() and getMyProperty()) to deduce a property named myProperty.

This is the essence of the contract between the JavaBean and the JavaBeans frame-

work—a simple, loose, flexible contract based on this naming convention.

 Using Tapestry, it is possible to create new properties on pages and compo-

nents automatically. The page (or component) specification will define the property

name and type, and Tapestry will create the property: the instance variable and the

pair of accessor methods. At runtime, Tapestry actually creates a subclass of your

class, which fills in these details and instantiates an instance of the subclass.

 Creating new properties in this way is useful for three reasons:

■ Creating properties manually is a boring, mechanical process.

■ Tapestry ensures that property values are reset at the end of the request to
default values automatically (this step is necessary to properly support
reuse of the page object in later requests—a topic we discuss in more detail
in chapter 7).

■ Properties can be defined as persistent, meaning that they are stored on the

server between request cycles. This approach to managing server-side state

is introduced later in this chapter and also discussed in detail in chapter 7.

In your code, such as the Login page code in listing 3.2, you will define abstract

methods to read or update the properties. You have to define only the methods

you specifically need—the Tapestry-fabricated subclass will include getter and

setter methods for each property you specified in the page specification. You

TEAM LinG - Live, Informative, Non-cost and Genuine!

102 CHAPTER 3

Tapestry and HTML forms

never have to provide the implementations of these methods; Tapestry creates

those implementations for you.

NOTE This approach is not unique to Tapestry. When using entity Enterprise
JavaBeans (EJBs) using container-managed persistence (CMP) 2.0, you
code in the same way: creating and invoking abstract accessor methods,
with the expectation that the application server will provide the neces-
sary implementations in a subclass.

The creation of new properties is triggered in the page (or component) specification.

We provide the specification for the Login page in listing 3.3. Each <property-

specification> element defines a property that we want to add to the page.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="examples.Login">

 <property-specification name="message" type="java.lang.String"/>
 <property-specification name="userName" type="java.lang.String"/>
 <property-specification name="password" type="java.lang.String"/>

</page-specification>

In this case, all three properties are strings, but properties of all types (including

primitive Java types) may be created in this way.

 This Login page example is just a starting point for the kinds of forms sup-

ported by Tapestry. Tapestry has a variety of components that correspond to all

the types of HTML form elements, shown in table 3.2.

Listing 3.3 Login.page: specification for the Login page

Table 3.2 HTML form elements and corresponding Tapestry components

HTML element Tapestry component Discussed in…

<form> Form Chapter 3

<input type="text"/> TextField or ValidField Chapters 3, 5

<textarea> TextArea Chapter 3

<input type="password"/> TextField Chapter 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the Form component 103

You’ve now seen the very basics of Tapestry’s approach to HTML forms. Form

control components can read properties when a page is rendered and then

update the same properties when the user submits the form. To understand

more, let’s start with a detailed look at the Form component and how it relates to

the other components.

3.3 Understanding the Form component

Central to Tapestry’s approach to HTML forms support is the Form component.

It is not enough to simply use a <form> tag in a Tapestry page; all the form con-

trol components (for creating text fields, check boxes, and such) require that

they be enclosed by a Form component. The Form component’s responsibilities

start with the rendering of the <form> tag, but beyond that, the Form component

orchestrates all the form control components enclosed by the Form component,

both during the initial render and when the form is submitted. The Form com-

ponent is combined with the other form-related components listed in table 3.2.

 To appreciate what the Form component does and why it is so necessary, you

may find it useful to look at the steps you would take when creating an HTML

form (and a servlet to process the form submission) without using Tapestry.

3.3.1 Developing forms without Tapestry

Creating functioning HTML forms in an ordinary servlet application shifts most

of the responsibility onto your shoulders. You start by identifying the purpose of

the form: what business process the form will initiate, or what properties of

which domain objects the form will update (or some combination of the two).

<select> Select or PropertySelection Chapter 3, 4

<option> Option Chapter 3

<input type="radio"/> Radio (and RadioGroup) Chapter 3

<input type="checkbox"/> Checkbox Chapter 3

<input type="submit"/> Submit Chapter 3

<input type="image"/> ImageSubmit Chapter 3

<input type="hidden"/> Hidden, ListEdit Chapter 4

<input type="file"/> Upload Chapter 4

Table 3.2 HTML form elements and corresponding Tapestry components (continued)

HTML element Tapestry component Discussed in…

TEAM LinG - Live, Informative, Non-cost and Genuine!

104 CHAPTER 3

Tapestry and HTML forms

You then select which types of form controls will be used: text fields, check boxes,

radio buttons, and so forth. Each of these controls is represented by a particular

HTML element and configuration.

 The next step is to select a unique name for each form control, typically a

name with some meaning, such as productId, password, or userName. Most often,

the name selected represents how the value will be utilized when the form is sub-

mitted; it may be the name of a property of an object, or the name of a parame-

ter to some operation. From here, the last two steps are to create the JSP

containing the <form> and the form control elements, and to create a servlet to

process the form submission.

 The end goal of the form submission is to execute some form of business pro-
cess. Much of the time, this business process is designed to create or update data

stored in a database. Other examples of business processes are more involved,

such as submitting an order within an e-commerce application. In any case,

these business processes are hungry for data from the user; that data arrives in

the form query parameters and must be extracted from the request, converted,

and validated before it can be used.

 The servlet will need to know which names have been assigned to which form

controls, because those names become the names of the query parameters, acces-

sible via the HttpServletRequest object provided to the servlet. The servlet must

extract the value for each query parameter, and then possibly convert the value

from a string to an appropriate type (say, an integer or a date) and assign the

value to the correct domain object property or business process parameter.

There may also be some validations on individual fields or on the form as a

whole. In some cases, the validations may direct that the form be redisplayed

with an error message so that the user may make corrections before resubmitting

the form. Validations may be on individual fields, such as checking that a

numeric field contains a numeric value. Other validations may be based on com-

paring the values for multiple fields (for example, a form that allows a user to

input a date range will check that the start date precedes the end date). Still other

validations may have some external dependency; for instance, a servlet that pro-

cesses an application login form must validate that the username and password

are correct and will redisplay the page with an error message if they are not.

 Assuming all validations pass, the next step for the servlet is to initiate a busi-

ness process using all the collected parameters, and the final step is to send a

response page back to the client.

 Using Tapestry, nearly all of this work is eliminated.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the Form component 105

3.3.2 Developing forms with Tapestry

Returning to the world of Tapestry, the framework’s goal is once more to offload

as much of this work as possible onto the framework. It is still the responsibility

of the developer to handle the first stages: to identify the business process and

decide which form control elements will be used. From there, the developer

begins to leverage Tapestry to do the grunt work. Anything involving HTTP

query parameters falls into this category.

 Tapestry has a number of components that correspond to each of the stan-

dard HTML form control elements. Table 3.2 is a simple mapping between the

HTML form control elements and the Tapestry form control components.

 The framework supports two kinds of forms: simple and complex. The Login

page is a simple form; it always renders with the same structure—a <form> ele-

ment enclosing two text fields. In the real world, forms are not always so simple;

a common example is a “shopping cart” page in an e-commerce application that

shows multiple line items. It’s entirely reasonable in such a form for the user to

change quantities for several items within an order before submitting it. The

exact set of elements in such a form is determined at runtime and will be differ-

ent for different users at different times. Behind the scenes, there is some form

of Order object and a collection of LineItem objects. Rendering such a page

(using a JSP or a Tapestry HTML page) involves some form of loop over the avail-

able LineItems.

 The Form component takes on the responsibility for assigning unique IDs for

the form control elements. These IDs are used as the name attribute in the HTML

element and become the name of the query parameter when the form is submit-

ted. Having the Form component assign these IDs might seem unnecessary; after

all, couldn’t the components just use their component ID? In simple forms, that

is exactly what happens, but not all forms are simple. What happens in a com-

plex form, one where some components render multiple times within a loop?

Each time a particular component renders, it must have a unique element ID so

that the component can get a single value from a query parameter when the

form is submitted. At the same time, it is desirable that complex forms with loops

and conditionals be handled in the same way as simple forms. To support sim-

plicity and consistency, this decision about what element ID to use for each com-

ponent is handled by the Tapestry framework, not the developer.

 As each form control component renders, it locates the Form component that

encloses it. The component obtains its element ID from the Form. This element

ID will be used for the name attribute of the element, which is later used as the

TEAM LinG - Live, Informative, Non-cost and Genuine!

106 CHAPTER 3

Tapestry and HTML forms

name of the query parameter for the element when the form is submitted. The

Form ensures that the names it provides to the components are unique. Gener-

ally, the name will match the component’s ID, but if the form element compo-

nent is inside a loop (such as a Foreach component), each render of the component

will receive a different unique ID.

 The form control components also read page properties as they render and

write them as the value attribute of the element. The process continues from there

through the other components enclosed by the Form. Finally, once the entire

body of the Form component has been rendered, the Form component writes the

</form> tag and the rendering of the rest of the page continues as normal.

 The result of rendering the Form (from the Login example) is shown in

figure 3.3. The output HTML is a mixture of static HTML from the template and

Figure 3.3 The Form component writes several hidden control fields as well as rendering its

body. The TextField components render themselves, with names obtained from the Form.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the Form component 107

dynamically generated HTML produced by the Form and TextField components.

The Form component writes the <form> and </form> elements, as well as several

hidden form fields that store control information needed by the Form to handle

the submission.

 The TextField components render the <input type="text"> elements, with

the value for the name attribute supplied by the enclosing Form component. The

names are based on the IDs of the TextField components. Since no explicit ID

was assigned for either TextField component, Tapestry assigned unique compo-

nent IDs for the TextFields based on their component type—"$TextField" and

"$TextField$0"—and these component IDs are then used as the form element

IDs. As you’ll see later in the chapter, a Form incorporating any kind of loop will

use even more mangled element IDs—but none of these IDs is ever visible to an

application’s end user or relevant to you as the application developer.

 In figure 3.3, the two TextField components omitted the value attribute

because the corresponding page properties, userName and password, were null. If

the Login page was redisplayed because of an error (such as an invalid pass-

word), the page properties would be read and used for the value attribute.

 These descriptions include a few simplifications. Tapestry forms are actually

very flexible:

■ A page may contain any number of Form components. They all work inde-

pendently of each other, in just the same way that a page may contain any

number of independent DirectLink components.

■ A Form may itself be contained within another component; it doesn’t have
to be directly located within the page’s template.

■ A component enclosed by a Form may itself (in its own template) contain
form control components, such as TextField or Checkbox. This is entirely
valid. Tapestry dynamically finds all the components ultimately enclosed
by the Form during the render, working its way through the page’s tem-
plate and the templates for any components within the page.

■ Form control components are not limited to editing a page property; using
OGNL expressions, they can edit properties of any object reachable from
the page.

So far, we’ve only discussed what occurs when the page containing the form ren-

ders. Eventually, the user will submit the form, and then the more interesting part

begins—moving values out of the query parameters and into page properties.

TEAM LinG - Live, Informative, Non-cost and Genuine!

108 CHAPTER 3

Tapestry and HTML forms

3.3.3 Handling form submissions

When a form is submitted, Tapestry must perform the same kind of operations

that would occur in a non-Tapestry application:

■ Determine the names of query parameters.

■ Extract the values for query parameters.

■ Perform any necessary conversions (for example, string to integer).

■ Assign the converted values to the correct page properties.

Further, Tapestry needs to take into account any portions of the original form

that rendered inside a loop or conditional. The difference between a traditional

servlet application and a Tapestry application is that there is no single place

where this mapping between query parameters and domain object properties

takes place. The information is scattered across the many form control compo-

nents enclosed by the Form. In a pure servlet application, this information will

be present in two places: inside the JSP containing the form, and within the cor-

responding servlets’ doPost() method. Within a Tapestry form, this mapping

information is not “stored” anywhere but is computed on the fly during the ren-

der, and those computations must be reproduced as part of the form submission

if all the data submitted in the form is to be extracted and applied to the correct

objects and properties.

 Tapestry takes an unusual approach to linking query parameter names (in the

form submission) back to the correct components: It recovers all those names

and relationships by rendering the Form again, as part of the form submission

processing. This render is called the rewind phase. The rewind phase allows the

Form to walk through all the components it encloses, visiting each in the same

order as in the original render, even when the Form contains loops and condi-

tionals. In this way, each form control component will be visited in the same

order as in the initial render, and will obtain the exact same element ID as it did

in the initial render.

 During the rewind, each form control component will obtain its element ID

from the Form, just as it did in the original render. Unlike the original render,

where a component parameter is read and HTML is produced, during the rewind

phase the component will instead read a query parameter value, convert the

value as necessary, and update a domain object property.

 Only the Form and its body, not the entire page, are rendered. Mixed into the

Form may be other components that are not form related—if they produce

HTML output during the rewind phase, it is simply discarded.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 109

 The rewind starts with the Form component itself, which renders its body.

Eventually, this render will reach a form control component, such as a TextField

or Checkbox. The component will acquire its element ID from the Form compo-

nent, exactly as it did when it rendered. Each component can also determine,

from the Form, whether a rewind is taking place. Using the element ID, the com-

ponent can extract the correct query parameter from the incoming request and

assign its value to a page property. The rewind then continues through any other

components also contained within the Form component.

 This process is flexible and allows for cases where portions of the Form’s body

are conditional, or where a looping component, such as a Foreach, is involved.

As long as the rewind of the Form goes through the same exact steps as the origi-

nal render, all the names and components will line up, the proper query param-

eters will be read by the matching components, and the values will be applied to

the correct page and domain object properties. It is only after the rewind phase

that the Form’s listener method is invoked.

 Tapestry records into the form, as a hidden field, the list of all the element

IDs it allocates during the render process (this is shown in figure 3.3). It uses this

information when the form is submitted to determine whether the rewind

matches the render. Any deviation immediately causes an exception to be thrown

detailing the cause of the mismatch.

 When such a mismatch occurs, Tapestry does not display the normal Excep-

tion page; instead the StaleLink page is displayed. A stale link indicates that the

form submission doesn’t match against the current state of the application. This

can happen when some bit of information stored on the server (possibly in a

database) changes between the time that the page containing the form is ren-

dered and the time the form itself is submitted. Stale links are most often pro-

voked by a Form containing a conditional or loop based on server-side state.

 Included in the output on the StaleLink page is a message identifying the

point at which a mismatch occurred. On a page such as the Login form, it is

impossible for a rewind mismatch to occur, because the form is simple: There are

no looping or conditional components within the body of the Form component.

We’ll return to this subject in section 3.5, and discuss techniques for avoiding

stale links in chapter 4.

3.4 Using basic form control components

Tapestry form element components fall roughly into two categories: basic and

advanced. The basic components correspond more or less directly to HTML

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 111

Each of the components is specialized to reflect the particular type of control

that will be presented to the user. This specialization is not just the HTML that

the component outputs, but even reflects the names and types of parameters

used by the component. We’ll start with the simplest component, the Checkbox,

which edits a boolean property.

3.4.2 The Checkbox component

An HTML check box is created using the <input type="checkbox"> element. A

check box control appears as a small box, which may be clicked to toggle between

a checked and an unchecked state—a check mark appears or disappears.

 When the enclosing form is submitted, a query parameter for the check box is

only sent if the check box is checked. The value for the query parameter will be

the literal string "on" (unless the <input> element’s value attribute is specified,

in which case that is used as the value).

 A Tapestry Checkbox component is used to edit a boolean page property.

The property we want to edit is bound to the component’s selected parameter.

The property is read when the component renders, and the component will

include the selected attribute of the <input> element if the property is true.

 When the form is submitted, the Checkbox component will read the query

parameter and update the page property to either true or false, depending on

whether the check box was checked or unchecked.

 For example, the following HTML template snippet is used to edit the accepted

page property:

<input type="checkbox" jwcid="@Checkbox"
 selected="ognl:accepted"> I accept the terms and conditions.

3.4.3 Radio and RadioGroup components

In an HTML form, a radio element (<input type="radio">) is used to provide a

number of options from which the user can select a single option. Each radio ele-

ment provides a single option, and all the radio elements in a group share a sin-

gle name. When the enclosing form is submitted, the value of the query

parameter will match the value of the selected radio control.

 In Tapestry terms, a single property will be edited by a group of related Radio

components. On submission, the selected Radio component will be used to fig-

ure out the correct value to assign to the edited property.

 To accomplish this, Tapestry uses a second component, RadioGroup. A

RadioGroup encloses one or more Radio components. RadioGroups may not be

nested, and Radio components must be enclosed by a RadioGroup—but they

TEAM LinG - Live, Informative, Non-cost and Genuine!

112 CHAPTER 3

Tapestry and HTML forms

don’t have to be directly enclosed by the RadioGroup; they can be spread out

about the HTML template, mixed with static HTML and other components. The

RadioGroup component identifies the property that is being edited by using its

selected parameter. Each Radio component provides a particular value, bound

to its value parameter, which will be assigned to the property if that component

is selected. The value is not limited to a simple string value; the Radio and

RadioGroup components will allow any type of object to be the value.

 The RadioGroup and Radio components work together to write out the

HTML element for each Radio component. The RadioGroup provides a unique

option ID for each Radio that becomes the value attribute of the <input> ele-

ment. The RadioGroup also tracks the current value of the property so that one

and only one Radio component will be rendered as the selected element.

 What’s important is that the value attribute of each <input> element not

match the value parameter of the Radio component—it must be an arbitrary

option ID value instead. The value parameter may be any type: an integer, a

string, or even a custom Java object. The value attribute can only be a string, and

it’s up to Tapestry to bridge any gap between these two representations. When

the form is submitted, the RadioGroup and Radio components work backward

from the selected option ID. When a particular Radio component recognizes that

it was the option selected by the user, it reads its value parameter and provides it

to the RadioGroup, which can then update the page property bound to its

selected parameter.

 For example, the following HTML template snippet is used to set the selected-

Size property of the page to one of three values—5, 25, or 100:

 <input type="radio" jwcid="@Radio" value="5"/> Small

 <input type="radio" jwcid="@Radio" value="25"/> Medium

 <input type="radio" jwcid="@Radio" value="100"/> Large

When the page containing this snippet renders, the for the RadioGroup

will disappear and the name attribute for each <input> element will be taken from

the RadioGroup. Assuming the initial value for the selectedSize property is 25,

the snippet will render as follows:

 <input type="radio" name="$RadioGroup" value="0"/> Small

 <input type="radio" name="$RadioGroup" value="1"

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 113

 selected="selected"/> Medium

 <input type="radio" name="$RadioGroup" value="2"/> Large

NOTE The names for these radio elements come from the enclosing Radio-
Group component. $RadioGroup (in this example) is a unique ID for
the particular RadioGroup component. In a page containing many Ra-
dioGroups, it will be a different value. One of the responsibilities of the
Form component is to provide such unique element IDs to the form
control components it encloses—but you never need to be concerned
with these.

Although we’ve managed to automatically update a property without resorting to

writing any Java code, this is still (by Tapestry standards) an unacceptably large

amount of effort to update a single property. It requires one Radio component

for each possible option, plus the RadioGroup component enclosing the other

components. In practice, most Tapestry applications make use of the Property-

Selection component instead, which is described in chapter 4. The Property-

Selection can, as a single component, render itself as a drop-down list or as a

table of radio buttons. In some cases, the HTML designer will want to have the

radio buttons spread out within the form (not clustered together as shown here),

interspersed with other components and static HTML—in that case, the combi-

nation of RadioGroup and Radio is appropriate.

3.4.4 Select and Option components

The HTML <select> and <option> elements are used together to create two

types of user interface controls: drop-down lists and multiple-selection lists. A

drop-down list is used to allow a single option from a list of options to be selected,

much like using radio controls. Each option is displayed as a string.

 A multiple-selection list allows the user to select multiple options from a list.

The list of possible options appears in a box, which displays a limited number of

options. If there are many options, the selection box will include a scroll bar. The

user may click an option within the list or, by using a platform-specific modifier

key (the Ctrl key, under Windows), select multiple options.

 Each option has a label, which is a text string visible in the list, and a value,
which is the value communicated in the query parameter if the option is selected

when the form is submitted.

 These two components are used together to support single or multiple selec-

tion from a list of items. The Select component must enclose the Option compo-

nents. In effect, these components work together to act as a group of Checkbox

TEAM LinG - Live, Informative, Non-cost and Genuine!

114 CHAPTER 3

Tapestry and HTML forms

components. Each Option component edits an individual boolean property of

the page, indicating whether that particular Option was selected or deselected

when the form was submitted.

 Internally, the Select and Option components work much like the Radio-

Group and Radio components. The Select component is responsible for provid-

ing option IDs to the Option components during the render and informs the

Option components if they were selected during the rewind.

 A typical use for Select and Option is to allow the user to select several items,

which are represented as a set. The following snippets show how to present a list of

items and handle multiple selections of those items. In this example, it is a list of

toppings that can be added to a hamburger. Figure 3.4 shows the example page.

 At the core of this page’s HTML template are three components: a Select

component enclosing a Foreach component, which in turn encloses an

Option component:

<select jwcid="@Select" multiple="ognl:true">
 <span jwcid="@Foreach"
 source="ognl:allToppings"
 value="ognl:topping">
 <option jwcid="@Option"
 selected="ognl:toppingSelected"

Figure 3.4 The user is provided with a multiple-selection list to choose toppings.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 115

 label="ognl:topping"/>

</select>

The Select component encloses the Foreach and Option components. Its multi-

ple parameter is set to true, enabling multiple selection instead of the default

behavior (single selection). The Foreach component iterates through a list of

possible toppings (provided by the page’s allToppings property), updating the

page’s topping property for each one.

 The Option component edits a boolean toppingSelected property, but what

we ultimately want is a java.util.Set of selected toppings. This is accomplished

by creating a synthetic property—a property that isn’t simply a wrapper around

an attribute, but is computed on the fly from other properties. The synthetic

property toppingSelected is true when the current topping (the topping property)

is in the set of selected toppings, and false otherwise. Updating the topping-

Selected property adds or removes the current topping from the set. Listing 3.4

shows how easily this can be implemented.

package examples;

import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.event.PageEvent;
import org.apache.tapestry.event.PageRenderListener;
import org.apache.tapestry.html.BasePage;

public abstract class Toppings extends BasePage
 implements PageRenderListener
{
 private static String[] TOPPINGS =
 { "Lettuce", "Tomato", "Cheese", "Onions", "Pickles", "Relish",
 "Mustard", "Ketchup" };

 public String[] getAllToppings()
 {
 return TOPPINGS;
 }

 public abstract String getTopping();

 public abstract void setSelectedToppings(Set toppings);

Listing 3.4 Toppings.java: Java class for the Toppings page

TEAM LinG - Live, Informative, Non-cost and Genuine!

116 CHAPTER 3

Tapestry and HTML forms

 public abstract Set getSelectedToppings();

 public boolean isToppingSelected()
 {
 return getSelectedToppings().contains(getTopping());
 }

 public void setToppingSelected(boolean toppingSelected)
 {
 if (toppingSelected)
 getSelectedToppings().add(getTopping());
 else
 getSelectedToppings().remove(getTopping());
 }

 public void selectToppings(IRequestCycle cycle)
 {
 String toppings = getToppingsList();

 ToppingsResult page =
 (ToppingsResult) cycle.getPage("ToppingsResult");
 page.setToppings(toppings);
 cycle.activate(page);
 }

 private String getToppingsList()
 {
 if (getSelectedToppings().isEmpty())
 return "No toppings.";

 StringBuffer buffer = new StringBuffer();

 int count = getSelectedToppings().size();

 int x = 0;
 Iterator i = getSelectedToppings().iterator();

 while (i.hasNext())
 {
 if (++x > 1)
 {
 if (x == count)
 buffer.append(" and ");
 else
 buffer.append(", ");
 }

 String topping = (String) i.next();

 buffer.append(topping);
 }

 b

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 117

 buffer.append(".");

 return buffer.toString();
 }

 public void pageBeginRender(PageEvent event)
 {
 setSelectedToppings(new HashSet());
 }

}

The toppingSelected property is computed by seeing if the current topping (as
set by the Foreach component) is in the selectedToppings set.

Updating the toppingSelected property adds or removes the current topping
from the selectedToppings set.

This method is defined by the PageRenderListener interface, which is called as
the page begins to render (or when a form within the page starts to rewind). It
gives us a chance to initialize the selectedToppings property to an empty
java.util.Set and thus avoid NullPointerExceptions that would occur inside
getToppingSelected() and setToppingSelected().

The Toppings page specification includes specifications for two properties:

<property-specification name="selectedToppings"
 type="java.util.Set"/>
<property-specification name="topping" type="java.lang.String"/>

In addition, the class implements an interface, PageRenderListener, and a

method, pageBeginRender(). Inside the setToppingSelected() method, the

selectedToppings property is updated, but what is its initial value? The default

initial value for properties is null, which will cause a problem unless we ensure

that an instance of java.util.Set is in place in the selectedToppings property

before setToppingSelected() is invoked.

 That’s what the PageRenderListener interface and the pageBeginRender() method

do: By implementing the interface, the page instance will receive a notification as the

page starts to render. This event notification takes the form of an invocation of the

pageBeginRender() method defined by the interface. The implementation for the

Toppings page creates a new empty java.util.HashSet and assigns it to the selected-

Toppings property. At the end of the request, the topping and selectedToppings

properties will automatically be reset to their default value: null.

 Back to the toppingSelected property. This is an example of the page acting

as Controller, mediating between the Model objects and the page’s components.

 d

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

118 CHAPTER 3

Tapestry and HTML forms

In this case, the Model is simply the selectedToppings set. The Foreach compo-

nent will cycle through each of the known toppings, updating the topping prop-

erty with a string such as "Lettuce" or "Pickles" on each pass through its loop.

The toppingSelected property is the current topping’s representation in the

selectedToppings set. When the toppingSelected property is updated, it either

adds or removes the current topping from the set (though removal is not neces-

sary, since the set starts out empty). This all works together so that, by the time

the form’s listener is invoked, the selectedToppings set contains just the top-

pings that the user selected in the form.

 The flexibility of the Select and Option components becomes apparent when

we go beyond selecting a number of strings to selecting complex objects. For

example, perhaps we are selecting from a list of Product objects (in an e-commerce

application) or some other kind of object pulled from a database. It may not be

possible to represent the entire object, or even its primary key, as a string. That

doesn’t affect the Select and Option components, because the value attribute

that’s recorded in the form is simply an index number, not the real value.

 Option components and Checkbox components are similar from a program-

ming model point of view. In most cases where multiple selection is not allowed,

the PropertySelection component (described in chapter 4) is a better and sim-

pler choice. In chapter 6, we introduce a more complex component, the Palette,

which is suitable for handling multiple selections but requires that the client web

browser execute a significant amount of client-side JavaScript.

3.4.5 Submit and ImageSubmit components

The HTML <input type="submit"> form element creates a button control. Click-

ing the button submits the form for processing by the server. The button con-

trol’s label matches the value attribute of the <input> tag.

 A form may have any number of submit controls. When the form is submit-

ted, the control’s value attribute is the value for the query parameter; this makes

it possible to determine which submit control was used to submit the form.

 The weakness of the submit control is its appearance; it is always a clickable

button with a text label. Most modern web applications demand precise control

over the look and feel of the application and need to use an image to control the

form submission. A second type of control, <input type="image">, creates an

image that the user may click to submit the form.1

1 The image control actually submits a pair of query parameters, the x and y position within the image
clicked by the user. Like many technologies on the Web, the intended purpose is rarely used.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using basic form control components 119

 Tapestry includes two components corresponding to these two controls: Sub-

mit for a standard submit button, and ImageSubmit for a clickable image. The

two components differ mostly in how they render HTML; they handle the form

submissions in the same way—using one of two patterns to distinguish which

component within the form was responsible for the submission.

 The first pattern is to set a flag to indicate which component was clicked to

submit the form. The components support two parameters for this purpose:

selected and tag. The tag parameter is read, and the value retrieved is assigned

to the selected parameter if and only if the component was responsible for the

form submission. For example, a pair of buttons could be used to determine

whether the user wishes to move an item up or down within a list:

<input type="submit" jwcid="@Submit"
 selected="ognl:button"
 tag="up"
 label="Move Up"/>
<input type="submit" jwcid="@Submit"
 selected="ognl:button"
 tag="down"
 label="Move Down"/>

If the first Submit component is clicked, the button property of the page will be

set to the literal value up. If the second Submit component is clicked, the

button property will be set to the literal value down. If the form is submitted

otherwise, perhaps by pressing Enter within a text field, the button property

will not be updated.

 The Form’s listener method can query the button property to decide how to

accomplish the user’s request. There is no limitation on the type of property to

be updated (the tag value doesn’t have to be a string; it can be any type of

object), and as always, the tag parameter may be an expression instead of a lit-

eral value.

 The second pattern involves a listener method. Submit and ImageSubmit

have a listener parameter that may be bound to a listener method, just like a

DirectLink or Form component. This allows the previous example to be rewrit-

ten more simply:

<input type="submit" jwcid="@Submit"
 listener="ognl:listeners.moveUp"
 label="Move Up"/>
<input type="submit" jwcid="@Submit"
 listener="ognl:listeners.moveDown"
 label="Move Down"/>

TEAM LinG - Live, Informative, Non-cost and Genuine!

120 CHAPTER 3

Tapestry and HTML forms

In this example, if the user clicks the first button, the moveUp() listener method

will be invoked. If the user clicks the second button, the moveDown() listener

method will be invoked. If the form is submitted otherwise, neither listener

method is invoked. In either case, the form’s listener is invoked last. The Submit

component’s listener method is invoked just as the component renders itself

(during the Form’s rewind phase). This means that not all properties that will be

set during the form submission will have been updated yet.

 It is even possible to combine the two approaches, in which case the selected

parameter is updated before the listener method is invoked.

TIP The listener method must take care not to upset the rewind. Remember
that the rewind must go through the exact same steps as the initial ren-
der, or the rewind will terminate with a StaleLinkException. A Submit
component can trigger this by changing properties of the page haphaz-
ardly. The most common example is a Submit component used in a
form, enclosed within a Foreach. The Submit components should not
change the list used as the source parameter of the Foreach; doing so
will affect the remaining iterations through the Foreach loop. Instead,
the listener methods should note what operation should take place and
store this information in temporary page properties. From the Form’s
listener, which is invoked only after the rewind completes, the desired
operation can take place.

Repeatedly, we’ve referenced the idea that Form components can enclose

Foreach components. We’ll next explore an example of a complex form that

combines several types of basic form control components within a Foreach.

3.5 Creating a to-do list

Now that we’ve introduced the basic Tapestry form components, let’s do some-

thing just a little more ambitious than the login form. Let’s create a simple one-

page to-do list, as shown in figure 3.5.

 This kind of application should be familiar to anyone who has used a per-

sonal digital assistant (PDA). There is a list of entries, which may be prioritized by

the user. New entries can be created at any time, and existing entries may be

marked as completed. When desired, completed entries may be removed from

the list.

 Figure 3.5 shows a single form, in which you could conceivably mark an item

as done, change the title of another, and change the order of the items all as a

single request.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 121

We’ll be making use of Checkbox, TextField, and Submit components in the

application and (as promised) show how to use loops inside a Form.

3.5.1 Defining the data object

The first step is to identify how the data edited by the page will be stored. Each

item in the list has three properties: a title, a completed flag, and its position in

the overall list. We’ll have the item store the completed flag and the title directly,

and make the list responsible for item position. Listing 3.5 contains the source

for this class.

package examples.todo1;

import java.io.Serializable;

public class ToDoItem implements Serializable
{
 private boolean _completed;
 private String _title;

 public ToDoItem()
 {
 }

 public ToDoItem(String title)
 {
 _title = title;
 }

Figure 3.5

Users can create

new entries, update

and delete entries,

and reorder the

entries in the list.

Listing 3.5 ToDoItem.java: the data object used in the ToDo list page

TEAM LinG - Live, Informative, Non-cost and Genuine!

122 CHAPTER 3

Tapestry and HTML forms

 public boolean isCompleted()
 {
 return _completed;
 }

 public String getTitle()
 {
 return _title;
 }

 public void setCompleted(boolean completed)
 {
 _completed = completed;
 }

 public void setTitle(String title)
 {
 _title = title;
 }

}

This class is simply a property holder for two properties: completed and title. A

more sophisticated application would track more data, such as priority level or

due date, but this is sufficient for this example. Because instances of this class

will be stored persistently (as persistent page properties ultimately stored in the

HttpSession), the class implements the Serializable interface. This is necessary

to allow the application server to support clustering and failover (a subject dis-

cussed in greater detail in chapter 7).

 With the domain object for this application created, the next step is to define

the user interface for editing a list of these items.

3.5.2 Creating the ToDo HTML template

The template for the ToDo page consists of a Form. Within the Form is a Foreach

that loops over the ToDo items, and additional components for editing the prop-

erties of each item in the list. Listing 3.6 shows this template.

<html jwcid="@Shell" title="ToDo List">
<body>

<form jwcid="@Form" listener="ognl:listeners.formSubmit">

Listing 3.6 ToDo.html: the HTML template for the ToDo page

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 123

<table>
<tr>
 <th>Done</th>
 <th>Title</th>
 <th colspan="2">Reorder</th>
</tr>
<tr jwcid="@Foreach" element="tr"
 source="ognl:toDoList"
 value="ognl:item">
 <td><input type="checkbox"
 jwcid="completed@Checkbox"
 selected="ognl:item.completed"/></td>
 <td><input type="text"
 jwcid="title@TextField"
 size="50"
 value="ognl:item.title"/></td>
 <td><input type="submit" jwcid="up@Submit"
 selected="ognl:moveUpItem"
 tag="ognl:item"
 label="Move Up"/></td>
 <td><input type="submit" jwcid="down@Submit"
 selected="ognl:moveDownItem"
 tag="ognl:item"
 label="Move Down"/></td>
</tr>
</table>

<input type="submit" value="Update"/>
<input type="submit" jwcid="add@Submit"
 listener="ognl:listeners.addTodoItem" label="Add Item"/>
<input type="submit" jwcid="deleteCompleted@Submit"
 listener="ognl:listeners.deleteCompleted"
 label="Delete Completed"/>

</form>

<hr/>

<p>Return to
Home page.</p>

</body>
</html>

This loops through the list of items supplied by the toDoList property, assigning
each in turn to the item property. In addition, specifying a value for the element
parameter causes the Foreach to render a <tr> element around its body for each
loop, allowing the component to blend into the structure of the HTML <table>
seamlessly and invisibly.

 b

 c

 d

 e

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 125

 Much like the Hangman examples in the previous chapter, the page becomes

the mediator between the components. The Foreach component gets a list of

ToDoItems from the page and updates the item property for each ToDoItem within

that list. Within the Foreach, the other components (the Checkbox, the Text-

Field, and the two Submit components) are editing the current item within the

loop, or other properties of the page based on the current item.

 Outside the Foreach loop are additional Submit components that trigger the

other two behaviors: adding a new ToDoItem, and deleting any items that are

marked completed. The next step is to create the page specification, including

additional properties for item and toDoList.

3.5.3 Specifying properties in the page specification

All the components in the page are fully defined in the HTML template, but a

page specification (provided in listing 3.7) is still needed for two reasons: to specify

the Java class for the page and to specify any properties Tapestry should create.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="examples.todo1.ToDo">

 <property-specification name="toDoList"
 type="java.util.List"
 persistent="yes"/>
 <property-specification name="item"
 type="examples.todo1.ToDoItem"/>
 <property-specification name="moveUpItem"
 type="examples.todo1.ToDoItem"/>
 <property-specification name="moveDownItem"
 type="examples.todo1.ToDoItem"/>

</page-specification>

The first property, toDoList, is the list of ToDoItems on the page. This property is

persistent; it will be stored between requests and restored in each subsequent

request. Persistent page properties are covered in more detail in chapter 7.

 The item property is the property set by the Foreach component on each pass

through its loop. The other two properties, moveUpItem and moveDownItem, are set

by the corresponding Submit components. These two components don’t change

Listing 3.7 ToDo.page: specification for the ToDo page

TEAM LinG - Live, Informative, Non-cost and Genuine!

126 CHAPTER 3

Tapestry and HTML forms

the toDoList property, since that would upset the Form rewind. Instead, the two

properties are set by the components during the rewind and are later accessed

from inside the Form’s listener method.

3.5.4 Initializing the toDoList property

Because the property type for toDoList is java.util.List, a collection type, it is

awkward to specify its initial value in the page specification. We want to set the

toDoList property to a reasonable value just as it is needed. Once again, we

implement the PageRenderListener interface and provide a pageBeginRender()

implementation to initialize the toDoList property the first time it is needed

(just before the page renders for the first time). The ToDo page class includes

the following code to perform this initialization:

public abstract List getToDoList();
public abstract void setToDoList(List toDoList);

public void pageBeginRender(PageEvent event)
{
 List list = getToDoList();

 if (list == null)
 {
 list = new ArrayList();
 list.add(createNewItem("Finish reading Tapestry Book"));
 list.add(createNewItem("Download latest version of Tapestry"));

 setToDoList(list);
 }
}

protected ToDoItem createNewItem(String title)
{
 return new ToDoItem(title);
}

When the ToDo page is first rendered, the toDoList property will be null. In this

case, a new ArrayList is created, and two initial items are added to it. The prop-

erty is then updated by invoking the setToDoList() method, and (because the

page specification indicates that toDoList is a persistent property) behind the

scenes, Tapestry stores the list into the HttpSession for use in later requests. This

value will be used in the current request when the page renders but will also be

available later, when the form within the page is submitted.

 The Checkbox and TextField components do all the work of editing each

ToDoItem’s completed and title properties. Managing the order of items inside

the list requires a bit of support by the page, which we look at in the next section.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 127

3.5.5 Handling reordering

Moving a to-do item up or down within the list requires just a bit of care. It is

important that the Submit components not change the toDoList property while

the form is still rewinding; this could lead to properties of the wrong objects get-

ting updated. That’s the first principle of Tapestry forms: The rewind phase

must match the original render, object for object.

 Instead, each of the two Submit components, when triggered, must note

which item is to be moved up or down so that the reordering can occur later

when it is safe to change the list. We’ve already declared two properties for this

purpose in the page specification. We’ve also ensured that the properties are

updated by making use of the selected and tag parameters of the two Submit

components in the HTML template. The item property is set by the Foreach

component before it renders the portion of the template containing the Text-

Field, Checkbox, and Submit components. Each Submit component determines,

as it rewinds, whether it was the cause of the form submission (it will see a non-

null query parameter matching its element ID). If so, it updates its selected

parameter from its tag parameter and then invokes its listener.3

 The Form component’s listener method is invoked after the rewind com-

pletes, when it is safe to change the toDoList property. This is where the items

are actually moved. The formSubmit() listener method, from the ToDo page

class, is the right place to make all these changes:

public void formSubmit(IRequestCycle cycle)
{
 List list = getToDoList();

 int count = list.size();
 ToDoItem moveUpItem = getMoveUpItem();
 ToDoItem moveDownItem = getMoveDownItem();

 for (int i = 0; i < count; i++)
 {
 ToDoItem item = (ToDoItem) list.get(i);

 if (item == moveUpItem)
 {
 if (i > 0)
 Collections.swap(list, i, i - 1);

3 All of these parameters are optional. A Submit (or ImageSubmit) simply doesn’t set its selected
parameter if the parameter is not bound, and it doesn’t invoke a listener unless one is provided.

TEAM LinG - Live, Informative, Non-cost and Genuine!

128 CHAPTER 3

Tapestry and HTML forms

 break;
 }

 if (item == moveDownItem)
 {
 if (i + 1 < count)
 Collections.swap(list, i, i + 1);

 break;
 }
 }

 setToDoList(list);
}

Notice that, after modifying the list, the code invokes the method setToDoList()

again. Tapestry relies on the developer to inform it when properties are changed

by invoking the accessor method. This usually isn’t an issue, because the typical

types for persistent properties (numbers, booleans, and strings) are immutable.

For mutable types, like List, Tapestry will not know to refresh the copy of the

property value stored in the HttpSession unless the setter method is invoked.

This subject is covered in greater detail in chapter 7.

3.5.6 Deleting completed items

The Submit component labeled Delete Completed is used to delete from the list

all to-do items that have been marked completed. Unlike the reordering Submit

components, this component’s listener is invoked outside the Foreach compo-

nent, so it is safe for its listener to modify the toDoList property directly. The lis-

tener for this component is the deleteCompleted() listener method of the ToDo

page class:

public void deleteCompleted(IRequestCycle cycle)
{
 ListIterator i = getToDoList().listIterator();

 while (i.hasNext())
 {
 ToDoItem item = (ToDoItem) i.next();

 if (item.isCompleted())
 i.remove();
 }
}

We do take one liberty here: We should invoke setToDoList() at the end of the

method. This can be skipped only because the Form’s listener, the method

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 129

formSubmit() listed earlier, is invoked after this listener method and always

invokes setToDoList().

3.5.7 Triggering stale links

There is an inherent problem in basing the dynamic portion of a form (such as

the list of items in the ToDo page) on persistent properties: It is possible for the

web browser and the server to get out of synchronization with each other. When

the form is submitted, Tapestry will detect that the incoming form does not

match the state stored on the server, a situation known as a stale link. When Tap-

estry detects a stale link, it throws a StaleLinkException. Having the application

fail in this way is not acceptable in a production application, and we discuss how

to avoid stale links in chapter 4. In the meantime, it is useful to understand the

underlying causes of stale links. We can trigger a stale link for the ToDo applica-

tion easily by following these steps:

1 Start the application fresh.

2 Go to the ToDo page.

3 Click the Add Item button.

4 Press the browser’s back button (so that just two items are visible).

5 Click the Update button.

You should see the StaleLink page, as shown in figure 3.6. This page includes a

message to help you figure out what went wrong: Rewind of form ToDo/$Form expected
allocated id #9 to be ‘add’, but was ‘completed$1’ (requested by component ToDo/completed).

 What’s happened is that the form submitted with two items, but the rewind had

three items to iterate over (including the new item added before you clicked the

browser’s back button). At the point that the completed component (a Checkbox)

rendered for the third time, a mismatch occurred because when the page was origi-

nally rendered, there were only two items in that loop. The first form element after

the loop is the add component (a Submit). That’s where the mismatch occurs; the

data recorded in the submitted form indicates that the next allocated element ID

should be add, but the form’s rewind includes a third pass through the loop and

wants to allocate a third ID for the completed component.4

4 The Form adds suffixes as necessary to form unique element IDs, starting with the element’s ID as a
base. So on the first pass through the loop, the completed component got the element ID completed,
on the second pass it got the element ID completed$0, and on the third pass, completed$1.

TEAM LinG - Live, Informative, Non-cost and Genuine!

130 CHAPTER 3

Tapestry and HTML forms

TIP Always give IDs to your form control components, especially if you are
doing any looping or conditionals inside the Form; otherwise, the mes-
sage on the StaleLink page will be much less intelligible, since the ele-
ment IDs will be assigned by the framework.

Doing a view source on the page before submitting the form helps show what

happened:

<form method="post" name="Form0" action="/examples/app">
<input type="hidden" name="service" value="direct/1/ToDo/$Form"/>
<input type="hidden" name="sp" value="S0"/>
<input type="hidden" name="Form0"
 value="completed,title,up,down,completed$0,title$0,
 up$0,down$0,add,deleteCompleted"/>

<table>
<tr>
 <th>Done</th>
 <th>Title</th>
 <th colspan="2">Reorder</th>
</tr>
<tr>
 <td><input type="checkbox" name="completed"/></td>
 <td><input type="text" name="title"

Figure 3.6 The StaleLink page is triggered by submitting a request where the client no longer

matches server-side state.

 b

➥

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating a to-do list 131

 value="Finish reading Tapestry Book" size="50"/></td>
 <td><input type="submit" name="up" value="Move Up"/></td>
 <td><input type="submit" name="down" value="Move Down"/></td>
</tr>
<tr>
 <td><input type="checkbox" name="completed$0"/></td>
 <td><input type="text" name="title$0"
 value="Download latest version of Tapestry" size="50"/>
 </td>
 <td><input type="submit" name="up$0" value="Move Up"/></td>
 <td><input type="submit" name="down$0" value="Move Down"/></td>
</tr>
</table>

<input type="submit" value="Update"/>
<input type="submit" name="add" value="Add Item"/>
<input type="submit" name="deleteCompleted"
 value="Delete Completed"/>
</form>

The Form component writes this hidden field, recording all the IDs allocated for
all the enclosed components. It uses this information when the user submits the
form to check that the same sequence of IDs is allocated during the rewind.

This portion of the output HTML is written during the first pass through the
Foreach component’s loop. The element IDs for the components inside the loop
are completed, title, up, and down.

This portion of the output HTML is written during the second pass through the
loop. The element IDs for the components are completed$0, title$0, up$0, and
down$0. The $0 extension is to make the element IDs unique within the Form.

The server-side state mandates that a third pass through the loop should take
place here (because there are three to-do items), but the form was rendered when
there were only two items in the list.

In the output HTML, we can see how the Form component uses hidden fields to

store the list of form element IDs. This list is used during the rewind phase to

ensure that the render and the rewind do, in fact, match.

 Because there are three items stored in the toDoList property of the page,

there should be a third <tr> within the table, containing another Checkbox, a Text-

Field, and pair of Submit buttons. This is discovered by the Form during the

rewind phase, at which point it throws the StaleLinkException (which results in

the Stale Link page being displayed).

 We’ve shown you how to trigger a stale link under controlled circumstances.

You can be assured that if you aren’t prepared for it, your users will find ways to

trigger stale links under uncontrolled circumstances—typically by clicking their

 c

 d

 e

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

132 CHAPTER 3

Tapestry and HTML forms

web browser’s back button. Your end users should never see an exception page or

a Stale Link page, so in chapter 4 we discuss additional components and tech-

niques that detect and avoid stale links.

3.6 Summary

Tapestry relieves you of all the drudgery of both rendering forms and form ele-

ments and processing form submissions. A non-Tapestry servlet application will

contain reams of tedious code for reading query parameters and converting

string values. When you use Tapestry, this code simply disappears, leaving just

higher-level code that operates directly on the properties of the domain objects.

As in the examples with simple links and images, Tapestry pages with forms still

look and feel like ordinary HTML pages; the Tapestry extensions fit invisibly into

place. Once again we’ve seen where Tapestry’s simplicity and consistency goals

come into play: It’s far easier to use the Form component and form control com-

ponents to read and update properties of the page directly than it ever would be

to fuss with query parameters.

 Even when adding the complication of editing a list of items within a form,

Tapestry performs well. Despite a few constraints placed on the developer by the

framework, the effort and code required to process such complex forms is still

minimal. That is far from all the framework has to offer in terms of forms sup-

port, however. In the following chapter, we pull even further ahead and describe

advanced form components that do much more than simply mimic ordinary

HTML elements.

TEAM LinG - Live, Informative, Non-cost and Genuine!

134 CHAPTER 4

Advanced form components

In chapter 3, we covered the basic set of Tapestry components—components that

map directly to HTML form control elements. These basic components provide a

baseline for form-related functionality, but Tapestry is capable of much more. In

this chapter, we’ll introduce more sophisticated components that do more: more

HTML, more client-side JavaScript, more server-side processing. Much of this

chapter will focus on reworking the ToDo application from chapter 3, adding

features and, ultimately, addressing the browser back button issue. In addition,

we’ll introduce components for uploading files and for selecting dates using a

pop-up calendar. Chapter 5 will discuss the input-validation subsystem provided

by Tapestry.

4.1 Introducing the advanced form components

The previous chapter covered a number of Tapestry components used for basic

HTML form support. Each of the basic components maps directly to a particular

HTML form control element. This chapter looks at components that break that

mold by adding significant capabilities in terms of client-side or server-side pro-

cessing (or both). These components, shown in table 4.1, are more task oriented

than the element-oriented components of the previous chapter.

The first of these components is the widely used PropertySelection component,

which provides a streamlined approach to creating single-selection drop-down lists.

4.2 Creating drop-down lists with PropertySelection

A common feature in many web forms is a drop-down list that lets you make a

selection. Whether you’re asking users to choose their state of residence, a type

of credit card, or some other information that has a limited set of options, it is

often easiest for you, and for your users, to let them select from a list rather than

Table 4.1 Advanced form components

Component Description

PropertySelection Creates a drop-down list of values

Hidden Records a property for a hidden form field and restores it on submission

ListEdit Iterates over a list of items like Foreach, but works better within a form

Upload Allows files to be uploaded from the client workstation

DatePicker Uses a JavaScript pop-up window to let the user enter a date

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 135

prompt them to type in a value. A drop-down list makes economical use of the

available screen real estate. As you’ll recall, chapter 3 describes the Select and

Option components, which are one approach to creating drop-down lists.

 Using the Select and Option components for this purpose, however, is awk-

ward. The Option component reads and sets a boolean property, and it requires

you to implement supporting code in the page to translate between property val-

ues and a set of boolean flags. You saw this in the examples in chapter 3, where

we used a synthetic boolean property to control the adding of items to or remov-

ing of items from a set. Select and Option are focused on handling multiple

selection, not the more common case where only a single selection from a drop-

down list is desired. Fortunately, we aren’t restricted to using only Select and

Option components when creating drop-down lists.

 The PropertySelection component exists specifically for the purpose of

allowing a user to select a single option from a drop-down list. PropertySelection

will create a <select> element and a set of <option> tags when rendering, and

will perform an update of a property when the form is submitted. You must

provide the PropertySelection component with information about the options

that are allowed. To do this, you bind the PropertySelection’s model parameter

to an object implementing the IPropertySelectionModel interface. The Property-

Selection component uses the model when rendering and again when the

form is submitted.

 The model provides the following information to PropertySelection:

■ The total number of options

■ The property value for each option

■ The label for each option (which is displayed to the user)

■ The encoded value for each option, used as the value attribute of the
<option> element

■ The property value corresponding to an encoded value

This is an example of the Model-View-Controller pattern in action, even though

it involves only a single component within a page rather than an entire page.

The PropertySelection component does not have any special knowledge about

the options it presents to the user; it will work with any model object provided to

it. The IPropertySelectionModel interface is the contract between the model and

the component.

 The PropertySelection component is quite flexible. A simple implementation

of the model supports the selection of a string value from a list (the property

TEAM LinG - Live, Informative, Non-cost and Genuine!

136 CHAPTER 4

Advanced form components

edited by the PropertySelection component will be a string). At the other

extreme, an application may use a PropertySelection component to edit a rela-

tionship between two database objects. For example, an order-management form

within an e-commerce application’s account management page may allow you to

select an active order from a drop-down list so that you can review the order’s

progress. Here, the option label will be a string identifying the Order object, such

as a confirmation ID number. The property value will be the Order object itself,

and the encoded option value will be the Order object’s primary key.

 In keeping with Tapestry’s goal of consistency, you can use a PropertySelection

component for both simple and complex models. To demonstrate how to use

PropertySelection and how to create a model for it, let’s look at an improved

version of the ToDo application.

4.2.1 Adding priority levels to the ToDo application

In this version of the to-do list, each item stores a priority value, along with its

title and completed flag. The priority can be Low, Medium, or High. Figure 4.1

shows the new version of the page.

Figure 4.1 The improved ToDo page, with a PropertySelection for choosing the priority for each item.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 137

As before, our first step is to identify how this new data will be stored. For flexi-

bility, we’ll store the priority as an integer, using 100 for Low, 200 for Medium,

and 300 for High. At a later date, we can then easily add new values between

these initial values (say, adding “Important” as 250). Because we’ll use the other

existing properties of the ToDoItem class, let’s create a subclass that adds a new

property for storing the priority value. This new subclass is shown in listing 4.1.

As you can see, the ToDoItem2 class includes public constants used to define the

three priority values.

package examples.todo2;

import examples.todo1.ToDoItem;

public class ToDoItem2 extends ToDoItem
{
 public static final int LOW_PRIORITY = 100;
 public static final int MEDIUM_PRIORITY = 200;
 public static final int HIGH_PRIORITY = 300;

 private int _priority = MEDIUM_PRIORITY;

 public ToDoItem2()
 {
 }

 public ToDoItem2(String title)
 {
 super(title);
 }

 public int getPriority()
 {
 return _priority;
 }

 public void setPriority(int priority)
 {
 _priority = priority;
 }

}

Listing 4.1 ToDoItem2.java: data object for the ToDo2 page

TEAM LinG - Live, Informative, Non-cost and Genuine!

138 CHAPTER 4

Advanced form components

4.2.2 Updating the HTML template

The next step is to create a new version of the ToDo page that includes a Property-

Selection component for editing the priority properties of the to-do items. Let’s

start with a copy of the template from the earlier version of the ToDo list page

and add new HTML and components to support the new property. The end

result is the HTML template in listing 4.2.

<html jwcid="@Shell" title="ToDo List (version 2)">
<body>

<form jwcid="@Form" listener="ognl:listeners.formSubmit">

<table>
<tr>
 <th>Done</th>
 <th>Priority</th>
 <th>Title</th>
 <th colspan="2">Reorder</th>
</tr>
<tr jwcid="@Foreach"
 element="tr" source="ognl:toDoList"
 value="ognl:item">
 <td><input type="checkbox" jwcid="completed@Checkbox"
 selected="ognl:item.completed"/></td>
 <td><select jwcid="priority@PropertySelection"
 value="ognl:item.priority"
 model="ognl:priorityModel"/></td>
 <td><input type="text" jwcid="title@TextField" size="50"
 value="ognl:item.title"/></td>
 <td><input type="submit" jwcid="up@Submit"
 selected="ognl:moveUpItem"
 tag="ognl:item"
 label="Move Up"/></td>
 <td><input type="submit" jwcid="down@Submit"
 selected="ognl:moveDownItem"
 tag="ognl:item"
 label="Move Down"/></td>
</tr>
</table>

<input type="submit" value="Update"/>
<input type="submit" jwcid="add@Submit"
 listener="ognl:listeners.addTodoItem"
 label="Add Item"/>
<input type="submit" jwcid="deleteCompleted@Submit"
 listener="ognl:listeners.deleteCompleted"
 label="Delete Completed"/>

Listing 4.2 ToDo2.html: HTML template for the ToDo2 page

The PropertySelection
component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 139

</form>

<hr/>

<p>Return to
Home page.</p>

</body>
</html>

The only significant change to the original HTML template is the addition of the

PropertySelection component. Its value parameter is bound to the property we

want to edit, just as with a TextField. Here, the PropertySelection component will

edit the current item’s priority property. Unlike with a TextField, the property

may be of any type, not just a string.

4.2.3 Implementing the page class

For the most part, the ToDo2 class is the same as for the original page. There are

two differences:

■ ToDo2 provides a read-only property, priorityModel, needed by the Property-

Selection component.

■ When adding new items, we instantiate the ToDoItem2 class instead of ToDoItem.

Because they have so much in common, ToDo2 subclasses the original class, ToDo,

but adds one new method and overrides another. First, the priorityModel prop-

erty (referenced in the HTML template by the PropertySelection component) is

provided via the getPriorityModel() method. The model is needed by the Property-

Selection component to create the drop-down list of priorities:

public IPropertySelectionModel getPriorityModel()
{
 return new PriorityModel();
}

New item instances are created in only one place: the createNewItem() method.

Overriding this method in the ToDo2 subclass allows for the creation of the

ToDoItem2 class:

protected ToDoItem createNewItem(String title)
{
 return new ToDoItem2(title);
}

TEAM LinG - Live, Informative, Non-cost and Genuine!

140 CHAPTER 4

Advanced form components

All the remaining behavior from the first page applies to this page as well, and is

simply inherited from the original page class.

4.2.4 Implementing the model

The PropertySelection component’s model is a class that implements the IProperty-

SelectionModel interface, which consists of five methods. These methods define

all the options that will be presented in the drop-down list.

 When rendering, PropertySelection creates a <select> element, and then

uses the model to obtain the number of options. The PropertySelection compo-

nent interacts with the model during the render, as shown in figure 4.2. For each

option provided by the model, PropertySelection obtains the option value (which

may be an object type), the string value (which is the value encoded into the

form as the <option> element’s value attribute), and the label that will be dis-

played to the user. This information is used to write each <option> element

Figure 4.2 The property selection model provides the number of options as well as the information

needed to render each option.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 141

within the <select>. The option value is used to determine whether the <option>

should be selected by default.

 Listing 4.3 contains the PropertySelection model for selecting priority levels.

It defines a class, PriorityModel, that implements the IPropertySelectionModel

interface—the interface a PropertySelection model class must implement.

package examples.todo2;

import org.apache.tapestry.form.IPropertySelectionModel;

public class PriorityModel implements IPropertySelectionModel
{
 public int getOptionCount()
 {
 return 3;
 }

 public Object getOption(int index)
 {
 switch (index)
 {
 case 0 :
 return new Integer(ToDoItem2.HIGH_PRIORITY);

 case 1 :
 return new Integer(ToDoItem2.MEDIUM_PRIORITY);

 default :
 return new Integer(ToDoItem2.LOW_PRIORITY);
 }
 }

 public String getLabel(int index)
 {
 switch (index)
 {
 case 0 :
 return "High";

 case 1 :
 return "Medium";

 default :

 return "Low";
 }
 }

Listing 4.3 PropertyModel.java: PropertySelection model implementation

Converts
index to
property
value

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

142 CHAPTER 4

Advanced form components

 public String getValue(int index)
 {
 return Integer.toString(index);
 }

 public Object translateValue(String value)
 {
 int index = Integer.parseInt(value);

 return getOption(index);
 }
}

The getOptionCount() method returns 3, because there are always exactly three
options (High, Medium, and Low).

The getValue() method returns the option value recorded into the form (as the
value attribute of the <option> element). For this model, the option value is sim-
ply the index into the list of possible options—a common, efficient approach
when the list of options is fixed at compile time.

The translateValue() method is the counterpart to getValue(). It translates the
option value back to an index number and returns the option for that index.

The first method in the IPropertySelectionModel interface, getOptionCount(),

provides the number of items in the list. For this model, there are always exactly

three options—High, Medium, and Low—so getOptionCount() always returns 3.

The PropertySelection component will iterate through the possible indexes (0

through 2) and invoke the next three methods for each index.

 The PropertySelection component invokes the getOption() method only

when it is rendering (the method isn’t invoked when the containing form is sub-

mitted). This method allows the PropertySelection component to determine

which option, if any, should be selected initially. The first option whose value (as

returned by getOption()) matches the value from the component’s value param-

eter is selected. (The <option> element will include the selected attribute.) Keep

in mind that although this example edits an integer property, PropertySelection

has no knowledge of the type of property it is editing; that information is entirely

contained within the model. The value parameter could just as easily be a dou-

ble, a string, a date, or a custom application object—even an object retrieved

from a database. The return value for the getOption() method is Object, and the

three priority level constants are wrapped as Integer objects and returned.

 The second method, getLabel(), provides the label for each option. As with

getOption(), the parameter is the index within the loop. The returned label is

Converts index
to option value

 c

Converts option
value to property
value

 d

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 143

presented directly to the user. In an internationalized application, the label value

returned must be localized to match the page’s locale.

 As the PropertySelection component renders the <option> elements, it must

have a string to use as the value attribute. The PropertySelection component

allows the model to specify this in the getValue() method. A common approach,

which we use here, is to encode the index as a string. The model should be able

to convert this string back to an option value when the form is submitted.

 In this particular model, we could have encoded the value for one of the

three constants here. That is, we could return 100, 200, or 300 rather than

the index.

 The final model method, translateValue(), is used only when the form is

submitted. The PropertySelection component will use this method to translate

an encoded value directly to an option so that the option can be used to update

the property bound to the PropertySelection’s value parameter. The translate-

Value() method is the counterpart to the getValue() method. Figure 4.3 shows

how this method is used by the PropertySelection component.

 For this model implementation, it is convenient to simply convert the index

value back to an integer and use the getOption() method to obtain the value to

be assigned.

Figure 4.3 The PropertySelection rewind sequence. The value is extracted from the query parameter and

the model is used to translate it to a value, which is then assigned back to the domain object property.

TEAM LinG - Live, Informative, Non-cost and Genuine!

144 CHAPTER 4

Advanced form components

 By combining the PropertySelection component with a custom model class,

we have easily created a working drop-down list in our application with little

more effort than would be required when using a TextField. With some minor

changes to our Java code, we can even get rid of the custom model class and use

an existing model implementation provided by the framework. We just have to

replace our integer constants with enums.

4.2.5 Using enums instead of integers

Using a set of integers to represent the priority levels is somewhat of an oddity in

Java coding style. In C or C++, you would almost certainly use an enum instead.

Enums are preferable to integers because they limit the possible values to a finite

set, which is exactly what we want here. The compiler can do much better type

checking of method parameters or other expressions for enums than it can for

simple integers. Java currently does not have an enum construct. Sun is expected

to add support for enums in Java Development Kit (JDK) 1.5; but until that ver-

sion of Java is widely available, you can simulate C enums by using Java classes.

 In this take on the ToDo list application, we’ll switch from representing the

priority as integers and instead use an enumerated type. We’ll also make use of a

framework-provided model class, tailored for use with enumerated types. The

final application looks identical to the previous version, ToDo2. It’s simply a dif-

ferent way of storing data on the server side.

 One of the advantages of building and using open-source software is the

availability of other high-quality frameworks and libraries. Tapestry makes use of

a number of such frameworks, including the OGNL library, as well as other

frameworks available from the Jakarta project that hosts Tapestry. The Jakarta

commons-lang library contains a number of handy utilities and classes, one of

which is an Enum base class used for creating enumerated types. Creating a new

enumerated type is as simple as creating a subclass of Enum and defining some

public constants for the possible values. Listing 4.4 shows the implementation of

the Priority class.

package examples.todo3;

import org.apache.commons.lang.enum.Enum;

public class Priority extends Enum
{
 public static final Priority HIGH = new Priority("HIGH");

Listing 4.4 Priority.java: enum type used with the ToDo3 class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 145

 public static final Priority MEDIUM = new Priority("MEDIUM");
 public static final Priority LOW = new Priority("LOW");

 public static final Priority[] ALL_VALUES =
 { HIGH, MEDIUM, LOW };

 private Priority(String name)
 {
 super(name);
 }
}

The constructor for Priority is private; this means that the class can’t be

extended. There’s no way to create additional instances of Priority beyond the

three values defined here: Priority.HIGH, Priority.MEDIUM, and Priority.LOW

(except by changing the Priority class to define new values). If we ever write

code that needs to differentiate ToDoItem3 instances based on priority, we can

make direct comparisons to these three constant values; that is, we can use

the Java equality operator, ==, rather than invoke the equals() method. The

Enum base class ensures the identity of instances, even when a Priority is serial-

ized and deserialized,1 such as when the value is directly or indirectly stored in

the HttpSession.

 From there, we again extend the ToDoItem class to define a priority property

of type Priority. The new class, ToDoItem3, appears in listing 4.5.

package examples.todo3;

import examples.todo1.ToDoItem;

public class ToDoItem3 extends ToDoItem
{
 private Priority _priority = Priority.MEDIUM;

 public ToDoItem3()
 {
 }

1 Normally, when an object is serialized and then deserialized, the result is a copy of the original object—
a new and separate instance. This makes sense, because (for a while) the object was just a stream of
bytes. The Enum base class includes the necessary hooks to find the correct singleton after deserializ-
ing, which ensures that, within a JVM, there is exactly one instance of any particular Enum value (such
as Priority.HIGH).

Listing 4.5 ToDoItem3.java: data item used with the ToDo3 page

TEAM LinG - Live, Informative, Non-cost and Genuine!

146 CHAPTER 4

Advanced form components

 public ToDoItem3(String title)
 {
 super(title);
 }

 public Priority getPriority()
 {
 return _priority;
 }

 public void setPriority(Priority priority)
 {
 _priority = priority;
 }
}

The HTML template for the ToDo3 page is identical the ToDo2 HTML template

(except for the page title). There’s nothing to change; PropertySelection is still

editing the priority property of the item, and the page still provides an instance

of IPropertySelectionModel to handle all the translations as a priorityModel

property. On the implementation side, the type of the priority property in the

item class has changed from int to Priority, and the model used by the Property-

Selection component has changed as well. But none of that is relevant to the

interface or even to the PropertySelection component—it’s all encapsulated

inside the model. This is a good example of the power of the Model-View-

Controller pattern: The View (the HTML template) is unchanged even when the

Model (the ToDoItem3 class) is altered considerably; the Controller (the Java page

class) has modest changes to fulfill its role of bridging the two.

 The ToDo3 page specification differs only in the page class we want to instan-

tiate. The createNewItem() method is overridden in the ToDo3 class to instantiate

an instance of ToDoItem3. The only real change is related to creating a model for

the PropertySelection component—this appears in the ToDo3 page class:

private IPropertySelectionModel _priorityModel;

public IPropertySelectionModel getPriorityModel()
{
 if (_priorityModel == null)
 _priorityModel = buildPriorityModel();

 return _priorityModel;
}

private IPropertySelectionModel buildPriorityModel()
{

Builds and caches
the model

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating drop-down lists with PropertySelection 147

 ResourceBundle bundle =
 ResourceBundle.getBundle("examples.todo3.PriorityStrings",
 getLocale());

 return new EnumPropertySelectionModel(Priority.ALL_VALUES,
 bundle);
}

The model, once constructed, is immutable. It is constructed the first time it is
needed and then saved for later requests.

The model is constructed using the properly localized ResourceBundle and the
list of possible values (in the order they should appear in the drop-down list).
This will be a file, PriorityStrings.properties, in the same package folder as the
Java class.

The page returns, in its locale property, the locale that should be used for any
visible text.

The core of this approach is the Tapestry framework class EnumPropertySelection-

Model. This is an implementation of IPropertySelectionModel geared around

Enums. The first parameter for the constructor is an array of the Enum values, in

the order in which they should appear in the drop-down list created by the Prop-

ertySelection component.

 The second parameter is a ResourceBundle containing the localized labels we

want to use.2 The keys in the ResourceBundle are the names of the Enum instances,

in this case HIGH, MEDIUM, and LOW. The PriorityStrings.properties file contains the

user-presentable labels:

HIGH=High
MEDIUM=Medium
LOW=Low

Tapestry does quite a bit in terms of managing the end user’s locale; we cover

this topic in detail in chapter 7. For now, suffice to say that the page knows the

correct locale for any localizable resources such as the PriorityStrings.properties

file, and this is accessible via the getLocale() method inherited from the

AbstractPage superclass.

 At runtime, the PropertySelection component will use the EnumProperty-

SelectionModel to access the localized strings in the ResourceBundle. The model

Constructs the model c

Uses the correct
locale for the page

 d

 b

 c

 d

2 ResourceBundle is a utility class provided by the JDK. A ResourceBundle is a container of string keys
and values, typically read from a set of files. ResourceBundles are used primarily to support localiza-
tion; they allow literal strings to be moved out of Java code and into separate files, which may be edited
and translated individually.

TEAM LinG - Live, Informative, Non-cost and Genuine!

148 CHAPTER 4

Advanced form components

also will be responsible for creating option values and translating option values

to one of the three options: Priority.HIGH, Priority.MEDIUM, or Priority.LOW.

The end user will not see any difference in the behavior of the ToDo2 and

ToDo3 pages, but internally, the implementation of the ToDo3 page is cleaner

and simpler.

 The PropertySelection component vastly simplifies the effort needed to cre-

ate a drop-down list. This single component can be used to create lists for any-

thing from a simple Yes or No, to a list of strings, all the way up to a list of objects

read from a database. You simply provide the model listing the available options

and tell the component how to store this information in the HTML form, as well

as how to convert it back to application data.

 In the next two sections, we describe Tapestry form components that are

invisible to the end user. They allow information to be stored in the HTML form

as hidden input fields and permit that information to be retrieved when the user

submits the form.

4.3 Recording data in the form with Hidden

One of the more vexing problems in web application development is how to deal

with the browser back button. In a traditional desktop application, the user

interface displayed to the user is always in perfect synchronization with the run-

ning application, but in a web application this isn’t always so. Because the user

can hit the browser back button to return to a previous page (really, a previous

rendering of a page stored in a cache within the web browser) and continue to

click links and submit forms, it is all too easy for the user interface to be out of

synch with the state of the application running on the server.

 For example, consider a typical e-commerce application with a product cata-

log. A user may start a search for, say, digital cameras. The user eventually

reaches a product details page for a particular camera, perhaps a Minolta. From

there, the user clicks on a Related Items link and gets the product details for a

similar Nikon camera.

 Unsatisfied with the Nikon, the user hits the browser back button and

returns to the page displaying the Minolta camera. This Minolta page will

come out of the browser’s page cache, and no interaction with the application

server takes place. To the user, these are two different and distinct pages, one

showing the Minolta and one showing the Nikon, exactly as if the user was

thumbing through a print catalog. To the application, these are different con-

figurations of the same page, rendered at different times. Unlike a desktop

TEAM LinG - Live, Informative, Non-cost and Genuine!

Recording data in the form with Hidden 149

application, a web application can only guess at what is on users’ screens when

they submit forms.

 The user then decides to purchase the Minolta and clicks the Add To Shop-

ping Cart button to add the camera to the cart. Which camera gets added to the

cart: the Minolta or the Nikon? It depends on how the application is coded.

 The application may store the identity of the product displayed on the prod-

uct details page on the server. Tapestry includes a facility for this (persistent page

properties), but even a non-Tapestry application could do this by storing an

attribute into the HttpSession. If the application operates this way, the user will

be surprised by a Nikon camera in the shopping cart, not the Minolta the user

was expecting. Because the server has no way of knowing that the user hit the

browser’s back button, it can only assume that the user is looking at the most

recently rendered page (the one showing the Nikon details), even if the user is

instead looking at the Minolta camera in a page cached within the browser.

 We need a way to encode in the form the identity of the camera so that when

the form is submitted, the correct camera is added to the shopping cart. In tradi-

tional web application development, this is accomplished by including a hidden

field in the form. You create a hidden field by using the HTML element <input

type="hidden">. A hidden field works like a text field, except that no user inter-

face element is created in the web browser. The hidden field is, simply, hidden,

and the value for the field is submitted along with the other fields of the form.

 Tapestry includes a component, Hidden, which builds on the HTML hidden

form control. The Hidden component works much like a TextField component;

when it renders, it reads a domain object property bound to its value parameter.

Unlike with TextField, the property does not have to be a string; this property

type is encoded along with its value, just as you’ve seen before with DirectLink

component parameters. Figure 4.4 shows the sequence when a Hidden compo-

nent renders.

 The Form component is responsible for writing the hidden field (as an <input

type="hidden"> element). In most cases, the domain object is the page object

itself; as with all component parameters, it doesn’t matter to the Hidden compo-

nent where the value comes from. When the form is submitted, the value is

extracted from the request, converted back into an object type, and used to

update the domain object property, as shown in figure 4.5. A listener method

may optionally be specified; if so, the listener is invoked after the property is

updated. Remember that listener methods are really IActionListener instances.

Invoking the listener method gives the page a chance to perform any additional

synchronization operations related to the data stored in the hidden field.

TEAM LinG - Live, Informative, Non-cost and Genuine!

150 CHAPTER 4

Advanced form components

Figure 4.4 When the Hidden component renders, it extracts a property and

records it in the form as a hidden field.

Figure 4.5 After reading and converting the query parameter, the Hidden component updates its

value parameter and, finally, invokes its listener.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looping within a form using ListEdit 151

In the e-commerce example, the Hidden component would record just the identity
of the Product entity for the camera. This might be a SKU or a database primary
key. The listener method, invoked after the id property is restored, can then go
to the database to read the Product entity and continue with the process of add-
ing the camera to the shopping cart.

 We provide a more complete example of using the Hidden component in
chapter 10.

 The Hidden component is useful for recording a single value in a form. How-
ever, there are cases where an entire list of values should be encoded. In the next
section, we show you how to properly loop over such a list of values inside a form.

4.4 Looping within a form using ListEdit

Dealing with lists is a common issue related to synchronization between the cli-
ent and the server. Forms may contain a Foreach component and iterate over a
list of values, allowing properties of each element in the list to be edited. This is
common in e-commerce applications, where a “shopping cart” page allows quan-
tities of all the items in the shopping cart to be edited in one place. The same
concept applies in many other types of applications as well.

 As you saw in chapter 3, it is easy for users to trip up the Form component by
using their browser’s back button, triggering a StaleLinkException. For simple
forms, without loops or conditionals, this is never an issue. However, for complex
forms, which include loops and conditionals, it is possible for a Form submission
to get out of sequence with the previous Form render. The simplest way for a syn-
chronization fault to occur is when the form includes a loop that iterates over
data that may change between the time the page is rendered and the time the
form on the page is submitted. This often occurs when a loop works off data
from a database, and rows are added to, or removed from, the database after the
page is rendered but before the form is submitted (for example, if a second user is
updating the database). A similar scenario is one in which the user backtracks to
a page that was rendered when the application was in a different state.

 So, just as the Hidden component can store a single value in a form, the
ListEdit component can store a list of values in a form—and iterate over them
just like a Foreach component. The interface for ListEdit resembles that of the
Foreach component; it also has source and value parameters. When a ListEdit is
rendering, it behaves exactly like the Foreach component, with one difference: It
records a series of hidden fields in the form, one for each element in its source
list. As with the Hidden component, it encodes each value, maintaining its type
for later, when the form is submitted. Figure 4.6 shows how this works.

TEAM LinG - Live, Informative, Non-cost and Genuine!

152 CHAPTER 4

Advanced form components

A major departure from the Foreach component is the existence of the ListEdit’s

listener parameter. Whereas a Foreach component updates its value parameter

and renders its body, the ListEdit component updates its value parameter and

then invokes a listener method before rendering its body. The intent is that the

successive values are some form of object ID, and the listener method is sup-

posed to read the full object for that ID and make it available as a page property.

 When the enclosing Form is rewinding, ListEdit works very differently from

Foreach. During the rewinding, a ListEdit component reads the hidden fields it

previously recorded (during the render); it doesn’t use its source parameter at

all when rewinding. The ListEdit component still updates the property bound

to its value parameter, just as a Foreach component does, before rendering its

body. The operation sequence for rewinding is just about the same as for ren-

dering (except for the interaction with the Form component to record hidden

field values).

Figure 4.6

When rendering, the

ListEdit component acts

much like a Foreach.

The listener is invoked

after the value is

updated on each pass

through the loop.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looping within a form using ListEdit 153

 While the ListEdit component provides the functionality for iterating over

lists, it is commonly combined with a helper class to fill in the details, as you’ll

see in the next section.

4.4.1 Using the ListEditMap

The ListEdit component provides the raw structure for dealing with HTML form

synchronization issues, but it requires a bit of effort to use. There’s a lot of work

related to supplying ListEdit with a list or collection of IDs, converting those IDs

to objects, and so forth. That can turn into a bit of code, so, naturally, Tapestry

offers some assistance to help you avoid unnecessary coding.

 The framework includes a companion class, ListEditMap, which provides a

server-side mapping from the object IDs that are stored in the form to the objects

for those IDs, which are available on the server. A page must create a ListEditMap

instance and load it with the object IDs and matching object values before ren-

dering the ListEdit component, and then must reconstruct the ListEditMap

instance when the form is submitted. The ListEdit component’s source and

value parameters are connected to ListEditMap’s keys and key properties, as

shown in table 4.2.

With the ListEdit component properly configured, we can extend the ListEdit

sequence diagram to show exactly how ListEditMap is involved, as shown in figure 4.7.

 The listener method can get the current value from the ListEditMap instance.

This listener method should always check to see if the value is null; this can

occur when two users’ updates overlap. If the first user deletes some objects, the

second user’s form submit will contain the IDs of deleted objects, which will not

be present in the ListEditMap instance (because they have been deleted from the

underlying database).

 To see how ListEdit and ListEditMap work together, let’s update our ToDo

application again, replacing Foreach with a ListEdit component.

Table 4.2 ListEditMap properties

ListEdit parameter ListEditMap property Usage

source keys The collection of keys to iterate over (render only)

value key A value set by ListEdit to the current key within the

list of keys (render and rewind)

value The value corresponding to the current key (render

and rewind)

TEAM LinG - Live, Informative, Non-cost and Genuine!

154 CHAPTER 4

Advanced form components

4.4.2 Using ListEdit in the ToDo application

In chapter 3, we demonstrated how easy it is to force the ToDo application

(which is based on a Foreach component) to fail (with a StaleLinkException) by

using the browser’s back button. Now we’ll create a fourth version of the applica-

tion that doesn’t have that limitation.

Creating a ToDo item with an ID

The ListEditMap class is built around the idea that items have some form of

unique key that can be used to identify them. In a production application, these

Figure 4.7 The ListEdit component is connected to the ListEditMap instance and

keeps it informed about the current object ID (by setting the key property). The

listener method can easily obtain the current object for that key from ListEditMap

via the value property.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looping within a form using ListEdit 155

keys are likely to be some form of database primary key. The ToDoItems used in

these example applications are not stored in a database, but we can still create a

kind of unique key for the items. The first step is to extend the ToDoItem class yet

again. Listing 4.6 shows the implementation of ToDoItem4, which extends from

ToDoItem3 and adds a unique immutable identifier, as an int, to each item.

package examples.todo4;

import examples.todo3.ToDoItem3;

public class ToDoItem4 extends ToDoItem3
{
 private static int _nextuid = 0;

 private int _uid = _nextuid++;

 public ToDoItem4()
 {
 super();
 }

 public ToDoItem4(String title)
 {
 super(title);
 }

 public int getUid()
 {
 return _uid;
 }
}

A simple static variable is used to allocate unique IDs. In a real application,
unique IDs would be provided by a database. This approach is acceptable only
for this simple demonstration.

The unique ID is assigned as each instance is constructed.

Now that we have to-do items that can be identified using a unique ID, we can

start updating the application to make use of the ListEdit component, starting

with the page template.

Listing 4.6 ToDoItem4.java: data object for the ToDo4 page

Source of unique IDs b

Assigns unique ID
when object created

 c

 b

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

156 CHAPTER 4

Advanced form components

Updating the page template

The template for the ToDo4 page is for the most part identical to the ToDo3 page,

except for the one line concerned with the item loop:

<tr jwcid="listEdit" element="tr">

Because the ListEdit component has even more parameters than the Foreach

component used in the previous examples, it makes sense to configure those

parameters in the ToDo4 page specification:

<component id="listEdit" type="ListEdit">
 <binding name="source" expression="listEditMap.keys"/>
 <binding name="value" expression="listEditMap.key"/>
 <binding name="listener" expression="listeners.synchronizeItem"/>
</component>

Whereas the Foreach component in the previous to-do list examples read the

toDoList property and directly updated the item property, here the ListEdit

component reads and updates properties of the ListEditMap class. The item

property still gets updated, but indirectly, by the synchronizeItem() listener

method. The page is responsible for initializing the listEditMap property before

the page renders. The ListEditMap is initialized with the values from the toDo-

List property (you’ll see the details of this shortly) and acts as a buffer between

the ListEdit component and the properties of the page.

 In addition, the ToDo4 page may need to display an error message if a form

submission cannot be processed; the HTML template includes a familiar pair of

components for displaying the error message (if the message is non-null):

Error Message

As in previous examples, this HTML template snippet checks to see if there is a

non-null error message and, if so, displays it at the top of the page, before the

form renders.

Specifying the page properties

The ToDo4 page uses the same set of specified properties as the ToDo3 page,

with two additions: a listEditMap property (connected to the ListEdit compo-

nent) and an errorMessage property (used to store an error message display

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looping within a form using ListEdit 157

when the form submission cannot be processed due to synchronization prob-

lems). All of these properties are defined in the ToDo4 page specification:

<property-specification name="toDoList"
 type="java.util.List" persistent="yes"/>
<property-specification name="item"
 type="examples.todo1.ToDoItem"/>
<property-specification name="moveUpItem"
 type="examples.todo1.ToDoItem"/>
<property-specification name="moveDownItem"
 type="examples.todo1.ToDoItem"/>
<property-specification name="listEditMap"
 type="org.apache.tapestry.form.ListEditMap"/>
<property-specification name="errorMessage"
 type="java.lang.String"/>

Now that we’ve specified the necessary properties, we need to make sure they are

initialized and used properly.

Initializing the ListEditMap

Listing 4.7 contains the code for the ToDo4 page class. It extends the ToDo3 class,

adding support for initialization and using the ListEditMap instance.

package examples.todo4;

import java.util.List;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.PageRedirectException;
import org.apache.tapestry.event.PageEvent;
import org.apache.tapestry.form.ListEditMap;

import examples.todo1.ToDoItem;
import examples.todo3.ToDo3;

public abstract class ToDo4 extends ToDo3
{
 public abstract void
 setErrorMessage(String message);
 public abstract void
 setListEditMap(ListEditMap listEditMap);
 public abstract ListEditMap getListEditMap();
 public abstract void setItem(ToDoItem item);

 protected ToDoItem createNewItem(String title)
 {
 return new ToDoItem4(title);
 }

Listing 4.7 ToDo4.java: page class for the ToDo4 page

Accessors for
specified
properties

Creates new items as
instances of ToDoItem4

TEAM LinG - Live, Informative, Non-cost and Genuine!

158 CHAPTER 4

Advanced form components

 public void pageBeginRender(PageEvent event)
 {
 super.pageBeginRender(event);

 ListEditMap map = new ListEditMap();

 List items = getToDoList();
 int count = items.size();

 for (int i = 0; i < count; i++)
 {
 ToDoItem4 item = (ToDoItem4) items.get(i);
 int uid = item.getUid();

 map.add(new Integer(uid), item);
 }

 setListEditMap(map);
 }

 public void synchronizeItem(IRequestCycle cycle)
 {
 ListEditMap map = getListEditMap();

 ToDoItem item = (ToDoItem) map.getValue();

 if (item == null)
 {
 setErrorMessage(
 "Your form submission is out of date. Please retry.");
 throw new PageRedirectException(this);
 }

 setItem(item);
 }
}

The pageBeginRender() method will be invoked when the page renders or when
a form within the page rewinds. The super implementation must be invoked,
because that ensures that the toDoList property is initialized.

Each item is added to the ListEditMap, which remembers the order in which key/
value pairs are added.

The ListEdit component invokes this listener method after setting ListEditMap’s
key property. The map’s getValue() method returns the corresponding object,
as previously stored inside pageBeginRender(). If the current key is not stored in
the map, then null is returned—this can happen when a user submits a form
after clicking the back button.

Invoked when page
renders or when
form rewinds

 b

Sets up
toDoList
property

Adds item to the
ListEditMap

 c

Stores the map
for later

Is invoked
by ListEdit

 d

➥

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looping within a form using ListEdit 159

The toDoList property is the list of items, in the correct order (the order as

manipulated by the user). ListEditMap remembers the order that items are

added to it; its getKeys() method returns the keys in that order. It is safe to cast

each item in the list to ToDoItem4, since the createNewItem() method has been

overridden to instantiate this class.

Synchronizing the item

The second responsibility of the class is to synchronize the item property—the

ListEdit component stores a list of to do item IDs in the form, and the page class

must use these to set the item property to the correct instance of ToDoItem4.

Nearly all the work for this is done by ListEditMap with a short listener method,

synchronizeItem() (shown in listing 4.7), which gets the current item from the

ListEditMap and assigns it to the page’s item property. In addition, the synchronize-

Item() method includes a check for a null item.

 As we’ve described earlier, the ListEdit component will set the key property of

the ListEditMap before invoking the listener method. Invoking getValue() on

the ListEditMap returns the corresponding value object, as previously recorded

into the map; this is an instance of ToDoItem4. The check for null covers race

conditions between two users,3 or one user using the browser’s back button.

Throwing a PageRedirectException aborts the form’s rewind phase entirely and

forces the page to render as is.

 Chapter 10 describes some further functionality provided by the ListEditMap

class—specifically, the ability to track values within the map that should be

deleted. The ToDo application doesn’t use this feature of ListEditMap, because it

has its own approach for deleting completed items in the list.

 The previous two sections described components, Hidden and ListEdit, that

are critical to the infrastructure of an application but largely invisible to end

users. Let’s now return to components that users will see and interact with.

3 A race condition is a category of software bug that is concerned with multiple users affecting the same
data simultaneously. In a race condition, two (or more) users attempt the same operation at roughly
the same time, and the first user to complete the operation affects the outcome of the other users. A
common example of a race condition in a web application is when one user deletes an object stored
in a database and another user attempts to update the same object. Whether the second user’s update
succeeds or fails depends on which user wins the race.

TEAM LinG - Live, Informative, Non-cost and Genuine!

160 CHAPTER 4

Advanced form components

4.5 Handling file uploads

A common feature of many web applications is support for file uploads, the abil-

ity to transfer a file from the user’s computer to the application server as part of

a form submission. HTML includes another form control for this purpose, <input

type="file">. When a web browser submits a request with a file upload, the nor-

mal encoding used to express the data (the Multipurpose Internet Mail Exten-

sions [MIME] type application/x-www-form-urlencoded) is not used. Instead, a

different encoding, multipart/form-data, is used for the upload.

 This alternate encoding allows any number of file uploads, interspersed with

normal query parameter values (from the other form controls), to be sent from

the client to the server in one large binary stream. This difference in encoding

should not be any more of an issue to a servlet application developer than the

difference between the HTTP GET and PUT requests. Alas, the Servlet API does

not include the ability to parse and interpret multipart/form-data content,

which makes handling uploaded files an uphill battle.

 Tapestry makes use of the Jakarta commons-fileupload library to seamlessly

support forms that contain a mix of ordinary form elements and file uploads.

When a form is submitted containing an uploaded file, Tapestry extracts the file

content from the request and stores it in memory or in a temporary file (if the

file content is large enough).

 To the application, an uploaded file is represented by an instance of the inter-

face IUploadFile. From this, an application can retrieve the following information:

■ The name of the file (on the client)

■ The complete path of the file (on the client)

■ The MIME content type (as reported by the client)

■ The content of the file, as a java.io.InputStream

The content of the file is deleted at the end of the request; so if the uploaded file

is to be used later, it must be stored persistently either to the server’s file system

or in a database.

 Tapestry’s Upload component makes creating file upload fields as easy as creat-

ing ordinary text fields. Figure 4.8 shows a page that uses an Upload component.

 It is just as easy to add an Upload component to a Tapestry Form as any

other kind of component. The HTML for the Upload component from figure 4.8

is simply

<input type="file" jwcid="@Upload" file="ognl:file" size="100"/>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling file uploads 161

Including an Upload component inside a Form automatically changes the encod-

ing type of the enclosing Form to multipart/form-data. This is another example

of the dynamic nature of Tapestry; you are not responsible for this background

detail (selecting the form’s encoding type)—the components automatically do

the right thing.

 Once the form is submitted and the file is uploaded, the file instance can be

passed to another page in the same way as a simple value, such as a string or

number. Inside the Upload page class, the listener method does just that:

public abstract IUploadFile getFile();

public void formSubmit(IRequestCycle cycle)
{
 IUploadFile file = getFile();

 if (file == null)
 return;

 UploadResults next =
 (UploadResults) cycle.getPage("UploadResults");
 next.setFile(file);
 cycle.activate(next);
}

The second page, UploadResults, displays the data available about the

uploaded file, followed by a dump of the contents of the file (in hexadecimal

Figure 4.8 A page containing an Upload component. Clicking the Browse button will open a file

selection dialog box.

TEAM LinG - Live, Informative, Non-cost and Genuine!

162 CHAPTER 4

Advanced form components

and ASCII). Figure 4.9 shows an example of what the page looks like after

uploading a small file.

 Getting the output for the first three fields (name, path, and content type)

is straightforward:

<table border="0">
<tr>
 <th>Name:</th>
 <td>
 File Name</td>
</tr>

<tr>
 <th>Path:</th>
 <td>
 File Path</td>
</tr>

<tr>
 <th>Content Type:</th>
 <td>
 text/html</td>
</tr>

Figure 4.9 After the file is uploaded, the application displays the information available about the

uploaded file.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling file uploads 163

Getting the output for the binary content is a bit more involved. Tapestry doesn’t

have a built-in component for this kind of output, but it does include a utility

class, BinaryDumpOutputStream. BinaryDumpOutputStream is a filter that takes as

input a stream of bytes and produces as output the kind of text shown in

figure 4.9. The trick is to get this object, which is not a component, integrated

into the rendering of the page. Fortunately, as you’ve seen before, components

aren’t the only things that can render output in Tapestry. The UploadResults

page class in listing 4.8 includes an inner class that can render the contents of

an IUploadFile.

package examples.upload;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.StringWriter;

import org.apache.tapestry.ApplicationRuntimeException;
import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRender;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;
import org.apache.tapestry.request.IUploadFile;
import org.apache.tapestry.util.io.BinaryDumpOutputStream;

public abstract class UploadResults extends BasePage
{
 public abstract void setFile(IUploadFile file);
 public abstract IUploadFile getFile();

 private static class ContentRenderer
 implements IRender
 {
 private IUploadFile _file;

 ContentRenderer(IUploadFile file)
 {
 _file = file;
 }

 public void render(IMarkupWriter writer,
 IRequestCycle cycle)
 {
 try
 {
 StringWriter buffer = new StringWriter();

Listing 4.8 UploadResults.java: page class for the UploadResults page

Renders binary
output

 b

Is defined by the
IRender interface

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

164 CHAPTER 4

Advanced form components

 BinaryDumpOutputStream out =
 new BinaryDumpOutputStream(buffer);

 out.setBytesPerLine(32);
 out.setShowAscii(true);

 InputStream in = _file.getStream();

 copy(in, out);

 in.close();
 out.close();

 writer.print(buffer.getBuffer().toString());

 }
 catch (IOException ex)
 {
 throw new ApplicationRuntimeException(
 "Unable to generate binary output.", ex);
 }
 }

 private void copy(InputStream in, OutputStream out)
 throws IOException
 {
 byte[] buffer = new byte[1000];

 while (true)
 {
 int length = in.read(buffer);

 if (length < 0)
 return;

 out.write(buffer, 0, length);
 }
 }

 }

 public IRender getContentRenderer()
 {
 return new ContentRenderer(getFile());
 }
}

An inner class is defined to render the binary content of the file as a hexadecimal
dump. The IRender interface is the common interface for any kind of object,
component or not, that can be part of the page-rendering process.

Gets content of
uploaded file

 d

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating pop-up date selections using DatePicker 165

The render() method is the sole method defined by the IRender interface.

The uploaded file is an instance of IUploadFile. The getStream() method pro-
vides a binary input stream of the uploaded content in the file.

To get this output, we make use of a Delegator component. Delegator delegates

its rendering to another object, an object that implements the IRender interface.

The rendering object is specified using the delegate parameter. The HTML tem-

plate includes the Delegator component, which delegates to the content-

Renderer property of the page:

<pre>

</pre>

All that’s left is to provide the contentRenderer property on the page:

public abstract IFile getFile();

public IRender getContentRenderer()
{
 return new ContentRenderer(getFile());
}

When the page renders, the Delegator component invokes the render() method

on the ContentRenderer instance created by this method; ContentRenderer is

responsible for reading the content of the uploaded file and outputting that con-

tent, formatted by the BinaryDumpOutputStream instance, into the response.

 The FileUpload component shows how a Tapestry component can perform

considerable server-side processing. The next component, DatePicker, shows the

kind of client-side logic that can be provided by a component.

4.6 Creating pop-up date selections using DatePicker

Last but not least on our tour of advanced Tapestry form components is the

DatePicker component. DatePicker allows users to enter dates using a sophisti-

cated pop-up calendar window. The component generates client-side JavaScript

that allows a pop-up window to be displayed when the user clicks an “activate”

button to the right of the text field. Alternately, the user may type directly into

the text field. Figure 4.10 shows a DatePicker component in action.

 DatePicker allows the user to navigate easily to other months and years using

the drop-down controls; it also allows the user to move forward or backward a

month at a time using the two buttons in the upper-left and upper-right corners

of the window. The current date may be selected by clicking the large button

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

166 CHAPTER 4

Advanced form components

along the bottom of the window, and clicking the Clear button closes the window

with no date selected.

 Using a DatePicker component is as easy as using any other Tapestry

component (with one caveat, which we discuss in a moment), despite the fact

that DatePicker has a considerable client-side presence. Listing 4.9 shows all

that’s necessary.

<html jwcid="@Shell" title="Date Picker">
<body jwcid="@Body">

<form jwcid="@Form" listener="ognl:listeners.formSubmit">

Enter a date: <input jwcid="@DatePicker"
 value="ognl:date"/>

<input type="submit" value="Submit"/>

</form>

Listing 4.9 DatePicker.html: HTML template for DatePicker page

Figure 4.10 The DatePicker component uses client-side JavaScript to create a

pop-up window for selecting dates.

DatePicker
component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating pop-up date selections using DatePicker 167

<p>
Return to Home page.</p>

</body>
</html>

Most of this template should look familiar. The DatePicker component has a

value parameter bound to the date property of the page, and the DatePicker

component, being a form control component, is enclosed by a Form component.

When the page is rendered, DatePicker outputs a text field and the trigger but-

ton (to the right of the text field) that displays the calendar pop-up window.

 The one caveat is the use of a Body component for the <body> element of the

template. The Body component organizes all the client-side JavaScript on the

page into a single <script> block, just inside the <body> tag. Tapestry compo-

nents, such as DatePicker, that use client-side JavaScript expect to be enclosed by

a Body component. The Body component is also utilized to generate unique

names for variables and JavaScript functions, which allows any number of

DatePicker components to be used within a page. We’ll discuss creating compo-

nents with a client-side JavaScript aspect in more detail in chapter 8.

TIP If you fail to wrap a DatePicker component within a Body component,
Tapestry will throw an exception: DatePicker components must be contained
by a Body component. Using a Body component doesn’t cost any measur-
able amount; you should just get in the habit of always using one.

WARNING Because of a bug in Microsoft Internet Explorer, drop-down lists will al-
ways render on top of the DatePicker pop-up; this is because the z-order
of drop-down lists is fixed at the highest possible value. When creating
the layout for a page using the DatePicker component, you must take
this into consideration and ensure that the DatePicker component’s
pop-up window will display in an area free of drop-down lists.

Again, the simplicity of Tapestry is apparent here, since the DatePicker component

is as easy to use, if not easier, than a TextField component. It’s the same pattern:

pick a component, place it in the HTML template, and configure its parameters.

The fact that this component is internally complex is of no concern to the page

using the component or to you as the developer when constructing the page.

TEAM LinG - Live, Informative, Non-cost and Genuine!

168 CHAPTER 4

Advanced form components

4.7 Summary

Tapestry’s more advanced form-related components are all built around usabil-

ity: both for you, the developer, and your end users. Tapestry components not

only encapsulate presentation issues, but also handle the conversions between

domain properties and the string values used within HTML. The framework’s

component-based approach to form handling makes it possible to build forms

with a much higher level of complexity without getting bogged down in the

mundane details of string conversions and field naming. Once again, Tapestry

lets you get more work done, better and more quickly—which leaves you more

time to concentrate on the specifics of your application.

 The next step is to integrate these basic form-handling concepts into an over-

all approach to validating user input. As you’ll learn in the next chapter, Tapes-

try has a complete subsystem for just this purpose.

TEAM LinG - Live, Informative, Non-cost and Genuine!

169

Form input validation

This chapter covers

■ Knowing the requirements of a usable,

validating interface

■ Using validators and validation delegates

■ Using FieldLabel and ValidField components

■ Adapting output for your application’s look

and feel

■ Performing form-level validations

TEAM LinG - Live, Informative, Non-cost and Genuine!

170 CHAPTER 5

Form input validation

Processing forms is more than creating drop-down lists and text fields; the forms

are just part of an overall cycle of user input and server validation. Users will

make mistakes when entering data into forms. They’ll leave a required field

blank, enter letters into fields clearly marked for numeric input, ignore any kind

of range requirement, and type whatever they want. It isn’t enough just to reject

invalid input from the user as an exception case; users can be expected to find

creative ways to enter invalid input on even the simplest forms. Your responsibil-

ity is to handle invalid input consistently and gracefully—that is, to create a

usable application. Fail to take your users’ needs and expectations into account by

creating a slipshod, unfriendly application and you run the risk of frustrating

them—and driving them away from your site. Users have some basic expecta-

tions when it comes to input validation:

■ Fields with invalid data will be marked as such; whether this is with color,

icons, or some other approach, it should be possible to identify fields with

problems at a glance. An unfriendly application will just display an error

message and expect the user to deduce the invalid field.

■ Invalid input should be maintained so that it can be corrected. For exam-
ple, if a user types only 15 digits of a credit card number, you should give
the user a chance to enter just the 16th digit. An unfriendly application
forces the user to retype the entire number from scratch.

■ All errors should be visible at once, to allow the user to correct all the
errors without additional server requests. An unfriendly application can
recognize only one error at a time, forcing the user to submit the form
multiple times.

■ Client-side validations are preferable to server-side validations.

Tapestry includes an entire subsystem for validating user input, centered on its

ValidField component. The subsystem allows you to easily build highly usable

forms that provide useful feedback and client-side validation. We’ll begin by

demonstrating how to use validation for a simple user registration form, and

later, we’ll show you how to mix and match the validation subsystem with the

DatePicker component from chapter 4.

5.1 Validating user input

The ValidField component is a variation of the TextField component described

in chapter 3. For the most part, a ValidField component is used in exactly the

same way as a TextField component—with some additional parameters. ValidField

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating user input 171

components are capable of editing not just string properties, but dates and

numbers as well, and can be adapted to any data type with a reasonable text

representation. The validations that can be used with ValidField components

can apply both client-side and server-side checks on input. These checks

ensure that the user provides values for required fields, or force user input to

be within a specified range. In many cases, the validations are tied in with

conversions, such as converting input from a string to a date or to some type

of number.

 An example of ValidField components in use appears in figure 5.1, which

shows a page that accepts a user’s name and address—the kind of page you’ll see

in many online applications. Initially, all the fields are blank, and the cursor is

Figure 5.1 The Register page in its initial state. Each required field is marked with an asterisk, and

the cursor is placed into the first required field.

TEAM LinG - Live, Informative, Non-cost and Genuine!

172 CHAPTER 5

Form input validation

automatically placed into the first required field (using a snippet of client-side

JavaScript, automatically generated by the ValidField component).

 If you enter values into some fields but not others and submit the form (this

form does not have client-side validation enabled), you’ll see a different screen

(figure 5.2). The page is redisplayed so that you may make corrections. Details

about the first field error appear at the top; each field that is in error is so

marked in several ways: the label for the field, and the field itself, both change

color, and an error marker is added to each field.1

1 As you’ll see, you can easily customize the look and feel for validation to fit seamlessly into your application.

Figure 5.2 The same form partially filled out and submitted. The first error on the page is displayed

prominently. All fields with errors are highlighted in three ways: the field label text is red, the field

itself gets a red background, and an icon is displayed to the right of the field.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating user input 173

 So, how does this all work? It’s more than what a single component in isola-

tion can accomplish; a component can normally affect only a small portion of

the overall page, but figure 5.2 reflects changes to the output HTML scattered

throughout the entire rendered page. Making this work requires one additional

component (FieldLabel) and two additional objects (a validator that parses and

validates the user input, and the validation delegate, which tracks fields and

errors), with some subtle interactions between all four.

 The next few sections give a quick overview of the various parts of the valida-

tion subsystem.

5.1.1 Using FieldLabels in conjunction with ValidFields

A FieldLabel is a companion component to a ValidField. Each FieldLabel is con-

nected to ValidField via the FieldLabel’s field parameter. The FieldLabel can

adjust its visual look to reflect the field. If the field is in error (because of invalid

user input), the FieldLabel can display itself differently. Figure 5.2 shows this; the

labels on several fields have been marked red to indicate that the fields are in error.

 In addition, the FieldLabel obtains the user-presentable name of the field to

display from the field itself (ValidField has a displayName parameter used for this

purpose). This ensures that the field label matches the name of the field used in

any error messages, even when the name of the field is localized into the user’s

language, or when the field name is determined dynamically.

 FieldLabels and ValidFields are largely responsible for presenting the interface

to the user; the heart of input validation is provided in specialized validator objects.

5.1.2 Using validators

Validators are objects that are responsible for translating user input from strings

into object types (such as numbers or dates) and performing other validation

checks. Validators are not components themselves; they are objects that imple-

ment the IValidator interface. Validators are used by ValidField components,

which delegate all the conversions and checks to the validator. A validator object

has four responsibilities:

■ Converting an object value (from a domain object property) to a string

that can be used when rendering the page. The converted value is used

as the value attribute of the <input> element rendered by the Valid-

Field component.

■ Converting a string value submitted with the form back into an object
value so that it can be used to update a domain object property.

TEAM LinG - Live, Informative, Non-cost and Genuine!

174 CHAPTER 5

Form input validation

■ Performing additional validations on the input. These validations are con-
trolled by properties of the validator instance, which you must configure.
For example, you may set the maximum property of a NumberValidator to
enforce a maximum allowable value.

■ Writing any client-side JavaScript needed to perform client-side validations.

Each ValidField component has a validator parameter, which is bound to the

validator object for that field. Validator objects are meant to be shared; they

don’t store any information about a particular ValidField. Many ValidFields can

share the same validator instance.

 All validators include a required property of type boolean. When the

required property is set to true, a validator will not allow an input field to be

blank or to consist only of whitespace.

 Tapestry provides a number of implementations of the IValidator interface

that can be used and configured off the shelf. StringValidator is used for edit-

ing string properties of pages or domain objects and can apply an additional val-

idation: a minimum number of characters that you want the field to accept.

 NumberValidator is used for editing numeric properties of all types (int, long,

BigDecimal, and so on). NumberValidator can enforce a minimum or a maximum

value, or both. DateValidator is used for editing Date properties. As with Number-

Validator, you can set a minimum or a maximum value. Later in this section,

you’ll see how to create a custom validator, one that enforces the format of a

postal zip code (which can be seen in action in figure 5.3).

 The final piece of the validation puzzle is the validation delegate: an object that

is used to track which fields are in error within a form, and what error(s) are

associated with each field.

5.1.3 Using validation delegates

The validation delegate has two distinct functions. First, it tracks the error state

of each ValidField enclosed by a form. When the form is submitted, each Valid-

Field passes the string provided by the user to the validator object for that

field. The validator object may convert the string to an object type, such as

Long or Double, or leave it as a string. It will also apply any validations, such as

checking that the converted value fits into a specified range. If the converted

value fails a validation, the validator reports the error back to the ValidField.

The conversions and validations a validator can perform are flexible, and, as

you’ll see, it is easy to create new validators to handle new types of conversions

and validations.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating user input 175

Validators report these errors by throwing a ValidationException. The Valid-

Field catches the exception and uses the validation delegate to record the Valid-

Field’s element ID, the exception message, and the invalid input provided by the

user. The recorded exception message is the indicator that the field is in error,

and will be used when the page containing the form is rendered.

 Validation delegates have a second, discrete function. The delegate is respon-

sible for decorating the fields and labels that are in error. The validation delegate

has opportunities to render additional HTML before and after the FieldLabel

renders, and before and after the ValidField renders, and can even write addi-

tional attributes into the <input> element rendered by the ValidField itself. The

exact sequence for the FieldLabel component is shown in figure 5.4.

Figure 5.3 A custom validator attached to the Zip field knows the correct format for zip codes and

can generate a custom error message.

TEAM LinG - Live, Informative, Non-cost and Genuine!

176 CHAPTER 5

Form input validation

This additional rendering is how the labels for invalid fields, shown in figure 5.2,

manage to be displayed in red. The validation delegate has a chance to wrap the

FieldLabel’s output in a element, and the span references a Cascading

Style Sheet (CSS) class that results in the label being displayed in red. The meth-

ods writeLabelPrefix()and writeLabelSuffix() allow the validation delegate to

decorate the label by writing extra HTML around it. Likewise, both the validator

and the validation delegate are integrated into the render of the ValidField, as

shown in figure 5.5.

 The validator’s renderValidatorContribution() method is primarily used by

the validator to write client-side JavaScript (which will perform client-side valida-

tions). The validation delegate methods (primarily, the writeAttributes()

Figure 5.4 The field label gets the user-presentable name for the field from the ValidField

component. It allows the delegate to render before and after it renders the field name, so

that the delegate can decorate the label if the corresponding field is in error.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating user input 177

method) are used to decorate the <input> element (rendered by the ValidField) if

the field is in error.

 The primary purpose of creating a custom subclass of ValidationDelegate is

to override these rendering methods so that an application-specific look and feel

for decorating fields and labels can be created. In the examples in this chapter,

we’ve done just that to mark the fields and labels in red, and to add an error icon

after invalid fields.

Figure 5.5 The delegate and the validator are both hooked into the rendering of the ValidField.

The validator may use its hook to create client-side validation JavaScript. The delegate uses its

hooks to decorate fields that are in error.

TEAM LinG - Live, Informative, Non-cost and Genuine!

178 CHAPTER 5

Form input validation

 The validator objects and the validation delegate object are needed by the

Form and ValidField components. They are connected to the components using

the components’ parameters (the delegate parameter of the Form component,

and the validator parameter of the ValidField component). These objects don’t

appear out of thin air; they must be instantiated and configured. This can be

done in Java code (within your page class) or by using another feature of the

page specification: helper beans.

5.1.4 Using helper beans

As we’ve been discussing, handling validation is about more than pages and

components. It involves the participation of at least two other objects: the valida-

tor attached to each ValidField, and the validation delegate that tracks field

input errors throughout a form.

 Both of these objects are JavaBeans—but where and when do they get instantiated?

 One possibility is to make instantiation the responsibility of the page. The

page class could include fields and accessor methods, such as

private IValidator _required;

public IValidator getRequired()
{
 if (_required == null)
 {
 _required = new StringValidator();
 _required.setRequired(true);
 }

 return _required;
}

However, that kind of mechanical coding goes against the grain of Tapestry. Get-

ting these helper beans instantiated and configured falls into the general “plumb-

ing” category—the category of things that should be shifted into the framework.

As you’ve seen before, when Tapestry provides an alternative to coding, it involves

the page (or component) specification. In this case, we want to be able to control

which Java class is instantiated and how it is configured. This is accomplished in

the page specification using the <bean> element:

<bean name="required"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
</bean>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 179

The <bean> element shown here is equivalent to the Java code snippet. The

<bean> element specifies three things:

■ The Java class you want to instantiate

■ The configuration of any properties of the helper bean

■ The lifecycle of the bean

A helper bean may be accessed through the beans property of the page or com-

ponent, using its name. For example, the OGNL expression beans.required

would access the bean specified here. Helper beans are created only as needed,

the first time the bean is referenced.

 By default, the lifecycle of a bean is request, meaning that the bean will be

released to the garbage collector at the end of the current request cycle. This is

often appropriate, especially if the bean contains any state particular to the cur-

rent user—such information should last only as long as the current request so

that it won’t be visible in a subsequent request from a different user. By using the

page lifecycle, the bean is kept for as long as the page instance exists; this is

appropriate for beans such as a validator that have no internal state. As you’ll see

in the following examples, a common use for helper beans is to define validators

and validation delegates.

 So far, you’ve seen an overview of how the various aspects of the validation

subsystem (the components, the validators, and the validation delegate) operate.

Next let’s return to the Register page (shown in figure 5.1) and start seeing how

these bits and pieces fit together to form a working, validated form.

5.2 Building the Register page

The ultimate aim of the Register page is to collect a user’s name and address and

store it in an Address (shown in listing 5.1).

package examples.register;

import java.io.Serializable;

public class Address implements Serializable
{
 private String _firstName;
 private String _lastName;
 private String _address1;
 private String _address2;

Listing 5.1 Address.java: data object used with the Register page

TEAM LinG - Live, Informative, Non-cost and Genuine!

180 CHAPTER 5

Form input validation

 private String _city;
 private String _state;
 private String _zip;

 public String getAddress1()
 {
 return _address1;
 }

 public String getAddress2()
 {
 return _address2;
 }

 public String getCity()
 {
 return _city;
 }

 public String getFirstName()
 {
 return _firstName;
 }

 public String getLastName()
 {
 return _lastName;
 }

 public String getState()
 {
 return _state;
 }

 public String getZip()
 {
 return _zip;
 }

 public void setAddress1(String address1)
 {
 _address1 = address1;
 }

 public void setAddress2(String address2)
 {
 _address2 = address2;
 }

 public void setCity(String city)
 {

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 181

 _city = city;
 }

 public void setFirstName(String firstName)
 {
 _firstName = firstName;
 }

 public void setLastName(String lastName)
 {
 _lastName = lastName;
 }

 public void setState(String state)
 {
 _state = state;
 }

 public void setZip(String zip)
 {
 _zip = zip;
 }

}

Armed with this definition of what goes into an address, we can create a user

interface to let users enter an address.

5.2.1 Creating the Register HTML template

The HTML template for the Register page is shown in listing 5.2. This template

introduces a number of new concepts, so we’ll take it apart one small piece at a time:

■ Using the delegate parameter of the Form component

■ Using the page’s components property to reference other components
within the page’s template

■ Using the FieldLabel component in conjunction with the ValidField component

<html jwcid="@Shell" title="Registration"
 stylesheet="ognl:assets.stylesheet">
<head jwcid="$remove$">
<link rel="stylesheet" type="text/css"
 href="css/style.css"/>
</head>
<body jwcid="@Body">

Listing 5.2 Register.html: HTML template for the Register page

Elements
marked for
removal

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

182 CHAPTER 5

Form input validation

Registration

<p>Please enter your mailing address for our records.
Fields marked with a
*
are required.
</p>

<span jwcid="@Conditional"
 condition="ognl:beans.delegate.hasErrors">

<table class="error">
<tr valign="top">
<td>
<img height="52" alt="[Error]" src="images/form-error.png"
 width="52">
</td>
<td>
<span jwcid="@Delegator"
 delegate="ognl:beans.delegate.firstError">
 Error Message

</td>
</tr>
</table>

<form jwcid="@Form"
 listener="ognl:listeners.formSubmit"
 delegate="ognl:beans.delegate">

<table class="form">

<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputFirstName">First Name
 </th>
<td><input type="text" jwcid="inputFirstName" size="50"/></td>
</tr>

<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputLastName">Last Name
 </th>
<td><input type="text" jwcid="inputLastName" size="50"/></td>
</tr>

<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputAddress1">Address

Validation delegate
for the Form

 c

Labels connected
to ValidFields d

ValidField as a
declared component

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 183

 </th>
<td><input type="text" jwcid="inputAddress1" size="50"/></td>
</tr>

<tr>
<td></td>
<td><input type="text" jwcid="@TextField"

 value="ognl:address.address2" size="50"/></td>
</tr>

<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputCity">City
 </th>
<td><input type="text" jwcid="inputCity" size="50"/></td>
</tr>
<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputState">State
 </th>
<td><input type="text" jwcid="inputState" size="2"/></td>
</tr>

<tr>
<th><span jwcid="@FieldLabel"
 field="ognl:components.inputZip">Zip
 </th>
<td><input type="text" jwcid="inputZip" size="10"/>
</tr>

<tr>
<td></td>
<td><input type="image" src="images/continue.png"
 width="100" height="32"/>
</tr>

</table>

</form>

<hr/>

<p>
 Return to Home page.</p>

</body>
</html>

TEAM LinG - Live, Informative, Non-cost and Genuine!

184 CHAPTER 5

Form input validation

This special ID means that the element will be removed from the template. The
Shell component will provide all of this, and more, in the running application.
This reference to the stylesheet is useful just for WYSIWYG preview.

When using validation, the Form component’s delegate parameter is used to
identify the validation delegate shared by all ValidField components enclosed by
the Form.

Each FieldLabel component is connected to the corresponding ValidField.

Because ValidField components have even more parameters than a TextField com-
ponent, it is usually best to put all that information in the page specification instead.

As is often the case with Tapestry, the HTML template is just the starting point

for understanding how the page will behave when the application is running.

The following sections fill in the missing details.

Defining a stylesheet for the page

The Register page makes heavy use of CSS; that’s how fields and labels are high-

lighted in red when they are in error. To support this, the rendered page must

include that stylesheet. You include stylesheets by using a <link> element within

the <head> element (within the <html> element). Because the Shell component is

writing the <html> and <head> elements, that component must write the link to

the stylesheet. This is accomplished by binding its stylesheet parameter to an

asset. A declaration for that asset will appear in the Register page’s specification:

<html jwcid="@Shell" title="Registration"
 stylesheet="ognl:assets.stylesheet">

Removing portions of the template

Now comes a conundrum. We still would like the Register page to preview prop-

erly while editing, but if the template includes the <head> and <link> elements

needed to include the stylesheet, then the final rendered page will include two

sets of <head> and <link> elements: one from the template, and one dynamically

rendered by the Shell component.

 Tapestry includes a little trick to sidestep this issue:

<head jwcid="$remove$">
<link rel="stylesheet" type="text/css" href="css/style.css"/>
</head>

That special component ID, "$remove$", is the key. It isn’t normally a valid ID

(because it contains a dollar sign). However, Tapestry allows it as a special case

but doesn’t define a new component. Instead, this special ID cues Tapestry to

remove the element and everything enclosed by the element, as if it were never

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 185

in the template in the first place. With this in place, the page previews correctly

when editing, as demonstrated in figure 5.6.

 The Shell component will produce the <html> and <head> element of the ren-

dered page. To support JavaScript within the page, we must use a Body compo-

nent to render the <body> element.

Figure 5.6 The Register page still previews properly in a WYSIWYG HTML editor.

TEAM LinG - Live, Informative, Non-cost and Genuine!

186 CHAPTER 5

Form input validation

Using a Body component

The ValidField component will almost always produce some client-side Java-

Script. At the very least, initialization JavaScript is included that moves the cursor

to the first field that is either required (but empty) or in error. As we discussed in

chapter 4, a Body component is necessary to organize the production of client-

side JavaScript. The templates for all examples in this chapter make use of a

Body component:

<body jwcid="@Body">
. . .
</body>

With the basic infrastructure of the page in place, we can move on to the first

dynamic section of the page: the area where any validation error messages

are displayed.

Displaying validation errors

The next section of the template is concerned with displaying validation errors.

The validation delegate for the page is obtained and checked to see if it contains

any errors. The delegate’s hasErrors property will always be false when a page is

initially rendered. The hasErrors property may be set to true during the Form’s

rewind, when a form submission takes place. As you’ll see, the Form’s listener

method will also query the delegate’s hasErrors property. If the property is false,

it is safe to take the validated input and move forward to the next step in the pro-

cess. If hasErrors is true, the Register page is redisplayed to reveal the errors

and decorate any fields that are in error.

 Although it is possible to display all error messages for all fields that are in

error, such output will be unwieldy on large forms and not very useful. Instead,

the error message for the first field that is in error is displayed, but all fields

throughout the form that are in error are marked. You’ve seen examples of this

in figure 5.2, where the message refers to only the first field in error, even

though several fields are marked. The HTML template makes use of Conditional

and Delegator components to produce the formatted error message:

<span jwcid="@Conditional"
 condition="ognl:beans.delegate.hasErrors">

<table class="error">
<tr valign="top">
<td>
<img height="52" alt="[Error]" src="images/form-error.png"
 width="52"/>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 187

</td>
<td>
<span jwcid="@Delegator"
 delegate="ognl:beans.delegate.firstError">
 Error Message

</td>
</tr>
</table>

In this example, the validation delegate is obtained using the OGNL expression

beans.delegate, a reference to the delegate helper bean (which itself is declared

in the page specification). The Conditional component queries the delegate’s

hasErrors property and displays the error message (formatted inside a <table>)

only if the property is true.

 The error objects that the validation delegate returns (such as the firstError

property) are not simply strings but objects that implement the IRender inter-

face. Because these are objects and not strings, we can’t use an Insert component

to display them. Instead, we use a Delegator component, which invokes the

render() method on the renderable object provided to it.

 The fact that these are renderable objects, rather than simple strings, opens up a

whole realm of possibilities. The error objects can render all sorts of HTML, not just

text: images, JavaScript pop-up windows, links, formatting—anything HTML. The

intent is that customized validators for the application can provide customized

error objects that are more than just a wrapper around a string. Implementations

that make use of these possibilities are very application specific, which is why the

validator classes provided with the framework don’t use this feature.

 The validation delegate, as a convenience, includes a firstError property

that is the renderable object for the first field error. The firstError property is

passed to the Delegator, which results in the error message being displayed.

 Following the error message output is the form containing the FieldLabel and

ValidField components.

Starting the Form component

The Form component is used as in examples from the previous two chapters,

with one difference. An additional parameter, delegate, is specified to link the

Form to the validation delegate. Every FieldLabel and ValidField component

enclosed by the Form must use the same validation delegate—and they all will,

since they all will retrieve the validation delegate through the Form:

TEAM LinG - Live, Informative, Non-cost and Genuine!

188 CHAPTER 5

Form input validation

<form jwcid="@Form"
 listener="ognl:listeners.formSubmit"
 delegate="ognl:beans.delegate">

Again, the OGNL expression beans.delegate resolves to a validation delegate.

All the components enclosed by the Form will share this one validation dele-

gate instance.

Using the FieldLabel component

Each ValidField will be preceded in the HTML template by a FieldLabel. The Field-

Label is connected to its partner ValidField by the FieldLabel’s field parameter:

<span jwcid="@FieldLabel"
 field="ognl:components.inputFirstName">First Name

The OGNL expression components.inputFirstName is a reference to the input-

FirstName component of the page. Every page provides a read-only Map of all

the components it contains. The keys of this Map are the component IDs. Using

OGNL, you can access the values in a Map just as easily as the properties of an ordi-

nary JavaBean. Of course, to build a reference, you must know the ID of the com-

ponent, which is one reason the ValidField components are given explicit IDs.

 During the render, the FieldLabel discards its body (the text First Name) and

gets, from the ValidField, the correct field name to display as a label. This may

seem cumbersome, but it is useful for two reasons. First, it ensures that the label in

the output HTML matches the name for the field used in any error messages gen-

erated by the ValidField’s validator. Second, if the ValidField localizes the name,

the FieldLabel will still match, using the locale-specific value.2 In addition, the val-

idation delegate will have a chance to render before and after the FieldLabel; this

allows the delegate to decorate the label when the field is in error.

Using the ValidField component

In this example, each ValidField is constructed as a declared component, not

an implicit component. Each ValidField appears in the HTML template, but its

type and most of its parameters are declared in the page’s specification. The

ValidField components may not be anonymous—they must have real IDs. This

is necessary so that the placeholder in the template can be linked to the entry

in the page specification, but also so that the FieldLabel can be connected to

the ValidField.

2 Localization of Tapestry applications is discussed in chapter 7.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 189

 Each ValidField appears in the template minimally, because the bulk of the

component’s configuration is in the page specification:

<input type="text" jwcid="inputLastName" size="50"/>

The FieldLabel and ValidField components blend into the HTML template like

any other type of Tapestry component. They are just a bit more sophisticated in

terms of how they render their HTML (to allow the validators and validation del-

egate to decorate them) and in how they are configured. When you use Tapestry

form validation, the interesting part takes place inside the page specification.

5.2.2 Creating the Register page specification

The page specification for the Register page (listing 5.3) has two main sections

(beyond the elements you’ve seen before, such as defining the page class and

declaring assets). The first section defines additional helper beans used with this

page, including the validation delegate and the validators used by the ValidField

components. The second section defines each of the ValidField components.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="examples.register.Register">

 <bean name="delegate"
 class="examples.register.RegisterDelegate"/>

 <bean name="required"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
 </bean>

 <bean name="stateValidator"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
 <set-property name="minimumLength" expression="2"/>
 </bean>

 <bean name="zipValidator"
 class="examples.register.PatternValidator"
 lifecycle="page">
 <set-property name="pattern">
 "\\d{5}(-\\d{4})?"

Listing 5.3 Register.page: specification for the Register page

Declares validation
delegate

 b

Declares shared
validator

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

190 CHAPTER 5

Form input validation

 </set-property>
 <set-property name="errorMessage">
 "Zip code format is five or nine digits.
 Example: 02134 or 02474-1145."
 </set-property>
 </bean>

 <property-specification name="address"
 type="examples.register.Address"/>

 <component id="inputFirstName" type="ValidField">
 <static-binding name="displayName"
 value="First Name"/>
 <binding name="validator"
 expression="beans.required"/>
 <binding name="value"
 expression="address.firstName"/>
 </component>

 <component id="inputLastName" type="ValidField">
 <static-binding name="displayName" value="Last Name"/>
 <binding name="validator" expression="beans.required"/>
 <binding name="value" expression="address.lastName"/>
 </component>

 <component id="inputAddress1" type="ValidField">
 <static-binding name="displayName" value="Address"/>
 <binding name="validator" expression="beans.required"/>
 <binding name="value" expression="address.address1"/>
 </component>

 <component id="inputCity" type="ValidField">
 <static-binding name="displayName" value="City"/>
 <binding name="validator" expression="beans.required"/>
 <binding name="value" expression="address.city"/>
 </component>

 <component id="inputState" type="ValidField">
 <static-binding name="displayName" value="State"/>
 <binding name="validator" expression="beans.stateValidator"/>
 <binding name="value" expression="address.state"/>
 </component>

 <component id="inputZip" type="ValidField">
 <static-binding name="displayName" value="Zip"/>
 <binding name="validator" expression="beans.zipValidator"/>
 <binding name="value" expression="address.zip"/>
 </component>

 <context-asset name="stylesheet" path="css/style.css"/>

</page-specification>

Declares
ValidField
component

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 191

The validation delegate is defined here, using a custom subclass, examples.reg-
ister.RegisterDelegate. It can be referenced using the OGNL expression
beans.delegate. The default lifecycle, “request”, means that the bean will be dis-
carded at the end of the current request.

Most of the fields share a single instance of StringValidator as the required
bean. Since validators don’t store any internal state, the “page” lifecycle means
that the bean, once created, will be kept for as long as the page instance itself.3

Each ValidField follows this same pattern, providing a displayName (used by the
FieldLabel and in any error messages), a validator (which may be shared
between different fields), and a value to edit.

This specification includes yet another new element, <static-binding>. The

<static-binding> element is used to set a component property to a fixed, literal

string. Such a string is static (unchanging), in contrast to the dynamically evalu-

ated OGNL expression used in a <binding> element. The <static-binding> ele-

ment is used throughout the specification to provide the displayName parameter

for each ValidField.

 As an alternative, the value could appear in the HTML template:

<input type="text" jwcid="inputFirstName" size="50"
 displayName="First Name"/>

Either way, the displayName parameter will be set to a static string value. Tapestry

is completely flexible as to where parameters are bound (in the specification or

in the HTML template).

TIP A good standard is to define formal parameters only in the page specifi-
cation and informal parameters only in the HTML template. This
scheme reflects that formal parameters are most often behavioral and
informal parameters are more often related to presentation. Using this
division keeps you from wasting time tracking down the right file when
a change is needed.

This specification declares several helper beans and a number of ValidField com-

ponents. The first bean defined is the validation delegate.

Defining the validation delegate and validators

The RegisterDelegate class is an implementation of the IValidationDelegate

interface that customizes the rendering hooks of the delegate to reference CSS

3 Remember that page instances, once constructed, are cached for later reuse in subsequent requests.

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

192 CHAPTER 5

Form input validation

styles and images specific to the Register application. We’ll examine its code in

detail shortly.

 The majority of the fields in the form are used to edit simple string proper-

ties, and the only validation constraint applied to them is that a non-null value

be supplied by the user. All such ValidField components will share a bean named

required as their validator.

 The required bean instantiates an instance of StringValidator and sets the

required property of the StringValidator to true. This will force users to provide

a non-empty value for the field. Like most validators, the StringValidator has

no internal state and can therefore be retained indefinitely once created (which

is what the page lifecycle does).

 The delegate bean should not be given a lifecycle of page because it has a con-

siderable amount of internal state (the error messages for fields that are in error)

that is relevant only to a single request from a single user.

 The ValidField for the state property uses a different validator, stateValidator.

This validator is also declared as a helper bean in the page specification:

<bean name="stateValidator"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
 <set-property name="minimumLength" expression="2"/>
</bean>

Like the required bean, the stateValidator bean sets the required property to

true, forcing the user to provide a value. It adds a second constraint, configured

through a second property, requiring the input to be at least two characters in

length. The normal size attribute (specified as an informal parameter in the

HTML template) ensures that no more than two characters are provided.

 The final validator is for the zip code field. Zip codes have a pattern that is

best described using a regular expression. Tapestry doesn’t provide a validator

along these lines, but it is easy enough to create one. Although we could create a

validator that supports only the zip code pattern, it is virtually no extra work to

create a flexible validator where we can configure both the regular expression

pattern we want to validate against as well as the error message we want to dis-

play if the input fails to match the pattern.

 In terms of maximizing usability, it is important that error messages be as

helpful to the user as possible. Simply telling users that their input didn’t match

a regular expression would leave them frustrated and at a loss as to how to cor-

rect their input to satisfy the application. Instead, you can display a custom error

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Register page 193

message that tells users exactly what they need to do. For the zip code field, we

can customize the error message to give users examples of the two zip code for-

mats accepted. The regular expression pattern and the error message are both

provided in the page specification:

<bean name="zipValidator"
 class="examples.register.PatternValidator"
 lifecycle="page">
 <set-property name="pattern">
 "\\d{5}(-\\d{4})?"
 </set-property>
 <set-property name="errorMessage">
 "Zip code format is five or nine digits.
 Example: 02134 or 02474-1145."
 </set-property>
</bean>

Here we are employing an alternate usage of the <set-property> element.

Instead of specifying an expression attribute, as in the previous examples, we are

putting the OGNL expression in the body of the <set-property> element. This

approach is useful here, because we must enclose the literal string values (the

pattern and the error message4) in double quotes. Putting the OGNL expression

in the body is much easier when the expression is long or contains complex

punctuation, such as a mix of single and double quotes.

 Now that we have declared the validation delegate and the three validators,

we can continue on to the ValidFields themselves.

Declaring the ValidField components

All the ValidField component declarations follow the same general template. A

displayName for the field is provided; this is used by the FieldLabel and in any

error messages created by the field’s validator. Like an ordinary TextField com-

ponent, the value parameter is bound to the property the ValidField will edit.

Unlike a TextField component, however, this property can be bound to any type

of property, not just string properties. Finally, a validator is specified. The valida-

tor defines the type of input acceptable in the field; similar fields can share vali-

dators. The first ValidField is used for entering the user’s first name:

<component id="inputFirstName" type="ValidField">
 <static-binding name="displayName" value="First Name"/>

4 Alternately, we could put the message into a string properties file, and use the <set-message-property>
element to retrieve the localized message and set the bean property from it. Appendix D has a com-
plete description of the specification DTD.

TEAM LinG - Live, Informative, Non-cost and Genuine!

194 CHAPTER 5

Form input validation

 <binding name="validator" expression="beans.required"/>
 <binding name="value" expression="address.firstName"/>
</component>

The inputFirstName component uses the required bean as its validator and edits

the firstName property of the address.

 All the remaining ValidField components follow the same pattern, providing dif-

ferent display names, different properties, and different page properties for editing.

Implementing the Register page

The Java code for the Register page is concerned with providing the address

property referenced by the many ValidField components as well as handling the

form submission. Listing 5.4 shows the Register class. We use the same lifecycle

technique as before to initialize the address property to a non-null value before

the page initially renders (and when the form is submitted). We must check for

null because if the page renders again (following a form submission with an

input validation error), the pageBeginRender() method will be invoked again

(first because of the form rewind, and then again for the page render).

package examples.register;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.event.PageEvent;
import org.apache.tapestry.event.PageRenderListener;
import org.apache.tapestry.html.BasePage;
import org.apache.tapestry.valid.IValidationDelegate;

public abstract class Register extends BasePage
 implements PageRenderListener
{
 public abstract Address getAddress();
 public abstract void setAddress(Address address);

 public void pageBeginRender(PageEvent event)
 {
 if (getAddress() == null)
 setAddress(new Address());
 }

 public void formSubmit(IRequestCycle cycle)
 {
 IValidationDelegate delegate =
 (IValidationDelegate) getBeans().
 getBean("delegate");

Listing 5.4 Register.java: Java class for the Register page

Initializes the
address property

 b

Accesses the
delegate bean

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating input based on regular expressions 195

 if (delegate.getHasErrors())
 return;

 RegisterConfirm next =
 (RegisterConfirm) cycle.getPage("RegisterConfirm");

 next.setAddress(getAddress());
 cycle.activate(next);
 }
}

This method will be invoked when the page initially renders, when the form
within the page is submitted, and again if the page is rendered after the form is
submitted (because of validation errors). The ValidField components require that
a non-null Address be available in the address property.

In Java code, accessing helper beans involves the getBeans() method, from
which individual beans can be retrieved by name.

Passing along information collected in a form to another page, shown here, is a
standard technique.

The listener method, formSubmit(), is invoked when the Form is submitted. In

order to determine if there were any errors, the code accesses the validation del-

egate. If there are errors, the method returns, causing the Register page to redis-

play with the error message shown and invalid fields highlighted.

 If there are no errors, then the listener method activates the next page, which

shows a confirmation. A real application would save this address information to a

database before continuing, but that is beyond the scope of this example.

 Most of this example is implemented using standard components and

objects, but to properly validate the input provided in the zip code field, we need

a custom validator class.

5.3 Validating input based on regular expressions

Sometimes, you will need to perform validations for which there is no out-of-the-

box validator. In the Register example, validating that a user’s zip code is prop-

erly formatted falls into that category. There’s a specific regular expression that

can be used, which checks if the input is a traditional five-digit zip code or an

extended nine-digit zip code.

 The framework doesn’t include a validator that can employ regular expressions;

but creating validators in Tapestry involves just two methods, so it’s simple to create

one of our own. Listing 5.5 is the implementation of this validator.

Passes the Address
to the next page

 d

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

196 CHAPTER 5

Form input validation

package examples.register;

import org.apache.tapestry.ApplicationRuntimeException;
import org.apache.tapestry.form.IFormComponent;
import org.apache.tapestry.valid.BaseValidator;
import org.apache.tapestry.valid.ValidatorException;
import org.apache.oro.text.regex.MalformedPatternException;
import org.apache.oro.text.regex.Pattern;
import org.apache.oro.text.regex.PatternCompiler;
import org.apache.oro.text.regex.Perl5Compiler;
import org.apache.oro.text.regex.Perl5Matcher;

public class PatternValidator extends BaseValidator
{
 private String _pattern;
 private Pattern _compiledPattern;
 private String _errorMessage;
 private Perl5Matcher _matcher;

 public String toString(IFormComponent field,
 Object value)
 {
 if (value == null)
 return null;

 return value.toString();
 }

 public Object toObject(IFormComponent field,
 String input)
 throws ValidatorException
 {
 if (checkRequired(field, input))
 return null;

 if (!match(input))
 throw new ValidatorException(errorMessage, null);

 return input;
 }

 protected boolean match(String input)
 {
 if (_compiledPattern == null)
 {
 PatternCompiler compiler = new Perl5Compiler();

 try
 {

Listing 5.5 PatternValidator.java: validator based on regular expressions

Converts object
to string

 b

Converts
submitted value

 c

Returns if
input blank

 d

Matches
input
against
regular
expression

 e

 f Compiles
and caches
regular
expression

TEAM LinG - Live, Informative, Non-cost and Genuine!

Validating input based on regular expressions 197

 _compiledPattern = compiler.compile(_pattern);
 }
 catch (MalformedPatternException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 }

 if (_matcher == null)
 _matcher = new Perl5Matcher();

 return _matcher.matches(input, _compiledPattern);
 }

 public String getErrorMessage()
 {
 return _errorMessage;
 }

 public String getPattern()
 {
 return _pattern;
 }

 public void setErrorMessage(String errorMessage)
 {
 _errorMessage = errorMessage;
 }

 public void setPattern(String pattern)
 {
 _pattern = pattern;
 _compiledPattern = null;
 }
}

The toString() method converts the value (obtained from the ValidField’s
value parameter) into a string, which becomes the value attribute of the
<input> element.

The toObject() method converts a string entered by the user back into an object
value, throwing a ValidatorException if the input is improperly formed or oth-
erwise invalid.

The checkRequired() method checks to see if the input is blank. It throws a
ValidatorException if the input is blank and the field is required. Otherwise, it
returns true if the input is blank and false otherwise.

The match() method does the regular expression pattern matching.

 f

Updates pattern
and clears cache

 g

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

198 CHAPTER 5

Form input validation

Converting a string into a regular expression is somewhat expensive, so it’s done
only the first time match() is invoked.

If the pattern changes, the cached compiled pattern should be discarded.

PatternValidator extends the framework class BaseValidator. BaseValidator is

abstract and implements the IValidator interface. The BaseValidator class pro-

vides the boolean required property, plus a bit of support for client-side script-

ing (which allows the validator to generate client-side JavaScript to perform

validations entirely within the client web browser).

 The two key methods in a validator are toString() and toObject(). The

toString() method is used to convert an object (read from the ValidField’s value

parameter) into a string. This method is used when the ValidField renders; the

converted string is used as the value attribute of the HTML <input> element.

 A validator should always be able to translate a null value to a string. It is

acceptable to return null from toString() if the value passed in is null; this is

what the validators provided with the framework do.

 The meat of the validator is in the complementary toObject() method. This

method is invoked when the form is submitted. The purpose of toObject() is to

convert a string, supplied by the end user, into an object, such as an Integer or

Date—whatever is appropriate for the specific type of validator. This is where all

conversions and validations take place. If the string can’t be converted, or the

value is invalid for other reasons, the method throws a ValidatorException that

is caught by the ValidField and used to record an error for the field.

 The first step in the PatternValidator’s implementation of toObject() is to

invoke the method checkRequired(), which is supplied by the BaseValidator

class. This method performs two functions: It returns true if the input is null

or empty (an empty string is length zero, or contains only whitespace), and it

also throws a ValidatorException if the validator is required (and the input is

null or empty). As configured in the Register page, the zip code field is

optional (not required), so if the user decides not to enter a value, the field will

not be in error.

 Assuming a value was supplied by the user, the toObject() method continues

by invoking the match() method. If the input from the user does not match the

regular expression pattern configured for the validator, then a ValidatorException

is thrown. The exception is built around the supplied error message (another

configurable property of the PatternValidator class). This exception is caught

by the validation delegate, which records the error message for later use when

the page is rendered again (to display the errors to the user).

 f

 g

TEAM LinG - Live, Informative, Non-cost and Genuine!

Customizing label and field decorations 199

 If match() returns true, then the input value becomes the return value for the

toObject() method. Ultimately, this value will be assigned to the property bound

to the ValidField’s value parameter.

 The match() method uses the Jakarta ORO framework to compile the pattern

and match the compiled pattern against user input. The PatternValidator does

a little caching, since compiling a string to a Pattern object is somewhat expen-

sive; it shouldn’t be done every time.

5.4 Customizing label and field decorations

In figure 5.1, all the required fields are marked with a red asterisk (to the right of

the field). A glance at the HTML template for the page, in listing 5.2, shows that

these markers are not in the template itself. This is an example of field decora-

tion, one of the functions of the validation delegate. Additionally, you’ve seen

that FieldLabels and ValidFields are also decorated when they are in error.

 The base implementation of the IValidationDelegate interface, Validation-

Delegate, provides all the support for tracking fields and errors, as well as simple

support for decorating fields and labels. To customize the look and feel, as

shown in figure 5.2, you create your own subclass, overriding several methods

related to field and label decoration.

 For the Register page, just such a subclass of ValidationDelegate is shown in

listing 5.6. It overrides several methods supplied in the ValidationDelegate base

class, supplying application-specific look and feel.

package examples.register;

import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.form.IFormComponent;
import org.apache.tapestry.valid.IValidator;
import org.apache.tapestry.valid.ValidationDelegate;

public class RegisterDelegate
 extends ValidationDelegate
{
 public void writeLabelPrefix(
 IFormComponent component,
 IMarkupWriter writer,
 IRequestCycle cycle)
 {

Listing 5.6 RegisterDelegate.java: validation delegate subclass for the Register page

Subclasses from
ValidationDelegate

 b

Is called before
FieldLabel
renders

TEAM LinG - Live, Informative, Non-cost and Genuine!

200 CHAPTER 5

Form input validation

 if (isInError(component))
 {
 writer.begin("span");
 writer.attribute("class", "label-error");
 }
 }

 public void writeLabelSuffix(
 IFormComponent component,
 IMarkupWriter writer,
 IRequestCycle cycle)
 {
 if (isInError(component))
 {
 writer.end(); // span
 }
 }

 public void writeAttributes(
 IMarkupWriter writer,
 IRequestCycle cycle,
 IFormComponent component,
 IValidator validator)
 {
 if (isInError())
 writer.attribute("class", "field-error");
 }

 public void writeSuffix(
 IMarkupWriter writer,
 IRequestCycle cycle,
 IFormComponent component,
 IValidator validator)
 {
 if (validator != null &&
 validator.isRequired())
 {
 writer.printRaw(" ");
 writer.begin("span");
 writer.attribute("class",
 "required-marker");
 writer.print("*");
 writer.end();
 }

 if (isInError())
 {
 writer.printRaw(" ");
 writer.beginEmpty("img");
 writer.attribute("src",
 "images/field-error.png");

Encloses label
with

 c

Is called after
FieldLabel
renders

Is called as
ValidField
renders

 d

Is called after
ValidField renders

 e

Marks
required
fields

Marks fields
that are in
error

TEAM LinG - Live, Informative, Non-cost and Genuine!

Customizing label and field decorations 201

 writer.attribute("width", 16);
 writer.attribute("height", 16);
 }
 }
}

The framework class ValidationDelegate provides the majority of the behavior
for a validation delegate. Generally, a subclass is needed only as in this example:
to override the methods used for decorating fields and labels.

If the field for the label is in error, then an HTML is wrapped around it,
with a class of label-error. The stylesheet for the page modifies the enclosed
text to make it red.

writeAttributes() is invoked as the ValidField writes the <input> tag and allows
the validation delegate to write additional attributes if the field is in error. Here,
the CSS class field-error is written into the <input> tag if the field is in error,
resulting in the white-on-red display.

writeSuffix() is invoked after the ValidField renders the <input> tag. The
IValidationDelegate interface defines an additional method, writePrefix(),
which is invoked before the ValidField renders; and the ValidationDelegate base
class provides a do-nothing implementation of that method.

The first two methods in the class, writeLabelPrefix() and writeLabelSuffix(),

are related to decoration of field labels. The FieldLabel component invokes these

methods, passing the ValidField it is connected to as the component parameter.

These two methods rely on the isInError() method, which returns true if a vali-

dation error has been recorded for a component. When isInError() returns true,

the delegate renders a tag and writes the class attribute for it (as label-

error). The IMarkupWriter interface is provided by Tapestry; it is much like a

java.io.PrintWriter, but with additional methods for streamlining the output

of elements and attributes, as shown in listing 5.6. Chapter 7 includes more

information about IMarkupWriter.

 The tag started in writeLabelPrefix() is ended inside the write-

LabelSuffix() method when it invokes end() on the writer. In between the two

methods, the FieldLabel gets the displayName from the ValidField and writes that

to the writer. For example, if the First Name field is in error (because the user

submitted the form without filling in a value), then the FieldLabel, combined

with the validation delegate, will render the following:

First Name

Marks fields
that are in
error

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

202 CHAPTER 5

Form input validation

Just as the FieldLabel delegates part of its rendering to the validation delegate,

so does the ValidField. Three methods of the validation delegate are used to dec-

orate fields: writePrefix(), writeSuffix(), and writeAttributes(). Register-

Delegate implements the latter two methods; the default writePrefix() method,

inherited from the ValidationDelegate base class, does nothing. The write-

Prefix() method is invoked by the ValidField before it renders the <input> tag.

 The writeAttributes() method is called by the ValidField after it has written

the <input> tag and all of its attributes, but before it closes the tag. This gives the

validation delegate a chance to add attributes to the tag. In this case, the dele-

gate checks if the current component is in error; if so, a class attribute is added

to the <input> tag. This CSS class is combined with the page’s stylesheet to dis-

play offending fields as white text against a red background.

 The writeSuffix() method is invoked by the ValidField after it closes the

<input> tag. RegisterDelegate queries the ValidField’s validator (which is passed

in to the method as a parameter) to see if the validator requires a value. If so, the

delegate writes HTML to display the required marker. Likewise, if the field is in

error, HTML is written that marks the field using a specific image.

NOTE Normally, it is not necessary for your implementation of the writeSuffix()
method to check that the validator parameter is not null. A ValidField
component will always have a validator and will pass it into this method.
This check is necessary because, in chapter 8, we create a new type of
component that uses a validation delegate but does not have a validator.

As you can see, the methods defined by the IValidationDelegate interface are

designed to be completely open-ended. With a minimal amount of effort, you

can customize the look and feel of your application’s labels and fields by creating

and using your own subclass of the ValidationDelegate base class.

 So far, we’ve covered how the validation subsystem extends normal form pro-

cessing (both when rendering a page and when the form is submitted). That’s

only part of the story, however, since the validation framework can also contrib-

ute to the client side.

5.5 Enabling client-side validation

Performing validations when the form is submitted is a powerful approach, but

an even better solution is to not submit the form until the fields are valid within

the client web browser. Using a client-side solution gives users more immediate

feedback (as soon as they click the submit button) because no additional round-trip

to the server is required. Server-side validation will still occur when the form is

TEAM LinG - Live, Informative, Non-cost and Genuine!

204 CHAPTER 5

Form input validation

strates what happens if you submit the form without providing a value for the

Last Name field, which is required.

 Enabling this support requires a small change to the page specification.

The bean property clientScriptingEnabled must be set to true for each of

the validators:

<bean name="required"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
 <set-property name="clientScriptingEnabled" expression="true"/>
</bean>

<bean name="stateValidator"
 class="org.apache.tapestry.valid.StringValidator"
 lifecycle="page">
 <set-property name="required" expression="true"/>
 <set-property name="minimumLength" expression="2"/>
 <set-property name="clientScriptingEnabled" expression="true"/>
</bean>

To support browsers where JavaScript does not exist or is disabled, all valida-

tions still occur on the server when the form is submitted. Some validations may

not be possible on the client side; they may be too complex to express in Java-

Script or require access to data that isn’t available in the client, such as informa-

tion from a database.

 You’ve already seen how to create new validators that perform server-side vali-

dations. Adding client-side validations for a new validator is more involved; Tap-

estry includes the necessary tools for dynamically generating the JavaScript (this

is covered in chapter 8), and the IValidator interface includes a method for this

purpose, renderValidatorContribution(). Nevertheless, getting validations to

work still requires a fairly deep understanding of both Tapestry and JavaScript.

 To accomplish client-side validation, each validator must

■ Create a JavaScript function that accesses the field value and performs the

validations; if invalid, the function must display an error window and

return false

■ Adapt the function to Tapestry-generated IDs for the form and the text field

■ Register the script function with the Form component as a client-side sub-

mit event handler

The BaseValidator class, a base class implementing IValidator from which most

validator classes extend, includes several methods for supporting client-side

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling form-level validations 205

scripting. The key challenge is the correct generation of the JavaScript needed

in the client, which uses techniques discussed in chapter 8.

 In addition to adding client-side scripting support to new validators, you can

change the client-side scripting support for the existing validators. The existing

validators provide reasonable client-side scripting support. As shown in figure 5.7,

invalid input will cause a pop-up window to appear that indicates the problem

and names the field; clicking the OK button will set input focus to the field in

error and select all text in the field. A demanding application may want to do

more—for example, change the CSS class for fields that are in error to visually

highlight such fields for the user, or display the error messages for fields on the

page itself, rather than in a pop-up window. Such application-specific functional-

ity will require application-specific client-side JavaScript, which can be supplied

by configuring the validators’ instances with the custom scripts (again, using

techniques described in chapter 8).

 So far, all discussion of validation has concerned individual fields in isolation.

In many cases, there are dependencies between fields that must also be vali-

dated—form-level validations that involve two or more fields.

5.6 Handling form-level validations

Validations that involve more than one field occur inside the Form’s listener

method. For example, a form-level validation may check that two input dates are

in ascending order, and display an error message if they are not. This is demon-

strated in figure 5.8.

 There’s no need to throw away the rest of the validation subsystem to handle

these kinds of cases; it’s possible for a Form’s listener method to mark fields in

error, just as easily as a validator can. This is accomplished by putting additional

validation logic in the Form’s listener method.

 The example shown in figure 5.8 is for the Dates page. This page uses two Valid-

Field components, inputStart and inputEnd, to edit two page properties (startDate

and endDate, respectively). Listing 5.7 shows the page class for the Dates page.

package examples.dates;

import java.util.Date;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.form.IFormComponent;
import org.apache.tapestry.html.BasePage;
import org.apache.tapestry.valid.IValidationDelegate;

Listing 5.7 Dates.java: Java class for the Dates page

TEAM LinG - Live, Informative, Non-cost and Genuine!

206 CHAPTER 5

Form input validation

import org.apache.tapestry.valid.ValidationConstraint;

public abstract class Dates extends BasePage
{
 public abstract Date getStartDate();
 public abstract Date getEndDate();

 public void formSubmit(IRequestCycle cycle)
 {
 IValidationDelegate delegate =
 (IValidationDelegate) getBeans().
 getBean("delegate");

 if (delegate.getHasErrors())
 return;

Figure 5.8 Although the input values are valid dates, the end date precedes the start date and is

rejected with an error message.

Obtains validation
delegate helper bean

Returns if ordinary
validation errors occurred

TEAM LinG - Live, Informative, Non-cost and Genuine!

Handling form-level validations 207

 Date startDate = getStartDate();
 Date endDate = getEndDate();

 if (startDate.after(endDate))
 {
 IFormComponent inputEnd =
 (IFormComponent) getComponent("inputEnd");
 delegate.setFormComponent(inputEnd);
 delegate.record(
 "End Date must be after Start Date.",
 ValidationConstraint.CONSISTENCY);
 return;
 }

 DatesConfirm next =
 (DatesConfirm)cycle.getPage("DatesConfirm");
 next.setStartDate(startDate);
 next.setEndDate(endDate);
 cycle.activate(next);
 }
}

The error is attributed to the second ValidField, the one that gets the end date.
The call to setFormComponent() identifies the field to be assigned the error. The
call to record() provides the error message.

This listener method starts in much the same way as in the previous example;

it gets the validation delegate and simply returns if the delegate already has

errors. Validation errors at this point are formatting errors in the user input,

or are the result of the user omitting one of the fields (both of which are

required). The remaining code in the method is executed only if there are no

fundamental input errors, in which case both the startDate and endDate prop-

erties will have been supplied by the respective ValidField components (input-

Start and inputEnd).

 If the start date occurs after the end date, then a form-level validation error

occurs. The first step is to identify the field to be associated with the error. This

isn’t strictly necessary; it is acceptable to not invoke the setFormComponent()

method, in which case the error is recorded but will not be associated with any

specific field within the form.

 In this example, we identify the end date as the error field (we could just as

easily mark the start date). The validation delegate’s record() method lets us

assign an error to the field. When the page is re-rendered, the inputEnd field

will be marked in error. There are several implementations of the record()

Records a
form-level
validation
error

 b

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

208 CHAPTER 5

Form input validation

method, each taking different parameter types for the message. The final param-

eter is of type ValidationConstraint, an Enum of different possible reasons the

field is in error.5 If none of the provided constraint values are appropriate, then

null is an acceptable value. CONSISTENCY is used to indicate that a cross-field con-

sistency error occurred.

 Once the field is recorded as containing an error, the listener method returns.

This action will cause a redisplay of the active page, complete with error mes-

sages and field decorations.

 So far, you’ve seen a number of ways to mix and match FieldLabel and Valid-

Field components with validators and validation logic inside listener methods.

With some extra effort, it is possible to use much of the validation system without

using the ValidField component, as you’ll see in the next section.

5.7 Using validation without ValidField

There are times when you will want to mix and match, leveraging portions of

the validation subsystem without necessarily using the ValidField component.

For example, figure 5.9 shows a different version of the page from the previous

example. This page uses DatePicker components, instead of ValidField compo-

nents, to collect the start and end date from the user, yet it still uses the rest of

the validation framework (FieldLabel components error display, and a valida-

tion delegate).

 For the most part, the HTML template for the revised Dates page is the same

as in the prior example (using ValidField), with some minor differences around

the labels and fields. It is possible to use the FieldLabel component, although

the HTML template is somewhat more involved:

<tr>
<th><span jwcid="@FieldLabel"
 displayName="Start Date"
 field="ognl:components.inputStart">
 Start Date</th>
<td><input type="text" jwcid="inputStart"
 size="10"/>

5 The validation constraint is not used by the default implementation of IValidationDelegate or by
our custom subclass. It is provided in speculation that a more clever validation delegate implementa-
tion may have a need for it—such as customizing the decoration for an invalid field based on the type
of constraint violated.

Labels the field
as before

 b

Contains the DatePicker
component

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using validation without ValidField 209

 *
<span jwcid="@Conditional"
 condition="ognl:beans.delegate.inError">

</td>
</tr>

The FieldLabel component can still be used, but the display name must be spec-
ified as a parameter.

Without a ValidField, the validation delegate is not integrated into the render.
The template must include the decorations normally provided by the validation
delegate: the marker for required fields and, optionally, the image used to mark
error fields. The validation delegate’s inError property is true when the current
field is marked as in error.

When using a ValidField, the displayName (used by the FieldLabel component) is

provided as a parameter of the ValidField. Without a ValidField, you must instead

set the displayName parameter directly on the FieldLabel component.

Figure 5.9 The DatePicker component can be used with the form validation framework.

Decorates
the field

 b

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

210 CHAPTER 5

Form input validation

 All form-related components within a Form are tracked by the validation del-

egate even if they are not ValidField components. This allows errors to be

attached to any kind of form control component: TextField, TextArea, Property-

Selection, even DatePicker (as in this example). However, the validation delegate

is not integrated into the rendering of these other types of components; only

ValidField has all the necessary hooks. The work the validation delegate nor-

mally does, decorating invalid fields, is instead done explicitly in the template,

using a Conditional component.

 The validation delegate’s inError property is true if the most recently ren-

dered component has an error. Because the Conditional in the template follows

the DatePicker component, the inError property will be true if there was a vali-

dation error for the DatePicker.

 Because there is no ValidField, and therefore no validator, involved in form

processing, even simple checks for required fields must now be done inside the

Form’s listener method:

public void formSubmit(IRequestCycle cycle)
{
 IValidationDelegate delegate =
 (IValidationDelegate) getBeans().getBean("delegate");

 Date startDate = getStartDate();
 Date endDate = getEndDate();

 if (startDate == null)
 error(delegate, "inputStart",
 "Start Date is required.",
 ValidationConstraint.REQUIRED);

 if (endDate == null)
 error(delegate, "inputEnd",
 "End Date is required.",
 ValidationConstraint.REQUIRED);

 if (delegate.getHasErrors())
 return;

 if (startDate.after(endDate))
 {
 error(
 delegate,
 "inputEnd",
 "End Date must be after Start Date.",
 ValidationConstraint.CONSISTENCY);
 return;
 }

Gets values set by
DatePicker components

Checks for
missing
required fields

 b

Performs
form-level
check

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary 211

 DatesConfirm next =
 (DatesConfirm) cycle.getPage("DatesConfirm");
 next.setStartDate(startDate);
 next.setEndDate(endDate);
 cycle.activate(next);
}

private void error(
 IValidationDelegate delegate,
 String componentId,
 String message,
 ValidationConstraint constraint)
{
 IFormComponent component =
 (IFormComponent) getComponent(componentId);

 delegate.setFormComponent(component);
 delegate.record(message, constraint);
}

These checks are normally done by the validator for the ValidField. Since the
form uses DatePicker components instead of ValidField components, there is no
validator to perform even this basic check.

This form-level check is the same as in the previous example (which used Valid-
Field components).

Despite the larger amount of code (some of which could be factored out to base

classes or helper beans), the process is still straightforward: We check the proper-

ties edited by the DatePicker components, compare the values, and inform the

validation delegate if there is an error.

5.8 Summary

Tapestry’s validation subsystem, centered around the ValidField component, is a

tremendous boon to web application usability. The validation subsystem achieves

the framework’s goals for simplicity and consistency, both from the end user’s

perspective and from your perspective as the application developer. Tapestry

comes with a number of predefined validations but is completely open-ended in

terms of adding new ones. With only a small amount of coding, it is possible to

precisely control the look and feel of label and field decorations.

 Once again, large amounts of coding disappear into the framework, and what

little coding remains (in terms of new validators and validation delegates) can be

easily reused within a single application, or even across multiple applications.

Tapestry makes it simple to create a polished, usable user interface.

 b

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

212 CHAPTER 5

Form input validation

 Along the way, you’ve also seen another technique for extending the function-

ality of the application with little or no coding: helper beans. Helper beans fit

into the overall Tapestry framework of objects, methods, and properties, provid-

ing another dynamic way to glue custom behavior into prepackaged components

such as the ValidField.

 In addition, you’ve seen that the validation subsystem can play well with

ordinary form control components, such as the DatePicker component. You are

free to mix and match the pieces that best solve your particular application’s

issues. The ordinary form control components, the advanced components such

as PropertySelection and DatePicker, and the validation subsystem can all be

used together to provide a comprehensive, yet still light and agile, solution to

handling all variations of form input in a Tapestry application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part 2

Creating Tapestry components

Chapters 6, 7, and 8 take you beyond using existing components and

show you how to create your own components. Along the way, you’ll see more

of Tapestry’s internals, including how Tapestry applications can be localized.

You’ll also learn how Tapestry components can generate client-side Java-

Script, and how Tapestry and traditional servlet applications can interoperate.

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

215

Creating reusable
components

This chapter covers:

■ Creating component templates

and specifications

■ Understanding component parameters

■ Working with components packaged in libraries

■ Creating component libraries

TEAM LinG - Live, Informative, Non-cost and Genuine!

216 CHAPTER 6

Creating reusable components

So far in this book, you’ve seen several interesting ways of combining the compo-

nents provided with the Tapestry framework to form pages, but the real fun

starts when you begin creating brand-new components. Creating components

with Tapestry is easy—in fact, you’ve been doing it all along, since pages are just

a specialized type of component.

 Components are the key to high levels of reuse, the Holy Grail of object-

oriented development. Creating customized components for your application

and then reusing them on different pages of your application, or even in entirely

different applications, is a massive boost to productivity for you and your devel-

opers, because it reduces the amount of Java code and HTML templates you will

have to write. It also improves the robustness of your application by cutting down

on testing; you use the same component in different places, rather than dupli-

cating templates and functionality. Remember, less code always translates to

fewer bugs!

 In this chapter, you’ll learn how to create components that use their own

templates and how to create components that forgo a template and produce

output exclusively in Java code. You’ll also see how to use components that

come in a library, and how to create and package a component library for use in

new applications.

6.1 Creating simple template components

The easiest components to create are those designed for a specific use within a

specific application. This type of component may be used in many pages of a sin-

gle application but is not applicable to other applications and, very often, exploits

specific knowledge about the page or application for which it was created.

 Fully reusable components must be completely free of any dependencies on a

specific application. They rely heavily on the use of parameters that configure

and adapt them for a particular usage within a certain application.

 To some degree, an application-specific component is like a compiler macro

(a concept familiar to C programmers). Simple components with templates

expand when the page is loaded, adding their template and the components

within it to the containing page’s template.

 By way of an example, we’ll revisit the Hangman application from chapter 2.

If you remember, it contained a lot of duplicated code related to converting

numbers and characters into images (to support the “chalkboard” look and feel).

Specifically, the Guess, Win, and Lose pages contained duplication, both in the

page classes as well as their page specifications. Particularly onerous was the

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating simple template components 217

long, long list of context assets that defined the images for each letter, for each

digit, and for each version of the hanged man in the gallows. Different portions

of this list were duplicated in the Guess, Win, and Lose page specifications.

 An obvious first step is to isolate all that image manipulation into a few reus-

able components, with the goal that each image asset be defined only once,

within a single component specification. These components will be an example

of application-specific reuse; that is, they will be completely tied to this specific

application. We’ll create components for displaying the numbers and the scaffold

used to show the player’s remaining guesses, as well as a component for display-

ing a particular letter. We’ll then build on these, creating a component that spells

out entire words. You’ll also see a common type of component, known as a border
component, which is used to provide the specific look and feel of an application

(in terms of Cascading Style Sheets [CSS], basic navigation controls, and table-

based layout). These are all examples of the most common types of components

you’ll be creating in your own applications; these components save us a bit of

effort in this application, even if they won’t help when we code our next one.

 When we’re done, the revised Hangman application will look and feel exactly

the same as the original; only its internal structure will be different. When com-

ponents are created and utilized properly, the result is smaller, simpler HTML

templates and page specifications, less code, and, more important, less duplica-

tion of code—always a lifesaver when it comes time to fix bugs.

 The source code for both the original and the revised Hangman applications

is available online; appendix B discusses how to obtain the source, as well as how

to build and deploy all the examples in the book. The improved Hangman

described in this chapter is accessible as http://localhost:8080/hangman2/app.

 Creating a template component entails creating the component specification

and, optionally, the component’s template, and usually involves creating a new

Java class. All three together form a component. Figure 6.1 shows these artifacts.

The component specification is stored in the WEB-INF folder and has a .jwc

extension. The Java class is identified in the specification (defaulting to Base-

Component if left unspecified).

 When a page template or specification references a component, Tapestry

must determine how to instantiate an instance of the component’s class, as a part

of the overall page. The first step is to locate the component’s specification,

which (like a page specification) identifies the Java class Tapestry will instantiate

(along with many other implementation details, such as additional embedded

components). Also, most components will have their own HTML template, whose

contents are integrated into the containing page’s template.

TEAM LinG - Live, Informative, Non-cost and Genuine!

218 CHAPTER 6

Creating reusable components

Tapestry starts with the component type, which is used as the name of the com-

ponent specification file that you want to read. These files may be built-in com-

ponents bundled with the Tapestry framework, or they may come from a

component library (discussed in section 6.8), or they may be application-specific

components, with the specification stored in the WEB-INF folder.

 After reading the specification and instantiating and configuring an instance

of the component’s Java class, Tapestry will then locate and parse the HTML

template for the component.1 The template for the component is stored in the

WEB-INF folder, alongside the component specification (a marked difference

from pages, where the template is stored one level up, in the root context

folder). A template will be used only with components that inherit from Base-

Component—components that subclass from AbstractComponent work entirely in

Java code, with no template.

 Regardless of whether the component has a template, it must have a compo-

nent specification.

1 In fact, the component itself is responsible for locating its template; this is covered in detail in
chapter 7.

Figure 6.1 Like pages, components have a specification (with a .jwc

extension) and a Java class. If they have a template, it is stored in WEB-INF

with the specification.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 219

6.2 Creating the component specification

A component specification tells Tapestry how to instantiate and use a compo-

nent, in exactly the same way that a page specification tells Tapestry how to

instantiate and use a page. A component specification includes all the same

attributes and elements as a page specification:

■ A class attribute to identify the Java class you want to instantiate

■ <property-specification> elements to define additional properties for
the component

■ <component> elements to declare additional components contained within
the component

■ <context-asset> elements to declare assets used by the component

What a component specification adds (beyond what is available in a page specifi-

cation) are additional attributes and elements to define if and how the compo-

nent uses parameters, and how it fits into the overall page:

■ <parameter> elements declare each formal parameter, providing a name

and type, and indicating if the parameter is required or optional.

■ <reserved-parameter> elements filter out unwanted informal parameters.

■ The allow-informal-parameters attribute specifies whether informal parame-
ters are allowed or discarded.

■ The allow-body attribute specifies whether the body of the component (in

its container’s template) is kept and used, or discarded.

This chapter covers the most common aspects of the framework’s component

specification. Appendix D contains a complete reference to all of the Tapes-

try specifications.

6.2.1 Specifying the component’s Java class

A component specification begins with a <component-specification> element. As

with a page specification, the <component-specification> element includes a

class attribute, which is used to specify which Java class to instantiate for the com-

ponent. The attribute is optional, in which case the default class, BaseComponent, is

used. BaseComponent is the base class for components that have a template.2

2 BaseComponent’s superclass is AbstractComponent. AbstractComponent is for components that don’t
use a template. Subclasses of AbstractComponent must implement the renderComponent() method
to produce their output entirely in code.

TEAM LinG - Live, Informative, Non-cost and Genuine!

220 CHAPTER 6

Creating reusable components

 When creating new components, it is often (but not always) necessary to cre-

ate a custom subclass of BaseComponent to contain any additional logic that can’t

be expressed in the specification itself. Most often, such a class will contain lis-

tener methods.

6.2.2 Discarding the component’s body

Components are represented in their container’s templates as a balanced pair of

start and end tags.3 The portion of the template enclosed by those tags is the

component’s body. The body is a mix of static HTML and other components. Fig-

ure 6.2 shows how a component’s body is determined. Tapestry divides the page

template into individual chunks, each containing static text, component start

tags, or component end tags. A component’s body is the static text and compo-

nents it immediately encloses. Enclosed components (such as B in the diagram)

themselves have a body—the static text and components they enclose.

 A component may either keep or discard its body. This is controlled by the

allow-body attribute of the <component-specification> element. By default,

allow-body is set to yes, and the component keeps its body (though the corre-

sponding Java class must still include code to render its body). The component

will be able to integrate its body (the portion of the page template its tags

enclose) with its own template (if it has one). This is appropriate for components

3 So far, most of our examples have been of a page containing a component, but since components may
themselves have templates, they may also be containers of other components. It is not uncommon for
such nesting to go three or four levels deep, and Tapestry has no arbitrary limit on how deep such
component nesting is allowed.

Figure 6.2

A component’s body contains

the portion of the template

immediately enclosed by its

start and end tags.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 221

such as Conditional or Foreach that want to control if, when, and how often their

body is rendered.

 Some components discard their body, usually because the HTML element

they render does not have a body. For example, the Image component discards

its body because the HTML element is always empty.

 When Tapestry discards a component’s body, it checks to see if the body con-

tains other components. If so, Tapestry throws an exception (it is not allowed to

define a component only to throw it away).

TIP If you omit the end tag of a component, the Tapestry template parser
will see an enclosed, discarded component before it sees that the tag is
simply not balanced. You’ll see an exception such as Tag <input> on
line 15 is a dynamic component, and may not appear inside an ignored block.

As you’ll see shortly, a component with its own template can even integrate its

body (which comes from its container’s template) with its own template.

6.2.3 Forbidding informal parameters

In many of our examples from previous chapters, we’ve used informal parameters.

Informal parameters are additional parameters beyond those explicitly declared by

the component (formal parameters are described in the next section).

 Most components pass through informal parameters, adding them as attributes

of the HTML element rendered by the component. This is useful in components

such as DirectLink for specifying the CSS class or JavaScript event handlers. The

component doesn’t care about the names or values of the informal parameters; it

passes them through unchanged.

 In some cases, a component has no use for informal parameters. For exam-

ple, the Delegator component doesn’t directly render an HTML element, so it

would have no use for informal parameters. Likewise, the DatePicker component

renders several related HTML elements, so it disallows informal parameters as

well, since it isn’t clear which element would make use of them. Components that

fall into this category will set the allow-informal-parameters attribute to no (the

default for allow-informal-parameters is yes).

 When loading a page, the framework checks to see if any informal parame-

ters are bound to a component that does not allow them. An exception is thrown

when informal parameters are used improperly.

 To support WYSIWYG editing, there is one exception for components that for-

bid informal parameters: If an informal parameter is specified in an HTML tem-

plate as a literal value, the informal parameter is silently ignored.

TEAM LinG - Live, Informative, Non-cost and Genuine!

222 CHAPTER 6

Creating reusable components

6.2.4 Declaring parameters

The main difference between pages and components is that components may

have parameters and pages may not. Parameters are used to control and custom-

ize the behavior of a component to adapt it to the page it is used on. You’ve seen

how common components such as Insert and DirectLink rely on the parameters

you set to make them do the right thing within your pages: render the correct bit

of text (the value parameter of Insert), or invoke the correct listener method (the

listener parameter of DirectLink). This doesn’t apply just to the built-in frame-

work components; the components you create will also require parameters to

adapt them to the specific page and situation they are needed for.

 The <parameter> element is used to define formal parameters used by a com-

ponent. This element includes six attributes, shown in table 6.1.

Component parameters are more than just JavaBean properties; parameters

may represent a connection, or binding, between a component and some other

object property. A component parameter is not just a property: It is a slot into

which a binding can be plugged. Using the binding, the component can both

read and update the bound property. As an example, consider the value parame-

ter of the Foreach component. Foreach will update the property bound to the

value parameter before rendering its body, for each item in its list (which is pro-

vided by its source parameter). Likewise, all the form control elements, such as

TextField, both read and update their value parameters, reading the value

parameter when the page is rendering but updating their value parameter when

the containing form is submitted.

Table 6.1 The <parameter> element’s attributes

Name Description

name The name used for the parameter, which must be a valid Java identifier.

type The Java type of the parameter, which may be a class name or a primitive type

name.

required If yes, the parameter must be bound. Defaults to no.

property-name Optional; specifies the name to use for a connected parameter property when the

default is not allowed.

direction Specifies how, if at all, you want to connect the parameter binding to a property;

defaults to custom, which means no connected parameter property.

default-value Optional OGNL expression used as a default value for the parameter if the param-

eter is not otherwise bound.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 223

 The ability to update parameters represents a fundamental difference

between Tapestry component parameters and a typical JavaBean object. A Tap-

estry component can force a change to another object property using a parame-

ter binding.

 As you’ve seen in previous examples, the bindings that are plugged into com-

ponent parameters run the gamut from short literal strings all the way up to

complex OGNL expressions. At the code level, each parameter is a JavaBeans

property into which a binding object, a class implementing the IBinding inter-

face, is plugged. When a component wants to read or update the value bound to

one of its parameters, the first step is to obtain the matching IBinding object.

 Tapestry includes different implementations of IBinding for the three types

of bindings (OGNL expressions, literal static values, and localized messages).4

The IBinding interface includes methods for both reading and updating the

bound value. The getObject() method reads the bound property value. The

setObject() method updates the bound property’s value. Only OGNL expres-

sions can be updated; any attempt to update parameters bound to a static value

or localized message results in a runtime exception.

 Figure 6.3 shows how a hypothetical component can access its parameters via

its binding object. The getObject() method retrieves a value through the bind-

ing, which can be incorporated into the rendered output of the component.

The binding’s setObject() method is used (on form submission) to update the

bound property.

 Before your code can access the bound property value, it needs access to the

binding object itself.

Accessing bindings

For each formal parameter, Tapestry creates a binding property. A binding prop-
erty is always of type IBinding, and the property name is the same as the parame-

ter name, with Binding appended. As with a property specification, the framework

will use existing accessor methods, but it is easiest to let Tapestry construct a sub-

class with the accessor methods and the underlying field. To access the binding,

declare and use an abstract accessor:

public abstract IBinding getParameterBinding();

4 A special type of binding is used to access localized messages for pages and components. The details
about this are provided in chapter 7.

TEAM LinG - Live, Informative, Non-cost and Genuine!

224 CHAPTER 6

Creating reusable components

Most components do not need to know about bindings, however. Tapestry has

the ability to perform all the interactions with the binding object for you, behind

the scenes, and represent the parameter as a JavaBean property instead. This is

a much easier, more intuitive approach.

Directions for value movements

The direction attribute of the <parameter> element is used to tell Tapestry how

values move between the binding and the component.5 It can be set to one of four

values: in, form, auto, or custom. The majority of component parameters will use

the value in for this attribute. This tells Tapestry to create a connected parameter

5 This is one of the odder naming snafus in the framework. The original intent was based on established
names for parameter directions in languages that allow pass-by-reference: in, out, and in-out. What
the direction attribute has evolved into would better be called “processing” or “connection,” but
names (even bad names) take on a life of their own.

Figure 6.3

Components use bindings

to get access to properties

of pages or domain

objects. When rendering,

properties are read and

used via getObject().

When rewinding (on form

submission), parameters

are read and converted,

and setObject() is used

to update properties.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 225

property with the same name as the parameter and to manage that property, set-

ting its value at the appropriate time, just before the component renders. As with

specified properties, Tapestry will use existing accessor methods, or create new

accessor methods with this signature:

public Type getParameter();
public void setParameter(Type parameter);

As with specified properties, there is no reason to create your own accessor meth-

ods; it is easier to let Tapestry create the accessor methods and underlying fields.

Your code should just declare abstract accessor methods to read, and possibly

update, the parameter property.

 If the parameter has a name that conflicts with an existing property (perhaps

one inherited from a base class), you may override the default parameter prop-

erty name and use another. For example, the PageLink component has a page

parameter, but AbstractComponent already defines a page property, so the

parameter is connected to a different property, targetPage:

<parameter name="page"
 type="java.lang.String"
 required="yes"
 property-name="targetPage"
 direction="in"/>

Here, the name of the parameter is still page, but the connected parameter prop-

erty is named targetPage. The component can access the value bound to the

parameter by defining and using the method getTargetPage(). In addition, a

second property, targetPageBinding, is created to store the binding object for

the parameter (but since the parameter is connected to a property, there’s no

need to access the binding object directly).

 The majority of parameters specify in. The processing for such parameters

consists of setting the parameter property from the binding value just before the

component renders, and then resetting the parameter property back to a default

value just after the component renders. Figure 6.4 illustrates the steps taken by

the component to set and clear the properties as part of the component’s render.

 In a component, the render() method does three things:

■ It invokes prepareForRender() to prepare the component for rendering.

This sets the value of the direction attribute’s in and form parameters

(reading the value bound to the parameter and updating the connected

property with that value).

■ It invokes renderComponent() to perform the creation of output.

TEAM LinG - Live, Informative, Non-cost and Genuine!

226 CHAPTER 6

Creating reusable components

■ It invokes cleanupAfterRender() (from within a finally block) to clean up

the component after the render. This reads the direction attribute’s form

parameters and updates the binding value; it also resets the attribute’s in

and form parameters to their default values.

Each component has its own instance of ParameterManager, whose job is to ana-

lyze the direction of each parameter and set and reset the connected parameter

properties on the component. This is shown in figure 6.4, where the component

invokes setParameters() on the ParameterManager, which then turns around and

sets the value of connected parameter properties on the component. After con-

nected parameters are set, the component invokes renderComponent() on itself.

Once the component finishes rendering, the properties are reset back to their

initial values by invoking resetParameters() on the ParameterManager—which

again analyzes the parameters for the component and sets the values of the con-

nected parameters back to their initial values.

 In some cases, the parameter values, obtained from some domain object, may

represent a large object (or collection of objects) that should be garbage col-

lected. Resetting the parameter value back to null (or whatever the initial value

is) ensures that dangling references to such objects are eliminated and that the

garbage collector can do its work. It also ensures that, for instance, values

entered by one user are not made visible to a different user (in a later request

that uses the same page instance).

 The first time ParameterManager’s setParameters() method is invoked, it will

first read each parameter property before setting it from the binding; this value is

saved for later use when the resetParameters() method is invoked. This means

that whatever value is assigned to the property when the component is rendered

the first time will be the reset value used thereafter. A component’s finishLoad()

method can be overridden to set initial values for parameter properties, which will

be used as defaults for the parameters when the parameter is not bound.

 Tapestry also tries to optimize the number of properties it sets from parame-

ters. The ParameterManager checks to see if the binding object for each parame-

ter is invariant. Bindings that are either literal values or localized messages are

invariant; that is, unlike bindings based on OGNL expressions, their value will

never change. In these cases, the framework sets the parameter property only

once, just before the component renders the first time. In addition, there is no

need to reset the property after the component renders.

 Although most component parameters use in, the other three directions have

their uses:

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 227

Figure 6.4 Each component’s ParameterManager is responsible for connected

parameters. For direction="in", the parameter binding is read and the property set

before the component’s renderComponent() method is invoked. After rendering, the

ParameterManager resets the property back to its initial value.

TEAM LinG - Live, Informative, Non-cost and Genuine!

228 CHAPTER 6

Creating reusable components

■ form—The direction attribute’s form value is closely related to in. It

implements the flow appropriate to a form control (such as the value

parameter on a TextField). On render, the property bound to the parame-

ter is read and used to set the connected parameter property value, just

like in. Once the component rewinds, the connected parameter property is

read and the value is used to update the property bound to the parameter,

which in does not do. This direction is used with a component parameter

that is updated from a query parameter upon form submission.

CAUTION Both in and form have a weakness: The parameter property is valid only
while the component is rendering—that is, while the renderComponent()
method is active (or in methods invoked from the renderComponent()
method). There are times when this is insufficient, when the parameter
binding’s value is needed outside the confines of rendering (or rewind-
ing), in which case the value auto is typically used.

■ custom—The value custom leaves control in your hands. Tapestry creates the

property to store the binding object and nothing else. Your code can access the

binding object and invoke the getObject() and setObject() methods on it.

■ auto—The auto value is much like custom, but it implements a connected
parameter property that appears the same as in. The implementation of
the accessor methods obtains the matching binding object and invokes the
appropriate method upon it, much like this:

public Type getParameter()
{
 return (Type)getParameterBinding().getObject("parameter",
 Type.class);
}

public void setParameter(Type parameter)
{
 getParameterBinding().setObject(parameter);
}

The value auto has some other limitations. The parameter must be required; it

may not be optional. Of the primitive Java types, only boolean, int, and double

are supported.6 (byte, char, float, long, and short are not supported.) In addi-

tion, array types are not supported.

6 For types boolean, int, double, and String, the synthetic getter methods use the getBoolean(),
getInt(), getDouble(), and getString() methods of IBinding, respectively. The setter methods
use setBoolean(), setInt(), setDouble(), and setString().

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the component specification 229

Choosing a parameter direction

As the component author, you are responsible for deciding the direction to use

with your parameters, based on how the component and the parameter are uti-

lized. Table 6.2 provides basic rules for choosing the direction.

The vast majority of component parameters are read-only and used only when a

component is actively rendering; in those situations, the value in for the direc-

tion attribute is appropriate. Choosing a parameter direction comes down to

identifying when in can’t be used; each direction in table 6.2 should be consid-

ered, in order, until a match is found.

 It may turn out that a parameter is needed when the component is not ren-

dering. For example, the listener parameter of a DirectLink component is

needed when the DirectLink is triggered; this is an interaction between the

direct service and the DirectLink component that occurs entirely outside the ren-

der process (it is shown in chapter 7, figure 7.11).

NOTE In Tapestry, engine services, such as the direct service, are used to dis-
patch incoming requests. You can think of them as a kind of servlet in-
side the Tapestry servlet. Tapestry servlets, engines, and engine services
are described in detail in chapter 7.

The DirectLink component specifies the direction for the listener parameter as

auto, which dynamically accesses the listener via the listener binding. This is a
valid operation even when the DirectLink is not rendering.

Table 6.2 Rules for choosing the direction attribute

Direction Use

in The parameter is used only when the component is rendering, and the component doesn’t

update the parameter, ever.

form The component is a form-element component; the parameter is read only when the compo-

nent is rendering and is updated only when the containing form is submitted. Most of the

form element components include a value parameter with the direction attribute set

to form.

auto The parameter value may be read or updated even when the component is not rendering (or

rewinding), such as the listener parameter of the DirectLink component.

custom You’d rather use auto, but you can’t because the parameter type is not valid for auto, or

the parameter is not required.

TEAM LinG - Live, Informative, Non-cost and Genuine!

230 CHAPTER 6

Creating reusable components

NOTE Parameter directions have been identified as an area of Tapestry that
requires work. See appendix A for some notes on how parameters may
be changed and simplified in Tapestry release 3.1.

6.2.5 Reserving names

A potential conflict occurs when a component allows informal parameters: What

happens when the component generates a particular attribute, and the informal

parameter provides a value for the same attribute? For example, the Image com-

ponent generates an src attribute from its image parameter; but most templates

using an Image component include an src attribute of some kind, to support

WYSIWYG preview. You could end up with the src attribute appearing twice (with

two different values) in the rendered tag, and no clue what the client web browser

will due with this extra attribute.

 The solution is to forbid certain names as informal parameters. Each formal

parameter name is automatically added to the list of reserved names that may

not be used as informal parameters. In addition, the <reserved-parameter> ele-

ment is used to reserve additional names:

<reserved-parameter name="name"/>

Informal parameters that match any reserved name are dropped. The compari-

son is case insensitive, so the informal parameter Src, SRC, or src would be

dropped from an Image component, which reserves the parameter name src.

 When creating components, you should identify which attributes are written

out by your implementation of renderComponent() and reserve each such

attribute as a reserved parameter. All of this applies only to components that

allow informal parameters.

 So, now that we have basic tools for specifying components, let’s push on to

see how to combine a specification, a template, and some Java code to create a

fully functional component, using the Hangman application from chapter 2.

6.3 Creating the Digit and Scaffold components

The first of these components will be the Digit component, which is used on the

Guess and Win pages.7 Its input is a numeric digit, and its output, when rendering,

is a complete element that displays the digit as an image. The Scaffold

7 The Home and Lose pages also display a digit, but it is entirely static; so, using ordinary static HTML
is appropriate on those pages.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the Digit and Scaffold components 231

component is similar to the Digit component, the major exception being the choice

of images displayed by the component. Both of these components are codeless,

meaning that they use the BaseComponent class rather than requiring a subclass.

 We’ll start by examining the specification for the Digit and Scaffold compo-

nents, in listings 6.1 and 6.2.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 allow-body="no"
 allow-informal-parameters="no">

 <parameter name="digit" direction="in"
 required="yes" type="int"/>

 <component id="image" type="Image">
 <binding name="image">
 getAsset("digit" + digit)
 </binding>
 <binding name="alt" expression="digit"/>
 </component>

 <context-asset name="digit0" path="images/Chalkboard_1x7.png"/>
 <context-asset name="digit1" path="images/Chalkboard_1x8.png"/>
 <context-asset name="digit2" path="images/Chalkboard_2x7.png"/>
 <context-asset name="digit3" path="images/Chalkboard_2x8.png"/>
 <context-asset name="digit4" path="images/Chalkboard_3x7.png"/>
 <context-asset name="digit5" path="images/Chalkboard_3x8.png"/>

</component-specification>

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 allow-body="no"
 allow-informal-parameters="no">

 <parameter name="digit" direction="in"
 required="yes" type="int"/>

Listing 6.1 Digit.jwc: specification for the Digit component

Listing 6.2 Scaffold.jwc: specification for the Scaffold component

TEAM LinG - Live, Informative, Non-cost and Genuine!

232 CHAPTER 6

Creating reusable components

 <component id="image" type="Image">
 <binding name="image">
 getAsset("scaffold" + digit)
 </binding>
 </component>

 <context-asset name="scaffold5" path="images/scaffold.png"/>
 <context-asset name="scaffold4" path="images/scaffold-1.png"/>
 <context-asset name="scaffold3" path="images/scaffold-2.png"/>
 <context-asset name="scaffold2" path="images/scaffold-3.png"/>
 <context-asset name="scaffold1" path="images/scaffold-4.png"/>
 <context-asset name="scaffold0" path="images/scaffold-5.png"/>

</component-specification>

6.3.1 Specifying the digit parameter

The Digit and Scaffold components each take a single parameter, digit, declared

in each component’s specification:

<parameter name="digit" direction="in" required="yes" type="int"/>

The parameter is required; when using either component, a binding for the

digit parameter must be provided or a runtime exception will occur. The type of

the parameter is int, a Java primitive type. This will be the type of the parame-

ter property created to hold the parameter value.

 Since the parameter’s direction is in, the framework will automatically set the

parameter property before rendering the component. As you’ll see, we can use this

digit property in the template or as part of OGNL expressions in the specification.

6.3.2 Using the digit parameter

The digit parameter is used only in the specification. The parameter is used in

two ways:

■ To select the correct image asset

■ As the alt attribute for the Image component (providing an accessible title

for the image)

The Image component will be used inside the Digit component’s template. It

contains two parameter bindings:

<component id="image" type="Image">
 <binding name="image">
 getAsset("digit" + digit)
 </binding>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the Digit and Scaffold components 233

 <binding name="alt" expression="digit"/>
</component>

The first binding uses the digit property as part of an OGNL expression to

retrieve the correct asset.8 The digit property is also used with the informal alt

parameter of the Image component. The Scaffold component includes an

almost identical section in its specification:

<component id="image" type="Image">
 <binding name="image">
 getAsset("scaffold" + digit)
 </binding>
</component>

6.3.3 Creating the template

The Digit component’s template is tiny, just big enough to contain an

Image component:

The Scaffold component’s template is similar:

<img jwcid="image" alt="[Scaffold]"
 src="images/scaffold.png" border="0"/>

6.3.4 Using the Digit component

Now that we’ve defined the Digit component, we can use it exactly like any of the

components provided with Tapestry. In the revised Guess page’s template, the

Digit component is used instead of the standard Image component:

<img jwcid="@Digit"
 digit="ognl:visit.game.incorrectGuessesLeft"
 src="images/Chalkboard_3x8.png"/>

As in the previous version from chapter 2, much of the component is simply

there to maintain WYSIWYG preview when using an HTML editor. In this case,

the choice of HTML tag () and the inclusion of the src attribute are useful

for WYSIWYG preview but are meaningless to Tapestry. Regardless of what

appears in the template, the Image component will render an tag and pro-

vide a value for the src attribute. The src informal parameter will be ignored

because it is a literal value provided in the HTML template and the Digit compo-

nent does not allow informal parameters.

8 This is an example of using the alternate form of the <binding> element, where a long OGNL expres-
sion is placed in the body of the element, rather than as the value of the expression attribute. The
form is useful when the expression contains a mixture of quotes, or if it’s very long or complex.

TEAM LinG - Live, Informative, Non-cost and Genuine!

234 CHAPTER 6

Creating reusable components

 This is a marked improvement to what was necessary in chapter 2 to display

the digit. There, the equivalent section of the Guess page template was bogged

down with the details that are now isolated in the Digit component:

<img jwcid="@Image"
 alt="ognl:visit.game.incorrectGuessesLeft"
 image='ognl:getAsset("digit" +
 visit.game.incorrectGuessesLeft)'
 height="36"
 src="images/Chalkboard_3x8.png"
 width="36" border="0"/>

Not only is the new version more succinct and readable, it also doesn’t require

that the digit assets be specified in both the Win and Guess pages’ specifications.

Those assets are declared just once, inside the Digit component.

6.3.5 Using the Scaffold component

Likewise, the Scaffold component plugs into both the Guess and Win pages in a

similar way:

<img jwcid="@Scaffold"
 digit="ognl:visit.game.incorrectGuessesLeft"
 src="images/scaffold.png" border="0"/>

Again, the details (and assets) of the component are isolated. In both of these

examples, we’ve seen how the original portion of the Guess page’s HTML tem-

plate can be extracted and refined as a new component. Our next example takes

a similar approach but does so without using an HTML template of its own.

6.4 Creating the Letter component

The Letter component is used to display an image corresponding to a particular

letter in the alphabet. It is used in several places: on the Guess page, it is used to

display the (partially guessed) target word and to display the remaining guess-

able letters. The Letter component is also used in the Win and Lose pages to

show the complete target word.

 The previous two components (Digit and Scaffold) were codeless and used

HTML templates. The implementation of the Letter component uses no HTML

template; instead, it implements the renderComponent() method to produce the

HTML output in Java code. For well-focused components that produce little

HTML (the Digit, Scaffold, and Letter components each render exactly one tag),

implementing in code is often a better option, especially if there are any calcula-

tions to perform as part of the render (in this case, selecting the correct image

based on two different parameters).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the Letter component 235

6.4.1 Specifying the Letter component

The Letter component is similar to the Digit component, taking a letter param-

eter instead of a digit parameter. It also includes a second parameter, disabled,

which when set to true, forces the component to ignore the letter parameter

and always display a blank space. The specification for this component is pro-

vided in listing 6.3.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 class="hangman2.Letter"
 allow-body="no"
 allow-informal-parameters="no">

 <parameter name="letter" direction="in"
 required="yes" type="char"/>
 <parameter name="disabled" direction="in" type="boolean"/>

 <context-asset name="space" path="images/letter-spacer.png"/>
 <context-asset name="dash" path="images/Chalkboard_5x3.png"/>

 <context-asset name="a" path="images/Chalkboard_1x1.png"/>
 <context-asset name="b" path="images/Chalkboard_1x2.png"/>
 <context-asset name="c" path="images/Chalkboard_1x3.png"/>
 <context-asset name="d" path="images/Chalkboard_1x4.png"/>
 <context-asset name="e" path="images/Chalkboard_1x5.png"/>
 <context-asset name="f" path="images/Chalkboard_1x6.png"/>
 <context-asset name="g" path="images/Chalkboard_2x1.png"/>
 <context-asset name="h" path="images/Chalkboard_2x2.png"/>
 <context-asset name="i" path="images/Chalkboard_2x3.png"/>
 <context-asset name="j" path="images/Chalkboard_2x4.png"/>
 <context-asset name="k" path="images/Chalkboard_2x5.png"/>
 <context-asset name="l" path="images/Chalkboard_2x6.png"/>
 <context-asset name="m" path="images/Chalkboard_3x1.png"/>
 <context-asset name="n" path="images/Chalkboard_3x2.png"/>
 <context-asset name="o" path="images/Chalkboard_3x3.png"/>
 <context-asset name="p" path="images/Chalkboard_3x4.png"/>
 <context-asset name="q" path="images/Chalkboard_3x5.png"/>
 <context-asset name="r" path="images/Chalkboard_3x6.png"/>
 <context-asset name="s" path="images/Chalkboard_4x1.png"/>
 <context-asset name="t" path="images/Chalkboard_4x2.png"/>
 <context-asset name="u" path="images/Chalkboard_4x3.png"/>
 <context-asset name="v" path="images/Chalkboard_4x4.png"/>

Listing 6.3 Letter.jwc: specification for the Letter component

TEAM LinG - Live, Informative, Non-cost and Genuine!

236 CHAPTER 6

Creating reusable components

 <context-asset name="w" path="images/Chalkboard_4x5.png"/>
 <context-asset name="x" path="images/Chalkboard_4x6.png"/>
 <context-asset name="y" path="images/Chalkboard_5x1.png"/>
 <context-asset name="z" path="images/Chalkboard_5x2.png"/>

</component-specification>

As with the Digit component, the bulk of the Letter component specification

consists of specifications for all the assets: one for each letter, plus the dash (or

underscore) and a placeholder.

6.4.2 Implementing the Letter component

Much of the code for the Letter component (listing 6.4) is familiar from chapter 2,

where the basic ideas were duplicated in the Guess, Win, and Lose pages. The

code uses the letter parameter to determine the correct asset, and renders an

 element, deriving the src attribute from the asset.

package hangman2;

import org.apache.tapestry.AbstractComponent;
import org.apache.tapestry.IAsset;
import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRequestCycle;

public abstract class Letter extends AbstractComponent
{
 public abstract boolean isDisabled();
 public abstract char getLetter();

 protected void renderComponent(IMarkupWriter writer,
 IRequestCycle cycle)
 {
 writer.beginEmpty("img");
 writer.attribute("src",
 getLetterImage().buildURL(cycle));
 writer.attribute("alt", getLetterLabel());
 writer.attribute("height", 36);
 writer.attribute("width", 36);
 writer.attribute("border", 0);
 }

 public IAsset getLetterImage()
 {
 if (isDisabled())
 return getAsset("space");

Listing 6.4 Letter.java: Java class for the Letter component

Converts asset
to URL

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the Letter component 237

 char letter = getLetter();

 if (letter == '_')
 return getAsset("dash");

 return getAsset("" + letter);
 }

 public String getLetterLabel()
 {
 if (isDisabled())
 return " ";

 return ("" + getLetter()).toUpperCase();
 }

}

The main method is renderComponent(), whose job is to render an HTML

tag, which will display the image matching the letter parameter. The IMarkup-

Writer interface makes it simple to output HTML elements and attributes in an

orderly manner. The beginEmpty() method starts an element that has no body,

and the attribute() methods write attributes for that element, properly quoting

values and converting unsafe characters to HTML entities.

 The remaining methods in the Letter class determine the correct image asset

to use based on the letter and disabled parameters, and the proper string to

use as for the tag’s alt attribute. This code was duplicated over several

pages in the original Hangman application in chapter 2, but now it is in a single

place, inside the Letter component.

 Previously, you’ve seen how Java code may define abstract accessor methods

to reference specified properties. The same technique is used here to access con-

nected parameter properties. The enhanced subclass generated at runtime by

Tapestry includes the necessary fields, a get method, and a set method. The code

in this class is free to use those accessor methods.

6.4.3 Using the Letter component

The Letter component is used inside the Guess page to generate the grid of

images that may be guessed. As before, this involves a Foreach component (the

selectLoop component) to loop through the available letters, a DirectLink com-

ponent (the select component) to allow any as-yet-unguessed letter to be

guessed, and an anonymous Letter component to display the actual letter (or a

blank space if the letter has already been guessed):

Converts
letter to alt
tag value

TEAM LinG - Live, Informative, Non-cost and Genuine!

238 CHAPTER 6

Creating reusable components

<a href="#" jwcid="select"
 class="select-letter"><img jwcid="@Letter"
 letter="ognl:letterForGuessIndex"
 disabled="ognl:letterGuessed"
 border="0"
 src="images/Chalkboard_5x3.png"/>

As with the Digit component, using the Letter component is much simpler

than accomplishing the same task using the standard Image component. The

Letter component hides the logic used to select the correct image and label. If

maintaining the ability to preview is not important, then the template could

be simplified further by removing the src and border attributes from the

 element.

 This is already a simplification from chapter 2, where achieving the same

result required a much more involved section to render the letter image:

<a href="#"
 jwcid="select"
 class="select-letter">
 <img jwcid="@Image"
 image="ognl:guessImage"
 alt="ognl:guessLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

Once again, as with the Digit and the Scaffold components, we’ve consolidated

duplicated logic and duplicated asset specifications, and eliminated dupli-

cated Java code. This makes the revised Guess page even shorter and more

focused on handling guesses rather than figuring out which image to display

for which letter.

 Just as we’ve built new components by combining framework components, we

can also build new components from other new components.

6.5 Building the Spell component

Spelling out the target word appears on three out of four pages in the Hangman

application: the Guess page displays the partially guessed word, and both the

Win and Lose pages display the complete target word. In this case, rather than

replace a single Image component with a Letter component, we’ll simplify the

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Spell component 239

page template by replacing a Foreach component and an Image component with

a single Spell component.

 The earlier versions of these pages used a Foreach component enclosing an

Image component. These components are now the basis for the Spell compo-

nent, whose HTML template is shown in listing 6.5.

<span jwcid="@Foreach"
 source="ognl:page.visit.game.letters"
 value="ognl:letter">

This Spell component is hard-wired to do exactly one thing: spell out the word

provided by the Game object’s letters property (via the OGNL expression

page.visit.game.letters). All components have a property, page, which identi-

fies the page that ultimately contains the component.9 From there, we can access

the visit property, as well as the game property of the Visit object.

 Because this component is intended for use only within the Hangman appli-

cation, it doesn’t make sense to define a parameter for the word to spell out; we

will always configure that parameter identically, to display the target word.

Instead, the component is hard-wired to the Game object’s letters property.

6.5.1 Implementing the Spell component

You’ve already seen several examples of page properties being used to coordi-

nate components contained by the page, and this carries over to components as

well, as seen in listing 6.6.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-// Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

Listing 6.5 Spell.html: HTML template for the Spell component

9 As you’re beginning to see, components can contain components and so forth, so the page may be
several levels of containment above the component.

Listing 6.6 Spell.jwc: specification for the Spell component

TEAM LinG - Live, Informative, Non-cost and Genuine!

240 CHAPTER 6

Creating reusable components

<component-specification
 allow-body="no"
 allow-informal-parameters="no">

 <property-specification name="letter" type="char"/>

</component-specification>

In this case, the Spell component defines a letter property (of type char), which

allows the Foreach and Letter components contained by Spell to work together.

The Foreach updates the letter property, and the Letter component uses it,

binding it to the letter parameter.

 Previously, we’ve discussed how the page acts as controller, mediating between

the components it contains. This concept extends to components (such as Spell)

that contain other components. The container (whether it is a page or just

another component) still is responsible for making it possible for the compo-

nents it contains to work together. Here, that mediation takes the form of a prop-

erty that one component (the Foreach) can write into and another component

(the Letter) can read from.

6.5.2 Using the Spell component

The Spell component is used in the Guess page’s HTML template to display the

target word:

 <img height="36" alt="A" src="images/Chalkboard_1x1.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_5x3.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_1x5.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_5x3.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_5x3.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_5x3.png"
 width="36" border="0">
 <img height="36" alt="_" src="images/Chalkboard_5x1.png"
 width="36" border="0">

Earlier, you saw how to add attributes to tags to support previewing. Here, you see

an entire chunk of HTML, the series of elements, used for the same purpose.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Spell component 241

The Spell component does not allow a body, so the entire stretch of HTML within

the Guess page’s template is discarded.

 Again, as with the previous components, the new usage is much easier to deal

with than the old one. Back in chapter 2, we had to include the Foreach compo-

nent, the Image component, and additional methods in our page (again, on all

three major pages: Guess, Win, and Lose). Even omitting the “for preview”

tags (which are ultimately discarded anyway), the old way was much longer:

<span jwcid="@Foreach"
 source="ognl:visit.game.letters"
 value="ognl:letter">
<img jwcid="@Image"
 image="ognl:letterImage"
 alt="ognl:letterLabel"
 height="36"
 src="images/Chalkboard_5x3.png"
 width="36"
 border="0"/>

Eventually, a project will hit a crossroads: How valuable is it to maintain the abil-

ity to preview the page using a WYSIWYG HTML editor? As a project hits its stride

and pages start to consist of more and more components, the manual effort

needed to maintain the preview (when the HTML is generated within a compo-

nent) may easily outweigh the utility of doing so. For example, our earlier use of

the Spell component might be replaced with just a placeholder:

 [@Spell component output]

The page no longer will preview as it did before. Rather than a somewhat accu-

rate snapshot of a running application, the previewed HTML will more obviously

be what it is: a template. Figure 6.5 shows how the updated template will preview

in a WYSIWYG HTML editor.

 The result of pulling back the curtain in this way is that HTML developers will

have fewer questions about what they can and cannot change. In addition, HTML

developers won’t be confused as to where changes must take place; there will be

less of a chance that they will make changes to portions of the template that Tap-

estry is going to discard at runtime. The downside is, of course, that develop-

ment will gradually shift to the point where the live application must be run in

order to see what final pages will look like.

TEAM LinG - Live, Informative, Non-cost and Genuine!

242 CHAPTER 6

Creating reusable components

6.6 Building the Border component

So far, all the components we’ve built for the Hangman application have dis-

carded their bodies. Exciting possibilities open up when we define compo-

nents that allow a body, mixing their own template with a portion of their

page’s template.

Figure 6.5 Replacing the tags in the Spell component’s body significantly changes how the

template will preview.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Border component 243

 The revised Hangman application uses such a component, Border, to provide

the Shell and Body components for each page in the application. For the Hangman

application, the Border does very little; but in a more realistic Tapestry application,

the same technique can be used to create more of the basic look and feel of the

application: title bars up top, copyrights at the bottom, navigational controls along

the top or side (as appropriate). We’ll see a much more involved example of this in

chapters 9 and 10, with the Border component for the Virtual Library application.

6.6.1 Creating the Border template

The HTML template for the Border component includes a Shell component and

a Body component, and introduces another new component provided by the

framework: RenderBody. The HTML template for the Border component is pro-

vided in listing 6.7.

<html jwcid="@Shell" title="Tapestry Hangman"
 stylesheet="ognl:assets.stylesheet">
<body jwcid="@Body">

Page specific content goes here.

</body>
</html>

The RenderBody component causes the component that contains it (the Border

component) to render its body, which is the portion of the page’s template that

its start and end tags wrap around. Note the distinction between being contained
and being enclosed. The RenderBody component is enclosed by the Body compo-

nent. It is contained by the Border component, because it appears inside the Bor-

der component’s HTML template. The Shell, Body, and RenderBody components

are all contained by the Border component.

 The body of the Border component may contain any mix of static HTML and

components—even other components with templates (that contain more Render-

Body components). RenderBody discards its body, so the note “Page specific

content goes here” will not appear in the live application. Instead, the body of

the Border component within its page is rendered.

Listing 6.7 Border.html: HTML template for the Border component

TEAM LinG - Live, Informative, Non-cost and Genuine!

244 CHAPTER 6

Creating reusable components

6.6.2 Creating the Border specification

The Border component’s specification is shown in listing 6.8.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 allow-body="yes"
 allow-informal-parameters="no">

 <context-asset name="stylesheet" path="css/hangman.css"/>

</component-specification>

This specification serves two simple purposes:

■ It indicates that the Border component allows, and does not discard,

its body.10

■ It allows us to specify here, and only here, the asset for the applica-

tion’s stylesheet.

Once again, using a component has allowed us to remove duplicate code, dupli-

cate specifications, and duplicate assets. As usual in Tapestry, simplicity and con-

sistency go hand in hand: Using the Border component is simpler, more

consistent, and more maintainable than duplicating the Shell and Body compo-

nents and the stylesheet asset.

6.6.3 Using the Border component

Using the Border component is the same as using any other component. You

create a tag in the HTML template to indicate where on the page the

component belongs and to delineate the body of the component. All four pages

in the application follow the same general template:

<html>
<head>
<title>Tapestry Hangman</title>

Listing 6.8 Border.jwc: specification for the Border component

10 This could be omitted, since the default is yes, but including the attribute as a reminder helps to doc-
ument the purpose of the component.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Building the Border component 245

<link rel="stylesheet" type="text/css" href="css/hangman.css"/>
</head>
<body jwcid="$content$">

. . .

</body>
</html>

Back in chapter 2, we introduced the special jwcid "$remove$", used to edit out a

portion of the template. When using the Border component, we have a similar

problem. At runtime, we want the Border component (and the Shell and Body

components it contains) to render the <html>, <head>, and <body> elements in

the page. This creates a conflict if we want to maintain the ability to preview the

page in the HTML editor; we need to keep the <link> tag that connects the tem-

plate to the stylesheet, or the page becomes virtually unreadable in the editor.

 At the same time, we want to eliminate the <html>, <head>, and <body> ele-

ments in the page template, because they will be provided at runtime by the Bor-

der component (via the Shell component contained by the Border). If we use the

"$remove$" jwcid on the <html> or <body> tags in the page template, the entire

page will be removed! The solution is a second special jwcid, "$content$".

 The "$remove$" jwcid is used to remove an element and its body from the

template. The "$content$" jwcid removes everything but the element’s body.

The <body> tag, everything that precedes it, the </body> tag, and everything that

follows it are all discarded. What’s left is the content inside the <body> tag, which

is the Border component, enclosing everything else on the page. Everything

then falls into place, and at runtime, the Border component properly renders

the <html> and <body> tags before and around its body.

 The end result of all these changes is shorter, simpler Java code and smaller,

simpler templates. The code base for the entire application shrank from approxi-

mately 200 lines of code (excluding comments) to 160 lines, but, more important,

virtually all redundancy in the code was removed. As much as application-specific

components such as these are a modest win for an individual application, the real

gains are to be made when creating fully reusable components, adaptable to many

applications. The next sections describe those sorts of components.

TEAM LinG - Live, Informative, Non-cost and Genuine!

246 CHAPTER 6

Creating reusable components

6.7 Creating interactive, reusable components

The components described in the previous sections are output-only components:

They are used when a page is rendering, but they are not themselves interactive.

Adding interactivity requires using components in combinations with engine ser-

vices. Engine services, described more fully in chapter 7, are the gateways connect-

ing incoming requests from the client web browser with objects and code running

on the server.

 As an example, let’s implement a clickable link for an image map. The

example in this section is part of the examples application. Launch your web

browser to http://localhost:8080/examples/app and click the Pets link under the

chapter 6 heading.

6.7.1 Introducing the Pet Store image map

Image maps are an often-overlooked aspect of HTML. An image map is an ordi-

nary image paired with additional HTML to define regions within the image.

Each region is a rectangle or polygon within the image, defined using a series of

coordinates. Each region defines a URL to trigger when that region of the

image is clicked. HTML designers often use image maps because of the preci-

sion with which they can arrange buttons (or other clickable elements) inside

the image.

 To put this all together, the element includes a usemap attribute that

identifies the image map to use. A corresponding <map> element contains a num-

ber of <area> elements, and each <area> defines a region of the image and the

URL to trigger.

 A familiar example of this is part of the standard Java 2 Enterprise Edition

(J2EE) demonstration application, the Java Pet Store. The first page of the Pet

Store includes an image map for selecting the top-level category when shopping

for a pet. Clicking the pet image brings up a catalog of that type of pet. A Tapes-

try version of this page is shown in figure 6.6. The utility of an image map is

obvious here because the clickable regions (the small images of the different

pets) are not organized into handy rows and columns.

 It would be ideal to leverage the functionality of the DirectLink component

(the component used so effectively in the Hangman application) but use it

instead to create the <area> elements that define the clickable regions. We must

still be able to define listener methods and pass service parameters as part of the

URL. This ideal is possible, because most of the behavior of the DirectLink com-

ponent is inside the direct service, and so it is easy to reuse in a new component.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating interactive, reusable components 247

The DirectArea component can use the direct service just as easily as the

DirectLink component.

6.7.2 Specifying the DirectArea component

The DirectArea component, whose specification is shown in listing 6.9, is similar

to a DirectLink component; it has a required listener parameter and an

optional parameters parameter. Like the DirectLink component, the DirectArea

component must support informal parameters.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"

Figure 6.6 An image map allows the user to select a category of pet to shop

for. Image maps allow for precise control over the layout of the active areas.

Listing 6.9 DirectArea.jwc: specification for the DirectArea component

TEAM LinG - Live, Informative, Non-cost and Genuine!

248 CHAPTER 6

Creating reusable components

 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 class="examples.DirectArea"
 allow-body="no"
 allow-informal-parameters="yes">

 <parameter name="listener" required="yes"
 direction="auto"
 type="org.apache.tapestry.IActionListener"/>
 <parameter name="parameters" type="java.lang.Object"
 direction="in"/>

</component-specification>

Listener methods are represented as instance of the class IActionListener.

We use java.lang.Object as the type since we don’t know the actual type that will
be provided.

The HTML <area> element does not allow a body, so neither does the DirectArea

component. The specification defines the two parameters, listener and parame-

ters, mimicking two of the DirectLink parameters. The listener parameter’s

direction is auto, not in. This is necessary because the listener is needed when

the direct service triggers the component, and this event occurs when the com-

ponent is not rendering.

 In addition, the parameters parameter is type java.lang.Object; this is the

correct type to use when the runtime type of the parameter is not known. As with

the DirectLink component (which defines its parameters parameter the same

way), this value may be an object, an array of objects, or a List of objects.

6.7.3 Implementing the DirectArea component

The DirectArea component’s class, shown in listing 6.10, consists of only three

methods. The renderComponent() method renders the <area> element. The

trigger() and isStateful() methods are used when a request is sent by the cli-

ent web browser in response to the user clicking within the image.

package examples;

import org.apache.tapestry.AbstractComponent;
import org.apache.tapestry.IActionListener;
import org.apache.tapestry.IDirect;

 b
 c

 b

 c

Listing 6.10 DirectArea.java: Java class for the DirectArea component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating interactive, reusable components 249

import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.Tapestry;
import org.apache.tapestry.engine.IEngineService;
import org.apache.tapestry.engine.ILink;
import org.apache.tapestry.link.DirectLink;

public abstract class DirectArea
 extends AbstractComponent
 implements IDirect
{
 public abstract IActionListener getListener();
 public abstract Object getParameters();

 protected void renderComponent(IMarkupWriter writer,
 IRequestCycle cycle)
 {
 if (cycle.isRewinding())
 return;

 Object[] parameters =
 DirectLink.constructServiceParameters(getParameters());

 IEngineService service =
 cycle.getEngine().getService(Tapestry.DIRECT_SERVICE);
 ILink link = service.getLink(cycle, this, parameters);

 writer.beginEmpty("area");
 writer.attribute("href", link.getURL());

 renderInformalParameters(writer, cycle);
 }

 public void trigger(IRequestCycle cycle)
 {
 IActionListener listener = getListener();

 if (listener == null)
 throw Tapestry.createRequiredParameterException(this,
 "listener");

 listener.actionTriggered(this, cycle);
 }

 public boolean isStateful()
 {
 return false;
 }

 b

 c

 d

 e

 f

 g

 h

 i

 j

TEAM LinG - Live, Informative, Non-cost and Genuine!

250 CHAPTER 6

Creating reusable components

The direct service, part of the Tapestry framework, requires that the component
it invokes implement the IDirect interface.

The DirectLink class provides a static utility method, constructService-
Parameters(), for converting the value bound to the parameters parameter into
an array of objects.

The IEngineService instance is responsible for constructing the URL, which is
provided as an instance of ILink.

The link object can provide the URL for this component.

The AbstractComponent base class provides a method, renderInformalParameters(),
for generating additional HTML attributes from informal parameters bound to
the component.

The trigger() method is invoked by the direct service (it is part of the
IDirect interface).

This code gets the listener object (an object implementing the IActionListener
interface that will invoke the listener method) and checks that the object exists
and is not null.

The actionTriggered() method is defined by the IActionListener interface; the
listener object will invoke the listener method.

The isStateful() method is also defined by the IDirect interface and invoked
by the direct service.

The core of this class is the renderComponent() method. It starts with a simple

optimization; if the request cycle is rewinding (to process a form submission)

instead of rendering, then there’s no point in doing the rest of the work (any out-

put will be discarded during a rewind). This scenario could occur if a Form hap-

pens to enclose the DirectArea component. When the Form is submitted, the

rewind phase will pass through the DirectArea as well as all the form control

components, but the DirectArea component has nothing to contribute to the

Form’s rewind.

 The next step is to convert the parameters parameter into an array of objects.

A static utility method in the DirectLink class accomplishes this for us. It will

analyze the object and return an array of objects (if the value is an array or a

List). The method will return null if there are no service parameters.

 Next, we obtain the direct service from the engine and have the service con-

struct a link back to this particular DirectArea component, including any service

parameters. The next few calls to the markup writer create the <area> element

and set the href attribute from the link created by the service. This component

must support informal parameters; the call to renderInformalParameters() will

 b

 c

 d

 e

 f

 g

 h

 i

 j

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating interactive, reusable components 251

convert any informal parameters into additional attributes. Components that

allow a body might invoke the method renderBody() as well, but DirectArea

doesn’t allow a body (because <area> elements are always empty).

 The flip side of the renderComponent() method is a pair of methods, defined

by the IDirect interface, that are invoked when the link (encoded into the <area>

element’s href attribute) is triggered. As we’ll discuss in chapter 7, the direct ser-

vice will locate this component and start by invoking the isStateful() method.

 The isStateful() method in DirectArea always returns false, indicating that

the link is not stateful, and that it is okay to execute cold (when the HttpSession

doesn’t exist or has expired). That’s acceptable for this example, but a truly reus-

able DirectArea component would, like the DirectLink component, provide a

parameter for controlling the return value for this method.

 The direct service then invokes the trigger() method. Invoking getListener()

will retrieve the listener object from the binding for the listener parameter.

Despite the fact that this parameter is required, it’s still possible that the listener

is null. The required attribute on the <parameter> element only ensures that the

parameter was bound, not that the bound property is non-null. For example,

using the value ognl:null would satisfy the parameter’s required check, but it

wouldn’t give us a useful value. To be safe, we check that the listener object is not

null and throw an exception in the unlikely case that it is. The Tapestry class (a

utility class containing useful static methods) includes a method for constructing

this exception.

 You can also see why it was necessary to set the listener parameter’s direc-

tion attribute to auto instead of in. This trigger() method is invoked when the

DirectArea component is not rendering—the semantics of an in parameter

would not work, since a connected property for an in parameter will have the

correct value only while the renderComponent() method is executing. The direct

service invokes the trigger() method in an entirely different request, at a differ-

ent time, when the renderComponent() method is definitely not executing.

 Using auto for the listener parameter’s direction attribute is appropriate.

Invoking the getListener() method will get the listener object from the binding,

without depending on the renderComponent() method.

 After successfully passing the required check, we know we have a non-null lis-

tener and can invoke the actionTriggered() method on the listener object. This

will ultimately invoke the listener method provided by the application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

252 CHAPTER 6

Creating reusable components

6.7.4 Using the DirectArea component

The Pets page uses several instances of the DirectArea component. The majority of

the template, shown in listing 6.11, is simple, static HTML for the image and for

the <map> element referenced by the image. Only the <area> elements are

dynamic; each of these is a DirectArea component with its own listener.

<p>Select a type of pet to continue:</p>

<img src="images/pets-image-map.gif"
 alt="Pet Selection Map"
 usemap="#petmap"
 width="350"
 height="355"
 border="0"/>

<map name="petmap">
<area jwcid="@DirectArea" listener="ognl:listeners.selectBirds"
 alt="Birds"
 coords="72,2,280,250"/>
<area jwcid="@DirectArea" listener="ognl:listeners.selectFish"
 alt="Fish"
 coords="2,180,72,250"/>
<area jwcid="@DirectArea" listener="ognl:listeners.selectDogs"
 alt="Dogs"
 coords="60,250,130,320"/>
<area jwcid="@DirectArea" listener="ognl:listeners.selectReptiles"
 alt="Reptiles"
 coords="140,270,210,340"/>
<area jwcid="@DirectArea" listener="ognl:listeners.selectCats"
 alt="Cats"
 coords="225,240,295,310"/>
<area jwcid="@DirectArea" listener="ognl:listeners.selectBirds"
 alt="Birds"
 coords="280,180,350,250"/>
</map>

Inside the Java class, each listener method funnels into a single method that

configures the PetCategory page and selects it as the response page:

private void select(String type)
{
 IRequestCycle cycle = getRequestCycle();

Listing 6.11 Pets.html: HTML template for the Pets page

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating interactive, reusable components 253

 PetCategory next = (PetCategory) cycle.getPage("PetCategory");

 next.setType(type);
 cycle.setPage(next);
}

public void selectBirds(IRequestCycle cycle)
{
 select("birds");
}

This brings us up to the PetCategory page, which now has the information it

needs to display the page, customized to the user’s selection. An example is

shown in figure 6.7.

 In a real application, there would be a product database, and the PetCategory

page would perform a query and produce a listing of dogs in the inventory. For

the purposes of this example, just getting to the page (and acknowledging that

the user selected dogs) is sufficient.

 Creating components with interactivity is nearly as effortless in Tapestry as

creating simple output-only components. Because of the way the framework

manages both the component object graph and the dispatch of incoming

requests, it is easy to create links that invoke methods on component objects.

From there, it is simple to call back into application-specific code using lis-

tener methods.

Figure 6.7 After selecting a pet using the image map, the user is brought to a page that displays

an inventory of pets of the selected type.

TEAM LinG - Live, Informative, Non-cost and Genuine!

254 CHAPTER 6

Creating reusable components

Creating components specific to an application is an excellent way to leverage

the various capabilities of members of a team. Because components are, by their

nature, small and self-contained, they represent tasks that are more accessible to

less-experienced team members, or to team members with specialized knowl-

edge (of Tapestry, HTML, or client-side JavaScript).

 Although we’ve discussed creating components that are reusable in multiple

applications, we haven’t covered the nuts and bolts of actually doing so. You

could cut and paste the component’s class, specification, and template into a new

project, but then you’d be faced with all the problems of maintaining the same

source code in multiple locations. Instead, Tapestry has a sophisticated way of

packaging components together into libraries, as you’ll see in the next section.

6.8 Using component libraries

So far, you’ve seen how to use components packaged with the Tapestry frame-

work, and you’ve seen several techniques for creating new, application-specific

components. The framework and the application are not the only places that

components can come from: Components can be packaged into libraries and

distributed as Java Archive (JAR) files.

 The Tapestry distribution includes a secondary library, tapestry-contrib-3.0.jar.

This contains the Contrib (short for Contributions) library, which includes many

useful components that are not absolutely required by the framework itself. In

addition, this library contains components that have been contributed by outside

developers. Over time, components can migrate from the Contrib library into

the main framework.

 There are no special requirements for using component libraries (beyond

declaring them, as described in the next section). The JAR containing the library

must be on the classpath; this can be accomplished easily by copying the JAR into

the WEB-INF/lib folder of the web application.

6.8.1 Declaring libraries

Before you may use a library in an application, you must first declare its use for

your application. This requires that your application have an application specifica-
tion. Application specifications are optional; applications that don’t use special fea-

tures (such as component libraries) don’t need an application specification.

 The application specification has the file extension .application and is stored

in the WEB-INF folder, along with the page and component specifications. The

name of the file matches the name of the servlet. For most of the examples in

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using component libraries 255

this book, the name of the servlet is examples. This is shown in the web applica-

tion deployment descriptor (see listing 6.12).

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <servlet>
 <servlet-name>examples</servlet-name>
 <servlet-class>org.apache.tapestry.ApplicationServlet
 </servlet-class>

 <init-param>
 <param-name>org.apache.tapestry.visit-class</param-name>
 <param-value>examples.Visit</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>examples</servlet-name>
 <url-pattern>/app</url-pattern>
 </servlet-mapping>

</web-app>

Because the name of the servlet is examples, Tapestry will expect the application

specification to be the file WEB-INF/examples.application. This file is shown in

listing 6.13.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<application name="Tapestry in Action Examples">

 <library id="contrib" specification-path=
 "/org/apache/tapestry/contrib/Contrib.library"/>

</application>

Listing 6.12 web.xml: web deployment descriptor for the example application

Listing 6.13 examples.application: application specification for the examples application

Provides mapping to
servlet from URL

TEAM LinG - Live, Informative, Non-cost and Genuine!

256 CHAPTER 6

Creating reusable components

The root element for an application specification is <application>. You can

optionally provide a user-presentable name for the application, which is used in

some error messages. The <library> element defines an ID for a library and

provides the path to the library’s specification. The library ID must be a valid

Java identifier. An application may use any number of libraries, each with a

unique ID.

 Application specifications can also be used to override the default locations

for page and component specifications, but there’s rarely a need to do so. The

reference in appendix D has the details.

 The specification path for a library is the complete path to the library’s speci-

fication. This is a path within the Java classpath, which is appropriate because

libraries are packaged as JAR files, with their resources available only through

the classpath.

 Now that we’ve given this library an ID, we can start using the components

within the library.

6.8.2 Referencing library components

Components in libraries are referenced using the library ID as a prefix—for

example, contrib:Table or contrib:Palette (for components Table and Palette

within the component library with the ID contrib). This extended naming pat-

tern will be familiar to anyone who has used XML namespaces. Prefixing is

important because different libraries may define different components with the

same type name. The prefix allows both you and Tapestry to tell one component

from another.

 Using a component from a library is as easy as using a component provided

with the framework, or one particular to your application. Figure 6.8 shows an

example of this. This page includes the Palette component, a sophisticated com-

ponent available in the Contrib library. A Palette component is used for han-

dling multiple selections of items from a list and (optionally) allows the user to

order the selections in the list.

 The Palette component represents the upper potential of fully reusable

components. It combines sophisticated client-side JavaScript with images (dis-

tributed with the component inside the JAR file), and yet the look and feel of the

Palette may be customized by changing the page’s stylesheet or by overriding

the default images used for the buttons (in the center column). Despite all this, the

component is no more difficult to use than the PropertySelection component

described in chapter 4.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using component libraries 257

Creating the Resume Builder

The example page for the Palette component is the Resume Builder, a page that

could be drawn out of an online job search program. In the template (see

listing 6.14), the Palette component is represented (arbitrarily) as a <select> element.

<body jwcid="@Border" title="Resume Builder">

Resume Builder

<p>Please fill out a few questions so that
we can compile your on-line resume.
</p>

Listing 6.14 ResumeBuilder.html: HTML template for the Resume Builder page

Figure 6.8 The Palette component allows multiple selection and ordering. The buttons in the center

are used to move items between the two lists and to reorder items in the selected list (the right

column).

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

258 CHAPTER 6

Creating reusable components

<form jwcid="@Form" listener="ognl:listeners.formSubmit"
 delegate="ognl:beans.delegate">

<table class="form">

<tr>
<th>Experience:</th>
<td><select jwcid="inputExperience"/> Years</td>
</tr>

<tr class="tall">
<th>Languages:</th>

<td><select jwcid="inputLanguages"/>

<p>
Select the programming languages you are proficient in,
and order them by relative level of skill.
</p>

</td>
</tr>

<tr>
<td>
<input type="submit" value="Continue"/>
</td>
</tr>

</table>

</form>

</body>

Several of the pages in the examples application make use of a Border compo-
nent to deal with stylesheet issues.

This <select> is a PropertySelection component.

The Palette component is also represented by a <select> tag.

For comparison, the Resume Builder page includes a PropertySelection compo-

nent as well as the Palette. Both are represented in the template as <select> tags,

even though the Palette component will generate, at runtime, a considerable

amount of HTML, including a <table> (to control layout), several links and

images, and two different <select> elements. The downside to using sophisticated

 c

 d

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using component libraries 259

components such as Palette is that doing so unavoidably undermines the WYSIWYG

preview of the page template.

Declaring components in the page specification

Both the PropertySelection and Palette components are declared components,

with their type and parameters provided in the page specification. Listing 6.15

shows the specification for the Resume Builder page, which contains <component>

elements for these components.

<?xml version="1.0"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="examples.resume.ResumeBuilder">

 <bean name="delegate"
 class="examples.register.RegisterDelegate"/>

 <property-specification name="experience"
 type="examples.resume.Experience">
 @examples.resume.Experience@JUNIOR
 </property-specification>

 <property-specification name="languages"
 type="java.util.List"/>

 <component id="inputExperience" type="PropertySelection">
 <binding name="model" expression="experienceModel"/>
 <binding name="value" expression="experience"/>
 </component>

 <component id="labelLanguages" type="FieldLabel">
 <binding name="field" expression="components.inputLanguages"/>
 <static-binding name="displayName" value="Languages"/>
 </component>

 <component id="inputLanguages" type="contrib:Palette">
 <binding name="selected" expression="languages"/>
 <binding name="model" expression="languageModel"/>
 <binding name="sort">
 @org.apache.tapestry.contrib.palette.SortMode@USER
 </binding>
 </component>

</page-specification>

Listing 6.15 ResumeBuilder.page: specification for the Resume Builder page

 b

 c
 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

260 CHAPTER 6

Creating reusable components

A default value can be specified for properties (as an OGNL expression). This
expression references the public static field JUNIOR of the Java class examples.
resume.Experience.

The contrib: prefix references the library declared in the application specification.

The selected parameter is a List of selected options.

Palette uses an instance of IPropertySelectionModel to define the possible
options, just as the PropertySelection component does.

SortMode.USER allows for manual ordering of the selected items.

Finally, we see that library ID prefix as promised; the component type for the

inputLanguages component is contrib:Palette, the Palette component pro-

vided in the contrib library. This same syntax can be used with implicit compo-

nents; for example, the inputLanguages component could be declared entirely

in the HTML template as

<select jwcid="inputLanguages@contrib:Palette"
 selected="ognl:languages"
 model="ognl:languageModel"
 sort="ognl:@org.apache.tapestry.contrib.palette.SortMode@USER"/>

A Palette component is configured in much the same way as a PropertySelection

component. The possible values for a Palette component are defined using the

same IPropertySelectionModel interface that is used by the PropertySelection

component. Unlike PropertySelection, the Palette component is used to edit a

java.util.List of values, bound to its selected parameter. In this example, we

create a languages property on the page and have the Palette edit that property.

 Part of the configuration for a Palette is the order in which items are dis-

played in the two columns. Items may be sorted by the label (as displayed in the

user interface) or by the hidden value of each item. In this example, a third

option is used, which allows manual sorting of the selected values. All of this is

configured through the Palette’s sort parameter.

Using the page stylesheet

Part of the Palette’s user interface relies on the stylesheet of the page. The Pal-

ette component renders an HTML <table> element to lay out the two columns,

the headers, and the column of buttons in the middle. This <table> is (by

default) given the CSS class tapestry-palette. The stylesheet for the page

includes several entries for properly displaying the Palette:

TABLE.tapestry-palette TH
{
 background-color: black;

 b

 c

 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

262 CHAPTER 6

Creating reusable components

NOTE Appendix B describes the layout and process for building a Tapestry ap-
plication using the Ant build tool. Building a component library as a JAR

is structurally similar to building a Tapestry web application as a Web Ar-
chive (WAR) file. In the examples distribution, the examples-library
subproject shows how to build such a library (containing the components
described here and in chapter 8). The banner ads and examples sub-
projects show how to include the library as part of a web application.

6.9.1 Creating the library specification

Constructing new components to support your application is as easy as creating

pages; in fact, it is largely the same process. Compartmentalizing your application

in this way helps to remove redundancy in your code and specifications. It’s also a

good way of dividing up your team, with “big picture” developers working on

Figure 6.9 Without the support of the page’s stylesheet, the Palette is functional but not as

visually pleasing.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Packaging components into libraries 263

pages, critical components, and back-end systems, and less-seasoned developers

constructing simple components for the page developers. Tapestry’s approach

allows the application to be divided into small pieces that can be assigned to devel-

opers with just the right skill level.

 Once you’ve created your own components or acquired new components in a

component library, using them in your own application is as simple and natural

as any of the components provided with the Tapestry framework.

 To illustrate this process, we will revisit the Resume Builder example from the

previous section. The Resume Builder page includes form-level validation to

ensure that the user supplies at least one language proficiency. Figure 6.10 shows

the page with a warning to that effect.

Figure 6.10 The Resume Builder page uses a FormError component (from a component

library) to display the form-level validation.

TEAM LinG - Live, Informative, Non-cost and Genuine!

264 CHAPTER 6

Creating reusable components

In the previous section, the FormError component was an application-specific

component. Let’s convert it into a library component instead.

6.9.2 Creating the library specification

The first step is to select a Java package for the library and the components

within the library. For this example, the Java package is examples.library. In this

package directory, we will store the library specification, the component specifi-

cation, and the component template, as well as a related asset (the X icon used

by the component).

 Like an application specification, the library specification can declare addi-

tional libraries used by this library. The library specification for this example

library doesn’t use this facility, so the specification is simply a placeholder:

<?xml version="1.0"?>
<!DOCTYPE library-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<library-specification/>

The library specification is named Examples.library and is in the examples.

library package. In the examples distribution, it is stored in the directory examples-

library/src/java/examples/library. In chapter 8, we’ll discuss some of the addi-

tional elements that may be put into a library specification; for now, this specifi-

cation is a placeholder. By giving the library a particular location on the classpath

(/examples/library), Tapestry can find any components that are included in the

library, because they’ll be in the same location.

6.9.3 Creating the FormError component

The FormError component is created in the same directory as the library specifi-

cation. In fact, any component specifications in the directory with the library

specification will be components that are part of the library.

 The FormError component will take, as a parameter, an IValidationDelegate

instance. The HTML template for the component is shown in listing 6.16.

<table style="{
 border-style : solid;
 color : Red;

Listing 6.16 FormError.html: HTML template for the FormError component

TEAM LinG - Live, Informative, Non-cost and Genuine!

266 CHAPTER 6

Creating reusable components

Referencing packaged images

The icon image (the X symbol) poses a similar problem: The library may be dis-

tributed as a JAR and should work with any application it is dropped into, but it

also is reliant on the image asset, form-error.png. This file is packaged with the

component inside the component library JAR; it is a resource on the classpath,

not normally visible to the client web browser.

 Normally, the client web browser may only access files (static HTML files,

stylesheets, images, and so forth) that are stored in the context. Anything stored

in a JAR file, or under the WEB-INF folder, is not accessible. That begs the ques-

tion: How is the client web browser ever going to gain access to the file? Cer-

tainly, we don’t want any solution where the files are packaged separately or must

be unpackaged from the JAR files to be useful; that goes against the plug-and-

play nature of Tapestry.

 Tapestry includes a mechanism for serving images and other assets directly

from the JAR file. You’ll see how to declare such assets shortly, but the difference

in the HTML template is the need to use an Image component to display the X

icon rather than simple static HTML.

Creating the component specification

The component specification for the FormError defines the delegate parameter

and the asset for the error icon. The specification is named FormError.jwc (see

listing 6.17), and it is stored (with the library specification) in the /examples/

library folder.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 allow-body="no"
 allow-informal-parameters="no">

 <parameter name="delegate" direction="in" required="yes"
 type="org.apache.tapestry.valid.IValidationDelegate"/>

 <private-asset name="icon" resource-path="form-error.png"/>

</component-specification>

Listing 6.17 FormError.jwc: specification for the FormError component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Packaging components into libraries 267

A new specification element, <private-asset>, is used (instead of <context-

asset>) to declare assets that are stored on the classpath rather than in the web

application context. Private assets are localized, just the same as ordinary context

assets. Components (such as the Image component in the FormError compo-

nent’s template) do not know or care whether assets are context or private.

 Private assets work with the asset service (one of the eight default services

provided by the framework) to expose these files to the client web browser. At

runtime, rather than build a URL to a static file within the web application con-

text, the asset service builds an application URL. When the URL is triggered, the

asset service will locate the asset on the classpath and send its contents, as a byte

stream, back to the client web browser.

 If you examine the source for the page when an error message is displayed,

the Image component renders as

<img src="/examples/app?service=asset&sp=S%2Fexamples%2Flibrary
%2Fform-error.png"
 border="0" width="52" alt="[Error]" height="52"/>

This URL invokes the asset service to retrieve the contents of a file stored some-

where on the classpath. In this example, the location of the file within the

classpath is /examples/library/form-error.png (the %2F is an encoding of the

slash character).

TIP Tapestry can also be configured to dynamically copy the contents of pri-
vate assets to a web folder directory and build a static URL pointing to
the resource. This is a better approach in production, since web servers
are much faster at servicing requests for static resources than handling
dynamic requests involving servlets.

6.9.4 Using the FormError component

Using the FormError component is the same as using any other component. The

library containing the component must be declared in the application specification:

<library id="lib"
 specification-path="/examples/library/Examples.library"/>

This declaration identifies a second library used by the application that can be

referenced with the prefix lib:. In the ResumeBuilder template, the FormError

component is accessed using that prefix:

TEAM LinG - Live, Informative, Non-cost and Genuine!

268 CHAPTER 6

Creating reusable components

Because of the prefixing system used, a single page can combine components

provided by any number of libraries. The Resume Builder page, for example,

still uses the contrib:Palette component later in its template.

6.10 Summary

Building reusable components in Tapestry is an extension of the techniques

you’ve already seen for building pages. Because creating components is so easy in

Tapestry, it becomes a natural problem-solving technique: divide (into compo-

nents) and conquer. Building components is a great way to organize your applica-

tion; it removes redundancies from your templates, specifications, and Java code.

 Tapestry includes a simple and elegant way to create completely reusable com-

ponents and package them as libraries. The components you create today for your

current application can be instantly reused tomorrow, in your next application.

 The framework even allows for libraries to build on each other; new compo-

nents can be assembled by combining components provided by the framework

or by other libraries.

 Creating new components is just one approach to extending the basic capa-

bilities of the Tapestry framework. In chapter 7, we’ll go into more detail about

the internals of the framework and then utilize that information to build even

more powerful components in chapter 8.

TEAM LinG - Live, Informative, Non-cost and Genuine!

269

Tapestry under the hood

This chapter covers

■ Managing server-side state

■ Understanding clustering

■ Creating URLs and dispatching requests

■ Rendering pages in detail

■ Loading and pooling pages

■ Localizing applications

TEAM LinG - Live, Informative, Non-cost and Genuine!

270 CHAPTER 7

Tapestry under the hood

Many applications can be built in Tapestry using just the techniques described in

the previous chapters and an understanding of the existing components. In

preparation for even more ambitious things (in chapter 8), this chapter covers a

bit more about how Tapestry operates internally, describing what happens

between the time a request is received by the application server and the time a

listener method is invoked. We also touch on issues related to server-side state

management, application localization, and how Tapestry makes use of object

pools for efficiency. All of this background material lays the groundwork for

understanding how to create more involved applications, as well as how to create

more powerful, reusable component libraries and how to extend and change the

basic behavior of the Tapestry framework.

7.1 Processing requests

In earlier chapters, we talked about offloading complexity into the framework by

allowing it to control the request/response processing cycle. In this chapter, we

describe how Tapestry processes the incoming request. Processing requests

involves a number of overlapping concepts:

■ Parsing and caching page specifications, page templates, component spec-

ifications, and component templates

■ Pooling instances of pages

■ Managing server-side state, including persistent page properties

■ Localizing text and images on pages

■ Interpreting incoming requests and dispatching to the correct objects and

methods

Table 7.1 lists the key objects responsible for processing requests.

Table 7.1 Request processing framework objects used to dispatch incoming requests

Object Description

Application servlet Serves as a bridge between the Servlet API and Tapestry

Engine Acts as a central hub for request processing, managing of server-side state, and

accessing of Tapestry subsystems

Engine service Builds and interprets URLs for specific Tapestry operations

Request context Creates a façade over Servlet API objects (HttpServletRequest,

HttpSession, etc.)

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the application servlet 271

7.2 Understanding the application servlet

In Tapestry, every application uses exactly one servlet: the application servlet. In

traditional servlet applications there are many servlets, each representing a dif-

ferent operation that may occur in the application. Each of these servlets is new

code for you to write, test, and debug.

 One of the reasons writing servlets is more involved than writing most other

kinds of Java applications is that servlets operate from within a difficult environ-

ment. Exactly one instance of each servlet is created by the servlet container.

That single servlet may handle dozens of simultaneous requests, each in a sepa-

rate thread. This multithreading makes instance variables on the servlet almost

useless. There’s no point in storing any information about the current client in

an instance variable; some other thread is sure to overwrite your change almost

immediately. All too frequently, subtle bugs creep in where developers violate

these basic rules—bugs that show up only when the application is heavily loaded,

during stress testing, or even in production, where debugging the application is

most difficult, if even possible.

 The ApplicationServlet class is provided in the framework and does not

need to be subclassed to be used in an application. In Tapestry, the application

servlet is just a gateway between the stateless, multithreaded world of the HTTP

protocol and the Servlet API, and the normal, stateful, and single-threaded world

of Java and JavaBeans.

7.2.1 Servlet request processing

You’ve already seen how natural it is to code in Tapestry; components can com-

municate with each other by setting and reading properties of their containing

page. There’s no awkward shuffling of values in and out of request or session

attributes. Form submissions result in updates to page or domain object properties.

Request cycle Coordinates processing of a single-request, temporary cache for page instances

Page recorder Manages persistent page properties for a single page; moves data between page

properties and HttpSession

Page source Manages an object pool used by the request cycle to obtain page instances

Page loader Creates and configures new page instances as needed

Table 7.1 Request processing framework objects used to dispatch incoming requests (continued)

Object Description

TEAM LinG - Live, Informative, Non-cost and Genuine!

272 CHAPTER 7

Tapestry under the hood

Global application data is stored in the Visit object, which persists between

requests, safely stored as an HttpSession attribute.

 All of these are examples of the kind of natural, stateful coding that the Serv-

let API discourages you from using. Tapestry allows you to bypass awkward, state-

less coding in two ways: by shifting the coding focus away from the stateless

servlet, and by using object pools.

 Object pools are a well-established design pattern used to manage scarce

resources. A common example is a database connection pool, where a small num-

ber of database connections are shared by a large number of potential clients.

Objects are checked out of the pool for short periods, to service particular

requests, and then returned to the pool for later reuse. Tapestry uses this pattern

to pool instances of page objects (including all the related objects and components

within a page). This ensures that, while a page (and the hierarchy of components

in the page) is being used to service a request, only a single thread will access the

page. The set of pages for the current request is managed by the request cycle

object, which only returns the objects to the pool at the end of the request.

 With Tapestry, the servlet is not the focus of request processing as it is in tradi-

tional servlet applications. The servlet is merely a gateway from the Servlet API

to the Tapestry framework. The real work is done by the engine. The engine is

the central hub for processing requests and is particular to a single client session.

It is stored as an HttpSession attribute and so persists between requests. The

servlet’s main job is to find the engine in the HttpSession (or create a new

instance) and invoke the service() method on the instance.

 Figure 7.1 shows the processing that the servlet performs on a typical request (a

request where the HttpSession already exists and the engine has already been cre-

ated). All the magic in Tapestry occurs inside the engine’s service() method. This is

where the request is processed and a reply is constructed and returned to the client.

 After executing the service() method, the application servlet stores the

engine instance back in the HttpSession. At first glance, this may not seem nec-

essary—getting the engine instance doesn’t remove it from the HttpSession, so

why is it necessary to store it back in the session? In a word: clustering.

7.2.2 Understanding server-side state

All web applications have some form of server-side state. It may be some transi-

tory state information that exists during a single active request, or it may last

longer, persisting from request to request or session to session. Table 7.2 lists the

four types of server-side state, showing typical approaches using just the Servlet

API and corresponding approaches using Tapestry.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the application servlet 273

Table 7.2 Types of server-side state

Type Servlet API Tapestry

Temporary variable used

when rendering response

(example: loop index)

• JSP bean with page or request

scope

• JSP local variable (using Java scriptlet)

•HttpServletRequest attribute

• Page or component property

Client-specific data, avail-

able in later requests

•HttpSession attribute

• HTTP cookie

• Persistent page or component

property

•Visit object, or property of

Visit object

Non-client-specific data,

available in later requests

•ServletContext attribute

• Static variablea

•Global object, or property of

Global object

Long-term data (outlives any

single user session)

• HTTP cookie

• RDBMS

• HTTP cookie

• RDBMS

a Because of the way class loaders work inside an application server, especially in the context of hot applica-

tion redeployment, making use of static variables is not a recommended approach.

Figure 7.1 The servlet creates the RequestContext façade on the Servlet API objects and then

locates the engine in the session. The service() method does all the actual work of processing

the request and producing a reply. At the end of the request, the engine is stored back in the session.

TEAM LinG - Live, Informative, Non-cost and Genuine!

274 CHAPTER 7

Tapestry under the hood

As you’ll see later in this chapter, Tapestry is often using the Servlet API and hid-

ing the details. For example, persistent page properties are stored between

requests as HttpSession attributes.

7.2.3 Managing server-side state in a cluster

The Tapestry framework is designed to support not only highly complex appli-

cations but also extremely large applications—applications with thousands of

concurrent users. In the Java 2 Enterprise Edition (J2EE) world, the approach

used to handle extremely high volumes is clustering: dividing the load across

many servers that work together. A collection of these servers is a cluster. To the

outside world, a server cluster appears as a single server, and maintaining this

fiction requires a mix of hardware and software.

 Figure 7.2 shows how this works. Clients direct their web browsers to a partic-

ular Internet address. The device at that address is not an application server, but

a router or load balancer. It is a specialized server that forwards the request

through a firewall to one of the cluster’s application servers to process the

request. The firewall prevents the client web browser from directly communicat-

ing with the application servers (or any other servers within the inner network).

The router and the application server cluster work together to implement a

load-balancing and fail-over strategy that determines which server each request is

sent to.

Figure 7.2 The client web browser connects to a router, which forwards the request through a

firewall to one of the servers in the cluster. If one server fails or becomes overburdened, another

server can take over the load. The client has no knowledge of what goes on “behind” the router.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the application servlet 275

Server clusters can be configured in many ways, according to both the specific

implementations provided by various vendors and the specific needs of an appli-

cation. The bottom line is that, when an application is executing in a cluster,

there is no guarantee that two successive requests from the same client will be

processed on the same server. Between one request and the next, any server

within the cluster may be shut down, fail unexpectedly, or move processing of

requests to a different server within the cluster because it is overburdened (that

is, for load-balancing reasons). In some configurations, every request is pro-

cessed by a different server. The client should never be made aware of any of

these transitions. The client sends requests and gets responses and should have

no knowledge of how those requests are satisfied.

 When discussing clustering issues, it is easiest to assume that requests are

handled by a primary server until the primary server either fails or deliberately

shifts request processing to a second server (the backup server) due to load bal-

ancing. Although this may not match the actual configuration of a cluster, the

relevant issues concerning server-side state are still accurate.

Serializing and copying attributes

One of the prerequisites for any clustering scheme to be successful is that any

server-side state needed for processing the requests that was known on the pri-

mary server must be available on the new, backup server. In terms of Tapestry,

the presentation layer, and the Servlet API, this means that any attributes stored

into the HttpSession on the original server must be copied over to the backup

server before it processes any requests. It also means that any server-side state in

the application must be stored as HttpSession attributes, even though Tapestry

frequently represents such state as properties on ordinary objects (which just

happen to be Tapestry pages and components).

 When using the Servlet API (with or without Tapestry) in a cluster, any HttpSes-

sion attributes are copied from the primary server and broadcast to one or more

backup servers within the cluster. Different application server implementations have

different strategies for clustering, all involving serializing the data (converting objects

into a stream of bytes) stored in the HttpSession on one server and deserializing the

data back into objects on one or more other servers. The serialization may occur

immediately or after some delay. The deserialization may occur constantly or only

just as a backup server is activated to process a request. Despite this, the common fac-

tor is that information in one server’s HttpSession is serialized at some point and is

deserialized within a different server in the cluster. Any information stored in the

original HttpSession that can’t be serialized and later deserialized is lost.

TEAM LinG - Live, Informative, Non-cost and Genuine!

276 CHAPTER 7

Tapestry under the hood

 So, for a servlet application to be a good clustering citizen, it must ensure that

any attributes it stores into the HttpSession are serializable. Because the vast

majority of applications store only simple objects such as String, Integer, Bool-

ean, and Date as their HttpSession attributes, this is not often an issue; all of those

classes are already serializable. Tapestry does the same—the primary object it

stores in the HttpSession is the engine itself, and the engine is serializable.

Keeping synchronized

There is still a remaining gotcha: the question of when the data is copied. This is

left deliberately unspecified in the Servlet API specification. Although various

approaches are possible, Tapestry conforms to the least common denominator

approach: It expects that attributes are copied individually when the set-

Attribute() method of the HttpSession object is invoked. In fact, this is the exact

approach taken by the popular WebLogic application server.

 If the only objects stored as HttpSession attributes are Strings, Integers, and

Dates, then the question of when the copy takes place is not relevant. These

objects are immutable, which means they have no changeable internal state.

However, if an HttpSession attribute is mutable (for example, a List, Map, or cus-

tom object), then the question of when serialization and copying takes place

becomes relevant. Figure 7.3 shows how, with mutable HttpSession attribute val-

ues, it is possible for the server-side state on the primary server to get out of sync

with the backup server, simply by changing an HttpSession attribute’s internal

state after storing the attribute in the HttpSession.

 Once that internal state has been changed, the backup server’s state no

longer matches the actual state stored on the primary server. If the primary

server fails over to the backup server, the backup server will operate with incor-

rect server-side state, which can lead to incorrect behavior. This class of bugs can

be subtle and confusing, difficult to reproduce, and infuriating to debug in a

production system. Tapestry makes every effort to ensure that this scenario never

happens.

 Returning to Tapestry and the ApplicationServlet, the last step shown in fig-

ure 7.1 is a call to setAttribute().1 Given that the engine’s internal state is, in

fact, quite mutable, this ensures that any changes to the engine instance are

properly distributed to the other servers in the cluster.

1 Actually, setAttribute() doesn’t occur on every request; some simple optimizations are employed
to avoid invoking setAttribute() when internal state can’t have changed, such as a request that does
not change a persistent page property and does not even access the Visit object.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the Tapestry engine 277

7.3 Understanding the Tapestry engine

At the center of every Tapestry application is an engine, which is the object that

supports and organizes all aspects of the application. The engine binds together

all the smaller subsystems that form a Tapestry application. Its primary concern

is managing server-side state; it manages the Visit object described in chapter 2,

which is where most application-wide state is stored. It also is integral in manag-

ing persistent page properties, which allows individual pages to have internal

state that is available from one request to the next.

 The most visible aspect of the engine is the service() method, which is the

way in which incoming requests are processed and results are returned to the client

web browser. The service() method is outlined in figure 7.4. This sequence intro-

duces yet another layer of delegation in Tapestry: the engine service, represented

Figure 7.3 Changing a mutable object’s state after storing it as an HttpSession

attribute can lead to a lack of data synchronization between the primary and backup

servers.

TEAM LinG - Live, Informative, Non-cost and Genuine!

278 CHAPTER 7

Tapestry under the hood

Figure 7.4 Execution of the IEngine’s service() method. The engine initializes for the current

request, locates an IEngineService instance for the request, and delegates to the service.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 279

by the IEngineService interface. Just as the servlet delegates to the engine to

perform the processing of the request and the rendering of a response, the

engine delegates to an engine service. Engine services, covered in the next sec-

tion, are the point at which request processing really begins.

 Before invoking the engine service, the service() method performs many

initializations, creating and configuring the subsystems within Tapestry. More

important, the engine’s service() method includes multiple levels of exception

catching and reporting. Any uncaught exceptions that percolate back to this

level will be reported using the Exception page, which provides a detailed report

of the exception and nested exceptions as well as all the available Servlet API

objects. An example exception report is shown in chapter 1, figures 1.5 and 1.6.

If the application has become so unstable that even the Exception page fails,

then exception output is written to the console.

7.4 Understanding engine services

In a traditional servlet application, one of the most challenging parts in manag-

ing the complexity of an application is in the generation of, and interpretation

of, application URLs. Tapestry handles this problem through engine services.

Engine services are the real link between requests and components.

7.4.1 What’s the problem with application URLs?

Application URLs represent the various operations that can occur inside the appli-

cation. The most common approach is to have an individual servlet for each oper-

ation, and to use query parameters to provide the parameters to the operations.

 With small applications, or even initially with large applications, the com-

plexity of managing URLs and query parameters isn’t readily apparent.

There may be some namespace conflicts (everyone on the team will want to

map his or her servlet to /add or /showDetail), but with a little prefixing or suf-

fixing (/addCustomer, /addAddress, /showProductDetail), these issues can be

ironed out.

 A larger risk is exposed as the application grows and changes. Only a tenuous

relationship exists between the JavaServer Pages (JSPs) that construct and render

the application URLs and the servlets that interpret those same URLs. As we’ve

discussed before, the JSPs and the servlets are weakly bound. If a servlet’s map-

ping changes (say, from /add to /addCustomer as new types of things that can be

added are integrated into the application), every JSP that could possibly refer-

ence the servlet must be manually checked, and possibly modified, to ensure that

TEAM LinG - Live, Informative, Non-cost and Genuine!

280 CHAPTER 7

Tapestry under the hood

the new correct application URL is being generated. Likewise, any change to the

query parameters—anything from a change in name to a change in what kind of

data is in the parameter—will have a similar ripple effect.

 In a nonweb application, you would be changing specific Java methods, and a

source recompile would spot the errors immediately. Modern integrated develop-

ment environments (IDEs), such as Eclipse, do not even make you wait for a recom-

pile to identify errors; modern IDEs include refactoring tools for automating many

common code changes, such as adding or changing method parameters.

 In the loosely coupled world of servlets and JSPs, there is no recompile stage

and no built-in check. Even running the application and visiting all the pages

will not necessarily uncover these mismatch errors. Remember that the servlets

are not ultimately the pages of the application. Servlets are operations and serve

as the transitions between the pages of the application. This means that the only

way to verify the application is to click every link and submit every form that

could possibly be affected by the original change, no matter how minor.

 The core of this problem is the separation between the code that constructs

the URL and the servlet code that interprets and acts on the URL. This separa-

tion can be addressed with a bit of discipline, by centralizing the URL generation

code. For example, you could create public static methods on the servlet to gen-

erate application URLs. This approach ensures that the URL generation and

interpretation code is all in the same place. This approach can be further

improved with a custom JSP tag for each servlet (to produce the URL). However,

any solution that relies on throwing custom code at the problem is suspect. Tap-

estry takes a different approach to organizing the application.

7.4.2 How does Tapestry handle application operations?

Tapestry is not immune from this issue, even though it contains only a single

servlet. It still has to encode (into the URL) what operation to perform, what

objects are involved, and any additional parameters needed by the operation.

Essentially, Tapestry multitasks its single servlet to accommodate all manner of

application operations, many linked to particular pages and to particular com-

ponents, some global to the entire application. You’ve seen the three most com-

mon of these operations in the examples in previous chapters:

■ Display of a page within the application

■ Response to a link or form submission

■ The default operation that starts an application

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 281

In Tapestry terms, these operations are provided by engine services. Engine services

are objects that implement the IEngineService interface. This interface defines

methods for both creating and servicing application URLs, all in a single object.

 Engine services are much like servlets in implementation. Engine services are

shared by many threads and may hold no client-specific state. Tapestry includes

a default roster of nine services (shown in table 7.3), of which four (home, page,

direct, and external) are commonly used. Most of the services have a corre-

sponding component, such as the page service and the PageLink component, or

the direct service and the DirectLink component.

Services are not created equal. Some are more complicated than others, in terms

of what information they encode into a URL (and, correspondingly, what infor-

mation they later parse out of a URL). Let’s start by looking at the simplest ser-

vice: the home service.

7.4.3 Using the home service

The home service’s job is to render the Home page of the application. The

application’s Home page is, very simply, the page named Home. You saw this in

chapter 2, where the Home page for the Hangman application was the page dis-

played when the application was first accessed.

Table 7.3 Tapestry’s engine services

Service Description

action Invokes a listener method indirectly by rewinding the entire page, not just the contents

of a form. Rarely used; the direct service is more efficient.

asset Dynamically downloads an image or other asset file stored on the classpath (inside a

JAR file). Automatically used with component assets from the framework or from a

component library.

direct Allows a component to directly respond to a request; used with most links and forms.

external Allows “bookmarkable” links to particular pages.

home Default service, used to display the Home page of an application.

page Responds with a particular page within the application.

reset Discards all cached data, including all specifications and templates. Used only during

development.

restart Discards the current session and displays the Home page.

tagsupport Special service used by the Tapestry JSP tag library to generate URLs for inclusion in a

JSP.

TEAM LinG - Live, Informative, Non-cost and Genuine!

282 CHAPTER 7

Tapestry under the hood

 Because it does exactly one thing, the home service makes use of no query

parameters. Tapestry assumes that any request with no query parameters, not

even the one to specify a service, is to be processed by the home service. The

home service’s behavior is illustrated in figure 7.5.

 In examples in earlier chapters, you saw how a listener method can make use

of the IRequestCycle’s activate() method to select the active page for the cur-

rent request—the page that will render the response. The home service does the

same, first getting the Home page from the request cycle (using the getPage()

method) and then activating it.

 Figure 7.6 illustrates how the activate() method operates: It invokes the

validate() method on the page, which is a general hook provided to pages to

perform basic security validation. This validation allows for application-specific

checks that a page about to be activated is acceptable for the current request and

current client (in effect, the validate() method exists to allow for security

checks—examples of this usage are shown in chapter 10). The page’s validate()

method doesn’t directly implement any checks; instead, pages are allowed to

Figure 7.5 The service gets the Home page from the cycle and activates it.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 283

have multiple validation listeners, objects that implement the PageValidate-

Listener interface. The validate() method invokes the pageValidate() method

on each of its listeners.

 Most commonly, the page is its own validator. If the page implements the

PageValidateListener interface, then it is automatically registered as its own val-

idator. Individual components within the page may also implement the interface

and be registered automatically as well.

 A validator will check to see if the user is allowed to access the page. A vali-

dator may adjust the page’s state or, more likely, throw a PageRedirectException

to force a different page to be activated. When a PageRedirectException is

thrown, the processing of the request by the service is aborted. The page speci-

fied in the exception is activated and renders a response immediately. Chapter

10 includes an example of a typical use for pageValidate()—to prevent users

from seeing some of the pages of the application until after they have logged in

to the application.

 Returning to figure 7.5: after activating (and validating) the Home page, the

home service invokes the engine method renderResponse(). This results in the

active page being rendered and the response being sent back to the client web

browser. Unless a validator has overridden the default behavior, it will be the

Home page that renders the response.

7.4.4 Rendering pages with the page service

Next up the complexity ladder is the page service. This service is responsible for

rendering a particular page, specified by name.

Figure 7.6

The page’s validate()

method invokes

pageValidate() on

any registered

PageValidateListener

objects.

TEAM LinG - Live, Informative, Non-cost and Genuine!

284 CHAPTER 7

Tapestry under the hood

Unlike the home service, which is entirely implicit, the page service has to

encode into its URLs two things: that it is the page service, and which page is to

render the response. All engine services use a pair of standard query parameters

for encoding this kind of information: service and sp.

■ service is used to encode the name of the service, plus any additional con-

text values needed by the service. Multiple values are separated by slashes.

■ sp is a string that encodes a service parameter. The page service doesn’t

use this query parameter, but other services do (such as the direct service).

Figure 7.7 shows how an application URL might appear within the HTML of a

rendered page. Tapestry generates absolute URLs; application URLs always start

with a leading slash and identify the servlet context as well as the application

servlet. Reserved characters, such as the ampersand, will be properly converted

into HTML entities (such as the & in figure 7.9).

 The service query parameter starts with the name of the service, page. The

page service has some additional context: the name of the page you want to ren-

der. This is also part of the service query parameter. Some services may have four

or five additional context values beyond the name of the service, each value sep-

arated by a forward slash.

 When the page service is invoked to service a request, it uses the context value

as the name of the page to activate and render the response. Other than that, the

sequence is the same as in figure 7.5, including invoking the page’s validate()

method to perform security checks.

7.4.5 Linking to listener methods with the direct service

The direct service is the true workhorse of Tapestry. The vast majority of links

and forms make use of this service. It is used to trigger an action defined by a

component, either a DirectLink or a Form. A DirectLink component will notify

Figure 7.7

Page service URL

construction. The

service query

parameter identifies

the service (page) and

the name of the page

to render (Register).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 285

its listener immediately (as described in chapter 2), whereas a Form component

will perform a rewind to process the form submission and then notify its listener

(as described in chapter 3).

Checking for a stale session

One aspect of bridging the stateless HTTP protocol to stateful application devel-

opment is that the server has to guess when the user has finished using the appli-

cation. After some period of inactivity, the HttpSession is invalidated. Once it’s

invalidated, any attributes stored in the session are discarded. The server (or

cluster of servers) will no longer have any knowledge of the client, or any server-

side state for the client.

 Complications can occur if a user steps away from his or her computer for a

period of time and then returns and attempts to continue work. In many cases,

links and forms don’t rely on server-side state, so it is irrelevant whether the state

has been lost between the time the page was rendered and the new request.

 In those cases where server-side state is relevant, the framework can validate

that the session still exists. This validation is implemented by the direct service,

which optionally checks for stale sessions. The direct service records into the

URL it generates (when a page renders) whether the application was stateful at

the time the URL was created. When the URL is later processed, the direct service

can check to see if the session still exists or if it has timed out. This shifts the

responsibility for checking for stale sessions away from you and onto the frame-

work—all you have to do is inform Tapestry whether the link or form in question

requires a valid session.

 Both the DirectLink and Form components include a stateful parameter

that defaults to false. Setting it to true enables the stale session check. If the ses-

sion has been invalidated and the component is stateful, then the user is sent to

the StaleSession page. Figure 7.8 shows the default StaleSession page.2

 Figure 7.9 shows how the direct service encodes information into the applica-

tion URL. The direct service has several service context values: the stateful flag,

the name of the page, and the component ID path within the page.

 A stateful flag indicates whether the application was stateful at the time the

link was generated. If the value is 1, then the session validation check will take

place when the URL is triggered. Also included in the service parameter value is

the name of the page containing the component, as well as the ID path of the

2 It is possible to override this page in an application, by creating a page in the application named
StaleSession.

TEAM LinG - Live, Informative, Non-cost and Genuine!

286 CHAPTER 7

Tapestry under the hood

component. In this example, the component “select” on the page “Guess” is ref-

erenced. If the component was contained within another component (which is

quite often the case), then the component ID path would be a series of IDs sepa-

rated by periods.

 This URL is an example of a link from the Hangman application in chapter 2,

and it uses a single service parameter to identify which letter the user is guess-

ing. The sp query parameter is used for this purpose. The value, cu, is an encod-

ing of the type (c is for Character; other types have their own prefix) and the

value, the letter u.

 Don’t be concerned by all this talk of encodings, URLs, and query parame-

ters. Short of creating your own engine services, you will almost never have to be

Figure 7.8 The default StaleSession page, presented when a stateful request is sent after the

server-side session has expired. This page can be easily overridden.

Figure 7.9 The direct service URL identifies the page and component and allows for

application-specific service parameters.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 287

concerned with these issues. What’s more important are the exact steps taken by

the direct service when processing a request.

Processing a request with the direct service

Figure 7.10 shows the processing the direct service performs for a request. This

is important, because the order in which the operations take place can be critical.

For example, the validate() check occurs very early (as part of the call to the

Figure 7.10 The direct service gets the component, which implements the IDirect interface,

and invokes the trigger() method on it before rendering a response. The trigger() method

invokes the component’s listener method (not shown).

TEAM LinG - Live, Informative, Non-cost and Genuine!

288 CHAPTER 7

Tapestry under the hood

activate() method), and won’t have access to the service parameters. The state-

ful check occurs after validate().

 Like the page service, the direct service begins by getting the page (as pro-

vided in the context). The validate() method is invoked on the page; then the

component is located within the page. The component must implement the

interface IDirect (which is an extension of IComponent). This interface is imple-

mented by the Form and DirectLink components. After the optional stale session

validation, the service parameters are extracted and stored in the request cycle’s

serviceParameters property, for later access by a listener method. Finally, the

IDirect method trigger() is invoked.

 For a DirectLink, the trigger() method will result in a listener method being

invoked, as shown in figure 7.11.

 The direct service doesn’t know, or need to know, what the component is. It

only needs to know that it implements the IDirect interface. Forms also use the

direct service and implement the IDirect interface. For a Form, some additional

steps occur; the exact sequence is shown in figure 7.12.

 The key aspect of form processing, as covered in chapter 3, is the rewind

phase. When a Form component is triggered by the direct service, it works with

the request cycle to perform the rewind. The page render events (the pageBegin-

Render() and pageEndRender() methods) occur even when only a form within the

Figure 7.11 The direct service invokes the trigger() method on the DirectLink

component, which obtains its listener and invokes actionTriggered() on it. This results

in the listener method being invoked.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding engine services 289

page is rewinding. This is very useful; in the examples in chapters 4, 5, and 10,

we make use of this to ensure that empty objects exist for form element compo-

nents to write values to.

 The direct service (with its companion component, DirectLink) is useful for cre-

ating a link to an operation within a running application. However, the direct ser-

vice exposes quite a bit about the internal structure of the application inside its URL.

Inside the context is not just the page name, but also the component ID, or even a

component ID path if the component is contained within another component.

Figure 7.12 Form submission using the direct service. The page is notified before

and after the rewind occurs.

TEAM LinG - Live, Informative, Non-cost and Genuine!

290 CHAPTER 7

Tapestry under the hood

 Exposing such construction details of a component is acceptable during the

duration of a user’s session with the application because the construction of the

application will not change mid-session. However, the URLs created by the direct

service are not acceptable for long-term storage, such as being recorded as a web

browser bookmark. The application URLs generated by the direct service are

often stateful and, worse, contain elements (the component ID path) that may

change as the application is extended and changed over time.

7.4.6 Creating bookmarkable links using the external service

The external service exists specifically to support URLs that have a long shelf

life; it exposes much less of the structure of the application (just the name of the

page). The external service represents a step back toward a more JSP-like

approach to application development, where certain pages have one specific

purpose. Effectively, the external service is a cross between the page and direct

services. Like the page service, the context is the name of a page. Like the direct

service, service parameters can be passed along in the URL. The processing of

the external service is shown in figure 7.13.

 For a page to be the target of the external service, it must implement the

interface IExternalPage, an interface that extends the standard page interface,

IPage. This interface defines a single method, activateExternalPage(), which is

invoked by the service after it activates the page. The external service always

assumes that requests can operate “cold,” without an active session, since the

entire point of the service is to create application URLs that can be bookmarked.

Chapter 10 includes several examples of using the external service in the context

of a real application.

WARNING If you forget to implement the IExternalPage interface, you’ll get the
following error when you click an external link: Page DatePicker does not
implement the IExternalPage interface.

This service is useful for pages that have a single, specific function. For example,

an e-commerce application can use the external service to create links to product

catalog pages, and will encode product IDs or SKUs as service parameters.

 The ExternalLink component is used to create links to pages using the exter-

nal service. It has a page parameter that specifies the externally addressable page

(like a PageLink component), but it also has a parameters parameter (like a

DirectLink component) used to provide service parameters to the target page.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Page rendering in detail 291

7.5 Page rendering in detail

The point of any web application is to get HTML into the client web browser

where it can be displayed to the user. Perhaps that’s too specific; it may not be

HTML—it may be some other markup language such as XML, XHTML, or WML

(Wireless Markup Language). And the client at the other end may not be a web

browser; it could be a cell phone or personal digital assistant (PDA). Although

Tapestry is primarily focused on HTML, it is designed to operate in any XML-

related markup language.

Figure 7.13 The external service validates the page and then invokes the method

activateExternalPage() before rendering the response.

TEAM LinG - Live, Informative, Non-cost and Genuine!

292 CHAPTER 7

Tapestry under the hood

 Rendering in Tapestry is tied to many other subsystems with the framework,

including localization and persistent page properties. At the core of rendering in

Tapestry is the IRender interface, which declares a single method, render():

public void render(IMarkupWriter writer, IRequestCycle cycle);

This interface is implemented by any object that wishes to participate in the

page-rendering process. As shown back in chapter 1, figure 1.11, IRender is a

parent interface of IComponent, so as expected, all components may render. This

interface is simple: The writer parameter will be an instance of IMarkupWriter,

which can be used to render markup output. The cycle parameter is the request

cycle, the object that represents the current request being processed. Through

the request cycle, it is possible to obtain an instance of any page in the applica-

tion, the application engine, and all the objects of the Servlet API.

7.5.1 Using markup writers

The IMarkupWriter interface is similar to the JDK’s java.io.PrintWriter class.

Although the interface defines a number of overloadings of the print() method

for different parameter types, markup writer instances perform extra work

before writing output. The input is scanned for reserved character values, which

are converted to HTML entities. This means that reserved characters, such as <

and &, are converted to their corresponding HTML entities (< and &,

respectively). It also means that non-ASCII characters and nonprinting charac-

ters are converted to numeric entities.

 Once again, you see the simplicity and consistency goals of Tapestry; by

using IMarkupWriter, and not simpler interfaces such as PrintWriter or Output-

Stream, all code throughout the application can easily output safe HTML

(HTML that will display properly in the user’s web browser). In addition, IMarkup-

Writer has extensions (seen in chapter 5) that streamline the generation of

markup output—special methods for outputting elements and attributes, sim-

ply and consistently.

 We use HTML as an example here. Different implementations of IMarkup-

Writer exist for different languages, and the list of reserved characters and enti-

ties you can use vary. This means that components don’t have any special

understanding of the content type; that information is isolated inside the

markup writer.

 These conversions are useful—and very important. They mean that whether

you’re using components such as Insert or writing output directly within Java

code, you don’t have to constantly check for invalid characters or explicitly run

TEAM LinG - Live, Informative, Non-cost and Genuine!

Page rendering in detail 293

output strings through filters. The filters are built directly into the markup writer

implementation. This affects both usability and security.

 End users will never be able to enter input into a form that “breaks” the page.

For example, entering HTML markup as part of the example Register page

(from chapter 5) is perfectly valid. In figure 7.14, the user includes <font size=

"+5"> as part of the first name field. In figure 7.15, the ValidField component

displays that value as the default for the field. With no special checks inside

ValidField, it is the markup writer that scans and corrects the illegal characters.

The text is rendered as <form size="+5">, and the end result is that the

default value in the field matches the user’s actual input.

 When the form is corrected and submitted, the output (shown in figure 7.16)

continues to conform to the user’s expectations. The input provided is accepted

Figure 7.14 Entering HTML markup into a TextField could be a problem.

TEAM LinG - Live, Informative, Non-cost and Genuine!

294 CHAPTER 7

Tapestry under the hood

and displayed as the output, regardless of the fact that the user entered charac-

ters with a specific meaning to HTML. Again, the Insert component used to dis-

play the first name can rely on the markup writer to perform the necessary

filtering of HTML characters into HTML entities. If this filtering was not present,

the unwanted HTML tag would not appear, and the formatting of the rest of the

page would be affected, as shown in figure 7.17.

 Security can also be affected when user input is reproduced without filtering.

A known exploit used on many online forums is to enter malicious JavaScript

into a text area of a form, including a <script> element. When another user

reads the “message,” the <script> tag and malicious JavaScript are executed

within that user’s web browser. Because of the filtering inside Tapestry, this

Figure 7.15 The markup writer used by Tapestry components, including ValidField, properly escapes

invalid characters that are HTML entities.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Page rendering in detail 295

exploit is not possible; the <script> element entered by the malicious user would

be output as <script>, which would be displayed by the web browser and

not executed.

7.5.2 Going beyond HTML

Much of this book focuses on HTML, but of course the World Wide Web is more

than HTML. Web applications that don’t use HTML but instead use WML (Wire-

less Markup Language), XML, or XHTML are becoming increasingly useful.

 Tapestry is well suited to any kind of HTML or XML style markup. The nature

of any output produced by the framework is controlled by the markup writer

implementation used and by templates of any pages and components.

 Tapestry does not validate its page and component templates; that is, it does

not require that the templates conform to any Document Type Definition (DTD),

the way an XML parser would. In fact, the Tapestry template parser is designed

around compatibility with poorly formatted HTML; it is completely accepting of

unquoted attributes and unclosed elements.

 The Tapestry template parser finds all the components within the template

by looking for tags with the jwcid attribute. It matches start tags to end tags

and checks that the nesting of dynamic tags is valid. Any text, whether markup

Figure 7.16 All components get the filter benefit automatically, so users see as output the input

they provided, even though it contains markup.

TEAM LinG - Live, Informative, Non-cost and Genuine!

296 CHAPTER 7

Tapestry under the hood

or not, that isn’t part of a dynamic component tag is treated as static, literal

text. This static text will be passed through the client web browser uninter-

preted and unchanged. Therefore, in order to generate valid XML, WML, or

XHTML pages, the first step is to ensure that the templates used are them-

selves valid.

 The markup writer implementation provided with Tapestry outputs markup

that is compatible with XML, WML, or XHTML. In other words, the markup

writer properly escapes reserved entities, quotes attributes, and balances start

tags with end tags.

 One responsibility for a markup writer is to implement a method, get-

ContentType(), which returns the Multipurpose Internet Mail Extensions (MIME)

type for any content generated with the writer. The only significant difference

between a page that renders HTML and one that renders XML or WML is the

implementation of this method. The default markup writer generates HTML and

Figure 7.17 Without filtering, the way many non-Tapestry applications execute, the user’s input

succeeds in mangling the output of the page, causing text to appear large.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Page rendering in detail 297

returns a content type of text/html; charset=UTF-8. The default page class,

BasePage, implements only a single method, getResponseWriter(), which instan-

tiates and returns an HTMLWriter instance.

7.5.3 Understanding the page-rendering sequence

As you’ve seen, once an engine service is ready to render a response, it invokes

the engine method renderReponse(). Figure 7.18 details exactly what happens

inside this method.

 The key methods invoked on the page are getResponseWriter() and render-

Page(). As described in the previous section, a page indicates what kind of con-

tent type it generated by creating an appropriate instance of IMarkupWriter.

IMarkupWriter provides access to the MIME content type it produces with its get-

ContentType() method. This value will be used with the HttpServletResponse

method setContentType().

 Rendering a page involves an interaction with the Tapestry persistent page

property subsystem. Once a render begins, it is no longer possible to make

changes to persistent page properties (page properties whose values persist

between requests). Tapestry gives the page one last chance to make changes to

persistent page properties inside the beginResponse() method. After that, it

invokes the request cycle method commitPageChanges(), which notifies the page

recorders (which are responsible for managing persistent page properties) that

they should save any outstanding changes. More details on persistent page prop-

erties are coming later in this chapter.

 Finally, after all of this maneuvering and setup, the render() method is

invoked. The page will begin rendering the contents of its template, recursively

rendering any enclosed components along the way.

7.5.4 Using page-rendering events

Sometimes a component (or other object) just needs to know when the page is

about to start rendering, or when it has finished rendering. This is commonly

required to set properties of objects that will be used during the render, but only

just in time, as if the page is actually going to render.

 These notifications are made available through an event listener interface:

PageRenderListener. This interface include two methods: pageBeginRender()

and pageEndRender().

 The pageBeginRender() method will be invoked just before the page’s begin-

Response() method. The method is invoked before the page’s recorder is com-

mitted, while it is still able to change persistent page properties. The

TEAM LinG - Live, Informative, Non-cost and Genuine!

298 CHAPTER 7

Tapestry under the hood

Figure 7.18 The engine’s renderResponse() method. The page is responsible for

creating the markup writer that it, and all components it contains, will use when

rendering. The page’s render() method will render the page and all components it

contains, recursively.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loading and pooling pages 299

pageBeginRender() method will also be invoked before a Form component within

the page rewinds (as discussed in chapter 3).

 The pageEndRender() method will be invoked after the page finishes render-

ing, even if an exception is thrown while the page is rendering. It is also invoked

after a Form component finishes rewinding.

 The IPage interface includes methods for adding and removing listeners:

addPageRenderListener() and removePageRenderListener().

 As a convenience, if a component implements the PageRenderListener inter-

face, it will automatically be added as a listener to the page that contains it. Pages

may also implement the interface, in which case they will invoke the event meth-

ods on themselves. This automatic registration allows for a consistent approach

between pages and components for performing initializations just before the

page renders.

7.6 Loading and pooling pages

The single thing that allows Tapestry to operate so effectively is that Tapestry

applications are built from stateful JavaBeans instead of stateless servlets. This

bridging from the stateless world of HTTP and servlets to the stateful world of

JavaBeans (pages and components are JavaBeans, as are most domain objects) is

both necessary to how Tapestry operates as well as expensive. It is expensive

because a page instance is a complex entity to create. Constructing a page

instance requires a shopping list of work:

■ The page’s specification must be located and parsed.

■ A subclass of the page may be dynamically created.

■ The page is instantiated.

■ Each component of the page must also be located, parsed, extended,
and instantiated.

■ The page’s template is read and applied to the page.

■ Components with templates also must find their templates, and then parse

and apply them.

All told, a single page may contain dozens or more components and hundreds of

supporting objects to represent portions of the template, parameter bindings,

assets, helper beans, and so forth. Despite the fact that specifications and tem-

plates are read once and cached for later use, a significant amount of processing

is necessary just to assemble all of these bits and pieces into a functioning page

TEAM LinG - Live, Informative, Non-cost and Genuine!

300 CHAPTER 7

Tapestry under the hood

instance that can respond to requests or render a response. Pages are a scarce

commodity that should be used and reused, and not be fruitlessly discarded at

the end of a single request.

 However, creating one instance of a page is not enough either. Because pages

(and the components and objects contained within a page) are stateful, they can

only be used by one thread, processing one request, for one user. A servlet, with no

client-specific internal state, can service any number of simultaneous requests in

parallel threads. A page must only be used by a single thread.

 As mentioned earlier, the issues that arise when using stateful pages are simi-

lar to the issues that arise when using database connections. You can’t afford to

reserve one database connection for each individual user—you could potentially

require thousands of database connections (more than most databases can deal

with effectively), even though only a small number will be in use at any one time.

However, you can’t share database connections haphazardly, because only one

thread can use a connection at any one time. The standard, well-documented

approach to dealing with these issues is the use of an object pool for database con-

nections. The pool contains database connections that are initialized and ready

for use. Code that accesses the database may borrow a connection from the pool

for a short period and then return the connection to the pool as soon as possible.

In some cases, if no connection is available, a new one will be created, on the fly.

 Tapestry adopts this same pattern for pages. As a particular page is needed, it is

obtained from a central page pool. If the pool contains no such page (either

because this is the first request involving the page, or because all page instances cre-

ated thus far are already in use by other threads), then a new page instance is cre-

ated (along with all of its components, templates, parameter bindings, and other

objects). If a usable page is in the pool, it is removed for the duration of the request.

7.6.1 Retrieving pages from the pool

Once an application is up and running and has processed a few requests,

chances are good that most requests can be satisfied with pages that are already

stored in the page pool. Figure 7.19 shows how the IRequestCycle method

getPage() obtains and readies a page instance when it is needed by a listener or

service. Once a page is obtained in this way, it is cached by the request cycle

object for the duration of the request. Future calls to getPage() with the same

page name return the same instance.3

3 This is a slight simplification. The actual key involves the page name and the desired locale. This is
covered in detail in section 7.9.2.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loading and pooling pages 301

The request cycle uses the page source to obtain fresh page instances. The page
source is a pool for pages, which has the ability to instantiate a fresh page instance

if none is available in the pool. Pages are attached to the application’s engine via

the attach() method and returned to the request cycle.

 The request cycle then gets the page recorder for the page from the engine. The

page recorder is an object that is used to track changes to persistent page properties

for the page. Persistent page properties are properties of pages (or components

within the page) that persist between request cycles. As a persistent page property is

changed, the new value is recorded into the HttpSession for later use (more infor-

mation on persistent page properties is available later in this chapter).

 This is another fundamental aspect of Tapestry: A page’s persistent state, spe-

cific to an individual user, is entirely separate from any instance of the page. This

Figure 7.19 The getPage() method of the request cycle. The request cycle goes to the page

source for a ready page instance. The instance is removed from the page pool and attached to the

engine and to the request. The page’s recorder will roll back any persistent page properties to their

prior values.

TEAM LinG - Live, Informative, Non-cost and Genuine!

302 CHAPTER 7

Tapestry under the hood

is important; it allows us to have our cake and eat it, too—that is, to have a com-

plex object graph without paying the expense of serializing the entire graph to

track changes in the state of objects within the graph.

 Java developers are accustomed to thinking that the best way to store the state

of any object is to make the object serializable. Doing this for Tapestry pages and

components would be terribly wasteful. The tiny handful of persistent properties

associated with a page (and its components) are vastly outnumbered by the large

number of supporting objects, most of which should be shared between page

instances. Serializing and deserializing an entire page not only would be a time-

consuming and expensive operation, but also would lead to duplication of com-

mon objects that would otherwise be shared.

 Tapestry instead concentrates on storing just the persistent page properties,

the few properties that need to be stored in the HttpSession and restored in a

later request. The page recorder object is hooked into pages via a simple notifi-

cation system, described later in this chapter. The page recorder observes changes

to the persistent properties and safely stores the values in the HttpSession as

named attributes. This approach allows for efficient tracking of changes to per-

sistent page properties, because individual properties are stored as individual

HttpSession attributes. Without the division between page instances and persis-

tent page state, Tapestry couldn’t make any claim to efficiency; with it, Tapestry

can manage complex server-side state simply and effectively.

7.6.2 Creating new page instances

Figure 7.19 covers only the case where a page instance is ready and waiting to be

attached to the request. What happens when there isn’t a ready page instance? In

that case, the page source will create a new instance, using an instance of IPage-

Loader, as shown in figure 7.20.

 The page loader starts by instantiating an instance of the page’s Java class.

Actually, the class that is instantiated will likely be a generated subclass contain-

ing the additional fields and methods for any properties specified in the page’s

specification. In any case, first the Java page class is instantiated, and then initial

properties of the page are set, including the page’s name. The page is then

attached to the engine. Next is a recursive process, where each component in the

page is instantiated in a like manner.

 As each component is created, the page loader invokes its finishLoad()

method. Components that inherit from the BaseComponent class will load their

templates at this time. Components that contain implicit components in their

template will fire off a new round of component instantiation and loading.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loading and pooling pages 303

Finally, after the entire tree of components rooted at the page is instantiated and

configured, the page’s finishLoad() method is invoked.

 One additional operation that occurs in finishLoad() is automatic event reg-

istration. When a component implements any of the page event interfaces

(PageRenderListener, PageDetachListener, or PageValidateListener), it will auto-

matically be registered with the page as a listener of that type. A page that imple-

ments one of these interfaces will be registered with itself as a listener.

 For both pages and components, the finishLoad() method is a good place to

do any final initializations that can’t be expressed in the page or component

specification. Often these initializations involve other components contained with

the page. Once the page’s finishLoad() method completes, the fully initialized

Figure 7.20 The page loader’s getPage() method, showing the steps when no pooled page

is available. The page loader creates a new instance of the page and attaches it to the

engine. The page loader recursively instantiates the components of the page. When all

components have been created, it invokes finishLoad() on the page.

TEAM LinG - Live, Informative, Non-cost and Genuine!

304 CHAPTER 7

Tapestry under the hood

and configured page is returned to the request cycle and, from there, to the ser-

vice or listener method that originally requested an instance of the page.

TIP Override finishLoad() (in pages or components) to perform final ini-
tializations when a page instance is first created.

As a final note, the finishLoad() method has two versions:

public void finishLoad(
 IRequestCycle cycle,
 IPageLoader loader,
 IComponentSpecification specification);
protected void finishLoad();

The first version, the public method with three parameters, is defined in the

IComponent interface. If this method is overridden, the super class implementa-

tion must be invoked first.4 The protected version of the method (which takes no

parameters) is a convenience, declared in the class AbstractComponent and

invoked from the public finishLoad() method. The implementation provided by

AbstractComponent is empty and thus doesn’t have to be invoked by a subclass

that overrides it.

TIP Always override the protected finishLoad() method (the one with no
parameters), unless you specifically need access to one of the parame-
ters in the public finishLoad() method; it’s too easy to forget to invoke
the super class implementation of the public method.

7.6.3 Returning pages to the pool

The flip side of page loading occurs at the end of the request, after the response

has been sent to the client. At this point, the pages that have been attached to

the request must be returned to the pool. More than that, it is necessary that all

the properties of the page (both persistent and transient) be reset to pristine val-

ues, ready for use by some later request (for another user in another session).

Leaving property values in place is a dangerous proposition: The same page

instance used by one user in one request will be used by another user in a com-

pletely different request. If the first user left his or her credit card number or

password or home phone number in a property and that property is not cleared

4 Failure to invoke the super class implementation will prevent the page or component’s template from
being loaded, as well as cause other side effects.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Loading and pooling pages 305

out, then the next user along may see those values. Figure 7.21 shows the

cleanup sequence.

 The page method detach() is responsible for cleaning up the page before it is

stored in the pool for later reuse. The first step is to notify any PageDetachListeners

that are registered with the page. Following that, the initialize() method is

invoked. This method is designed to be overridden in subclasses for this exact pur-

pose: reinitializing any properties. After initialize(), the page’s visit, engine,

and requestCycle properties are set to null. The page should now be devoid of any

changes specific to the user or to the request; the initialize() method should

have reset all such properties, assuming the developers did their work.

Figure 7.21 The request cycle’s cleanup() method. At the end of the request, each page is

released and stored to the page source’s pool. The detach() method notifies any listeners,

and then invokes initialize(). Finally, the page’s visit, engine, and requestCycle

properties are reset to null.

TEAM LinG - Live, Informative, Non-cost and Genuine!

306 CHAPTER 7

Tapestry under the hood

CAUTION An application should never store a reference to a page or component
persistently (in the Visit object, or as a persistent page property). Pag-
es should always be self-contained, with only references to other objects
and components within the same page. Instead, the name of the page
should be stored and resolved using the request cycle object. A utility
class, ComponentAddress, exists for this purpose. Storing a page refer-
ence will result in one of two unwanted outcomes: Either the page
instance will be illegally accessed while it is in the pool and in an unini-
tialized state, or the page instance will be accessed by multiple threads.
Both of these scenarios will cause confusing behavior and unpredictable
runtime exceptions.

Having to be concerned with either the detach() or initialize() method is some-

thing of a throwback to earlier releases of Tapestry; release 2.3 (the release prior to

3.0) and earlier did not have the <property-specification> element in page and

component specifications. Not only were you responsible for creating the fields

and accessor methods, but you were also expected to implement the initialize()

method to clean up the page at the end of the request cycle. Most applications will

not have to be concerned with page cleanup, as long as they use the <property-

specification> element for all their persistent and transient properties.

TIP Use the PageDetachListener interface to perform any cleanups. Im-
plementing the interface ensures that the page will invoke the page-
Detached() event method; that way, you won’t have to worry about
invoking super class implementations of methods.

7.7 Using persistent page properties

An important aspect of Tapestry is maintaining the illusion that HTTP is a state-

ful protocol, and that the user has sole access to the page instances. To the user,

it appears as if the web page in the browser is directly connected to specific

objects in the server. This is truly an illusion—especially when the application is

deployed into a server cluster, since each request may potentially be processed

by a different server, using completely different page instances housed in a com-

pletely different JVM.

 This same illusion applies to your view of the application as a developer. You

should be able to code a Tapestry application in the same way you would code a

stand-alone application: with the expectation that the object instances continue

to exist from instant to instant. You shouldn’t have to worry about where objects

“go” after your page renders, or after your listener method is executed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Using persistent page properties 307

 Persistent page properties are the key aspect of maintaining this illusion. Each

request is serviced by an equivalent page instance, not the same one, and persis-

tent page properties ensure that equivalence. The persistent properties will be the

same from one request to the next, for as long as the HttpSession is active.

 Despite the name, persistent page properties have nothing to do with data-

base persistence. These properties are not stored in a database for long-term

access; they are only available for the duration of the HttpSession. Once the ses-

sion expires or is invalidated, the persistent properties are lost.

 A persistent property is no more than a property whose value is stored as an

HttpSession attribute. When a persistent property changes, the page recorder

observes the change and records the new value for later use. Figure 7.22 shows

how property changes are propagated from the page to the page’s recorder.

 A persistent property is only saved persistently as a side effect of invoking the

setter method (which, in turn, invokes the static fireObservedChange() method

of the Tapestry utility class). Refer back to figure 7.13; it identifies a scenario

where the value stored in an HttpSession attribute is not properly replicated. A

similar problem exists with persistent page properties when the property values

Figure 7.22 The implementation of a setter method for a persistent property will invoke to the static

fireObservedChange() method, which notifies the page’s recorder. The page recorder then

constructs a key and stores the value as an HttpSession attribute.

TEAM LinG - Live, Informative, Non-cost and Genuine!

308 CHAPTER 7

Tapestry under the hood

themselves are mutable. If, after invoking the accessor method, the property

value is changed, the same lack of synchronization can occur. As a rule of thumb,

you should be careful not to change the internal state of any mutable object after

invoking such an accessor method; otherwise, you will be opening yourself up to

a painful class of bugs when you enable clustering for your application.

 Despite the name, persistent properties are not limited to the page. Any com-

ponent may have persistent properties. The mechanism used is the same,

regardless. Component properties are specific to the page that ultimately con-

tains the component; if the same component is used in two different pages, then

each component will store its individual persistent property as a different

HttpSession attribute. This makes sense from Tapestry’s point of view; these are

different instances of the same component type, not different references to the

same component.

 Although it is possible to implement persistent properties yourself, there’s no

reason to do so. Tapestry is fully capable of creating the fields, accessor methods,

notifications, and cleanups necessary to support a persistent property on a page

or a component, using the <property-specification> element in a page or com-

ponent specification. Appendix D includes complete details about the use and

attributes of the <property-specification> element.

7.8 Using specified properties

A page or component specification may declare entirely new properties for the

page (or component) class. You’ve seen this in previous chapters, where we cre-

ated several properties in the ToDo application to hold individual ToDoItems and

a list of items.

 Tapestry will create an enhanced subclass to support the specified properties.

For components, it may create a subclass even if there are no declared proper-

ties, to help support any component parameters. In any case, the enhanced sub-

class will include new fields and accessor methods. If the property is declared to

be persistent, then the setter method will properly invoke the fireObserved-

Change() method, as outlined in the previous section.

 Declared properties, both persistent and transient, may also have an initial

value. The initial value is either the value of the initial-value attribute of the

<property-specification> element or, if there is no such attribute, the body of

the <property-specification> element. The initial value is an OGNL expression.

 The expression is evaluated just once, after the page’s (or component’s) finish-

Load() method is invoked. The value for the expression is used to set the property,

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 309

but it is also saved and used later to update the property when the page is detached

from the request, before being stored back into the page pool for later reuse.

 If no initial value is provided for the property, then the framework will read
the property after invoking the finishLoad() method. Again, this value is

retained and used to update the property when the page is detached. This

means that, even for declared properties, it is possible to set an initial value from

the finishLoad() method.

7.9 Localizing Tapestry applications

Localization is the difficult process of creating an application that is translated

appropriately for the user. This means that one user of the application in Boston

may see a different version of the application than a user in Venice. Localization

of an application starts with simple issues, such as translating text into the

proper language, but also encompasses many other potential differences. This

may be represented in small changes, such as the exact way numbers and dates

are formatted, or in large changes, such as the color and layout of entire web

pages. The Java Runtime Environment (JRE) provides a considerable amount of

support for localizing of applications; Tapestry includes well-integrated approaches

for leveraging that support.

 Localization of web applications is often an afterthought. Getting web appli-

cations working in a single language, typically U.S. English, is daunting enough

that localizing the application is often slipped into “phase 2.” For an application

with broad-ranging appeal, such as a news site, an e-commerce site, or an adver-

tising site, internationalization is a must from the start.

 In Tapestry, localization involves two aspects: tracking the desired language

for a particular user and presenting the user interface in that language.5 Often,

the term locale is used instead of language. Locale is a more precise term than

language; it refers not only to a particular language, but also to how that lan-

guage is used in a particular geographic location. For example, English is a

language, but there are differences between American English and British

English, such as the spelling of some words (color versus colour, for example).

This is resolved by having (in this case) three different locales to represent

English: en, en_US, and en_GB.

5 Localization is often referred to as “l10n” (l, 10 letters, and an n).

TEAM LinG - Live, Informative, Non-cost and Genuine!

310 CHAPTER 7

Tapestry under the hood

7.9.1 Using Java localization

In a traditional Java application, the JRE supplies most of the support for han-

dling localization. The first step is to remove hard-coded message strings from

Java code and store them into properties files. A resource bundle is a collection

of such message strings that may be accessed by developer-defined keys.

 To handle multiple languages, multiple properties files are used. The base

properties file has a name that ends in .properties; for example, Messages.proper-

ties. Additional properties files have the same name, but with a locale name suf-

fix inserted before the .properties extension. These additional files provide

overrides of the keys and values in the base properties file. When you are build-

ing up a dictionary of keys and localized values, several of these files can be

involved. The rule is always that more specific values override less specific val-

ues. Figure 7.23 shows how individual properties are mixed, matched, and over-

ridden to form localized resource bundles.

 The localization for en_US uses just the default values for the two keys: Hello

and color. For the en_GB localization, the value for the color key is overridden to

colour (the British spelling). For the fr localization, both keys are overridden.

Figure 7.23 Keys and values in the main properties file are merged with, and overwritten

by, values from the more specific properties files.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 311

 So, all of this allows strings to be localized. The next step is to get those strings

used in a web application. Other frameworks, those that use JavaServer Pages,

include JSP tag libraries for accessing a resource bundle and extracting strings

from it. The JSP tags take the place of literal text, with terrible results. The result-

ing JSP is not even remotely previewable in an HTML editor; it barely looks like

HTML. The loss of literal text in the JSP has an awful impact on developers.

Those little snippets of text act like signposts, helping you to locate the right

form, or the right link, or the right image within a page. Stripping them out

makes every change an agonizing search for the right spot within the page.

 As you’ll see, Tapestry takes a more pragmatic and less intrusive approach.

7.9.2 Using Tapestry’s localization features

Tapestry applications allow for localization of both text and images. Localized strings

can be easily referenced in the HTML template, both for inclusion as part of the static

portion of the page and as values bound to component parameters. Images (or really,

any kind of asset) are also automatically localized. Figure 7.24 shows a sequence of

pages demonstrating how Tapestry application localization operates.

 After the user selects a new locale (labeled more generally as a Language in the

user interface), the confirmation page is displayed. From there, the user returns to

the original page, but the text, graphics, and even the selections within the drop-

down list have changed to reflect the new localization of the application.

Creating a localized HTML template

Listing 7.1 contains the HTML template for the L10N (Localization) page. It

demonstrates two different ways to use localized text in a template: as a value

bound to a component parameter and as a literal value within the template.

<html jwcid="@Shell" title="message:title">
<body jwcid="@Body">

<h1></h1>

Descriptive text.

<form jwcid="@Form" listener="ognl:listeners.formSubmit">

Language:
<select jwcid="@PropertySelection"
 value="ognl:engine.locale"
 model="ognl:localeModel"/>

<p/>

Listing 7.1 L10N.html: HTML template for the L10N page

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

312 CHAPTER 7

Tapestry under the hood

<input type="image"
 src="images/L10N/Change.png"
 jwcid="@ImageSubmit"
 image="ognl:assets.change"
 alt="message:change-label"/>
</form>

<p><a href="#"
 jwcid="@PageLink"
 page="Home">Return
to Home page.
</p>
</body>
</html>

 e

 f

Figure 7.24 The user selects a language from the drop-down list and is presented with a

confirmation page in the new language. Returning to the original page shows changes to

text, including the window title bar, as well as images, and even changes to the contents

of the drop-down list.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 313

The title parameter is bound to the localized message for the key title.

The element is replaced by the localized message for the key blurb.

The element is replaced by the localized message for the key language-label.

The alt informal parameter is bound to the localized message for the key
change-label.

The element is replaced by the localized message for the key return-to-home.

A localized string component parameter is used in the very first line of the template:

<html jwcid="@Shell" title="message:title">

Just as the ognl: prefix is used to identify a parameter that is actually an OGNL

expression, the message: prefix is used to identify a parameter that is a localized

message key. The title parameter of the Shell component will be bound to a

specific message string, found by looking up the key title in the localized mes-

sages for the page.

NOTE Components include a getMessage() method for accessing localized
messages for the component. It is possible to replace message:title
with ognl:getMessage("title") to achieve the same result, though the
message: prefix is more efficient, since the framework will know that
the value obtained this way is invariant (for the OGNL expression, it
must keep reevaluating the expression on each use). The getMessage()
method, as part of an OGNL expression, can be used when the localized
message must be combined with other, nonlocalized text to form a pa-
rameter value.

These localized messages are stored in a set of properties files for the page. The

properties files are stored in the WEB-INF folder of the web application, along-

side the page specification. This example application can be localized in the

default language (U.S. English) as well as French, Spanish, and German; there-

fore, there are four properties files, named L10N.properties, L10N_fr.properties,

L10N_es.properties, and L10N_de.properties. The first file, L10N.properties,

contains the default language values:

title=Localization Example
blurb=You may change the language used in this application using \
the form below.
language-label=Language
change-label=Change
return-to-home=Return to Home page

 b

 c

 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

314 CHAPTER 7

Tapestry under the hood

The other files contain the translations of the values appropriate for the locale.

For example, the French localization, L10N_fr.properties, contains

title=Exemple De Localisation
blurb=Vous pouvez changer la langue utilisée dans \
cette application en utilisant la forme ci-dessous.
language-label=Langue
change-label=Changez
return-to-home=Revenez au Home Page

Having many small message properties files has advantages over more common

approaches that use a single centralized message properties file employed

throughout the entire application. With a single large file, keys often have to be

prefixed to identify which page within an application they belong to. In Tapestry,

short keys are acceptable because each message properties file is used by only

one page or component.

 As can be seen in the template, localized message references can be used as

both formal parameters (the title parameter of the Shell component) or infor-

mal parameters (the alt parameter of the ImageSubmit component).

 A second use for localized messages is to create a localized literal string within

the template, not as a parameter to a component. The instructional text at the

top of the page (“You may change the language …”) is an example of the kind of

literal template text that should be localized. It’s given the localization key blurb

and included in the rendered page by using a specialized element:

Descriptive text.

As with a component, the body of the element is always removed and

replaced with the localized message defined by the key attribute. Having text in

the body is, once again, useful when previewing the template in an HTML editor,

even if the text is a meaningless placeholder. This localized literal construct isn’t a

component, but it behaves virtually the same as an Insert component:

Descriptive text.

There are two differences between a localized literal string and an Insert component:

■ The element must be (though case does not matter).

■ Additional attributes are always simple literals, even if they have an ognl: prefix.

Like an Insert component, the tag is rendered only if there are additional

parameters. This is useful when the tag references a CSS style. Any unsafe

characters in the localized string (characters such as < and &) will be converted to

HTML entities, as described in section 7.5.1. This can be defeated, if desired, by

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 315

specifying the value true for the attribute raw. This is recognized by Tapestry and

disables the use of HTML entity filtering, allowing you to place HTML markup

directly in the properties file.

Accessing messages in Java code

Frequently, you will need to make use of localized messages inside your own code,

rather than in a template or specification. You might be constructing a specialized

error message, or a detailed window title. The AbstractComponent base class pro-

vides several convenience methods for easily assembling such messages.

 The getMessage() method takes a string key parameter. The return value is

the localized message string for that key, from the component’s messages. If no

such message string exists, the key is returned in modified form: uppercase and

enclosed in brackets. This allows your application to continue operating even

with missing message strings, but makes it very noticeable that there’s a problem

to be addressed.

 Frequently, you will want to assemble a message from pieces. This is accom-

plished using the format() method. This method takes a string key and one or

more arguments (the method is overloaded to take one, two, three, or an array of

arguments). For example, your component’s message properties file may contain

the following message:

overdue-reminder=This task was due on {0}.

The {0} is a placeholder for the first argument (arguments are numbered start-

ing with 0). You can include any number of arguments. At runtime, you will com-

bine the message format with additional localized messages and strings. For

example, the following method returns a localized warning message if the

currentDate property is later than the dueDate property:

public String getTaskWarning()
{
 Date dueDate = getDueDate();
 if (getCurrentDate().compareTo(dueDate) > 0)
 {
 DateFormat format =
 DateFormat.getDateInstance(DateFormat.SHORT, getLocale());

 String dueDateString = format.format(dueDate);

 return format("overdue-reminder", dueDateString);
 }

 return null;
}

TEAM LinG - Live, Informative, Non-cost and Genuine!

316 CHAPTER 7

Tapestry under the hood

Tapestry uses the Java class java.text.MessageFormat to perform formatting.

Because of this, the previous example could be rewritten to take advantage of

more complicated MessageFormat patterns than simple argument substitution.

MessageFormat can automatically apply different kinds of formatters, if you tell it

the types of arguments. The message format string can be rewritten to indicate

the type and format of the argument:

overdue-reminder=This task was due on {0,date,short}.

Putting this pattern information into the message string removes the need to

obtain the localized DateFormat instance (instead, MessageFormat takes care of

this). The getTaskWarning() method can then be reduced to

public String getTaskWarning()
{
 Date dueDate = getDueDate();
 if (getCurrentDate().compareTo(dueDate) > 0)
 return format("overdue-reminder", dueDate);

 return null;
}

Using localized messages in this way is ultimately even easier than putting

together nonlocalized messages as Java code. The awkward natural language

portion is isolated into a properties file, and the Java code is streamlined to just

a call to the format() method, rather than a potentially long series of string con-

catenations. There’s that Tapestry vision again: Creating uniform, localized mes-

sages is easier than the quick-and-dirty approach.

Localizing images

Very often, images used in a page contain text that must be localized. In this

example, the ImageSubmit component uses a localized image. In figure 7.24,

the image is initially the word Change, but when the page is later redisplayed in

French, the button is labeled Changez. Since this is an image, it involves more

than just a change in a message: There are two (or more) versions of the same

button, and Tapestry must create a reference to the correct version when render-

ing the page’s HTML.

 Tapestry accomplishes this by using an asset to represent the image. You first

saw assets in chapter 2, when we used this feature to map from logical names for

images to specific files in the web application’s context folder. That is just one

aspect of assets; another is related to localization. Each asset defined in the

page specification may be matched against multiple files, named with the

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 317

message strings properties files. Figure 7.25 shows the four different files for the

change asset.

 At runtime, the page’s locale is used by the asset to determine the correct

URL to include in the rendered page. When there isn’t a match on locale (for

instance, if the locale was somehow changed to Hutu), then the best default (the

file Change.png) is used.

Editing the engine’s locale

Changing the locale for an application is as simple as changing the engine’s

locale property. The default value for the engine locale is the server’s locale,

which is often U.S. English. When the locale is changed, an HTTP cookie is

recorded in the client web browser so that, in future sessions, the newly selected

locale will be the default.

 The engine’s locale is used for a single purpose: when obtaining a page

instance from the pool (or when creating a fresh page instance). Page instances

are stored in the pool using a key; that key incorporates both the name of the

page and the locale of the page. This shows up in figure 7.19, where the IRe-

questCycle invokes the getPage() method on the page source. The page source

takes into account the engine’s current locale when finding or creating a page

instance to attach to the request.

 This all means that whenever a page is first accessed during a request, the

locale for the page will match the engine’s locale. So, if the engine is set to locale

fr, the page will render in French and will use French page and component tem-

plates, French assets, and so forth. Once a page instance is attached to a request,

it is used for the duration of that request. Even if the engine’s locale is changed

to a different value in a listener method, the page instance will still be French.

There’s no way to detach a page instance from the request once it’s attached, so

there’s no way to change the locale of an active page. Therefore, after changing

the locale, it is important to load a new page in the new locale.

 This shows up in the listener method for the form on the L10N page:

Figure 7.25 A single asset may be mapped to different files, each providing the correctly

translated text.

TEAM LinG - Live, Informative, Non-cost and Genuine!

318 CHAPTER 7

Tapestry under the hood

public void formSubmit(IRequestCycle cycle)
{
 cycle.activate("L10NResult");
}

By the time this listener method is invoked, the engine’s instance will already

have been changed by the PropertySelection component. Redisplaying the cur-

rent page (L10N) will, confusingly, show the page in the previous locale. By

instead loading, activating, and rendering a new page, the response will be in

the correct localization.

Localizing the drop-down list

The drop-down list used to select the new language is also localized, in two ways:

■ The labels are localized to the current locale.

■ The selectable values omit the current locale.

This is accomplished by creating an IPropertySelectionModel implementation

for selecting locales. The model is provided by the L10N page, in its Java class:

private IPropertySelectionModel _localeModel;

public IPropertySelectionModel getLocaleModel()
{
 if (_localeModel == null)
 _localeModel = new LocaleModel(getLocale());

 return _localeModel;
}

The first time this method is invoked, it creates an instance of the model, passing

the current locale to the model’s constructor. Note that the page is not required

to release this cached model instance at the end of the request cycle. This prop-

erty is not specific to the client in any way; it is specific to the locale. Even if the

page did release this model, it would create an identical instance the next time

the method is invoked.

 The implementation of the model is shown in listing 7.2.

package examples.l10n;

import java.util.ArrayList;
import java.util.List;
import java.util.Locale;

Listing 7.2 LocaleModel.java: property selection model class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Localizing Tapestry applications 319

import org.apache.tapestry.form.IPropertySelectionModel;

public class LocaleModel implements IPropertySelectionModel
{
 private Locale _activeLocale;
 private List _locales = new ArrayList();

 private static final Locale[] AVAILABLE_LOCALES =
 { Locale.ENGLISH, Locale.FRENCH, new Locale("es"),
 Locale.GERMAN };

 public LocaleModel(Locale activeLocale)
 {
 _activeLocale = activeLocale;

 String activeLanguage = activeLocale.getLanguage();

 for (int i = 0; i < AVAILABLE_LOCALES.length; i++)
 {
 if (AVAILABLE_LOCALES[i].getLanguage().
 equals(activeLanguage))
 continue;

 _locales.add(AVAILABLE_LOCALES[i]);
 }
 }

 public int getOptionCount()
 {
 return _locales.size();
 }

 public Object getOption(int index)
 {
 return _locales.get(index);
 }

 public String getLabel(int index)
 {
 Locale l = (Locale) _locales.get(index);

 return l.getDisplayLanguage(_activeLocale);
 }

 public String getValue(int index)
 {
 return Integer.toString(index);
 }

 b

 c

 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

320 CHAPTER 7

Tapestry under the hood

 public Object translateValue(String value)
 {
 int index = Integer.parseInt(value);

 return getOption(index);
 }

}

This defines the four different locales that may be displayed in the drop-down list.

The active language is removed from the list, leaving just the other three locales.

This should return 3, unless the initial locale is not one of the expected four.

The Locale class can create a localized description.

 We encode the index into the list of locales as the client-side value.

The model starts with a list of available locales but excludes the current locale

(matching on language). The rest of the model is similar to those shown in chap-

ter 4, where the desired locale is encoded as an index number into a list of

locales. Locales are self-describing, and the method getDisplayLanguage() is

perfect for our needs because it provides a localized, user-presentable name for a

locale translated into another locale.

Localizing HTML templates

Another option exists for handling localization, one that is applicable to pages

that contain a large amount of text and a small number of components. Rather

than isolating localized text into properties files and then using localized literals

to pull them out, it is possible to provide multiple templates instead.

 Tapestry localizes templates in much the same way it localizes assets; it

searches for the best match based on the current locale when the page is con-

structed. It is not a requirement that the different templates differ only in terms

of visible text. Different localizations of the template may be considerably differ-

ent in layout and construction, and may even contain a different number of com-

ponents. Each localization of a page is independent.6

 For components that are the same regardless of localization, it is best to use

declared components and put the type and parameters of such components into

 b

 c

 d

 e

 f

6 It is acceptable to vary the implicit components in different localizations of the template. Omitting a
declared component from a localization of the template will result in a runtime warning (on the con-
sole), not a runtime error, but should still be avoided.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary 321

the page specification. Page specifications are not localized; only the templates

are. Using declared components instead of implicit components reduces the

amount of duplication in the templates—which is a very good thing when you’re

fixing bugs in the page.

 Of course, as the developer, you are free to mix and match solutions. You can

certainly use localized literals in concert with localized templates. In addition,

you can use components with their own templates, and they, too, can use what-

ever mixture of localized resources is best for them.

7.10 Summary

In this chapter we’ve examined some of the problems related to grafting a state-

ful application on top of a stateless protocol, HTTP. Tapestry uses a variety of

techniques to maintain the illusion that the there is a direct connection between

the web pages viewed in the client’s web browser and specific page objects within

the server. It extends this illusion to you, the developer, as well, allowing you to

code your pages without concern for all the issues related to page pooling and

clustering. The framework imposes only a few modest constraints on you to fit

into this system, and provides declared properties to make it easy to conform to

those constraints.

 Tapestry includes many hooks for extending the behavior of individual pages

and components. The pageValidate() method allows for simple security checks,

and the finishLoad() method allows pages and components to perform initial-

izations that can’t be expressed in a page or component specification. By under-

standing how the different major interfaces (IRequestCycle, IEngine, IPageSource,

and others) work together, you can replace some or all of them to radically

change the behavior of Tapestry.

 Integrated into all aspects of Tapestry is the concept of localization. The

framework makes localizing an application as simple as providing translations of

templates, string properties files, and image asset files.

 You’ve also seen how Tapestry utilizes engine services to bridge between the

application and the Servlet API. In the next chapter, you’ll see how to combine

the ideas from this chapter, and from chapter 6, with a few new ideas in order to

create components of even greater complexity and reusability.

TEAM LinG - Live, Informative, Non-cost and Genuine!

322

Advanced techniques

This chapter covers

■ Creating new engine services

■ Generating dynamic client-side JavaScript

■ Integrating Tapestry with JSPs

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 323

In previous chapters, we described the basics of creating reusable components

and gave you an overview of how Tapestry operates internally. Quite a bit can be

accomplished by simply combining existing components and leveraging the

existing services of the Tapestry framework, but even more can be done by

expanding both the server- and client-side processing of components.

 In this chapter, we’ll cover three additional advanced Tapestry techniques

and illustrate them with practical examples:

■ Defining new engine services—You can create new engine services to cre-

ate new kinds of interactions between the client web browser and the

server. As an example, we’ll create a simple banner ad system.

■ Generating JavaScript dynamically—Tapestry handles the dynamic gen-
eration of client-side JavaScript to allow for significant client-side pro-
cessing. You’ll see how this works by creating a reusable a credit card
input field component.

■ Integrating Tapestry with JSPs—You may not always have the freedom to

implement exclusively in Tapestry; fortunately, it’s reasonable to mix and

match a Tapestry application with a more traditional application imple-

mented using servlets and JSPs.

8.1 Creating new engine services

As we discussed in chapter 7, engine services fill the role of servlets within a Tap-

estry application. Because Tapestry applications are highly structured (in terms

of a component hierarchy within each page), a small number of services are suf-

ficient to implement most functionality.

 Most of the engine services (notably the page, direct, and external services)

fall into the same mold:

■ A page name, and perhaps a component ID, is encoded into the URL.

■ The page is loaded, and methods are invoked on the page or component.

■ The active page renders a response.

Not all interactions between the client and the server fall into this mold. For

example, in chapter 6 we described how components may be packaged with pri-

vate assets, and how the asset service is involved in exposing those assets, stored

on the classpath inside a JAR file, so that they may be accessed by the client web

browser. For the asset service, the request cycle doesn’t involve pages or compo-

nents at all but only the path to a classpath resource, which is sent back to the cli-

ent web browser as a stream of bytes.

TEAM LinG - Live, Informative, Non-cost and Genuine!

324 CHAPTER 8

Advanced techniques

 New services can be defined easily and are free form. You can create page-

oriented services similar to the framework’s page and external services as well as

component-oriented services similar to the framework’s direct service. You can

also create entirely new forms of services that don’t even send an HTML response,

such as the asset service.

 To demonstrate how to build these kinds of interactions, let’s create a new

type of service that does not involve rendering a response page.

8.1.1 Defining a banner ad system

A ubiquitous presence on many high-volume web sites is the banner ad. Banner

ads are small images that span the top, bottom, or sides of a web page. Clicking

a banner ad sends the user to an advertiser’s web site. Banner ads are one of the

oldest forms of advertising on the Internet. For this example, we’ve created ban-

ners for several popular Java and open-source software web sites. Figure 8.1

shows an example of the demo application in operation. You can try it yourself

by opening a web browser to http://localhost:8080/ads/app.

Figure 8.1 The banner ad is selected at random and includes a tooltip. Clicking on the ad opens a

new window showing the advertiser’s page (but will also record the click-through).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 325

 It isn’t enough to have the banner ad be a simple link to the target web site.

Advertisers pay popular web sites to display advertising banners. They also need

to know how often users are enticed into clicking on the ad banner. A banner ad

system must track how often a particular banner is displayed (called an impres-
sion) and how many times users have “clicked through” from the web site serving

up the banner ad to the advertiser’s web site. The demo application includes a

statistics page for viewing this information, as shown in figure 8.2.

 A proper banner ad system as a Tapestry component library will need to meet

the following requirements:

■ Tracks which ads have been displayed

■ Tracks which ads have been clicked through

■ Easily allows new ads to be defined

We could build a banner ad system using the DirectLink component easily enough,

but such a solution would have some problems:

Figure 8.2 The number of impressions and click-throughs for each advertiser is available.

TEAM LinG - Live, Informative, Non-cost and Genuine!

326 CHAPTER 8

Advanced techniques

■ The link generated by the DirectLink component would not be bookmark-

able, since URLs created by the underlying direct service contain details

about the structure of the application, which can change over time.

■ The link would work only if the page’s PageValidateListeners do not
interfere, which is not acceptable; clicking through a banner ad should
operate regardless of anything else on the page.

■ A DirectLink would require that a page instance be obtained and persistent

page properties be restored. This is unnecessary overhead for a banner ad

redirect, which never uses or changes page state.

Basically, servicing a request for a banner ad click-through is quite different from ser-

vicing an ordinary component-oriented request. We need to bypass page validation,

and instead of activating application logic and responding with a page from the

application, we’ll always be sending a redirect response to the client web browser.

Either of these requirements would lead us to consider creating a new engine service.

 To build this system, we’ll take the following steps:

1 Define the data model, including the interface for the banner ad and the

interface for the source of the banner ads.

2 Use an application extension to access the banner ad data.

3 Implement the BannerAd component.

4 Implement the new banner ad service.

5 Create a library to contain the component and service.

Finally, we’ll build a small demonstration application to test the banner ad system.

8.1.2 Defining the data model

The first step is to define a data model for banner ads. This is accomplished in

two parts. First, we need an interface to represent an individual banner ad, pro-

viding the following read-only properties:

■ The URL for the banner ad image

■ The width and height of the image

■ The URL of advertiser’s web site

■ A title describing the advertiser

■ A unique ID for the banner ad

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 327

In addition, we need an interface to define the source of the banner ads. Its pri-

mary job is to provide a random banner ad for inclusion on a page. A secondary

job is to record impressions and click-throughs of specific ads.

 Figure 8.3 shows these interfaces, as well as the two implementations.

 At runtime, the banner source is used to retrieve a random banner for inclu-

sion on a page (and record the banner as an impression). Later, if the user clicks

the banner, the banner source is used to record the click-through, before a redi-

rect response is sent back to the client web browser to redirect the web browser to

the advertiser’s web site.

 The implementations provided, Banner and XMLBannerSource, are deliberately

simple. The XMLBannerSource reads an XML file that contains a list of banner ad

definitions, which are converted into instances of Banner. The Banner class is

largely a data object, providing access to the properties we’ve listed. In addition,

in this simple implementation, the Banner class is used to record the impression

and click-through count.

 Obviously, a real production system would be more involved. It would more

likely operate using a database to define the advertisements, and it would store

Figure 8.3

Two interfaces define the

banners, as well as the

source of the banners.

The banner source is also

responsible for recording

impressions and click-

throughs.

TEAM LinG - Live, Informative, Non-cost and Genuine!

328 CHAPTER 8

Advanced techniques

impressions and click-throughs persistently back into the database. A real system

would support various types of banners (such as Java applets, embedded Flash

movies, or whatever technology comes next), and the selection of which banner

to show to which client wouldn’t necessarily be random—there would be a way to

target specific ads at particular users.

 The first hurdle to clear is coming up with a way to access the banner ad data

provided by the XMLBannerSource instance.

8.1.3 Accessing the data model as an application extension

As you’ll see, two different sections of code need to access the banner ad data.

The BannerAd component will have to access the banner source to get a random

banner to include on the page. If the user clicks that banner, the banner engine

service will be invoked, which will need to again access the banner ad data, in

order to get the advertiser’s web site URL as well as record the click-through.

 The design of this simple banner ad system uses only a single list of potential

banner ads, stored as a file within the web application. Ideally, the banner data

should be a singleton object, created as needed by the component or by the ser-

vice. The banner data singleton should be created just once, initialize itself from

the banner data file once, and be accessible by any number of simultaneous

requests. Tapestry includes a mechanism for just these kinds of singletons: appli-

cation extensions.

 Application extensions are very much like helper beans: They are declared as

part of an XML specification, they are instantiated only as needed, and they can

have their properties initialized. Unlike helper beans, they are not associated

with any single page but with the overall application. Additionally, they are

always singletons.

 Application extensions are declared in the application specification. The

specification for the BannerAd demo application includes the following:

<extension name="bannerads.banner-source"
 class="bannerads.library.impl.XMLBannerSource"/>

Application extension names are allowed to contain periods and dashes. In

order to avoid naming conflicts, prefix the names with a Java package name.

 You can retrieve application extensions by their name. The first time an

extension is accessed, the Java class for the extension is instantiated and config-

ured. This object is stored for later access as a singleton—the same object will

always be returned in any future lookup with the same extension name. This is

necessary in our example because both the BannerAd component (described

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 329

next) and the banner ad engine service (described in section 8.1.5) must access a

single, shared instance.

8.1.4 Implementing the BannerAd component

A BannerAd component will render an <a> hyperlink element enclosing an

 element. The href attribute for the hyperlink will reference the banner ad

service, which will record the click-through before sending a client redirect

response to the web browser. The src attribute for the element will be

dynamically determined from the underlying Banner object.

 BannerAd allows informal parameters, which are included as additional

parameters for the <a> element. This allows the page to specify a CSS class

attribute for the component.

 The BannerAd component has no template; what HTML it produces is ren-

dered in code. Its component specification, shown in listing 8.1, is also quite short.

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 class="bannerads.library.components.BannerAd"
 allow-body="no"
 allow-informal-parameters="yes">

 <reserved-parameter name="href"/>

</component-specification>

The BannerAd component does not allow a body. Although it allows informal

parameters, it reserves the href parameter, since it will render a value for the

href attribute in Java code. The specification for the BannerAd component is

stored on the classpath as /bannerads/library/BannerAd.jwc. Listing 8.2 shows

the BannerAd class.

package bannerads.library.components;

import org.apache.tapestry.AbstractComponent;
import org.apache.tapestry.IEngine;

Listing 8.1 BannerAd.jwc: specification for the BannerAd component

Listing 8.2 BannerAd.java: Java class for the BannerAd component

TEAM LinG - Live, Informative, Non-cost and Genuine!

330 CHAPTER 8

Advanced techniques

import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.engine.IEngineService;
import org.apache.tapestry.engine.ILink;
import org.apache.tapestry.spec.IApplicationSpecification;

import bannerads.library.BannerService;
import bannerads.library.IBanner;
import bannerads.library.IBannerSource;

public class BannerAd extends AbstractComponent
{
 protected void renderComponent(IMarkupWriter writer,
 IRequestCycle cycle)
 {
 if (cycle.isRewinding())
 return;

 IBanner banner = getRandomBanner(cycle);
 IEngineService service =
 cycle.getEngine().getService(BannerService.SERVICE_NAME);

 ILink link = service.getLink(cycle, this,
 new Object[] { banner.getId()});

 writer.begin("a");
 writer.attribute("href", link.getURL());
 renderInformalParameters(writer, cycle);

 writer.beginEmpty("img");
 writer.attribute("src", banner.getImageURL());
 writer.attribute("width", banner.getWidth());
 writer.attribute("height", banner.getHeight());
 writer.attribute("alt", banner.getTitle());
 writer.attribute("border", 0);

 writer.end();
 }

 private IBanner getRandomBanner(IRequestCycle cycle)
 {
 IEngine engine = cycle.getEngine();
 IApplicationSpecification specification =
 engine.getSpecification();
 IBannerSource source =
 (IBannerSource) specification.getExtension(
 IBannerSource.BANNER_SOURCE_EXTENSION_NAME,
 IBannerSource.class);

 source.initialize(cycle);

Skips render when
form rewinds

Constructs link to
banner ad service

Converts link
object to URL

Obtains banner
source application
extension

Initializes the
banner source

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 331

 IBanner result = source.getRandomBanner();

 source.recordImpression(result.getId());

 return result;
 }
}

The renderComponent() method invokes getRandomBanner() to obtain a random

instance of IBanner from the banner source. Once it has the banner, the com-

ponent can then access the banner service and use it to create a link (much like

the DirectArea component in chapter 6, but with a different service). The ban-

ner service expects a single service parameter: the ID of the banner that is

being rendered.

 The remainder of the renderComponent() method uses the link object

returned from the service, and the banner information provided by the banner

source, to generate an <a> hyperlink element enclosing an element. Any

informal parameters are rendered as part of the <a> element.

 One special case to watch out for when creating components involves forms.

When a form is submitted, the Form component will rewind, rerunning the ren-

der process for all components it encloses—even components that have nothing

to do with the form itself, such as BannerAd. It would not be correct to count a

form rewind as a new banner impression—so we check the request cycle first

thing to see if a form is rewinding, and do no work in that case.

 The getRandomBanner() method is also straightforward. The application spec-

ification is obtained from the engine instance; the getExtension() method

accesses an extension, instantiates it if necessary, and returns the shared

instance. In addition, it checks that the extension instance is assignable to the

type passed in as the second argument (that is, the method checks that the

extension either implements the interface or is a subclass of the indicated class).

In this class, the extension must implement the IBannerSource interface.

WARNING Only invoke getExtension() for an extension that is defined in the ap-
plication extension. If the application specification does not have an
<extension> for the given name, then the framework will throw an ex-
ception: No extension named ‘bannerads.banner-source’ exists in this namespace.
If an extension is optional, then you must use the checkExtension()
method to see if a named extension exists.

TEAM LinG - Live, Informative, Non-cost and Genuine!

332 CHAPTER 8

Advanced techniques

Obtaining the shared banner source instance is not quite enough: We must

ensure that the source is initialized. There’s a wide range of possible implemen-

tations of the banner source. The example implementation reads an XML file,

but you can easily imagine a banner source that works with a database, or an

Enterprise Java Bean (EJB), or a Java Messaging Services (JMS) queue, to obtain

banners and record impressions and click-throughs. The initialize() method

is passed the request cycle, which gives the banner source access to the entire

Tapestry and Servlet APIs; this should be sufficient for any banner source imple-

mentation to initialize itself.

 In addition, we must invoke initialize() every time we get the banner source,

since there’s no way to determine if it was created just then or if it was an already-

existing instance.

8.1.5 Implementing the banner service

Implementing an engine service is much like implementing a servlet: Engine

services are shared instances that must be thread safe (they may be accessed by

many threads simultaneously). Unlike a servlet, an engine service is responsible

for building the URLs for the requests it may later service. The getLink()

method builds URLs, and the service() method reacts when those same URLs

are triggered by a request from the client web browser. Listing 8.3 provides the

code for the BannerService class.

package bannerads.library;

import org.apache.tapestry.IComponent;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.RedirectException;
import org.apache.tapestry.engine.AbstractService;
import org.apache.tapestry.engine.IEngineServiceView;
import org.apache.tapestry.engine.ILink;
import org.apache.tapestry.request.ResponseOutputStream;
import org.apache.tapestry.spec.IApplicationSpecification;

public class BannerService extends AbstractService
{
 public static final String SERVICE_NAME = "bannerads.banner";

 public ILink getLink(IRequestCycle cycle, IComponent component,
 Object[] parameters)
 {
 return constructLink(cycle, SERVICE_NAME,

Listing 8.3 BannerService.java: Java class for the banner service

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 333

 null, parameters, false);
 }

 public void service(
 IEngineServiceView engine,
 IRequestCycle cycle,
 ResponseOutputStream output)
 throws ServletException, IOException
 {
 IApplicationSpecification specification =
 engine.getSpecification();
 IBannerSource source =
 (IBannerSource) specification.getExtension(
 IBannerSource.BANNER_SOURCE_EXTENSION_NAME,
 IBannerSource.class);

 source.initialize(cycle);

 Object[] parameters = getParameters(cycle);

 String bannerId = (String) parameters[0];

 IBanner banner = source.getBanner(bannerId);
 source.recordClickThru(bannerId);

 throw new RedirectException(
 banner.getClickThruURL());
 }

 public String getName()
 {
 return SERVICE_NAME;
 }

}

In Tapestry, application URLs are not represented as strings; they are repre-

sented as instances of the interface ILink. You can see this in the return value of

the getLink() method. An ILink is a combination of the URL for accessing the

application servlet and any query parameters (the service and sp parameters,

generally) that must be passed in the request. This distinction allows the link

components (such as DirectLink and PageLink), which use the HTTP GET

method, to encode the query parameters within the URL directly, but allows the

Form component, which uses the HTTP POST method, to encode the parameters

as hidden form fields.

Get the banner
ID from the URL

Obtain the
matching banner

Send redirect
to client

TEAM LinG - Live, Informative, Non-cost and Genuine!

334 CHAPTER 8

Advanced techniques

 AbstractService provides a constructLink() method. The last two parame-

ters are an array of strings (that form the service context) and an array of objects,

the service parameters. As you’ve seen with the page and direct services, the ser-

vice context can be used to identify a page or a component within a page.

Because those concepts are not relevant to this service, we simply pass null.

 This service does use a single parameter, the banner ID, which was passed in

from the BannerAd component. The last parameter to constructLink() is a flag

indicating whether the URL should be encoded using HttpServletRequest.encode-

URL(). The encodeURL() method encodes the HttpSession ID into the URL, which

ensures that the connection between the client web browser and the HttpSession

on the server is maintained, even when the browser has disabled HTTP cookies

(the normal way of communicating the HttpSession ID from the client to the

server). For most services, the encode flag should be true, but this service doesn’t

require encoding, because triggering a banner ad does not affect any client-

specific state that may be stored in the HttpSession.

TIP When in doubt about whether to encode or not encode the URL, just
pass true and let the URL be encoded. It costs virtually nothing and en-
sures you won’t get any nasty surprises from clients who have disabled
HTTP cookies.

Servicing a request

When the user clicks on the banner ad, a new request to the server will be

directed at the banner engine service, which will invoke the service() method.

This method must

■ Obtain an instance of the banner source

■ Ensure that the source is initialized

■ Get the correct banner from the source

■ Record the click-through for the banner

■ Redirect the client’s web browser to the advertiser’s web site

Obtaining the banner source and initializing it is the same here as in the BannerAd

component. It may appear that there is no need to invoke the initialize()

method, because the BannerAd will already have initialized the banner source.

However, this is not the case; the call to initialize() is necessary:

■ The URL to the banner service may have been bookmarked by the user, in

which case there’s no assurance that a BannerAd component has yet executed

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 335

its renderComponent() method and initialized the banner source (the server

receiving the request may have restarted in the meantime).

■ In a cluster, it is possible that the banner source was initialized within one

server but that the banner service request was received by a different server

in the cluster.

The ID of the banner was provided as a service parameter; the getParameters()

method (provided by the AbstractService base class) will extract the service

parameters from the sp query parameter, and convert them from encoded strings

back into objects. We can then cast the first parameter back into a string:

Object[] parameters = getParameters(cycle);

String bannerId = (String) parameters[0];

Armed with the banner ID, we can get the banner instance from the banner

source, and record that a click-through for that banner has occurred:

IBanner banner = source.getBanner(bannerId);
source.recordClickThru(bannerId);

The final step is to send a redirect back to the client web browser. This is accom-

plished by throwing a RedirectException. The RedirectException is constructed

with the advertiser’s web site URL:

throw new RedirectException(banner.getClickThruURL());

Note that this is a distinct exception from the PageRedirectException that may

be thrown in a pageValidate() event method. PageRedirectException is handled

internally by Tapestry and simply represents a change in the active page (the

page that will render the response). Throwing a RedirectException here sends

an HTTP redirect back to the client web browser, forcing it to submit a new GET

request to the indicated URL.

Providing the service name

The last requirement of an engine service is that it knows its own name. The ser-

vice must implement a getName() method to provide this name. This method

ensures that the service name declared in the library specification (discussed

shortly) matches the name used by the service to create links.

 The standard procedure is to define a public static field with the engine ser-

vice name, which not only ensures consistency but (as in the BannerAd compo-

nent) makes it easier for other classes to obtain the service instance:

TEAM LinG - Live, Informative, Non-cost and Genuine!

336 CHAPTER 8

Advanced techniques

public static final String SERVICE_NAME = "bannerads.banner";

public String getName()
{
 return SERVICE_NAME;
}

Providing the correct service name is critical to Tapestry. On the first request, it

will instantiate all the services and verify that each service has the correct name.

On any mismatch, it will abort the request (by throwing a ServletException), and

the user will see an Error 500 page. Figure 8.4 is an example of what you’ll see if

there’s a typo in your library specification.

 At this point, we have the component and matching service, plus the IBanner

and IBannerSource interfaces (and implementations of those interfaces). It’s time

to package all of this together as a reusable component library.

8.1.6 Creating the library specification

Before we can use this service and component in an application, we must create a

library to contain them. The library specification, shown in listing 8.4, defines

the service provided with the library. The file is stored in the classpath as /ban-

nerads/library/BannerAds.library.

Figure 8.4 Tapestry checks that each engine service matches up against its declared names; if not,

it doesn’t even try to service the request.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating new engine services 337

<?xml version="1.0"?>
<!DOCTYPE library-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<library-specification>

 <service name="bannerads.banner"
 class="bannerads.library.BannerService"/>

</library-specification>

Finally, you see how the banner service is plugged into Tapestry: The <service>

element provides a name for the service and a class to instantiate. As we just dis-

cussed, the name must be unique (which is why it is prefixed by a package name),

and the actual service instance must know its name, to ensure that it will gener-

ate usable URLs. The BannerAd component is part of the library, because its

specification file, BannerAd.jwc, is also stored in the /bannerads/library folder.

 After packaging the classes, interfaces, and specifications together as a JAR

file, we are ready to use this library in an application.

8.1.7 Building a banner ad application

A small demonstration application that makes use of the BannerAds library and

the BannerAd component is included with the book examples, and figures 8.1

and 8.2 show this application in operation. You can try it yourself by directing

your web browser to http://localhost:8080/ads/app.

 Using the library is nearly as simple as the examples in chapter 6. The only

extra step is to define an application extension for the banner source. Listing 8.5

shows how the application extension is declared.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<application name="BannerAd demonstration">

 <extension name="bannerads.banner-source"
 class="bannerads.library.impl.XMLBannerSource"/>

Listing 8.4 BannerAds.library: specification for the banner ad library

Listing 8.5 ads.application: specification for the banner ad demo application

TEAM LinG - Live, Informative, Non-cost and Genuine!

338 CHAPTER 8

Advanced techniques

 <library id="banner"
 specification-path="/bannerads/library/BannerAds.library"/>

</application>

The extension creates an instance of XMLBannnerSource, an implementation of

the IBannerSource interface that gets its list of ad banners from an XML file

stored inside the WEB-INF folder. The file, banners.xml, provides the banner

information for four Java and open-source web sites. Listing 8.6 shows the con-

tents of this file.

<?xml version="1.0"?>

<banner-ads>
 <banner id="0001" title="Cafe Au Lait"
 width="468" height="82" imageURL="ads/cafeaulait.png"
 clickThruURL="http://www.ibiblio.org/javafaq/"/>

 <banner id="0002" title="JavaLobby.org"
 width="468" height="60"
 imageURL="ads/javalobby.png"
 clickThruURL="http://www.javalobby.org"/>

 <banner id="0003" title="Apache Jakarta Project"
 width="468" height="60"
 imageURL="ads/jakarta.png"
 clickThruURL="http://jakarta.apache.org"/>

 <banner id="0004" title="TheServerSide.com"
 width="468" height="60"
 imageURL="ads/theserverside.png"
 clickThruURL="http://www.theserverside.com"/>
</banner-ads>

The BannerAd component is used just on the template of the application’s

Home page:

[Banner Ad]

And that really is all it takes! Using target="_new" directs the client web browser

to open the URL in a new window. We’ve defined a whole new service that han-

dles requests from the client’s web browser in an entirely new way but hidden

that service behind a component. Despite this component’s very special request

Listing 8.6 banners.xml: list of banner ads used in the demo application

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 339

processing (recording the click-through event and sending a client redirect to a

completely different web site), no requirements were forced on the page or on

the application containing the page. The BannerAd component can be literally

dropped right into a page without concern for how it operates internally, and it

can be added to any application merely by providing a banner source in the

application specification. This level of automatic integration is a key distinguish-

ing feature of Tapestry, something that is simply not possible when using ordi-

nary servlets and JSPs, or even prevailing frameworks such as Struts.

 The banner ad examples illustrate how flexible Tapestry is in terms of server-

side request processing. As you’ll see in the next section, Tapestry has an equally

in-depth approach to client-side scripting.

8.2 Client-side scripting

An unavoidable aspect of a high-quality web application is the use of client-side

JavaScript to extend the application directly into the client web browser. Incor-

porating JavaScript behaviors into the user interface allows for interactions that

simply aren’t possible using the standard approaches involving links and form

submissions. The interface can react to the user without the delay of a new

request to the server.

 The downside to making use of client-side scripting is that the skills neces-

sary to write functional, cross-browser JavaScript are extremely specialized, bor-

dering on arcane, and not something every developer has accumulated. Using

Tapestry unavoidably complicates this further, because Tapestry pages can be so

very dynamic.

 You’ve already seen examples of client-side logic in Tapestry. In chapter 4,

you saw the DatePicker component, which uses client-side JavaScript to create a

pop-up calendar. In chapter 5, you saw that the input validation framework

could perform client-side validations before forms were submitted, in addition to

performing server-side validations of the submitted form data.

 You’ve also seen the Palette component, in chapter 6, which uses a significant

amount of client-side scripting to provide a complicated user interface. In all of

these cases, the rendering of HTML also involved the production of customized

JavaScript to support the HTML elements. For the validation framework, the

JavaScript took the form of onsubmit form event handlers that validated user

input and displayed alerts if the input was not acceptable. The client-side script-

ing for the Palette component includes much logic for enabling and disabling

buttons and moving selections between the two columns. This is much more

TEAM LinG - Live, Informative, Non-cost and Genuine!

340 CHAPTER 8

Advanced techniques

than simply including a pre-canned JavaScript file; in each of these cases, it is

necessary to create the client-side JavaScript dynamically, using a template, and

adapt it to the specific situation it is being used for.

 In the case of ValidField components, the exact checks that will occur vary

from one field to the next. Beyond general format checks, there is checking for

minimum values, maximum values, and so forth. Each of these checks is config-

ured on a case-by-case basis. In addition, the JavaScript generated for a Valid-

Field component must adapt to the element name for the component (which is

assigned by the enclosing Form) and to the name of the enclosing Form itself

(which is assigned by Tapestry).

 In a traditional servlet application, the development process often consists of

creating the script and then requiring that the names of the elements on the

page (the form, the input field) match. This is certainly simpler—if the usage of

the script is well understood and well documented. All too frequently, that isn’t

the case; JavaScript support is often provided by the HTML designers, who are,

naturally enough, the least disciplined team members when it comes to creating

code. In addition, it is too easy to create a script that specifically allows one field

in one form to have special behavior, and that is not able to handle multiple

fields in multiple forms.

 As elsewhere, Tapestry tips this equation on its head. Tapestry uses a special

template, a script specification, to create customized JavaScript on demand.

Even in the simplest case, the script specification must adapt to the various IDs

assigned by the framework. This means that a Tapestry script specification easily

adapts to reuse within the same page. The downside is that instead of writing a

block of JavaScript, you must write a template from which the JavaScript can be

dynamically produced at runtime.

 The other great benefit of dynamic JavaScript generation is that the creation

of the JavaScript is compartmentalized inside specific components. Once again,

the component may be dropped into a page and will function properly, client-

side JavaScript and all, without any special handling in the page. By using JavaS-

cript-enabled components, you gain all the advantages of a client-side JavaScript

without any of the costs!

 Creating such a component has a few prerequisites:

■ You must know exactly what the component should do.

■ You must understand how to accomplish that using JavaScript, which
includes understanding the client-side Document Object Model (DOM)
and the programming differences between various browsers.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 341

■ You must understand how Tapestry assigns names and IDs.

■ You must understand how to invoke the Tapestry scripting subsystem.

As usual, we’ll start with a reasonable example.

8.2.1 Defining the CreditCardField component

Many web applications have some point where they ask for a credit card number.

All too often, you are advised on how to enter that number: as all digits, no

spaces or dashes. Forcing the user to bend to the needs of the programmer is

never a good sign; instead, the interface should resemble figure 8.5. Here, the

input is four individual text fields. As you fill one field, the cursor automatically

tabs to the next field. When you submit the form, the input is checked for validity

(that each of the four fields has exactly four numeric digits).

 Let’s develop this component in three steps:

Figure 8.5 The CreditCardField component renders as four separate text fields. It includes client-

side scripting to automatically tab to the next field as each field is filled. When the form is submitted,

client-side scripting checks that each field consists of exactly four numeric digits.

TEAM LinG - Live, Informative, Non-cost and Genuine!

342 CHAPTER 8

Advanced techniques

■ We’ll create a static HTML mockup, in order to figure out the general form

of the client-side JavaScript.

■ We’ll create a Tapestry script specification, a special-purpose template for
creating JavaScript dynamically.

■ Finally, we’ll create a component that makes use of the script specification

when it renders and knows how to obtain the submitted value when the

enclosing form is submitted.

Let’s start with the HTML mockup, shown in listing 8.7.

<html>
<body>
<script>

function onkeyup_cc_field(field, next)
{
 var keycode = window.event.keyCode;

 if (keycode >= 48 && keycode <= 57 && field.value.length == 4)
 {
 next.focus();
 next.select();
 }
}

function validate_cc_field(field)
{
 if (! field.value.match(/^\d{4}$/))
 {
 field.focus();
 field.select();
 window.alert(
 "Credit card numbers consist of four groups of " +
 "four numbers.");
 return false;
 }

 return true;
}

function onkeyup_cc$g0 ()
{
 onkeyup_cc_field(document.f.cc$g0, document.f.cc$g1);
}

Listing 8.7 HTML mockup for the CreditCardField component

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 343

function onkeyup_cc$g1 ()
{
 onkeyup_cc_field(document.f.cc$g1, document.f.cc$g2);
}

function onkeyup_cc$g2 ()
{
 onkeyup_cc_field(document.f.cc$g2, document.f.cc$g3);
}

function validate_cc()
{
 return validate_cc_field(document.f.cc$g0) &&
 validate_cc_field(document.f.cc$g1) &&
 validate_cc_field(document.f.cc$g2) &&
 validate_cc_field(document.f.cc$g3);
}

window.onload = function ()
{
 document.f.cc$g0.onkeyup = onkeyup_cc$g0;
 document.f.cc$g1.onkeyup = onkeyup_cc$g1;
 document.f.cc$g2.onkeyup = onkeyup_cc$g2;

 document.f.onsubmit = validate_cc;
}
</script>

<form name="f">

Enter credit card number:
<input type="text" name="cc$g0" value="" size="4" maxlength="4"/> -
<input type="text" name="cc$g1" value="" size="4" maxlength="4"/> -
<input type="text" name="cc$g2" value="" size="4" maxlength="4"/> -
<input type="text" name="cc$g3" value="" size="4" maxlength="4"/>

<input type="submit"/>

</form>
</body>
<html>

When a number is entered and the field is full, the cursor moves to the next field.

This JavaScript function is invoked when the form submits to validate that the
field contains exactly four digits.

Each of the first three fields gets its own onkeyup event handler.

 e

 f

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

344 CHAPTER 8

Advanced techniques

When the form submits, it invokes the validate_cc() function to validate that
each of the four fields contains exactly four digits.

When the HTML page finishes loading into the web browser, this anonymous
function registers event handlers for the form and fields.

This listing may look somewhat odd, since it’s very mechanical in structure. This

is to reflect the constraints on generating the JavaScript that occur in a running

Tapestry application. The path of least resistance is to attach JavaScript event

handlers to objects from within the window.onload event handler, rather than as

javascript: attribute values on the elements themselves. As you’ll see, the script

for a component is often generated after the component itself renders, when it is

too late to provide values for attributes.

 In addition, the names assigned to the four text fields reflects some experi-

ence concerning how dynamic names may be generated within Tapestry. Here,

the cc portion of the name will probably be a component ID. The suffix (g0, g1,

etc.) distinguishes the four groups of digits that compose a credit card number

(this component is focused on 16-digit credit card numbers, such as used by

Master Card and Visa; other credit cards use a different format). Using the dollar

sign as a separator is a safe bet: the dollar sign is not allowed in a user-specified

component ID, so there’s no possibility of a naming conflict.

 The operation of the mockup script is simple enough. The onkeyup event

handlers are triggered as each key is released within the first three fields. If the

key entered was a number and that number filled the field, the cursor moves to

the next field. When the form submits, the onsubmit event handler checks each

of the four fields against a regular expression to ensure that they contain exactly

four numeric digits.

8.2.2 Working with the Body component

As mentioned in chapter 4, when a page uses dynamic JavaScript, you must use a

Body component to generate the HTML <body> element. As this chapter demon-

strates, it’s not always possible to know ahead of time if a component will be

using the JavaScript features provided by the Body component, so you should

always use a Body component, just to be safe.

 A principal function of the Body component is to support and organize the

generation of dynamic JavaScript throughout the page. All the JavaScript cre-

ated by all components throughout the page is organized into a single HTML

<script> block, which is placed just inside the HTML <body> element, as shown

in figure 8.6.

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 345

Notice that the scripting block goes first even though what goes into the script-

ing block is determined by rendering the body of the Body component. The

Body component buffers the output of the components it encloses. As each com-

ponent renders, it has a chance to ask the Body component to contribute some

text to the script body or script initialization.

 Once rendering is complete, the Body component can render out the <script>

block, then the buffered output from its body and then, finally, the end tag. This

approach—buffering the output of enclosed components to affect how the enclos-

ing component renders—is a powerful technique used throughout Tapestry.

8.2.3 Creating the Tapestry script specification

Creating the Tapestry script specification and the component would normally

occur in parallel; they are both dependent on each other. For this example, we’ll

show you how to convert the static JavaScript from the mockup into a dynamic

Figure 8.6 The Body component organizes all the JavaScript for the page into a

single block, just inside the <body> tag. Any component enclosed by the Body

may contribute to the script body or script initialization.

TEAM LinG - Live, Informative, Non-cost and Genuine!

346 CHAPTER 8

Advanced techniques

script specification. At runtime, the XML script specification will be parsed into

an executable script.

 When a script is executed, it accomplishes three things:

■ Input symbols are combined and manipulated to create new symbols. For

example, the component’s element ID may be used as the basis of a Java-

Script event handler function name.

■ A contribution to the page’s script body block is made. This is typically
JavaScript event handler functions.

■ A contribution to the page’s script initialization block is made. This is typi-

cally setup code that connects client-side DOM objects to the JavaScript

event handler functions.

Listing 8.8 shows the script specification used by the CreditCardField compo-

nent. Large sections of it are similar to the static HTML from listing 8.7. The

remainder involves customizing each usage of the script to the particulars of the

page where it is used and the component that uses it.

<?xml version="1.0"?>
<!DOCTYPE script PUBLIC
 "-//Apache Software Foundation//Tapestry Script Specification
 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Script_3_0.dtd">

<script>

<input-symbol
 key="creditCardField"
 class="examples.cc.CreditCardField" required="yes"/>

<input-symbol key="formatMessage"
 class="java.lang.String"
 required="yes"/>

<set key="name" expression="creditCardField.name"/>

<let key="baseName">
 document.${creditCardField.form.name}.${name}
</let>

<let key="field0">
 ${baseName}$g0
</let>

Listing 8.8 CreditCardField.script: script specification used by the component

➥

 b

 c

 d

 e

 f

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 347

<let key="field1">
 ${baseName}$g1
</let>

<let key="field2">
 ${baseName}$g2
</let>

<let key="field3">
 ${baseName}$g3
</let>

<let key="formValidateFunction" unique="yes">
 validate_${name}
</let>

<body>

<unique>
<![CDATA[
function onkeyup_cc_field(field, next)
{
 var keycode = window.event.keyCode;

 if (keycode >= 48 && keycode <= 57 && field.value.length == 4)
 {
 next.focus();
 next.select();
 }
}

function validate_cc_field(field)
{
 if (! field.value.match(/^\d{4}$/))
 {
 field.focus();
 field.select();
 window.alert("${formatMessage}");
 return false;
 }

 return true;
}
]]>
</unique>

<![CDATA[

function ${formValidateFunction}()
{
 return validate_cc_field(${field0}) &&
 validate_cc_field(${field1}) &&

 g

 h

TEAM LinG - Live, Informative, Non-cost and Genuine!

348 CHAPTER 8

Advanced techniques

 validate_cc_field(${field2}) &&
 validate_cc_field(${field3});
}

]]>
</body>

<initialization>

${field0}.onkeyup = function()
{
 onkeyup_cc_field(${field0}, ${field1});
}

${field1}.onkeyup = function()
{
 onkeyup_cc_field(${field1}, ${field2});
}

${field2}.onkeyup = function()
{
 onkeyup_cc_field(${field2}, ${field3});
}

</initialization>

</script>

The <input-symbol> element is equivalent to a component specification <param-
eter> element. It declares a particular type of symbol to be passed into the
script, with a type. The creditCardField symbol must be an instance of Credit-
CardField, the Java class for the CreditCardField component.

The formatMessage symbol is required and must be a string.

The <set> element is used to create a new symbol using an OGNL expression.

The <let> element creates a new symbol from a string. Leading and trailing
white space is removed. The ${…} values are interpreted as OGNL expressions;
this is how other symbols are referenced.

The component and the script must agree on what each of the four fields is
named. The name is based on the field’s element ID with $g0, $g1, $g2, or
$g3 appended.

Tapestry can ensure that the new symbol value is unique within the page, which
may require appending a suffix to the value.

The contents of a <unique> element will be rendered only once per page render,
even if the script specification is used multiple times on the same page. The XML

<![CDATA[…]]> construct is used to work around the & characters, which are not
normally valid XML.

 b

 c

 d

 e

 f

 g

 h

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 349

When the script executes, it takes input symbols (primarily, the CreditCardField

component for which the script is being generated), transforms the input sym-

bols into new symbols (such as the field and function names), and generates Java-

Script for inclusion in the page. In some cases, the created symbols are useful to,

and needed by, the component.

 Appendix D includes a complete definition of the script specification DTD.

Defining the input symbols

The script begins by defining two input symbols, which must be provided by the

CreditCardComponent when it executes the script. The first symbol, credit-

CardField, is the Java object for the component itself. The second, formatMessage,

is a message that will be displayed to users if they attempt to enter a credit card

number using an invalid format.

 Defining input symbols is optional; it simply allows Tapestry to check that

required symbols are provided. If a class is specified, then the symbol must be

that type, or assignable to that type (it may be the fully qualified name of a class

or interface). Again, providing this information to Tapestry allows the framework

to perform better error checking.

 These symbols, especially creditCardField, become the basis for all the other

symbols created while the script is executing.

Creating new symbols

New symbols are created using the <set> and <let> elements. The <set> element

is used to evaluate an OGNL expression and assign its value as a new symbol. It is

a close cousin to the <binding> element in a page or component specification. In

the CreditCardField script, the name symbol is created by retrieving the name

property of the creditCardField symbol:

<set key="name" expression="creditCardField.name"/>

If the OGNL expression is long or complicated, then the expression attribute can be

omitted, and the OGNL expression can be placed in the body of the <set> element.

 The <let> element creates a new symbol, always a string, from its body, but its

body can contain both text and specially delimited OGNL expressions.1 In the

script, the baseName symbol is created using a <let> element:

1 The <let> element may also contain several other script elements: <foreach> for looping, <if> and <if-
not> for conditionals, and the <unique> element we’ll cover shortly—but using any of these is quite rare.

TEAM LinG - Live, Informative, Non-cost and Genuine!

350 CHAPTER 8

Advanced techniques

<let key="baseName">
 document.${creditCardField.form.name}.${name}
</let>

This baseName symbol is a JavaScript DOM reference to a field. The ${…} sequences

indicate OGNL expressions. The first traverses from the creditCardField to the

Form component that encloses it and obtains the name assigned to the Form.

The second expression references the previously defined name symbol. Ulti-

mately, this symbol is used to build the complete names of the four text fields

that form the component. Table 8.1 identifies the remaining symbols created by

the script (the Example Value column assumes the Form’s name is Form0 and

the CreditCardField’s name is ccField, though of course the actual names will

vary from page to page).

A few notes:

■ The four text fields are given names based on the component. The dollar

sign is a good choice for a separator here, since it is not allowed as a part of

a component ID—this ensures that there will be no name conflicts, regard-

less of which component IDs the developer selects.

■ The naming of the fields must coordinate with code in the component that
writes the HTML for the four text fields and reads the query parameters
when the form is submitted.

Table 8.1 Symbols created by the script

Symbol Description Example Value

name Name assigned to the Credit-

CardField by the Form

ccField

baseName Base value for building client-

side DOM references to the four

text fields

document.Form0.ccField

field0 First field’s DOM reference document.Form0.ccField$g0

field1 Second field’s DOM reference document.Form0.ccField$g1

field2 Third field’s DOM reference document.Form0.ccField$g2

field3 Fourth field’s DOM reference document.Form0.ccField$g3

formValidateFunction Name of the JavaScript event

handler for the containing

Form’s onsubmit event

validate_ccField

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 351

■ The formValidateFunction is an output symbol, the name of a JavaScript

function. Shortly, you’ll see how to hook it into the enclosing form’s onsubmit

event handler.

The <let> element that defines the formValidateFunction symbol demonstrates

another useful feature:

<let key="formValidateFunction" unique="yes">
 validate_${name}
</let>

It is very important that this function name be unique within the page; if the

CreditCardField component is used multiple times, then each usage of the com-

ponent must have its own validate function. Simply incorporating the compo-

nent’s name into the name of the function is very nearly enough to ensure

uniqueness because the name itself is uniquely generated by the form.

 To absolutely ensure that the value for the formValidateFunction symbol is

unique, we’ve used the unique attribute of the <let> element. Tapestry ensures

that the final symbol value is unique, tacking on a suffix to ensure uniqueness if

necessary. This functionality is provided by the Body component that ultimately

encloses the CreditCardField; therefore, it doesn’t matter which script specifica-

tion is executed—the uniqueness filter is applied universally.

NOTE The use of the unique attribute here is overkill. It is all but impossible
for two different CreditCardFields to share the same element ID, be-
cause element IDs are related to component IDs, which are always
unique within a container (the page or component). Uniqueness issues
tend to crop up when a complex component is assembled from simpler
components, and the complex component is used multiple times—the
Palette component is an example of a complex component that requires
uniqueness support to ensure that you can use it faultlessly in all circum-
stances. Tapestry provides you with the tools to defuse this potential is-
sue painlessly.

TIP Use reasonable names, and incorporate the component ID into the func-
tion name. You may have to debug the rendered HTML page, and it will
be easier to do so if the function names reflect the component they are
related to.

TEAM LinG - Live, Informative, Non-cost and Genuine!

352 CHAPTER 8

Advanced techniques

Contributing to the body

The script specification <body> element is where the real work begins. This is

where the JavaScript event handlers are created. These event handlers will pro-

vide two examples of client-side behavior:

■ When the user fills one of the component’s text fields, the cursor will auto-

matically tab to the next text field.

■ When the user submits the form, the text fields will be validated to contain

exactly four numeric digits.

The CreditCardField script includes some common utility functions: onkeyup_

cc_field() and validate_cc_field(). These two functions are used by all four

text fields created by the component—but potentially, there will be other Credit-

CardField components on the same page, and they all should share the same

utility functions. These utility functions should be contributed into the page’s

<script> block only once.

 This situation is similar to the previously described issue concerning unique

symbols, and it has a similar solution. The portion of the <body> element that

should only occur once is itself enclosed in a <unique> element:

<unique>
<![CDATA[
function onkeyup_cc_field(field, next)
{
 var keycode = window.event.keyCode;

 if (keycode >= 48 && keycode <= 57 && field.value.length == 4)
 {
 next.focus();
 next.select();
 }
}

function validate_cc_field(field)
{
 if (! field.value.match(/^\d{4}$/))
 {
 field.focus();
 field.select();
 window.alert("${formatMessage}");
 return false;
 }

 return true;
}
]]>
</unique>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 353

When the <unique> element is encountered, it checks to see if the block it

encloses has been contributed yet; if not, the contents of the <unique> element

are contributed to the page’s <script> block, and the fact that the block has been

contributed is recorded. As with the unique symbol generation, this tracking is a

responsibility of the Body component, and it applies only to the current request

cycle. Whatever is enclosed by the <unique> element will appear just once inside

the page’s <script> block.

 The remainder of the <body> element’s content is not enclosed by the

<unique> tag and is contributed to the page’s <script> block every time the script

specification is executed. This is where the form’s validate function is created:

<![CDATA[

function ${formValidateFunction}()
{
 return validate_cc_field(${field0}) &&
 validate_cc_field(${field1}) &&
 validate_cc_field(${field2}) &&
 validate_cc_field(${field3});
}

]]>

This snippet uses a CDATA block to work around the invalid XML characters: the

&& (logical and) operators that are valid JavaScript but not acceptable in an XML

document. As before, we use the ${…} syntax to plug in the symbols created ear-

lier in the script specification.

 In the final rendered page, with the expansion of symbols, this block will look

something like this:

function validate_ccField()
{
 return validate_cc_field(document.Form0.ccField$g0) &&
 validate_cc_field(document.Form0.ccField$g1) &&
 validate_cc_field(document.Form0.ccField$g2) &&
 validate_cc_field(document.Form0.ccField$g3);
}

Of course, both the name of the form (Form0) and the name of the component

(ccField) will vary.

Wiring event handler methods to client-side objects

The last step is to connect event handler functions to the objects. This poses a

minor dilemma: The HTML <script> element containing all the JavaScript for the

page is placed just inside the HTML <body> element. The HTML that ultimately

TEAM LinG - Live, Informative, Non-cost and Genuine!

354 CHAPTER 8

Advanced techniques

defines the objects comes later. Referencing those objects using the DOM before

they exist will cause runtime errors inside the client web browser, and your client-

side logic will break.

 The solution to this is to wait until the page is fully loaded into the client web

browser before accessing the objects and connecting up event handlers. That is

the function of the <initialization> element in the script specification. The

JavaScript contributed inside the <initialization> element is executed within

the window.onload event handler, which is invoked only after the page is fully

loaded. The script specification includes an <initialization> block to “wire up”

the handlers by setting the event handlers (such as onkeyup) for the fields:

<initialization>

${field0}.onkeyup = function()
{
 onkeyup_cc_field(${field0}, ${field1});
}

${field1}.onkeyup = function()
{
 onkeyup_cc_field(${field1}, ${field2});
}

${field2}.onkeyup = function()
{
 onkeyup_cc_field(${field2}, ${field3});
}

</initialization>

This wires up the first three (of the four) fields, creating anonymous JavaScript

functions that invoke the onkeyup_cc_field() function. This function checks to

see if the pressed key was a number and if the field is now full, and tabs to the

next form field if that’s the case. Unfortunately, we can’t tab out of the fourth

text field, since the CreditCardField doesn’t know what the next field is (it will

not have even rendered yet at the time the CreditCardField component renders

and executes the script specification).

 That still leaves the form’s submit function, which checks that each of the four

fields contains exactly four numeric digits. In theory, we could hook that in here

as well:

document.${creditCardField.form.name}.onsubmit =
 ${formValidateFunction};

That approach would work—as long as the CreditCardField component was

the only component within the Form that needed to hook into the Form’s

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 355

onsubmit event handler. There’s no way the CreditCardField can know this,

however; certainly there could be ValidField components with client-side vali-

dation enabled, as well as other custom components, which may render before

or after the CreditCardField.

 Instead, this problem is solved at the code level as an interaction, in Java

code, between the CreditCardField component and the Form component that

encloses it. The Form component is prepared to handle the case where multi-

ple components need to hook into the onsubmit event handler. The details of

this are covered shortly, along with the code for the CreditCardComponent

Java class.

8.2.4 Creating the CreditCardField specification

The CreditCardField component is a form element component; it is intended

for use as part of a form. As such, its Java class has some basic responsibilities:

■ The class must implement the interface IFormComponent.

■ The class must implement a form property of type IForm.

■ The class must implement a name property of type string.

The easiest way to accomplish all this is to have the CreditCardField class inherit

from the AbstractFormComponent base class, and to specify the two properties

(form and name) in the component specification. Inheriting from AbstractForm-

Component adds another requirement: implementing a disabled parameter of

type boolean.

 In addition, the whole point of the CreditCardField component is to allow

the user to enter a credit card number and update a domain object property.

Although the user interface is in the form of four text fields, each accepting

four digits, this is not the best way to represent the credit card number once

it’s submitted in the form. A single 16-digit string is much more natural. The

CreditCardField defines this, as the parameter cardNumber. This is another

example of the Model-View-Controller pattern: The Model (the domain

object property) represents the credit card number as a single string; the View

(the HTML rendered by the component) uses four individual fields. The Con-

troller, the CreditCardField class, is responsible for translating between the

two representations.

 Listing 8.9 shows how the CreditCardField class specifies its two parameters

(cardNumber and disabled) and two properties (form and name).

TEAM LinG - Live, Informative, Non-cost and Genuine!

356 CHAPTER 8

Advanced techniques

<?xml version="1.0"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 class="examples.cc.CreditCardField"
 allow-body="no" allow-informal-parameters="no">

 <parameter
 name="cardNumber"
 type="java.lang.String"
 direction="form"
 required="yes"/>

 <parameter name="disabled" type="boolean" direction="in">
 <description>
 If true, then all four text fields will be disabled.
 </description>
 </parameter>

 <property-specification
 name="form"
 type="org.apache.tapestry.IForm"/>
 <property-specification
 name="name"
 type="java.lang.String"/>

</component-specification>

The cardNumber parameter uses the value form for its direction attribute, which

makes sense for this purpose, a form element component. The property bound

to the cardNumber parameter will be updated (from the cardNumber property)

after the CreditCardComponent rewinds when the enclosing form is submitted.

The disabled parameter still uses in as its direction attribute; the disabled

property will be set from the parameter before the component renders (even

during a form rewind).

8.2.5 Creating the CreditCardField component

The CreditCardField Java class is shown in listing 8.10. CreditCardField extends

from AbstractFormComponent, a base class used by many different form element

components (such as Checkbox and TextField). AbstractFormComponent defines

two abstract properties, form and name, which we must implement (by specifying

Listing 8.9 CreditCardField.jwc: specification for the CreditCardField component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 357

those properties in the component specification). In addition, CreditCardField

is required to implement a disabled parameter.

package examples.cc;

import java.util.HashMap;
import java.util.Map;

import org.apache.oro.text.regex.MalformedPatternException;
import org.apache.oro.text.regex.Pattern;
import org.apache.oro.text.regex.Perl5Compiler;
import org.apache.oro.text.regex.Perl5Matcher;
import org.apache.tapestry.ApplicationRuntimeException;
import org.apache.tapestry.IForm;
import org.apache.tapestry.IMarkupWriter;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.IResourceLocation;
import org.apache.tapestry.IScript;
import org.apache.tapestry.engine.IScriptSource;
import org.apache.tapestry.form.AbstractFormComponent;
import org.apache.tapestry.form.FormEventType;
import org.apache.tapestry.html.Body;
import org.apache.tapestry.request.RequestContext;
import org.apache.tapestry.valid.IValidationDelegate;
import org.apache.tapestry.valid.ValidationConstraint;
import org.apache.tapestry.valid.ValidatorException;

public abstract class CreditCardField
 extends AbstractFormComponent
{
 private IScript _script;
 private Pattern _compiledPattern;
 private Perl5Matcher _matcher;

 public abstract void setCardNumber(String cardNumber);
 public abstract String getCardNumber();

 protected void renderComponent(IMarkupWriter writer,
 IRequestCycle cycle)
 {
 IForm form = getForm(cycle);

 String name = form.getElementId(this);
 boolean disabled = isDisabled();
 IValidationDelegate delegate = form.getDelegate();

 if (form.isRewinding())
 {

Listing 8.10 CreditCardField.java: Java class for the CreditCardField component

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

358 CHAPTER 8

Advanced techniques

 if (!disabled)
 updateCardNumberFromRequest(name, form, delegate, cycle);

 return;
 }

 if (cycle.isRewinding())
 return;

 String cardNumber[] = extractCardNumber(delegate);

 delegate.writePrefix(writer, cycle, this, null);

 for (int i = 0; i < 4; i++)
 {
 if (i > 0)
 writer.print(" - ");

 String fieldName = name + "$g" + i;

 writer.beginEmpty("input");
 writer.attribute("type", "text");
 writer.attribute("name", fieldName);
 writer.attribute("size", 4);
 writer.attribute("maxlength", 4);
 writer.attribute("value", cardNumber[i]);

 if (disabled)
 writer.attribute("disabled", "disabled");

 delegate.writeAttributes(writer, cycle, this, null);
 }

 delegate.writeSuffix(writer, cycle, this, null);

 if (!disabled)
 {
 if (_script == null)
 {
 IScriptSource source = cycle.getEngine().getScriptSource();
 IResourceLocation specLocation =
 getSpecification().getLocation().getResourceLocation();
 IResourceLocation scriptLocation =
 specLocation.getRelativeLocation(
 "CreditCardField.script");

 _script = source.getScript(scriptLocation);
 }

 Body body = Body.get(cycle);

 e

 f

 g

 h

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 359

 Map symbols = new HashMap();
 symbols.put("creditCardField", this);
 symbols.put("formatMessage",
 getMessage("card-number-format"));

 _script.execute(cycle, body, symbols);

 String formValidateFunction =
 (String) symbols.get("formValidateFunction");

 form.addEventHandler(FormEventType.SUBMIT,
 formValidateFunction);
 }
 }

 private void updateCardNumberFromRequest(
 String name,
 IForm form,
 IValidationDelegate delegate,
 IRequestCycle cycle)
 {
 RequestContext context = cycle.getRequestContext();

 StringBuffer buffer = new StringBuffer();

 for (int i = 0; i < 4; i++)
 {
 String value = context.getParameter(name + "$g" + i);

 if (value != null)
 {
 if (value.length() > 4)
 value = value.substring(0, 4);

 buffer.append(value);
 }

 while (buffer.length() < 4 * (i + 1))
 buffer.append(' ');
 }

 String cardNumber = buffer.toString();

 delegate.recordFieldInputValue(cardNumber);

 try
 {
 validate(cardNumber);
 setCardNumber(cardNumber);
 }
 catch (ValidatorException ex)

 i

 j

 1)

 1!

 1@

TEAM LinG - Live, Informative, Non-cost and Genuine!

360 CHAPTER 8

Advanced techniques

 {
 delegate.record(ex);
 }

 }

 private String[] extractCardNumber(IValidationDelegate delegate)
 {
 String cardNumber =
 delegate.getFieldInputValue();

 if (cardNumber == null)
 cardNumber = getCardNumber();

 if (cardNumber == null)
 return new String[] { "", "", "", "" };

 String[] result = new String[4];
 StringBuffer buffer = new StringBuffer(cardNumber);

 while (buffer.length() < 16)
 buffer.append(' ');

 for (int i = 0; i < 4; i++)
 result[i] = buffer.substring(4 * i, 4 * (i + 1));

 return result;
 }

 private void validate(String cardNumber)
 throws ValidatorException
 {
 if (_compiledPattern == null)
 {
 Perl5Compiler compiler = new Perl5Compiler();
 try
 {
 _compiledPattern = compiler.compile("^\\d{16}$");
 }
 catch (MalformedPatternException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 }

 if (_matcher == null)
 _matcher = new Perl5Matcher();

 if (_matcher.matches(cardNumber, _compiledPattern))
 return;

 1#

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 361

 String formatted =
 cardNumber.substring(0, 4)
 + "-"
 + cardNumber.substring(4, 8)
 + "-"
 + cardNumber.substring(8, 12)
 + "-"
 + cardNumber.substring(12);

 throw new ValidatorException(
 format("invalid-card-number", formatted),
 ValidationConstraint.NUMBER_FORMAT);
 }
}

The inherited getForm() method locates the enclosing Form component (repre-
sented as an instance of the IForm interface). From the Form, we obtain the name
used for this form control component.

This component integrates into the validation subsystem (from chapter 5) and
needs access to the validation delegate, which is provided by the Form component.

When the Form is rewinding, we don’t render HTML. Instead, we invoke this
method to assemble the 16-digit credit card number from the four query parame-
ters (one for each text field in the rendered form), as well as perform validations.

When rendering, the 16-digit credit card number must be split into four groups
of 4 digits.

As with a ValidField component, the validation delegate is allowed to render
before and after the text fields are rendered. This allows the validation delegate
to write HTML to support any application-specific look and feel.

The names for the individual text fields computed here must match against the
JavaScript generated by the script specification.

The script source is used to obtain an executable script. The location of the script is
computed relative to the component specification. Because of these extra steps
required to obtain the executable script instance, the instance is cached for later use.

Input symbols are provided to the executable script as a Map.

The script is executed. It will modify the symbols Map as it executes. It will also
communicate with the Body component to contribute JavaScript to the page’s
script block.

The formValidateFunction symbol is created by the script to store the name of a
client-side JavaScript function that must be hooked into the form to validate the
fields. The addEventHandler() method is used to inform the enclosing Form
component about the function.

 b

 c

 d

 e

 f

 g

 h

 i

 j

 1)

TEAM LinG - Live, Informative, Non-cost and Genuine!

362 CHAPTER 8

Advanced techniques

The validation delegate can store only a single input string, so the 16-digit credit
card number is recorded. If the client has disabled JavaScript, then this value
may not be a valid credit card number and will be used when the form renders to
present errors.

As with a ValidField, the input is validated before the final value (a valid 16-digit
credit card number) is assigned to the cardNumber parameter.

If the validation delegate has a recorded input value for this component, then
use that value (it represents a value provided by the user). Otherwise, obtain the
value from the cardNumber parameter.

Even though CreditCardField is not a ValidField, it expects the form to have a

delegate and will make use of it to report any input errors. This can happen only

if the client web browser fails to do its part, probably because the user has explic-

itly disabled JavaScript. In any case, if invalid data does make it to the server, the

component will perform its own validations, but will interact with the validation

delegate to visually show that the component (all four fields) is in error. Figure 8.7

shows an example of this.

 1!

 1@

 1#

Figure 8.7 The component does its own validations, in case JavaScript is not enabled in the client.

The component interacts with the input validation subsystem to adjust the visual display of the

fields to reflect that the component is in error.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 363

The CreditCardComponent has a number of responsibilities: It must render the

HTML for the four credit card fields as well as the JavaScript that supports the

four fields, and it must handle form submissions for the fields. It also translates

between the client-side data format (four fields of 4 digits) and the server-side

data format (a single 16-digit string).

Rendering the component

Because this is a form element component, the first step in the renderComponent()

method is to find the enclosing Form component and have the Form provide a

name for this element. The AbstractFormComponent base class provides most of

this functionality:

IForm form = getForm(cycle);

String name = form.getElementId(this);
boolean disabled = isDisabled();
IValidationDelegate delegate = form.getDelegate();

If the form is rewinding, we extract the credit card number from the query

parameters, validate the number, and return:

if (form.isRewinding())
{
 if (!disabled)
 updateCardNumberFromRequest(name, form, delegate, cycle);

 return;
}

Alternately, if the page as a whole is rewinding but not specifically this form, we

can skip the rest. This scenario occurs only when the action service is used:

if (cycle.isRewinding())
 return;

Next we render the four fields and the dashes that separate them. The first step

is to extract the 16-digit credit card number and break it apart into four strings,

one for each 4-digit group. We can then render each group as its own text field:

String cardNumber[] = extractCardNumber(delegate);

delegate.writePrefix(writer, cycle, this, null);

for (int i = 0; i < 4; i++)
{
 if (i > 0)
 writer.print(" - ");

TEAM LinG - Live, Informative, Non-cost and Genuine!

364 CHAPTER 8

Advanced techniques

 String fieldName = name + "$g" + i;

 writer.beginEmpty("input");
 writer.attribute("type", "text");
 writer.attribute("name", fieldName);
 writer.attribute("size", 4);
 writer.attribute("maxlength", 4);
 writer.attribute("value", cardNumber[i]);

 if (disabled)
 writer.attribute("disabled", "disabled");

 delegate.writeAttributes(writer, cycle, this, null);
}

delegate.writeSuffix(writer, cycle, this, null);

In addition, we invoke methods on the validation delegate to decorate our fields

if they are in error.

Converting the server-side value

The credit card number stored as a server-side property is a 16-digit string, but

when rendering the four text fields, four smaller (4-digit) strings are needed.

This is handled in the extractCardNumber() method.

 In addition, another interaction with the input validation subsystem occurs

here. When a form is submitted, the validation delegate records the input pro-

vided by the user, before the values are converted and validated. If the form is

redisplayed (due to an error), the validation delegate is the source of the uncon-

verted values. The validation delegate’s getFieldInputValue() method is used to

gain access to the exact input provided by the user so that the invalid input can

be sent back to the user for correction:

private String[] extractCardNumber(IValidationDelegate delegate)
{
 String cardNumber = delegate.getFieldInputValue();

 if (cardNumber == null)
 cardNumber = getCardNumber();

 if (cardNumber == null)
 return new String[] { "", "", "", "" };

 String[] result = new String[4];
 StringBuffer buffer = new StringBuffer(cardNumber);

 while (buffer.length() < 16)
 buffer.append(' ');

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 365

 for (int i = 0; i < 4; i++)
 result[i] = buffer.substring(4 * i, 4 * (i + 1));

 return result;
}

So far, we’ve covered somewhat familiar ground; CreditCardComponent is sim-

ply a complicated component. What makes it interesting is what comes next:

adding the client-side JavaScript.

Obtaining the script

The final portion of the renderComponent() method involves obtaining and exe-

cuting the script specification. The script specification is stored in the WEB-INF

folder alongside the component specification and is named CreditCard-

Field.script. The script specification must be parsed and converted into an exe-

cutable script: an instance of the IScript interface.

 Scripts are obtained from the script source, a Tapestry subsystem accessible

via the engine. To get a script, we must know the location of its script specifica-

tion. We are able to build a location relative to the component’s specification:

Body body = Body.get(cycle);

if (_script == null)
{
 IScriptSource source = cycle.getEngine().getScriptSource();
 IResourceLocation specLocation =
 getSpecification().getLocation().getResourceLocation();
 IResourceLocation scriptLocation =
 specLocation.getRelativeLocation("CreditCardField.script");

 _script = source.getScript(scriptLocation);
}

It’s likely that the page containing the CreditCardComponent will be used many

times, so we cache the IScript instance in the _script instance variable. The

script source also caches parsed script specifications (once it parses a script spec-

ification, it doesn’t parse it a second time), so all we’re saving is the runtime cost

of constructing the script specification’s location.

Executing the script

To execute the script, we need to get the Body component. The Body class

includes a static method for accomplishing this:

Body body = Body.get(cycle);

Next we must create the input symbols that are passed to the script when it executes:

TEAM LinG - Live, Informative, Non-cost and Genuine!

366 CHAPTER 8

Advanced techniques

Map symbols = new HashMap();
symbols.put("creditCardField", this);
symbols.put("formatMessage", getMessage("card-number-format"));

With everything in place, we can now execute the script, which will communicate

with the Body component:

_script.execute(cycle, body, symbols);

The final step is to connect the form’s validate function to the Form component.

The script will have modified the symbols Map passed to it. The Map now includes

all the symbols created using the <let> and <set> elements, including the form-

ValidateFunction symbol. It is easy enough to extract the value for that symbol,

which is the name of the JavaScript function:

String formValidateFunction =
 (String) symbols.get("formValidateFunction");

form.addEventHandler(FormEventType.SUBMIT, formValidateFunction);

The Form component includes an addEventHandler() method that allows the

components it encloses to hook into its onsubmit event handler. Any number of

components may provide the names of JavaScript event handler functions to

execute; the Form component will execute each in turn.

Handling form submissions

When the form containing the CreditCardField component is submitted, the Cred-

itCardField is responsible for reading the query parameters submitted as part of the

form, assembling the 16-digit card number from the four text fields, validating the

card number, and updating the creditCard parameter property with the final value.

 Most of this logic is present in the updateCardNumberFromRequest() method. It

makes use of the RequestContext object to access the query parameters posted by

the form:2

private void updateCardNumberFromRequest(
 String name,
 IForm form,
 IValidationDelegate delegate,
 IRequestCycle cycle)
{

2 Although you can also get access to the HttpServletRequest to read query parameters, it is best to
use the RequestContext object. Because of the way the Servlet API handles file uploads (as discussed
in chapter 4), when a form contains an Upload component, the HttpServletRequest object will not
have access to the query parameters, but the RequestContext object will.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Client-side scripting 367

 RequestContext context = cycle.getRequestContext();

 StringBuffer buffer = new StringBuffer();

 for (int i = 0; i < 4; i++)
 {
 String value = context.getParameter(name + "$g" + i);

 if (value != null)
 {
 if (value.length() > 4)
 value = value.substring(0, 4);

 buffer.append(value);
 }

 while (buffer.length() < 4 * (i + 1))
 buffer.append(' ');
 }

 String cardNumber = buffer.toString();

 delegate.recordFieldInputValue(cardNumber);

 try
 {
 validate(cardNumber);
 setCardNumber(cardNumber);
 }
 catch (ValidatorException ex)
 {
 delegate.record(ex);
 }

}

The method has extra checks on the length and format of the credit card num-

ber that duplicate the client-side checks. This is still appropriate, since there is

no way to ensure that the client-side validations took place (the client web

browser may have JavaScript disabled, or may not even be a web browser).

 A key part of the validation subsystem is the IValidationDelegate’s record-

FieldInputValue() method. This is used to record the value of a submitted Valid-

Field before it is converted to a target type and validated. This explains how,

when a form is redisplayed with errors, the input provided by the user can be

redisplayed as entered; the input “lives” inside the validation delegate until

needed to redisplay the form.

 Since the CreditCardField should mimic the behavior of a ValidField compo-

nent, it too must inform the validation delegate about the user’s input.

TEAM LinG - Live, Informative, Non-cost and Genuine!

368 CHAPTER 8

Advanced techniques

 Before updating the cardNumber parameter property, the complete credit card

number is validated, using the validate() method. This method checks that the

number consists of 16 digits; if it doesn’t, the method formats an error message

and throws a ValidatorException. The updateCardNumberFromRequest() method

catches that exception and passes it to the Form’s validation delegate.

8.2.6 Using the component

So far, we’ve shown how to create a complex component, a component that ren-

ders a complex mix of HTML and JavaScript. Despite this, the component fits

into the overall page’s HTML template very simply:

<tr>
 <th>
 <span jwcid="@FieldLabel"
 displayName="Credit Card Number"
 field="ognl:components.inputNumber">
 Credit Card Number

 </th>
 <td>
 <input type="text"
 jwcid="inputNumber@CreditCardField"
 cardNumber="ognl:cardNumber"
 size="50"/>
 </td>
</tr>

As you can see, using the CreditCardField component is no more complex than

using a ValidField component. We’re using a FieldLabel with the CreditCard-

Field, just as we did in chapter 5. When previewing the page, the component will

display as a single, 50-character wide text field (even though in the live applica-

tion, it renders as four small text fields).

 Adding client-side JavaScript support to a component is one of the more

complex tasks you will face as a Tapestry developer—but by keeping a clear head

about which code (Java or JavaScript) is executed where (on the server or in the

client web browser) and when (at page render, within the client, or on form sub-

mission), you’ll ensure that the entire process is manageable. Tapestry includes

the necessary subsystems and hooks to provide you with the flexibility you need to

create powerful, reusable components.

 Up to this point, we’ve discussed integrating components with Tapestry

engine services and integrating components with dynamically generated Java-

Script. Another common task is to integrate a Tapestry application with a

non-Tapestry application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Integrating with JavaServer Pages 369

8.3 Integrating with JavaServer Pages

There will be times when you must make a Tapestry application work in concert

with a standard servlets-and-JSP application. Most likely, you have an existing

application, and you want to transition to a Tapestry implementation but can’t

do it all in one fell swoop. What you need is a hybrid application, partly written

using Tapestry and partly written using servlets and JSPs.

 In some cases, JSPs will have links that connect to Tapestry pages, or forms

that submit to Tapestry pages. On the flip side, you may have listener methods

that use a JSP (or even some other servlet) to render a response. Tapestry sup-

ports all of these scenarios.

 We’ll explore all of these possibilities using the sample application; you can

open a web browser to http://localhost:8080/examples/app and select the JSP link

under the chapter 8 heading.

8.3.1 Redirecting to a JSP

On the Tapestry side, you may need to use a JSP to render a response. For exam-

ple, in figure 8.8 a Tapestry page contains two links that invoke the Tapestry

application, but the responses are ultimately rendered by a JSP.

Figure 8.8 The Tapestry page used to redirect to one of the JSPs.

TEAM LinG - Live, Informative, Non-cost and Genuine!

370 CHAPTER 8

Advanced techniques

The template for the page is shown in listing 8.11. This page makes use of the

Border component to render the top and bottom of the page. It includes two

links, using the DirectLink component. Clicking those links invokes listener

methods, but the ultimate responses are provided by a pair of JSPs.

You may:

 <a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.displayPageTagDemo">Page Tag Demo:
 View a page demonstrating the <tapestry:page> tag

 <a href="#" jwcid="@DirectLink"
 listener="ognl:listeners.displayExternalTagDemo">External
 Tag Demo:
 View a page demonstrating the <tapestry:external-url>
 tag

As you’ve seen before, normally when a DirectLink component is triggered by a

request, the default behavior (after invoking the component’s listener method) is

to render the page containing the component. Alternately, a different Tapestry
page may be activated to render the response. As before, with the banner service,

we’ll use the RedirectException to sidestep this ordinary behavior and instead

redirect to another URL:

public void displayPageTagDemo(IRequestCycle cycle)
{
 throw new RedirectException("PageTagDemo.jsp");
}

public void displayExternalTagDemo(IRequestCycle cycle)
{
 throw new RedirectException("ExternalTagDemo.jsp");
}

In this case, we are specifying a local resource rather than a complete URL. Tapes-

try will not send a redirect to the client web browser (as it did with the banner ads

example). Instead, it will instruct the Servlet API to forward the current request to

Listing 8.11 JSP.html: HTML template for the JSP

TEAM LinG - Live, Informative, Non-cost and Genuine!

Integrating with JavaServer Pages 371

the named resource.3 In this case, the resource is a JSP, but it could be the path of

any servlet, or even a static resource, such as an image or an HTML file.

 Relative paths are relative to the servlet. In this case, the two JSPs are in the

context root directory, along with the HTML templates. Absolute paths, starting

with a leading slash, are relative to the context.

 These two examples represent some unnecessary complexity; the HTML tem-

plate could just as easily include and <a href=

"ExternalTagDemo.jsp">. However, the same technique works in more compli-

cated cases, such as handling a form submission, or when it is necessary to per-

form some kind of business operation before redirecting to the JSP.

 That’s the easy side of the equation; the tough side is getting a JSP to call into

a Tapestry application.

8.3.2 Linking JSPs to Tapestry pages

Linking from a JSP back into the Tapestry application involves creating a link with

the correct URL. The application URLs used by Tapestry have a very regular for-

mat, as we discussed in chapter 7. For example, a JSP could include a link such as

 to create a link to the Tapestry Home page.

Despite this regularity, hard-coding links in this way is not advisable:

■ A static URL like this is not properly encoded;4 a client that does not sup-

port HTTP cookies will lose its HttpSession.

■ If the target page is variable, a Java scriptlet will be needed to construct
the correct URL.

■ If a new release of the framework changes the encoding system used for
application URLs, then the JSP will generate invalid URLs (just such a
change occurred between releases 2.3 and 3.0).

■ If the application has overridden the default engine service implementa-

tions (either to encode additional information or to control the format of

the URL in an application-specific way), the JSP may not encode the infor-

mation correctly.

3 Specifically, it obtains the RequestDispatcher object for the resource, and then invokes the for-
ward() method on it.

4 All application URLs provided to the client web browser should be encoded using the HttpServlet-
Response method encodeURL(). This method ensures that the HttpSession ID is encoded into the
URL when the client doesn’t allow cookies. Tapestry services automatically invoke this method as
needed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

372 CHAPTER 8

Advanced techniques

In short, there’s no substitute for having a Tapestry engine service construct the

URL for that service. That’s what the framework does internally, and it is what we

want here, even though a JSP is responsible for rendering the response. It isn’t

possible to drop a Tapestry component into a JSP, but it is possible to make use of

a close cousin to a Tapestry component: a custom JSP tag.

 The Tapestry framework includes a custom JSP tag library expressly for this

purpose. The library allows you to easily create links to pages, leveraging the

Tapestry page and external services. Figure 8.9 illustrates a JSP that makes use of

two of the tags from the library to create links to pages.

 The first custom tag is used to create an <a> hyperlink element that links to a

particular page. The second tag creates just the URL portion and is incorporated

into a client-side script that raises the window into a pop-up window. The source

for this page is shown in listing 8.12.

<%@ taglib
 uri="http://jakarta.apache.org/tapestry/tld/tapestry_1_0.tld"
 prefix="tapestry" %>

Listing 8.12 PageTagDemo.jsp: JSP using the page and page-url tags

Figure 8.9 The HTML page displayed here was rendered by a JSP and uses the Tapestry tag library

to render the two links back into the Tapestry application.

 b

TEAM LinG - Live, Informative, Non-cost and Genuine!

Integrating with JavaServer Pages 373

<html>
<head>
<title>Tapestry JSP Page</title>
</head>
<body>
<script>
<!--

function raiseTarget(targetURL)
{
 var width = 200;
 var height = 200;
 var screenX = Math.floor((screen.width)/2)
 - Math.floor(width/2);
 var screenY = Math.floor((screen.height)/2)
 - Math.floor(height/2) - 20;

 var features =
 "toolbar=no," +
 "scrollbars=no," +
 "status=no," +
 "top=" + screenY + "," +
 "left=" + screenX + "," +
 "screenX=" + screenX + "," +
 "screenY=" + screenY + "," +
 "width=" + width + "," +
 "height=" + height;

 window.open(targetURL, "TargetPage", features).focus();
}
-->
</script>

Two examples of invoking Tapestry pages from a JSP
using the tag library:

 Using <tapestry:page> to
 <tapestry:page page="Target">display the
 target page</tapestry:page>

 Using <tapestry:page-url> to
 <a href="javascript:raiseTarget(
 '<tapestry:page-url page="Target"/>');">raise the
 target page in a new window

</body>
</html>

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

374 CHAPTER 8

Advanced techniques

This code declares the use of the Tapestry tag library within this JSP, using the
prefix tapestry: for the tags provided by the library.

The tapestry:page tag is very similar to the PageLink component; it creates a
link that will reference a Tapestry page.

The tapestry:page-url tag writes out just the URL for a Tapestry page; it is
meant for incorporation into JavaScript, as shown here.

Before we use these custom JSP tags, let’s see how to declare a tag library for use

within a JSP.

Declaring the tag library

Every JSP page that makes use of a tag library must declare the tag library using

a JSP taglib directive, which is shown at the start of the listing. This declaration

identifies the taglib in terms of a resource URI (Uniform Resource Identifier)

and indicates the prefix to be used within the JSP to reference tags defined by the

library. The JSP engine doesn’t look for the named resource on the Internet

(which is fortunate since it does not exist); the resource URI is just used as a key

to indirectly locate the tag library descriptor.

 A tag library descriptor is an XML file that defines the tags in a library. For each

tag, it further defines the parameters allowed for the tag. The descriptor for

each tag library used in the application must be included somewhere inside the

web application archive.

 The web.xml deployment descriptor matches taglib resource URIs to tag

library descriptors. For the example application, the web.xml deployment

descriptor includes the following elements:

<taglib>
 <taglib-uri>
 http://jakarta.apache.org/tapestry/tld/tapestry_1_0.tld
 </taglib-uri>
 <taglib-location>
 /WEB-INF/lib/tapestry-3.0.jar
 </taglib-location>
</taglib>

This declares the tag library to be packaged as part of the Tapestry framework

JAR. The tag library descriptor is stored inside the Tapestry framework JAR as

the file META-INF/taglib.tld. For this to work, the Tapestry framework must be

stored in the web application archive rather than on the general classpath.

 b

 c

 d

TEAM LinG - Live, Informative, Non-cost and Genuine!

Integrating with JavaServer Pages 375

Using the page tag

The most basic of the Tapestry custom JSP tags is the page tag, which is very

much like a PageLink component:

<tapestry:page page="Target"> . . . </tapestry:page>

The tapestry: prefix matches the taglib directive previously discussed (it is

often the case that a single JSP makes use of many taglibs, each with its own pre-

fix). Where Tapestry components have parameters, JSP tags have attributes.

Table 8.2 lists the attributes for the page tag.

JSP tags don’t have the equivalent of Tapestry’s informal component parameters.

Because it is common to want to specify the CSS class for the <a> tag rendered by

the page tag, an optional attribute for that purpose, styleClass, is provided.

 Sometimes, you don’t want the entire <a> tag and just need the application

URL generated by the service. On the example page, the second link doesn’t

directly trigger a request; it invokes a JavaScript function to raise the Target page

in a new window. An <a> element is used that incorporates a page-url tag:

<a href="javascript:raiseTarget(
 '<tapestry:page-url page="Target"/>');"> . . .

Unlike the page tag, which wraps around a portion of the JSP, the page-url tag is

empty (much like a Tapestry component that discards its body). The tag is

replaced by the application URL for the named page. The page-url tag accepts

the same page and servlet attributes as the page tag.

8.3.3 Submitting JSP forms into Tapestry

There are times when a JSP will contain a form that must be processed by Tapes-

try. It isn’t possible to leverage the normal Tapestry form submission mecha-

nism—that’s based on a Form component and form element components within

a Tapestry page, things that can’t exist within a JSP. Instead, the JSP form submis-

sion must be processed in the traditional servlets way: by obtaining values for

query parameters.

Table 8.2 Attributes for the Tapestry page tag

Attribute Required Description

page Yes The Tapestry page we want to link to

servlet No The path to the Tapestry servlet; defaults to /app

styleClass No If specified, becomes the HTML class attribute

TEAM LinG - Live, Informative, Non-cost and Genuine!

376 CHAPTER 8

Advanced techniques

But what can a JSP submit to? As before, the level of granularity is an entire Tap-

estry page, not a component within the page. How could the JSP know the ID of

a component, especially if the component is anonymous? This is where the exter-

nal service comes in: It provides a hook, in the form of the activateExternal-

Page() method, where we can process the form submission.

 Figure 8.10 shows such a page. It contains a simple form into which you can

enter a name. The form submits into a Tapestry page that displays the name

entered in the JSP-based form.

NOTE Don’t be confused by the URL displayed in the address field of figure 8.10.
Referring back to chapter 7, you can see that the URL in the window cor-
responds to clicking some DirectLink within the Tapestry page named
JSP (the page shown in figure 8.9). As you’ve seen, the listener for that
component performed a server-side redirect to the JSP (which is named
ExternalTagDemo.jsp). Because this was a server-side (not client-side)
redirect, the address field still displays the URL used to trigger that Direct-
Link component.

This JSP builds the <form> around a Tapestry application URL provided by an

external-url tag. The source for the JSP is shown in listing 8.13.

Figure 8.10 A JSP containing a simple form. The form will submit to an external page.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Integrating with JavaServer Pages 377

<%@ taglib
 uri="http://jakarta.apache.org/tapestry/tld/tapestry_1_0.tld"
 prefix="tapestry" %>

<html>
<head>
<title>Tapestry JSP Page</title>
</head>
<body>

<form
 action="<tapestry:external-url page="JSPForm"/>"
 method="POST">

Enter your name:
<input type="text" name="userName" maxlength="100" size="40"/>

<input type="submit"/>

</form>

</body>
</html>

The example in listing 8.13 resembles the previous one. It starts with a taglib

declaration for the Tapestry tag library. The two key points are as follows:

■ The action URL for the form is provided by the external-url tag.

■ The method for the form is POST, not GET.

Why POST? The URL provided by the external-url tag includes a query parame-

ter, service. When using GET, the client web browser can omit this query

parameter in favor of the query parameters provided in the form submission.

Using the POST method, the query parameters in the action and from within the

form are properly integrated.

 On the flip side, when the form is submitted, the JSPForm Tapestry page is

activated. The source for this class is shown in listing 8.14.

package examples;

import org.apache.tapestry.IExternalPage;
import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;

Listing 8.13 ExternalTagDemo.jsp: JSP using the external-url tag

Listing 8.14 JSPForm.java: Java class for the JSPForm page

TEAM LinG - Live, Informative, Non-cost and Genuine!

378 CHAPTER 8

Advanced techniques

public abstract class JSPForm extends BasePage
 implements IExternalPage
{
 protected abstract void setUserName(String userName);

 public void activateExternalPage(Object[] parameters,
 IRequestCycle cycle)
 {
 String userName =
 cycle.getRequestContext().getParameter("userName");

 setUserName(userName);
 }

}

The activateExternalPage() method ends up with all the responsibility for pro-

cessing the form, much like a traditional servlet. Here, the userName query

parameter is extracted and stored into the matching userName page property,

where it will be available to the page’s HTML template when the page renders.

Using service parameters with the external-url tag

As with the ExternalLink component, it is possible to encode service parameters

when using the external-url tag. This is one way to pass additional information

along with the form submission (the other is to make use of hidden form fields).

 Table 8.3 lists the attributes that may be used with the external-url tag. The

last attribute, parameters, is used to specify the service parameters. This value

can be either a single string or (by prefixing the string with ognl:) an OGNL

expression. The OGNL expression is evaluated in the JSP context; it will have

access to the HttpServletRequest and HttpSession, as well as any beans declared

in the JSP.

Table 8.3 Attributes used with the external-url tag

Attribute Required Description

page Yes The Tapestry page to link to, which must implement the

IExternalPage interface

servlet No The path to the Tapestry servlet; defaults to /app

parameters No Used to specify service parameters

TEAM LinG - Live, Informative, Non-cost and Genuine!

Summary 379

A final note: In addition to the external-url tag, there is an external tag that

generates an <a> element, much like the page tag. Like the page tag, the external

tag includes a styleClass attribute.

8.4 Summary

In previous chapters, we discussed how to extend the Tapestry framework from

within, by using the services and components available with the framework, even

to the point of creating new components. That’s just scratching the surface of

Tapestry. Because of its open-ended, object-oriented structure, the framework

has untold avenues for extension. You can bend Tapestry to the needs of your

project—even when your project needs new kinds of services, or complex client-

side scripting, or even integration into an existing JavaServer Pages application.

 So far, the examples and discussions in this book have concerned isolated

examples, but that’s not how Tapestry is used in real life: It is used to create

working applications. Chapters 9 and 10 describe a real-world Tapestry applica-

tion and demonstrate how the approaches explained in this and the preceding

chapters are utilized in a real project.

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

Part 3

Building complete Tapestry
applications

Chapters 9 and 10 focus on the Virtual Library, a Tapestry-driven exam-

ple J2EE application. Within the context of a complete application, you’ll be

exposed to many of the design and development issues common to web appli-

cations, and you’ll see good examples of how to address those issues.

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

383

Putting it all together

This chapter covers

■ The Virtual Library application

■ Thinking about application flow

■ Limiting access to parts of the application

TEAM LinG - Live, Informative, Non-cost and Genuine!

384 CHAPTER 9

Putting it all together

So far in this book we’ve focused on individual components or simple isolated

examples—but that’s not how Tapestry is supposed to be used. New issues arise

when you’re creating a real working application:

■ Who is the user?—Most applications have some concept of users and

logging in, and some aspects of the application change once the user has

been authenticated.

■ Can the user view this page?—Parts of an application may be accessible
only to users who have logged in. Some applications may impose more
restrictions, preventing some users from accessing certain pages.

■ How do I know what to display on this page?—More important, if the page

is redisplayed (for example, if the user logs in and is returned to the same

page afterward), is there server-side state to determine what to display?

In this chapter, we’ll describe the functionality of a demonstration application

included in the Tapestry distribution: the Tapestry Virtual Library. In the next

chapter, we will implement the application.

9.1 Introducing the Virtual Library

Ever notice all those books lining the shelves of your cubicle, as well as all the

cubicles of your neighbors? Ever notice the degree of duplication of books? You

might need a book just for a week or two, and so you buy your own copy of it. It

might be nice to get a copy from the library, but public libraries are probably not

up to date enough with cutting-edge technical books. What if there was a way to

find a copy of a book you needed that just happened to be gathering dust on a

coworker’s shelf? What if there was a way to track where borrowed books are

(which makes the books’ owners more amenable to lending them out)? That’s the

Virtual Library, a kind of match-making application for books.

 The Virtual Library is an application, built using Tapestry, that implements

this idea. It tracks books and the people who own and borrow those books. The

Virtual Library includes search capabilities that allow you to find books of inter-

est and records that you’ve borrowed them. It also includes all the necessary

pages for creating and editing a record of your books.

 The Tapestry distribution includes the precompiled Enterprise Application

Archive (EAR) containing the presentation layer for the Virtual Library, as well as

the Enterprise JavaBeans (EJBs) that perform database access.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Performing searches 385

 This chapter takes you on a tour of all the pages in the application, spotlight-

ing interesting challenges related to the functionality on each page. Chapter 10

describes the implementation of the Virtual Library application.

 The Tapestry distribution includes all the necessary directions for configuring

and starting an instance of the open-source JBoss application server to execute

the Virtual Library application. Nearly all the configuration is done automati-

cally using an Ant build script. Once JBoss is up and running, the Virtual Library

application may be accessed using the URL http://localhost/.

9.2 Performing searches

After launching the application, you will be presented with the application’s

search page, shown in figure 9.1. Since you must locate books before you can

borrow them, this page is the central focus of the application. The Search page

includes a form that allows you to search for books by entering a partial title or

author name, the name of the book’s owner (using a drop-down list), or the

name of a publisher (again, using a drop-down list).

 All pages in the Virtual Library include a navigational border that identifies

the application and page title along the top, and that provides a navigation

menu linking to different parts of the application along the left edge. Initially,

Figure 9.1 The Search page allows books to be located by title, author, owner, or publisher. The

navigation menu along the left side expands once you execute the search, or after you log into the

application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

386 CHAPTER 9

Putting it all together

the only selections in the navigation menu are Search, My Library, and Login.

Once you log in, more options appear in the navigation menu.

 After entering search terms and clicking the Search button, you are presented

with a listing of books matching the search criteria (figure 9.2). The Matching

Books page presents these results in a table format, complete with navigation

options for paging through the results.

 The main listing is the title, author, publisher, owner, and current borrower (if

any) for each book. Names of books and people are clickable links leading to

detail pages about the book or user. Recently added books are marked with a

“new” icon. Until you log in, books added in the previous month are marked

new; but after you log in, the application knows when your previous visit

occurred, and only books added since then are marked new.

 The far-right column, Borrow, contains buttons for borrowing books. The

column starts empty, since only authenticated users may borrow books. After you

log in, icons will appear for books you may borrow—that is, books you aren’t

already in possession of. In addition, a book owner may mark a book as nonlend-

able; such a book will appear in the listing, but no borrow icon will ever appear

for it.

Figure 9.2 Search results listing matching books. Columns may be sorted using the links and icons

across the top, and the results may be paged through using the controls along the left edge.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Performing searches 387

9.2.1 Changing the table sort order

The columns may also be sorted; initially the listing is sorted by book title (in

ascending order), which is indicated by the triangle icon in the Title column. Fig-

ure 9.3 shows how you may sort columns using either links or visible icons. Click-

ing on a column title sorts (or re-sorts) the results according to the content

within that column.

 Many pages in the application display lists of books, much like the Matching

Books page. All of these pages allow you to control sort order in the same way.

9.2.2 Paging through the results

Because the book listing may be very large, the Virtual Library pages the results,

showing 15 books per page. When a book listing is displayed, a set of page navi-

gation controls appears along the left side, under the navigation menu. Figure 9.4

shows the detail for this portion of the page.

 These controls show the total number of books in the listing and the range

currently showing. Four buttons control navigation: First, Previous, Next, and

Last. The First and Previous buttons are disabled on the first page of the listing,

and the Next and Last buttons are disabled on the last page. Disabled buttons

are drawn “grayed out” to provide additional feedback to you that it is not

appropriate to click the button.

 As with sorting, all pages that display lists of books use the same page naviga-

tion controls.

Figure 9.3

Clicking the column name or

the sort icon toggles between

ascending and descending

sort order. Clicking a different

column title re-sorts the table

on that column instead.

Figure 9.4

This control allows navigation through the query

results a page at a time (each page showing 15

books), or lets you jump to the first or last page. The

buttons on the left are disabled since the first page is

showing. The button under the cursor is highlighted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

388 CHAPTER 9

Putting it all together

9.3 Logging in and registering

You may log into the Virtual Library from any page by clicking the Login link in

the navigation menu. After you log in, you are returned to the page where you

started. The My Library link will also allow you to log in but will send you to the

My Library page instead.

 The Login page, shown in figure 9.5, makes use of the validation subsystem

described in chapter 5. Entering an unknown email address or an invalid pass-

word redisplays the form with an error message and the invalid fields well

marked, as shown in figure 9.6. For security reasons, even if you entered a pass-

word, the Password field is redisplayed empty.

Figure 9.5 The user’s email address is used as a login ID. You may also register on the fly. Return

users will see their email address filled in automatically and have to enter only their password.

Figure 9.6 The Virtual Library uses the validation subsystem from chapter 5. Errors are

clearly displayed and invalid fields marked.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Borrowing books 389

The sample database that comes with the Virtual Library includes three users:

ringbearer@bagend.shire, squeue@bug.org, and dilbert@bigco.com. All three

use the same password, secret.
 New users can register on the fly by clicking the “Register now” link on the

Login page. This displays the Register page, shown in figure 9.7.

 After logging in or registering, you are returned to the page where you

started. Because you are now authenticated, borrow icons will appear for books

you can borrow, and additional navigation links are shown, as illustrated in fig-

ure 9.8.

9.4 Borrowing books

To borrow a book, click the borrow book icon (it appears in the Matching Book

page, and in the View Person and View Book pages we haven’t discussed yet).

This will update the Virtual Library database, identifying you as the holder of

the book. This is your opportunity to stroll over to the owner’s cubicle and get

the actual, physical book. When borrowing a book, you will be returned to the

Search page, and an informational message will be displayed, as shown in fig-

ure 9.9.

Figure 9.7 New users can register at any time by providing their name, email, and password. The

password is entered twice to ensure accuracy.

TEAM LinG - Live, Informative, Non-cost and Genuine!

390 CHAPTER 9

Putting it all together

9.5 Getting details about books and persons

Throughout the application, whenever the name of a book or the name of a per-

son appears, it is displayed as a link. Clicking the link directs you to a details

page, showing more information about that book or about that person.

9.5.1 Viewing book details

Figure 9.10 shows an example of the View Book page. The page displays all the

information provided by the book’s owner, including a long description of the

book. The page includes links to the book’s owner and the person currently

holding the book (which may be the book’s owner or another user borrowing the

Figure 9.8 After logging in (or registering), you are returned to the original page. You may now

borrow books, and you have additional navigation options (listed under My Library).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Getting details about books and persons 391

Figure 9.9 After borrowing a book, you are returned to the Search page, and a reminder

appears.

Figure 9.10 Clicking the name of a book displays the details about a book, with an icon for

borrowing the book, as well as links to the book’s owner and holder.

TEAM LinG - Live, Informative, Non-cost and Genuine!

392 CHAPTER 9

Putting it all together

book). In addition, the View Book page includes a borrow icon (but only if the

current user has logged in).

 The ability to log into the application on the fly is very handy here. Figure 9.10

shows an example of the View Book page after a user has logged in; it includes a

borrow icon. If you were, instead, to launch the Virtual Library and do a search

without logging in first, there would be no borrow icon. A poorly designed sys-

tem would require you to log in and then perform the search again before you

could borrow the book. The Virtual Library allows you to log in on the fly and

automatically returns you to the page you were viewing before logging in, at

which point a single additional click will borrow the book.

9.5.2 Viewing a person

Clicking on a person’s name displays the View Person page for that person,

which includes a listing of all the books owned by that person (if any). An exam-

ple of the View Person page is shown in figure 9.11. As elsewhere, the list of

books can be paged through or re-sorted, and borrow icons appear for all appro-

priate books, provided the current user has logged in.

Figure 9.11 The View Person page includes a listing of the books owned by the person, with

yet more icons for borrowing books. The book Bitter Java may not be borrowed, because

Bender Robot is the current user and is currently holding the book.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Managing your books 393

The borrow icon does not appear unless the user is logged in. Even for a

logged-in user, the icon does not appear if the current user is already holding

the book, or if the book is not lendable (the owner of a book selects whether

books can be borrowed).

9.6 Managing your books

The My Library page is the starting point for managing the books that you own.

From the My Library page (and by using the menu items listed below My

Library), it is possible to add records for new books, modify existing books’

records, and even give books away to other users of the application.

 The My Library page (shown in figure 9.12) shows the entire list of books the

current user owns, with controls to allow you to edit or delete existing books. It is

Figure 9.12 This interface is used to edit or delete books owned by the current user.

TEAM LinG - Live, Informative, Non-cost and Genuine!

394 CHAPTER 9

Putting it all together

accessed using the My Library link in the navigation menu. As with other book

listings, the My Library page includes navigation controls for paging through

the list and lets you change the sort order of the list. Each book has a pair of but-

tons for editing and deleting the book. Unlike the other pages, the book titles in

My Library are not links; this is to remove any ambiguity about what clicking the

link would do (would it show the book detail or edit the book?).

9.6.1 Editing a book

Clicking the edit icon for a book in the My Library page allows the details of a

book to be edited. The Edit Book page, shown in figure 9.13, is a form allow-

ing you to update the details of the book, including the current borrower of

the book.

Figure 9.13 Books may be edited, updating all information, including who is currently borrowing the

book. Publishers may be selected from a list or entered into the text field (but not both).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Managing your books 395

An interesting aspect of this page is the Publisher field. You can either select an

existing publisher from the drop-down list or leave the drop-down blank and

enter the name of a new publisher into the adjacent text field. This input behav-

ior is backed up by client-side JavaScript that enables and disables the text field

based on the selection in the drop-down list. The text field is disabled if the

drop-down list has a nonblank value selected. Selecting the blank entry in the

drop-down list enables the text field and moves the cursor into it.

9.6.2 Deleting a book

Books may be deleted by clicking the delete icon on the My Library page. This

results in a confirmation page, shown in figure 9.14.

9.6.3 Returning books

The Borrowed Books menu item shows a listing of all books the logged-in user is

currently borrowing, as shown in figure 9.15. From here, you can also return

books by clicking the book return icon (in the rightmost column). Like all other

pages that show lists of books, the Borrowed Books page includes page naviga-

tion controls and the ability to change the sort order of the list.

Figure 9.14 Clicking a delete icon on the My Library page displays a confirmation page before the

book is actually deleted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

396 CHAPTER 9

Putting it all together

9.6.4 Adding a new book

Before there can be books to edit or delete, books must be added. The Add New

Book page, accessed via the Add New Book item in the navigation menu, is the

means for adding new books. This page is shown in figure 9.16.

 As with the Edit Book page, the Publisher drop-down list is exclusive with the

adjacent text field.

9.6.5 Editing your profile

The Edit Profile page, shown in figure 9.17, is used to edit your name, email

address, and password. It is accessed using the Edit Profile item in the naviga-

tion menu.

9.6.6 Giving away books

Sometimes you’ll want to give away books. You may no longer need the book, or

you may just be clearing out some shelf space. One way to move ownership of a

Figure 9.15 The Borrowed Books listing shows all books borrowed by the current user. The return

icon in the rightmost column allows books to be returned.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Managing your books 397

Figure 9.16 Adding a new book is much like editing an existing book, except that the

borrower cannot be edited.

Figure 9.17 The Edit Profile page allows users to update their name, email address, and

password.

TEAM LinG - Live, Informative, Non-cost and Genuine!

398 CHAPTER 9

Putting it all together

book is to delete it from your My Library and let the new owner add it to his or

her My Library. A better way is simply to shift the ownership of the book without

otherwise changing it. This is accomplished using the Give Away Books item on

the navigation menu.

 The Give Away Books page, shown in figure 9.18, lets you select one or more

books and designate a person to give those books to. The ownership of the books

is then immediately changed over to the new owner.

 Obviously, we’re using a Palette component (discussed in chapter 6) to select

the books to transfer, but notice how we’ve customized its configuration. Nor-

mally, the column titles are Available (on the left) and Selected (on the right). On

this page, the left column is labeled “Books you currently own,” and the right

column includes a drop-down list for selecting the target person (to transfer

books to).

 That covers all the pages that may be reached by ordinary users. The next

section covers the remaining pages accessible to Virtual Library administrators.

Figure 9.18 The Give Away Books page allows the ownership of books to be changed. A target user

is selected, and the Palette component is used to identify which books are to be transferred.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Administering the Virtual Library 399

9.7 Administering the Virtual Library

As a demonstration application, the Virtual Library extends past functionality

that ordinary users will see. It includes additional functionality needed to admin-

ister the application. A less complete application might omit this functionality,

forcing administrators to perform these operations directly against the database.

Instead, the Virtual Library seamlessly integrates this functionality into the over-

all application.

 The administrative pages are protected; if you attempt to access them before

logging in (or after your session expires), you will be forced to log in. If you don’t

have administrative privileges, you’ll be returned to the Search page with an

error message.

 If you do have administrative privileges, you will see additional menu items

in the navigational menu. Administrators can

■ Delete existing users

■ Override passwords for users

■ Add or remove administrative privilege for users

■ Manage the list of publishers

■ Transfer ownership of books between users

Of these, the most common activities relate to managing users, so we’ll start there.

9.7.1 Editing users

The chief job of an administrator is to manage the other users of the Virtual

Library. This is done through the Edit Users item in the navigation menu, which

displays a list of all users in the database (as shown in figure 9.19).

 To test the administrative pages, you may log in as user ringbearer@

bagend.shire, using the password secret. Three new options will appear in the

navigation menu: Edit Users, Edit Publishers, and Transfer Books.

 The page allows data about other users to be changed; the current user is

omitted from the list. This ensures that administrators do not accidentally delete

themselves or remove their own administrator privilege. User names and email

addresses cannot be changed, but users can have administrator access granted or

revoked, can be locked out of the system entirely, can have their password

changed, and can be deleted outright.

 When a user is deleted, any books owned by the user are reassigned to the

current user, the administrator who performed the deletion. Additionally, any

books borrowed by a deleted user are returned to their owners.

TEAM LinG - Live, Informative, Non-cost and Genuine!

400 CHAPTER 9

Putting it all together

9.7.2 Editing publishers

When users add or edit books, they often select a known publisher for the book

from the drop-down list. Users may also create new publishers as needed. Of

course, they won’t always get it right, and the Edit Publishers page, shown in fig-

ure 9.20, allows an administrator to clean things up. The page is accessed using

the Edit Publishers item on the navigation menu.

 The Edit Publishers page allows all the known publishers to be edited in a

single place. In the Virtual Library, a publisher is simply a name (the point is to

populate the drop-down list with a reasonable value). The Edit Publishers page

enables all the publishers be renamed or deleted in a single operation.

9.7.3 Transferring books

The final operation for administrators is to forcibly transfer book ownership

between users. This is much like the Give Away Books page, except the adminis-

trator can choose any two users to transfer between. This operation takes the

form of a two-page wizard, accessed using the Transfer Books item in the naviga-

tion menu. The first page of the wizard is shown in figure 9.21.

Figure 9.19 The Edit Users page allows an administrator to modify or delete the users in the

system. The current user (ringbearer@bagend.shire in this figure) does not appear in the list.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Administering the Virtual Library 401

Figure 9.20 The complete list of publishers is displayed. Publishers may be renamed or deleted

outright.

Figure 9.21 The Transfer Books wizard starts by having the adminstrator select the two users to

move books between.

TEAM LinG - Live, Informative, Non-cost and Genuine!

403

Implementing a Tapestry
application

This chapter covers

■ Dividing the application into layers

■ Combining Tapestry with Enterprise JavaBeans

■ Authenticating the user

■ Adding security checks to pages

■ Deploying an enterprise application

TEAM LinG - Live, Informative, Non-cost and Genuine!

404 CHAPTER 10

Implementing a Tapestry application

In the previous chapter, we described the Virtual Library, a demonstration

application included with the Tapestry distribution. We covered quite a bit of

functionality, some of which is specific to individual pages, while other function-

ality is distributed throughout the entire application. In this chapter, we’ll get

down to the nuts and bolts of implementing the Virtual Library. Along the way,

we’ll investigate how to best utilize the facilities of Java 2 Enterprise Edition

(J2EE) to support the application, and how to best organize our code for robust-

ness and maintainability.

 The source code for the Virtual Library is part of the main Tapestry distribu-

tion; the code for the Enterprise JavaBeans (EJBs) is in the examples/VlibBeans

directory; and the code for the Tapestry portion of the application is in exam-

ples/Vlib. Appendix B tells you how to obtain the Tapestry distribution.

10.1 Looking at the application layers

Because it’s a J2EE application, the Virtual Library is split into two distinct sec-

tions: a presentation layer and an application layer, as shown in figure 10.1. The

presentation layer is the user-facing aspect of the application, and is the portion

constructed using Tapestry. The application layer consists of the session and

entity EJBs that, ultimately, interact with the database.

 The application layer for the Virtual Library consists of six EJBs (listed in

table 10.1): three entity beans using container-managed persistence, and three

session beans. The presentation layer will only access two of those beans: Book-

Query and Operations.

Figure 10.1 The presentation layer, the Tapestry portion of the application, is separate from the

application layer.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Looking at the application layers 405

All database access, without exception, occurs in the application layer, as either

direct Java Database Connectivity (JDBC) calls in the Operations, BookQuery, or

KeyAllocator bean, or as container-managed persistence in the three entity

beans. In a production environment, the presentation and application layers will

be operating within the same Java Virtual Machine (JVM). Most application serv-

ers (including JBoss and WebLogic) will recognize this configuration and have

the different objects communicate directly, without utilizing Remote Method

Invocation (RMI). RMI is intended for communications between different pro-

cesses often on different servers, so avoiding that overhead provides a great per-

formance boost.

 In a development environment, things are different. During development,

the application layer changes far less often than the presentation layer. When

was the last time you tweaked an EJB because it “didn’t look right”? Here’s where

the enforced discipline of developing a J2EE application, with real separation

between the layers, actually pays off: The application layer can run in one pro-

cess, just as it would in a production environment, while the presentation layer

runs in another process, executing within your IDE. Important advantages to

structuring your development environment this way include the following:

■ Debugging the presentation layer is much faster and easier than debug-

ging the application server remotely, especially when using an IDE that

supports “hot code replace” (changing methods while the application is

still running), such as Eclipse.

■ The presentation layer may be stopped and restarted in a manner of a few
seconds. Even a lightweight application server such as JBoss can take at
least a minute, often much longer, to shut down and restart.

Table 10.1 EJBs used to manage interactions with the database

Bean Usage

Book Entity bean for books.

BookQuery Stateful session bean for executing queries about books. Creates and executes

dynamic JDBC queries and stores results.

KeyAllocator Stateless session bean; allocates primary keys for entity beans.

Operations Stateless session bean for performing most operations, including creating, reading,

and updating entity beans (using value objects).

Person Entity bean for persons (a.k.a. users).

Publisher Entity bean for publishers.

TEAM LinG - Live, Informative, Non-cost and Genuine!

406 CHAPTER 10

Implementing a Tapestry application

■ You can work on files directly within your development workspace, without
constantly having to repackage and redeploy your web application.

■ You will discover early any problems with object serialization (of any value
objects that move between the two layers). Operating within a single JVM

can mask these problems (since RMI will not be used).

10.2 Organizing EJB access

The Virtual Library makes use of Tapestry features to organize the application

sensibly. This organization takes the form of specific responsibilities for the

engine, the Visit object, and the Global object. The Global object is similar to

the Visit object but is shared by all sessions. Figure 10.2 shows how these central

objects are stored on the server. The engine and the Visit object are stored

within the HttpSession as attributes; there will be many engine and Visit

instances, one pair for each concurrent user of the application.

 The Global object, on the other hand, is global to (and shared by) all engine

instances, stored as a ServletContext attribute. In the Virtual Library, the Global

object is responsible for performing Java Naming and Directory Interface (JNDI)

lookups on behalf of the engine, locating home interfaces for the Operations

and BookQuery EJBs. This is an excellent use for the Global object, since it can

cache references to the EJB home interfaces. JNDI lookups of home interfaces

are a notoriously slow operation, so caching the results for quick access is an

effective performance enhancement.

 As you’ll see shortly, locating these lookup operations centrally leads to not

only a better-performing application but also a more robust one. Having a single,

authoritative location for JNDI lookups means that there will be a single, autho-

ritative approach to handling JNDI lookup errors. It also provides a single place

to manage recovery from RemoteExceptions. A traditional servlet application

can have JNDI lookups and cached home interface references scattered across

Figure 10.2 The engine is responsible for common EJB operations. The Visit object is responsible

for authentication. The Global object, which is responsible for JNDI lookup, is a singleton, shared

by all engines.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Organizing EJB access 407

many servlets and JSPs, but Tapestry makes it easy to centrally locate these

important operations.

10.2.1 Handling authentication

The Visit object is responsible for authentication. It simply tracks the ID of the

currently logged-in user. This ID is an Integer, the primary key type of all three

entities used by the Virtual Library (Person, Book, and Publisher). Additionally,

the Visit object retains the matching instance of Person, so that full details about

the user (such as name, email address, and administrative privilege) can be made

available to the application.

10.2.2 Accessing Enterprise JavaBeans

The majority of interaction between the two layers involves the Operations bean.

This is a stateless session bean, and it consists of a number of methods for creat-

ing, reading, and updating back-end data. The application uses a subclass of the

BaseEngine class. The subclass has extensions for obtaining a reference to the

Operations bean’s remote interface as needed, as well as implementing several of

the most common operations, such as reading a Person value object correspond-

ing to a person ID.

 As with JNDI lookups in the Global object, having operations implemented in

the engine centralizes handling of, and recovery from, remote exceptions. This

leads to much greater application stability, especially during redeployment of the

application. In the code excerpts that follow, you’ll see how the engine provides

support for retry loops used in every location where remote object access occurs.

10.2.3 Tracking user identity with the Visit object

The specific requirements for the Visit object in the Virtual Library are that it

track the following:

■ Who the logged-in user is (if any)

■ The last time the user accessed the system (information used to identify

which books are “new”)

Listing 10.1 shows how this class is implemented.

package org.apache.tapestry.vlib;

import java.io.Serializable;
import java.sql.Timestamp;

Listing 10.1 Visit.java: Java class for the Virtual Library Visit object

TEAM LinG - Live, Informative, Non-cost and Genuine!

408 CHAPTER 10

Implementing a Tapestry application

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.vlib.ejb.Person;

public class Visit implements Serializable
{
 private static final long serialVersionUID =
 8589862098677603655L;
 private transient Person _user;
 private Integer _userId;
 private Timestamp _lastAccess;

 public Timestamp getLastAccess()
 {
 return _lastAccess;
 }

 public Person getUser(IRequestCycle cycle)
 {
 if (_user != null)
 return _user;

 if (_userId == null)
 return null;

 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine)cycle.getEngine();

 _user = vengine.readPerson(_userId);

 return _user;
 }

 public Integer getUserId()
 {
 return _userId;
 }

 public void setUser(Person value)
 {
 _lastAccess = null;
 _user = value;
 _userId = null;

 if (_user == null)
 return;

 _userId = _user.getId();

 _lastAccess = _user.getLastAccess();
 }

 b

 c

TEAM LinG - Live, Informative, Non-cost and Genuine!

Organizing EJB access 409

 public boolean isUserLoggedIn()
 {
 return _userId != null;
 }

 public boolean isUserLoggedOut()
 {
 return _userId == null;
 }

 public boolean isLoggedInUser(Integer id)
 {
 if (_userId == null)
 return false;

 return _userId.equals(id);
 }

 public void clearCache()
 {
 _user = null;
 }

}

The _user instance variable stores the Person data object for the logged-in user.
Because the field is transient, its value may be lost at any time due to clustering.

Whenever the _user variable is null, it can be reacquired from the engine (using
the VirtualLibraryEngine subclass).

The Visit object is stored in the HttpSession as a session attribute after most

requests. On any request where the Visit object is accessed, the framework

makes the assumption that the Visit has been changed.1 This triggers the Tap-

estry ApplicationServlet to store the engine (and with it, the Visit) in the

HttpSession at the end of the request, after the response page has been sent back

to the client.

 In a nonclustered environment, this has little impact because the HttpSession

is just a glorified java.util.Map; storing attributes in the session doesn’t trigger

any additional behavior. In a clustered environment, the engine and, with it, the

Visit may be serialized and copied to a backup server within the cluster. It’s in

 b

 c

1 Since the engine doesn’t know anything about the Visit, it is forced to assume that any access of the
Visit is a potential change to the Visit that must be propagated throughout the application server
cluster.

TEAM LinG - Live, Informative, Non-cost and Genuine!

410 CHAPTER 10

Implementing a Tapestry application

the best interests of general application performance for the Visit object to seri-

alize efficiently.2

 The Visit object declares a static serialVersionUID constant. Declaring this

as a static variable means that the JVM does not have to compute this value at

runtime, leading to a modest efficiency improvement. A better improvement is

to implement the java.io.Externalizable interface (instead of the java.io.

Serializable interface). This allows you to write more efficient methods to save

and restore the state of the object. This is an example of where runtime perfor-

mance profiling would be used: to see just how much time is being spent serializ-

ing the Visit object. Based on that data, a decision about the merits of

expending effort on serialization of the Visit can be made.

 The Visit object tracks the logged-in user’s ID, but also the Person object

representing the user. The latter is the value object for the Person entity and is

needed in the presentation layer to display the user’s name or to determine the

user’s administrative privilege. These user ID and Person instances are stored in

two separate instance variables. The user’s ID is stored persistently, but the Per-

son object is stored transiently. This means that the Person object, within the

Visit, does not have to be serialized when the Visit is itself serialized, an obvi-

ous optimization—but only if the Person object can be restored when needed.

 This on-demand restoration is handled in the getUser() method. Rather

than being a pure accessor method (taking no arguments), this method requires

that the IRequestCycle object be passed in. If the Person object has been lost,

this method can use the cycle to obtain the VirtualLibraryEngine instance for

the application, and use the engine to reread the Person.

 You’ll be seeing this pattern in different guises repeatedly: store the minimum

persistent state possible and recover the full state only as needed. The Tapestry

framework provides the necessary structure for maintaining the minimal state

and recovering the full state.

10.2.4 Understanding page inheritance

The inheritance hierarchy for pages is shown in figures 10.3 and 10.4. Figure 10.3

shows interfaces and base classes, and figure 10.4 shows how each page in the Vir-

tual Library inherits from or extends from those interfaces and base classes.

 At first glance there is an awfully large number of classes, but this is natural

for a Tapestry application: Each page has its own class, even though in most

2 The engine implements the java.io.Externalizable interface for efficiency reasons.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Organizing EJB access 411

cases, the class is only a few lines long. The presentation layer accounts for

approximately 1,850 lines of code, excluding comments. This is a surprisingly

small number of lines, considering the amount of functionality present in the

Virtual Library application. The application layer (the EJB implementations and

value objects), at about 1,250 lines, is slightly smaller. Of course, a significant

portion of the presentation layer is in non-Java artifacts: HTML templates, page

specifications, and component specifications.

 The Virtual Library includes base classes and interfaces that define additional

logic. These classes and interfaces are primarily concerned with preventing unau-

thorized users from seeing pages, at least until they are authenticated. In addition,

the Java classes for the ViewPerson and ViewBook pages implement the IExternal-

Page interface. This is to allow links to persons and books to be stored as book-

marks. Table 10.2 lists the base classes and interfaces used by the application.

Figure 10.3

The Virtual Library includes

three interfaces (IActive,

IErrorProperty, and

IMessageProperty) and

three base classes

(ActivatePage, AdminPage,

and Protected) from which

the actual pages extend.

Table 10.2 Base classes and interfaces used to define and implement behavior common to many

application pages

Class/Interface Usage

AdminPage Restricts access to the page to users with administrative access.

Protected Restricts access to the page to logged-in users, forcing an on-the-fly login as

necessary.

TEAM LinG - Live, Informative, Non-cost and Genuine!

412 CHAPTER 10

Implementing a Tapestry application

Now that we’ve established the general framework of the application, we can

start to drill down into the pages and components of the Virtual Library.

IActivate Defines a page that needs an extra initialization phase before it initially renders.

IErrorProperty Defines a string property named error. Matches a property specification in

the page specification.

IMessageProperty Defines a string property named message. Matches a property specification in

the page specification.

Table 10.2 Base classes and interfaces used to define and implement behavior common to many

application pages (continued)

Class/Interface Usage

Figure 10.4 The 17 pages of the application extend from framework base classes,

such as BasePage, or from application-specific base classes, such as

ActivatePage.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Search page 413

10.3 Implementing the Search page

In the Virtual Library, the page used for searching is the Home page (it is

labeled Search in the user interface but is the Home page nonetheless). The func-

tion of this page is to collect user input (the title, author, and so forth), execute

the query, and use the BookMatches page to display the results. The Home page

is, in many ways, the simplest page in the application. Refer to figure 9.1 to see

what the Home page looks like.

 The majority of the template for the Home page (listing 10.2) is the Form

component and the <table> element used to control its layout. At runtime, the

majority of the HTML is produced inside the Border component.

<html jwcid="$content$">
<body jwcid="@Border">

<p>
Use this form to locate books stored in the Virtual Library.
When you find a book you want,
login and borrow
it — just don't forget to give it back eventually!
</p>

<form jwcid="@Form" listener="ognl:listeners.search"
 stateful="ognl:false">
 <table class="form">
 <tr>
 <th>Title</th>
 <td><input type="text" jwcid="inputTitle@TextField"
 value="ognl:title" size="30" maxlength="100"/>
 </td>
 </tr>
 <tr>
 <th>Author</th>
 <td><input type="text" jwcid="inputAuthor@TextField"
 value="ognl:author" size ="30" maxlength="100"/>
 </td>
 </tr>
 <tr>
 <th>Book Owner</th>
 <td><select jwcid="inputOwner@PropertySelection"
 value="ognl:ownerId"
 model="ognl:engine.buildPersonModel(true)"/></td>

Listing 10.2 Home.html: HTML template for the Home page

TEAM LinG - Live, Informative, Non-cost and Genuine!

414 CHAPTER 10

Implementing a Tapestry application

 </tr>
 <tr>
 <th>Publisher</th>
 <td><select jwcid="inputPublisher@PropertySelection"
 value="ognl:publisherId"
 model="ognl:engine.publisherModel"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="image" src="images/search.png" width="46"
 height="20" border="0" alt="Search"/>
 </td>
 </tr>
 </table>
</form>

</body>
</html>

The Form component for the search form specifies a value of false for the Form’s

stateful parameter. By default, the stateful parameter is true, but setting this

parameter to false allows the application to recover more gracefully from an

expired HttpSession. If a user logs into the system and returns to the Home

page, and then lets the session expire (by waiting 15 minutes or so) before sub-

mitting the search form, the application will still be able to perform the search,

even though a new HttpSession will be created in the process and the user will

no longer be logged in.

 Leaving the stateful parameter in its default value, true, changes this sce-

nario. When submitting the form after the session expires, Tapestry will recognize

that the session is stale and throw a StaleSessionException. The VirtualLibrary-

Engine handles the StaleSessionException by returning the user to the Home

page with a message about being logged out.3 Although better than displaying the

StaleSession page, it is still less than ideal, and is quite easy to avoid. There are

times when it is better to leave the stateful parameter as true—for example, in

forms that require the user to be logged in for the forms to operate.

3 The default behavior in this case is normally to display the StaleSession page; the Virtual Library uses
its own subclass of BaseEngine and overrides the engine method handleStaleSessionException()
to instead redirect the user to the Home page with an error message.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Search page 415

10.3.1 Identifying application-specific components

The first thing you’ll notice in the Home page template is that there isn’t any

HTML for the title bar that spans the top of each page, or for the navigation

menu that runs down the left side. These common fixtures are entirely produced

by the Border component, an application-specific component we’ll discuss in a

bit. The Border component is referenced in the <body> tag of the template.

 In fact, all the templates in the application are minimal; they don’t make

more than a small effort to maintain WYSIWYG preview. The Home page’s

HTML template is a valid HTML file, but it does not reference a stylesheet. The

end result is only a limited ability to preview the application using an HTML edi-

tor. Figure 10.5 shows what such a preview looks like.

Figure 10.5 Previewing the Home page in a WYSIWYG editor is only a limited success.

Navigational borders and stylesheet information are missing. Compare this to figure 9.1, taken

from the live application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

416 CHAPTER 10

Implementing a Tapestry application

Two other application-specific components are used in the template: ShowError

and ShowMessage. They are used to display errors or informational messages.

Figure 9.6 shows an example of the ShowError component (on the Login page),

and figure 9.9 shows an example of the ShowMessage component.

 These components don’t take any parameters; they expect that the page

implements an error property (for ShowError) or a message property (for Show-

Message). If you refer to figure 10.3, you’ll see that there are two interfaces,

IErrorProperty and IMessageProperty. These two interfaces define the accessor

methods for the two properties. Java page classes that implement one or both

interfaces include matching property specifications for the properties in the

pages’ specifications.

10.3.2 Referencing the engine

Two components in the template reference the engine: the PropertySelection com-

ponent for selecting a book owner, and the PropertySelection component for

selecting a publisher. Creating a custom subclass of BaseEngine for your application

is a great way to centrally locate common business logic and utility methods in a

way that is easily accessible from any page or any component. Here, the engine is

being used to create property selection models for persons and publishers.

 The inputOwner component uses the engine to build a model of all the users

in the system:

<select jwcid="inputOwner@PropertySelection"
 value="ognl:ownerId"
 model="ognl:engine.buildPersonModel(true)"/>

The engine’s buildPersonModel() method invokes the Operations bean to obtain

this list of persons. It constructs and returns an IPropertySelectionModel

instance. The argument, specified as true, indicates that an initial empty element

should be included in the model. This is necessary in the user interface, because

the user may not want to filter results by book owner at all.

 Likewise, the inputPublisher component uses the engine to build a model for

selecting a publisher:

<select jwcid="inputPublisher@PropertySelection"
 value="ognl:publisherId"
 model="ognl:engine.publisherModel"/>

Here, the engine provides a simple property that is an IPropertySelectionModel

of all the publishers currently in the database. This model always includes an

empty element (so that the user may choose not to filter by publisher).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Search page 417

10.3.3 Specifying the page class and properties

The meat of the page is the Form and form element components that collect the

search terms from the user. Each of these form element components updates a prop-

erty of the page, a property created at runtime from a <property-specification> in

the Home page’s page specification (see listing 10.3).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification class="org.apache.tapestry.vlib.pages.Home">

 <property name="page-type" value="Search"/>

 <property-specification name="error"
 type="java.lang.String"/>
 <property-specification name="message"
 type="java.lang.String"/>

 <property-specification name="title"
 type="java.lang.String"/>
 <property-specification name="author"
 type="java.lang.String"/>
 <property-specification name="ownerId"
 type="java.lang.Integer"/>
 <property-specification name="publisherId"
 type="java.lang.Integer"/>

</page-specification>

Part of the page specification is a piece of metadata needed by the Border compo-

nent. Metadata is extra information that can be attached to a page or component

specification. Each metadata property is in the form of a key-value pair (keys and

values are strings). This information is read from the specification by the frame-

work and is available to the application at runtime but is not used by Tapestry.

Instead, it’s used only by the application. Page and component specifications (as

well as application and library specifications and many other elements within the

specifications) support metadata in the form of <property> elements. A specifica-

tion may have any number of metadata properties, with each value identified by a

unique key. In this case, the metadata property is named page-type.

Listing 10.3 Home.page: specification for the Home page

Specifies page type for
Border component

Specifies error property for
IErrorProperty interface

Specifies message property for
IMessageProperty interface

Specifies
properties for
user input

TEAM LinG - Live, Informative, Non-cost and Genuine!

418 CHAPTER 10

Implementing a Tapestry application

 This metadata property is read by Border component; this is how it knows

which page to display in the title bar and which images to use when displaying

the navigation menu. Not all pages need it—just “rule-breakers” like the Home

page (which needs to be labeled Search). When we discuss the Border component

a bit later, you’ll see exactly how this metadata property is used.

 The rest of the page specification consists of property specifications used on

the page. Because this page uses the ShowError component, the class imple-

ments the IErrorProperty interface, and a <property-specification> for the

error property is included. Likewise, the ShowMessage component requires the

IMessageProperty interface and a specification for the message property.

10.3.4 Performing searches

All of these templates, components, and specifications come together in the Home

page’s Java class. The class includes abstract accessor methods for the four prop-

erties supplied by the form control components (title, author, ownerId, and

publisherId). The real work of performing a search is done in the BookMatches

page. All that’s left in the Home page’s Java class is the listener method used to link

the two pages together. This method, search(), is shown in listing 10.4.

public void search(IRequestCycle cycle)
{
 BookMatches matches =
 (BookMatches) cycle.getPage("BookMatches");

 MasterQueryParameters parameters =
 new MasterQueryParameters(getTitle(), getAuthor(),
 getOwnerId(), getPublisherId());

 matches.performQuery(parameters, cycle);
}

The search() method packages up the four search constraints (the title, the

author, the owner, and the publisher) as an instance of MasterQueryParameters,

then invokes the performQuery() method on the BookMatches page. MasterQuery-

Parameters is simply a class for holding all the parameters for this search. It is eas-

ier and more extensible to pass a single object than four separate parameters.

 The BookMatches page is responsible for taking it from there. It performs

the query and then displays the results.

Listing 10.4 The search() method of the Home class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 419

 This basic Tapestry approach should start looking awfully familiar by now:

Components on the page read and update properties of the page (often speci-

fied in the page’s specification), then listener methods read those same proper-

ties and act on them, possibly invoking methods on other pages within the

application or on other objects entirely.

10.4 Implementing the BookMatches page

The BookMatches page is quite a bit more complex than the Home page. It has

to run the query against the database and present the results, complete with sup-

port for paging and column sorting. It must know if the user is logged in and

support borrowing of books directly from the book listing.

 The BookMatches page has four properties related to paging and sorting,

identified in table 10.3. All four of these properties are persistent.

The core of this page is the bookQuery property, which stores a reference to the

remote interface of the BookQuery stateful session bean. The BookQuery bean per-

forms one of several possible queries against the database, merging together

data from the Book, Person, and Publisher entities.

 The BookMatches page invokes the BookQuery bean’s masterQuery()

method, passing in the query parameters and the desired sort ordering (in

terms of a column to sort on and a descending flag). The BookQuery bean con-

structs and executes a JDBC statement for the query, and then caches the com-

plete result in memory, returning just the number of matching books. This

result count is passed to the Browser component, which stores the count and

computes the number of pages needed to display the results. Figure 10.6 identi-

fies these steps.

Table 10.3 Properties used for displaying a sorted list of books

Property Type Description

bookQuery org.apache.tapestry.vlib.
ejb.IBookQuery

Reference to BookQuery stateful

session bean (remote interface)

sortColumn org.apache.tapestry.vlib.
ejb.SortColumn

Enum for defining which column to

sort on

descending boolean Flag for ascending vs. descending sort

queryParameters org.apache.tapestry.vlib.
MasterQueryParameters

Defines constraints on query

TEAM LinG - Live, Informative, Non-cost and Genuine!

420 CHAPTER 10

Implementing a Tapestry application

The Browser component is responsible for handling pagination. It is also

responsible for communicating with the BookQuery bean in order to obtain a sub-

set of the full results that should be displayed on the current page. We cover this

in greater detail shortly.

10.4.1 Handling paging and column sorting

So, what about re-sorting? To re-sort the list of books, the sortColumn and/or

descending properties are updated, and the query is executed again. The

BookQuery bean will then construct and execute a new JDBC statement and store

a new set of results. When the page renders, the Browser component gets a

subset of Book objects from the new set of cached results stored by the Book-

Query bean.

 At this point we have shown how to start a query, as well as how to handle

things when the sort ordering changes, but we don’t know how the links and

icons appear in the user interface to trigger sort order changes. We also know

that the Browser component somehow manages paging, but it isn’t clear how the

Figure 10.6 The page invokes masterQuery() and then informs the Browser

component of the number of books.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 421

page navigation menu appears (figure 9.4). The answers to these questions are

in the page’s HTML template (shown in listing 10.5) and specification, and, of

course, the answers involve components, methods, and properties.

<html jwcid="$content$">
<body jwcid="@Border" title="Matching Books"
 browser="ognl:components.browser">

<table class="data">
 <tr>
 <th>Title</th>
 <th>Author</th>
 <th>Publisher</th>
 <th>Owner</th>
 <th>Borrowed By</th>
 <th>Borrow</th>
 </tr>
 <tr jwcid="browser@Browser"
 query="ognl:bookQuery"
 value="ognl:currentMatch"
 listener="ognl:listeners.requery">
 <td>
 Swing Second Edition
 </td>
 <td>
 Robinson and Vorobiev
 </td>
 <td><span jwcid="@Insert"
 value="ognl:currentMatch.publisherName">
 Manning
 </td>
 <td>Jim Moran
 </td>
 <td>Howard Lewis Ship
 </td>
 <td class="icon"><a href="#" jwcid="@Borrow"
 book="ognl:currentMatch">
 <img src="images/checkout.png" alt="Borrow"
 border="0" vspace="2">
 </td>
 </tr>
</table>

</body>
</html>

Listing 10.5 BookMatches.html: HTML template for the BookMatches page

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

422 CHAPTER 10

Implementing a Tapestry application

These components allow the columns to be sorted; they are fully declared in the
page specification.

The Browser component acts much like a Foreach component.

The BookLink component creates a link to a particular book (the ViewBook
page); the link may be bookmarked.

These two components are PersonLink components, which create “bookmark-
able” links to particular persons (in the ViewPerson page).

The pieces of the puzzle start falling together here. First we have an answer to

the question of how the paging navigation controls appear. On this page, the

browser parameter of the Border component is used; this appears in the

HTML template:

<body jwcid="@Border" title="Matching Books"
 browser="ognl:components.browser">

Before (in chapter 5), we bound a ValidField component to the field parameter

of a FieldLabel component; we can here bind a Browser component to the

browser parameter of the Border component. This is another powerful and use-

ful concept: components as parameters to other components. It allows different

components (here the Border and Browser components) to cooperate with each

other in a flexible and dynamic fashion.

 The Border component’s browser parameter is optional (remember, the

Home page didn’t specify a value, since there is no Browser component on the

Home page). When the browser parameter is not bound to null, the Border com-

ponent includes the paging navigation controls. Later we’ll go into more detail

on exactly how the Border and Browser components interact.

 Next inside the HTML template are controls for updating the table’s sort

order. These appear in the header line of the table:

<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>Owner</th>
<th>Borrowed By</th>

As you can see, very little of the sorting functionality is specified in the template.

The page specification will declare the five components (one for each sortable

column) that control the sort order, so let’s look at the relevant portions of the

page specification. First, we define the two persistent properties for controlling

the sort order, giving an initial value for the sortOrder property (the descending

property will default to false):

 b

 c

 d

 e

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 423

<property-specification name="sortColumn"
 type="org.apache.tapestry.vlib.ejb.SortColumn"
 persistent="yes">
 @org.apache.tapestry.vlib.ejb.SortColumn@TITLE
 </property-specification>

<property-specification name="descending"
 type="boolean"
 persistent="yes"/>

The SortColumn class is an enumeration of the different columns that can be

sorted in any of the queries supported by the BookQuery bean. Each of the Col-

umnSorter components will update the page’s sortColumn property to a different

value. The first of these components, used for sorting by title, binds the page’s

sortColumn and descending properties. We use the OGNL syntax for referencing

a public static field of a class to ensure that the component and the page’s Java

class agree on names.

 The definition of the sortTitle component within the page specification fills in

the details of the communication between the component and the containing page:

<component id="sortTitle" type="ColumnSorter">
 <binding name="selected" expression="sortColumn"/>
 <binding name="sortColumn">
 @org.apache.tapestry.vlib.ejb.SortColumn@TITLE
 </binding>
 <binding name="descending" expression="descending"/>
 <binding name="listener" expression="listeners.requery"/>
</component>

The component type, ColumnSorter, is an application-specific component, just

like the Border component. We’ll discuss its implementation shortly. The

ColumnSorter’s selected parameter is bound to the sortColumn property of the

page; this allows the sortColumn property to be updated when the Column-

Sorter’s link is clicked. Likewise, the ColumnSorter will read and update the

descending property via its own descending parameter.

 The sortColumn parameter of the ColumnSorter is bound to the value used to

update the selected parameter when the link is clicked (this is a usage pattern

similar to the selected and tag parameters of the Submit component, covered in

chapter 3). Each of the components declared in the BookMatches page specifica-

tion will use a different value for the sortColumn parameter, resulting in the

page’s sortColumn property being updated to a different value when the corre-

sponding link is clicked.

 Updating the sortColumn and descending properties does not, of itself, cause

any change to the cached data stored within the BookQuery bean. It is necessary

TEAM LinG - Live, Informative, Non-cost and Genuine!

424 CHAPTER 10

Implementing a Tapestry application

to force the BookQuery bean to perform a new query, using the updated sort

ordering. This is the job of a listener method, as specified using the Column-

Sorter’s listener parameter. The listener is notified after the sortColumn and

descending properties have been changed. The requery() method contains the

code that runs the revised query (with the same query parameters but with a new

sort ordering) in the BookQuery bean.

 The other four columns are configured in the same way, with only the sort-

Column parameter changing from one component to the next. In Tapestry page

and component specifications, there’s a shortcut for handling this kind of dupli-

cation within a specification, utilizing the copy-of attribute:

 <component id="sortAuthor" copy-of="sortTitle">
 <binding name="sortColumn">
 @org.apache.tapestry.vlib.ejb.SortColumn@AUTHOR
 </binding>
 </component>

 <component id="sortPublisher" copy-of="sortTitle">
 <binding name="sortColumn">
 @org.apache.tapestry.vlib.ejb.SortColumn@PUBLISHER
 </binding>
 </component>

 <component id="sortOwner" copy-of="sortTitle">
 <binding name="sortColumn">
 @org.apache.tapestry.vlib.ejb.SortColumn@OWNER
 </binding>
 </component>

 <component id="sortBorrower" copy-of="sortTitle">
 <binding name="sortColumn">
 @org.apache.tapestry.vlib.ejb.SortColumn@HOLDER
 </binding>
 </component>

Each of the other four components simply copies the component type and

parameter bindings of the sortTitle component, then replaces the binding for

the sortColumn parameter with a different binding, constructed around a differ-

ent constant value.

 Consider for a moment what we’re putting together here; the page has a pair

of properties that control the sort order for the book listing, but it doesn’t know,

and doesn’t need to know, how these properties get set. At the same time, the

sorting components have an almost independent life within the page: They use

the knowledge of the current sort ordering (as expressed in that pair of prop-

erties) to decide how to render, and to decide what to do when the links they

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 425

themselves generate are clicked. When all of this is tied together, the end result is

columns that sort within the table—and all of this is completely reusable in other

pages that also display a list of books (even when the columns displayed are

somewhat different). That’s a lot of reuse, so let’s see how these other compo-

nents are themselves used and implemented.

10.4.2 Using the Browser component

The Browser component is used, in the page’s HTML template, in much the

same way as a Foreach component. It wraps around a block of the template,

which is repeatedly rendered:

<tr jwcid="browser@Browser"
 query="ognl:bookQuery"
 value="ognl:currentMatch"
 listener="ognl:listeners.requery">
 <td>
 Swing Second Edition
 </td>
 <td><span jwcid="@Insert"
 value="ognl:currentMatch.author">
 Robinson and Vorobiev
 </td>
 <td><span jwcid="@Insert"
 value="ognl:currentMatch.publisherName">
 Manning
 </td>
 <td>Jim Moran
 </td>
 <td>Howard Lewis Ship
 </td>
 <td class="icon"><a jwcid="@Borrow"
 book="ognl:currentMatch" href="#">
 <img src="images/checkout.png" alt="Borrow"
 border="0" vspace="2">
 </td>
</tr>

The Browser is represented in the template as a <tr> element. It has three

parameters. The first, query, is an instance of IBookQuery (the BookQuery bean’s

remote interface) from which a portion of the query result set (the list of books

matching the query) can be obtained. This parameter fills a role similar to the

Foreach component’s source parameter.

 The value parameter is used just like the Foreach component’s value param-

eter: The property bound to the value parameter is updated just before the body

of the Browser is rendered. On the BookMatches page, the currentMatch prop-

erty is bound to the value parameter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

426 CHAPTER 10

Implementing a Tapestry application

 The last parameter, listener, is used only if there is a RemoteException com-

municating with the query. This could occur if the application server has dis-

carded the BookQuery EJB due to lack of use. Whatever the reason, the listener

parameter is used by the Browser component to request that the BookMatches

page perform the query again. The listener parameter is connected to the same

requery() method as the ColumnSorter components.

 Three additional application-specific components are used on the page. The

BookLink component creates a link to the ViewBook page for a particular Book.

This link is built around the title of the book, and the URL for the link may be

bookmarked (it makes use of the external service).

 The PersonLink component does an equivalent job, creating a link to the View-

Person page for a particular person. The URL for the link may also be bookmarked.

 The last component is the Borrow component, which creates a link and icon

for borrowing a book. The Borrow component contains the checks for whether

the user is logged in and whether the user is already in possession of the book.

10.4.3 Executing queries and re-queries

Although the components on the page do most of the work, they can’t quite do it

all. The BookMatches class (shown in listing 10.6) is responsible for performing

the actual query when the search form (on the Home page) is submitted or when

a change in sort ordering occurs.

package org.apache.tapestry.vlib.pages;

import java.rmi.RemoteException;

import org.apache.tapestry.IRequestCycle;
import org.apache.tapestry.html.BasePage;
import org.apache.tapestry.vlib.IMessageProperty;
import org.apache.tapestry.vlib.VirtualLibraryEngine;
import org.apache.tapestry.vlib.components.Browser;
import org.apache.tapestry.vlib.ejb.IBookQuery;
import org.apache.tapestry.vlib.ejb.MasterQueryParameters;
import org.apache.tapestry.vlib.ejb.SortColumn;
import org.apache.tapestry.vlib.ejb.SortOrdering;

public abstract class BookMatches extends BasePage
{
 private Browser _browser;

Listing 10.6 BookMatches.java: Java class for the BookMatches page

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 427

 public void finishLoad()
 {
 _browser = (Browser) getComponent("browser");
 }

 public abstract IBookQuery getBookQuery();

 public abstract void setBookQuery(IBookQuery bookQuery);

 public abstract SortColumn getSortColumn();

 public abstract boolean isDescending();

 public abstract MasterQueryParameters getQueryParameters();

 public abstract void setQueryParameters(
 MasterQueryParameters queryParameters);

 public void performQuery(
 MasterQueryParameters parameters,
 IRequestCycle cycle)
 {
 setQueryParameters(parameters);

 int count = executeQuery();

 if (count == 0)
 {
 IMessageProperty page =
 (IMessageProperty) cycle.getPage();
 page.setMessage(getMessage("no-matches"));
 return;
 }

 _browser.initializeForResultCount(count);
 cycle.activate(this);
 }

 public void requery(IRequestCycle cycle)
 {
 int count = executeQuery();

 if (count != _browser.getResultCount())
 _browser.initializeForResultCount(count);
 }

 private int executeQuery()
 {
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();

Stores reference to
Browser component

Is invoked by
Home page

Is invoked when
sort order or
direction changes

TEAM LinG - Live, Informative, Non-cost and Genuine!

428 CHAPTER 10

Implementing a Tapestry application

 MasterQueryParameters parameters = getQueryParameters();

 SortOrdering ordering = new SortOrdering(getSortColumn(),
 isDescending());

 int i = 0;
 while (true)
 {
 try
 {
 IBookQuery query = getBookQuery();

 if (query == null)
 {
 query = vengine.createNewQuery();
 setBookQuery(query);
 }

 return query.masterQuery(parameters,
 ordering);
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(
 "Remote exception processing query.",
 ex, i++);

 setBookQuery(null);
 }
 }
 }
}

Because the page must invoke methods on the Browser component in several

places, a reference to the Browser component is kept in an instance variable,

_browser. Previously we’ve said that your code should not store references to

pages or components inside persistent page properties, and this requirement

still holds. It is acceptable, as in this case, to keep a reference to a component

within the same page hierarchy, as long as it is not stored persistently. This is just

a simple optimization; the value stored in the _browser instance variable is the

exact value that would be returned by invoking getComponent("browser"). This

optimization removes the need for the method call and the typecast.

 The appropriate place to create such a reference is within an implementation

of the finishLoad() method. The finishLoad() method is invoked after the page

has been created and configured, and all components for the page (specified

Performs
query (with
retry loop)

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the BookMatches page 429

either in the template or in the page specification) have also been instantiated

and configured. This means that finishLoad() is invoked just once, and long

before other methods, such as render(), are invoked.

 The performQuery() method is invoked by the Home page to start a search.

The method begins by storing the query parameters into the persistent query-

Parameters property. This property must be persistent because the parameters

will be needed later, if a change in sort order occurs, so that the query can be

executed with the new sort order.

 The executeQuery() method executes the query and returns the result

count, the number of books that matched the search query parameters. If the

count is zero, the user is returned to the Home page with a message that there

were no matches. The user can than modify the search parameters and attempt

another search.

 Normally, there will be at least one matching book. In that case, the Browser

is informed of the new result count so that it can calculate the number of pages.

Lastly, the current page, the BookMatches page, is activated as the response-

rendering page to render the response to the client web browser.

 The requery() method, invoked as a listener method by the ColumnSorter

components, is even simpler. It invokes the executeQuery() method to perform

the query with the updated sort ordering, then informs the Browser if the result

count has changed. When the result count changes, the current page is always

reset to 1, so it’s best not to invoke the initializeForPageCount() method on the

Browser instance unless the result count actually does change.

 The leaves just the executeQuery() method itself. This method first assembles

the parameters to the BookQuery beans’ masterQuery() method: the Master-

QueryParameters instance and a SortOrdering instance (built from the sortColumn

and descending page properties).

 Next, a reference to the BookQuery bean’s remote interface is obtained, if

needed. Since many pages utilize the BookQuery EJB, the code to find and create

an instance is centralized in the VirtualLibraryEngine class. The method then

executes the masterQuery() method on the bean and returns the result, the count

of matching books.

 The only complication is the retry loop, used to ride out any exceptions

related to invoking the remote method on the BookQuery bean.4 In the event

4 In the deployed application, the presentation and application layers are in the same JVM, so Remote-
Exceptions are rare. This retry code is most useful when the layers are separate, which can frequently
occur when testing.

TEAM LinG - Live, Informative, Non-cost and Genuine!

430 CHAPTER 10

Implementing a Tapestry application

of a RemoteException, the VirtualLibraryEngine’s rmiFailure() method is

invoked. The attempt index (the variable i) is passed in. On the first attempt,

the error is logged, and rmiFailure() returns, to allow a retry. On the second

attempt, an actual failure occurs, and the user will see an exception report

page. This approach to RemoteException recovery recurs throughout the Vir-

tual Library application.

 Also, on a failure, the BookQuery bean reference is discarded, forcing a new

BookQuery bean to be obtained from the engine. This addresses the most likely

cause of a RemoteException: that the BookQuery bean, a stateful session bean, has

been discarded by the application server due to lack of use. Invoking methods

on a discarded remote reference results in a RemoteException that can be recti-

fied by creating a new instance of the EJB.

 Here robustness and usability go hand in hand. The user should not need to

know that the application uses stateful session beans, or that such beans may be

discarded by the application server even as the rest of the application continues

to run. Instead, the user will get the results they expect: Clicking on the column

titles will re-sort the columns. Building this level of robustness into a Tapestry

application takes care and some foresight but is quite manageable. This is one

area where the framework’s advantages shine: Because all the Java code is inside

real Java classes (as opposed to scriptlets inside a JSP), it is possible to write

robust, well-organized code. As we continue looking at the other components

and objects inside the Virtual Library, you’ll see how these individual islands of

code work together to form a robust whole.

10.5 Implementing the Browser component

The Browser component is an integral part of several pages in the application:

BookMatches, MyLibrary, BorrowedBooks, and ViewPerson. Each of these pages

works with its own instance of the BookQuery bean to present a list of books. Each

one supports paging access to the overall list of books, and each supports sorting

by column.

10.5.1 Specifying Browser’s parameters

The Browser component is half of the paging navigation equation; it is the half

that actively communicates with the BookQuery bean, as a part of the page that

contains it, and renders a subset of the query results cached by the bean.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Browser component 431

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 allow-informal-parameters="yes"
 class="org.apache.tapestry.vlib.components.Browser">

 <parameter name="query"
 required="yes"
 type="org.apache.tapestry.vlib.ejb.IBookQuery"
 direction="auto"/>

 <parameter name="value"
 type="java.lang.Object"
 required="yes"
 direction="auto"/>

 <parameter name="element"
 type="java.lang.String"
 direction="in"/>

 <parameter name="listener"
 type="org.apache.tapestry.IActionListener"
 required="yes"
 direction="auto"/>

 <property-specification name="resultCount"
 type="int"
 persistent="yes"/>
 <property-specification name="currentPage
 type="int"
 persistent="yes"/>
 <property-specification
 name="pageCount" type="int"
 persistent="yes"/>
 <property-specification name="pageResults"
 type="java.lang.Object[]"/>

</component-specification>

The component specification for the Browser component, shown in listing 10.7,

declares the three parameters we’ve previously discussed, as well as an additional

parameter, element, which controls the HTML element that will be used when

rendering the component (the default for which is tr). The query, value, and

Listing 10.7 Browser.jwc: specification for the Browser component

TEAM LinG - Live, Informative, Non-cost and Genuine!

432 CHAPTER 10

Implementing a Tapestry application

listener parameters all use the auto value for their direction attribute, for rea-

sons we’ll cover shortly.

 In addition, several properties are declared. The resultCount, pageCount, and

currentPage properties are persistent. These properties store the total number of

books in the query, the number of pages required to display all the books, and

the current page (numbered from 1) within the range of pages.

 The final property, pageResults, is not persistent. It is an array of Book

objects, the Books to display on the current page. It may not immediately be obvi-

ous why this is necessary—it’s related to error recovery mixed with persistent

page properties.

10.5.2 Getting results from the BookQuery bean

The Browser component must invoke the get() method of the BookQuery bean

to obtain the results for the current page, but as we’ve discussed, the request

may fail for a number of reasons. When the request fails, the Browser notifies

its listener, which will in all likelihood create a new BookQuery bean instance

and update the persistent property used to store the reference to the bean’s

remote interface.

 There’s the problem: Updates to persistent properties are not allowed once

the rendering of a response has started (this is covered in detail in chapter 7).

Therefore, the access to the BookQuery bean must occur before the page renders,

since it is possible that the persistent property storing the reference to the bean

will change.

 This is accomplished by having the Browser component implement the Page-

RenderListener interface. The pageBeginRender() method is invoked before the

page starts to render, when it is still allowable to change persistent properties. The

page results, obtained from the BookQuery bean, are stored in the pageResults

property at this point, as shown in figure 10.7. Later, when the Browser component

renders, the results will be ready and waiting in that property.

 The pageBeginRender() method includes the same kind of retry loop used by

the BookMatches page. In this case, the recovery from a RemoteException access-

ing the BookQuery bean will invoke the listener method to perform a new query.

This will result in a second execution of the loop, and getQuery() will return the

new BookQuery bean instance. The results obtained from the BookQuery bean are

then stored in the pageResults property.

 This method is invoked outside the normal rendering of the component.

Therefore, the connected parameter properties that are referenced in the

method (query and listener) must specify a direction attribute of auto, not in.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Browser component 433

10.5.3 Rendering the Browser component

All this work in the pageBeginRender() method means that the renderComponent()

method (provided in listing 10.8) is very simple. All it has to do is obtain the

array of books as stored in the pageResults property and repeatedly render its

body, updating its value parameter for each Book object provided by the Book-

Query bean.

protected void renderComponent(IMarkupWriter writer,
 IRequestCycle cycle)
{
 Object[] books = getPageResults();
 int count = Tapestry.size(books);
 String element = getElement();

 for (int i = 0; i < count; i++)
 {
 setValue(books[i]);

 if (element != null)
 {
 writer.begin(element);
 renderInformalParameters(writer, cycle);
 }

 renderBody(writer, cycle);

Figure 10.7

Before the page

renders, the Browser

component gets and

stores the books to be

displayed on the page.

Listing 10.8 The renderComponent() method of the Browser class

TEAM LinG - Live, Informative, Non-cost and Genuine!

434 CHAPTER 10

Implementing a Tapestry application

 if (element != null)
 writer.end();
 }
}

Because the value parameter’s direction attribute is auto, each time the prop-

erty is updated (using the setValue() method), the bound property of the page

(the currentMatch property for the BookMatches page) will be updated. The

other components on the page read the currentMatch property (or properties

nested within it) when rendering.

 That covers how the query is created, accessed, and rendered. The next sec-

tion delves into how the page’s sortColumn and descending properties are

updated, which is encapsulated inside the ColumnSorter component.

10.6 Implementing the ColumnSorter component

Continuing our tour of the BookMatches page, we’ll next visit the ColumnSorter

component. This component is responsible for making the column titles on the

page clickable links. Clicking a link will sort the selected column in ascending

order—unless the column was already the selected column, in which case click-

ing a link will toggle between ascending and descending order.

 In addition, the selected column gets an icon next to the title that indicates

whether the column is sorted in ascending order or descending order. The title

text comes from the body of the ColumnSorter component.

 The ColumnSorter component leverages Tapestry’s component-level request

dispatching; it’s a component that contains components, and these internal

components have interactions with the end user that the containing page is com-

pletely unaware of!

10.6.1 Creating the ColumnSorter HTML template

The template for the ColumnSorter component (shown in listing 10.9) is prima-

rily an <a> link element wrapped around a RenderBody component. Beyond

that, the template includes additional elements that display the sort icon.

<img jwcid="rollover"
 width="17" height="16"

Listing 10.9 ColumnSorter.html: HTML template for the ColumnSorter component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the ColumnSorter component 435

 alt="Resort Column"/>

If the selected SortColumn for the page matches the SortColumn for this Column-

Sorter component, then the second link and the matching icon are also dis-

played. Using two separate links is necessary only for presentation reasons. If a

single link enclosed the RenderBody component, the Conditional component,

and the icon, then there would be a visible, underlined space between the page

title and the icon.

 The specification for the ColumnSorter component defines the two links and

introduces a new type of component, Rollover. Rollover is another component

provided with the framework. It is a special version of the Image component that

must be enclosed by some kind of Tapestry link component (here it is the

DirectLink component, but it could be PageLink or ExternalLink). The Rollover

component performs mouse rollover effects; that is, the image changes when the

user moves the cursor over the image, and changes back when the cursor is

moved off it. This provides additional feedback to the user about which elements

on the page may be clicked. Rollover components are used throughout the Vir-

tual Library application.

10.6.2 Specifying ColumnSorter parameters

The specification for the component (in listing 10.10) declares all the parame-

ters for the ColumnSorter, as well as the assets used for the sort icon.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<component-specification
 class="org.apache.tapestry.vlib.components.ColumnSorter"
 allow-body="yes" allow-informal-parameters="no">

 <parameter name="selected"
 type="org.apache.tapestry.vlib.ejb.SortColumn"
 required="yes"
 direction="auto"/>
 <parameter name="descending"
 type="boolean"
 required="yes"

Listing 10.10 ColumnSorter.jwc: specification for the ColumnSorter component

TEAM LinG - Live, Informative, Non-cost and Genuine!

436 CHAPTER 10

Implementing a Tapestry application

 direction="auto"/>
 <parameter name="sortColumn"
 type="org.apache.tapestry.vlib.ejb.SortColumn"
 required="yes"
 direction="auto"/>
 <parameter name="listener"
 type="org.apache.tapestry.IActionListener"
 required="yes"
 direction="auto"/>

 <component id="link" type="DirectLink">
 <binding name="listener" expression="listeners.handleClick"/>
 </component>

 <component id="iconLink" copy-of="link"/>

 <component id="rollover" type="Rollover">
 <binding name="image">
 descending ? assets.down : assets.up
 </binding>
 <binding name="focus">
 descending ? assets.down_h : assets.up_h
 </binding>
 </component>

 <context-asset name="up" path="images/sort-up.png"/>
 <context-asset name="up_h" path="images/sort-up_h.png"/>
 <context-asset name="down" path="images/sort-down.png"/>
 <context-asset name="down_h" path="images/sort-down_h.png"/>

</component-specification>

A Rollover component has four parameters for specifying image assets to be

used with the component. The three common parameters are image, focus, and

disabled. The image parameter specifies the image the application should nor-

mally display and is the only required parameter. The focus parameter specifies

the image to display when the mouse is moved over the image.5 The disabled

parameter specifies the image the application should display when the link

enclosing the Rollover component is disabled (in which case the Rollover com-

ponent does not react to the mouse). A fourth parameter, blur, specifies the

5 This is another example of a less-than-ideal name getting wedged into the framework. Changing the
parameter name to something like “mouseOver” would make sense, but that would break too many
existing components and applications.

Copies link
as iconLink

Defines a
Rollover for
the icon

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the ColumnSorter component 437

image to use when the mouse is moved out from over the image (there’s rarely a

reason for this to not be the same as the image parameter, so it’s usually omitted).

 The upshot of this is that it is easy to create clickable image buttons that have

dynamic rollover effects. It is simply a matter of defining the necessary assets.

The convention used in the Virtual Library is to add an _h suffix to the name of

an asset to indicate a highlighted version of an image—one appropriate as a

mouse-over image (shown here as the focus parameter).

 The specification declares four image assets: two versions of the up arrow and

two of the down arrow. The bindings for the Rollover component dynamically

determine which assets to use for the image and focus parameters based on

whether the sort order is ascending or descending. Once again, the use of OGNL

expressions allows for a succinct, readable solution to the problem of selecting

the correct assets.

10.6.3 Responding to the user

All that’s left is a listener method to handle things when either link is clicked. The

same listener method, handleClick() (in listing 10.11), is invoked by both links.

public void handleClick(IRequestCycle cycle)
{
 SortColumn selected = getSelected();
 SortColumn sortColumn = getSortColumn();

 if (selected != sortColumn)
 {
 setSelected(sortColumn);
 setDescending(false);
 }
 else
 {
 boolean current = isDescending();
 setDescending(!current);
 }

 IActionListener listener = getListener();
 if (listener == null)
 throw Tapestry.createRequiredParameterException(this,
 "listener");

 listener.actionTriggered(this, cycle);
}

Listing 10.11 The handleClick() method of the ColumnSorter class

TEAM LinG - Live, Informative, Non-cost and Genuine!

438 CHAPTER 10

Implementing a Tapestry application

The handleClick() method first checks to see if the currently selected SortColumn

matches the sortColumn parameter for this ColumnSorter component. If so, the

descending parameter is inverted. If it is a non-match, meaning the user has

selected as new column as the column to sort, then the sortColumn parameter is

updated to the correct value, and the descending parameter is set to false.

 In either case, the listener method is invoked. As you saw in the BookMatches

page, the listener method’s job is to force the query to be executed again with

the updated sort ordering.

 The final piece of the Browser puzzle is the browser navigation controls

(which are shown in figure 9.4). Presenting these controls on a page demands

cooperation between the Browser component and the Border component.

10.7 Implementing the Border component

At this point, we have enough of the pieces of the application to discuss how to

construct the Border component. A considerable amount of the look and feel of

the application, as well as its functionality, is tied up in this single component.

This Border component is responsible for displaying the proper page title

(across the top of the page), the main navigation menu on the left (which adjusts

to reflect the page and the user), and an optional page navigation menu for

pages that use a Browser component (shown in figure 9.4). In fact, the Border

component is considerably larger and more complicated than any of the pages

that use it.

 Most of the Border component’s behavior is concerned with the navigation

menu. The menu is dynamic in several ways:

■ All the images in the menu are rollover buttons, highlighting as the mouse

is moved over them.

■ The current page is displayed with an alternate image incorporating a
small arrow.

■ The My Library menu items appear only once the user has logged in.

■ Virtual Library application administrators will see three additional
menu items.

■ The final option in the menu may be Login or Logout depending on

whether the user has, in fact, authenticated (logged in or registered).

Despite this highly dynamic nature at runtime, the implementation of the Bor-

der component is extremely straightforward. Each menu item consists of a link

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Border component 439

and an image in the HTML template and the specification, plus additional assets

for the various button images. For example, the first menu item is the Search

link. This link is represented by four images, shown in figure 10.8. One pair of

images (either the normal and highlighted, or the selected and selected high-

lighted) will be used. On a Search-related page (Home, BookMatches, View-

Book, and ViewPerson), the second pair of images will be used. The arrow in the

image indicates that the user is in the “Search” section of the application. When

other pages render, such as MyLibrary or Login, the first pair of images is used.

 In the Border component’s HTML template, menu item appears as some form

of link component and a Rollover component (both are declared components):

<img
 jwcid="searchRollover" src="images/nav/nav_1x1.png"
 width="178" height="29" border="0" alt="Search"/>

The Border component’s specification includes these two components, along

with the four assets for the Search button image:

<component id="search" type="PageLink">
 <static-binding name="page" value="Home"/>
</component>

<component id="searchRollover" type="Rollover">
 <binding name="image" expression="searchImage"/>
 <binding name="focus" expression="searchRolloverImage"/>
</component>

<context-asset name="search" path="images/nav/nav_1x1.png"/>
<context-asset name="search_h" path="images/nav-h/nav_1x1.png"/>
<context-asset name="search_s"
 path="images/nav-selected/nav_1x1.png"/>
<context-asset name="search_h_s"
 path="images/nav-selected-h/nav_1x1.png"/>

To simplify things, the names of the assets use an _h suffix to indicate a high-

lighted image and an _s suffix for the selected image. The Rollover component

does not reference the assets directly; instead, it references two properties of the

Border component: searchImage and searchRolloverImage. These properties are

Figure 10.8

Here are four versions

of the Search button.

TEAM LinG - Live, Informative, Non-cost and Genuine!

440 CHAPTER 10

Implementing a Tapestry application

computed when the Border class, the Java class for the Border component, is

instantiated, inside the finishLoad() method. Listing 10.12 includes a portion

of the Java code for the Border class that illustrates this process.

private String _pageType;
private IAsset _titleImage;
private IAsset _searchImage;
private IAsset _searchRolloverImage;

public void finishLoad()
{
 IPage page = getPage();

 String pageName = page.getPageName();

 _pageType = page.getSpecification().
 getProperty("page-type");

 if (_pageType == null)
 _pageType = pageName;

 titleImage = getAsset("title" + pageName);

 if (_titleImage == null)
 titleImage = getAsset("title" + _pageType);

 if (_titleImage == null)
 throw new ApplicationRuntimeException(
 "Cannot find title image for " + pageName +
 " or " + _pageType + ".",
 this);

 _searchImage = selectImage("Search", "search");
 _searchRolloverImage = selectImage("Search", "search_h");

 . . .
}

private IAsset selectImage(String type, String baseName)
{
 String key = _pageType.equals(type)
 ? baseName + "_s"
 : baseName;

 return getAsset(key);
}

Listing 10.12 Border.java (partial): Java class for the Border component

Retrieves page-type property
from page’s specification

Uses page’s name as
default for page type

Finds normal
or selected
asset

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Border component 441

public IAsset getTitleImage()
{
 return _titleImage;
}

public IAsset getSearchImage()
{
 return _searchImage;
}

public IAsset getSearchRolloverImage()
{
 return _searchRolloverImage;
}

The finishLoad() method is responsible for adapting the Border component to

the page that contains it—this method precalculates a number of properties that

are referenced in the component’s template and specification. Each page

instance will contain its own copy of the Border component—the Border compo-

nent on the Home page is a completely separate instance from the Border com-

ponent on the MatchingBooks page, for example. Because Tapestry components

are stateful objects, we can precalculate and store the information that will be

needed later (when the component renders), which is much more efficient and

straightforward than having to calculate all that information on the fly.

 The finishLoad() method starts by determining the page type for the cur-

rent page. If the page’s specification has a <property> for name page-type, then

that is used as the page type. Otherwise, the page’s name is the page type. In

most cases, the page type matches the page name, but there are a few rule break-

ers, such as the Home and BookMatches pages (which define their page-type

as Search).

 Next, finishLoad() determines the title image to use for the page. If there’s

an image asset whose name matches the name of the page, then that image is

used. Otherwise, the image matching the page type is used.

 After that, the selectImage() method is used to find the correct image asset

to use for the normal and highlighted versions of the Search button. The select-

Image() method appends an _s suffix to the base asset name when the current

page type matches the type parameter. In the actual class, this continues for each

of the many dynamic images used in the navigation menu.

Provides read-only
property referenced
in template

TEAM LinG - Live, Informative, Non-cost and Genuine!

442 CHAPTER 10

Implementing a Tapestry application

10.7.1 Handling user login

The Border component includes a Login menu item, which allows the user to

log into the system (possibly registering on the fly) and, after authenticating,

return to the current page. This is useful on pages such as BookMatches, View-

Book, and ViewPerson, since after logging in, the user returns to the same page

and is able to borrow a book.

 This is accomplished using a DirectLink component and a listener method,

login(). The source for this method is shown in listing 10.13.

public void login(IRequestCycle cycle)
{
 Visit visit = (Visit) cycle.getEngine().getVisit();

 if (visit != null && visit.isUserLoggedIn())
 return;

 ICallback callback = new PageCallback(getPage().getPageName());
 Login loginPage = (Login) cycle.getPage("Login");
 loginPage.setCallback(callback);
 cycle.activate(loginPage);
}

The login() listener method checks to see if the user is already logged in. If so,

the method returns, and the active page is redisplayed. If the user has not

already logged in, the Login page is invoked to allow the user to log in.

 The interesting part is how we set up the Login page returns to return to the

current page after the user login process is complete. The Login page has a

property, callback, of the type ICallback. ICallback is an interface provided

with the framework, which exists for just this purpose: to define in an abstract

way how to continue after some form of interruption. In this case, the interrup-

tion is logging into the application. The interface and a base set of implementa-

tions exist specifically to handle common use cases such as logging in,

registering, and entering optional addresses into a form. Here, that interruption

is authenticating the user, either by logging in or by registering.

 The implementation used, PageCallback, will activate the named page

(invoking the IRequestCycle object’s activate() method), which is what we want

in this situation. As you’ll see when we cover the Login page in detail, the call-

back returns users to where they started once they are authenticated.

Listing 10.13 The login() method of the Border class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Implementing the Border component 443

10.7.2 Linking to MyLibrary

The MyLibrary page displays a list of books owned by the logged-in user. Like

the BookMatches page, it must construct and manage a reference to a BookQuery

bean. Unlike the Home page, which can be rendered at any time, the MyLibrary

page must be initialized before it can render.

 Two other pages in the application are similar: BorrowedBooks and Edit-

Profile. Each has an initialization stage that must occur before the page can be

rendered the first time. For the Virtual Library, an interface, IActivate, exists for

these three pages. This allows all three pages to be treated similarly by the Bor-

der component.6

 At the same time, it is necessary to log the user in, on the fly, before rendering

the MyLibrary page. The link to the MyLibrary page is a DirectLink, and the lis-

tener method is viewMyLibrary(). This listener method simply invokes another

method, activate(), to do the work (the Border class includes other listener

methods that invoke activate() with different parameters, supporting several

other menu items). Both of these methods are shown in listing 10.14.

public void viewMyLibrary(IRequestCycle cycle)
{
 activate("MyLibrary", cycle);
}

private void activate(String pageName, IRequestCycle cycle)
{
 IActivate page = (IActivate) cycle.getPage(pageName);

 page.validate(cycle);

 page.activate(cycle);
}

The viewMyLibrary() and activate() methods obtain the MyLibrary page and

invoke its validate() method. If validate() does not throw an exception, then

the page’s activate() method (as defined by the IActivate interface) is invoked.

6 Another option, which is completely reasonable, would be to create a new type of service for activating
such pages. The service could be similar to the page service but also cast the page to IActivate and
invoke the activate() method. If we were to pursue such an approach, we would also create an
ActivateLink component.

Listing 10.14 The viewMyLibrary() and activate() methods of the Border class

TEAM LinG - Live, Informative, Non-cost and Genuine!

444 CHAPTER 10

Implementing a Tapestry application

 The MyLibrary class includes an implementation of the activate() method,

shown in listing 10.15.

public void activate(IRequestCycle cycle)
{
 runQuery();

 cycle.activate(this);
}

This purpose of this implementation of the activate() method is to execute the

query of books owned by the logged-in user (that’s primarily what’s shown on

the MyLibrary page: a listing of books the logged-in user owns) and then set the

MyLibrary page as the active page (so that it can render the response). Like

the BookMatches page, the MyLibrary page uses its own instance of the Book-

Query bean and has its own set of Browser and ColumnSorter components.

 The final piece of the puzzle is to force the user to be logged in before activating

the MyLibrary page. This comes from ActivatePage, the super class of MyLibrary.

ActivatePage is a base implementation of the IActivate interface. ActivatePage

also implements the PageValidateListener interface; it includes an implementa-

tion of the pageValidate() method that checks whether the user is logged in and,

if not, uses the Login page to get the user logged in. Listing 10.16 provides the

source code for this method.

public void pageValidate(PageEvent event)
{
 Visit visit = (Visit) getVisit();

 if (visit != null && visit.isUserLoggedIn())
 return;

 Login login = (Login) getRequestCycle().getPage("Login");

 login.setCallback(new ActivateCallback(this));

 throw new PageRedirectException(login);
}

Listing 10.15 The activate() method of the MyLibrary class

Listing 10.16 The pageValidate() method of the ActivatePage class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Authenticating the user 445

Throwing a PageRedirectException forces Tapestry to activate the specified page

and use it to render the response, regardless of what the active engine service

would normally do. The ActivateCallback class implements ICallback and is

used to invoke activate() on a page that implements the IActivate interface.

 This combination—the listener method in the Border component and the

methods in the MyLibrary and ActivatePage classes—ensures that the MyLibrary

page will render only after the user has successfully logged in and that the

MyLibrary page will be allowed to initialize properly before being rendered.

The same protections also apply to the other (similar) pages, BorrowedBooks

and EditProfile.

 Before users can access these protected pages, the application must provide a

way to authenticate them.

10.8 Authenticating the user

Authentication of the user involves

■ Collecting the user’s email address and password and validating them

against the database

or

■ Collecting registration information and registering the user in the database

After login or registration, the process returns the user to the correct page.

 As you’ve seen with the MyLibrary page, the pageValidate() method is

responsible for both directing the user to the Login page and telling the Login

page how to continue after the user is authenticated. The base class Protected

also implements the pageValidate() method (shown in listing 10.17); this

method is used by pages such as the NewBook page (whose Java class extends

from Protected) that are only available to authenticated users but do not require

the initialization stage mandated by the IActivate interface.

 The Protected class’s implementation of the pageValidate() method is similar to

the implementation of pageValidate() in the ActivatePage class, except that the call-

back is an instance of PageCallback, not ActivateCallback. Using the PageCallback

class is appropriate for pages that don’t implement the IActivate interface.

public void pageValidate(PageEvent event)
{
 Visit visit = (Visit) getVisit();

Listing 10.17 The pageValidate() method of the Protected class

TEAM LinG - Live, Informative, Non-cost and Genuine!

446 CHAPTER 10

Implementing a Tapestry application

 if (visit != null && visit.isUserLoggedIn())
 return;

 Login login = (Login) getRequestCycle().getPage("Login");

 login.setCallback(new PageCallback(this));

 throw new PageRedirectException(login);
}

Here again, the Visit object is accessed to see if the user has already authenti-

cated. If not, the Login page is rendered, with a callback to return the user to the

current page.

10.8.1 Remembering the user

When users launch the application at a later date, the correct email address will

be filled out for them and they’ll just have to enter a password. This is a natural

use for an HTTP cookie. Although Tapestry applications can be coded without

referencing the Servlet API, you are not prevented from doing so; the Login

page uses portions of the Servlet API to read and set an HTTP cookie that

records the identity of the user for later sessions.

 The Login page implements the PageRenderListener interface so that it may be

notified when it is about to render. The pageBeginRender() method checks to see if

the email address is null and supplies a default value from the HTTP cookie.

 The initialization code in listing 10.18 is balanced with code that records the

cookie after a successful login, which is shown in listing 10.19 in the next section.

private static final String COOKIE_NAME =
 "org.apache.tapestry.vlib.Login.email";

public void pageBeginRender(PageEvent event)
{
 if (getEmail() == null)
 setEmail(
 getRequestCycle().getRequestContext().
 getCookieValue(COOKIE_NAME));
}

Listing 10.18 The pageBeginRender() method of the Login class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Authenticating the user 447

10.8.2 Clearing the password field

When a form within a page is submitted and the page redisplayed, normally the

TextField and ValidField components within the page redisplay the input that

was supplied by the end user. For TextField, the input is stored in a page prop-

erty when the form is submitted and then read from the same property when the

component renders. ValidField does the same, with the extra step of recording

user input exactly as supplied by the user. This input will be used if the user

makes an error (for instance, entering a string value into a numeric field).

 This is not desirable for the password field. On a login form, if the user enters

an incorrect password, the password field should be cleared, forcing the user to

reenter the correct password from scratch. Because a ValidField component is

used to handle the password, an extra step is needed beyond simply setting the

page’s password property to null.

public void attemptLogin(IRequestCycle cycle)
{
 String password = getPassword();

 setPassword(null);
 IValidationDelegate delegate =
 getValidationDelegate();

 delegate.setFormComponent(
 (IFormComponent) getComponent("inputPassword"));
 delegate.recordFieldInputValue(null);

 if (delegate.getHasErrors())
 return;

 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();

 int i = 0;
 while (true)
 {
 try
 {
 IOperations operations =
 vengine.getOperations();

 Person person =
 operations.login(getEmail(), password);

Listing 10.19 The attemptLogin() and loginUser() methods of the Login class

Clears
password field

Performs
login using
Operations
bean

TEAM LinG - Live, Informative, Non-cost and Genuine!

448 CHAPTER 10

Implementing a Tapestry application

 loginUser(person, cycle);

 break;
 }
 catch (LoginException ex)
 {
 String fieldName =
 ex.isPasswordError()
 ? "inputPassword"
 : "inputEmail";

 setErrorField(fieldName, ex.getMessage());
 return;
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(
 "Remote exception validating user.",
 ex, i++);
 }
 }
}

public void loginUser(Person person, IRequestCycle cycle)
throws RemoteException
{
 String email = person.getEmail();

 Visit visit = (Visit) getVisit();
 visit.setUser(person);

 ICallback callback = getCallback();

 if (callback == null)
 cycle.activate("Home");
 else
 callback.performCallback(cycle);

 IEngine engine = getEngine();
 Cookie cookie = new Cookie(COOKIE_NAME, email);
 cookie.setPath(engine.getServletPath());
 cookie.setMaxAge(ONE_WEEK);

 cycle.getRequestContext().addCookie(cookie);

 engine.forgetPage(getPageName());
}

Completes
login

Stores logged-in
user in Visit

Returns to
previously
active page

Stores cookie
in client’s
browser

Discards persistent
properties

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating bookmarkable links 449

The validation delegate stores the input value, the exact value supplied by the

user, for each ValidField. For the password field to be rendered as empty, it is nec-

essary to override the value supplied by the user with null. This can be seen at the

beginning of the attemptLogin() method (listing 10.19). Overriding the valida-

tion delegate’s stored value and setting the page’s password property to null

ensures that if the page is rendered again (for example, if the password is not

valid or if the email address is not known), the password field will be empty.

10.8.3 Invoking the login operation

The remainder of the login form’s listener obtains a reference to the Operations

bean and invokes the login() method on it. This method may throw a LoginEx-

ception if the email address is unknown or the password is invalid (as a conve-

nience for the presentation layer, this exception includes a flag indicating

whether the error should be attributed to the password).

 After the user is successfully authenticated, the listener method invokes the

loginUser() method to finalize the login. This includes using the callback prop-

erty to return to the original page where the user clicked the Login (or My

Library) menu item.

 After the callback is invoked, the Login page calls the forgetPage() method

on the engine. This method discards all persistent properties for the page—in

this case, the single persistent property, callback. Using the forgetPage()

method is the correct way to fully eliminate persistent state that is no longer nec-

essary. For this application, once the callback is utilized, there’s no longer any

need to store it.

 The loginUser() method is public because it is also used by the Register

page. After a user registers, the loginUser() method is used to store the user’s

identity in the Visit object and invoke the callback, just as if the user already

existed and had simply logged in.

 We’ve set the stage now for protecting pages by restricting them to logged-in

users, and we’ve given users the ability to log in or register on the fly. Now let’s

look at a way to store links to selected pages and data as web browser bookmarks.

10.9 Creating bookmarkable links

Links to both books and persons appear throughout the Virtual Library applica-

tion. Every book and person listed on the BookMatches, BorrowedBooks, View-

Person, and ViewBook pages appears as a link to either the ViewBook or ViewPerson

page (as appropriate).

TEAM LinG - Live, Informative, Non-cost and Genuine!

450 CHAPTER 10

Implementing a Tapestry application

 These links are “bookmarkable,” meaning that they may be saved in a user’s

bookmark list indefinitely. Bookmarkable links can be created using the external

service, and they are expected to be retrieved at a later date—unlike links cre-

ated with the direct service (using the DirectLink component), which are

expected to be used only within a single application session.

 Generally, external service links are created using the ExternalLink compo-

nent. The ExternalLink component will only generate the link itself; by wrap-

ping the ExternalLink inside an application-specific component, it is possible to

generate the text inside the link as well.

10.9.1 Creating the BookLink component

The BookLink component creates a link to the ViewBook page. The component

has a single parameter, book, of the type Book. The component’s template inserts

the Book’s title inside a link. It also checks to see whether the book is new; new

books are marked with an additional icon. The HTML template for this compo-

nent is shown in listing 10.20.

<span
 jwcid="@Insert" value="ognl:book.title"/>
<span jwcid="@Conditional"
 condition="ognl:newlyAdded"><img src="images/new.png"
 width="27" height="12" border="0" alt="New">

The decision on whether a book is “new” is complicated by the fact that the user

may not yet be logged in. Normally, only books added since the user’s last visit

are considered new. If the user hasn’t logged in, then anything added in the pre-

vious week is considered new. This logic is encapsulated in the isNewlyAdded()

method (listing 10.21) of the BookLink class.

private static final long ONE_WEEK_MILLIS =
 1000l * 60l * 60l * 24l * 7l;

public boolean isNewlyAdded()
{
 IEngine engine = getPage().getEngine();
 Visit visit = (Visit) engine.getVisit();
 Timestamp lastAccess = null;

Listing 10.20 BookLink.html: HTML template for the BookLink component

Listing 10.21 The isNewlyAdded() method of the BookLink class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating bookmarkable links 451

 if (visit != null)
 lastAccess = visit.getLastAccess();

 Book book = getBook();

 Timestamp dateAdded = book.getDateAdded();

 if (dateAdded == null)
 return false;

 if (lastAccess == null)
 {
 long now = System.currentTimeMillis();

 return (now - dateAdded.getTime()) <= ONE_WEEK_MILLIS;
 }

 return lastAccess.compareTo(dateAdded) <= 0;
}

The link component passes the Book’s ID as a service parameter. This will be

enough for the ViewBook page to read the Book object when the page is trig-

gered by the URL. The link component is declared in the BookLink’s compo-

nent specification:

<component id="link" type="ExternalLink">
 <static-binding name="page" value="ViewBook"/>
 <binding name="parameters" expression="book.id"/>
</component>

That covers how to create the link and the text within the link. What happens

when the link is clicked by the user? That’s the domain of the ViewBook page.

10.9.2 Displaying the Book on the ViewBook page

The ViewBook page is the target of the ExternalLink component contained by

the BookLink component. As an external page (ViewBook implements the

IExternalPage interface, making it compatible with the external service), it

implements activateExternalPage(), the method invoked by the external ser-

vice. Listing 10.22 shows the source code for this method.

public void activateExternalPage(Object[] parameters,
 IRequestCycle cycle)
{

Listing 10.22 The activateExternalPage() method of the ViewBook class

TEAM LinG - Live, Informative, Non-cost and Genuine!

452 CHAPTER 10

Implementing a Tapestry application

 Integer bookId = (Integer) parameters[0];

 setBookId(bookId);
}

This method’s sole responsibility is to extract the ID of the Book entity to view

from the service parameters and store the value into the bookId page property.

When the page renders, the book will be read as needed, using the standard

approaches you’ve seen in prior Virtual Library pages. Listing 10.23 contains the

source code for the pageBeginRender() and readBook() methods.

public void pageBeginRender(PageEvent event)
{
 if (getBook() == null)
 readBook();
}

private void readBook()
{
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();
 Integer bookId = getBookId();

 int i = 0;
 while (true)
 {
 IOperations bean = vengine.getOperations();

 try
 {
 setBook(bean.getBook(bookId));

 return;
 }
 catch (FinderException ex)
 {
 vengine.presentError("Book not found in database.",
 getRequestCycle());
 return;
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(
 "Remote exception obtaining information for book #" +
 bookId + ".",

Listing 10.23 The pageBeginRender() and readBook() methods of the ViewBook class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating bookmarkable links 453

 ex,
 i++);
 }
 }
}

What happens if the user reaches the ViewBook page before logging in, and then

clicks the Login menu item? The user will be authenticated using the Login page

(and perhaps Register as well) and then will be returned to the ViewBook page using

a PageCallback object. At this point, the page will be rendered, with the Borrow

component enabled.

 What’s missing in this scenario is which book should be displayed. The Page-

Callback stores only the name of the page to render the response; the activate-

ExternalPage() method will not be invoked. For this reason, the bookId property

is made persistent. This ensures that when the page is rendered again after user

authentication, the correct Book object is read and displayed.

 In the interests of efficiency, and in order to minimize server-side state,

only the bookId property, not the entire Book object (stored in the book prop-

erty), is made persistent. The book property can always be restored from the

database, as long as the bookId is known. This follows the general guideline

of storing the minimum persistent state and recovering any additional state

as needed.

10.9.3 Creating the PersonLink component

The PersonLink component is slightly more complex than the BookLink compo-

nent. Instead of passing in a Person object, a Person’s name and ID are passed in

as two separate parameters. This is because the Person object is usually not avail-

able; instead, the Book object includes properties for a book’s owner (name and

ID) and holder (name and ID). This reflects that the Book object, returned by the

BookQuery bean, is a flattening of information from the Book, Person, and Pub-

lisher entities.

 In addition, there are places where a PersonLink should be omitted. For

example, on the BookMatches page, if the holder matches the owner, the holder

is omitted. This is represented as a third parameter, omit.

 The HTML template for the PersonLink component, shown in listing 10.24,

makes use of these three parameters.

TEAM LinG - Live, Informative, Non-cost and Genuine!

454 CHAPTER 10

Implementing a Tapestry application

 Joe User

Because the PersonLink component is often used as part of a table (that is, inside

a <td> element), it is useful to replace the link with a nonbreaking space (the

 entity) so that the browser renders the cell containing the PersonLink

properly. Different browsers display empty <td> elements differently—often the

background color or cell borders are omitted for empty table cells. Putting a

nonbreaking space inside the <td> ensures that the element is never empty.

 The specification for the PersonLink component declares all three parame-

ters. The id parameter is a connected parameter (its direction attribute has the

value in), but the id parameter may not be connected normally; the IComponent

interface already defines and uses a property named id (it stores the compo-

nent’s ID, assigned by the user or by the framework). Therefore, the id parame-

ter is connected to a different property, personId:

<parameter name="id"
 type="java.lang.Integer"
 required="yes"
 direction="in"
 property-name="personId"/>

The link component can then reference the id parameter via its connected prop-

erty, personId:

<component id="link" type="ExternalLink">
 <static-binding name="page" value="ViewPerson"/>
 <binding name="parameters" expression="personId"/>
</component>

The other two parameters for the PersonLink component are the name parame-

ter (the name to be displayed for the user) and the omit parameter (which dis-

plays can be used to not display the name or link). The link created references

the ViewPerson page.

Listing 10.24 PersonLink.html: HTML template for the PersonLink component

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating bookmarkable links 455

10.9.4 Displaying the Person

The ViewPerson page displays the properties of the Person object, but it also dis-

plays the list of books owned by the person. This means that ViewPerson must

have the same kind of initialization stage that the MyLibrary page has. It must also

have additional components, properties, and Java code to allow the user to con-

trol sort order. Because the ViewPerson page is triggered using the external ser-

vice, it can perform this initialization inside its activateExternalPage() method

(shown in listing 10.25) rather than implementing the IActivate interface (as

the MyLibrary page’s Java class does).

public void activateExternalPage(Object[] parameters,
 IRequestCycle cycle)
{
 Integer personId = (Integer) parameters[0];

 setPersonId(personId);

 int count = runQuery();
 _browser.initializeForResultCount(count);
}

The method extracts the id of the Person that should be displayed from the ser-

vice parameters and stores it in the personId property (which, like the bookId

property of the ViewBook page, is a persistent property). It then invokes run-

Query() to initialize the query that contains the list of books owned by the Person.

The runQuery() method is shown in listing 10.26.

private int runQuery()
{
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();
 Integer personId = getPersonId();
 SortOrdering ordering = new SortOrdering(getSortColumn(),
 isDescending());

 int i = 0;
 while (true)
 {
 IBookQuery query = getQuery();

Listing 10.25 The activateExternalPage() method of the ViewPerson class

Listing 10.26 The runQuery() method of the ViewPerson class

TEAM LinG - Live, Informative, Non-cost and Genuine!

456 CHAPTER 10

Implementing a Tapestry application

 if (query == null)
 {
 query = vengine.createNewQuery();

 setQuery(query);
 }

 try
 {
 return query.ownerQuery(personId, ordering);
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure("Remote exception for owner query.",
 ex, i++);

 setQuery(null);
 }
 }
}

This code resembles the code you’ve already seen in the BookMatches and

MyLibrary pages. The only significant difference involves which method of the

BookQuery bean is invoked: in this case, it is the ownerQuery() method. Again

echoing the ViewBook page, the ViewPerson page initializes the person property

using the pageBeginRender() method (shown in listing 10.27).

public void pageBeginRender(PageEvent event)
{
 Person person = getPerson();

 if (person == null)
 {
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();

 person = vengine.readPerson(getPersonId());

 setPerson(person);
 }
}

Listing 10.27 The pageBeginRender() method of the ViewPerson class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing a Book 457

So far, the functionality you’ve seen has been concerned with presenting data

already stored in the database. Many of the remaining pages involve adding or

updating data.

10.10 Editing a Book

From the MyLibrary page, it is possible to edit an existing Book using one of the

icons on the right side of the page. The HTML template for the MyLibrary page

includes a link that encloses a Rollover component for the button image:

<img jwcid="editRollover"
 src="images/edit.png" width="25" height="25"
 alt="Edit" border="0"/>

The edit component is a DirectLink. It invokes the editBook() listener method

and encodes the Book’s id as a service parameter:

<component id="edit" type="DirectLink">
 <binding name="listener" expression="listeners.editBook"/>
 <binding name="parameters" expression="currentBook.id"/>
</component>

Like several other pages, the EditBook page requires an initialization stage

before it can render. This initialization involves reading the Book to be edited.

The EditBook class does not implement the IActivate interface, even though its

needs are similar. The IActivate interface doesn’t leave any room for specifying

the book to edit. The IActivate interface is for pages (like MyLibrary) whose ini-

tialization does not require any additional parameters.

 Instead, the editBook() listener method, shown in listing 10.28, invokes a

specific method on the EditBook class to begin editing the book identified as a

service parameter.

public void editBook(IRequestCycle cycle)
{
 Object[] parameters = cycle.getServiceParameters();
 Integer bookId = (Integer) parameters[0];
 EditBook page = (EditBook) cycle.getPage("EditBook");

 page.beginEdit(cycle, bookId);
}

Listing 10.28 The editBook() method of the MyLibrary class

TEAM LinG - Live, Informative, Non-cost and Genuine!

458 CHAPTER 10

Implementing a Tapestry application

The beginEdit() method, shown in listing 10.29, stores the bookId and reads the

book from the database, using the Operations bean. When the user edits an

existing book here, or adds a new book (using the NewBook page), the book is

stored as a Map of attributes and values, rather than as a Book instance. The Book

object is designed only as the output from the BookQuery bean. It contains flat-

tened data from the Book, Person, and Publisher entities and is not designed

for updates.

 Instead, the EditBook page uses a Form component and form control com-

ponents to edit the values stored in a Map. The Map is then used to update the

Book entity.

public void beginEdit(IRequestCycle cycle, Integer bookId)
{
 setBookId(bookId);

 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();

 int i = 0;
 while (true)
 {
 try
 {
 IOperations operations = vengine.getOperations();

 setAttributes(operations.getBookAttributes(bookId));

 break;
 }
 catch (FinderException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(
 "Remote exception setting up page for book #" +
 bookId + ".",
 ex,
 i++);
 }
 }

 cycle.activate(this);
}

Listing 10.29 The beginEdit() method of the EditBook class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing a Book 459

The beginEdit() method uses the Operations bean to get the attributes of the

Book and assigns those attributes to the attributes property of the EditBook

page, ready to be edited by the form control components on the page. Each of

the form control components edits a property within the attributes Map. Tapestry

(or, really, OGNL) treats Maps as if they were JavaBeans, where the properties are

the keys of the Map. When the page renders, each component will read a property

from the attributes Map (such as attributes.title or attributes.author).

 What about when the form is submitted? The components will attempt to set

properties of the Map, but since this is a new request, the attributes property will

initially be null. The way to address this is to ensure that a non-null Map is avail-

able when the page renders. This is handled by the page’s pageBeginRender()

method, shown in listing 10.30.

public void pageBeginRender(PageEvent event)
{
 if (getAttributes() == null)
 setAttributes(new HashMap());
}

The pageBeginRender() method is invoked before a page renders, but also before

a form within the page rewinds. In either case, this event listener method will

ensure that a non-null Map is stored in the attributes property, ready to be read

or updated by the form control components.

10.10.1 Tracking the Book ID

How do we know which book is being edited? When the page is initially ren-

dered, we know the ID of the book (it is stored in the bookId property), and we

need that piece of information again when the form is submitted. In chapter 4,

we discussed scenarios where clicking the browser’s back button could cause us

some grief (if the user jumps back to previously rendered pages using the

browser’s back button). The solution here is to record the book ID in the form

using a Hidden component. This ensures that the form submission is completely

consistent: The field updates are packaged with the identity of the book to be

updated, and there’s no possibility of the client and the server disagreeing as to

which book is being edited. The following code is included in the EditBook

page’s HTML template as the first thing within the Form component:

Listing 10.30 The pageBeginRender() method of the EditBook class

TEAM LinG - Live, Informative, Non-cost and Genuine!

460 CHAPTER 10

Implementing a Tapestry application

This records the bookId property into the form when rendering, and then

restores the bookId property when the form is submitted. Since the bookId prop-

erty is not used until the form’s listener is invoked, the Hidden component can

go anywhere on the page, as long as it is enclosed by the Form component.

10.10.2 Generating dynamic JavaScript

The Virtual Library application allows new publishers to be defined on the fly.

When adding a new book or editing an existing book, the user has the option of

either selecting an existing publisher (from a drop-down list) or providing the

name of a new publisher in a text field.

 This either-or relationship between the drop-down list and the text field is

enforced in the client web browser using client-side JavaScript (and then double-

checked on the server, in case the client has JavaScript disabled). The JavaScript

consists of client-side event handlers that observe changes to the drop-down list.

When the list has a nonblank value selected, the text field is disabled. When the

user selects the empty option in the drop-down list, the text field is enabled, and

the cursor is moved to the text field. As discussed in chapter 8, JavaScript in Tap-

estry is complicated by the fact that the framework assigns the names of forms

and form control elements, and this requires a specialized template, the script

specification, to dynamically create JavaScript customized to the names assigned

by the framework.

 The EditBook page includes a Script component for creating the JavaScript.

A Script component is another framework component, whose goal is to provide

an easy way to add dynamic JavaScript to a page without our having to resort to

overriding the renderComponent() method (as we did in chapter 8). The script is

passed the two components (informal parameters to the Script component

become input symbols to the script specification), as well as the relative (to the

page specification) location of the script specification. Although the Script com-

ponent appears in the HTML template, it does not produce any HTML—it works

with the Body component to add JavaScript to the page.

 The Script component is configured in the EditBook page’s HTML template

to execute the Publisher.script specification:

<span jwcid="@Script" script="Publisher.script"
 select="ognl:components.inputPublisher"
 field="ognl:components.inputPublisherName"/>

The Script component reads and executes the Publisher.script file (which is

stored in the WEB-INF folder with the page specification). The two informal

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing a Book 461

parameters, select and field, are passed to the executable script as input sym-

bols. The script specification is shown in listing 10.31.

<?xml version="1.0"?>
<!DOCTYPE script PUBLIC
 "-//Apache Software Foundation//Tapestry Script Specification
 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Script_3_0.dtd">

<script>
<input-symbol key="select"
 class="org.apache.tapestry.form.PropertySelection"
 required="yes"/>
<input-symbol key="field"
 class="org.apache.tapestry.form.AbstractTextField"
 required="yes"/>

<let key="formObject">
 document.${select.form.name}
</let>

<let key="selectObject">
 ${formObject}.${select.name}
</let>

<let key="fieldObject">
 ${formObject}.${field.name}
</let>

<let key="functionName" unique="yes">
 onChange_${select.name}
</let>

<body>
function ${functionName}()
{
 var select = ${selectObject};
 var field = ${fieldObject};

 if (select.selectedIndex == 0)
 {
 field.disabled = false;
 field.focus();
 field.select();
 }
 else
 {
 field.disabled = true;

Listing 10.31 Publisher.script: script specification used by the EditBook page

➥

Receives the
PropertySelection
for the Publisher

Receives the
TextField for the
Publisher name

Defines name of
onchange event
handler function

TEAM LinG - Live, Informative, Non-cost and Genuine!

462 CHAPTER 10

Implementing a Tapestry application

 field.blur();
 field.value = "";
 }
}
</body>

<initialization>
${selectObject}.onchange = ${functionName};

if (${selectObject}.selectedIndex != 0)
 ${fieldObject}.disabled = true;
</initialization>
</script>

This script specification works by defining new symbols for client-side Docu-

ment Object Model (DOM) references to the <form>, <select>, and <input

type="text"> elements (as symbols formObject, selectObject, and fieldOb-

ject). It also constructs a unique name for the event-handling function for the

<select> element.7

 The event-handling function appears in the <body> element of the script

specification. The function is invoked when the user has changed the <select>

element to select the first option, empty, and adjusts the text field accordingly.

 In the <initialization> element, event-handling functions are connected to

client-side objects. The content of the <initialization> element is executed

once the complete HTML page is loaded into the client web browser. The initial-

ization here sets the onchange event handler for the <select> element to the

event-handling function. It also checks to see if the <select> is displaying a non-

empty option and disables the text field if so.

 This level of indirection may seem unnecessary in this specific case; you

could just see what names the framework assigns for the fields and write a script

block as static HTML. Doing so would not be a wise idea, however, since a future

version of the framework may change the naming conventions for forms and

form controls.

 As a final note, because JavaScript generation in Tapestry is parameterized,

this same script is used in another page: the NewBook page, which also accepts a

publisher name from a drop-down list or a text field.

7 The function name will typically be something like onChange_inputPublisher. This script isn’t re-
used on the page, so adding unique="yes" to the <let> is overkill, but not a bad habit to get into.

Connects the handler
to the select object

TEAM LinG - Live, Informative, Non-cost and Genuine!

464 CHAPTER 10

Implementing a Tapestry application

 <binding name="model" expression="booksModel"/>
 <binding name="selected" expression="selectedBooks"/>
 <binding name="selectedTitleBlock"
 expression="components.selectedTitleBlock"/>
 <binding name="availableTitleBlock"
 expression="components.availableTitleBlock"/>
</component>

The Palette’s availableTitleBlock and selectedTitleBlock parameters are used

to replace the default Blocks (which are inside the Palette’s own template) with

content from the page’s template. As this page demonstrates, this content can

not only include simple text (“Books you currently own”) but can be arbitrarily

complex, with a mix of static HTML and other components.

 The GiveAwayBooks page is the last page accessible to ordinary users. The

remaining pages are restricted to users with administrative privilege. Let’s look

at the first of these pages, EditPublishers, next.

10.12 Editing the publishers

The EditPublishers page allows a Virtual Library administrator to rename or

delete any publishers in the Virtual Library database. This is an important and

necessary page, since users may enter publisher names on the fly, and can thus

introduce inconsistencies and misspellings.

 This page is an example of a Form that loops over a number of domain

objects, providing form control elements for editing properties of each of the

domain objects. In this case, the domain objects are Publishers, and the prop-

erty we want to edit is the name of the Publisher. In addition, the form tracks

which Publishers should be deleted. The Operations bean provides a method

for performing all the updates and deletions as a single method invocation.

 Chapter 4 discussed the ListEdit component, which is designed for looping

over lists of objects within a form. The EditPublishers page demonstrates how to

properly use the ListEdit component, how to use the ListEditMap utility class,

and how to recover from out-of-date submissions (which can happen when the

user hits the browser’s back button and resubmits a form).

10.12.1 Constructing the EditPublishers template

The template for the EditPublishers page contains a Form component, a ListEdit

component (the e component), a TextField for editing the publisher’s name prop-

erty, and a Checkbox for marking publishers as deleted. The EditPublishers

template is shown in listing 10.32.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing the publishers 465

<html jwcid="$content$">
<body jwcid="@Border">

<form jwcid="@Form" listener="ognl:listeners.processForm">
<p>This page allows you to rename and delete publishers.
</p>
<table class="data">
 <tr>
 <th>Publisher</th>
 <th>Delete</th>
 </tr>
 <tr jwcid="listEdit">
 <td class="control">
 <input jwcid="inputName@TextField"
 value="ognl:publisher.name"
 size="40" maxlength="40"/>
 </td>
 <td class="checkbox">
 <input type="checkbox"
 jwcid="delete@Checkbox"
 selected="ognl:listEditMap.deleted"/>
 </td>
 </tr>
 <tr>
 <td class="control">
 <input type="image" src="images/update.png"
 width="52" height="20" alt="Update"/>
 </td>
 </tr>
 </table>
</form>
</body>
</html>

The checkbox does not edit a property of the Publisher object (Publisher

doesn’t have any kind of deleted property). Instead, it edits the property list-

EditMap.deleted. As you’ll see shortly, the ListEditMap object is essential in

terms of handling the form submission, including its ability to track the keys of

objects that should be deleted.

10.12.2 Declaring properties for the EditPublishers page

The page specification for the EditPublishers page (listing 10.33) declares the

standard message and error properties. It also declares a publisher property

Listing 10.32 EditPublishers.html: HTML template for the EditPublishers page

Iterates over the
available Publishers

Edits current
Publisher’s name
property

Edits listEditMap’s
deleted property

TEAM LinG - Live, Informative, Non-cost and Genuine!

466 CHAPTER 10

Implementing a Tapestry application

(which stores the current Publisher instance inside the loop) and a listEditMap

property, used in concert with the ListEdit component to convert between pub-

lisher IDs and Publisher objects and to track which publishers should be deleted.

The ListEdit component was previously discussed in chapter 4, and the Edit-

Publishers page is a perfect example of how to make use of it.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification
 class="org.apache.tapestry.vlib.pages.admin.EditPublishers">

 <property-specification name="listEditMap"
 type="org.apache.tapestry.form.ListEditMap"/>
 <property-specification name="message" type="java.lang.String"/>
 <property-specification name="error" type="java.lang.String"/>

 <property-specification name="publisher"
 type="org.apache.tapestry.vlib.ejb.Publisher"/>

 <component id="listEdit" type="ListEdit">
 <binding name="source" expression="listEditMap.keys"/>
 <binding name="value" expression="listEditMap.key"/>
 <static-binding name="element" value="tr"/>
 <binding name="listener"
 expression="listeners.synchronizePublisher"/>
 </component>

</page-specification>

The ListEdit component sets the key property of the ListEditMap instance on

each iteration. It is up to the synchronizePublisher() listener method (which is

invoked by the ListEdit component on each pass through its loop) to convert this

to a Publisher. Listing 10.34 shows the synchronizePublisher() method.

public void synchronizePublisher(IRequestCycle cycle)
{
 ListEditMap map = getListEditMap();
 Publisher publisher = (Publisher) map.getValue();

Listing 10.33 EditPublishers.page: specification for the EditPublishers page

Listing 10.34 The synchronizePublisher() method of the EditPublishers class

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing the publishers 467

 if (publisher == null)
 {
 setError(getMessage("out-of-date"));
 throw new PageRedirectException(this);
 }

 setPublisher(publisher);
}

When the form is submitted, a new ListEditMap instance will be created from the

data stored in the database at that time. If other users have been editing publish-

ers, the data in the new ListEditMap may not precisely match the data in the

ListEditMap used when the page was rendered. The ListEdit component will pull

the publisher IDs from the form submission, but it will still plug each successive

publisher ID into the Map’s key property, and it will still invoke the ListEdit’s lis-

tener method to synchronize the publisher property.

 If two users are both deleting Publishers at the same time, then the second

user’s form submission will include publisher IDs that were deleted by the first

user. In that case, the ListEditMap instance will return null from its getValue()

method for that publisher ID. That’s why the synchronizePublisher() method

includes a null check—null indicates that just such a race condition has occurred

and that the user is out of date. Throwing a PageRedirectException aborts the

form rewind and renders the EditPublishers page again.

10.12.3 Creating the ListEditMap

A ListEditMap instance is created whenever the page renders. As usual, this is

accomplished using the PageRenderListener interface. Listing 10.35 contains the

short pageBeginRender() method, as well as the longer readPublishers() method.

public void pageBeginRender(PageEvent event)
{
 readPublishers();
}

private void readPublishers()
{
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();
 Publisher[] publishers = null;

Listing 10.35 The pageBeginRender() method of the EditPublishers class

TEAM LinG - Live, Informative, Non-cost and Genuine!

468 CHAPTER 10

Implementing a Tapestry application

 int i = 0;
 while (true)
 {
 try
 {
 IOperations operations = vengine.getOperations();

 publishers = operations.getPublishers();

 break;
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(getMessage("read-failure"), ex, i++);
 }
 }

 ListEditMap map = new ListEditMap();
 int count = Tapestry.size(publishers);

 for (i = 0; i < count; i++)
 map.add(publishers[i].getId(), publishers[i]);

 setListEditMap(map);
}

The readPublishers() method uses the Operations bean to get the list of pub-

lishers, sorted in alphabetical order. It uses this list to construct the ListEditMap

instance, which is stored in the listEditMap property of the page.

 A ListEditMap instance remembers the order in which keys are added to it.

The keys property, used by the ListEdit component as the source of values

when rendering, will return the keys in this order. The publishers are dis-

played in ascending alphabetical order because the Operations bean’s get-

Publishers() method returns them in that order, and that is the order in which

they are added to the ListEditMap.

 The ListEditMap’s getValue() method doesn’t require a parameter to indi-

cate which value to get. The ListEdit component will have already updated the

key property of the ListEditMap for this pass through its loop—that is, the key

used by the getValue() method. The listener method obtains this value and casts

it to type Publisher.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing the publishers 469

10.12.4 Updating the publishers

When the form is submitted, the ListEditMap instance is re-created from current

data stored in the database (the pageBeginRender() method is invoked before the

form rewinds as well as before the page renders). As the form is rewound, the

Publisher objects are updated, and any deleted publishers are tracked.

 Inside the form’s processForm() listener method (provided in listing 10.36),

the updates are organized. The ListEditMap’s getValues() method returns all

the values (in this case, Publisher objects) that are not deleted. The getDeleted-

Keys() method returns the IDs of all the deleted publishers. Care must be taken

because the ListEditMap returns null from getDeletedKeys() when no publishers

have been marked for deletion.

public void processForm(IRequestCycle cycle)
{
 if (isInError())
 return;

 ListEditMap map = getListEditMap();
 List updateList = map.getValues();
 List deletedIds = map.getDeletedKeys();

 Publisher[] updated = (Publisher[])
 updateList.toArray(new Publisher[updateList.size()]);

 Integer[] deleted =
 deletedIds == null
 ? null
 : (Integer[])
 deletedIds.toArray(new Integer[deletedIds.size()]);

 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) getEngine();

 int i = 0;
 while (true)
 {
 try
 {
 IOperations operations = vengine.getOperations();

 operations.updatePublishers(updated, deleted);

 break;
 }
 catch (FinderException ex)

Listing 10.36 The processForm() method of the EditPublishers class

TEAM LinG - Live, Informative, Non-cost and Genuine!

470 CHAPTER 10

Implementing a Tapestry application

 {
 throw new ApplicationRuntimeException(ex);
 }
 catch (RemoveException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 catch (RemoteException ex)
 {
 vengine.rmiFailure(getMessage("update-failure"), ex, i++);
 }
 }

 vengine.clearCache();
}

After the values and deleted IDs are extracted and converted to arrays, the Oper-

ations EJB is again used to perform the update as a single operation. After the

normal retry logic, the final step is to have the engine clear any cached informa-

tion it might have (the engine caches a list of publishers).

 The same techniques used by the EditPublishers page are expanded for use

on the EditUsers page.

10.13 Editing the list of users

Like the EditPublishers page, the EditUsers page is accessible only to adminis-

trators. It allows the current user to edit select aspects of the other users: grant-

ing or revoking administrative privilege, locking or unlocking users, changing

users’ passwords, or deleting users outright.

 As with deleting publishers (on the EditPublishers page), tracking which

users will have their password changed is a function of the ListEditMap rather

than an attribute of the Person object. This requires a subclass of ListEditMap.

 The EditUsers page’s HTML template contains the same kind of loop, built

around a ListEdit component, as the EditPublishers page. The checkbox for the

reset password column is bound to the ListEditMap’s resetPassword property:

<tr jwcid="listEdit">
 <td><span jwcid="@Insert"
 value="ognl:user.naturalName">Joe User

 <span jwcid="@Insert"
 value="ognl:user.email">foo@bar.com
 </td>

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing the list of users 471

 <td class="checkbox">
 <input type="checkbox"
 jwcid="inputAdmin@Checkbox"
 selected="ognl:user.admin"/>
 </td>
 <td class="checkbox">
 <input type="checkbox"
 jwcid="inputLockedOut@Checkbox"
 selected="ognl:user.lockedOut"/>
 </td>
 <td class="checkbox">
 <input type="checkbox"
 jwcid="inputResetPassword@Checkbox"
 selected="ognl:listEditMap.resetPassword"/>
 </td>
 <td class="checkbox">
 <input type="checkbox"
 jwcid="inputDelete@Checkbox"
 selected="ognl:listEditMap.deleted"/>
 </td>
</tr>

10.13.1 Creating the ListEditMap subclass

The purpose of the UserListEditMap is to extend ListEditMap to also track a

set of keys identifying which Person values should have their passwords reset.

This involves creating a Set to track those keys and making use of methods

provided by the ListEditMap super class to use that Set. ListEditMap is designed

specifically to support this kind of extension, so the final class (listing 10.37) is

quite succinct.

package org.apache.tapestry.vlib.pages.admin;

import java.util.List;
import java.util.Set;

import org.apache.tapestry.form.ListEditMap;

public class UserListEditMap extends ListEditMap
{
 private Set _resetPasswordKeys;

 public List getResetPasswordKeys()
 {
 return convertSetToList(_resetPasswordKeys);
 }

Listing 10.37 UserListEditMap.java: ListEditMap subclass used on the EditUsers page

TEAM LinG - Live, Informative, Non-cost and Genuine!

472 CHAPTER 10

Implementing a Tapestry application

 public boolean getResetPassword()
 {
 return checkSet(_resetPasswordKeys);
 }

 public void setResetPassword(boolean resetPassword)
 {
 _resetPasswordKeys =
 updateSet(_resetPasswordKeys, resetPassword);
 }

}

The ListEditMap class provides three protected methods to be leveraged by sub-

classes: checkSet(), updateSet(), and convertSetToList(). The checkSet()

method checks a Set to see if it contains the current key. It automatically returns

false if the Set is null.

 The updateSet() method updates a Set, adding or removing the current

key based on the boolean parameter. It may seem odd that the method takes a

Set as a parameter and returns the same Set as a result. This is because the Set

passed in may be null. In that case, updateSet() will create a new instance of

Set and return it. This slight twist of the code allows the Set to be created only

if it is needed.

 Finally, the convertSetToList() method converts a Set (possibly null) to a

List. It can return null if the set is null or empty. The order of elements in the

returned List is not defined. In this case, List is returned because access to

the values inside a List is more efficient than with a Collection. With a List,

it is possible to get each element using the get() method (passing in an

index). With a Collection, it is possible to access all elements only with the use

of an Iterator.

10.13.2 Handling the form submission

When the form is submitted, the UserListEditMap instance is used to get the

updated users, as well as the list of deleted user IDs and the list of user IDs

whose password will be reset. Listing 10.38 contains the updateUsers() listener

method and a utility method, toArray(), used to convert a Collection to an

array of objects.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Editing the list of users 473

public void updateUsers(IRequestCycle cycle)
{
 if (isInError())
 return;

 Visit visit = (Visit) getVisit();
 VirtualLibraryEngine vengine =
 (VirtualLibraryEngine) cycle.getEngine();

 UserListEditMap map = getListEditMap();

 List updatedUsers = map.getValues();
 Person[]updates = (Person[])
 updatedUsers.toArray(
 new Person[updatedUsers.size()]);

 Integer[] resetPasswordUserIds =
 toArray(map.getResetPasswordKeys());
 Integer[] deletedUserIds =
 toArray(map.getDeletedKeys());

 String password = getPassword();
 setPassword(null);

 if (Tapestry.isBlank(password) &&
 Tapestry.size(resetPasswordUserIds) != 0)
 {
 setErrorField("inputPassword", getMessage("need-password"));
 return;
 }

 Integer adminId = visit.getUserId();

 int i = 0;
 while (true)
 {
 try
 {
 IOperations operations = vengine.getOperations();

 operations.updatePersons(
 updates,
 resetPasswordUserIds,
 password,
 deletedUserIds,
 adminId);
 break;
 }
 catch (RemoteException ex)

Listing 10.38 The updateUsers() and toArray() methods of the EditUsers class

Skips update if
validation errors

Gets Person
objects to
update

Gets IDs of Persons
to reset passwords

Gets IDs of
Persons to delete

Gets and clears
password field

Performs all
updates and
deletes

TEAM LinG - Live, Informative, Non-cost and Genuine!

474 CHAPTER 10

Implementing a Tapestry application

 {
 vengine.rmiFailure(getString("update-failure"), ex, i++);
 }
 catch (RemoveException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 catch (FinderException ex)
 {
 throw new ApplicationRuntimeException(ex);
 }
 }

 setMessage(getMessage("users-updated"));
}

private Integer[] toArray(Collection c)
{
 int count = Tapestry.size(c);

 if (count == 0)
 return null;

 return (Integer[]) c.toArray(new Integer[count]);
}

With that, we’ve covered all the key pages and the components in the applica-

tion—but that’s not quite the entire application. We still need to define the web

deployment descriptor, and there a few interesting deployment issues there.

10.14 Creating the web deployment descriptor

A common desire for web applications is that the URL be short and succinct;

this is as much for marketing reasons as for technical reasons, and is perfectly

valid. Users should just need to know the domain name, such as http://www.

amazon.com or http://www.slashdot.org, in order to launch the application.

Tapestry applications, however, require a reference to the application servlet, so

the URL for launching a Tapestry application has an extra term—for example:

http://www.myserver.com/app. Let’s see how to avoid that unwanted part, /app,

at the end.

 When using a JSP application, it is possible to specify a JSP as the “welcome

page.” The servlet container is responsible for recognizing a “bare” URL (a URL

that references a folder, not a particular JSP) and will send a redirect response to

the client, which results in a new request for the welcome page JSP. When Servlet

TEAM LinG - Live, Informative, Non-cost and Genuine!

Creating the web deployment descriptor 475

API 2.4 becomes widely available, it will be possible to perform this same kind of

redirection to a servlet.

 In the meantime, Tapestry makes use of a feature of the 2.3 Servlet API:8

Servlet filters. A filter is “plugged into” the request-processing pipeline within

the servlet container. The RedirectFilter class provided with the framework

intercepts the initial request for the bare URL and sends a client redirect response,

forwarding the client to the application servlet.

 To make use of this feature, we must declare the filter in the web.xml deploy-

ment descriptor, much as we define the Tapestry application servlet. This is

shown in listing 10.39. Because filters are part of the Servlet 2.3 API, we must use

the <!DOCTYPE> for the 2.3 API (in previous examples, we used the 2.2 DOCTYPE).

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>Tapestry Virtual Library Demo</display-name>

 <filter>
 <filter-name>redirect</filter-name>
 <filter-class>
 org.apache.tapestry.RedirectFilter
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>redirect</filter-name>
 <url-pattern>/</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>vlib</servlet-name>
 <servlet-class>
 org.apache.tapestry.ApplicationServlet
 </servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>vlib</servlet-name>

8 Other than this, Tapestry uses only features of the Servlet 2.2 API, for maximum portability to the
many application servers in use even today.

Listing 10.39 web.xml: deployment descriptor for the Virtual Library application

Defines the
redirect filter

Maps the
redirect filter
to bare URL

TEAM LinG - Live, Informative, Non-cost and Genuine!

476 CHAPTER 10

Implementing a Tapestry application

 <url-pattern>/app</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>15</session-timeout>
 </session-config>

</web-app>

That shortens the launch URL for the application from http://www.myserver.com/

vlib/app down to http://www.myserver.com/vlib. Ideally, the launch URL should

be just http://www.myserver.com. Going that extra step takes two different forms,

depending on how the application is deployed.

10.14.1 Deploying web applications as root

When you’re deploying an individual web application, the name of the WAR file

becomes the name of the prefix. So, a web application named demo.war would

be deployed as http://www.myserver.com/demo. Most servlet containers, includ-

ing Jakarta Tomcat, follow a convention that a web application named ROOT.war

is deployed without a prefix, as http://www.myserver.com/. Combining such a

deployment with the filter described earlier allows us to reach that ideal, minimal-

launch URL: http://www.myserver.com.

10.14.2 Deploying an enterprise application as root

The Virtual Library does not deploy as a simple web application; it is deployed

as an enterprise application. An enterprise application is another level above a

web application and bundles together one or more web applications with any

number of other libraries, including EJB modules.

 In the case of the Virtual Library, the vlib.war web application is combined

with the vlibbeans.jar EJB module to form the vlib.ear enterprise application.

vlibbeans.jar and vlib.war are built separately and then combined to form the

final application. These two modules are included inside the enterprise appli-

cation archive (which is another version of a JAR file, with a different exten-

sion, .ear).

 Just as a web application has a web.xml deployment descriptor and an EJB

module has an ejb-jar.xml deployment descriptor, an enterprise application has

an application.xml deployment descriptor. The descriptor for the Virtual Library

enterprise application is shown in listing 10.40.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Wrapping it all up 477

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
 "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
 <display-name>Virtual Library Application</display-name>
 <module>
 <ejb>vlibbeans.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>vlib.war</web-uri>
 <context-root>/</context-root>
 </web>
 </module>
</application>

The application deployment descriptor identifies how to deploy the two mod-

ules packaged within the enterprise application archive, identifying one as an

EJB module and the other as a web application. The critical part in this discus-

sion is the <context-root> element. This element gives us absolute control over

the URL prefix used to identify the web application; the name of the web appli-

cation archive is no longer relevant.

 For our purposes, we deploy the web application as / rather than /vlib. The

end result is that the application will launch with the URL http://www.myser-

ver.com, which is what we want.

10.15 Wrapping it all up

Every application contains a unique set of challenges driven by the need to know

who the user is, what the user is doing, and what data is stored on the server (as

persistent page properties) or in the client (as service parameters or hidden

form fields). Tapestry provides a clean, object-oriented approach to meeting all

these challenges.

 You’ve seen that it is possible, in a rather small amount of code, to create a

complex, robust, usable application. Tapestry provides the necessary hooks, in

the form of page lifecycle events, to fill in any gaps in functionality that the

framework can’t provide. All of these techniques can be expanded and adapted

to new applications with new challenges.

Listing 10.40 application.xml: enterprise application deployment descriptor for

the Virtual Library application

TEAM LinG - Live, Informative, Non-cost and Genuine!

478 CHAPTER 10

Implementing a Tapestry application

 In the space of these few chapters, you’ve seen how Tapestry simplifies and

improves web application development in everything from a simple word game

to an entire J2EE application. Tapestry accomplishes quite a bit from just a few

basic building blocks:

■ Tapestry’s component object model allows the framework to manage the

lifecycle of pages and components and facilitates the ability to address a

particular page or component within a URL.

■ Expressing the relationships and interactions within the framework in
terms of JavaBean properties eliminates the impedance between different
parts of the application—especially between the components provided by
the framework and the domain objects specific to your application.

■ Dividing an application into self-contained pages and achieving reuse
through the creation of components leads to more functionality and fewer
bugs, and requires less code.

■ Embracing a separation of concerns by dividing pages (and components)

into Java classes, HTML templates, and specifications mirrors the Model-

View-Controller pattern and enables developers to work together easily.

This book has given you the tools to understand how to create your own custom

Tapestry applications. You are well on your way to thinking in terms of compo-

nents: reusing existing components or creating your own (with an eye toward

reusing them). This book, and these examples, are just the start of the Tapestry

world, which begins at the Tapestry home page: http://jakarta.apache.org/tapes-

try/. Tapestry is built around a thriving, world-spanning community of users and

volunteers, which translates to a wealth of support and examples.

 Using Tapestry, you are freed from the most troublesome and taxing concerns

of developing web applications. Now you can concentrate on the real challenges:

unrealistic project schedules, difficult clients, the changing technology land-

scape, and all the other realities of twenty-first century software development.

“OK, folks, we don’t get much of a break, the client is really breathing down our necks for
phase two, and we’ve got a lot of work to do.” As usual, you tune out for a bit and start visual-
izing the changes; the new registration wizard is twisted, may be time to refine those workflow
components you’ve been prototyping … you’ll need a component to raise that new pop-up
window … and you’ll have to whip something together for that Flash animation. You frown.
The new functionality is going to break the fragile links into the client’s back-end systems.
Again. More quality time with their IT department. Why couldn’t it all be as simple and
straightforward as the web interface?

TEAM LinG - Live, Informative, Non-cost and Genuine!

479

Getting involved
with Tapestry

TEAM LinG - Live, Informative, Non-cost and Genuine!

480 APPENDIX A

Getting involved with Tapestry

One of the great aspects of any open-source project is just how easy it is to get

started and, potentially, guide the evolution of the project. The starting point for

participation is the Tapestry home page at http://jakarta.apache.org/tapestry/ and

the two mailing lists, tapestry-user@jakarta.apache.org (where you’ll find discus-

sions on how to use Tapestry) and tapestry-dev@jakarta.apache.org (which focuses

on ways to improve the framework). Instructions for subscribing to the mailing

lists are available on the Tapestry home page.

 Tapestry has benefited immensely from the ideas brought up for discussion in

the mailing lists. For example, line-precise error reporting evolved from a strong

suggestion (really more of a complaint) by a new user who had difficultly working

backward from runtime errors to mistakes in the XML specifications. That simple

request led to significant improvement to the framework.

 Here’s another example: Through Tapestry release 2.3, there was no concept

of an implicit component; that came out of a discussion involving Marc Fleury

(the volatile lead of the JBoss application server project). Again, a major enhance-

ment to the framework came out of direct discussions with the framework’s end

users. In many more cases, extensions to individual components or to APIs were

a result of end-user feedback.

 If you want to go beyond making suggestions to actually supplying code,

there is a path for this as well. Tapestry is an Apache Jakarta project and is orga-

nized along the Apache meritocracy guidelines—which means all decisions are

made out in the open, on the mailing lists, and are based on open votes. There

are no barriers to entry, beyond an ability to communicate, a willingness to work

with the Tapestry team, and, of course, the ability to produce high-quality code.

Several current members of the Tapestry team came up through the ranks by

mentoring new users on the mailing lists and eventually submitting code patches,

before being voted in as Tapestry committers.

A.1 Tacos—the Tapestry component repository

As you saw in chapters 6 and 8, Tapestry has sophisticated support for component

libraries. Creating, packaging, and using a Tapestry component library is quite

simple, and Tacos, the Tapestry Component Archive project, is a source for these

libraries. Tacos is a SourceForge project located at http://sf.net/projects/tacos/. At

the time of this writing, Tacos is in a formative stage, but plans are in progress to

make it the second epicenter for Tapestry development (after the Tapestry home

page at Jakarta) and a source for Tapestry components, sample applications, and

application skeletons.

TEAM LinG - Live, Informative, Non-cost and Genuine!

What’s coming next in Tapestry? 481

A.2 What’s coming next in Tapestry?

Tapestry is an ongoing project at Jakarta. At the time of this writing, Tapestry 3.0

is deep into its beta period, but advanced users have helped the team identify a

number of areas deserving of attention in the next full release.

 By the time this book is published, work will be well under way on release 3.1

of Tapestry. The community is very active, and there is a constant drive to

improve the framework—a continuous search for ways to extend the power of

Tapestry and, at the same time, reduce even further the time and effort involved

in creating Tapestry applications.

A.2.1 Improving application testability

Development and testing go hand in hand. If you want to complete a project on

time, your best bet is to take the time to develop tests for your code in parallel

with the code itself. Some developers, those who embrace the Extreme Program-

ming philosophies, go further: They write the tests first and then create code to

make the tests pass.

 This seems like a paradox: If you are under the gun, struggling to meet an

aggressive development schedule, writing tests seems like a luxury you can’t

afford. That’s a terrible misconception. The minutes you may spend creating a

test suite are a small price to pay compared with the hours you can waste track-

ing down bugs deployed into the bowels of an application server. Think about

it—inside a unit-test suite, you have a simple, predictable environment where it

is easy and natural to use the debugger. Running your test suite should be as

simple as hitting the Test button in your IDE.

 Finding a bug inside your application server is much more complicated; you

have to deal with debugging a remote process, with building and deploying the

application, and with filtering through all of the application server overhead. In

short, it’s a long and complicated cycle, adding minutes or more to each itera-

tion of your test cycle.

 As we’ve often said, when you write tests, you find bugs. Those bugs will eventu-

ally come to light in integration testing of the application, long after you’ve for-

gotten the minute details of how your code works—which will further multiply

the time and effort needed to find and fix the bugs. The only solution is to create

tests early.

 By dividing up your code carefully, you can test portions of your application

outside the Tapestry framework; for example, back in chapter 2, the Game and

WordSource classes could be tested easily using their own unit-test suites. These

TEAM LinG - Live, Informative, Non-cost and Genuine!

482 APPENDIX A

Getting involved with Tapestry

classes were carefully coded to have no dependencies on Tapestry or on any

other user interface.

 Unfortunately, the majority of a Tapestry application requires the active

involvement of the Tapestry framework to be tested. Not only do most of the

component classes fail to work in isolation, but many of them are abstract classes

that can’t even be instantiated, much less tested. Tapestry applications can only

be tested with the Tapestry framework.

 The testing story for Tapestry applications is less than ideal:

■ Obtain a testing tool, such as Mercury Interactive’s LoadRunner, Minq

Software’s PureLoad, or OpenSTA.1

■ Set up a test environment for the tool: an application server and any back-
end database or other external dependencies.

■ Build the application and deploy it to the application server.

■ Use the tool to execute the tests.

■ Analyze the results.

That’s not a bad scenario for performing load and performance testing, but it is

not appropriate for day-to-day (or even minute-to-minute) functional testing. As

a developer, you want to hit that Test button to run your application through its

paces to prove you haven’t broken anything, and you don’t want to wait long. You

want to use the same build-and-test strategy you’d use for a noninteractive or

nonweb application.

 A number of extensions to the JUnit framework are available for merging unit

testing with web application testing. You’ll find these listed at http://www.

junit.org/news/extension/web/index.htm. All of these extensions require a run-

ning web server or application server to execute against; the excellent open-

source servlet container Jetty (http://jetty.mortbay.com) is easily embeddable for

testing purposes.

 Internally, Tapestry includes an extensive test suite in excess of 400 tests. A

significant number of these tests are based on executing small applications

inside a simulated servlet container. These tests execute several hundred simu-

lated HTTP requests in the space of a few seconds.

 A focus for Tapestry release 3.1 will be to improve, generalize, and document

the internal test suite, converting it into a part of the Tapestry framework proper.

1 Information about web site testing software is available online at www.extremetech.com/article2/
0,3973,1154892,00.asp, http://www.aptest.com/resources.html#web-func, and elsewhere.

TEAM LinG - Live, Informative, Non-cost and Genuine!

What’s coming next in Tapestry? 483

This will provide a starting point for you to build a test suite for your own appli-

cation, allowing you to perform constant, pervasive testing without the complex-

ity and overhead of running a servlet container or application server.

A.2.2 Offline content generation

There’s no question that static content can be served up by a web server at tre-

mendous speed; static content can be held in memory, cached in multiple loca-

tions, and more easily distributed than dynamic content. As soon as the content

is dynamic, there is at least an order of magnitude drop-off in speed, and this

only gets worse when the application is database driven.

 Large content sites, such as Yahoo! and CNN, take the approach of generating

static content at frequent intervals (every hour, or even every few minutes). This

splits the difference between a fully dynamic, fully personalized web site, and a

fast, static web site. Various contributors to the Tapestry development mailing

lists have described approaches they have taken to bridge between the static and

dynamic approaches. One approach is to keep a Tapestry application running

and periodically use scripts (written in Perl or Python) to “scrape” the dynamic

content and store it to a static file, accessible via a web server.

 For Tapestry to be useful in the very highest top-end applications, the kind

visited by thousands of concurrent users, offline content generation is at least as

important as application server clustering. Offline content generation will be

another key goal in Tapestry 3.1.

A.2.3 Other simplifications and improvements

Part of the fun of developing Tapestry is that there’s always something new to be

added, refined, or sometimes rethought. Discussions with users on the Tapestry

mailing lists (see the next section) can be quite invigorating.

 There are at least two additional areas in Tapestry that will receive some

attention in release 3.1.

Simplifying parameters

The use of the <parameter> direction attribute to describe how Tapestry compo-

nent parameters are used (covered in chapter 6) is less than ideal. It requires that

you, the developer, understand exactly how data moves between a component

and its container (whether the container is a page or another component). The

idea was to optimize the number of accesses to the binding object so that proper-

ties would not be read or updated unnecessarily. These accesses, both reads and

writes, rely on Java reflection, which is much slower than ordinary Java method

invocation, so optimizations here can be very worthwhile.

TEAM LinG - Live, Informative, Non-cost and Genuine!

484 APPENDIX A

Getting involved with Tapestry

 With the bytecode enhancement technology introduced in release 3.0, it is

quite possible for a much improved version of the auto value for the direction

attribute to be implemented that can accomplish the same, or better, optimiza-

tions with even greater efficiency.

Simplifying persistent properties

As you saw in chapter 10, sometimes elaborate measures must be taken to work

around the fact that persistent page properties may not be modified once the

page begins rendering. Release 3.1 will explore whether these strict rules sur-

rounding persistent page properties may be relaxed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

485

Building the
examples with Ant

TEAM LinG - Live, Informative, Non-cost and Genuine!

486 APPENDIX B

Building the examples with Ant

Ant is an open-source build tool for Java that is used in a vast number of open-

source and proprietary software projects. Ant is used to automate the steps for

building, testing, and deploying Java software. The examples used throughout this

book are available in source form from the Manning web site for this book,

www.manning.com/lewisship/. This appendix describes how to use Ant to convert

that source into applications that run within the Tomcat servlet container.

 A complete, indispensable, and definitive guide to Ant is Java Development
with Ant, by Erik Hatcher and Steve Loughran (Manning, 2002).

B.1 Downloading the software

Building the example applications involves four software packages:

■ The Ant tool, which will compile the classes and assemble and deploy the

web applications.

■ The Tomcat servlet container. Tomcat is the reference implementation of
the Java Servlet API.

■ The Tapestry framework.

■ The Tapestry in Action examples

Table B.1 lists the home page for each package (you’ll see a download link on

the page) and specifies which version you should use.1

B.1.1 Installing Ant

Unpack the Ant distribution (it will be a zip file for Windows, or a .tar.gz file for

GNU/Linux or UNIX) to a directory. Ant includes installation directions in the

docs/manual/index.html file. The installation process involves updating the

Table B.1 Packages ued to build the examples

Package Home page Version

Ant http://ant.apache.org 1.5.1

Tomcat http://jakarta.apache.org/tomcat/ 4.1.24

Tapestry http://jakarta.apache.org/tapestry/ 3.01

Tapestry in Action examples www.manning.com/lewisship/ N/A

1 At the time of this writing, Tapestry 3.0 was in a late beta stage. By the time you read this, Tapestry
will have reached its final 3.0 release.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Downloading the software 487

system PATH environment variable, adding Ant’s bin directory to the list of

search directories. The bin directory contains scripts that run Ant. In addition,

you will set up an ANT_HOME environment variable to point to the installation loca-

tion of Ant.

B.1.2 Installing Tomcat

On Windows, Tomcat is easiest to install by downloading as a self-extracting

archive (.exe) file, which has an integrated installer. By default, the server is

installed in the directory C:/Program Files/Apache Group/Tomcat 4.1. For GNU/

Linux and UNIX systems, a .tar.gz file may be extracted instead.

B.1.3 Installing Tapestry

Tapestry is distributed as a zip file for Windows and as a .tar.gz file for GNU/

Linux and UNIX. The binary distribution includes the compiled libraries as well

as a number of dependencies needed by Tapestry (these are other open source

libraries that Tapestry makes use of, such as OGNL).

 You should extract the Tapestry distribution to a working directory.

 Tapestry includes a README file with additional instructions for configuring

its turnkey demos for use with Tomcat or with JBoss.

B.1.4 Installing the examples

Installation of the examples involves two steps. First the archive file, TapestryIn-

ActionSource.zip, must be extracted to a working directory.

 Second, you must create a file, common/build.properties (listing B.1), within

the working directory. This file is referenced by the Ant build script to identify

where Tapestry and Tomcat have been installed. Listing B.1 is an example of this

file for a Windows installation. The distribution includes a sample file, build.

properties.template, which you can edit to match your choice of directories and

then rename to build.properties.

tapestry.dist.dir = C:/Tapestry-3.0
tomcat.dir = C:/Program Files/Apache Group/Tomcat 4.1

Listing B.1 build.properties: configuration file for building the examples

TEAM LinG - Live, Informative, Non-cost and Genuine!

488 APPENDIX B

Building the examples with Ant

B.2 Building the examples

Now that you’ve extracted the examples and created the configuration file, Ant

can compile and deploy the four web applications directly into Tomcat. Simply

execute the command ant from the examples distribution directory.

 The top-level Ant build file will, by default, build the library, and then build

and deploy each of the four web applications.

 In addition, a small change to the Tomcat configuration is installed. Its goal

is to resolve a naming conflict between the Tapestry examples web application

and an example web application distributed as part of Tomcat.

B.3 Running the examples

You should start Tomcat and allow it to fully initialize. On Windows, the installer cre-

ates a Start menu group; on other systems, follow the directions in the distribution.

 Once Tomcat has initialized and loaded the applications, you may start a web

browser and open the URL http://localhost:8080/examples/app. This will display

the Home page of the main examples application, which has links to all the

pages of the examples application and to the other three applications (both ver-

sions of Hangman and the banner ads demo).

B.4 Understanding the examples build system

The examples distribution consists of a number of subprojects, each in its own

subfolder, and each with its own Ant build file. These subprojects are shown in

table B.2. A master Ant build file, in the distribution directory, links together all

the subprojects.

Table B.2 Subprojects in the examples distribution

Name Type Description

examples-library Library Library containing components described in chapters 7 and 8

examples Web application Application containing pages and components from chapters 3–7

hangman1 Web application Application described in chapter 2

hangman2 Web application Application described in chapter 6

bannerads Web application Application described in chapter 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the examples build system 489

The build environment used by the examples is worth taking a look at as a start-

ing point for building your own build environment. The basic layout is shown in

figure B.1 (which shows only the hangman1 subproject).

 Each file and directory has a specific purpose during the build, as table B.3 shows.

Table B.3 Files and directories for the hangman1 subproject

File Purpose

build.xml Master Ant build file for the entire project

common/build.properties Identifies the location of the Tapestry and Tomcat distributions

hangman1/build.xml Rules for building just the hangman1 web application

hangman1/src/java Java code to be compiled

hangman1/target/classes Compiled Java source code (created as needed)

Figure B.1

The master build file

calls into the build

files in each of the five

subprojects (only

hangman1 is shown).

TEAM LinG - Live, Informative, Non-cost and Genuine!

490 APPENDIX B

Building the examples with Ant

In each subproject is a build.xml file used by Ant and an src directory. Ant will

create the target directory (which contains all the derived files, such as compiled

Java classes) and ultimately create the deployable web application archive within

the target directory.

 Listing B.2 shows the build file for the hangman1 subproject.

<?xml version="1.0"?>
<project name="Tapestry In Action -- Hangman, version 1"
 default="war">

 <property name="project.name" value="hangman1"/>

 <property file="../common/build.properties"/>

 <property name="target.dir" value="target"/>

 <property name="src.dir" value="src/java"/>
 <property name="context.dir" value="src/context"/>
 <property name="conf.dir" value="src/conf"/>

 <property name="classes.dir" value="${target.dir}/classes"/>
 <property name="war.file"
 value="${target.dir}/${project.name}.war"/>

 <property name="servlet.jar"
 value="${tomcat.dir}/common/lib/servlet.jar"/>

 <path id="project.class.path">
 <fileset dir="${tapestry.dist.dir}/lib">
 <include name="*.jar"/>
 <include name="ext/*.jar"/>
 </fileset>
 <pathelement location="${servlet.jar}"/>
 </path>

hangman1/context HTML templates for pages, plus static assets

hangman1/context/WEB-INF web.xml deployment descriptor, page and component specifications,

and so on

hangman1/target/hangman1.war Completed WAR, including compiled Java code, contents of context,

plus all necessary Tapestry libraries and dependencies

Listing B.2 build.xml: Ant build file for the hangman1 subproject

Table B.3 Files and directories for the hangman1 subproject (continued)

File Purpose

Reads
configuration file

Defines
symbols
for files
and
folders

Defines path
to Servlet API
library

Constructs
compile
classpath

TEAM LinG - Live, Informative, Non-cost and Genuine!

Understanding the examples build system 491

 <target name="clean" description="Deletes derived files.">
 <delete dir="${target.dir}" quiet="true"/>
 </target>

 <target name="compile" description="Compile Java classes.">
 <mkdir dir="${classes.dir}"/>
 <javac srcdir="${src.dir}" destdir="${classes.dir}" debug="on"
 classpathref="project.class.path"/>
 </target>

 <target name="war" depends="compile"
 description="Compile all classes and build the WAR.">
 <war warfile="${war.file}"
 webxml="${context.dir}/WEB-INF/web.xml">

 <fileset dir="${context.dir}">
 <exclude name="WEB-INF/web.xml"/>
 </fileset>

 <classes dir="${classes.dir}"/>

 <classes dir="${src.dir}">
 <exclude name="**/*.java"/>
 <exclude name="**/package.html"/>
 </classes>

 <lib dir="${tapestry.dist.dir}/lib">
 <include name="*.jar"/>
 </lib>
 <lib dir="${tapestry.dist.dir}/lib/ext">
 <include name="*.jar"/>
 </lib>
 </war>
 </target>

 <target name="deploy" depends="war"
 description="Deploy the WAR into Tomcat.">
 <property name="deploy.dir" value="${tomcat.dir}/webapps"/>

 <copy file="${war.file}" todir="${deploy.dir}"/>
 </target>
</project>

The compile target is responsible for compiling the Java source code, stored

under src/java. The class files are stored under target/classes. The WAR file is cre-

ated by combining these compiled classes with the image of the web application

context, plus any additional artifacts inside the source directory (this includes

page and component specifications, HTML templates, script specifications, or

Packages
application
as WAR file

TEAM LinG - Live, Informative, Non-cost and Genuine!

492 APPENDIX B

Building the examples with Ant

other assets). In addition, the Tapestry libraries and dependencies are copied

into the WAR so that they will be available at runtime.

 The last step is to copy the WAR to the Tomcat webapps directory so that

Tomcat can serve the web application.

TEAM LinG - Live, Informative, Non-cost and Genuine!

493

Tapestry component
reference

TEAM LinG - Live, Informative, Non-cost and Genuine!

Checkbox 495

Block

A Block component is used to pass a portion of an HTML template (including

static text and components) as a parameter to another component, or even

another page. A RenderBlock component is used to make the Block render its

contents. Chapter 10 includes an example of this, where a portion of a page’s

HTML template was passed into a Palette component to provide part of the Pal-

ette’s user interface.

 Block renders its body but forbids informal parameters.

Body

The Body component is responsible for the <body> tag of a Tapestry page. As dis-

cussed in chapter 8, it is also very much involved in any dynamic JavaScript cre-

ated by the components within the page.

 Body renders its body and allows informal parameters.

Button

The Button component creates an HTML form button element (<input type=

"button">). Form buttons are used exclusively to provide client-side actions

(using JavaScript) as part of a form.

Checkbox

The Checkbox component is one of the standard form element components. It

renders a checkbox (<input type="checkbox">) and reads and updates a boolean

property. The Checkbox component is discussed in detail in chapter 3.

Table C.2 Parameters for the Button component

Parameter

name
Type Direction Required

Default

value
Description

disabled boolean in No false If true, the button will be disabled—it

will not respond to the mouse and will

be rendered specially by the browser to

indicate this state.

label string in No The label displayed for the button (this

becomes the value attribute of the

output element).

TEAM LinG - Live, Informative, Non-cost and Genuine!

496 APPENDIX C

Tapestry component reference

Checkbox discards its body and allows informal parameters.

Conditional

The Conditional component is used to render a portion of a page only if a cer-

tain condition is met.

 The Conditional component normally just renders (or skips) its body. If

desired, the Conditional may also output an element surrounding its body; in

this respect, it operates much as the Any component does.

Conditional renders its body and allows informal parameters (which are used

only if the element attribute is specified).

DatePicker

The DatePicker component is a complex form element component that allows

users to select dates using a JavaScript-powered pop-up window.

Table C.3 Parameters for the Checkbox component

Parameter

name
Type Direction Required

Default

value
Description

selected boolean in/out Yes Read when the form is rendered and

updated when the form is submitted.

disabled boolean in No false If true, the button will be disabled—it

will not respond to the mouse and will

be rendered specially by the browser to

indicate this state.

Table C.4 Parameters for the Conditional component

Parameter

name
Type Direction Required

Default

value
Description

condition boolean in No false The body of the Conditional is ren-

dered only if this value is true.

invert boolean in No false If true, then the condition is

inverted (the body is rendered only

if the condition is false).

element string in No If given, then an element is output

around the component’s body.

TEAM LinG - Live, Informative, Non-cost and Genuine!

DirectLink 497

DatePicker discards its body and forbids informal parameters.

Delegator

The Delegator component is an “escape clause” that allows you to write Java

code to render a portion of a page. You provide the Delegator object with a ren-

derable object (implementing the IRender interface), and it invokes the render()

method on the object. Often, the renderable object is an inner class. An example

of this is in chapter 4, where Delegator was used to produce formatted, hexadec-

imal output of an uploaded binary file.

Delegator discards its body and forbids informal parameters.

DirectLink

The DirectLink component is the primary way to create hyperlinks in Tapestry

pages; examples of DirectLink appear throughout this book, starting in chapter 2.

DirectLinks allow URLs to be created that reference a particular component

within a page; in addition, a list of parameters may be encoded into the URL,

with the parameter values made available when the link is triggered.

Table C.5 Parameters for the DatePicker component

Parameter

name
Type Direction Required

Default

value
Description

value java.util.Date in/out Yes The date property edited by

the DatePicker component.

format string in No dd

MMM

yyyy

The date format used to dis-

play the date.

disabled boolean in No false If true, then the date field

and calendar pop-up buttons

will be disabled.

Table C.6 Parameter for the Delegator component

Parameter

name
Type Direction Required

Default

value
Description

delegate IRender in Yes The object to invoke to render on

behalf of the Delegator component

TEAM LinG - Live, Informative, Non-cost and Genuine!

FieldLabel 499

ExternalLink

The ExternalLink component creates a link to a page, much like the PageLink

component, with two differences: Service parameters may be passed in the URL,

and the target page must implement the IExternalPage interface (the activate-

ExternalPage() method defined by the interface will be invoked). ExternalLink

is used to create links that the end user may safely bookmark, because all the

necessary information is encoded into the URL.

ExternalLink renders its body and accepts informal parameters.

FieldLabel

The FieldLabel component is used to display the label for a ValidField compo-

nent, integrating into the overall form validation subsystem described in chapter 5.

The FieldLabel coordinates with the enclosing Form’s validation delegate to

visually identify fields within the form that contain errors.

FieldLabel renders its body and rejects informal parameters.

Table C.9 Parameters for the ExternalLink component

Parameter

name
Type Direction Required

Default

value
Description

page string in Yes The name of the page to link to, which

must implement the

IExternalPage interface.

parameters varied in No Any number of additional parameters

to be encoded into the URL.

disabled boolean in No false If true, the ExternalLink doesn’t render

a tag (but still renders its body).

Table C.10 Parameters for the FieldLabel component

Parameter

name
Type Direction Required

Default

value
Description

field form component in Yes The field for which a label

should be displayed

displayName string in No Overrides the display

name obtained from the

ValidField

TEAM LinG - Live, Informative, Non-cost and Genuine!

500 APPENDIX C

Tapestry component reference

Foreach

The Foreach component is used to iterate over a list of values and repeatedly ren-

der its body for each value. It can update a property of its container to identify

the specific value within the list, or the index within the list. A Foreach compo-

nent can optionally render a tag around its body, much like the Any component.

Foreach renders its body and accepts informal parameters (which are used only if

the element parameter is specified).

Form

The Form component is used to create HTML forms within Tapestry pages, as

discussed in chapters 3 through 5. The Form component is responsible for

orchestrating both the rendering of the form and the processing when the form

is submitted. A Form has a listener that is invoked when the Form is submitted,

after all the enclosed form control elements have had a chance to update prop-

erties from the submission.

Table C.11 Parameters for the Foreach component

Parameter

name
Type Direction Required

Default

value
Description

source varied in No null The list of input values, as a Collection,

Iterator, object array, or single object.

value Object out No Updated before the Foreach renders its

body.

index int out No Updated before the Foreach renders its

body.

element string in No If given, then the Foreach renders a tag

(with informal parameters) around its body

on each pass through the loop.

Table C.12 Parameters for the Form component

Parameter

name
Type Direction Required

Default

value
Description

listener IActionListener in No If provided, the listener is

notified after the form

submission is processed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

GenericLink 501

The Form component renders its body and accepts informal parameters.

Frame

The Frame component is used within a <frameset> to identify a Tapestry page to

fill a <frame>.

The Frame component discards its body but accepts informal parameters.

GenericLink

The GenericLink component is used to create hyperlinks to arbitrary URLs. It

may be used to create links to off-site URLs, but it is most often used in conjunc-

tion with client-side JavaScript.

delegate IValidationDelegate in No The validation delegate

used by FieldLabel and

ValidField components

enclosed by the Form.

stateful boolean in No true If true and the application

is stateful when the form

is rendered, then a check

occurs that the applica-

tion is still stateful when

the form is submitted.

Table C.12 Parameters for the Form component (continued)

Parameter

name
Type Direction Required

Default

value
Description

Table C.13 Parameter for the Frame component

Parameter

name
Type Direction Required

Default

value
Description

page string in Yes The name of the page whose content

is rendered within the frame

Table C.14 Parameters for the GenericLink component

Parameter

name
Type Direction Required

Default

value
Description

href string in Yes The target URL for the link.

disabled boolean in No false If true, then the GenericLink does not

render a tag, just its body.

TEAM LinG - Live, Informative, Non-cost and Genuine!

502 APPENDIX C

Tapestry component reference

GenericLink renders its body and accepts informal parameters.

Hidden

The Hidden component is used to record information in an HTML form.

The Hidden component discards its body and forbids informal parameters.

Image

The Image component is used to render an image as part of a Tapestry page.

The source of the image is specified as an asset, which hooks into Tapestry’s

localization mechanism to ensure that the correct localization of the image is

automatically used.

The Image component discards its body and allows informal parameters.

Table C.15 Parameters for the Hidden component

Parameter

name
Type Direction Required

Default

value
Description

value Object in/out Yes The value to be recorded in the

form (and restored when the

form is submitted).

listener IActionListener in No If provided, the listener is noti-

fied after the value parame-

ter is updated when the form

is submitted.

encode boolean in No true If true, the value is encoded

with its type. If false, the value

must be a String and is

recorded as is.

Table C.16 Parameters for the Image component

Parameter

name
Type Direction Required

Default

value
Description

image IAsset in Yes The image asset to be displayed

border int in No 0 Sets the width of the border dis-

played around the image

TEAM LinG - Live, Informative, Non-cost and Genuine!

ImageSubmit 503

ImageSubmit

The ImageSubmit component is closely related to the Submit component; it is

used to display an image that submits a form. When the form is submitted, the

ImageSubmit component can update a property of its container to a specific

value or invoke a listener method (or both). The Submit and ImageSubmit com-

ponents are discussed in chapter 3.

ImageSubmit discards its body and allows informal parameters.

Table C.17 Parameters for the ImageSubmit component

Parameter name Type Direction Required
Default

value
Description

image IAsset in Yes The image asset to be

displayed.

disabled boolean in No false If true, the rendered

image will be disabled (it

will not respond to the

mouse).

disabledImage IAsset in No An optional image to

display instead of the

standard image if the

component is disabled.

point java.awt.Point out No The point (x and y coor-

dinates) within the

image clicked by the

mouse.

selected Object out No A property updated by

the ImageSubmit if it is

the cause of the form

submission.

tag Object in No A value used to update

the selected property

when the ImageSubmit

is the cause of the form

submission.

listener IActionListener in No A listener invoked by the

ImageSubmit when it is

the cause of the form

submission (after

optionally updating the

selected parameter).

TEAM LinG - Live, Informative, Non-cost and Genuine!

504 APPENDIX C

Tapestry component reference

Insert

The Insert component is used to insert some text into a rendered Tapestry page.

By default, it escapes out any invalid HTML entities (that is, it converts & to

&, and so on). It may optionally use a java.text.Format object to format an

object before inserting its value.

The Insert component discards its body and allows informal parameters, which

are used only if the class parameter is specified.

InsertText

The InsertText component is used to insert a block of text into a Tapestry page;

it breaks the text into individual lines and either inserts line breaks between lines

or wraps each line as a separate paragraph. This is commonly used to display

text that was collected using a TextField.

Table C.18 Parameters for the Insert component

Parameter

name
Type Direction Required

Default

value
Description

value Object in No The value to be inserted.

format java.text.Format in No If specified, then the value is

formatted to a string before

being inserted.

raw boolean in No false If true, then no conversion of

HTML entities occurs. This is

used when the value to insert

is known to contain HTML

markup.

class string in No If specified, then the output

text is wrapped in a

tag, with a class attribute

set to this value.

Table C.19 Parameters for the InsertText component

Parameter

name
Type Direction Required Default value Description

value string in No The multiline text to be

inserted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

LinkSubmit 505

InsertText discards its body and forbids informal parameters.

LinkSubmit

The LinkSubmit component is used when you wish to have a hyperlink on a

page cause a form to submit. This is useful when using a Rollover component

inside the link. LinkSubmit requires client-side JavaScript.

LinkSubmit renders its body and allows informal parameters.

mode InsertTextMode in No InsertText-

Mode.BREAK

By default, inserts breaks

between lines. Use

InsertTextMode.
PARAGRAPH to wrap each

line as a paragraph.

Table C.19 Parameters for the InsertText component (continued)

Parameter

name
Type Direction Required Default value Description

Table C.20 Parameters for the LinkSubmit component

Parameter

name
Type Direction Required

Default

value
Description

disabled boolean in No false If true, the LinkSubmit will

not render a tag, but will still

render its body.

selected Object out No A property updated by the

LinkSubmit when it is the

cause of the form submis-

sion.

tag Object in No A value used to update the

selected property when

the LinkSubmit is the cause

of the form submission.

listener IActionListener in No A listener invoked by the

LinkSubmit when it is the

cause of the form submis-

sion (after optionally updat-

ing the selected

parameter).

TEAM LinG - Live, Informative, Non-cost and Genuine!

506 APPENDIX C

Tapestry component reference

ListEdit

The ListEdit component is used within a Form to iterate over a list of values in a

fashion that is compatible with use within a Form. The ListEdit component

records into the Form the values it iterates over during the render (as a number

of hidden fields). This ensures that the form submission is processed consistently

with the Form’s render. ListEdit was covered in detail in chapter 4.

ListEdit renders its body and accepts informal parameters.

Option

The Option component renders an HTML <option> tag. Option components

must be enclosed by a Select component. In most cases, it is easier to use a Property-

Selection component than to build the equivalent using Select and Option.

Select and Option were covered in chapter 3.

Table C.21 Parameters for the ListEdit component

Parameter

name
Type Direction Required

Default

value
Description

source varied in No null The list of values to iterate

over, as a List, Iterator,

or object array.

value Object out No Set by the ListEdit on each

pass through the loop.

index int out No Set by the ListEdit on each

pass through the loop.

listener IActionListener in No Invoked by the ListEdit just

after the value parameter is

set (both when rendering and

when rewinding the form).

element string in No If specified, the ListEdit writes

a tag around its body on each

pass through the loop.

Table C.22 Parameters for the Option component

Parameter

name
Type Direction Required

Default

value
Description

selected boolean in/out Yes Set to true if the option is selected when

the form is submitted

TEAM LinG - Live, Informative, Non-cost and Genuine!

PropertySelection 507

Option renders its body (which is another way to specify its label) and accepts

informal parameters.

PageLink

The PageLink component is used to create a link to a specific Tapestry page. The

indicated page is rendered as the response when the link is clicked.

PageLink renders its body and accepts informal parameters.

PropertySelection

The PropertySelection component is used to create a drop-down list for selecting

a value for a single property. As discussed in chapter 4, PropertySelection uses a

model to provide the possible values and the labels for those values.

label string in No A string used as the label of the option

Table C.22 Parameters for the Option component (continued)

Parameter

name
Type Direction Required

Default

value
Description

Table C.23 Parameters for the PageLink component

Parameter

name
Type Direction Required

Default

value
Description

page string in Yes The name of the page to be ren-

dered.

disabled boolean in No false If true, the PageLink component

does not render its tag but still ren-

ders its body.

Table C.24 Parameters for the PropertySelection component

Parameter

name
Type Direction Required

Default

value
Description

value Object in/out Yes The property to edit; the

property is read during ren-

der and updated when the

form is submitted.

model IProperty
SelectionModel

in Yes Used to identify the possible

values and associated labels.

TEAM LinG - Live, Informative, Non-cost and Genuine!

508 APPENDIX C

Tapestry component reference

PropertySelection discards its body and allows informal parameters.

Radio

The Radio component creates a radio button within a form. Radio components

must be enclosed by a RadioGroup. Radio and RadioGroup were discussed in

chapter 3.

Radio discards its body and allows informal parameters.

RadioGroup

The RadioGroup component acts like a container for any number of Radio com-

ponents. It is responsible for identifying the selected Radio component and

updating a property to match the selection. Radio and RadioGroup were dis-

cussed in chapter 3.

disabled boolean in No false If true, the Property-

Selection is inactive.

submitOn-
Change

boolean in No false If true, changing the value

will cause the enclosing

form to submit.

Table C.24 Parameters for the PropertySelection component (continued)

Parameter

name
Type Direction Required

Default

value
Description

Table C.25 Parameters for the Radio component

Parameter

name
Type Direction Required

Default

value
Description

value Object in No The value is used to determine if the

radio button is initially selected (when

rendering) and is the value assigned to

the selected parameter when the

form is submitted, if the HTML radio

button is selected.

disabled boolean in No false If true, the radio button will be disabled

and will not respond to the mouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Rollover 509

RadioGroup renders its body but rejects informal parameters.

RenderBlock

The RenderBlock component is used to make a Block component renders its

body. In effect, a portion of a page may be passed as a parameter to a compo-

nent. Block and RenderBlock are commonly used to create a tabbed view.

Block discards its body and allows informal parameters.

RenderBody

The RenderBody component allows a component to insert its body at a pre-

scribed position within its own template. RenderBody takes no parameters and

discards its body.

Rollover

The Rollover component is a specialized version of the Image component that is

used within some form of link component (DirectLink, ExternalLink, Generic-

Link, and so on). Rollover can perform mouse rollovers (displaying a different

image when the user moves the mouse over the image). In addition, a Rollover

component can adjust the image displayed when the enclosing link is disabled.

Table C.26 Parameters for the RadioGroup component

Parameter

name
Type Direction Required

Default

value
Description

selected Object in/out Yes The property updated when the form

is submitted.

disabled boolean in No false If true, all Radio components within

the group are disabled.

Table C.27 Parameters for the RenderBlock component

Parameter

name
Type Direction Required

Default

value
Description

block Block in No The Block whose body should be

rendered

TEAM LinG - Live, Informative, Non-cost and Genuine!

510 APPENDIX C

Tapestry component reference

Rollover discards its body and allows informal parameters.

Script

The Script component is used to construct client-side JavaScript from a script

specification. Informal parameters to the Script are added as additional input

symbols. Dynamic script creation was discussed in chapter 8. Script components

must be enclosed by a Body component.

Script discards its body and allows informal parameters.

Select

A Select component renders an HTML <select> element and encloses a number

of Option components. In most cases, using a PropertySelection component

achieves the same result and is easier; the Select component is most often used

when multiple selection is desired. An example of using Select and Option for

multiple selection appears in chapter 3.

Table C.28 Parameters for the Rollover component

Parameter

name
Type Direction Required

Default

value
Description

image IAsset in No The initial image to display.

focus IAsset in No If given, the image to display when

the mouse is moved over the image.

blur IAsset in No If given, the image to display when

the mouse is moved out from over

the image. If not specified, the nor-

mal image is displayed.

disabled IAsset in No If given, the image to display instead

of the default image if the enclosing

link is itself disabled.

Table C.29 Parameters for the Script component

Parameter

name
Type Direction Required

Default

value
Description

script string in Yes The name of the script specification file

symbols Map in No If given, provides the base set of input

symbols for the script

TEAM LinG - Live, Informative, Non-cost and Genuine!

Shell 511

 Select renders its body and allows informal parameters.

ServiceLink

The ServiceLink component is used to render a hyperlink that references a

named engine service. This is often used to invoke the restart engine service, but

may also be used with custom application services.

ServiceLink renders its body and accepts informal parameters.

Shell

The Shell component is a convenience for rendering the <html> and <head> portions

of a page. It is particularly useful for adding one or more stylesheets to a page.

Table C.30 Parameters for the Select component

Parameter

name
Type Direction Required

Default

value
Description

multiple boolean in No false If true, then multiple selection will

be allowed.

disabled boolean in No false If true, the rendered <select> will

include the disabled attribute.

Table C.31 Parameters for the ServiceLink component

Parameter

name
Type Direction Required

Default

value
Description

service string in Yes The name of the engine service.

parameters varied in No Objects to be encoded into the URL

(as with DirectLink).

disabled boolean in No false If true, the ServiceLink does not ren-

der its tag but still renders its body.

Table C.32 Parameters for the Shell component

Parameter

name
Type Direction Required Default value Description

title string in Yes The title of the page

stylesheet IAsset in No A single stylesheet to

include

TEAM LinG - Live, Informative, Non-cost and Genuine!

512 APPENDIX C

Tapestry component reference

The Shell component renders its body and forbids informal parameters.

Submit

The Submit component renders a submit button within a form. When the form is

submitted due to the rendered button, the Submit component can update a

property or invoke a listener method (or both).

stylesheets Array or

collection of

IAsset

in No A list of stylesheets to

include

refresh int in No If specified, the time

(in seconds) before

redisplaying the same

page

DTD string in No -//W3C//DTD

HTML 4.0

Transitional//EN

Used to specifying the

<!DOCTYPE> of the

page

delegate IRender in No A renderer, used to

add content to the

<head> element

Table C.32 Parameters for the Shell component (continued)

Parameter

name
Type Direction Required Default value Description

Table C.33 Parameters for the Submit component

Parameter

name
Type Direction Required

Default

value
Description

selected Object out No A property updated by the

Submit if it is the cause of

the form submission.

tag Object in No A value used to update the

selected property when

the Submit is the cause of

the form submission.

listener IActionListener in No A listener invoked by the

Submit when it is the cause

of the form submission

(after optionally updating

the selected parameter).

TEAM LinG - Live, Informative, Non-cost and Genuine!

TextField 513

Submit discards its body and accepts informal parameters.

TextArea

The TextArea component creates a multiline input field as an HTML <textarea>

element.

TextArea discards its body and accepts informal parameters.

TextField

The TextField component is used to create an HTML text or password field

within a form. TextField is described in detail in chapter 3.

disabled boolean in No false If true, the button will be

disabled (it will not respond

to the mouse).

Table C.33 Parameters for the Submit component (continued)

Parameter

name
Type Direction Required

Default

value
Description

Table C.34 Parameters for the TextArea component

Parameter

name
Type Direction Required

Default

value
Description

value string in/out No The value to edit, which is read when

the TextArea renders and updated

when the enclosing form is submitted.

disabled boolean in No false If true, the TextArea is disabled and

will not update the value parameter.

Table C.35 Parameters for the TextField component

Parameter

name
Type Direction Required

Default

value
Description

value string in/out No The value to edit, which is read when

the TextField renders and updated

when the enclosing form is submitted.

hidden boolean in No false If true, the field is rendered as a

password field (which hides the exact

text entered by the user).

TEAM LinG - Live, Informative, Non-cost and Genuine!

514 APPENDIX C

Tapestry component reference

TextField discards its body and accepts informal parameters.

Upload

The Upload component allows users to upload files from their computer to the

server. Upload is a form component and must be enclosed by a Form. Upload is

discussed in detail in chapter 4.

Upload discards its body and allows informal parameters.

ValidField

The ValidField component is a specialized version of TextField that is inte-

grated into the Tapestry validation subsystem, described in chapter 5. A Valid-

Field is not limited to editing string properties (as TextField is) but can edit

any data type, as long as it has an appropriate validator to perform the neces-

sary conversions.

disabled boolean in No false If true, the field is rendered with a

disabled attribute, and the compo-

nent does not update the value

parameter when the form is submit-

ted.

Table C.35 Parameters for the TextField component (continued)

Parameter

name
Type Direction Required

Default

value
Description

Table C.36 Parameters for the Upload component

Parameter

name
Type Direction Required

Default

value
Description

file IUploadFile out Yes The uploaded file is represented

by an instance of

IUploadFile, assigned to this

parameter.

disabled boolean in No false If true, the HTML <input> ele-

ment will include a disabled

attribute.

TEAM LinG - Live, Informative, Non-cost and Genuine!

ValidField 515

ValidField discards its body and accepts informal parameters.

Table C.37 Parameters for the ValidField component

Parameter

name
Type Direction Required

Default

value
Description

value Object in/out Yes The property to be edited by the

ValidField.

validator IValidator in Yes An object that validates user

input and translates between

strings and object values.

displayName string in Yes The name of the field, used in

error messages and by the Field-

Label component.

hidden boolean in No false If true, the component renders a

password field, not a normal text

input field.

disabled boolean in No false If true, the <input> tag will

include a disabled attribute,

and the ValidField will not update

the value parameter when the

form is submitted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

516

Tapestry specifications

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 517

Tapestry applications include five types of specifications: page, component, appli-

cation, library, and script. All of these specifications are XML documents, validated

against a document type definition (DTD). The first four specifications are the pri-

mary specifications, and they share a single DTD (but use different document root

elements). The script specification uses its own, separate DTD.

D.1 Primary specifications

The primary specifications use the following XML <!DOCTYPE>:

<!DOCTYPE root element PUBLIC
 "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

Each type of specification has its own file extension and a specific root element,

shown in table D.1.

The following sections identify each element, explaining how it’s used and list-

ing its attributes and nested elements.

<application>

The <application> element is the root element of an application specification. Appli-

cation specifications are generally optional and are used in only a few situations:

■ When a page or component specification is not stored in an expected location

■ When the application defines custom engine services

■ When the application makes use of a component library (as discussed in
chapter 6)

■ When the application defines any application extensions (as discussed in

chapter 8)

Figure D.1 identifies the elements that may be contained within the <applica-

tion> element. Table D.2 lists the attributes that may be specified.

Table D.1 Tapestry specifications and file extensions

Type File extension Root element

application .application <application>

page .page <page-specification>

component .jwc <component-specification>

library .library <library-specification>

TEAM LinG - Live, Informative, Non-cost and Genuine!

518 APPENDIX D

Tapestry specifications

NOTE These diagrams express the rules for the content of an element. Ele-
ments contain a sequence of other elements, with a symbol to indicate
how many of that element are allowed (? indicates optional, * indicates
zero or more, + indicates at least one). Choice of means that exactly
one of the listed elements is allowed. Figure D.1 indicates that an <ap-
plication> can contain an optional <description>, followed by any
number of <property> elements, followed by any number of the re-
maining elements.

<bean>

The <bean> element is used to create a helper bean, a Java bean that provides

additional logic to a page. <bean> appears inside <page-specification> and

<component-specification>.

 Frequently, <bean> is used to create the validation delegate and individual val-

idator objects used with the form validation subsystem described in chapter 5.

Figure D.2 identifies the elements that may be contained by <bean>, and table D.3

lists the attributes for the <bean> element.

Table D.2 Attributes of the <application> element

Attribute name Required? Description

engine-class No Name of the class to instantiate as the application engine; if not

specified, BaseEngine is used.

name No A user-presentable name for the application, used in some debugging

output.

Figure D.1 The <application> element is primarily used to override the default rules for locating

pages and components, and to specify libraries, extensions, and services.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 519

<binding>

The <binding> element appears inside the <component> element. It binds a

parameter of the component to an OGNL expression. The expression, which is

most often simply the name of a property, is evaluated in the context of the con-

taining page or component.

 OGNL expressions can be very complex and involve characters, such as single

and double quotes, that are awkward to express within an XML attribute. To

accommodate such situations, the OGNL expression can be provided as the

wrapped character data enclosed by the <binding> element.

 Table D.4 lists the attributes for the <binding> element. <binding> may not

contain any other elements.

Table D.3 Attributes of the <bean> element

Attribute name Required? Description

class Yes The Java class to instantiate.

lifecycle No The lifecycle of the bean: none, request, page, or render. The default

is request.

name Yes The name of the bean, which must be a valid Java identifier.

Figure D.2 The <bean> element is used to define a helper bean and configure its properties.

Table D.4 Attributes of the <binding> element

Attribute name Required? Description

expression No The OGNL expression. If not specified, the content of the element is

used as the expression.

name Yes The name of the component parameter to bind; this may be either a

formal or informal parameter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

520 APPENDIX D

Tapestry specifications

<configure>

The <configure> element is used within the <extension> element to configure

one property of the application extension. <configure> may not contain other

elements. Table D.5 lists the attributes of the <configure> element.

<component>

The <component> element declares the use of a component within another page

or component. It identifies the ID of the component, its type, and the configura-

tion of any of its formal and informal parameters. Figure D.3 identifies the ele-

ments that may be enclosed by <component>; these are mostly different elements

for binding parameters of the component.

 In most cases, the <component> element defines the type of component. In

some cases, it is convenient to copy another component’s type and bindings, and

optionally extend or override the bindings. This can be accomplished using the

copy-of attribute instead of the type attribute. Table D.6 lists the attributes of the

<component> element.

Table D.5 Attributes of the <configure> element

Attribute name Required? Description

property-name Yes The name of the property of the extension to configure.

type No The type of the property, which is used to convert the value:

boolean, int, long, double, or String. String is the default.

value No The value to be assigned. If not provided as an attribute, the charac-

ter data enclosed by the element is used as the value.

Figure D.3 The <component> element primarily contains different types of bindings for the

parameters of the component.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 521

<component-type>

The <component-type> element is used within an application specification

(<application>) or library specification (<library-specification>) to define a

type of component. Normally, this is not needed; in most cases, putting the com-

ponent specification (the .jwc file) in the same folder as the application or library

specification is sufficient. You use <component-type> when the specification file is

not stored in the default location.

 Keep in mind that <component-type> may not contain other elements. Table D.7

lists the attributes for <component-type>.

<component-specification>

The <component-specification> element is the root element of a component

specification file (with a .jwc extension). A component specification defines a

reusable component, including its formal parameters, and specifies whether it

uses or discards its body, as well as embedded components and assets. Figure D.4

shows the elements that may be enclosed by <component-specification>.

 The <component-specification> element’s class attribute is used to identify

the Java class for the component. If the component has formal parameters or

Table D.6 Attributes of the <component> element

Attribute name Required? Description

copy-of No Identifies another component, already defined in the containing page

or component, to use as a template for this component. May not be

specified with the type attribute.

id Yes The ID used for the component, which must be unique within the con-

tainer and must be a valid Java identifier.

inherit-
informal-
parameters

No If yes, then the component inherits informal parameters from its con-

tainer. The default is no.

type No The type of component to create. The type may include a prefix to

identify the library that contains the component. May not be specified

with the copy-of attribute.

Table D.7 Attributes for the <component-type> element

Attribute name Required? Description

specification-path Yes The location, relative to the application or library specifi-

cation, of the component’s specification file

type Yes The component type to define

TEAM LinG - Live, Informative, Non-cost and Genuine!

522 APPENDIX D

Tapestry specifications

any specified properties, then Tapestry will create a subclass to provide the attributes

and accessor methods for those properties. Table D.8 lists the attributes for the

<component-specification> element.

Table D.8 Attributes for the <component-specification> element

Attribute name Required? Description

allow-body No If yes (the default), then the component keeps its body; if no, the

component discards its body (and the body may not define compo-

nents).

allow-
informal-
parameters

No If Yes (the default), then the component will allow informal parame-

ters. If no, then informal parameters are not allowed.

class No The Java class for the component, or BaseComponent if not speci-

fied. Tapestry will create a subclass to contain specified properties

and parameters.

Figure D.4 The <component-specification> element defines the parameters, beans,

components, and assets used by the component.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 523

<context-asset>

The <context-asset> element is one of three elements used to define assets.

(Assets are described in chapters 2 and 6.) Use <context-asset> to define an

asset stored within your web application context. The element may appear inside

<page-specification> or <component-specification>. The asset path is relative

to the web application context root. The <context-asset> element may contain

the <property> element. Table D.9 lists its attributes.

<description>

The <description> element appears inside many other elements and allows a

user-presentable description to be attached to many elements. It is always

optional, and the framework does not directly use the description. The descrip-

tive text is the character content enclosed by the <description> element. This

element may not enclose any other elements.

<extension>

The <extension> element is used to create an application extension. Application

extensions are similar in intent to helper beans (the <bean> element) but are glo-

bal to the entire application. The <extension> element appears inside the

<application> element (of an application specification), or inside the <library-

specification> element of a library specification. Figure D.5 shows the elements

that may be contained within an <extension> element.

 The <extension> element defines a JavaBean to instantiate. Normally, an

extension is instantiated only when first referenced (see the Javadoc for the

ILibrarySpecification interface). The immediate attribute is used to force the

extension to be instantiated when the application initializes. Table D.10 lists the

attributes of the <extension> element.

Table D.9 Attributes for the <context-asset> element

Attribute name Required? Description

name Yes The name of the asset to define, which must be a valid Java identifier

path Yes The path of the asset, relative to the context root

Figure D.5

The <extension> element

contains metadata (<property>)

and <configure> elements to

set the properties of the extension.

TEAM LinG - Live, Informative, Non-cost and Genuine!

524 APPENDIX D

Tapestry specifications

<external-asset>

The <external-asset> element is one of three used to define assets. (Assets are

described in chapters 2 and 6.) The <external-asset> element is used to define

an asset at an arbitrary URL. External assets are never localized; they are always

used as is. This element may appear inside <page-specification> or <component-

specification>, and it may contain the <property> element. Its attributes are

listed in table D.11.

<inherited-binding>

The <inherited-binding> element is used to bind a parameter of a component

to a parameter of its container. This element appears inside the <component> ele-

ment and may not contain other elements. Table D.12 lists the attributes for the

<inherited-binding> element.

Table D.10 Attributes of the <extension> element

Attribute name Required? Description

class Yes The name of the Java class to instantiate.

immediate No If yes, then the extension is instantiated and configured at startup; if

no (the default), then the extension is instantiated lazily, on first refer-

ence.

name Yes The name of the extension, which is usually qualified with a Java

package prefix (i.e., org.apache.tapestry.property-source).

Table D.11 Attributes of the <external-asset> element

Attribute name Required? Description

name Yes The name of the asset to define, which must be a valid Java identifier

URL Yes The URL of the asset, which is used as is

Table D.12 Attributes of the <inherited-binding> element

Attribute name Required? Description

name Yes The name of the component parameter to bind

parameter-name Yes The name of the containing component’s parameter to bind

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 525

<library>

The <library> element is used in an application specification (<application>) or

library specification (<library-specification>) to identify a library that may be

referenced in the page and component specifications of the application or refer-

encing library. The name provided becomes a prefix on the component type.

This is demonstrated in chapters 7 and 8, where the Palette component (from

the Tapestry contributions library) is used.

 The <library> element may not contain other elements. Its attributes are

listed in table D.13.

<library-specification>

The <library-specification> element is the root element of a library specifica-

tion. It is similar to the <application> element, except that library specifications

are not optional—a library must have a specification, even if it is empty.

 The <library-specification> element can contain the same elements as

<application> (see figure D.1 for a listing). The <library-specification> ele-

ment does not have any attributes.

<listener-binding>

The <listener-binding> element allows listeners (for Form, DirectLink, and

similar components) to be specified, in the page or component specification,

using a scripting language such as Jython. This functionality is targeted at rapid

application development and is still experimental. The character content

enclosed by the <listener-binding> element consists of the script you want to

execute. Table D.14 lists the attributes for the <listener-binding> element.

 The <listener-binding> element is based on the open source Bean Scripting

Framework (http://jakarta.apache.org/bsf), a runtime environment that supports

multiple scripting languages. The default scripting language is Jython (Python

Table D.13 Attributes of the <library> element

Attribute name Required? Description

id Yes The ID for the library, which must be a valid Java identifier. The ID is

used as a prefix to access the components within the library.

specification-
path

Yes The path to the library. If a relative path, then it is relative to the ref-

erencing application or library specification; if a complete path

(starting with a /), then the specification is expected to be stored

on the classpath (i.e., within a JAR file).

TEAM LinG - Live, Informative, Non-cost and Genuine!

526 APPENDIX D

Tapestry specifications

implemented in Java). More information on Jython is available from

www.jython.org/. Jython is not distributed with Tapestry, and you must download

it separately and include it in the runtime classpath.

<message-binding>

The <message-binding> element appears inside a <component> element. It is used

to bind a parameter of a component to a literal value from the containing com-

ponent’s localized message properties. The <message-binding> element may not

contain other elements. Table D.15 lists the attributes of this element.

<page>

The <page> element is used to define a page, much like a <component-type> defines

a component. It appears within the <application> and <library-specification>

elements, and is only necessary when the page specification cannot be located by

the normal search path.

 The <page> element may not enclose other elements. The attributes for the

<page> elements are shown in table D.16.

Table D.14 Attributes for the <listener-binding> element

Attribute name Required? Description

language No The name of the scripting language used by the script

name Yes The name of the parameter of the component to bind to the listener

Table D.15 Attributes for the <message-binding> element

Attribute name Required? Description

name Yes The name of the component parameter to bind

key Yes The key used to obtain the localized message

Table D.16 Attributes for the <page> element

Attribute name Required? Description

name Yes The name of the page, which must be a valid Java identifier

specification-
path

Yes The location of the page specification, relative to the application or

library specification

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 527

<page-specification>

The <page-specification> element is the root element for a Tapestry page spec-

ification. Page specifications are similar to component specifications, with those

attributes and elements related to parameters removed (pages do not have

parameters). The common elements are those that describe embedded compo-

nents, assets, beans, and properties.

 Figure D.6 identifies the elements that may be enclosed within the <page-

specification> element.

 Table D.17 lists the lone attribute for the <page-specification> element,

class. When the <property-specification> element is used to define new prop-

erties, Tapestry will create a subclass containing the necessary attributes and

accessor methods.

<parameter>

The <parameter> element is used to define a formal parameter inside a <component-

specification>. The <parameter> element may contain a <description> element,

Table D.17 Attribute for the <page-specification> element

Attribute name Required? Description

class no The page’s class, or BasePage if not specified

Figure D.6 The <page-specification> element is similar to the <component-

specification> element, with elements related to parameters omitted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

528 APPENDIX D

Tapestry specifications

which is used to document the parameter. Table D.18 lists the attributes of the

<parameter> element. Components and component parameters are discussed in

chapter 6.

<private-asset>

The <private-asset> is one of three elements used to define assets. (Assets are

described in chapters 2 and 6.) The <private-asset> element is used to define

an asset stored on the classpath. Typically, such a resource is distributed as part

of a JAR containing a component library. The <private-asset> element may

appear inside <page-specification> or <component-specification>. The

resource path is relative to the specification file. The <private-asset> element

may contain the <property> element; its attributes are listed in table D.19.

Table D.18 Attributes for the <parameter> element

Attribute

name
Required? Description

default-
value

No A default value for the parameter, if not specified, as an OGNL expression.

direction No The direction of the parameter, as discussed in chapter 7. The attribute

value can be in, form, auto or the default, custom.

name Yes The name of the parameter, which must be a valid Java identifier.

property-
name

No If specified, then the property for the parameter will be created with the

given name rather than the parameter name. This is used when the

parameter name collides with an existing parameter, such as the page

parameter on the PageLink component.

required No If yes, then the parameter must be bound. If no (the default), then it is

acceptable to omit the parameter.

type No The name of a Java class or primitive type; this is used when creating a

property for the parameter. If not specified, then java.lang.Object is

used.

Table D.19 Attributes for the <private-asset> element

Attribute name Required? Description

name Yes The name of the asset to define, which must be a valid Java identifier

resource-path Yes The path to the asset

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 529

<property>

The <property> element is used to define metadata about the element which con-

tains it;1 it is contained by many elements, notably <application>, <component-

specification>, and <page-specification>. Tapestry makes only limited use of

the <property> element (such as to define the Visit object’s class). Chapter 10

includes an example of an application-specific use of the <property> element.

Beyond that, this element is provided as a flexible hook to be exploited by future

Tapestry tools; for example, it could be used by a Model-Driven Architecture (MDA)

tool to facilitate round-trip engineering of a generated Tapestry application.

 In any event, the <property> element contains no other elements. Table D.20

lists the attributes of this element.

<property-specification>

The <property-specification> element directs Tapestry to create a new prop-

erty within the page or component class. Tapestry will create a subclass, adding

the necessary attributes and accessor methods (as well as any notifications that

are needed).

 An OGNL expression may be provided as the initial value for the property;

this can be specified as the initial-value attribute or as the enclosed character

data. The property may be either persistent or transient. Persistent properties

are restored at the start of each request cycle, whereas transient properties are

reset to the initial value at the end of each request cycle. Table D.21 lists the

attributes for the <property-specification> element. This element may not

enclose other elements.

1 In hindsight, the name <meta> may have been more appropriate.

Table D.20 Attributes for the <property> element

Attribute name Required? Description

name Yes The name of the metadata property.

value No The value of the property; if not specified, then the enclosed character

data is the value for the property.

TEAM LinG - Live, Informative, Non-cost and Genuine!

530 APPENDIX D

Tapestry specifications

<reserved-parameter>

The <reserved-parameter> element is enclosed by the <component-specification>

element; it is only used with components that allow informal parameters. Each

name specified by a reserved parameter is not allowed as an informal parameter.

This is used by components that emit their own HTML attributes to indicate

which HTML attributes are reserved to the component. For example, the Direct-

Link component reserves the href parameter, since it generates that parameter

in its own implementation.

 Each informal parameter is matched, ignoring case, against all reserved

names. Informal parameters that match a reserved name or a formal parameter

name are discarded.

 Table D.22 identifies the sole attribute of the <reserved-parameter> element;

<reserved-parameter> may not contain other elements.

<service>

The <service> element is used to define a new engine service (as described in

chapters 7 and 8). This element may be contained within an application specifi-

cation (<application>) or a library specification (<library-specification>).

Tapestry starts with a basic set of services; it is possible to override the default

implementations of these services or create new services. New services should be

given names that avoid conflicts, typically by prefixing the name with a Java

package name.

Table D.21 Attributes for the <property-specification> element

Attribute name Required? Description

initial-
value

No An OGNL expression used to set the initial value for the property. If

omitted, the character data enclosed by the element is used.

name Yes The name of the property to create.

persistent No If yes, then the value for the property will persist between request

cycles. If no (the default), the value will be reset to the initial value at

the end of each request.

type No The type of the property: a Java class name or primitive type. If omit-

ted, the default is java.lang.Object.

Table D.22 Attribute for the <reserved-parameter> element

Attribute name Required? Description

name Yes A name to reserve

TEAM LinG - Live, Informative, Non-cost and Genuine!

Primary specifications 531

 The <service> element may not contain other elements. Table D.23 lists

its attributes.

<set-property>

The <set-property> element is contained within a <bean> element; it is used to

set a property of the instantiated bean to a value computed from an OGNL

expression. The <set-property> element may not contain other elements.

Table D.24 lists the attributes for this element.

<static-binding>

The <static-binding> element appears inside the <component> element, and it

is used to bind a parameter of a component to a static (or literal) value. It may

not enclose other elements. Table D.25 lists the attributes for the <static-

binding> element.

Table D.23 Attributes for the <service> element

Attribute name Required? Description

class Yes The name of the Java class to instantiate as the service. The class

must implement the IEngineService interface.

name Yes The name of the service.

Table D.24 Attributes for the <set-property> element

Attribute name Required? Description

expression No The OGNL expression to set the property to. If not specified, the

enclosed content of the element is the source of the expression.

name Yes The name of the property to set.

Table D.25 Attributes for the <static-binding> element

Attribute name Required? Description

name Yes The name of the component parameter to bind.

value No The literal value to bind the parameter to. If not specified, the

enclosed character content of the element is the literal value.

TEAM LinG - Live, Informative, Non-cost and Genuine!

532 APPENDIX D

Tapestry specifications

D.2 Tapestry script specification

Tapestry script specifications are used when generating dynamic JavaScript for

a Tapestry page, and are covered in chapter 8. Script specifications consist of

five sections:

■ Including static JavaScript libraries

■ Defining input symbols

■ Creating new symbols by combining the input symbols

■ Producing the script body

■ Producing the script initialization

Figure D.7 shows this structure reflected in the construction of the <script> ele-

ment, the root element of a script specification.

 The <!DOCTYPE> for a script specification must be

<!DOCTYPE script PUBLIC
 "-//Apache Software Foundation//Tapestry Script Specification
 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Script_3_0.dtd">

Figure D.7 The <script> element is the root element of a Tapestry script specification.

➥

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tapestry script specification 533

<body>

The <body> element makes a contribution to the page’s main JavaScript block.

This element, which takes no attributes, contains a mix of text and elements

shown in figure D.8.

 Static text is contributed to the JavaScript block as is. Text may also contain

expressions, using the Ant-like syntax ${expression}. See chapter 8 for examples

of this.

<foreach>

The <foreach> element is analogous to the Foreach component; it iterates over a

list of items, rendering its body repeatedly. The <foreach> element may contain

the exact same content as the <body> component (shown in figure D.8).

 Like the Foreach component, the <foreach> element has attributes for defin-

ing the input list, for setting the current item from the list, and for setting the

index within the list. These attributes are shown in table D.26.

Figure D.8 The <body> element contains text, OGNL expressions, and the other main elements.

Table D.26 Attributes of the <foreach> element

Attribute name Required? Description

expression Yes The OGNL expression is evaluated to provide the list of items to iterate

over; this may be a single object, an array of objects, or a List of

objects.

index No If provided, then the index within the loop is stored as a symbol with

the provided key.

key Yes The key used to store the value of the current item from the list.

TEAM LinG - Live, Informative, Non-cost and Genuine!

534 APPENDIX D

Tapestry specifications

<if>

The <if> element evaluates an expression and renders its body only if the

expression evaluates to true. This element may contain the exact same content as

the <body> component (shown in figure D.8). Table D.27 lists the single attribute

of the <if> element.

<if-not>

The <if-not> element is exactly the same as the <if> element, with one excep-

tion: It renders its body only if the expression evaluates to false.

<include-script>

The <include-script> element is used to include a common JavaScript library as

part of the page. Tapestry will ensure that the library will be included only once,

regardless of how many times a script specification is executed (or how many

script specifications include the same script). This may be useful when you’re

integrating a third-party JavaScript library into a Tapestry application.

 The JavaScript library must be stored on the classpath, typically as part of a

JAR file containing a component library. The path can be specified as a relative

path, in which case the path is relative to the script specification (this should be

used only with script specifications that are stored on the classpath). If the path is

absolute (starting with a leading /), then the location is always assumed to be on

the classpath, regardless of the location of the script specification.

 Table D.28 lists the attribute of the <include-script> element.

<initialization>

The <initialization> element is exactly the same as the <body> element, with

one exception: The content of the <initialization> element is placed in a Java-

Script block that executes only when the page loads. The <initialization> content

Table D.27 Attribute of the <if> element

Attribute name Required? Description

expression Yes The OGNL expression to evaluate

Table D.28 Attribute of the <include-script> element

Attribute name Required? Description

resource-path Yes The path to the library

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tapestry script specification 535

is typically used to connect client-side objects to event handlers (with the event

handlers defined within the <body> element).

<input-symbol>

The <input-symbol> element is used to define an input symbol to a script specifi-

cation. Defining input symbols is optional but useful; it allows the framework to

verify that all required input symbols are specified and that the values passed are

of the correct type.

 The <input-symbol> element may not contain other elements; its attributes

are defined in table D.29.

<let>

The <let> element is used to create a new symbol by combining existing sym-

bols. The body of the <let> element is evaluated and converted into a string,

which is trimmed of leading and trailing whitespace and assigned as a new sym-

bol. The symbol may be further modified to ensure that it is unique throughout

the entire page (as discussed in chapter 8).

 The <let> element contains the same content as the <body> element (in fig-

ure D.8). Table D.30 lists the attributes of the <let> element.

<set>

The <set> element is used to create a new symbol by evaluating an OGNL expres-

sion. The <set> element may not contain any content. The new symbol is not

Table D.29 Attributes of the <input-symbol> element

Attribute name Required? Description

class No The Java class (or interface) that the symbol value must be assignable

to; if not specified, java.lang.Object is used.

key Yes The input symbol to be defined.

required No If yes, then a non-null value must be supplied to the symbol. If no

(the default), then it is acceptable to omit the symbol.

Table D.30 Attributes of the <let> element

Attribute name Required? Description

key Yes The key for the new symbol.

unique No If yes, then the value may be modified to ensure that it is unique.

TEAM LinG - Live, Informative, Non-cost and Genuine!

536 APPENDIX D

Tapestry specifications

necessarily a text value; it is whatever type results from evaluating the expres-

sion. Table D.31 lists the attributes for the <set> element.

<unique>

The <unique> element defines an area within the specification that is evaluated

only once per render of the page, regardless of how many times the script speci-

fication is executed. This is useful for producing portions of the page’s Java-

Script block that contains invariant sections. This is similar to including the

content of an external JavaScript library (as with the <include-script> element)

but doing so inline.

 The <unique> element takes no attributes and allows the same content as the

<body> element (shown in figure D.8).

Table D.31 Attributes of the <set> element

Attribute name Required? Description

expression Yes The OGNL expression to evaluate

key Yes The key for the new symbol

TEAM LinG - Live, Informative, Non-cost and Genuine!

537

index

Symbols

@ 55, 84
$content$ 245
$remove$ 83, 184
/app 90

A

absolute paths 371
abstract methods 99–101
AbstractComponent 33, 59, 75
AbstractPage 147
accessor methods 81, 101, 128,

223, 225, 228, 237, 308, 529
action service 494
Actions 37
activate 62
ActivateCallback 445
ActivatePage 411, 444
active page 62, 100
AdminPage 411
advertising sites, international-

ization of 309
Ant 29
Ant build scripts 385
anti-patterns 13, 15

bad coding shortcuts 15
unwanted dependencies 13,

98
weak binding 13, 95

Apache 25, 480
Apache Tomcat 7
application callback 55
application extensions 328, 520
application flow 41

application layer 19–20, 404,
411

application server cluster 409
application servers 11, 18

class loaders 273
clusters 275
hot application redeploy-

ment 273
JBoss 405, 480
servlets

See application servlets
WebLogic 276, 405

application servlets
application operations, han-

dling 280
as gateways 271–272
bridging between HTTP and

299
clusters and 272
engine services and 279
HTTP protocol 271
JavaBeans 271
mapping changes 279
multithreading, impact on

271
overview 271
page use compared to use of

300
relationship between JSPs and

279
request processing 270–271
return of engine instance to

HttpSession 272
Servlet API 271, 273
stale session 285
stateful 285

stateless 272
URLs 279, 284, 290

application specifications 91,
517

application tier 44
ApplicationRuntimeException

53
applications

banner source in specifica-
tions 339

border components and 217
changing locales for 317
compartmentalizing 262
continuing operation with

missing message strings
315

Demo 12
desktop 13, 16
engines and 277
enterprise 12
examples of

See example applications
extremely large, Tapestry

framework and 274
file extension of specifications

254
forwarding requests to 369
highly complex, Tapestry

framework and 274
hybrid 369
integrating with JSP 369
JavaBean construction of 299
language proficiency for 263
libraries and 256
library for services and com-

ponents 336

TEAM LinG - Live, Informative, Non-cost and Genuine!

538 INDEX

applications (continued)
linking from JSPs to 371
localization of 309
look and feel of 217
multi-user, Tapestry frame-

work and 274
overriding default locations

of component specifica-
tions 256

resource storage 261
root element for specifica-

tions 256
servlets

See application servlets
specifications 254
stateless 61
URLs 333, 371
usable 170, 192, 211
user expectations 170
user-presentable names for

256
validation of input 179
web, localization of 309

ApplicationServlet 276, 409
application-specific logic 5, 22,

57
architecture 16
array types 228
ArrayList 126
asset services 267
assets 70, 75–76, 79, 184, 437,

523
context 267
duplication removal 244
image representation with

316
localization and 316
private 267
using locales to deteremine

URLs 317
attributes

acceptance of unquoted
295

allow-body 219–220
allow-informal-parameters

219, 221
class 219
copying 275
direction 224, 226, 229, 251
href 13, 250
HttpSession 272, 274

initial-value 308
key 314
of parameter element 222
quoting 296
serializing 275
session 22
src 230, 236
usemap 246

authentication 10, 96, 100,
407

automatic integration 339
AWT 18

B

bad coding shortcuts 15
banner ads

applications, building 337
BannerAd component 329
CreditCardField script

See CreditCardField script
data access 328
data model 326
DirectLink component of

325
function names 351
library specifications 336
page scripts 339
request servicing 334
script blocks 352
service implementation 332
service naming 335
source 327
storage 338
symbols 349
system 324

BaseComponent 35
BaseEngine 407, 416
BasePage 35, 57, 61
binary output 163
BinaryDumpOutputStream

163, 165
binding objects

See bindings
binding property 223
bindings

accessing 223
digit parameter 232
invariant 226
literal values 226
localized messages 226

plugged into component
parameters 223

storing for parameters 225
types of 223
updating values 226

blank fields 174
bodies, component

composition 220
discarding 220

Book 453, 457–458
Bookmarkable links 450
BookQuery bean 405–406, 419,

423, 425, 429–430
bookQuery property 419
bridging between stateless and

stateful worlds 299
browser back button 129, 132,

134, 148, 151, 154
bugs 271, 276, 308
business processes 44, 104

C

caching 52, 406
calculations in pages 234
Cascading Style Sheets (CSS)

97, 176, 184, 191, 201–202,
205, 217, 221, 261, 314,
511

changes, tracking 301–302
characters

invalid 292
non-ASCII, conversion of

292
nonprinting, conversion of

292
reserved, conversion of 292
unsafe, converting to HTML

entities 314
check boxes 104
choke points 14
ClassCastException 59
classes

AbstractComponent 218,
250, 304, 315

AbstractFormComponent
355, 363

AbstractService 334–335
Banner 327
BannerAd 329
BannerService 332

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 539

classes (continued)
base 315, 335, 355, 363
BaseComponent 217–219,

302
BasePage 297
BaseValidator 198, 204
ComponentAddress 306
CreditCardField 348, 355–

356
CSS 221, 260
default 219
DirectLink 250
enhanced subclasses 308
examples.resume.Exerience

260
field-error 201
IActionListener 248
IEngineService instance 250
ILink 250
instantiation of a page’s Java

302
IValidationDelegate 208, 264
Java 179, 316, 356
java.io.PrintWriter 292
java.text.MessageFormt 316
label-error 201
Letter 237
ListEditMap 159
page 178
PatternValidator 199
PriorityModel 141
Register 194
RegisterDelegate 191
Tapestry 251
tapestry-palette 260
ToDoItem 137, 145, 155
UploadResults 163
utility 306

classpath 254, 256, 261, 267
client-side

JavaScript 174, 176, 198,
203, 339, 460

logic 6, 339
pop-up windows 203, 205
scripting 198, 203, 205, 339
validations 174, 176, 205

close tags, omitting 221
clustering 275, 308, 409
code

refactoring tools for changes
in 280

URL construction 280
URL servlet 280

code duplication removal 244–
245, 262

Collection 472, 500
complex form 105, 120
component libraries 480

application specifications 254
classpath location 264
classpath location of JAR 254
component referencing 256
component storage in class-

path 261
Contrib library 254, 256
declaring use of 254
distribution as JAR files 254,

266
ID prefix 260
IDs 256
Java package for 264
naming patterns 256
packaging reusable compo-

nents into 261
Palette component 256
prefixing 256, 260
secondary 254
servlets of 255
specifications 218, 262
tapestry-contrib-3.0.jar 254
using components from 263

component objects
framework 50
hierarchy 50
model 17, 478

component parameters 58, 80
component specifications 28,

78, 521
attributes and elements of

219
beginning of 219
instantiation of components

219
name of file 218
new property declarations

308
processing requests and 270
purpose of 219
sources of files 218
storage of 217

component templates
request processing and 270

component-oriented services
324

components 17, 21, 27
action triggering by 284
ActionLink 494
advanced form 134
anonymous Letter 237
Any 494
application-specific 216,

254
BannerAd 329, 339
Block 463, 495
Body 55, 167, 186, 220, 243,

344, 365, 495
body allowing 242
Border 217, 243, 258, 370
bound properties, reading

and updating 222
buffering the output of 345
Button 495
calculations during render

234
Checkbox 103, 110–111, 118,

121, 495
communication between 271
Conditional 98, 186, 210,

220, 496
configuration 75, 85
conflicts with informal

parameters 230
consistency between pages

and 299
construction details 290
contained vs enclosed 243
controller 240
controlling behavior of 222
converting application-spe-

cific to library compo-
nents 264

corresponding to engine ser-
vices 281

CreditCardField 341, 346,
348, 352

DatePicker 134, 167, 170,
208, 210–211, 221, 496

declared 259, 321
declared vs implicit 188
Delegator 165, 186, 221,

497
Digit

See Digit component

TEAM LinG - Live, Informative, Non-cost and Genuine!

540 INDEX

components (continued)
Direct Area

See DirectArea component
DirectLink 55, 58–59, 62, 83,

86, 88, 98, 119, 222, 229,
237, 246, 281, 284–285,
288–289, 325, 333, 370,
497

duplications 244, 424
enclosed vs contained 243
end tags 220
ExceptionDisplay 498
exceptions and 221
ExternalLink 290, 450, 499
FieldLabel 173, 175, 181,

184, 188, 201, 208, 499
FileUpload 165
filtering benefits 295
final initializations 303
finishLoad() method, overrid-

ing 304
Foreach 79, 82–83, 85, 106,

115, 120, 124, 153–154,
156, 220, 222, 237, 239–
240, 500

Form 98–100, 102, 110, 149,
178, 181, 184, 188, 284–
285, 288, 299, 350, 361,
500

form element 355
FormError 264
Frame 501
GenericLink 501
Hidden 103, 134, 149, 153,

459, 502
IDs 188, 285–286, 289
Image 68, 73–74, 77–79, 221,

230, 233, 238–239, 266,
502

ImageSubmit 103, 110, 119,
316, 503

implementing in code 234
implicit components con-

tained in templates 302
informal parameters 221
inputFirstName 194
inputLanguages 260
Insert 31, 187, 222, 292, 294,

314, 504
InsertText 504
instantiation of 219

interactive 246, 253
Java class of 217
JavaScript-enabled 340
JButton 21
Letter

See Letter components
libraries

See component libraries
LinkSubmit 505
ListEdit 103, 134, 151, 159,

464, 506
methods of

See methods
object graphs 253
Option 103, 110, 113, 135,

506
output-only 246
overview 134
page loader instantiation of

303
PageLink 225, 281, 333, 507
pages compared to 222
Palette 118, 256, 339, 398,

463
ParameterManager 226–227
parameters

See parameters
problems using sophisti-

cated 259
problems with reusable 254
properties specific to pages

308
PropertySelection 103, 113,

118, 144, 210, 258–260,
318, 416, 507

purpose of 216
Radio 103, 110–111, 508
RadioGroup 103, 110–111,

508
RenderBlock 509
RenderBody 243, 434, 509
rendering 225
reusable 216, 246, 256, 265
reusable, packaging into

libraries 261
rewinding 228
Rollover 435, 457, 509
sameness of 320
Scaffold

See Scaffold component
Script 460, 510

Select 103, 110, 113, 135,
510

select 237
selectLoop 237
ServiceLink 511
Shell 97–98, 184–185, 243,

314, 511
simple 216
sources of 254
specifications

See component specifica-
tions

Spell
See Spell component

start tags 220
Submit 103, 110, 119, 121,

512
template

See template components
TextArea 102, 110, 210,

513
TextField 31, 98, 102, 107,

110, 121, 139, 149, 170,
184, 210, 222, 228, 513

Upload 103, 134, 160, 514
used in two different pages

308
ValidField 102, 293, 340, 367,

447, 514
See ValidField components

WEB-INF folder and 217
concurrent users 15
configuration files 12
connected parameter property

224
consistency 208
consistency goal 105
constraints 20
container 17
container-managed persis-

tence 102, 404
context root 54
Contrib (Contributions) library

254, 256
Controller 29, 31, 33, 82, 117,

146
conversions 108

string 197
validation 171
value 173, 197

copyrights 243

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 541

CreditCardField script
adding client-side JavaScript

365
blocks 352
body 352
Body component 344
component defining 341
CreditCardField component

348, 355–356
event handler functions 353
executing script specifica-

tions 365
form submissions 366
obtaining script specifica-

tions 365
script execution 365
specifications 345, 355
symbols 349

CSS (Cascading Style Sheets)
See Cascading Style Sheets

(CSS)
cut-and-paste 53

D

data integrity 203
database connection leaks 15
database connection pools 15
database layer 19
database objects 136
database query 419
databases 5, 8, 15, 19–20, 30–

31, 44, 253
dates, formatting of 309
DateValidator 174
debugging 271, 276
declared component 55, 84
decoupling 49
Delegator 187
Demo applications 12
deployment descriptor 7, 14,

23, 28
descending property 423
design 16
desktop applications 4, 13, 16,

18, 93
developers

HTML 13–14
Java 13–14

Digit components
codeless 231, 234

digit parameter of 232
Guess and Win pages and 230
in parameter’s direction 232
input and output 230
specification 231
template 232–233
use of 233

direct services 250–251, 450
DirectLink components and

284–285, 288–289
engine services 284
Form components and 284–

285, 288
forms 288
listener methods, linking to

284
overview 284
request processing 287
stale session checking 285
URLs created by 290

DirectArea components
bodyless 248, 251
classes for 250
direct service and 250–251
DirectLink component simi-

larity to 247
IDirect interface and 250
images and 252
implementation 248
Java class for 248
methods for 248, 250–251
parameters for 247–248
specifications for 248
static HTML, use of 252
support for informal parame-

ters 247, 250
using 252

direction
auto 432, 434, 484
in 432, 454

direction attributes 434
directories

context root 371
specifications 264

disabled parameters 87
DOCTYPE 53, 475, 517
Document Object Model 462
document type definition 517
domain logic 20
domain object properties 104,

108, 355

domain objects 31, 44, 64, 96,
132

drop-down lists 113, 136, 144,
148, 318

DTD (Document Type Defini-
tion) 53, 295

duplications
removal of 244
unnecessary object 302

dynamic name generation 344

E

EAR (Enterprise Application
Archive) 384

Eclipse 35
Eclipse IDE 280
e-commerce applications 290
e-commerce sites, international-

ization of 309
efficiency 52
EJBs (Enterprise JavaBeans)

384
elements

acceptance of unclosed 295
adding attributes to 240
application 256
area 246, 248, 250, 252
binding 233, 349
body 352
component 219, 259
component-specification

219–220
context-asset 219
discarding from templates

245
dynamic 252
dynamic tags, checking valid-

ity of 295
img 230, 236–237, 240, 246
initialization 354
input-symbol 348
let 348–349, 351, 366
library 256
map 246, 252
matching start and end tags

295–296
parameter 219, 222, 224, 251
private-asset 267
property-specification 219,

306, 308

TEAM LinG - Live, Informative, Non-cost and Genuine!

542 INDEX

elements (continued)
rendering vs previewing con-

flict 245
reserved-parameter 219, 230
script 294, 353
select 257–258, 261
set 348–349, 366
span 244, 314
specification 267
static 252
table 258, 260, 265
unique 352–353
See also HTML elements

engine 406
engine locale 317
engine service 530
Engine services 246
engine services

application operations 281
application URLs 279, 284
components 323
creating new 323
delegation layer 277
direct service 284
external service 290
home service 281
implementing 332
library for 336
naming 335
page rendering 281
page service 283
services roster 281
servlets compared to 281
URL construction 372

engineered coincidence 98
Enterprise Application Archive

(EAR) 384
enterprise application deploy-

ment 477
enterprise applications 12, 476
Enterprise JavaBeans (EJBs)

19–20, 23, 384, 404, 407
entity beans 404, 407, 410
entity objects 44
Enum base class 144
EnumPropertySelectionModel

147
Enums 148, 208
errors

handling 187
identification of 280

messages 156, 192, 267, 315
properties 416, 418, 465

event handlers 203, 221
connecting to objects 353
onkeyup 343–344
onsubmit 344, 351, 355, 366
window.onload 344

event notification 21, 117
event registration, automatic 303
example applications

Hangman application
See Hangman application

Java Pet Store
See Java Pet Store applica-

tion
Resume Builder

See Resume Builder appli-
cation

examples (servlet name) 255
examples.register.RegisterDele-

gate 191
Exception page 109
exception report 23, 58
ExceptionAnalyzer 498
ExceptionDescription 498
exceptions 221, 299

RedirectException 370
ValidatorException 368

expired session 414
external services 290, 450–451
Externalizable 410
Extreme Programming 481

F

fabricated subclass 101
fail-over strategy 274
field decorations 175, 177, 186,

189, 199, 202, 208, 210
file accessibility for users 266
file extensions

.application 254

.jwc 217
file uploads 134, 165, 514
filtering

HTML entity, disabling use of
315

output 292
firewalls 274
form control components 95,

98, 103, 108, 110, 113

form control elements 94, 104
form controls 228
form element ids 105, 113
form submissions 12, 98, 104,

107–109, 112, 194
formal parameters 527
format 504
form-level validation errors

207
form-level validations 208, 263
form-related components,

tracking 210
forms 22

complex 105, 120
components

See components
delegate 362
direct service and 288
loops 159
rewinding 152, 288, 363
simple 105
submissions 271, 366, 371,

375
synchronization issues 153

frameworks 16
commons-lang 144
JavaBeans 17, 101
JUnit 482
Maverick 11
OGNL 31
OGNL library 144
Struts 11–12
Turbine 11
Velocity 12
WebObjects 18
WebWork 11

functions
anonymous JavaScript 354
onkeyup_cc_field() 354

G

Game 45, 47, 61–62, 64, 79
Global object 406
goals

consistency 22, 60, 89, 100,
105, 136, 292

efficiency 23, 52
feedback 23, 60
simplicity 60, 100, 105

graphs, complex object 302

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 543

Guess page 42, 65, 230, 233–
234, 237–238, 240–241

GUI 18, 21, 29

H

Hangman application
Body component 243
Border component 243
changes in original code 237,

241
components with bodies 242
Guess page 230, 233–234,

237–238, 240–241
Letter component 234
look and feel of 243
Lose page 234, 238
overview 39
RenderBody component 243
rendering vs previewing con-

flicts 245
review of previous 216
revised compared to original

217
Shell component 243
source code online 217
Spell component 238
stylesheet 244
target word 238, 240
Win page 230, 234, 238

HashSet 117
helper beans 179, 187, 189,

191, 195, 212, 518
hidden fields 107, 131
hidden form fields 134, 149,

151
home interfaces 23, 406
Home page 50–51, 54, 281
home service 281
hot code replace 405
href 13
HTML

editors
See WYSIWYG HTML edi-

tors
safe 292
static mockups 342

HTML developers 13–14
HTML elements

a 13, 55, 87, 434
bean 178

body 167, 185, 415
form 13, 94, 98, 102–105
head 97–98, 184–185, 511
img 68, 73
input 94, 103, 107, 149, 160,

173, 177, 197–198, 201
link 184
option 103, 113, 135, 140,

506
script 167
select 94, 103, 113, 135, 140,

510
span 68, 80, 124, 176, 201
table 124, 187, 413
textarea 94, 102, 110
title 97–98
tr 124, 131, 425
See also elements

HTML mockups 68, 75, 83
HTML templates 51, 54, 234
HTTP 6–7, 11, 15, 18–19, 64

as stateful protocol, maintain-
ing illusion of 306

bridging between servlets and
299

protocol 271
HTTP cookies 11, 15
HttpServlet 21, 25
HttpServletContext 25
HttpServletRequest 7, 9–12,

15–16, 21, 25, 30, 35, 94,
104

HttpServletResponse 35
HttpSession 11, 15–16, 21, 25,

35, 60–61, 64, 126, 128,
149, 406, 409, 414, 498

HttpSession attribute 60
HttpSessions, expired 251
Hypertext Transport Protocol 6

I

IActionListener 59
IActivate 443, 445
IActive 411
IAsset 75, 503, 510
ICallback 442
IComponent 33, 35, 454
IDEs (integrated development

environments) 13, 280
Eclipse 405

IDs, unique 155
IEngine 35
IErrorProperty 411, 416, 418
IExternalPage 411, 451, 499
ILibrarySpecification 523
image maps 246
images

assets 237
client-side JavaScript and

256
Letter component 237
localization of 270, 311, 316
manipulation 217
problems with icon 266
referencing packaged 266
serving from the JAR file

266
using assets to represent 316

IMarkupWriter 35
IMessageProperty 411, 416,

418
implicit component 55
informal parameters 78, 221,

520, 530
initializations, performing 299
input symbols 510
input validation 104
InsertTextMode 505
instance variables 9, 101
instrumentation 43
Instrumenting 50
integers, compared to enums

144
integrated development envi-

ronments (IDEs) 280, 405
interactive pages 246
interfaces 17

event 303
HTMLWriter 297
HttpServletResponse 297
IActionListener 250
IBanner 327, 336
IBannerSource 327, 331,

336, 338
IBinding 223
IComponent 288, 292, 304
IDirect 250, 287
IEngineService 278–279, 281
IExternalPage 290
IForm 361
ILink 333

TEAM LinG - Live, Informative, Non-cost and Genuine!

544 INDEX

interfaces (continued)
IMarkupWriter 201, 237,

292, 297
IPage 290, 299
IPageLoaderpageloader 302
IPropertySelectionModel

260, 318
IRender 164–165, 187, 292
IRequestCycle 282, 300, 317
IValidationDelegate 191, 199,

202, 367
IValidator 173, 198, 204
PageDetachListener 303,

305–306
PageRedirectException 283
PageRenderListener 297,

303
PageValidateListener 283,

303
internationalized 4, 15
Internet Explorer 6
invalid input, handling 170
IPage 33, 35, 61
IPropertySelectionModel 135,

140, 142, 147, 416
IRender 33, 497–498
IRequestCycle 35, 58, 88, 410,

442
Iterator 472, 500, 506
IUploadFile 160, 163, 165, 514
IValidator 515

J

J2EE 404
Jakarta 12
Jakarta commons-fileupload

library 160
Jakarta commons-lang frame-

work 144
Jakarta ORO 199
Jakarta Tomcat 476
JAR (Java Archive) files 27, 254,

266
Java 2 Enterprise Edition

(J2EE) 246, 274, 404
Java class default 217
Java classpath 254, 256
Java Database Connectivity 20,

405
Java developers 13–14

Java Naming and Directory
Interface 23, 406

Java Pet Store application
DirectArea component 247
DirectLink component 246
image map 246
listener methods 246, 248
pet inventory 253
PetCategory page 252
Pets page 252

Java primitive types 228, 232
Java Runtime Environment

(JRE), localizing applica-
tions with 309

Java Servlet API 7, 16, 25, 37
Java Standard Tag Library 33
Java types

array 228
Boolean 228
char 240
double 228
int 228, 232
java.lang.Object 248

Java Virtual Machine 405, 410,
429

java.io.PrintWriter 201
JavaBeans 12, 17, 33, 188, 222–

224
application servlets and 271
framework 101
instantiation 178
properties 47, 87, 101, 459,

478
JavaScript 20, 495, 505, 532

anonymous functions 354
Body component and 344
client-side 134, 165, 167,

172, 174, 186, 198, 203,
256, 339

components enabled by 340
customized on demand 340
DOM references 350
dynamic generation 340
event handlers 221, 344, 352
filtering 294
functions 351
malicious 294

JavaScript library 534
JavaServer Pages (JSPs) 7, 279
JBoss 7, 18, 385
JDBC 419–420

Jetty 25, 482
JRE (Java Runtime Environ-

ment), localizing applica-
tions with 309

JSP tags 78, 88, 280
JSPForm page 377
JSPs (JavaServer Pages) 7–15,

21, 30–31, 37, 43, 52, 63–
64, 77–78, 87–88, 95, 279

custom tags 372, 374–378
ID component determina-

tion 376
integrating with Tapestry

applications 369
linking back to applications

371
redirecting application

requests to 369
response rendering with 369

JSTL 33
JUnit framework 482
jwcid attribute 55, 68, 84, 295

$content$ 245
$remove$ 245

Jython 525

K

key parameters 315, 317
KeyAllocator bean 405
keys, primary/unique 155

L

label decorations 175, 188, 202
language proficiency 263
languages

handling differences in 292
handling multiple, using JRE

310
locales compared to 309
translation of 309

layout controls 258
Letter components

accessing connected parame-
ter properties 237

code 236
components used in 237
correct asset for 236
Guess page and 237
implementation 236

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 545

Letter components (continued)
methods for 237
parameters 235–237
purpose of 234
renderComponent() method,

use of 234
similarity to Digit compo-

nent 235
simplicity of 238
simplification of template

238
specifications 235
template free 234
using 237

libraries
See component libraries

library specifications 525
lifecycles

page 179, 191–192
request 179, 191

light touch 91
links

bookmarkable 290
method invoking 253

List 126, 128, 472, 506
ListEditMap 464, 468, 470
listener methods 22, 33, 55, 58–

59, 62, 73, 86, 88, 96, 98–
100, 109, 119, 127, 195,
208, 210, 252, 419, 437

as class instance 248
BaseComponent and 220
calling back application-spe-

cific code 253
defining for Java Pet Store

246
forms 317
IActionListener 149
invoking 151–152, 222, 250,

288
JSP and 369
linking to, with direct service

284
synchronizeItem() 156, 159

listener objects 250
listener parameters 58
listeners

adding and removing 299
non-null 251
property 59

lists 151, 153

literals
localized 321
simple 314

load balancing 274
locales

current, passing to model’s
constructor 318

definition 309
engine, editing 317
languages compared to 309
matching page and engine

317
self-describing 320
used by assets 317

localization
defined 309
handling with JRE 310
independence of page 320

logic
application-specific 57

LoginException 449
look and feel of pages 42, 50,

65, 79
Lose page 62, 234, 238

M

Map 409, 458
Map components 188
markup languages, types of 291
markup writer, calls to 250
markup writers 292
MasterQueryParameters 429
Maverick 11
messages

assembling from pieces 315
localized 223, 226, 313
properties 416, 418, 465
specialized error 315
warning, localized 315

metadata 417, 529
methods

accessor 223, 225, 228, 237
actionTriggered() 250–251,

288
activate() 62, 88, 282, 288,

442, 445
activateExternalPage() 290–

291, 378, 451, 499
addEventHandler() 361, 366
addPageRenderListener() 299

attach() 301
attribute() 237
beginEmpty() 237
beginResponse() 297
checkExtension() 331
checkRequired() 198
cleanUp() 305
cleanupAfterRender() 226
commitPageChanges() 297
constructLink() 334
constructServiceParameter()

250
createNewItem() 139, 146,

159
detach() 305–306
doPost() 108
encodeURL() 334
end() 201
equals() 145
event 306, 335
extractCardNumber() 364
finishLoad() 226, 303, 308,

428, 441
fireObservedChange() 307–

308
forgetPage() 449
format() 315
GET 377
get 237
getAsset() 74, 77
getBeans() 195
getContentType() 296–297
getDisplayLanguage() 320
getExtension() 331
getForm() 361
getKeys() 159
getLabel() 142
getLink() 333
getListener() 251
getLocale() 147
getMessage() 313, 315
getName() 335
getObject() 223–224, 228
getOption() 142–143
getOptionCount() 142
getPage() 282, 300–301, 303,

317
getPriorityModel() 139
getRandomBanner() 331
getResponseWriter() 297
getServiceParameters() 88

TEAM LinG - Live, Informative, Non-cost and Genuine!

546 INDEX

methods (continued)
getSession() 11
getStream() 165
getTargetPage 225
getTaskWarning() 316
getValue() 142, 158
handleStaleSessionExcep-

tion() 414
initialize() 305–306, 332, 334
isInError() 201
isStateful() 248, 250–251
links that invoke 253
match() 199
pageBeginRender() 117, 126,

158, 194, 288, 297, 432,
446, 452, 456, 459, 467

pageDetached() 306
pageEndRender() 288, 297
pageValidate() 335, 444
POST 377
prepareForRender() 225
print() 292
record() 207
recordFieldInputValue() 367
removePageRenderLis-

tener() 299
render() 165, 187, 225, 292,

297–298, 497
renderBody() 56, 251
renderComponent() 34, 56,

225, 227, 230, 234, 237,
248, 250–251, 331, 335,
363, 365, 433

renderInformalParameters()
250

renderPage() 297
renderResponse() 283, 297
renderValidatorContribu-

tion() 176, 204
resetParameters() 226
service 273
service() 9, 272, 277, 334
set 237
setAttribute() 276
setContentType() 297
setFormComponent() 207
setObject() 223–224, 228
setParameters() 226
setter 307–308
static 307
static utility 250

synchronizeItem() 159
toObject() 199
toString() 197
translateValue() 142
trigger() 248, 250–251, 288
updateCardNumberFromRe-

quest() 366, 368
updateSet() 472
validate() 282, 284, 287–288
writeAttributes() 176, 202
writeLabelPrefix() 176, 201
writeLabelSuffix() 176, 201
writePrefix() 202
writeSuffix() 202

MIMEs (Multipurpose Internet
Mail Extensions) 160, 296–
297

Model 29, 47, 49, 75, 79, 82,
117

Model-Driven Architecture
529

Model-View-Controller pattern
29, 39, 44, 47, 79, 91, 135,
146, 478

multipart/form-data 160–161
multiple selections 113, 115,

118, 135
multi-threading 9, 12, 16,

271

N

names
conflicts 344
reserved 230

namespace conflicts 279
naming conventions 17, 101
navigation menus 415
navigational controls 243
Netscape Navigator 6
news sites, internationalization

of 309
NeXT 18
NoSuchPropertyException 59
null checking 194
null value translation 198
null values 208
NullPointerException 117
numbers, formatting of 309
NumberValidator 174

O

object relational database 18
objects

applications servlets 270
database 136
Date 198
engine services 270
engines 270, 272, 276–277
for request processing 270
Game 239
graph 32
HttpSession 275, 285
immutable 276
Integer 198
mutable 276–277
Order 136
Page Loader 270
Page Recorder 270
Page Source 270
page, pooling instances of

272
Pattern 199
pools 272, 300
renderable 187
request cycle 270
RequestContext 270, 273
serialization and deserializa-

tion 145, 406
serializing for storage 302
setting properties for 297
unnecessary duplication of

302
Visit 239, 272, 277

OGNL expressions 31, 33, 37,
58–59, 74, 77, 84, 98, 423,
519, 529

beans.delegate 187–188,
191

beans.required 179
bindings based upon 226
complex parameter bindings

223
components.inputFirstName

188
creating symbols with 348
default values 260
digit properties and 232
evaluating 308, 349
getMessage() method as part

of 313

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 547

OGNL expressions (continued)
locating in the body 193
page.visit.game.letters 239
parameters that are 313
placed in the element body

233
updating 223
values for, used to set and

update properties 308
open source 12
operation signatures 14
Operations bean 405–407, 416,

449, 458, 464, 468
org.apache.tapestry.visit-class 90
output

compatability with XML style
markup 296

filtered 293
streamlining markup 292
writing directly within Java

code 292

P

page
class 50, 52–53, 57
instance 52
loaders 302
mockup 42, 44, 50
properties 60, 111
recorders 297, 301
rendering 56
services 283
sources 301, 317
templates 220, 270

page specifications 28, 49–51,
55, 76–77, 84, 527

caching 270, 299
new property declarations

308
non-localization of 321
parsing 270

PageCallback 442, 445, 453
page-oriented services 324
PageRedirectException 159,

445, 467
PageRenderListener 117, 126,

432, 446, 467
pages

active, inability to change
locale of 317

as controllers 240
attachment to application

engine 301
caching by request cycle

object 300
cleaning prior to storage

305
cleanup 306
components compared to

222
consistency between compo-

nents and 299
creating new instances 302
division between instances

and persistent page state
302

Exception 109
final initializations 303
finishLoad() method,overrid-

ing 304
Guess 42, 65, 230, 234, 237–

238, 240–241
Home 50–51, 54, 281
HTML rendered, compared

to XML related 296
independence of localiza-

tions 320
instances, construction of

299
instances, readying 300
issues in using stateful 300
locales

See locales
localized strings and static

portion of 311
localizing text and images

270, 292
Lose 62, 234, 238
non-validation of 295
obtaining fresh instances of

301
page loader and 303
page source 301
persistent page properties

302, 306
persistent state separate from

instance of 301
pooling instances of 270
pools 299
previewing 230
properties files 313

recorders 297, 301–302, 307
recursive processing 302
references, problems with

storing 306
rendering sequence 297
renderingpage 281, 291
resetting properties of, to

pristine values 304
returning to pools 304
reusing 300
rewinding 299, 363
serializing and deserializing

302
servlet use, compared to use

of 300
specifications

See page specifications
specified properties, support-

ing 308
StaleLink 109, 129
StaleSession 286, 414
storage of names 306
storage of persistent proper-

ties 302
stylesheets 260–261
supporting objects associated

with 302
using multiple templates for

320
validation with external ser-

vice 291
variable target 371
Win 62, 230, 234, 238
WYSIWYGs and 230

PageValidateListener 444
Parameter 27
parameter direction 528
ParameterManager 226–227
parameters 87

AbstractComponent 225
accessing 223
accessing values bound to 225
alt 314
analyzing direction of 226
application-specific service

286
attributes, converting from

informal 251
binding 58
binding objects 222

See also bindings

TEAM LinG - Live, Informative, Non-cost and Genuine!

548 INDEX

parameters (continued)
binding property names and

names of 223
boolean 355
cardNumber 356, 368
component 201
condition 99
connected parameter prop-

erty and 225
converting to objects array

250
cycle 292
delegate 165, 178, 181, 184,

187, 266
digit 232, 235
direction of, choosing 229
direction values of 226, 483,

528
DirectLink 221
disabled 87, 235, 237, 356–

357, 436
displayName 173, 191, 193,

201, 209
element 124
field 173, 188
focus 436
forbidding informal 221
forbidding names 230
form 226
formal 191, 222–223, 230,

314
hidden 98
image 230, 436
in 226, 251
informal 191–192, 221, 230,

314
JavaBean objects compared to

component 223
key 315
letter 235–237
listener 58, 98, 119, 152, 222,

229, 247–248, 251
model 135
multiple 115
naming conflicts 225
non-rendering components

and 229
page 225, 290
ParameterManager 227
parameters 87, 247–248,

250, 290

prefixes used to identify 313
processing of 225
properties 228, 237
purpose of 222
query 228, 279, 282, 284,

286, 377–378
reading and converting 224
read-only 229
reserved names 230
reusable components and

216
rewinding 224
selected 110–112, 119, 127,

260
service 246, 285, 290, 377–

378
service query 284
setting properties 225
setting values 226
size 192
sort 260
source 151–153, 222
stateful 285, 414
stylesheet 184
supporting 308
tag 119, 127
title 314
unknown runtime types and

248
updating 223
userName 378
ValidationConstraint 208
validator 174, 178, 191, 193
value 110, 112, 139, 142,

149, 151–153, 191, 193,
197, 199, 222, 228

when majority are used 229
writer 292

parsing specifications 52
password field 98
patterns

Model-View-Controller 355
performance 52, 78
performance enhancement 406
performance profiling 410
Perl 6
persistent page properties 60,

101, 125, 149, 301–302,
306, 432, 484

Person 409–410
Person bean 407, 410

placeholders 315
plumbing 178
pooling instances of page

objects 270, 272
pools

database connection 15, 272,
300

object 272
obtaining page instances from

317
page 299

pop-up calendars 165
pop-up windows 203, 205
prefixes

tapestry 374
prefixing 256, 279, 314
presentation layer 19–20, 275,

404, 410–411, 449
previewing pages 238, 240–241,

245, 314
primary key 407
primitive Java types 228, 232
priority levels, selecting 141
PriorityStrings.properties file

147
processing requests

See request processing
properties

abstract 356
address 195
assets 184
beans 179
cardNumber 356
clientScriptingEnabled 204
components 181
connected parameter 225,

237
contentRenderer 165
currentDate 315
danger of leaving in place 304
Date 174
date 167
declared, initial values of 308
digit 232
dueDate 315
endDate 205, 207
engine 305
errorMessage 156
expressions 31
firstError 187
firstName 194

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 549

properties (continued)
form 356
game 239
hasErrors 186–187
inError 209–210
item 156, 159
JavaBean 12, 223
key 153, 158
languages 260
letter 240
listEditMap 156
listeners 59
locale 147, 317
name 33, 356
optimizing number of 226
page 225, 239
persistent page 270, 277,

292, 297, 301
priority 138–139
priorityModel 139, 146
reading and updating bound

222
reinitializing 305
rendering 224
requestCycle 305
required 174, 192, 198
setting for objects 297
setting to null 305
startDate 205, 207
state 192
synthetic 72
targetPage 225
toDoList 156, 158
tracking changes to persistent

page 301–302
updating 224, 228
validity of 228
visit 239, 305

properties files 313
Protected 411, 445
prototyping 75
public static field 423
Publisher 464
Python 525

Q

query parameters 5, 7–9, 12,
14, 16, 22, 37, 63, 86, 94,
98, 100, 104–105, 110, 118,
160, 279, 282, 284, 286

R

race conditions 159
radio buttons 104
radio elements 111
recompile 280
recursive processing 302
redeploy 406
redeployment 407
RedirectFilter 475
refactoring tools 280
Register page

building 189
HTML markup and 293
implementation 195
specifications 195

RegisterDelegate 202
registration, automatic 299
remote interface 407, 425, 429
Remote Method Invocation

405
remote object access 407
RemoteException 406, 426,

429–430, 432
render events 288
request cycle rewinding 250
request cycles 6, 8, 16, 35, 270,

292, 297, 300, 304
request processing

attribute serializing and copy-
ing 275

direct service 287
end of 304
external service 290
initial access of a page 317
order operations 287
persistent page properties

and 306
request cycles 292, 297, 300,

304
server-side 339
Servlet API and 276
stateful 286
synchronization of server-

side-state 276
RequestContext 498
reserved entities, escaping 296
Resin 25
resource bundles 310
ResourceBundle 148
resources, managing scarce 272

Resume Builder
form-level validation 263
look and feel of 261
Palette component 257
stylesheet 260–261

retry loops 407, 429, 432, 470
reuse 23
rewind phase 109, 126–127,

129
routers 274

S

Scaffold component
choice of images 231
codeless 231, 234
digit parameter of 232
in parameter’s direction 232
specification 231
template 233
use of 234

script specification elements
460

body 462, 533
foreach 533
if 534
if-not 534
include-script 534
initialization 462, 534
input-symbol 535
let 535
set 535
unique 536

script specifications 532
scripting languages 6
scripting, client-side 198, 203,

205, 339
scriptlets 77, 87–88
scripts

blocks 352
specifications 345, 365

security 203
checks 282, 284
filtering and 293–294

separation of concerns 29, 76
separation of layers 405
Serializable 410
serialVersionUID 410
server clusters

request processing with 274,
306

TEAM LinG - Live, Informative, Non-cost and Genuine!

550 INDEX

servers
JBoss application 385
open-source 385

server-side
redirects to the JSP 376
values, converting 364

server-side state 10–12, 18, 35,
60–61, 101, 109, 131, 270,
272, 302

server-side state management 18
service parameters 88
Servlet API 271–273, 275, 292
Servlet API and multipart/form-

data 160
ServletContext 406
servlets 5, 7, 11–13, 15, 22, 27,

30, 37, 63, 86, 88–89
applications 340
classes 64
containers 7, 9, 11, 18–19,

25, 28, 474–475, 482
context 90
filter 26, 475
names 255
See also application servlets

session attributes 22, 409
session beans 404

BookQuery 405–406, 419,
423, 425, 429–430

KeyAllocator 405
Operations 405–407, 416,

449, 458, 464, 468
sessions 11
Set 117, 472
shopping carts 151
simple forms 105
simplicity goal 22, 105
single selections 115
singletons

data 328
SortColumn 423
sortColumn property 423
special component ids

$content$ 245
$remove$ 83

specification elements
application 517
bean 518
binding 84, 191, 519
component 70, 84, 520
component-specification 521

component-type 521
configure 520
context-asset 70, 75, 523
description 523
duplication removal 244, 262
extension 523
external-asset 524
inherited-binding 524
library 525
library-specification 525
listener-binding 525
page 526
page-specification 527
parameter 483, 527
parsing 52
private-asset 528
property 417, 529
property-specification 102,

417–418, 529
reserved-parameter 530
service 530
set-property 179, 193, 531
set-string-property 193
static-binding 191, 531

specified properties 100, 156
Spell component

basis for 239
binding letter property to let-

ter parameter 240
bodyless 241
components for 239–240
Guess page and 240–241
implementation 239
properties of 239
purpose of 239
replacing with spaceholder

241
simplifying page template

with a 239
target word and 240
updating the letter property

240
using 240

Spindle 35–36
stack trace 23
stale links 129
stale sessions 285, 414
StaleLink page 109
StaleLinkException 120, 129,

131, 151, 154
StaleSession pages 414

StaleSessionException 414
stateful flags 285
stateful session beans 419, 430
stateless applications 61
stateless coding 272
stateless mode 61
stateless protocol 6
stateless session beans 407
states

application-wide 277
internal 277
server-side 270, 274

stateValidator 192
static HTML 220, 252
static text 220, 296
storage

application-wide states 277
assets 267
cleaning pages prior to 305
component specifications 254
engine instances in HttpSes-

sion 272
global application data 272
in package directorie 264
object states 302
page instances 317
page names 306
page specifications 254
persistent page properties

302
properties files 313
script specifications 365
serializing objects for 302
specifications 261
WEB-INF folders 254

strings
compiling 199
conversion of 174
editing properties of 171
empty 198
key parameters 315
literal 193
localization of, using JRE 311
localization of, using Tapes-

try 311, 314
message, operating with miss-

ing 315
static (literal) 191

StringValidator 174, 191–192
Struts 12, 37, 98

Action 12

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 551

stylesheets 184, 258
submit controls 118
subsystems 35
suffixing 279
super class implementation,

invoking 304
Swing 18, 21, 29
symbols

baseName 350
creating 349
creditCardField 349
formatMessage 349
formValidateFunction 351,

361, 366
input 349, 365
Map 366
uniqueness, importance of

351
synchronization faults 151
synthetic properties 72, 82,

115, 135
system properties 25

T

Tacos
See Tapestry Component

Archive
tag libraries 12
tag library descriptors 374
taglib declarations 377
tags

See HTML elements
Tapestry Component Archive

480
team development 4, 64
template components

body discard 220
instantiation of class instance

217
page template composition

220
specifications 217

See also component specifi-
cations

steps in creating 217
template parser 295
templates

caching 299
multiple 320
script specifications 340

templating 7, 12
test 91
test suite 49
testing 49
text

formatting 316
instructional, need for local-

ization of 314
localization of 270, 311, 320
static 296
translation 309

text fields 104–105
thread of control 16
tier

application 44
title bars 243
ToDo application 159
Tomcat 18, 25, 39, 487
toolkit 16
Turbine 11

U

unit-test suite 481
unsafe characters, converting

237
unwanted dependencies 13,

98
updating applications 155
URLs (Uniform Resource Loca-

tors) 5, 13–14, 16, 22, 27,
55, 63–64, 86, 88, 90, 98

application 279, 284
application servlet 290
determining with assets 317
representation, Tapestry

applications 333
user identity 6, 96
UserListEditMap 471
utility functions

onkeyup_cc_field() 352
validate_cc_field() 352

V

validation 12
delegates 362, 364, 367
input subsystems 364
subsystems 367, 388

validation delegates 449
defining 193

field and error tracking with
173

helper beans and 179
label and field decoration and

202
listener methods and 207
ValidField components and

178
without ValidField 209

ValidationDelegate 177, 202
ValidationException 175
validations

client-side 170, 205
conversions 171
errorserrors 187
form-level 208
server-side 171, 202

ValidatorException 198
validators 283

creating 198
custom 199
defining 193
helper beans and 179
Register pages and 189
stateValidator 192
ValidField 203

ValidField components
client-side JavaScript pro-

duced by 186
FieldLabel components

mixed with 208
FieldLabel, using with 181
inputEnd 205
inputStart 205
integration of client-side vali-

dation into applications
203

JavaBeans andvalidfield
178

Register page specifications
and 194

TextField variation 170
validation delegates shared by

184
validation without 208
writeAttributes() and 202
writeSuffix() and 202

value conversions 173, 197
values

accessing bound 225
auto 228

TEAM LinG - Live, Informative, Non-cost and Genuine!

552 INDEX

values (continued)
bound to component parame-

ters 311
custom 228
direction of movement 224
form 228
in 228
initial, when none are pro-

vided 309
limitations 228
literal 226
literal static 223
OGNL expression default

260
ognl null 251
problems with mutable 307
properly quoting 237
reading and updating bound

223
reserved characters 292
service context 285
stateful flag 285
updating 226

variables
instance 271

Velocity 12
View 29–30, 75, 146
Virtual Library (VL)

BookLink component 422,
426, 450

BookMatches page 413, 418,
425, 430, 434

Border component 415,
438

Borrow component 426
BorrowedBooks page 430
Browser component 425,

430, 432
ColumnSorter component

423, 434
EditPublishers page 464
EditUsers page 470
GiveAwayBooks page 463
Home page 413
MyLibrary page 430, 444,

457
NewBook page 445
PersonLink component 422,

426, 453
ShowError component 416,

418

ShowMessage component
416, 418

ViewBook page 411, 422,
426, 449, 451, 453

ViewPerson page 422, 426,
449, 455

Virtual Library application
accessing 385
Add New Book page 396
administration

See VL administration
Ant Build script 385
book borrowing 389
Borrowed Books page 395
configuration 385
database access 384
database sample 389
database updating 389
defined 384
detail pages 390
Edit Book page 395
Edit Profile page 396
Edit Publishers page 400
Edit Users page 399
Enterprise Application

Archive EAR) 384
Enterprise JavaBeans (EJBs)

384
functionality, adminstrative

399
functionality, user 399
Give Away Books page 396
JBoss application server and

385
log in on the fly 392
logging in 388
Login page 388

See also VL Login page
managing books 393
Matching Books page

See VL Matching Books
page

My Library page
See VL My Library page

non-lendable books 393
Register page 389
registering 388
Search page

See VL Search page
Transfer Books page 400
View Book page 390

View Person page 392, 411,
430

VirtualLibraryEngine 409–410,
414, 430

Visit object 58, 60, 406, 409
VL administration

administrative privileges 399
book ownership transfer 399
Edit Publishers page 400
Edit Users page 399
form wizard 400
Give Away books page 400
navigation menu 400
pages, protection of 399
passwords 399
publisher list, managing 399
system lock-out 399
testing administrative pages

399
Transfer Books page 400
users, deleting 399

VL Edit Book page
drop-down blanks 395
drop-down lists 395
Publisher field 395

VL Login page
email addresses, unknown 388
error messages 388
fields, invalid 388
login ID 388
passwords 388
Register now link 389
return users 389
validation subsystems 388

VL Matching Books page
book borrowing 386, 389
column sorting 387
disabled button 387
links 386
navigation options 386
new books icon 386
non-lendable books 386
page navigation controls 387
paging results 387
sort order controls 387
table 386

VL My Library page
Add New Book page 396
books, deleting 393
books, editing 393
Borrowed Books page 395

TEAM LinG - Live, Informative, Non-cost and Genuine!

INDEX 553

VL My Library page (continued)
Delete Book icon 395
deleted books confirmation

395
Edit Book page 394
Edit Profile page 396
navigation controls 394
returning books 395

VL Search page
form 385
navigation menu 385
navigational border 385
page title 385
reminder 391
Search button 386

VL View Book page 390
VL View Person page 392

W

WAR 27, 52, 75, 90, 476
warning messages, localized

315

weak binding 13, 95
web applications 4

context 27, 523
credit card numbers 341
localization of 309

web deployment descriptor 37,
61, 63–64, 88–89, 474–475

web sites, internationalization of
309

WEB-INF 52
WEB-INF folder 217, 254, 266,

313, 365
WEB-INF/lib folder 254
WebLogic 7, 18, 25
WebLogic application servers

276
WebObjects 18
WebSphere 7, 18, 25
Win page 62, 230, 234, 238
window titles 315
WML (Wireless Markup Lan-

guage) 291, 295, 494
WordSource 45, 47, 61, 64

WYSIWYG HTML editors 14,
42, 44, 68, 73, 78, 83, 314

editing, support of 221
previewing with 230, 233,

241, 259
WYSIWYG preview 68, 184,

415

X

XHTML 291, 295
XML (Extensible Markup Lan-

guage) 7, 19, 23, 35, 37,
291, 295

files 374
script specifications 345

XML namespaces 256
XML-related markup lan-

guages 291

Z

zip codes 193, 195, 198

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

