
Test-Drive ASP.NET MVC

Jonathan McCracken

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Susannah Davidson Pfalzer

Indexing: Seth Maislin

Copy edit: Kim Wimpsett

Layout: Steve Peter

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-53-0

ISBN-13: 978-1-934356-53-1

Printed on acid-free paper.

P1.0 printing, June 2010

Version: 2010-6-28

www.allitebooks.com

http://www.pragprog.com
http://www.allitebooks.org

Contents
Acknowledgments 8

Preface 10

What Makes ASP.NET MVC Special? 10

Why Test-Driven Development? 12

Who Should Read This Book? 13

What’s in This Book? . 13

What’s New in ASP.NET MVC 2.0? 14

Online Resources . 16

I Fundamentals 17

1 Getting Started with ASP.NET MVC 18

1.1 How ASP.NET MVC Works 18

1.2 Installing MVC . 21

1.3 MVC in Five Minutes: Building Quote-O-Matic 24

2 Test-Driven Development 31

2.1 TDD Explained . 31

2.2 Test-Driving “Hello World” 36

II Building an Application 42

3 Getting Organized with MVC 43

3.1 Time Management with GetOrganized 43

3.2 Reading Data . 45

3.3 Creating a To-Do . 56

3.4 Deleting: Creating an Action Without a View 62

3.5 Updating: Marking a To-Do as Complete 66

www.allitebooks.com

http://www.allitebooks.org

CONTENTS 6

4 Working with Controllers 71

4.1 Creating Topics . 72

4.2 Using the FormCollection and TempData Objects . . . 77

4.3 Adding a Little Color with jQuery 80

4.4 Controllers Talking to Controllers 87

5 Managing State and Files with Controllers 93

5.1 Enabling Filters and Results with Controllers 93

5.2 Logging In . 100

5.3 Testing Routes in MVC 109

5.4 Storing Information in Memory 109

5.5 Manipulating Files . 119

6 Enhancing Views with HTML Helpers and Master Pages 127

6.1 Making Our Site Presentable with HTML Helpers . . . 128

6.2 Building a Custom HTML Helper 135

6.3 Simplifying Page Layouts with Master Pages 139

6.4 Adding Validations Using ModelStateDictionary 143

6.5 Replacing Web Controls with Advanced HTML Helpers 146

7 Composing Views with Ajax and Partials 151

7.1 Working with Ajax . 152

7.2 Finding It in a Snap with Autocomplete 157

7.3 Using Partials to Reduce Duplication 161

III Integrating with Other Frameworks 171

8 Persisting Your Models 172

8.1 MVC’s Next Top Model: NHibernate 173

8.2 Using the Repository Pattern 174

8.3 Mapping with Fluent NHibernate 177

8.4 Creating and Reading Records 179

8.5 Editing Models . 183

8.6 Deleting Records . 185

8.7 Additional ORM Data Relationships 186

9 Integrating Repositories with Controllers 188

9.1 Fixing the NHibernate Session Inside MVC 189

9.2 Using Inversion of Control with the IControllerFactory 192

9.3 Injecting Repositories into Controllers 197

9.4 Creating a Custom Action Filter 200

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=6
http://www.allitebooks.org

CONTENTS 7

9.5 Linking NHibernate and MVC Validations 203

9.6 Preventing Performance Problems with Profiling 206

10 Building RESTful Web Services 210

10.1 Use SOAP or Take a REST Instead? 210

10.2 Creating a Web Service 213

10.3 Publishing to Blogger . 220

IV Security and Deployment 228

11 Security, Error Handling, and Logging 229

11.1 Applying Additional Security 230

11.2 Using an Action Filter to Handle Errors 238

11.3 Using Logging to See What Went Wrong 241

11.4 Checking for a Pulse with ASP.NET Health Monitoring 245

12 Build and Deployment 247

12.1 Automating Builds . 247

12.2 Using MSBuild to Automate the Build 249

12.3 Deploying to Production 259

A Bibliography 268

Index 270

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=7
http://www.allitebooks.org

Acknowledgments
Just like a movie, a book couldn’t happen without the support of many

others who don’t appear on the front cover.

I’d like to thank my publishers, Dave and Andy, who not only provided

the opportunity for me to write this book but who also have published

and written some of my favorite technical books. They also assigned

me a talented and dedicated editor, Susannah Pfalzer. She’s been my

guide throughout this journey, and without her encouragement and

constructive feedback, the text would not be where it is today. Thanks,

Susannah!

Thanks to Clinton Begin and Mike Mason for providing role models of

how a developer at heart can turn into an author. I’d like to thank

the crew of ThoughtWorks University XII—Sumeet Moghe, Krishnan

Nair, Deepthi Chandramouli, Michael Aguilar, Deepali Pawar, and Rixt

Wiersma—who all helped me get started on writing this book. Also,

thanks to all the men and women at ThoughtWorks Canada who pro-

vide me with the opportunity every day to work alongside such passion-

ate software professionals.

I also had some in-depth reviewers who helped shape the code and

tutorials of this book. These included David Cameron, my long-time

friend who also taught me how do debug Pascal back in the sixth grade

and worked through the code in this book line by line; Scott Muc, a

developer whose tenacity helped give more form to Part III of the book;

John Finlay, a programmer who reviewed this book while simultane-

ously explaining to me why the Hadron Collider will not cause Earth

to be sucked into a massive black hole; Radu Muresan, the Roma-

nian who taught me English grammar; and Jennifer Smith, a fellow

ThoughtWorker whose detailed comments gave me a ton of ideas for

improvement.

www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTS 9

Several other reviewers also gave their feedback at different parts of this

project. I’d like to thank Puneet Goyal, Ted Neward, Siva Pinnaka, Paul

Reimer, Ravi Kumar Pasumarthy, Xingrui Pei, Jeff Cohen, Joe Poon,

Ellen Flookes, and Sharan Karanth.

A huge thanks go to my family for supporting me through this endeavor.

To my wife, Niki Rickhi, who cheered me on at every step. Niki, you are

the most amazing person I know. To my dad, Jock McCracken, who

himself became an author a few years ago and has always supported

me in following my own dreams. I’d also like to say a special thanks to

DK Sing, for all your guidance and wisdom.

My final thanks is to you, the reader, who I hope enjoys the book as

much as I enjoyed writing it. May it help you along your adventures in

ASP.NET MVC, TDD, and beyond.

Jonathan McCracken, April 2010

jon@nexicon.ca

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=9
http://www.allitebooks.org

If at first the idea is not absurd, then there is no hope for it.

Albert Einstein

Preface
It’s testable. It’s lightweight. It’s open source. It’s . . . Microsoft? Yes,

ASP.NET MVC is an open source web application framework created by

Microsoft to cater to the needs of agile software developers. Since its

official release in early 2009, it has been downloaded by almost 1 mil-

lion developers, and it is rapidly being adopted by many organizations

because of its efficient development model. Simply put, it’s C# on the

Web done right.

With this book’s test-driven approach to ASP.NET MVC, you’ll gain the

cutting-edge skills to build your next web application and become a

more agile developer in the process.

What Makes ASP.NET MVC Special?

Microsoft offers two web presentation frameworks: ASP.NET Web Forms

and ASP.NET MVC. ASP.NET itself is the common set of libraries and

features that both ASP.NET Web Forms and ASP.NET MVC work on top

of. This supports customers’ existing needs with the older ASP.NET

Web Forms and their future needs with ASP.NET MVC. Although

ASP.NET MVC shares many of the same underpinnings of ASP.NET, it

overcomes its brother’s weaknesses. ASP.NET MVC was designed using

the latest innovations and lessons learned on how to build web appli-

cations. This adds up to big productivity improvements for your teams.

Here’s what ASP.NET MVC offers that ASP.NET Web Forms doesn’t.

Full Control Over Markup

If you’ve ever developed an ASP.NET Web Forms website, you’ll know

what a struggle it is to build a site for anything other than Internet

Explorer. This is partly because ASP.NET Web Forms was designed

for intranet applications where a single browser could be more easily

mandated. For most companies, supporting only one browser isn’t an

www.allitebooks.com

http://www.allitebooks.org

WHAT MAKES ASP.NET MVC SPECIAL? 11

option anymore. Many companies are focusing on enabling their part-

ners and customers to perform their work through web applications, so

they need to support multiple browsers.

The Achilles’ heel of ASP.NET Web Forms is its bloated HTML. It gen-

erates complex markup through a string of embedded web and user

controls. ASP.NET MVC comes to the rescue with a much simpler solu-

tion. Its default view engine, which is confusingly named the Web Forms

view engine, gives you full control over your markup. No more strange

id tags with $ and underscores in them. This pays off when dealing with

client-side scripting such as JavaScript. You’ll find out more about the

Web Forms view engine in Chapter 7, Composing Views with Ajax and

Partials, on page 151.

Testability

A web application framework that has out-of-the-box testing saves you

a lot of time. Most developers building ASP.NET Web Forms applications

had to use their own design patterns, such as Model-View-Presenter

(MVP), to accomplish this. For developers who don’t know much about

unit testing, it’s less obvious how to approach testing. ASP.NET MVC

solves this with a clear way to test your code. I’ll be focusing on this

point heavily throughout the book to walk you through how to write a

well-tested ASP.NET MVC application.

Convention Over Configuration

Following convention saves time. ASP.NET MVC’s timesaving conven-

tions keep you out of configuration files, and some conventions give

you added benefits, such as search engine optimization. For exam-

ple, in ASP.NET MVC, URLs to your site become more readable by

engines. Instead of http://yourblog.com/Blog/Entry.aspx?id=108 in ASP.NET

Web Forms, ASP.NET MVC can do much better, such as http://yourblog.

com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy. You can achieve

the same thing with ASP.NET Web Forms, but it’s less straightforward.1

With ASP.NET MVC, you get it for free. You’ll see more of these conven-

tions throughout Part II, “Building an Application.”

Extensible Architecture

Striking a balance between conventions and extensibility is tricky for

web frameworks. If too many conventions are prescribed, they can

1. http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://yourblog.com/Blog/Entry.aspx?id=108
http://yourblog.com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy
http://yourblog.com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy
http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=11
http://www.allitebooks.org

WHY TEST -DRIVEN DEVELOPMENT? 12

restrict you from extending the framework when you need to do so.

The opposite is also true: if no conventions are set, then your team has

to continue to reinvent the wheel.

ASP.NET MVC strikes a pretty good balance. It comes with a powerful

default view engine but makes it easy to extend or create your own.

You’ll learn about this in Section 6.2, Building a Custom HTML Helper,

on page 135. ASP.NET MVC has a feature called action filters that you

can extend to provide helpful features such as transaction support.

You’ll tackle this in Section 9.4, Creating a Custom Action Filter, on

page 200. Because ASP.NET MVC’s architecture has a single point of

creation for all the controllers, you can extend it with dependency injec-

tion. Dependency injection decouples object behaviors, or, more specif-

ically, the implementation of those behaviors. We pass the behavior to

the constructor, effectively “injecting” it into the object. You’ll see how

to do this in Section 5.1, IControllerFactory: Where Controllers Are Born,

on page 98.

Finally, ASP.NET MVC isn’t tied to any single persistence framework

(see the Joe Asks. . . on page 19 for more on persistence frameworks).

In fact, it doesn’t come bundled with one at all. This leaves room for

you to choose the right tool for the job. In this book, you’ll be using

NHibernate, one of the most popular open source persistence frame-

works. You’ll see how to use NHibernate in Chapter 8, Persisting Your

Models, on page 172.

Why Test-Driven Development?

Test-driven development (TDD) is a simple programming technique that

drives your development by starting with a failing unit test. It’s quickly

becoming a standard practice on projects because TDD helps you feel

more confident about your code. If you’ve never used TDD before, then

Chapter 2, Test-Driven Development, on page 31 will show you how.

With TDD, you’ll spend much more time coding and much less time

fiddling around with the debugger.

The other key advantage to this method is that it helps you learn a

framework faster. Tests, when they pass, confirm that you’ve written

a bit of code correctly, and you can even dig into the tests that the

framework offers. Because ASP.NET MVC is open source, you’re free to

browse all of its unit tests to help you gain an even better understand-

ing of it.

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=12
http://www.allitebooks.org

WHO SHOULD READ THIS BOOK? 13

And if you’re a seasoned test-driven developer who’s embarking on

learning ASP.NET MVC, this book will be your guide on how and what

to test.

Who Should Read This Book?

This book was written for two audiences: Microsoft developers and

non-Microsoft developers. The goal for both is the same: to learn how

to build an ASP.NET MVC application based on development best

practices.

For Microsoft developers with a long history of building applications

using Microsoft frameworks, the emphasis on TDD might be unfamiliar

to you. Almost all the code examples in this book have been written

with TDD and are explained so that you can understand both how the

tests work and how the ASP.NET MVC code works. Also, you’ll learn

about some tools and open source projects that can save you time when

developing your ASP.NET MVC applications.

For non-Microsoft developers, you’ll find the methods of testing famil-

iar, but learning the language and the framework will be your primary

focus. Although this book assumes a basic knowledge of the C# lan-

guage, each tutorial explains line by line what the code is doing and

why it is important.

Although you can develop VB .NET web applications with ASP.NET

MVC, all the samples in this book are written in C#. If you’re comfort-

able reading C# and translating for yourself, then you’ll be fine using

this book as your guide to ASP.NET MVC.

What’s in This Book?

Part I of this book shows you how to build an ASP.NET MVC application

and introduces you to the TDD approach.

Part II focuses on building a sample application. You will work through

test-driving core components of ASP.NET MVC, as well as other essen-

tial frameworks that integrate with it. In Chapter 7, Composing Views

with Ajax and Partials, on page 151, you will focus on working with

jQuery.

Part III builds on the same application but introduces how to work with

other frameworks. The database access in ASP.NET MVC is flexible, and

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=13

WHAT’S NEW IN ASP.NET MVC 2.0? 14

you’ll find out about NHibernate in Chapter 8, Persisting Your Models,

on page 172. Also, you’ll learn how to use the Castle Windsor container

in Chapter 9, Integrating Repositories with Controllers, on page 188. To

integrate with other applications, you’ll also learn how to create Repre-

sentational State Transfer (REST) web services in Chapter 10, Building

RESTful Web Services, on page 210.

Part IV focuses on deployment, something that many of us struggle

with. Chapter 12, Build and Deployment, on page 247 is dedicated

to this subject. You’ll also learn about nonfunctional requirements in

Chapter 11, Security, Error Handling, and Logging, on page 229.

To get the most out of this book, it’s highly recommended that you code

through the problems while reading. Not only will this help you learn

the concepts of the framework and experience the subtle differences in

each test, but, more important, you’ll master the test-driven discipline.

This is a skill you’ll take with you to every language you program in.

Whether you are programming in C#, Java, or Ruby, knowing how to

write tests will help you write high-quality code in shorter periods of

time.

What’s New in ASP.NET MVC 2.0?

Since version 1.0 of ASP.NET MVC was released in March 2009, the

development team in Redmond has been working tirelessly at improv-

ing the framework in the 2.0 release. More evolutionary than revolu-

tionary, these changes make view and model development easier. Let’s

talk quickly about the new features.

Strongly Typed HTML Helpers

These new helpers reduce errors at compile time as well as the number

of lines of code in your views. The helper methods are an improve-

ment over checking properties at runtime. For example, we’d do this in

ASP.NET MVC 1.0 to render a textbox for a person:

Html.TextBox("Name");

This standard Html helper renders a textbox. It’s linked to the Name

property of the model so that when it’s filled out, the model itself is

updated. In ASP.NET MVC 2.0, you do it like this:

Html.EditorFor(person => person.Name);

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=14

WHAT’S NEW IN ASP.NET MVC 2.0? 15

Here the EditorFor() renders a textbox for the Person model and checks

for the presence of the Name property at compile time. Compile-time

checking alerts you early to typos that break your code. It also helps if

you rename properties of models that are referenced in views.

Html.EditorFor<Person>(person => person);

EditorFor() can also check for all the properties of the Person and render

them all for editing. In this case, the lambda expression we pass is the

whole model, not just a single property. You’ll get to use the DisplayFor()

helper methods in Section 1.3, MVC in Five Minutes: Building Quote-O-

Matic, on page 24.

Templated Views

Templated views build on what strongly typed view helpers allow us to

do. With ASP.NET MVC 2.0, you can now create generic view templates

that let you postpone customizing views. This works well for prototyping

applications, such as when your pages need just enough information

to get feedback from your customer to know whether you’re on the

right track. Building your own templates is as simple as creating a

view under the View/Shared directory named after the controller’s action.

Instead of creating a view per model to show or create details, ASP.NET

MVC can fall back on your templated views. You’ll look at this feature

in Section 4.3, Adding Thoughts with Templated Views, on page 83.

Data Annotations

Data annotations are a way to mark up your models with validation

rules. For example, if you wanted to make sure that a user’s name was

no longer than twenty-five characters, you could add this attribute:

[StringLength(25, ErrorMessage="Invalid Length")]

public string Name {get; set;}

The attribute StringLength specifies a length of a maximum of twenty-

five, and the ErrorMessage value will be the message you display to the

user if they input a name that is too long or short. You’ll see more of

this in Section 6.4, Adding Validations Using ModelStateDictionary, on

page 143.

Other Features

Areas, asynchronous controllers, and Html.RenderAction() are other use-

ful new features in ASP.NET MVC 2.0. Because they’re more advanced

or specialized, they won’t be covered in this book. Areas extend the way

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=15

ONLINE RESOURCES 16

files are organized in an ASP.NET MVC project and are aimed at larger

web applications (see Phil Haack’s blog2 for a tutorial on how to use

them). Asynchronous controllers are for long-running tasks that can

be run in parallel. Finally, Html.RenderAction() provides a more efficient

way for HTML to be written to the response.

Online Resources

At the website for this book, http://pragprog.com/titles/jmasp, you’ll find

the following:

• You’ll find the source code for all the snippets used in this book,

including the full codebase for the sample application from Parts

II and III. You can find the final solution in the GetOrganizedFinal

folder when you unzip it.

• You’ll find an errata page, where you can post errors you find in

the current edition.

• You’ll find a discussion forum where you can communicate with

me and other ASP.NET MVC developers directly.

In addition, once you get to the end of the book, Section 12.3, That’s

All, Folks, on page 267 will give you some additional online resources

to sites where you can further your learning.

Feel free to use the source code in your own applications. However,

keep in mind that not all the examples in the book are fit for production

code, because some are there to help you learn only. If you’re reading

the ebook version of this book, you can download and play with the

code by clicking the little gray rectangle before the code listings.

Let’s get started with a high-level overview in Chapter 1, Getting Started

with ASP.NET MVC, on page 18, where we’ll build a simple web applica-

tion. Following that, in Chapter 2, Test-Driven Development, on page 31,

we’ll learn the basics of this more efficient form of development. With

that knowledge, we’ll be able to tackle building a full-featured end-to-

end sample application for the rest of the book.

2. http://haacked.com/archive/2010/01/12/ambiguous-controller-names.aspx

Report erratum

this copy is (P1.0 printing, June 2010)

http://pragprog.com/titles/jmasp
http://haacked.com/archive/2010/01/12/ambiguous-controller-names.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=16

Part I

Fundamentals

To know an object is to lead to it through a context which

the world provides.

William James

Chapter 1

Getting Started
with ASP.NET MVC

In this chapter, you’ll get your feet wet by exploring the basics of the

ASP.NET MVC framework. You’ll find out how ASP.NET MVC works

differently than traditional ASP.NET. You’ll also learn how to install

MVC and the related software you’ll need for the rest of the book.

Finally, you’ll get hands-on and build a single page web application

called Quote-O-Matic.

Let’s start by exploring what makes ASP.NET MVC such a powerful web

development tool.

1.1 How ASP.NET MVC Works

ASP.NET MVC represents a simpler, more testable framework for devel-

oping web applications in Microsoft .NET.

When people reference the acronym MVC, they are most likely referring

to the software design pattern. Model-View-Controller is a user inter-

face design pattern that separates display, data, and flow of control

into different objects (MVC was documented in Design Patterns: Ele-

ments of Reusable Object-Oriented Software [GHJV95] under the name

Observer). The view represents the screen and user input, the controller

acts to coordinate the input/output from the view, and the model is the

data structure that is passed between the two. The pattern helps sepa-

rate the display, interaction, and data logic.

HOW ASP.NET MVC WORKS 19

Joe Asks. . .

What Is a Persistence Framework?

Generally speaking, a persistence framework is a library used
to simplify accessing and storing information. In practice, this
means how we write our code to communicate with the
relational database management system (RDMS). The cur-
rent trend in the industry is to use object-relational mapping
(ORM) persistence frameworks. These are abstract things such
as tables, columns, and rows, and they allow us to work pri-
marily with objects. Popular open source ORMs for .NET include
NHibernate and iBATIS.NET. Microsoft also provides both the
Entity Framework and LINQ to SQL as supported ORMs that can
easily work with MVC. In this book, we’ll use NHibernate since
it’s one of the most mature ORMs for .NET.

In ASP.NET MVC, the pattern is slightly different. Every request is

served by a controller; for example, http://localhost/ShoppingCart will be

directed to the ShoppingCartController. The controller then makes some

changes to the model and selects a view to display. The model for the

example is the ShoppingCart itself, and it contains information about

stuff you’d like to buy. The view then renders with the contents of

the model. In ASP.NET MVC, views are .aspx pages that contain HTML

markup mixed with server-side coding. For our example, the default

view in the shopping cart example is Index.aspx.

In Section 1.3, MVC in Five Minutes: Building Quote-O-Matic, on page 24,

we’ll implement this basic flow for a sample application. Refer to Fig-

ure 1.1, on the following page, which shows a typical MVC flow working

together as a user visits the Quote-O-Matic home page.

From here on, we’ll use the short form MVC to refer to ASP.NET MVC

for the rest of the book. If we need to talk about the design pattern

itself, we’ll say so specifically—otherwise, assume we’re talking about

ASP.NET MVC.

First, the user types a URL into the browser and hits the Enter key.

This creates a request to the web server that invokes the HomeCon-

troller’s default action, Index(). The controller then calls the logic within

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/ShoppingCart
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=19

HOW ASP.NET MVC WORKS 20

Index.aspx
(View)

Home Controller

Quote
(Model)

! User Types in
URL

" Asks for a
Random
Quote

Sends Information
Back to Controller

% Renders
Quote Page

Figure 1.1: ASP.NET MVC requests are serviced by controllers. The con-

troller interacts with a model and then renders a view.

the Quote class, which is the model in this example. The Quote will

return a random quote to the HomeController. Finally, the controller ren-

ders the default view, which is the Index.aspx file. The user sees the page

display in the browser.

For those familiar with ASP.NET Web Forms, there is a small learn-

ing curve when it comes to the way the programming model works in

MVC. For example, ASP.NET Web Forms tries to mask the fact that

we are dealing with HTTP, a stateless communication protocol. It does

this through the abstraction known as web controls and code-behind.

This leads to stateful information being stored in something known as

view state. MVC gets rid of view state and employs a more stateless

architecture.

With these MVC basics in mind, let’s move on to installing MVC so that

you can see it in action.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=20

INSTALLING MVC 21

MVC on the Web

The MVC design pattern is in extensive use by other web frame-
works such as Rails, J2EE, Struts, Waffle, Django, and ErlyWeb,
to name a few. Microsoft’s ASP.NET MVC framework is a logi-
cal and major improvement over the open source MonoRail
project, which also uses the MVC design pattern.∗ ASP.NET MVC
has improved on Monorail’s view engine, has more persistence
layer options, and has official Microsoft support. Phil Haack (the
guy who helped prototype ASP.NET MVC) and his team have
taken the best of these frameworks and applied them to the
development of ASP.NET MVC.

∗. http://www.castleproject.org/MonoRail/

1.2 Installing MVC

You need the following software to develop applications in MVC:

• .NET Framework 3.5 with Service Pack 1 or newer

• Microsoft Visual Studio 2008 Service Pack 1 or newer

• ASP.NET MVC 2.0

The following software, although not required, is highly recommended

for productive MVC development:

• Microsoft SQL Server 2005 Express or newer

• JetBrains ReSharper 4.5 or newer

Almost all the items in the previous lists are commercial software. How-

ever, all the software comes with at least a thirty-day (in some cases

ninety-day) trial to get you up and running. It is also possible to develop

with Visual Studio Express edition, which is free. If you do, you will not

be able to use ReSharper, which means you’ll have to rely on the tools

that come with Visual Studio Express. Unfortunately, there are no open

source alternatives to ReSharper, but some of the refactoring tools are

now part of Visual Studio, and tools such as TestDriven.Net can assist

you in running unit tests.

If you have Visual Studio 2010 installed or are planning to install

it, then you’re in luck because MVC 2.0 comes installed along with

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.castleproject.org/MonoRail/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=21

INSTALLING MVC 22

it. If you already have most of the software installed but are miss-

ing ASP.NET MVC, you can get the latest version1 and run through

the install wizard. Otherwise, if you don’t have most of this software

installed already, the quickest way to get there is to use the Microsoft

Web Platform Installer.

Microsoft’s Web Platform Installer

This tool simplifies the installation of the latest versions of .NET, Visual

Studio Express, SQL Server Express, and ASP.NET MVC. First down-

load the installer2 and run through the setup. Once you have the in-

staller running, you can select which components you want to install

on the selection screen (Figure 1.2, on the next page). Under New Web

Platform Extensions, select ASP.NET MVC 2.0. Under Web Platform and

the subsection Databases, you can install the Express edition of SQL

Server 2008. Finally, on the same Web Platform tab but under Tools,

you can install the Express edition of Visual Studio 2008. After you’ve

made all your selections, just click Install and grab several cups of

coffee because this will take a long time depending on how many com-

ponents you’ve selected.

I highly recommend that you start with the Professional version of

Visual Studio. If you want to try before you buy, you can download the

ninety-day trial of the full version of Visual Studio from the Microsoft

Download Center. 3 If you want to use the latest version of Visual Studio

2010, at the time of this writing, the release candidate is available for

download.4 The commercial version gives you the ability to install plug-

ins such as ReSharper. This book frequently references ReSharper’s

timesaving tools. Another popular plug-in is Visual SVN.5 This plug-

in will save you time and frustration every time you check in code to

Subversion, a version control system. It’s ideal to check in your code to

the repository every ten to fifteen minutes, so Visual SVN will quickly

become your best friend. Subversion is not covered in this book, but

Mike Mason’s Pragmatic Version Control with Subversion [Mas06] will

get you up to speed.

With the core software installed, all that is left is ReSharper.

1. http://asp.net/mvc

2. http://www.microsoft.com/web/downloads/platform.aspx

3. http://msdn.microsoft.com/en-us/vcsharp/aa700831.aspx

4. http://msdn.microsoft.com/en-us/vstudio/dd582936.aspx

5. http://www.visualsvn.com/

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://asp.net/mvc
http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa700831.aspx
http://msdn.microsoft.com/en-us/vstudio/dd582936.aspx
http://www.visualsvn.com/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=22
http://www.allitebooks.org

INSTALLING MVC 23

Figure 1.2: The Microsoft Web Installer platform makes ASP.NET MVC

and related components easier to install and keeps them up-to-date.

Plugging In ReSharper

Although it’s not required to develop MVC applications, ReSharper can

save you a lot of time. JetBrains offers a thirty-day evaluation of Re-

Sharper.6 Once you’ve installed ReSharper, you’ll be able to use impor-

tant navigation shortcuts. For example, hitting Ctrl+N brings up a

code navigation window where you can type in the name of a class.

While doing web development, we’ll also frequently search for files using

Ctrl+Alt+N . This helps in finding a web page or config file that you

want to edit. Need to clean up and format your code? Then try hit-

ting Ctrl+Alt+F , and watch your code instantly become easier to read.

ReSharper is rich in refactoring and code generation tools as well. I’ll

introduce these time-savers as we move along. The price of the product

may seem hefty at first, but this tool quickly pays for itself in the time

6. http://www.jetbrains.com/resharper/download/

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.jetbrains.com/resharper/download/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=23

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 24

Figure 1.3: You can also create an empty MVC project that does not

include the default controllers.

it saves you when navigating, formatting, refactoring, and generating

code.

Now that you’ve seen how MVC works and you have it installed, it’s

time to take a test-drive. Next, we’ll build a quick and dirty ASP.NET

MVC application in all of five minutes.

1.3 MVC in Five Minutes: Building Quote-O-Matic

The easiest way to show off ASP.NET MVC quickly is to build an appli-

cation that displays a model on the screen. Quote-O-Matic does just

that. It randomly displays a famous quote every time you visit its home

page. To start, we’ll create a new MVC project in Visual Studio. We can

see how this project wizard looks in Figure 1.3. For this project, we’re

not going to bother with unit tests. For now we just want to get our

hands dirty with how things work.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=24

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 25

To help solidify how MVC works, we’ll now work through the same

steps, showing the code involved. Controllers are composed of actions,

which are C# methods accessed via a specific URL. The controller, in

this example, performs the single action: Index(). This action obtains a

random Quote object from the Quote class. Here’s what it looks like:

Download gettingstarted/HomeController.cs

Line 1 [HandleError]
2 public class HomeController : Controller
3 {
4 public ActionResult Index()
5 {
6 ViewData.Model = Quote.ChooseRandomQuote();
7 return View();
8 }
9 }

Actions are executed based on the URL that was input by the user.

Index() is also the default action in case the URL doesn’t specify one

(see more on these interactions in Chapter 5, Managing State and Files

with Controllers, on page 93). Index() is using the Quote class to obtain

a random quote on line 6. It assigns a special controller property called

the ViewData.Model. We’ll make use of this property when we start cod-

ing the Index.aspx file.

The last thing the controller does is return a view to be rendered. When

the method View() is called without any parameters, MVC will search

for a view that matches that action. In this instance, the action Index()

looks for the file /View/Home/Index.aspx. This is an example of convention

over configuration, because MVC does all the magic to translate the URL

to the right method on a specific controller. This URL convention makes

it easy for search engines to properly index your site and also makes

it easy for users to remember their favorite URLs—all without having

to configure a single XML file. That’s convention over configuration in

a nutshell. Before we get to the view, our action references the Quote

object. Let’s take a look at that now:

Download gettingstarted/Quote.cs

Line 1 public class Quote
- {
- private static Random randomizer = new Random();
-

5 private static List<Quote> FamousQuotes =
- new List<Quote>
- {
- new Quote{Author="Andy Warhol",
- Contents="In the future everyone " +

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingstarted/HomeController.cs
http://media.pragprog.com/titles/jmasp/code/gettingstarted/Quote.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=25

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 26

10 "will be world-famous for fifteen minutes."},
- new Quote{Author="Louis Hector Berlioz",
- Contents="Time is a great teacher, " +
- "but unfortunately it kills all its pupils."}
- };

15

- public string Contents { get; set; }
- public string Author { get; set; }
-

- public static Quote ChooseRandomQuote()
20 {

- int randomIndex = randomizer.Next(FamousQuotes.Count);
- return FamousQuotes[randomIndex];
- }
- }

This is a basic model that has the properties Contents and Author. Be-

cause we’re interested in having numerous quotes for the site to pro-

duce randomly, we create a static list of FamousQuotes on line 5. Also,

we add a simple randomizing function on line 19, which will return a

random Quote every time we ask for one. This will get our controller

code working.

Finally, we have to code the view. We store views as ASPX files in a

directory named after the controller. In this case, the view we are work-

ing on for the Index() action is in the file Index.aspx. This file is mostly

plain HTML and has a few helper methods from MVC to make it eas-

ier to produce text fields and buttons. We’ll get to more of these in

Chapter 6, Enhancing Views with HTML Helpers and Master Pages, on

page 127. Our first cut at Index.aspx is shown here:

Download gettingstarted/Index.aspx

Line 1 <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
- Inherits="System.Web.Mvc.ViewPage<Quote>" %>
- <%@ Import Namespace="Quoteomatic.Models"%>
-

5 <asp:Content ID="indexTitle"
- ContentPlaceHolderID="TitleContent" runat="server">
- Quote-o-matic
- </asp:Content>
-

10 <asp:Content ID="indexContent"
- ContentPlaceHolderID="MainContent" runat="server">
-

- <h2>Random Quote</h2>
- <%= Html.DisplayFor(m => m) %>

15

- </asp:Content>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingstarted/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=26

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 27

When we are inside a view file, we wrap the C# code with the <%= and %>

syntax. This is the way to run code that renders HTML. This is similar

to traditional ASP.NET, but we use this syntax more frequently in MVC

because we’re never using web controls. All MVC views are rendered

through the view engine. An MVC view engine translates the markup

and syntax in the view files into HTML that is ready for the browser. The

default view engine is called Web Forms, and it uses the syntax that we

used here. It is also the only view engine that we’ll use throughout this

book.

MVC does allow you to change or create your own view engine if for

some reason the Web Forms view engine does not meet your needs.

There are existing alternative view engines, such as NHaml,7 NVelocity,8

and StringTemplate,9 that use different conventions and syntax than

this. If your team finds that the default engine doesn’t meet your needs,

try exploring these existing alternatives.

On line 2, we specify that this view is strongly typed to the Quote class.

This buys us compile-time checking when we use the Html.DisplayFor()

method on line 14. This method looks through all the properties of the

model—in our case Author and Contents—and prints their name and

value. Although this gives us a nice place to start, we probably want to

take this one step further to clean it up:

Download gettingstarted/Index.aspx

Line 1 <h2>Random Quote</h2>
2 <blockquote>
3 " <%= Html.Encode(Model.Contents) %> "
4

5
6 <%= Html.Encode(Model.Author) %>
7
8 </blockquote>

Here we replace the DisplayFor() method with a couple of separate lines

of code to format the quotation properly. We use Html.Encode() on line 3

to display the individual properties one at a time. This method can also

help protect you from cross-site scripting (XSS) attacks by encoding the

properties as text instead of HTML markup (see Section 11.1, Preventing

Cross-Site Scripting, on page 231). We surround the Author’s name with

the HTML span tag. This is so we can shift the Author’s name to the

7. http://code.google.com/p/nhaml/

8. http://sourceforge.net/projects/castleproject/files/NVelocity/1.1/CastleNVelocity-1.1.0.zip/download

9. http://code.google.com/p/string-template-view-engine-mvc/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingstarted/Index.aspx
http://code.google.com/p/nhaml/
http://sourceforge.net/projects/castleproject/files/NVelocity/1.1/CastleNVelocity-1.1.0.zip/download
http://code.google.com/p/string-template-view-engine-mvc/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=27

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 28

Figure 1.4: The final product: Quote-O-Matic

right on line 6 by applying a style attribute to it. Also, we add " to

surround the Content with quotation marks.

The HomeController, the Quote (model), and the /View/Home/Index.aspx

(view) all make up this simple example of MVC. Take a look at the end

result in Figure 1.4. Next, let’s see what is happening under the hood

in MVC with Quote-O-Matic.

Flow of Control

MVC facilitates each web request in a similar way (Figure 1.5, on the

next page). All requests that come into the web application will be

caught by an Internet Server Application Interface (ISAPI) extension

called aspnet_isapi.dll. One drawback of the framework as it stands right

now is that the steps for configuring Internet Information Services (IIS),

the staple Microsoft web server, vary depending on the version you are

running. We’ll cover these and other deployment woes in Chapter 12,

Build and Deployment, on page 247.

After processing in the ISAPI filter, the request moves inside our MVC

application. Requests are processed exactly like they are in traditional

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=28

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 29

Internet Information Services (IIS)
ASP.NET ISAPI Extension

(aspnet_isapi.dll)

Global.asax
Parses the controller, action, and

parameters from the URL.
Creates a new instance of the

appropriate controller.

HomeController
Performs processing and

directs to view

Index.aspx
Renders the HTML

Figure 1.5: The request pipeline for MVC is similar to ASP.NET, except

it translates the URL into a controller’s action. Depending on what the

action does, it will generally render a view.

ASP.NET, through the Global.asax event BeginRequest(). This captures

all the information from the URL, POST information, cookies, and so

on, to allow a special class called the RouteTable to parse and delegate

control to the appropriate controller (the sidebar on the following page).

The router directs to the controller and action described in the URL. The

default pattern to match is /{controller}/{action}/{id}?{querystring}. For

example, a user navigates to http://localhost:2259/Home/Index. This is one

of the key MVC conventions at work. This directs control through the

RouteTable to the HomeController and the action Index(). The action then

does some processing and assigns a model. The controller then decides

which view to render. The convention is to match the name of the action

to the name of the view. HomeController’s action Index() will look in the

directory /View/Home and select the file Index.aspx. The view renders,

and the page is displayed to the user. The user is now free to make

their next request. This flow of control is explained in more detail in

Section 5.1, IControllerFactory: Where Controllers Are Born, on page 98.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=29

MVC IN FIVE MINUTES: BUILDING QUOTE-O-MATIC 30

Defining Custom Routes

MVC has the ability to define custom routes to make nav-
igation, creating permanent links, bookmarking, and search
engine optimization easier. Custom routes are good for declar-
ing action parameters into the URL. You define routes in
Global.asax by adding to the RouteTable through the MapRoute()
method. For example, an action that requires a month, day,
and year would look like this:

Download gettingstarted/Global.asax.cs

routes.MapRoute(
"DateRoute",
"{controller}/{action}/{month}/{day}/{year}/{id}"

);

The first parameter of MapRoute() is a unique name of the route.
The second parameter defines a series of variables that will be
matched to the input URL. {controller} and {action} are matched
to their respective controller and action. The other variables
need to match to the parameters of the action.

In this case, the action’s signature would need to be ActionFor-

DateRoute(int month, int day, int year, int id). There is an optional
third parameter for MapRoute() for defining default parame-
ters. We could extend our date route example so that the
user doesn’t type in a month, day, or year and can default to
today’s date.

We’ll talk about how to test these routes in Section 5.3, Testing
Routes in MVC, on page 109.

Up Next

MVC is an important departure from traditional ASP.NET. With our first

MVC application under our belts, it’s time to learn some NUnit and

how to test-drive code. MVC coupled with a good testing framework is

a match made in heaven.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingstarted/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=30

The test of a first-rate intelligence is the ability to hold two

opposed ideas in the mind at the same time and still retain

the ability to function.

F. Scott Fitzgerald

Chapter 2

Test-Driven Development
Before we delve deeper into the workings of MVC, we’ll touch on the

basics of TDD. Understanding and using this technique helps us lever-

age one of the most important design features of MVC: testability. In

this chapter, we’ll go through a simple example of TDD by applying it to

the age-old “Hello World” example.1 If you already have a good under-

standing of TDD, feel free to skim or skip this chapter entirely.

2.1 TDD Explained

Test-driven development is a method developed by Kent Beck, author of

Extreme Programming Explained: Embrace Change [Bec00]. It is a way

to give you fast feedback about whether a piece of code works. Before

there was TDD, the industry standard was to write unit tests long after

the application code was complete. More commonly, you’d see lots of

applications with no unit tests at all. This leads to many bugs over

time, because there is no way of knowing whether new code has broken

existing features. The difference that Beck introduces is to reverse this

order by starting with a unit test and then writing the implementation.

This approach became known as TDD. The phrase test first is used to

describe the first step in the process of TDD where you start by writing

a unit test that compiles but fails. The test first methodology can help

drive out our code design and can reduce the occurrence of unused

code, or dead code. Getting into the discipline of writing the test first

reduces the chance of forgetting to write the test at all. It is also the

approach we take for the rest of this book.

1. For those readers who would like to dive deeper into TDD with Microsoft .NET, I highly

recommend Pragmatic Unit Testing in C# with NUnit [HT04].

TDD EXPLAINED 32

Writing tests speeds up your development. That might seem counterin-

tuitive at first. Adding a whole other set of test code to maintain appears

to be more work, but it turns out the opposite is true. By writing tests

for all the production code, you are building confidence that things are

working as they’re supposed to work. You also get quick feedback on

the design of your objects, because the tests act as consumers of the

code. Remember that each test is small—as short as one or two lines

of code. Getting a test to compile and then fail quickly is the key to

practicing TDD.

When all the tests are passing, you don’t need to spend as much time

debugging. Also, it means less manual testing to make sure you haven’t

broken an old page while changing a seemingly unrelated function. If

tests are passing, you can confidently move forward to the next fea-

ture. The three different approaches to unit testing are illustrated in

Figure 2.1, on the following page.2

Let’s use an analogy to illustrate the TDD cycle. Say you read an arti-

cle on F#, a functional programming language that runs on the .NET

Common Language Runtime (CLR), and it piqued your interest. You’d

like to know more about F# but don’t know where to start. You could

buy a book on it, attend a conference that has talks on F#, or even

consider going to a class on it. Although these are good ideas, most

people neglect an important step: setting a goal. The Harvard School of

Business conducted a study and found that the biggest differentiator

between success and failure is strongly influenced by people defining a

well-formed goal.3 Do you want to be able to code in F#? Understand

when to use a functional language? Be able to know how F# changes

your application’s architecture? Without a goal, it’s hard to measure

when you’ve been successful. A well-formed goal is something that you

can define success criteria for. Suppose you said, “I want to be able

to program in F#. I’ll learn it by building a sample application.” This

defines the goal and the success criteria. It will be easy to tell when you

have reached your goal.

Setting and achieving goals is just like TDD:

1. Write a test—define a goal.

2. Make it compile—understand the criteria for success.

2. This diagram was originally designed by Paulo Caroli (http://www.caroli.org/) and

adapted for this book.
3. http://www.lifemastering.com/en/harvard_school.html

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://www.caroli.org/
http://www.lifemastering.com/en/harvard_school.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=32
http://www.allitebooks.org

TDD EXPLAINED 33

Functional
Code

Bug Fixes

time

No Unit Tests

less time to code,
more bugs over
lifetime of code

Functional Code
Bug
Fixes

time

Test Last

less time fixing
bugs, but still the
same amount of
time overall

Unit Tests

Functional Code
Bug
Fixes

time

Test First

most efficient,
due to less time
debugging

Unit Tests

Figure 2.1: Testing first is the most efficient way to develop applica-

tions. Code that is written inside a test is called test code, while code

that is written in our application is called functional code.

3. Run the test and make sure it fails—observe that the goal has not

been met.

4. Write the functional code—try to achieve the goal.

5. Run the test again and watch it pass—observe that the goal has

now been achieved.

The TDD cycle is illustrated in Figure 2.2, on the next page. First we

write a test and get it to compile. Next, we run that test and watch it

fail. The third step is to get that test to pass by implementing some func-

tional code. The fourth step in the cycle is to refactor: to go back and

improve the readability of the existing functional code without changing

the existing functionality. One of the only ways to ensure you haven’t

changed the functionality is to have a complete unit test suite. If the

process of changing the code changes the functionality, then it’s not

refactoring—that’s what we call adding new or unplanned features!

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=33

TDD EXPLAINED 34

Step 2
Test Fails

Step 3
Test Passes

Step 1
Write a Test

Step 4
Refactor

Figure 2.2: Each repetition of the TDD cycle takes from five to ten min-

utes.

After you perform any refactoring, you can rerun your test to make

sure it’s still passing and then start the process all over again.

One principle of refactoring is to follow the Don’t Repeat Yourself (DRY)

principle. DRY (coined by Dave Thomas and Andy Hunt in The Prag-

matic Programmer [HT00]) reminds us to find duplicate code or sim-

pler ways of expressing the intent of the code. We’ll cover refactoring

throughout this book, but our first exposure will be in Section 5.2,

Testing Authorization, on page 105. Applying DRY helps us write more

readable and maintainable code, but without a full suite of passing unit

tests, refactoring is highly dangerous.

Before we can see TDD in action, we’re going to need to install NUnit,

an open source unit testing framework for .NET.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=34

TDD EXPLAINED 35

Joe Asks. . .

How Do I Justify TDD to My Project Manager?

Microsoft recently published a study quantifying the positive
effects of using TDD.∗ The study shows that bugs and defects
are reduced from 40 to 90 percent. If your project manager
cares about a low bug count and wants empirical data, shar-
ing this study with the person could help. The other interesting
fact about the study is that Microsoft found that development
time increased between 15 and 35 percent. Although this might
seem like a lot, think about the cost of cycling back and fix-
ing bugs, not to mention frustrating your customer. Remember,
every time customers find a defect, it affects their overall confi-
dence in your application.

The other major selling point for TDD from a management
perspective is it naturally increases your software’s flexibility. A
codebase that has used TDD has a more decoupled architec-
ture and a comprehensive automated test suite. For these rea-
sons, adding new features is easier.

Finally, since management is often concerned with identifying
and mitigating risks, TDD can be a godsend. Since TDD gener-
ally produces higher-quality code with fewer defects, it follows
that it also reduces project risk.

∗. http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf

Installing NUnit

NUnit is one of the most popular testing frameworks used in .NET.

It uses C# attributes to demarcate unit tests and a variety of simple

assertion commands to make your tests fail and then pass.

NUnit is not the only test framework you can use for MVC. Visual Studio

Unit Testing Framework, mbUnit,4 and xUnit5 are all acceptable alter-

natives. This book uses NUnit syntax, but translating the tests into a

different .NET testing framework is fairly straightforward.

4. mbUnit is unit testing framework, available at http://www.mbunit.com/.
5. xUnit is an alternative to NUnit written by one of the original authors of NUnit, Jim

Newkirk, available at http://xunit.codeplex.com/.

Report erratum

this copy is (P1.0 printing, June 2010)

http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf
http://www.mbunit.com/
http://xunit.codeplex.com/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=35

TEST -DRIVING “HELLO WORLD” 36

NUnit is downloadable either as a ZIP or as a Microsoft Installer (MSI)

file.6 The MSI installs NUnit into the Global Assembly Cache (GAC),

allowing you to reference it more easily when creating a new unit test

project in Visual Studio. However, the ZIP is the recommended down-

load because for each project you want everyone to use same version

of NUnit. So, create a Lib directory (an abbreviation for Library) in your

solution to store important libraries like nunit.framework.dll and check it

into source control management (SCM).

Throughout this book we’ll reference the Lib folder as a way to store .dll

libraries that our solution uses. As part of the completed solution in

Parts II and III, you’ll be able to see how the Lib folder stores files like

nunit.framework.dll. You can find the final solution in the GetOrganizedFi-

nal folder when you unzip it.

NUnit 2.5 has some nice additions. It includes a copy of PNUnit, which

allows us to run tests on remote machines. This will let us use NUnit as

part of performance testing. (There is an interesting video demonstra-

tion of PNUnit in action across six different machines simultaneously

on its author’s website7)

That covers the concept. Let’s now work through a simple TDD example.

2.2 Test-Driving “Hello World”

TDD is a simple practice that can be applied to complicated systems.

TDD starts with a test that makes an assertion about what the func-

tional code is supposed to do. A well-written test makes you ask your-

self, What do I need to do to get this test to pass? To generalize, the

answer is to create the simplest implementation to satisfy the condition

of the test—no more, no less. Let’s start with an example so you can

see this in practice.

An NUnit test lives inside a test fixture class, and the framework allows

you to mark a class as a fixture with the attribute [TestFixture]. The test

itself is a regular method with return type void but marked with the

[Test] attribute.

6. You can grab the latest copy of it from http://nunit.org.
7. http://www.codicesoftware.com/opdownloads2/oppnunit.aspx.

Report erratum

this copy is (P1.0 printing, June 2010)

http://nunit.org
http://www.codicesoftware.com/opdownloads2/oppnunit.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=36

TEST -DRIVING “HELLO WORLD” 37

The code we’ll work on first is the classic “Hello World” example with

a small twist. Instead of outputting the information to the screen, we’ll

have a class’s method return the magic words. We’ll break this into

several steps.

Writing a Test

First, we’ll need to create a Visual Studio Class Library project called

HelloWorld. Normally, we’ll separate our tests and functional code, but

for this first example let’s just put both in the same solution. Second,

we’ll create our first unit test fixture:

Download tdd/WelcomerTest.cs

using NUnit.Framework;

[TestFixture]

public class WelcomerTest

{

}

Here we’ve created a new class file called WelcomerTest.cs that references

nunit.framework.dll. We then added the attribute [TestFixture] to the class.

Test fixtures hold many tests, and it’s important to note that since we’ll

be testing the class Welcomer, we name the file WelcomerTest.cs. Now we

need to add our first test:

Download tdd/WelcomerTest.cs

[TestFixture]

public class WelcomerTest

{

[Test]

public void Should_Say_Hello_World()

{

// your testing happens here

}

}

Here we apply the [Test] attribute to our test method. Generally, the

practice is to start the test with “Should...” because it forces us to think

about the behavior of the class we are testing. In this example, it’s Wel-

comer Should Say Hello World. Notice how we break the .NET conven-

tion of using capital letters for methods by separating each word with

an underscore. We do this to make the test easier to read.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/tdd/WelcomerTest.cs
http://media.pragprog.com/titles/jmasp/code/tdd/WelcomerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=37

TEST -DRIVING “HELLO WORLD” 38

Up next we’ll add a condition for testing:

Download tdd/WelcomerTest.cs

using NUnit.Framework;

[TestFixture]

public class WelcomerTest

{

[Test]

public void Should_Say_Hello_World()

{

Assert.AreEqual("Hello World", Welcomer.SayHello());

}

}

What’s needed now is some work on an assertion. NUnit has many

different types of assertions that we’ll use throughout this book. In this

case, we use the AreEqual() method. The left side argument is always

what we expect, while the right side is the actual output. Alternatively,

you can use the newer syntax for writing assertions using the That()

method. The same assertion reads as follows:

Assert.That("Hello World", Is.EqualTo(new Welcomer().SayHello()))

This newer style of assertion can be more natural to read as you go from

left to right. Feel free to use the style you are most comfortable with;

however, for the rest of this book, we’ll use the older Assert.AreEqual()

style because it’s less verbose.

Either way we code our assertion, the test won’t compile yet. This is

because we have no Welcome class and no static method called Say-

Hello(). Our next step is to add that code:

Download tdd/Welcomer.cs

public class Welcomer

{

public static string SayHello()

{

return string.Empty;

}

}

Our code now compiles by adding the method that returns an empty

string. With the code compiling, we have the first step of the cycle done—

we’ve written our first test. Now we want to make sure that when we

execute the test, it will fail because we have yet to write the functional

code to make it pass.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/tdd/WelcomerTest.cs
http://media.pragprog.com/titles/jmasp/code/tdd/Welcomer.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=38

TEST -DRIVING “HELLO WORLD” 39

Figure 2.3: The ReSharper unit test runner shows which tests are fail-

ing. On your screen you’ll see this progress bar appear in red.

Watching the Test Fail

If you are using Visual Studio 2008 Professional, then using a plug-in

to run tests is your best option. I highly recommend using ReSharper

by JetBrains. In Section 1.2, Plugging In ReSharper, on page 23, we

reviewed its features and key advantages. This tool helps us in many

ways; it also has its own NUnit test runner. If you have ReSharper

installed, you can see that the test is now failing (Figure 2.3). Otherwise,

you can use TestDriven.Net: a free plug-in that lets you run and debug

unit tests.8 Alternatively, nunit-gui.exe comes packaged with NUnit and

is another visual way to run your tests. If you’re comfortable with the

command line, you can also run tests using the nunit-console.exe utility

like so:

C:\Program Files\NUnit 2.5.1\bin\net-2.0>

nunit-console "C:\Projects\HelloWorldTDD\HelloWorldTDD.csproj"

The previous session assumes that you’ve created the HelloWorld solu-

tion in the directory Projects\HelloWorldTDD. It also assumes you have

installed NUnit with an MSI. The command-line utility nunit-console.exe

can run directly against Visual Studio project files, in this case Hel-

loWorldTDD.csproj. Running tests from the command line also comes in

handy when we’re building and deploying our application. We’ll talk

about this in Section 12.2, Adding Unit Tests to the Build, on page 254.

As expected, the test fails, and the unit test runner shows the test is

failing. This completes the second step of the TDD cycle.

8. http://www.testdriven.net/

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.testdriven.net/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=39

TEST -DRIVING “HELLO WORLD” 40

Figure 2.4: A success message indicates that all the tests are passing.

On a color screen you’ll see a green bar.

Getting the Test to Pass

Now we’re going to switch over to the functional code to make this test

pass:

Download tdd/Welcomer.cs

public class Welcomer

{

public static string SayHello()

{

return "Hello World";

}

}

Hurray, the test passes (Figure 2.4)! We had to change the string that

SayHello() returns to be Hello World. We could refactor our code now to

see whether we can clean it up or reduce duplication, but it’s looking

good the way it is. Now we can start the whole cycle again and write

another test for our next requirement.

TDD is more than just a way of testing your code. It is a way to drive

your design through small incremental steps. Some developers say that

TDD stands for “test-driven design,” because writing tests first strongly

influences your application architecture to be more loosely coupled and

modular. This approach to design produces more flexibility and easier-

to-understand code.

Mastering TDD takes plenty of practice, and in this book you’ll get a lot

of it. However, if you would like to learn even more about TDD, I highly

recommend Kent Beck’s book Test-Driven Development: By Example

[Bec02]. Although the book uses Java and Python to work through

examples, the principles apply to C# and ASP.NET MVC.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/tdd/Welcomer.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=40

TEST -DRIVING “HELLO WORLD” 41

Up Next

With the basics of TDD in hand, it’s time to get started using ASP.NET

MVC. In the next chapter, we’ll learn how to create, read, update, and

delete a model in MVC.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=41

Part II

Building an Application

www.allitebooks.com

http://www.allitebooks.org

Simplicity is the ultimate sophistication.

Leonardo da Vinci

Chapter 3

Getting Organized with MVC
Now that we understand TDD and the basics of MVC, we can start

implementing the sample time management application we’ll create

throughout Parts II and III of the book: GetOrganized. This applica-

tion will improve the speed and priority of how we get things done—it

will help us get organized.

The first few chapters of Part II focus on how to use and test MVC

controllers; the following chapters work through how to make the site

look better using views and Ajax.

This chapter starts with an overview of what we’ll be doing with GetOr-

ganized in the upcoming chapters, and then we’ll dive into test-driving

MVC’s create, read, update, and delete (CRUD) operations to create a

simple to-do list.

3.1 Time Management with GetOrganized

GetOrganized is a web-based time management system inspired by

ThinkingRock, an open source Java Swing application developed by

Jeremy Moore. It helps you organize your thoughts and set up action

items.1 Both GetOrganized and ThinkingRock draw their inspiration

from time management guru David Allen’s book Getting Things Done

[All02].

ThinkingRock’s main screen illustrates the three steps of a Getting

Things Done system (Figure 3.1, on the next page).

1. http://www.trgtd.com.au/

http://www.trgtd.com.au/

TIME MANAGEMENT WITH GETORGANIZED 44

Figure 3.1: ThinkingRock helps you manage time with a three-step pro-

cess: collect thoughts, process them, and implement actions.

1. Write down all the thoughts that are on your mind.

2. Process those thoughts, by either throwing them away or turning

them into an action item.

3. Prioritize and complete the action items.

For the system to yield results, you commit a time every day and input

your thoughts. These can be random and should have no concept of

size, such as “Complete proposal for prospective client” or “Learn

jQuery.” Next, you categorize these thoughts into actionable or non-

actionable items. Finally, you work through those action items in the

form of a to-do list.

Let’s get started by adding support for building a simple to-do list so

that we can see all the things we need to work on.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=44

READING DATA 45

3.2 Reading Data

Often the hardest thing to do when starting with TDD is to write the

first test. This is especially true when a language or framework is new

to us; the old pattern of writing the functional code first slips back, and

before we know it, we’re writing code with zero test coverage. TDD takes

discipline, but we end up learning more and building greater confidence

as we master it.

In the case of ASP.NET MVC, a good place to start is to test-drive the

controller, because it’s where so much of the application logic lives.

Alternatively, you can start by test-driving your model, which we will

do in Section 4.1, Implementing Equals for Topic, on page 73. In the

end, you’ll need to test both models and controllers independently.

Before we can start testing our controller, we need to create the MVC

project GetOrganized.

MVC Project Structure

We installed MVC in Section 1.2, Installing MVC, on page 21, and this

step is required before we can create a new MVC project. Once installed,

we’ll be able to create the solution GetOrganized with the MVC project

name Web.

Although the project name Web is generic, you’ll want to keep the

project names simple to save screen real estate in the Visual Studio

Solution Explorer. However, you’ll want to modify the project properties

to add a custom namespace by right-clicking the project properties.

Then change the default namespace to GetOrganized.Web.

This is the first time we’re looking at the project structure of an MVC

project, so let’s take a quick tour (Figure 3.2, on the following page).

By default Visual Studio generates an AccountController and HomeCon-

troller. You can remove and replace these with your own code, but they

give us a starting point for most web applications. The AccountController

deals with user login, and the HomeController serves up the default MVC

starter page. We’ll touch more on the AccountController in Section 5.2,

Logging In, on page 100.

Here’s the rest of the structure:

• Content holds all images, CSS, and other static files.

• Controllers holds all your controller classes.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=45

READING DATA 46

Images, CSS
and other static

files

JavaScript
(jQuery and

Microsoft Ajax)

URL Routing
and

Configuration

Figure 3.2: The MVC project structure has a well-defined location for

all files.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=46

READING DATA 47

Figure 3.3: Adding a reference to NUnit is required in order to unit test.

• Models holds all your model classes.

• Views holds a subdirectory for each controller you create as well as

a Shared folder for common components.

• Scripts has all a copy of jQuery and Microsoft Ajax support or any

other JavaScript you create.

• Global.asax includes the routing and startup information for your

application.

Our First Test

Let’s get on with the business of writing our first controller test.

When creating tests, we generally create a new project, which produces

a separate .NET assembly. We place our tests in that project so that test

code never goes into production. We’ll follow this convention by creating

a project of the type Class Library, and we’ll name it Test.Unit. Once it’s

created, make sure to add a reference to nunit.framework.dll, as shown in

Figure 3.3.

This controller “should display a list of some to-do items.” Hey, that

sounds like a pretty good name for a test!

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=47

READING DATA 48

ReSharper Tip: Class Navigation

By naming all our test classes with the name Test at the end,
rather than the start, it makes it easier to find the associated
functional code with the test code. ReSharper has the code
navigation shortcut Ctrl+N that helps us find classes in the solu-
tion. When we type in TodoController, it will bring up the actual
controller as well as the test, TodoControllerTest. ReSharper’s
code navigation allows an even shorter form by just typing in
TC to bring us the same result.

To start, we need to add a test class, TodoControllerTest:

Download gettingorganized/TodoControllerTest.cs

using NUnit.Framework;

namespace Test.Unit

{

[TestFixture]

public class TodoControllerTest

{

[Test]

public void Should_Display_A_List_Of_Todo_Items()

{

}

}

}

We have our test skeleton, similar to what we did in Section 2.2, Test-

Driving “Hello World”, on page 36. Now we’ll fill it with an assertion.

The controller should display to-dos, so our assertion needs to verify

that to-do items load. However, this will generate a couple of compiler

errors, since neither a Todo class nor a TodoController exists. Let’s work

on creating these classes first before we return to this test, starting by

creating a Todo model.

A model is a normal class. There are no special templates or wizards

like there are for views and controllers. To create a new model, right-

click the Solution Explorer, choose Add New Item, and select the Class

template.

An alternative way to solve our compiler problem would be to generate

the classes with ReSharper. While our mouse is over the compiler error

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=48

READING DATA 49

ReSharper Tip: Creating New Classes

While your mouse is over the Solution Explorer, hit Ctrl+Alt+Ins ,
and you’ll be able to create and name a new class.

on Todo on line 5, we can use the ReSharper shortcut Alt+Enter to

generate our missing Todo class (see the sidebar on page 57). This also

works for controllers, but we don’t get the generated template that MVC

gives us.

For this new model, start by adding two properties, Title and Completed,

and then add a default list of things to be done. This gives us a primitive

way of saving our list. Static lists are never a good way to store informa-

tion in real-world applications. We’ll eventually replace the static lists

in Chapter 8, Persisting Your Models, on page 172 when we introduce

NHibernate.

Testing models is critical because they’ll eventually hold important logic

about how your system behaves. Since we’re currently focusing on con-

troller testing, let’s deal with model testing a little later.

Download gettingorganized/Todo.cs

Line 1 namespace GetOrganized.Models
- {
- public class Todo
- {
5 public static List<Todo> ThingsToBeDone = new List<Todo>
- {
- new Todo {Title = "Get Milk", Completed = false},
- new Todo {Title = "Bring Home Bacon", Completed = false}
- };

10

- public bool Completed { get; set; }
- public string Title { get; set; }
- }
- }

Our first model has a List<Todo> and a couple of auto properties. Auto

setters are a new C# 3.0 feature to reduce the amount of code required

to have simple getters and setters. Instead of writing out public bool

Completed {get {return completed;} } and then having to create the private

boolean field completed, the auto setter property is shorter, as shown on

line 11.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/Todo.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=49

READING DATA 50

Figure 3.4: There will be classes that don’t exist as you write your tests.

This is a normal part of TDD.

With the model in place, we’ve removed one of the compiler errors. How-

ever, we’re still getting another one because there is no such thing as

TodoController (Figure 3.4). Not to worry, this is a regular part of practic-

ing TDD. You’ll find yourself regularly inventing new classes to satisfy

what you’re testing. Eventually, you’ll get to the point of a compiling

and failing test.

To remove the compiler error, we’ll create the TodoController. Creating a

controller involves right-clicking the Controller folder, selecting Add Con-

troller, and inputting the name of the controller. Make sure to check the

“Add action methods for Create, Update, Delete, and Details Scenarios”

box, because we’ll use these stubs later. The code generated for the

TodoController looks like this:

Download gettingorganized/TodoController.cs

Line 1 namespace GetOrganized.Controllers
- {
- public class TodoController : Controller
- {
5 //
- // GET: /Todo/
-

- public ActionResult Index()
- {

10 return View();
- }
- }
- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=50

READING DATA 51

Figure 3.5: Should_Display_A_List_of_Todo_Items() is failing because the

Index() action isn’t meeting our expectations.

The helpful code comment on line 6 tells us that when we type in the

URL http://localhost/Todo, we get the method that we’re after. Note that

Index() has a default route. The URL http://localhost/Todo/Index is equiv-

alent to http://localhost/Todo, because this is specified in Global.asax.cs.

Notice that the return value on the controller methods is an ActionRe-

sult object. Views use these objects for rendering purposes, but most

important, they contain the model that we will attach to get this test

to pass. ActionResults are covered in detail in Section 5.1, Directing to

Different Content Types with ActionResults, on page 96.

To complete our assert statement, we’ll need to compare apples to

apples, or in this case to lists of Todo items. To achieve this, we need to

cast ActionResult as a ViewResult object. The ViewResult class is a subtype

of ActionResult that has a property called ViewData; this property is the

key to passing the model between the controller and the view.

ViewData is a collection of objects. It has a special property called Model,

which is where the model is set and accessed in the controller. We’re

expecting our controller to set our ViewData.Model to be our Todo list.

For the code to compile, we’ll need to add System.Web.Mvc to our refer-

ences in the Test.Unit project. The code looks like this:

Download gettingorganized/TodoControllerTest.cs

Line 1 [Test]
2 public void Should_Display_A_List_Of_Todo_Items()
3 {
4 var viewResult = (ViewResult) new TodoController().Index() ;
5 Assert.AreEqual(Todo.ThingsToBeDone, viewResult.ViewData.Model);
6 }

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/Todo
http://localhost/Todo/Index
http://localhost/Todo
http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=51

READING DATA 52

Figure 3.6: Adding the model to the controller makes our test pass.

Our code is compiling, and it’s time to run the test and see whether it

fails. Our comparison is failing when we run the test (Figure 3.5, on the

preceding page). This means we’ve reached step 2 of the TDD cycle—

“Watch the test fail” (Figure 2.2, on page 34). To reach step 3—“Get the

test to pass”—we’ll need to implement the Index() action to meet our

assertion.

Currently our Index() action simply returns a ViewResult and therefore

will fail. Let’s wire up the model and get the test to pass (Figure 3.6):

Download gettingorganized/TodoController.cs

public class TodoController : Controller

{

//

// GET: /Todo/

public ActionResult Index()

{

ViewData.Model = Todo.ThingsToBeDone;

return View();

}

}

Adding a View

Excellent, we’ve got our first passing test. But we still don’t have any-

thing the user can see. We need to add a view to complete the cycle.

Adding a view is similar to the process of adding a controller. Sim-

ply right-click anywhere in the controller’s action code, and select Add

View (Figure 3.7, on page 54). We’ll create a strongly typed view with

the template called List to generate the HTML that lists the List<Todo>

for us. The bottom of the dialog box is where we can specify the use of

a master page, which is a layout template for the whole site (we’ll cover

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=52
http://www.allitebooks.org

READING DATA 53

master pages in Chapter 6, Enhancing Views with HTML Helpers and

Master Pages, on page 127).

Here is a snippet of the code the view wizard generates:

Download gettingorganized/Index.aspx

<table>

<tr>

<th></th>

<th>

Completed

</th>

<th>

Title

</th>

</tr>

<% foreach (var item in Model) { %>

<tr>

<td>

<%= Html.ActionLink("Edit", "Edit", new { /* id=item.PrimaryKey */ }) %> |

<%= Html.ActionLink("Details", "Details", new { /* id=item.PrimaryKey */ })%> |

<%= Html.ActionLink("Delete", "Delete", new { /* id=item.PrimaryKey */ })%>

</td>

<td>

<%= Html.Encode(item.Completed) %>

</td>

<td>

<%= Html.Encode(item.Title) %>

</td>

</tr>

<% } %>

</table>

The view here simply iterates over the model, in this case a List<Todo>,

and renders its contents. Note that MVC builds up all the correct head-

ings and properties for you, but as of this release, it never automatically

determines your ID key. In one of the following examples, we’ll need to

tweak the commented-out code to get it to work. For now, however, this

works for our purposes of displaying the Todo items. If you are using

Visual Studio 2010 and .NET 4.0, there is a different syntax for enclos-

ing the HTML helpers that you’ll see in the view:

<%= //.NET 3.5 syntax %>

<%: //.NET 4.0 syntax %>

This new syntax available to .NET 4.0 applications will automatically

encode the contents as HTML, which will protect your site from cross-

site scripting. We’ll talk more about this in Section 11.1, Preventing

Cross-Site Scripting, on page 231.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=53

READING DATA 54

Figure 3.7: The Add View Wizard allows you to choose the model and

view template you want to generate.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=54

READING DATA 55

Zero Unit Testing for the View

We don’t have a unit test for the view. This is because we’d need to

assert against the HTML Document Object Model (DOM), which makes

unit testing difficult. Generally, testing the view requires a browser or

headless browser such as Celerity.2 This is a much bigger investment of

effort to unit test a single view, so we leave the UI elements to be tested

by other frameworks such as Watir (or Watin in .NET) and Selenium

RC.3

These are valuable tools and are a key component to application devel-

opment best practices, but they are not required to test-drive code.

Keep this in mind when customizing views and adding logic to them,

because your unit tests will never cover them.

The design goal of our view is to be dumb. If we start seeing a large

number of if/else statements in them, it’s time to extract an HTML helper

class that we can test-drive more easily. We can also consider moving

the logic to the controller if it has more to do with interaction than

display (we’ll cover HTML helpers in depth in Section 6.2, Colorizing a

Drop-Down List, on page 135, and we’ll show an example of an open

source grid HTML helper in Section 6.5, Replacing Web Controls with

Advanced HTML Helpers, on page 146). If you really want to enforce the

view to have minimal logic, consider using the alternative StringTem-

plate view engine.4

Let’s look at the fruit of our labors by hitting F5 or by clicking the

Play icon (Figure 3.8, on the following page). By default, the first page

you’ll see is the HomeController’s Index() action. To see the TodoController’s

action, you’ll need to type in the URL http://localhost:4586/Todo. The port

number 4586 will vary based on your Visual Studio settings, so replace

that port number with whichever appears for you. The browser will now

show you a working list of Todos.

Next up, we’ll see how to add a new Todo.

2. Celerity is a Ruby-based browser that doesn’t render graphically. Find out more at

http://celerity.rubyforge.org/.
3. Watir, Watin, and Selenium RC are all examples of UI/acceptance-

level testing frameworks. Watir is available at http://wtr.rubyforge.org/, Watin

is downloadable at http://watin.sourceforge.net/, and Selenium RC is at

http://seleniumhq.org/projects/remote-control/.
4. http://code.google.com/p/string-template-view-engine-mvc/

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost:4586/Todo
http://celerity.rubyforge.org/
http://wtr.rubyforge.org/
http://watin.sourceforge.net/
http://seleniumhq.org/projects/remote-control/
http://code.google.com/p/string-template-view-engine-mvc/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=55

CREATING A TO-DO 56

Figure 3.8: To-do items are now showing in a list on the Index.aspx page.

3.3 Creating a To-Do

We have a couple of to-dos on our list, but we’re going to need to be

able to add to that list if it’s to be of any use. Unlike listing models,

creation is a two-step process. The first is an HTTP GET request to load

the create screen. The second is an HTTP POST to send the filled-out

model back to be saved.

Taking the user to the create screen is the first step. We need to write

a test to assert that when the Create() action is requested, it loads the

Create.aspx view:

Download gettingorganized/TodoControllerTest.cs

Line 1 [Test]
2 public void Should_Load_Create_View()
3 {
4 var viewResult = (ViewResult) new TodoController().Create();
5

6 Assert.AreEqual(string.Empty, viewResult.ViewName);
7 }

Since this is a ViewResult and there is no model, all we want to check

is that the action is invoking the proper view. On line 6, we assert

the view’s name is properly being redirected to View/Todo/Create.aspx.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=56

CREATING A TO-DO 57

ReSharper Tip: The Magic Keys

If you’re going to learn only one ReSharper shortcut, Alt+Enter
is the one to know. Alt+Enter does more than just fix compiler
errors. Affectionately known as the magic keys, this shortcut
improves productivity. When you use the shortcut, ReSharper
will give you a drop-down list of options of common opera-
tions you might be thinking about doing, such as changing a
method from public to private or generating a null check on
a variable. You can also use it to prompt you for code con-
ventions, such as replacing your local typed variable definitions
with the var keyword.

Under normal circumstances, this kind of test is not helping all that

much, since this is testing an MVC convention. The strange thing about

the convention is that MVC’s viewResult.ViewName property shows an

empty string when the convention is followed, not the actual path to

the View/Todo/Create.aspx view. If we were directing to a nonstandard

view like CreateTodoWithOtherBits.aspx, then the test makes a lot more

sense. We’re testing it here for completeness and to show how it’s done.

Now let’s make it pass:

Download gettingorganized/TodoController.cs

// GET: /Todo/Create

public ActionResult Create()

{

return View();

}

There is little to this implementation since we’ve autogenerated the

method stubs using the MVC template wizard. By default it will pass

our test. This action simply directs the result to the Create.aspx view.

It does this by convention, sending it the view with the same name as

that of the controller and action. If we were sending it to our fictitious

CreateTodoWithOtherBits.aspx, then we could do so by calling

View("CreateTodoWithOtherBits").

Moving onto step 2, let’s write a test to assert that we can add to the

list. Remember: our first task is to get something compiling and failing.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=57

CREATING A TO-DO 58

Download gettingorganized/TodoControllerTest.cs

Line 1 [SetUp]
- public void setup()
- {
- Todo.ThingsToBeDone = new List<Todo>
5 {
- new Todo {Title = "Get Milk"},
- new Todo {Title = "Bring Home Bacon"}
- };
- }

10

- [Test]
- public void Should_Add_Todo_Item()
- {
- var todo = new Todo {

15 Title = "Learn more about ASP.NET MVC Controllers" };
-

- var redirectToRouteResult =
- (RedirectToRouteResult) new TodoController().Create(todo);
-

20 Assert.Contains(todo, Todo.ThingsToBeDone);
- Assert.AreEqual("Index",
- redirectToRouteResult.RouteValues["action"]);
- }

Here we create a new Todo model and invoke the Create() method on

the controller. Line 22 of the test asserts that the collection ThingsToDo

now contains this new item. The compiler gives us an error saying that

the signature Create(Todo item) does not exist. Let’s go ahead and create

one. We’ll also need to add System.Web.Routing to our project references

to get this code to compile.

We’re currently using a static List of Todo items (we won’t learn about

NHibernate until Chapter 8, Persisting Your Models, on page 172). This

means we’ll have to introduce a setup fixture with the [SetUp] attribute

on line 1. This attribute tells NUnit to run a method before every [Test].

We want this setup to run before every test because it will reset the

static list to its original state.

Similarly, another attribute called [TearDown] runs after every [Test]. Both

[SetUp] and [TearDown] help us make sure our unit tests are free of side

effects from the previous test, as in the case of creating, updating, or

deleting. We assert that the action redirect occurs by casting the Action-

Result as a RedirectToRouteResult and checking the contents of its collec-

tion on line 22.

The object RedirectToRouteResult has a collection of values for how to

route the request. Remember, the format that MVC consumes is http://

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=58
http://localhost/controller/action

CREATING A TO-DO 59

localhost/controller/action. The RouteValues collection contains all that infor-

mation in a key-value relationship. RouteValues["action"] gives us the

{action} segment of the URL. The MVC framework uses this information

to redirect the browser (this will be explained in more detail in Sec-

tion 5.1, IControllerFactory: Where Controllers Are Born, on page 98).

We now have a failing test, and now we need to make it compile. We’ll

do this by adding a new action called Create() in the TodoController:

Download gettingorganized/TodoController.cs

Line 1 // POST: /Todo/Create
-

- [HttpPost]
- public ActionResult Create(Todo todo)
5 {
- try

- {
- // TODO: Add insert logic here
-

10 return RedirectToAction("Index");
- }
- catch

- {
- return View();

15 }
- }

We’ve copied the implementation from the signature Create(FormCol-

lection collection) into our Todo signature. As of this release, MVC gener-

ates controllers by default with the FormCollection parameter for retriev-

ing model objects. Instead, we’ll employ model binding, a cool MVC fea-

ture that uses the model themselves as method parameters. You’ll see

an example of the FormCollection signature later in Section 4.2, Using

the FormCollection and TempData Objects, on page 77.

For the application to work, we’ll need to delete the FormCollection sig-

nature of the Create() method. Otherwise, MVC will complain about an

ambiguous reference. You’ll also notice that MVC generates a try and

catch block that swallows all exceptions. Do not do this with your pro-

duction code, because it makes it hard to figure out what went wrong

when exceptions are thrown (see the Joe Asks. . . on the following page).

Notice that we’ve added a special attribute [HttpPost] to line 3. This is an

action filter, covered in Section 5.1, Extending Actions with Action Fil-

ters, on page 94. This action filter tells the MVC framework to allow only

HTTP POST methods (we’ll talk more about the other HTTP methods in

Chapter 10, Building RESTful Web Services, on page 210). This allevi-

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/controller/action
http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=59

CREATING A TO-DO 60

Joe Asks. . .

Why Is Swallowing Exceptions Bad?

If you throw any error such as a database error, having a
catchall try and catch block will hide that error and proceed
as if everything is OK. The generated stubs for Create, Edit, and
Delete all render a view when any error is thrown. This is bad
because in all of those actions it will try to render the Index.aspx

page when the models are probably not loaded properly. This
will translate in hard-to-understand stack traces, like NullPoint-

erException somewhere on the view, when the error originated
much earlier.

try
{

// TODO: Add insert logic here
return RedirectToAction("Index");

}
catch
{

return View();
}

Catching exceptions is a good thing; just don’t swallow all
exceptions. It’s a best practice to accompany all catch blocks
with a typed exception like this:

catch(SomeException e)
{

//do something with exception
}

Later in Section 6.4, Adding Validations Using ModelStateDic-
tionary , on page 143 you’ll learn how to use an if and else
instead of a try and catch block.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=60

CREATING A TO-DO 61

ates ambiguity, because there are several Create() method signatures.

The signature without any parameters—in this case the Create()—is the

action that maps to the first time the creation page loads.

The test compiles but fails. This completes the second step of the TDD

cycle: write a failing test.

Getting the test to pass is as simple as adding the variable todo to the

collection in the controller:

Download gettingorganized/TodoController.cs

Line 1 // POST: /Todo/Create
-

- [HttpPost]
- public ActionResult Create(Todo todo)
5 {
- try

- {
- Todo.ThingsToBeDone.Add(todo);
- return RedirectToAction("Index");

10 }
- catch

- {
- return View();
- }

15 }

Here we simply add the parameter to the Todo.ThingsToBeDone on line 8.

You will see the positive effect the preceding code has in the Unit Test

Runner output. The test now passes.

This looks like a good time to check out our handiwork. However, we’ve

yet to generate the view to see it. Let’s right-click the controller code

and select Add View. This time we’ll create a view with the type Todo

using the Create template. This template generates the following code:

Download gettingorganized/Create.aspx

Line 1 <h2>Create</h2>
-

- <%= Html.ValidationSummary("Create was unsuccessful.
- Please correct the errors and try again") %>
5

- <% using (Html.BeginForm()) {%>
- <fieldset>
- <legend>Fields</legend>
- <div class="editor-label">

10 <%= Html.LabelFor(model => model.Completed) %>
- </div>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/gettingorganized/Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=61

DELETING: CREATING AN ACTION WITHOUT A VIEW 62

- <div class="editor-field">
- <%= Html.TextBoxFor(model => model.Completed) %>
- <%= Html.ValidationMessageFor(model => model.Completed) %>

15 </div>
- <div class="editor-label">
- <%= Html.LabelFor(model => model.Title) %>
- </div>
- <div class="editor-field">

20 <%= Html.TextBoxFor(model => model.Title) %>
- <%= Html.ValidationMessageFor(model => model.Title) %>
- </div>
- <p>
- <input type="submit" value="Create" />

25 </p>
- </fieldset>
- <% } %>

On line 20, we create an HTML input tag with Html.TextBoxFor(model =>

model.Title). These will be tied back to the model through model binding

when we HTTP POST to the Create() action.

Notice how on line 4, we return an Html.ValidationSummary. This property

is populated only when a model fails validation. For example, if our Todo

is missing a title, a message will be displayed instructing the user to fill

one in (we’ll cover model validation in Section 6.4, Adding Validations

Using ModelStateDictionary, on page 143).

It doesn’t make sense to have a Completed field for this view, so let’s

remove it and take a look at what we have done so far (Figure 3.9, on

the next page). We can now create Todo items, and once they’re added

successfully, we are sent back to the list of Todos that were being dis-

played before.

Now we’ll see how to delete a model. For GetOrganized, we want to scrap

a Todo.

3.4 Deleting: Creating an Action Without a View

Deleting records without using HTTP POST is a very bad thing. It breaks

the protocol’s convention to use an HTTP GET to modify or delete infor-

mation (see the Joe Asks. . . on page 64). However, for right now we just

want to put a delete link on the index page. The proper convention for

this is to perform an asynchronous call using HTTP POST and Ajax.

We’ll cover that in Section 7.1, Deleting with HTTP POST , on page 153.

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=62
http://www.allitebooks.org

DELETING: CREATING AN ACTION WITHOUT A VIEW 63

Figure 3.9: Adding a Todo brings us back to the index page.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=63

DELETING: CREATING AN ACTION WITHOUT A VIEW 64

Joe Asks. . .

Why Delete Only with HTTP POST or DELETE?

As we discuss in Chapter 10, Building RESTful Web Services, on
page 210, following the semantics make it easier for other pro-
grammers to use your application.

Another good reason is to protect against search engines mod-
ifying content on your site. Imagine if you left the delete links
accessible by Google, only to find out on Monday morning that
all your data has been killed by a search engine. Most search
engines use HTTP GET exclusively to crawl the Web, so having
an HTTP GET that deletes content isn’t going to leave much of
a site to browse!

So, use HTTP POST when modifying content, and avoid this
embarrassment. We’ll work through this in Section 7.1, Deleting
with HTTP POST , on page 153.

In the meantime, to simplify things, we’ll break this convention tem-

porarily. We will perform a delete with an HTTP GET. The first thing

we’ll need to do is to add another test for deleting a Todo.

Download gettingorganized/TodoControllerTest.cs

Line 1 [Test]
- public void Should_Delete_Todo_Item()
- {
- var mistakeTodo = Todo.ThingsToBeDone[0];
5

- var redirectToRouteResult = (RedirectToRouteResult)
- new TodoController().Delete(mistakeTodo.Title);
-

- Assert.IsFalse(Todo.ThingsToBeDone.Contains(mistakeTodo));
10 Assert.AreEqual("Index",

- redirectToRouteResult.RouteValues["action"]);
- }

This action test looks similar to the one used on Create() except we’re

going to assert that the mistakeTodo is not in the list on line 9. We’ll also

perform a redirect to the Index() action on success. The interesting bit

about Delete() is that we don’t have a Delete.aspx view to redirect to.

Once we delete something, we redirect to the list of Todo items.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=64

DELETING: CREATING AN ACTION WITHOUT A VIEW 65

The following is the controller code to get the test to pass:

Download gettingorganized/TodoController.cs

// GET: /Todo/Delete/Title={name of todo}

public ActionResult Delete(string title)

{

Todo.ThingsToBeDone.

RemoveAll(todo => todo.Title == title);

return RedirectToAction("Index");

}

Note that MVC’s default signature for the Delete() action has the [Http-

Post] attribute—you’ll need to remove this for the page to work. You’ll

also need to replace the FormCollection with the Title of the Todo. Finally,

you’ll modify the link to the Delete() action on the Index.aspx view. We

can do this by changing the following line:

Download gettingorganized/Index.aspx

<%= Html.ActionLink("Delete", "Delete", new { item.Title } ,

new { onclick="return

confirm('Are you sure you want to delete this?');" }) %>

Here we use the ActionLink() method on HTML to generate a link to the

Delete() action. The final parameter of ActionLink() lets us set HTML

attributes on the element, such as style and class.

Notice how the link’s last parameter is passed a new { item.Title }. This

uses a .NET 3.0 feature called anonymous types. Essentially, you are

passing in a new class with a property Title that has the value of item.Title.

Anonymous types provide a simple way to create objects we’ll only ever

use once. We’ll use anonymous types throughout this book and in par-

ticular when using HTML helper methods.

Because we don’t want people just deleting by accident, we add the

onclick attribute. This prompts users with a confirmation box before it

submits the HTTP GET request by adding the code new { onclick ="return

confirm(’Are you sure?’);" }. Here’s a look at the modified Index.aspx code:

Download gettingorganized/Index.aspx

Line 1 <table>
- <tr>
- <th></th>
- <th>Completed</th>
5 <th>Title</th>
- </tr>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/gettingorganized/Index.aspx
http://media.pragprog.com/titles/jmasp/code/gettingorganized/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=65

UPDATING: MARKING A TO-DO AS COMPLETE 66

- <% foreach (var item in Model) { %>
- <tr>
- <td>

10 <%= Html.ActionLink("Delete", "Delete", new { item.Title },
- new { onclick ="return confirm('Are you sure?');" }) %> |
- <%= Html.ActionLink("Edit", "Edit",
- new { /* id=item.PrimaryKey */ })%> |
- <%= Html.ActionLink("Details", "Details",

15 new { /* id=item.PrimaryKey */ })%>
- </td>
- <td>
- <%= Html.Encode(item.Completed) %>
- </td>

20 <td>
- <%= Html.Encode(item.Title) %>
- </td>
- </tr>
- <% } %>

25 </table>

We are now able to browse the application and remove items that

shouldn’t be there. On line 13, we see the default MVC template for

List pages is to have a commented-out Id.PrimaryKey. We rarely name

our primary key field like that—normally it is just Id. For Todo, we’re

instead using Title as the primary key. We’re doing it this way so you

can see how extensible MVC is in the next section.

Later we will talk about adding antiforgery tokens (see Section 11.1,

Guarding Against Cross-Site Request Forgery Attacks, on page 233) to

help prevent unauthorized users from removing records. Now that we’ve

seen how to delete a record, we’ll move on to learning to mark Todo items

as complete.

3.5 Updating: Marking a To-Do as Complete

Similar to Create(), Edit() is composed of two parts. The first loads a

screen with the model details for editing. The second submits the mod-

ifications to be saved. We therefore have two tests to write, because

Edit() doesn’t just load a blank page like Create() did—it loads an exist-

ing item.

The convention for getting the details or editing a model is to pass in

an Id, which is a unique integer. For example, the conventional URL for

editing is http://localhost/Todo/Edit/1, where 1 is the Id of the Todo.

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/Todo/Edit/1
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=66

UPDATING: MARKING A TO-DO AS COMPLETE 67

We’ll have to deviate from convention, because our Todo doesn’t have an

Id field. To avoid ambiguous references, we’ll delete the existing Edit(int

id) signature and replace it with our own. Instead of loading by Id, we

want to load our model by Title. Let’s write a test for this:

Download gettingorganized/TodoControllerTest.cs

[Test]

public void Should_Load_A_Todo_Item_For_Editing()

{

var editTodo = Todo.ThingsToBeDone[0];

var viewResult = (ViewResult) new TodoController().Edit(editTodo.Title);

Assert.AreEqual(editTodo, viewResult.ViewData.Model);

}

This test has more in common with the Index() test, because we’re

putting data into the view for display. By casting the result as a ViewRe-

sult, we ensure that we are never redirecting to another page or action.

Now let’s implement the code to get this to pass:

Download gettingorganized/TodoController.cs

//

// GET: /Todo/Edit/somethingToDo

public ActionResult Edit(string title)

{

ViewData.Model =

Todo.ThingsToBeDone.Find(todo => todo.Title == title);

return View();

}

The test passes, and all we needed to do is a quick Find() on our ThingsTo-

BeDone collection using the passed-in Title of the Todo.

Now we’ll generate the view for this action. We use the wizard to add a

strongly typed view of the template Edit. The edit page is displayed, as

in Figure 3.10, on the next page. Let’s move on to editing the ActionLink()

on the Index.aspx page so we can get to this new Edit.aspx view, as shown

here:

Download gettingorganized/Index.aspx

<%= Html.ActionLink("Edit", "Edit", new { item.Title }) %> |

With the link in place, we’ll now create the test for editing a Todo. The

test will look similar to the Create() test, except this time we will load

Get Milk from our model and then edit it.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/gettingorganized/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=67

UPDATING: MARKING A TO-DO AS COMPLETE 68

Figure 3.10: Edit.aspx, as it is generated by MVC

Download gettingorganized/TodoControllerTest.cs

[Test]

public void Should_Edit_Todo_Item()

{

var editedTodo = new Todo { Title = "Get A LOT MORE milk" };

var redirectToRouteResult =

(RedirectToRouteResult)

new TodoController().Edit("Get Milk",editedTodo);

Assert.Contains(editedTodo, Todo.ThingsToBeDone);

Assert.AreEqual("Index",

redirectToRouteResult.RouteValues["action"]);

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=68

UPDATING: MARKING A TO-DO AS COMPLETE 69

This is very similar to the Create() test except for some string name

changes. Next, let’s create a signature for Edit(string oldTitle, Todo todo).

The reason we’ll use the variable name oldTitle instead of just title will

become obvious in our next step when we modify Edit.aspx to work prop-

erly. For now we’ll just get the test to pass.

Download gettingorganized/TodoController.cs

// POST: /Todo/Edit/somethingToDo

[HttpPost]

public ActionResult Edit(string oldTitle, Todo item)

{

try

{

Todo.ThingsToBeDone.

RemoveAll(aTodo => aTodo.Title == oldTitle);

Todo.ThingsToBeDone.Add(item);

return RedirectToAction("Index");

}

catch

{

return View();

}

}

Nothing revolutionary here—we’re just finding the Todo in the list,

removing it, and then adding the edited item. The trickery comes in

the Edit.aspx view where we now need to define another property to use

for the oldTitle parameter. It looks something like this:

Download gettingorganized/Edit.aspx

<%= Html.Hidden("oldTitle", Model.Title %>

This line generates an <input type="hidden" title="oldTitle" value="Bring Home

Bacon" /> in the HTML, allowing us to keep the original title of the Todo

item. This prevents confusion with the new edited title, which will be

posted in as the action’s parameter when we click Submit. So long as

oldTitle matches the name of the variable in the Edit() method signature,

we’ve ensured we’re editing the correct model. Let’s look at the results

of this last set of tests in the browser.

That completes our first run through MVC using TDD. We’ve covered

the basics of CRUD operations with a few slight modifications, in this

case breaking the conventions int Id and deleting with an HTTP GET

along the way (see the Joe Asks. . . on page 64). We now have a basic

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/gettingorganized/Edit.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=69

UPDATING: MARKING A TO-DO AS COMPLETE 70

GetOrganized application to make to-do lists of all the things we need

to get done!

Up Next

We’ve woven the fundamentals of TDD and MVC together to complete

CRUD operations. TDD increases our confidence that our application

is working as expected. It also helps us learn MVC by breaking it down

into smaller pieces.

Next up, we’ll practice more TDD and MVC while introducing more

context around our GetOrganized application. We’ll use the JavaScript

library jQuery to enhance the appearance of our site, and we’ll learn

how to deal with temporary data between requests with TempData.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=70

The wise sees knowledge and action as one; they see truly.

Bhagavad Gita

Chapter 4

Working with Controllers
We’ve learned the basic CRUD operations in MVC, and now it’s time

to go beyond that. Once you’ve covered the simple cases, you’ll start

to notice the need for more tests as well as an understanding of addi-

tional parts of the framework to accomplish them. In this chapter, we’ll

step up our game and introduce several new TDD techniques and MVC

features. We’ll extend how we use controllers and beef up the testing

coverage that goes along with creating new controllers.

We’ll start by learning a necessary part of practicing TDD: how to imple-

ment Equals() for our model objects. We’ll also work on integrating

jQuery, the popular JavaScript library, to make our web pages a bit

flashier.

When it comes to controllers, we’ll walk through using both FormCollec-

tion and TempData to create more complex models. To help with proto-

typing parts of our site, you’ll learn about a new MVC 2.0 feature called

templated views. This feature will allow us to create a default view for all

controllers, which eventually can be replaced with a customized view.

Finally, we’ll talk about how to have a controller pass control to another

controller.

In the previous chapter, we created a Todo list. We’ll now work on

building GetOrganized’s “collect thoughts” functionality. Recording a

thought will also involve assigning a Topic to it in order to help organize

what you need to get done. So, before we can make a thought, we’ll first

need a way to create topics.

CREATING TOPICS 72

4.1 Creating Topics

Every thought has a category of what it relates to. Examples might

be Work, Personal, Business Ideas, or Professional Development. This

helps us keep track of all the things we need to get done in our busy

lives.

The model of a Topic will consist of a topic name and a color. The color

will visually distinguish topics from one another. Our first test will be to

verify that a list of topics can be displayed when the view is rendered:

Download workingWithControllers/TopicControllerTest.cs

Line 1 [TestFixture]
- public class TopicControllerTest
- {
- [Test]
5 public void Should_Have_List_Of_Topics_With_Name_And_Color()
- {
- var topic = new Topic {Id = 1, Color = Color.Red, Name = "Work"};
- var model =
- ((ViewResult) new TopicController().Index()).ViewData.Model;

10 Assert.AreEqual(topic, ((List<Topic>) model)[0]);
- }
- }

The code here is similar to how we listed TodoController back in Sec-

tion 3.2, Our First Test, on page 47. We set up the expectation that the

model will be assigned when we call the action Index() on line 9. The

next line then asserts that the Topic is the same as we expected.

This test does not yet compile. We need to implement the TopicController

and Topic classes. If we try to follow the same implementation as we

did with TodoController, we’re going to run into a problem. It’s not wrong

to implement the TopicController and the TodoController the same way,

because the real problem rests with the Topic class.

The test will fail because we are asserting that a Topic is equal to another

Topic. By default all classes, including Topic, do not know how to do

that. If you’ve implemented the Equals() method before, then this con-

cept might not be new to you. Overriding Equals() is a common side

effect of working with TDD in .NET.

Think of our application like an onion with the controller code on the

outside. You write a test for the first layer of the onion, but that makes

you realize you need the second layer, or in this case the model. How-

ever, to get the test for the second layer working, you need to comment

out the first layer because all the code is in the same assembly, and

Report erratum

this copy is (P1.0 printing, June 2010)www.allitebooks.com

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=72
http://www.allitebooks.org

CREATING TOPICS 73

you need to get your test to compile. This means at this point it’s OK to

comment out the first test. Let’s work on the model test first.

To get our TopicController test to pass, we need to implement the Equals()

method on Topic.

Implementing Equals for Topic

C# objects all inherit from the base class Object. Object has an impor-

tant method called Equals() that compares whether two objects occupy

the same space in memory. Most of the time, as in the case of our Topic

object, we are more interested in whether the values of two objects are

the same.

For example, if two Topics have the name Work and the color red, then

we’d expect them to be equal. Properties or fields need to match—this is

called value equality—and that’s why one of the reasons TopicController

will fail (if we hadn’t commented it out already). Topic is missing a value

equality implementation.

Right now a Topic cares only whether it shares the same location in the

computer’s memory. This is called reference equality. Reference and

value are two aspects of implementing equals. There are four in total:

• Null check. Has the object you are comparing been initialized?

• Reference check. Does it occupy the same space in memory?

• Type check. Is it made from the same class?

• Value check. Do all properties or fields match?

In the interest of brevity, we’re only going to test-drive the value com-

ponent. However, it’s important to implement all four components for

your production code, because you want to make sure all four of the

previous questions are answered. Imagine if you were comparing a Cat

and a Dog that both had the same name. If you relied only on value

equality, your program would say they were the same. But if you imple-

ment a type check, then your code will know that the two are different.

Also, remember that on most projects we end up generating the equals

methods much of the time (see the sidebar on page 76).

To create our first model test, we’ll add a new folder named Models to

place the files in. Let’s write a test for value equality.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=73

CREATING TOPICS 74

Download workingWithControllers/TopicTest.cs

Line 1 [TestFixture]
- public class TopicTest
- {
- private Topic workTopic;
5

- [SetUp]
- public void Setup()
- {
- workTopic = new Topic { Id = 1,

10 Color = Color.White, Name = "Work" };
- }
-

- [Test]
- public void Should_Be_Equal_By_Value()

15 {
- var anotherWorkTopic = new Topic {Id = 1,
- Color = Color.White, Name = "Work"};
- Assert.AreEqual(workTopic, anotherWorkTopic);
- }

20

- [Test]
- public void Should_Not_Be_Equal_By_Value()
- {
- var personalTopic = new Topic { Id = 2,

25 Color = Color.Red, Name = "Personal" };
- Assert.AreNotEqual(workTopic, personalTopic);
- }
- }

TopicTest contains two separate tests, one where the two objects are the

same, and the other where the two objects are different. New here,

we’re using the [Setup] attribute on line 6. We run [Setup] before each

[Test]; we use it to refactor tests to share common code. In this case,

we want to share the Topic Work across both tests. This is a good

example of applying the DRY principle to your test code. The first test,

Should_Be_Equal_By_Value(), compares two objects that are of the same

value. The second test, Should_Not_Be_Equal_By_Value(), asserts that two

Topics of different values aren’t equal. Let’s make these tests pass:

Download workingWithControllers/Topic.cs

Line 1 public class Topic
- {
- public static List<Topic> Topics = new List<Topic>
- {
5 new Topic {Id = 1, Color = Color.Red, Name = "Work"},
- new Topic {Id = 2, Color = Color.Blue, Name = "Home"}
- };
-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicTest.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Topic.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=74

CREATING TOPICS 75

- public int Id { get; set; }
10 public Color Color { get; set; }

- public string Name { get; set; }
-

- public override bool Equals(object obj)
- {

15 // reference equality check
- // if (ReferenceEquals(this, obj)) return true;
- // type equality check
- // if (obj.GetType() != typeof (Topic)) return false;
-

20 var other = obj as Topic;
-

- return other.Id == Id
- && other.Color.Equals(Color)
- && Equals(other.Name, Name);

25 }
-

- public override int GetHashCode()
- {
- return Id; //required for assisting with collections

30 }
- }

Inside the Equals(), we cast the incoming object as a Topic on line 20. We

do this so we can compare all the fields on line 22. This makes both our

tests pass. We aren’t testing the null or reference checks, but the imple-

mentations are provided in comments. We’re also required to override

GetHashCode() to help support collections, such as List<Topic>. An alter-

native way to implement Equals() is to use the ReSharper shortcut (see

the sidebar on the next page). Let’s get back to getting the controller

test to pass.

Making TopicController Pass

We have a working Equals(), so we can get back to implementing the

controller by getting our TopicControllerTest to pass.

Download workingWithControllers/TopicController.cs

public class TopicController : Controller

{

//

// GET: /Topic/

public ActionResult Index()

{

ViewData.Model = Topic.Topics;

return View();

}

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=75

CREATING TOPICS 76

ReSharper Tip: Generating Equals

ReSharper can generate code in several ways. Using the short-
cut Alt+Ins when you’re inside the class text editor opens a
dialog box with options for what kind of code you’d like to gen-
erate. One of the most useful generators that ReSharper has
is the Equality generator. The generator dialog box asks you
which fields you want to include in the Equals() and GetHash-

Code() methods.

Because ReSharper uses a good algorithm and it’s not code
you wrote yourself, you can skip test-driving Equals() if you are
using this feature. If test code coverage is a concern and you’re
using NCover,∗ apply the [IgnoreFromCoverage] attribute on both
the Equals() and GetHashCode() methods.

∗. http://ncover.sourceforge.net/

This code is similar to the TodoController in Section 3.2, Our First Test,

on page 47. We assign a model to a list of Topics and then render a view.

Before generating a view for this action, let’s step back to our Topic.

Right now we’re using System.Color to store the exact color we want to

display. HTML uses hex values to render colors, so we need to convert

this. Let’s write a test to validate that our model is capable of this:

Download workingWithControllers/TopicTest.cs

[Test]

public void Should_Convert_Color_To_Hex_Value()

{

var aShadeOfRedTopic =

new Topic { Color = Color.FromArgb(0, 208, 0, 0)};

Assert.AreEqual("#D00000",

aShadeOfRedTopic.ColorInWebHex());

}

We want to assert that the shade of red we’ve created is converted to

the equivalent red color for the browser to read. Now let’s make it pass:

Download workingWithControllers/Topic.cs

using System.Drawing;

//omit class definition

public string ColorInWebHex()

{

return ColorTranslator.ToHtml(Color);

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://ncover.sourceforge.net/
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicTest.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Topic.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=76

USING THE FORMCOLLECTION AND TEMPDATA OBJECTS 77

ReSharper Tip: Using Statements

Another helpful feature of the “magic key” Alt+Enter is the
ability to bring in using statements for us. Simply put your cursor
over the text that is in causing the error, and hit Alt+Enter to
bring in the appropriate using statement.

To get this code to work, we’ll use the class ColorTranslator, which trans-

lates the color into a hex value that browsers can use. This class comes

from the .NET standard library and can be referenced by including Sys-

tem.Drawing (see the sidebar on the current page). Our test is now pass-

ing, and we’re ready for the view.

In this case, we’ll want something more than the default generated view.

Since we’re dealing with the property Color, we can actually display a

color as opposed to just the color’s name. The default view templates

don’t work for nonprimitive types, such as System.Color. This means

you’ll often modify view files to make them render all the information in

the model.

Remember when generating the view to make it a strongly typed view

of type Topic and set View Content to List. This creates the view file

Views/Topic/Index.aspx, and we’ll modify it as follows:

Download workingWithControllers/Index.aspx

Line 1 <td style="color: white;
2 background-color: <%= item.ColorInWebHex() %>">
3 <%= Html.Encode(item.Name) %>
4 </td>

On line 2, we set the background of the Topic’s Name to match its Color.

That takes care of displaying Topics, but now we need to be able to

create them.

4.2 Using the FormCollection and TempData Objects

Up until now we’ve relied on MVC’s model binding to translate complex

objects, such as Todo, from the view back to the controller. Sometimes,

as in the case of our Topic model, this default binding doesn’t work for

us. This is because Topic has a System.Color inside it. This is a nonprim-

itive type that does not map back easily like a string or int would.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=77

USING THE FORMCOLLECTION AND TEMPDATA OBJECTS 78

Luckily, MVC has a class called FormCollection that will help us map the

Topic’s color into a new object. We’ll also use TempData for the first time;

it allows us to store information for one round-trip in the session (see

the Joe Asks. . . on the following page).

Download workingWithControllers/TopicControllerTest.cs

[Test]

public void Should_Create_Topic_And_Notify_The_User()

{

var professionalDevelopment = new Topic {Id = 3,

Color = ColorTranslator.FromHtml("#000000"),

Name = "Professional Development"};

Ê var formValues = new FormCollection();

formValues.Add("Id", professionalDevelopment.Id.ToString());

formValues.Add("Name", professionalDevelopment.Name);

formValues.Add("Color",

professionalDevelopment.ColorInWebHex().Trim('#'));

var controller = new TopicController();

var result = (RedirectToRouteResult) controller.Create(formValues);
Ë Assert.Contains(professionalDevelopment, Topic.Topics);
Ì Assert.AreEqual("Index", result.RouteValues["action"]);

Assert.AreEqual("Your topic has been added successfully.",
Í controller.TempData["message"]);

}

Ê The class FormCollection represents a collection of keys and values

that comes in the page request. By default when we generate a

controller, the Create and Edit action methods use these instead

of the model binding (this binding is talked about more in detail

in Section 10.2, Sending XML in the Request Using Model Binding,

on page 217). Because we have a nonprimitive type such as Color,

which doesn’t have a setter for a hex value like #FFFFFF, we can

use the FormCollection to make sure it’s translated properly. We do

this with the help of ColorTranslator in System.Drawing. We also need

to Trim() the # off because the color picker widget, which we’ll use

in the Create view, does not add that character to the output.

Ë Here we ensure the Topic is actually added to our model’s static

list.

Ì The controller redirects to the Index() action successfully.

Í This is the first time we’ve used TempData. It’s a collection of

objects accessed and stored by a unique string called the Temp-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=78

USING THE FORMCOLLECTION AND TEMPDATA OBJECTS 79

Joe Asks. . .

What Is a Session?

Sessions are present in almost all web frameworks. They are a
way of storing information between requests by the same user.
Generally, the information tends to be temporary and small
because of the technical cost that comes along with them. A
shopping cart is a good example of data that would be stored
in the Session.

DataDictionary. This collection stores information in the user’s Ses-

sion for this request and the next one only (see the Joe Asks. . .

on this page). Because we’re testing the controller outside the web

environment, the controller does not invoke this mechanism for

storing information in a web session.

We need to ensure that the success message is displayed properly.

We’re just putting it in TempData so that after the redirect we will

still have it. TempData is a powerful mechanism to pass informa-

tion to the next request, such as a success message.

To get this test to pass, we’ll implement the following code:

Download workingWithControllers/TopicController.cs

Line 1 //
- // POST: /Topic/Create
-

- [HttpPost]
5 public ActionResult Create(FormCollection collection)
- {
- var newTopic = new Topic();
- newTopic.Id = Convert.ToInt32(collection["Id"]);
- newTopic.Name = collection["Name"];

10 newTopic.Color =
- ColorTranslator.FromHtml("#" + collection["Color"]);
-

- Topic.Topics.Add(newTopic);
- TempData["message"] = "Your topic has been added successfully.";

15 return RedirectToAction("Index");
- }

On line 5, we have a signature of the method that has a FormCollection.

This comes into use starting on line 8 where we assign all the values

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TopicController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=79

ADDING A LITTLE COLOR WITH JQUERY 80

from within the FormCollection to a new Topic. Once fully constructed,

we want to add a message to TempData that the Topic was successfully

added on line 14. The test now passes.

Next, we’ll see how to create a view for this. This view will be different:

we’ll make our color selector more visually interesting than just a drop-

down list by using a JavaScript library called jQuery.

4.3 Adding a Little Color with jQuery

Creating a drop-down with a thousand colors doesn’t seem like a good

option, nor does letting people specify any color they want (because

some might not exist). So, it’s time to introduce a little jQuery to help

us with this problem.

jQuery is a popular open source JavaScript library that comes prepack-

aged with ASP.NET MVC. It helps us make prettier and more interactive

web pages. jQuery is also very helpful in adding Ajax support to our

sites. jQuery is supported by multiple web frameworks.

If you have never used or heard of jQuery before, I suggest taking a look

at http://jquery.com because lots of tutorials are available online. For a

more in-depth reference, jQuery in Action [BK10] is a good resource.

However, our usage is going to be fairly trivial, and a basic knowledge

of JavaScript will be enough to continue.

jQuery has a host of plug-ins that allow us to leverage other people’s

work. There is a simple and easy-to-use color wheel plug-in called Col-

orPicker.1 Download and add the colorpicker.js file to your /Scripts/ direc-

tory. Next, add colorpicker.css to your Content directory to add the styling.

Also, add the images folder and its contents to your Content directory.

You’ll have to do a find and replace in the colorpicker.CSS file to change

the directory that the images are located in. Replace ../images/ with

../content/images/.

Before we get to generating the Create view—/Views/Topic/Create.aspx—

we’ll add some code to wire up the color picker in the site’s master

layout file Site.Master.

1. http://www.eyecon.ro/colorpicker/

Report erratum

this copy is (P1.0 printing, June 2010)

http://jquery.com
http://www.eyecon.ro/colorpicker/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=80

ADDING A LITTLE COLOR WITH JQUERY 81

Speeding Up Your Pages with jQuery

Recently Microsoft announced the Content Delivery Network
(CDN), which allows you to link your site’s jQuery file directly
to its Edge network. This can increase the speed of your site,
especially if the traffic comes from all around the world. Adding
a jQuery reference to the CDN looks like this:

<script
src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.1.min.js"
type="text/javascript">

</script>

Download workingWithControllers/Site.Master

Line 1 <head>
- <!-- omitted other scripts -->
- <link href="<%=ResolveUrl("~/Content/colorpicker.css) %>"
- rel="Stylesheet" type="text/css" />
5

- <script type="text/javascript"
- src="<%=ResolveUrl("~/Scripts/jquery-1.4.1.js") %>">
- </script>
- <script type="text/javascript"

10 src="<%=ResolveUrl("~/Scripts/colorpicker.js") %>">
- </script>
- <asp:ContentPlaceHolder ID="Head" runat="server" />
- </head>

This is the first time we’ll touch the Site.Master file. You can find it in

the Views/Shared directory. It is responsible for the general layout of the

site. On line 7, we add references to the JavaScript and CSS files here

so that all views inherit and have access to them. The code we add to

the Site.Master fits into the head section of the document, which is where

CSS files must be referenced (see the sidebar on the current page for

an alternative way). The method ResolveUrl() is used in conjunction with

the ~ symbol to properly resolve the URLs of these static resources. For

example, if you’re deploying locally to the http://localhost/GetOrganized

virtual directory, the code would still work if you were at http://localhost.

We’ll discuss master pages in more detail in Section 6.3, Simplifying

Page Layouts with Master Pages, on page 139. For now it’s important to

add a ContentPlaceHolder element on line 12 so that we can inject other

scripts we need into the head element of the HTML document.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Site.Master
http://localhost/GetOrganized
http://localhost
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=81

ADDING A LITTLE COLOR WITH JQUERY 82

Now generate the /Views/Topic/Create.aspx view, and add the following

lines inside the ContentPlaceHolder:

Download workingWithControllers/Create.aspx

Line 1 <asp:Content ID="Content1" ContentPlaceHolderID="Head"
- runat="server">
- <script type="text/javascript">
- $(document).ready(function()
5 {
- $('#Color').ColorPicker(
- {
- onSubmit: function(hsb, hex, rgb)
- {

10 $('#Color').val(hex);
- },
- onBeforeShow: function()
- {
- $(this).ColorPickerSetColor(this.value);

15 }
- })
- .bind('keyup', function()
- {
- $(this).ColorPickerSetColor(this.value);

20 });
- });
- </script>
- </asp:Content>
-

25 <asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
- runat="server">
- <div class="editor-label">
- <%= Html.LabelFor(model => model.Color) %>
- </div>

30 <div class="editor-field">
- <%= Html.TextBoxFor(model => model.Color) %>
- <%= Html.ValidationMessageFor(model => model.Color) %>
- </div>
- </asp:Content>

Lines 3 to 22 contain the snippet of code that comes with the Color-

Picker plug-in to make it work with a particular textbox field. We place

this inside the asp:Content element that matches with the ContentPlace-

Holder named head. HTML helpers generate an HTML id attribute based

on the name of the variable. In our case, we’re wiring up the color picker

to the element with the id Color. This will make the color picker work,

allowing you to select any color in the spectrum.

So, we have your Topic being managed with a fancy color picker, as well

as implementing Equals(). Now it’s time to introduce another feature of

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=82

ADDING A LITTLE COLOR WITH JQUERY 83

MVC 2.0, templated views, which help reduce the number of views we

need to implement while we’re at the prototyping stage of application

development.

Adding Thoughts with Templated Views

We now have topics set up. Our next feature is to collect our thoughts.

We want to display thoughts as a list. Since we’ve already covered how

to list models, we’ll introduce a new way of rendering them in views.

In MVC 2.0, templated views let us define a generic way of displaying

data without having to generate a custom view for it. But before we can

get to templated views, we’ll need to test-drive our controller:

Download workingWithControllers/ThoughtControllerTest.cs

[TestFixture]

public class ThoughtControllerTest

{

[Test]

public void Should_List_Thoughts_When_Index_Is_Called()

{

var result = (ViewResult) new ThoughtController().Index();

Assert.AreEqual(Thought.Thoughts, result.ViewData.Model);

}

}

By now these kinds of controller tests are starting to look familiar. We

expect that the model is of type List<Thought>, and the name of the view

to be rendered is called Index. To make the test pass, we’ll need to

implement our Thought model.

Download workingWithControllers/Thought.cs

public class Thought

{

public static List<Thought> Thoughts = new List<Thought>

{

new Thought{

Id = 1,

Name = "Learn c# 3.5",

Topic = Topic.Topics.

Find(topic => topic.Name == "Work")},

new Thought{

Id = 2,

Name = "Build a Killer Web Application",

Topic = Topic.Topics.

Find(topic => topic.Name == "Home")}

};

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Thought.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=83

ADDING A LITTLE COLOR WITH JQUERY 84

public int Id { get; set; }

public Topic Topic { get; set; }

public string Name { get; set; }

}

The Thought model has three properties: Id, Topic, and Name. It also has

a static list of Thoughts filled with some sample data. With a Thought

defined, we can now try to make the test pass:

Download workingWithControllers/ThoughtController.cs

public class ThoughtController : Controller

{

//

// GET: /Thought/

public ActionResult Index()

{

ViewData.Model = Thought.Thoughts;

return View();

}

}

Similar to previous lists (such as Topic and Todo), we assign the col-

lection List<Thought> to the ViewData.Model. On to rendering a view for

this action. This time we’ll use a templated view instead of generating

another strongly typed view.

Templated views are added to the Views/Shared directory. If you’re famil-

iar with Rails, they act as a type of scaffolding, allowing us to get a page

up and running with basic information. For our example, we’ll be cre-

ating an Index.aspx in the Shared directory for our Index() action to use.

If we want to build a strongly typed view later, MVC will simply ignore

the file in the Shared directory.

Let’s look at a snippet of the Index.aspx templated view:

Download workingWithControllers/Shared/Index.aspx

Line 1 <h2>Index</h2>
- <table>
- <% var modelList = (IEnumerable) Model; %>
- <% foreach (var item in modelList) { %>
5 <tr>
- <td>
- <% ViewData["item"] = item; %>
- <%= Html.Display("item") %>
- </td>

10 </tr>
- <% } %>
- </table>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtController.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Shared/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=84

ADDING A LITTLE COLOR WITH JQUERY 85

On line 3, we cast the Model to an IEnumerable. This makes sure we’re

dealing with a list, which we then run through for each item it has.

Once we’re inside the foreach loop, we assign the item to the ViewData on

line 7. We’ll use the Display() method to render the contents of the item,

or in this case the Thought on line 8. We can’t use the strongly typed

methods in templated views, because they require that the model also

be typed. Using the nongeneric helper method Display() lets us render

any model we throw at it.

Using templated views to prototype pages allows us to focus on getting

early feedback about our application. Later you can revisit those pages

to improve the design and make them more usable.

After displaying a list of Thoughts, let’s now work on creating them.

Populating a Drop-Down List

Doing a brain dump of Thoughts is an important step in getting things

done. To create a Thought model, we’re going to need a list of Topics. This

is most easily done with a drop-down menu.

Let’s start by writing a test to assert that a list of Topics is accessible

when we’re trying to create a Thought:

Download workingWithControllers/ThoughtControllerTest.cs

Line 1 [Test]
- public void Should_Provide_A_List_Of_Topics_For_Creating_New_Thoughts()
- {
- var expectedListItems =
5 Topic.Topics.ConvertAll(topic =>
- new SelectListItem
- {Text = topic.Name, Value = topic.Id.ToString()});
-

- var result = (ViewResult)new ThoughtController().Create();
10

- var firstTopic =
- ((List<SelectListItem>) result.ViewData["Topics"])[0];
- Assert.AreEqual(expectedListItems[0].Value, firstTopic.Value);
- Assert.AreEqual(expectedListItems[0].Text, firstTopic.Text);

15 }

It’s good to remember that the ViewData can be populated with things

other than the model. In this case, we’re adding a new key called View-

Name["Topics"]. Unfortunately, the SelectListItem does not implement

Equals, so we cannot compare the actual lists and have to resort to

comparing individual values on line 12. Here we convert the Topic class

into a SelectListItem class using the ConvertAll() method.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=85

ADDING A LITTLE COLOR WITH JQUERY 86

To make this test pass, we could implement ThoughtController as follows:

Download workingWithControllers/ThoughtController.cs

Line 1 public ActionResult Create()
2 {
3 ViewData["Topics"] = Topic.Topics.ConvertAll(topic =>
4 new SelectListItem {
5 Text = topic.Name, Value = topic.Id.ToString()
6 });
7 return View();
8 }

On line 3, we convert the Topics into SelectListItems and assign it to the

ViewData. This makes our test pass.

Now we’ll generate the Views/Thought/Create.aspx view. The Create.aspx

view for a Thought is a little different from the Topic because we’re not

just picking a random color but a set list of Topics themselves. The HTML

helper class has a method DropDownList() that creates a drop-down of

items for display. We need to populate ViewData with a list of Topics so

that it is available to the view.

The following is a snippet of the file that relates to the drop-down list:

Download workingWithControllers/Thought/Create.aspx

<p>

<label for="Topic">Topic:</label>

<%= Html.DropDownList("Topic.Id",

(List<SelectListItem>) ViewData["Topics"])%>

</p>

The first thing to note is one of the parameters of the DropDownList is

Topic.Id. Use this notation to reference properties of other properties,

such as how Thought has a property Topic() that has the property Id.

We also see that we had to cast the ViewData["Topics"] as a collection

List<SelectListItem>.

That takes care of the view and allows us to have our drop-down filled

with the topics we input earlier.

Since we’ve already covered creating models a few times before for both

Todo and Topic, it’s time for you to strike out on your own. Try test-

driving the second part of the create action of the ThoughtController.

Maybe try adding another an attribute to Thought, such as how much

it’s bugging you. You can check your answers against the final solution

of GetOrganized in the GetOrganizedFinal directory in the downloadable

code.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtController.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Thought/Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=86

CONTROLLERS TALKING TO CONTROLLERS 87

Now we can move on to learning how to get controllers to pass control

directly to another controller. This is our final feature of this chapter:

converting thoughts into actions.

4.4 Controllers Talking to Controllers

After you’ve finished the brain dump of Thoughts, you need to move into

an action plan. The process of Getting Things Done [All02], according to

David Allen, is to decide on whether a Thought is actionable. If something

is actionable, then it’s going to have to have a well-defined outcome and

take you more than five minutes to complete. An action also must be

completable in the near future.

If the Thought is actionable, then we’ll convert it to a Todo item. Oth-

erwise, we’ll either delete it, save it for future reference, or set it as a

reminder for some future date when we could perhaps complete it.

For now, we will work on processing an actionable thought. In Sec-

tion 6.1, Processing Thoughts Take II: Actionable or Maybe Someday, on

page 128, we’ll work on the other pathways.

Displaying a Thought for Processing

We need to display a single thought so that we either action it or not.

The idea is not to go in any order. This means avoiding a list of Thoughts

and picking which one we’re going to process. Instead, we’ll start with

the oldest Thought, which reduces procrastination. No more avoiding the

Thoughts like “fill in time sheets for last week.” The first test is to grab a

thought for display.

Download workingWithControllers/ThoughtControllerTest.cs

Line 1 using System.Linq;
-

- public class ThoughtControllerTest
- {
5 [Test]
- public void Should_Display_First_Thought_When_Processing_Thoughts()
- {
- var expectedThought = Thought.Thoughts.First();
- var result = (ViewResult) new ThoughtController().Process();

10 Assert.AreEqual(expectedThought, result.ViewData.Model);
- }
- }

Because we’re using Language Integrated Query (LINQ) in our test code,

we add a reference on line 1. LINQ uses extension methods to enhance

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=87

CONTROLLERS TALKING TO CONTROLLERS 88

the capabilities of IEnumerable classes. The LINQ property we use here

is First on line 8. This pulls the first item from the list of Thoughts (see

the sidebar on page 90). The rest of the test should seem familiar. To

make the test pass, we’ll try the following:

Download workingWithControllers/ThoughtController.cs

//

// GET: /Thought/Process

public ActionResult Process()

{

ViewData.Model = Thought.Thoughts.First();

return View();

}

Here we assign the model to be the first element of the Thought collec-

tion. This means we need a view. This view will be customized from

the template that MVC generates for us. We can start with the default

Details template. Here is what your page might look like:

Download workingWithControllers/Process.aspx

Line 1 <h2>Process Thoughts</h2>
- <fieldset>
- <legend>Thought</legend>
- <p>
5 <%= Html.Encode(Model.Name) %>
- </p>
- <p>
- Topic:
- <%= Html.Encode(Model.Topic.Name) %>

10 </p>
- </fieldset>
- <% using (Html.BeginForm("Convert", "Todo")) {%>
- <fieldset>
- <legend>Actionable</legend>

15 <p>
- <%= Html.Hidden("Name", Model.Name) %>
- <%= Html.Hidden("Topic.Id", Model.Topic.Id) %>
- Well Defined Outcome:<%= Html.TextBox("Outcome") %>
- </p>

20 <p>
- <input type="submit" value="Create Action" />
- </p>
- </fieldset>
- <% } %>

On line 2, we create a heading for the page to include the name of

the Thought and its associated Topic. On the second part of the page,

we create a new HTML form tag on line 12. The HTML form will post

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/ThoughtController.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Process.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=88

CONTROLLERS TALKING TO CONTROLLERS 89

to the URL http://localhost/Todo/Convert. This action will create a new

Todo from the Thought. The information is posted as hidden fields with

the Hidden() method on line 16. The text field Outcome is passed as a

regular parameter, unlike the other two fields that will bind to the Todo

model.

Now for the conversion itself.

Converting a Thought into a To-Do

Once we’ve found a Thought that is actionable, we need to turn it into a

Todo. Most of the work of creating a new Todo is already done. However,

we need to account for the new properties we’ve just added, such as

Outcome and Topic. Our next test will be to work on the conversion

action in the TodoController. After the conversion is complete, we end up

redirecting to the ThoughtController’s action Process() instead of going to

a Convert.aspx view. This is the first time we’ll see a controller talking to

another controller in MVC:

Download workingWithControllers/TodoControllerTest.cs

Line 1 [Test]
- public void Should_Convert_A_Thought_To_A_Todo()
- {
- var expectedTodo = new Todo
5 {
- Title = "Build a killer web site",
- Outcome = "Site has 100 visitors per day",
- Topic = Topic.Topics[0]
- };

10

- var thought = new Thought
- {Name = "Build a killer web site", Topic = Topic.Topics[0]};
-

- var result = (RedirectToRouteResult) new TodoController().
15 Convert(thought, "Site has 100 visitors per day");

-

- Assert.Contains(expectedTodo, Todo.ThingsToBeDone);
- Assert.IsFalse(Thought.Thoughts.Contains(thought));
- Assert.AreEqual("Process", result.RouteValues["action"]);

20 Assert.AreEqual("Thought", result.RouteValues["controller"]);
- }

We are testing that the new Convert() action takes a Thought as well as a

Outcome. On line 4, we define the Todo we’re expecting. We perform the

conversion on line 15. After that, the assertion on line 17 ensures that

the old Thought is deleted, and a new Todo is there.

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/Todo/Convert
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=89

CONTROLLERS TALKING TO CONTROLLERS 90

Edge Cases and Unit Testing

You might have wondered while writing this code, what hap-
pens when you’ve run out of Thoughts and the list is empty? In
this case, we’d write another test that specifies that condition
and make the code work for it. For example, you might redi-
rect the user to the main page of the application and post a
warning to TempData saying that there are no more thoughts to
process.

We call this an edge case. Using TDD helps you work through
these cases one at a time. Having a full suite of tests that cov-
ers all the edge cases ensures your code is evolving without
producing as many defects.

To deal with the new properties, we’re first going to have to modify the

Todo class:

Download workingWithControllers/Todo.cs

public class Todo

{

// ...

// add new fields

public string Outcome { get; set; }

public Topic Topic { get; set; }

// ... implement equals

}

We needed to modify our original Todo to allow for the new fields, as

well as implement the Equals() method (omitted from the earlier code).

Here we added two new fields to the Todo class: Outcome, a string, and

a Topic. This lets us map the fields over from a Thought.

Now, on to the TodoController’s Convert() action:

Download workingWithControllers/TodoController.cs

Line 1 public ActionResult Convert(Thought thought, string outcome)
- {
- var newTodo = new Todo
- {
5 Title = thought.Name,
- Outcome = outcome,
- Topic = Topic.
- Topics.Find(topic =>
- topic.Id == thought.Topic.Id)

10 };

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/workingWithControllers/Todo.cs
http://media.pragprog.com/titles/jmasp/code/workingWithControllers/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=90

CONTROLLERS TALKING TO CONTROLLERS 91

What Is Refactoring?

Back in Chapter 2, Test-Driven Development , on page 31, we
introduced the TDD cycle of “red, green, refactor.” We haven’t
touched on an actual refactoring until now. Refactoring is a
way to change our code to reduce duplication, make it more
readable, and enhance extensibility. Following the DRY princi-
ple, we try to avoid rewriting the same code twice. However, if
you don’t have unit tests, how do you know the refactoring has
not changed the behavior or created a bug?

Most refactorings are reversible. For example, Extract Method
(ReSharper shortcut Ctrl+Alt+M) can be reversed with Inline
Method (ReSharper shortcut Ctrl+Alt+N). Refactoring: Improv-
ing the Design of Existing Code [FBB+99] is an excellent refer-
ence for this topic and applies to any language you work in.

-

- CreateTodo(newTodo);
-

- Thought.Thoughts.RemoveAll(thoughtToRemove =>
15 thoughtToRemove.Name == thought.Name);

-

- return RedirectToAction("Process", "Thought");
- }
-

20 private void CreateTodo(Todo todo)
- {
- Todo.ThingsToBeDone.Add(todo);
- }

Converting the incoming Thought to the Todo means mapping the prop-

erties over. We created a private method called CreateTodo() on line 20

because it would have produced a duplicate line with the TodoController’s

Create() method. This is a good example of refactoring (the sidebar on

the current page). Using the DRY principle, we’re reusing the same

create logic in both the Convert() and Create() actions. We remove the

converted Thought on line 15.

Finally, on line 17, we have the controller talking to another controller.

The magic method RedirectToAction() has an additional parameter that

specifies we want it to go to a different controller. We can now convert

our Thoughts into Todos. In Section 6.1, Processing Thoughts Take II:

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=91

CONTROLLERS TALKING TO CONTROLLERS 92

Actionable or Maybe Someday, on page 128, we’ll add more ways of

processing Thoughts while learning new ways to customize our views.

Up Next

We’ve learned how to move beyond CRUD operations and started driv-

ing out our GetOrganized sample application. We also practiced test-

driving controllers and learned about testing the Equals() method. In

the next chapter, we’ll continue our focus on controllers and see how

they are the centerpiece of ASP.NET MVC. We’ll learn about how to

manage the state and transfer of information with the HttpSession object

and upload and download files.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=92

The best years of your life are the ones in which you decide

your problems are your own. You do not blame them on

your mother, the ecology, or the president. You realize that

you control your own destiny.

Albert Ellis

Chapter 5

Managing State and Files
with Controllers

Controllers are the heavy lifters of the MVC framework. We use them to

coordinate all activity between the user and the model. Up to this point

we have implemented controllers, but we haven’t covered all of their

capabilities. There are a few tricks we have yet to learn that will help

us develop web applications more efficiently. In this chapter, we will

learn about the additional features of controllers: action filters, HttpSes-

sionState, and file manipulation.

GetOrganized needs to restrict access to certain pages. Action filters

will help us do that. We’ll also need to keep track of what our users

are doing while they are logged in by using HttpSessionState, and we’ll

see how to attach files to our Thoughts. We’ll use MVCContrib,1 an open

source project that offers many enhancements to the MVC framework,

to help improve the readability of our controller tests.

We have already learned that controllers direct models to views, but

now we’re going to look at how they can help us manage state and other

external resources like files. Let’s begin by looking at how controllers

fit into the overall picture of the MVC framework.

5.1 Enabling Filters and Results with Controllers

Understanding how action filters and results work will help you see how

controllers are created and how control is passed to them within MVC.

1. http://www.codeplex.com/mvccontrib

http://www.codeplex.com/mvccontrib

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 94

The controller is the entry point of our program and acts as the coor-

dinator between the model and one or more views. From the request

input from the browser, the controller takes the appropriate action.

Each action interacts with a model and determines which view or other

controller to send the response to. Since actions are where we spend

a lot of time testing and coding, it is no surprise that MVC has built

extension points into the framework in the form of action results and

filters.

In this section, we’ll learn how filters can help us roll up common func-

tionality, such as security, into easy-to-apply labels to our actions. We’ll

also work through how action filters can make returning non-HTML

resources such as files simpler than ever. Finally, we’ll touch on how to

leverage the HttpContext and store information from request to request.

Extending Actions with Action Filters

Action filters are C# attributes that you can apply to the controller or

its actions. These filters perform an operation before the action is exe-

cuted. Action filters are an example of declarative programming, aptly

named after declaring what we want to accomplish up front.

We saw our first action filter, [HttpPost], in Section 3.3, Creating a To-Do,

on page 56. We’ll now see in depth how they work and when we use

them. For example, an alternative to [HttpPost] is as follows:

Download controllers/ActionFilters.cs

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Create(Todo item)

{

// create Todo here

}

In this case, the action filter is the [AcceptVerbs] attribute, and it’s

applied to the Create(Todo todo) action. Another example of an action fil-

ter is the [Authorize] attribute. You add this filter to controllers to restrict

access so only users who are logged in can use it. An example of this is

as follows:

Download controllers/ActionFilters.cs

[Authorize]

public ActionResult SecureMe()

{

// users cannot get here unless they are logged in

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ActionFilters.cs
http://media.pragprog.com/titles/jmasp/code/controllers/ActionFilters.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=94

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 95

Joe Asks. . .

When Do I Use Output Caching?

Caching at the output level is normally reserved for things
like the web application’s home page. Home pages gener-
ally don’t change based on individual user information and so
are safe to output cache. Caching keeps a copy of the out-
put that was generated from the first request. That makes the
second request render a lot faster. However, you don’t want
to use caching for every action. For example, if you have an
action that uses specific information from a user’s profile, then
caching would show other users’ information.

Output caching is not the only form of caching. Caching data
is another way to speed up page load times. Once we start
working with NHibernate in Chapter 8, Persisting Your Models,
on page 172, we’ll automatically get a certain level of data
caching by default. If you want to really get serious about
data caching, you should read more about the second-level
caching available to NHibernate with the open source server
memcached.∗

∗. http://www.cnblogs.com/RicCC/archive/2007/10/13/NHibernate-Memcached.html

Action filters contain generic behavior that you can reuse on multi-

ple actions. For example, another useful action filter to be aware of

is [HandleError], which redirects the user in case of exceptions. We’ll talk

more about that in Section 11.2, Using an Action Filter to Handle Errors,

on page 238.

The action filter [OutputCache] (see the Joe Asks. . . on this page) caches

requests and improves performance of frequently requested actions. In

Chapter 11, Security, Error Handling, and Logging, on page 229, we’ll

create our own action filters by inheriting from the class FilterAction. In

this chapter, we’ll learn to apply the [Authorize] attribute in Section 5.2,

Logging In, on page 100.

We can also author our own action filters. This is something that we’ll

do in Section 9.4, Creating a Custom Action Filter, on page 200. Writing

custom action filters is another reason why MVC is such an extensible

framework.

Action filters are just one piece of the puzzle. To round out our under-

standing of controllers, you need to know about ActionResults.

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.cnblogs.com/RicCC/archive/2007/10/13/NHibernate-Memcached.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=95

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 96

Directing to Different Content Types with ActionResults

As we learned in Section 3.2, Our First Test, on page 47, action results

are the return type of controllers. So far we’ve learned how to render a

view and redirect to another action. This covers two subtypes of Action-

Result, the abstract class that all controllers use as their return type.

The ViewResult is a subtype we’ve used to direct to a view that displays

information, such as the Index() action on the TodoController. Here is an

example of an action returning a ViewResult:

Download controllers/ActionResults.cs

public ActionResult Display()

{

return View(ModelToDisplay);

}

What’s interesting here is we’ve introduced a shortcut for how to set a

model that is different than covered in the previous chapters. Instead

of ViewData.Model = ModelToDisplay, we can accomplish the same thing

with View(ModelToDisplay).

The second subtype of ActionResult is the RedirectToRouteResult. This re-

sult redirects control to another action or a different controller alto-

gether. Here is a sample of using RedirectToAction():

Download controllers/ActionResults.cs

public ActionResult Redirector()

{

return RedirectToAction("DifferentAction","DifferentController");

}

Notice that the first argument of RedirectToAction(string action, string con-

troller) is the action we want to send the control to, and the second is

the controller. We can omit the second argument if we want to stay

within the same controller, like going from Create() to Index() on the

successful creation of a model. In both cases, we never create an action

result directly using return new RedirectToRouteResult{ //...}. Instead, we

use methods that are available from the base Controller, which all con-

trollers inherit from.

MVC offers many other types of action results. The most useful action

results are as follows:

• JsonResult: Returns models in JavaScript Object Notation (JSON)

• ContentResult: Returns plain text

• FilePathResult: Returns a file from a path on the server

• FileStreamResult: Returns a file from a stream

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ActionResults.cs
http://media.pragprog.com/titles/jmasp/code/controllers/ActionResults.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=96

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 97

Joe Asks. . .

When Would I Use JSON?

JSON is a helpful format to allow JavaScript libraries such as
jQuery to manipulate objects, as opposed to using XML or
HTML. Using JSON allows us to focus on becoming proficient in
JavaScript, instead of having to master XPath. An object like
Thought renders in JSON as follows:

var thought = {
"Id": 0,
"Topic": {

"Id": 1,
"Color": {

"R": 255,
"G": 0,
"B": 0,
"A": 255,
"IsKnownColor": true,
"IsEmpty": false,
"IsNamedColor": true,
"IsSystemColor": false,
"Name": "Red"

},
"Name": "Work"

},
"Name": "Learn C# 3.5"

}

Accessing the object within JavaScript with JSON becomes
much easier with thought.Topic.Color, instead of using XPath to
access the same field like this:

document.evaluate("thought/Topic/Color", document, null,
XPathResult.ANY_TYPE, null)

JsonResult is useful for Ajax requests and often works with the ContentRe-

sult (these action results will be covered in Chapter 7, Composing Views

with Ajax and Partials, on page 151). Most Internet applications need

to allow users to download files, and MVC does this with FilePathResult

and FileStreamResult. FilePathResult uses files located on the file system of

the web server; we will use them in Section 5.5, Manipulating Files, on

page 119. FileStreamResult takes any output stream, such as streaming

a file out of the database.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=97

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 98

Some action results are useful in specific situations but not used as

frequently:

• JavascriptResult: Returns a JavaScript file

• FileContentResult: Returns a file as binary data

• EmptyResult: Returns nothing

JavascriptResult can aggregate all our application’s JavaScript into one

simple file reference. This is handy if there are a lot of jQuery plug-ins,

each having a separate JavaScript file. Instead of having to add a large

head section to your HTML file, imagine just using one with the help of

this action result.

FileContentResult is a specialized kind of file return where you must

return a Byte array, perhaps for graphics manipulation. Generally, we’re

better off using the FileStreamResult because it is faster and friendlier to

our web server’s memory usage.

EmptyContent is for rare situations where you would like to return some-

thing directly to the HttpResponse, such as when serving some static

HTML fragment. Doing this short-circuits the normal pattern of MVC

and is not recommended unless there is absolutely no alternative.

Although these are the default action results that come with MVC, the

reason that the framework designers created ActionResult as an abstract

class was for extensibility by developers like us. In Chapter 10, Building

RESTful Web Services, on page 210, we’ll see how to use MVCContrib’s

XmlResult to return XML from an action.

IControllerFactory: Where Controllers Are Born

It’s helpful to understand how web requests are processed, because it

puts the IControllerFactory in the context of the request pipeline. When

a request comes in from the browser, it is handed off to the web server

and passed through the UrlRoutingModule.

This module creates an MVCRouteHandler where the request gets exe-

cuted in the method ProcessRequest(). This method gets a reference to

the IControllerFactory interface responsible for creating an instance of

our controller and calling the controller’s Execute() method. Execute() is

where our actions are called.

The other main function of the MVCRouteHandler is that it hooks up the

HttpSessionState so we can use it between requests to store information

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=98

ENABLING FILTERS AND RESULTS WITH CONTROLLERS 99

UrlRoutingModule

MVCRouteHandler

IControllerFactory

Controller

Creates a new controller

of the name found in RouteData

Retrieves the
controller factory

Reads URL into

RouteData

Figure 5.1: Controllers are created by the IControllerFactory based on a

name inside the URL.

unique to each user. Controllers populate and manipulate HttpSession-

State. These types of interactions between controllers and HttpSession-

State will be covered in Section 5.4, Storing Information in Memory, on

page 109 (see Figure 5.1).

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=99

LOGGING IN 100

The birthplace of a controller is the DefaultControllerFactory, which imple-

ments the IControllerFactory interface. The factory knows what type of

controller to create using the RouteData class, which was set when

the UrlRoutingModule ran earlier. For example, http://localhost/Todo parses

Todo to create a new instance of type TodoController.

This factory interface allows us to extend how controllers are built; this

extensibility helps us implement dependency injection. We’ll cover this

topic in Section 9.2, Using Inversion of Control with the IControllerFac-

tory, on page 192 when we use MVCContrib to inject the database layer

into controllers.

The term Inversion of Control (IoC) is mentioned a lot these days; it has

become synonymous with dependency injection. We pass the behavior

to the constructor, effectively “injecting” it into the object, as in new

SomeController(IDatabaseConnector connector). The actual logic for the

database is injected into SomeController. This helps us test each class

separately.

Let’s look at how action filters help add a user login to our application.

5.2 Logging In

We will apply some of this theory back into our code. Every web appli-

cation has a login page, unless you have a central authorization service

such as Active Directory handling that for you. For GetOrganized, we

don’t want other users to access our thoughts and to-do lists (like our

boss finding out we are planning on asking for a well-deserved raise).

For these next few features, we’ll work with action filters as well as

the standard Microsoft Membership API to implement the feature of

logging in.

Out-of-the-Box Authentication

MVC gives us rudimentary security installed by default in the Account-

Controller. We can administer all this from the ASP.NET Web Site Admin-

istration Tool. We’ll set up our database so that we can save user infor-

mation permanently, and we’ll also learn how to use the action filter

[Authorize] to prompt users to log in on secured pages.

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/Todo
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=100

LOGGING IN 101

Figure 5.2: Right-clicking Data Connections will allow you to create a

new database.

Set Up SQL Server for the Membership Provider

We’re going to take a small detour from working with controllers to get

our database set up. This isn’t an MVC-specific requirement, but it is a

feature of ASP.NET that takes only a few steps to configure.

If you’ve installed SQL Server Express, the MVC framework creates a

database that stores user credentials as well as roles and groups. Sim-

ply rename the database file from aspnetdb.mdf to GetOrganized.mdf.

If you’ve installed the full version of SQL Server, you’ll need to do the

extra steps outlined in this section. It’s important to cover the next

steps even if you have only the Express edition, because most pro-

duction environments are going to use the Enterprise version of SQL

Server. Therefore, you should be aware of how to properly configure

your application to work with it.

First we’ll need to create a new database called GetOrganized for the

application. This is done from either within Visual Studio on the Server

Tools tab or through SQL Server Management Studio. In Figure 5.2, we

can see how to do this from Visual Studio. This opens a wizard that asks

for the SQL Server’s name (localhost), authentication type (Windows),

and name of the database (GetOrganized).

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=101

LOGGING IN 102

We also have to modify the Web.config file with the proper connection

string.2 Here is an excerpt from Web.config where the connection string

has been replaced by our new one:

<connectionStrings>

<add name="ApplicationServices"

connectionString="data source=localhost;

Initial Catalog=GetOrganized;Integrated Security=SSPI;"

providerName="System.Data.SqlClient"/>

</connectionStrings>

The parts of the connection string that are more important to note are

the data source and Initial Catalog. The data source is the network location

of SQL Server, in this case localhost. The Initial Catalog is the name of the

database, and we’ve set it to GetOrganized. Next, we need to generate

the tables and (yuck!) stored procedures necessary to have the mem-

bership API to work. In Section 11.1, Customizing the ASP.NET Member-

ship Provider, on page 234, we’ll work through replacing those stored

procedures using NHibernate.

Test-driven developers’ biggest complaint about stored procedures is

that they impair testing because business logic ends up in the data

layer. It is also hard to test large stored procedures and simulate data-

base-specific features such as triggers. Sometimes, we cannot avoid

them because of other restrictions, and they’ve been used successfully

in many projects. However, development will go faster if you use regular

SQL queries and commands, because these are much easier to test.

Better yet, use a framework like NHibernate, and avoid writing SQL

altogether.

If this is the first time you are using SQL Server since it was installed,

you’ll need to enable a Named Pipes communication configuration. This

is because we’re using Windows authentication to connect to the data-

base, and this is not allowed over TCP/IP. We use a program called

Configuration Manager to do this (see Figure 5.3, on the following page).

It is found under the Windows Start menu and SQL Server tab.

Now it’s time to fill the database with tables and stored procedures to

support logging in, as well as users’ roles.

We’ll need to use the command-line program aspnet_regsql.exe, so open a

command window using the Visual Studio command prompt shortcut.

2. A helpful resource to find the proper connection string is

http://www.connectionstrings.com.

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.connectionstrings.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=102

LOGGING IN 103

Figure 5.3: Configuring Named Pipes is required for using command-

line SQL.

This useful utility can repair ASP.NET, as well as manage the ASP.NET

authentication database. There are several options to this command,

but we will use only three to get this job done. The -A mr adds both

the membership (m) and the role (r) schema to the database. The -d

Get Organized specifies the database to use; -E authenticates with the

current Windows account.

Setting environment for using Microsoft Visual Studio 2008 x86 tools.

C:\Program Files\Microsoft Visual Studio 9.0\VC>

cd C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727>

aspnet_regsql -A mr -d GetOrganized -E

Start adding the following features:

Membership

RoleManager

........

Finished.

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727>

If you’re unfamiliar with using the command-line tool, don’t worry.

We’re first going to run a command called cd to change directories to

the .NET runtime for the 2.0 version of the framework. This is where

aspnet_regsql.exe is located. We then need to execute aspnet_regsql.exe to

build the database and stored procedures so that authentication works.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=103

LOGGING IN 104

Click here to launch

the Admin Tool

Figure 5.4: Clicking the globe and hammer icon launches the adminis-

tration website.

aspnet_regsql.exe has other uses as well, such as fixing up corrupted

installations of ASP.NET. If for some reason you installed Visual Studio

before you installed Internet Information Services (IIS), this utility can

fix that as well.

It is also useful to generate a SQL script that we can run on different

environments by replacing the -d option with -sqlexportonly file name.sql.

Once the database is configured properly, fire up the ASP.NET Web

Site Administration Tool by clicking the icon in the Solution Explorer

in Visual Studio (see Figure 5.4). You will use this site to administrate

your ASP.NET MVC application.

After it launches, navigate to the Security tab. This tab is where we

administer both users and roles. The site is for more than just man-

aging security, since it allows us to modify other application settings,

such as our connection string. However, most of the time it’s just as

easy to modify the Web.config file directly.

Remember that any data we modify here is only good for our local

database. If we are setting up roles and users for an application, a

SQL script is the right place for those items to be stored. This ensures

that every database where we install our application is consistent.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=104

LOGGING IN 105

Joe Asks. . .

What Is the Difference Between Authentication and
Authorization?

Authentication is the process of identifying that someone is who
they say they are. For example, is jonathan19 really Jonathan
McCracken? Authentication takes the form of a login screen or
a token, often a browser cookie, that is passed back in every
request.

Authorization means who can see or do what. Does jonathan19

belong to the group Administrators that is allowed to edit the
main page of the site? Authorization takes the form of groups
or roles that control what operations and data are exposed to
their members.

Adding the [Authorize] Attribute

Let’s secure our pages by adding the [Authorize] action filter to the

TodoController. We apply the [Authorize] attribute to the controller or its

actions. Here we are applying it to the entire controller:

Download controllers/ActionFilters.cs

[Authorize]

public class TodoController : Controller

{

//rest of class goes here

}

When we try to access any URL starting with Todo, such as /Todo/Create,

we are redirected to the login screen. Registering for the site is done

through the site itself or through the ASP.NET Web Site Administration

Tool. The AccountController, generated with every new MVC application,

is set up to handle registration, login, “remember me” functionality,

and password reset. Back in Section 3.2, Our First Test, on page 47, we

talked about generating unit tests for these features.

Testing Authorization

Although it is tempting to just apply the attribute [Authorize] on con-

trollers we want to protect, it is still a best practice to have unit tests

cover this. Better yet, we are going to drive it from our unit tests. Test-

ing C# attributes requires the use of the System.Reflection namespace,

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ActionFilters.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=105

LOGGING IN 106

because they are accessible only in this way. Reflection is useful to

access methods, fields, and attributes of classes through inspecting

the Type of the member at runtime. To write our first test, we’ll need to

use the TodoController type and read off all of its attributes, looking for

the System.Web.Mvc.AuthorizeAttribute.

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Be_Logged_In_To_Do_Anything_With_Todos()

{

typeof (TodoController).GetCustomAttributes(false).

ToList().ForEach(Console.WriteLine);

}

//Output is:

//System.Web.Mvc.AuthorizeAttribute

As shown in the example, the secret of reflection is the typeof() keyword

or alternatively GetType(), a method on every instance of an Object in

C#. Either of these will give us the same list of operations to access

members of that type, in this case the TodoController. After acquiring the

type of the class, we use the method GetCustomAttributes(bool searchBase-

Classes) to return a list that we convert to a List<object> of attributes we

are looking for.

Let’s move on to writing an assertion for this in the same test and

removing the Console.WriteLine().

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Be_Logged_In_To_Do_Anything_With_Todos()

{

Assert.IsTrue(typeof (TodoController).

GetCustomAttributes(false).

Any(o => o.GetType() == typeof (AuthorizeAttribute)));

}

The test passes, because we already added the attribute to the TodoCon-

troller. We had to use a little LINQ to filter the list by attributes using

the Any() method. Note that we exercise the GetType() method since we

have an instance of an object instead of a class where we use typeof().

This assertion looks like a prime candidate for reuse and therefore

belongs in a new helper test class we’ll name TestHelper. Using Re-

Sharper to extract the method (Ctrl+Alt+M), we get the method into

a form we can reuse locally.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=106

LOGGING IN 107

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Be_Logged_In_To_Do_Anything_With_Todos()

{

AssertIsAuthorized(typeof (TodoController));

}

private static void AssertIsAuthorized(ICustomAttributeProvider type)

{

Assert.IsTrue(type.GetCustomAttributes(false).

Any(o => o.GetType() == typeof (AuthorizeAttribute)));

}

While refactoring the assertion into a method, we introduced a param-

eter to replace the typeof(TodoController) and made it reusable for other

controllers. We gave it the type ICustomerAttributeProvider to ensure that

only types with attributes assignable to them are passed in.

The next step is to move the method into its own class. We create the

class TestHelper in a new folder called Helper. Then we’ll use ReSharper

to move the method there. ReSharper has the shortcut F6 for the Move

refactoring. The gotcha with the ReSharper Move refactoring is that the

member must be static.

Download controllers/TodoControllerTest.cs

Line 1 //Inside TodoControllerTest.cs
- [Test]
- public void Should_Be_Logged_In_To_Do_Anything_With_Todos()
- {
5 TestHelper.AssertIsAuthorized(typeof (TodoController));
- }
-

- //Inside TestHelper.cs
- namespace Test.Unit.Helper

10 {
- public class TestHelper
- {
- public static void AssertIsAuthorized(ICustomAttributeProvider type)
- {

15 Assert.IsTrue(type.GetCustomAttributes(false).
- Any(o => o.GetType() == typeof (AuthorizeAttribute)));
- }
- }
- }

Notice how in 5 we call our new TestHelper’s static method AssertIsAutho-

rized(ICustomAttributeProvider type). Thanks to this refactoring, we will

now be able to use this for all future authorization tests of controllers.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=107

LOGGING IN 108

Taking this one step further, we can reuse what we’ve done for actions.

We will write a test that covers both Create() and Create(Todo todo) that

restricts them to logged-in users only:

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Be_Logged_In_To_Create()

{

TestHelper.AssertIsAuthorized(

typeof(TodoController), "Create");

TestHelper.AssertIsAuthorized(

typeof(TodoController), "Create", typeof(Todo));

}

//...inside TodoController.cs we add [Authorize] to both methods

[Authorize]

public ActionResult Create() { // omitted }

[Authorize]

[HttpPost]

public ActionResult Create(Todo todo) { // omitted }

Both assertions in our test are now producing compile errors. In order

to get the code to compile, we overload AssertIsAuthorized(ICustomAttribute-

Provider type, string action, params Type[]) to take the name of the action

and its parameters. The C# keyword params allows us to pass zero or

more of the same object and results in an object array, in this case a

Type array. It’s also interesting to note that when adding [Authorize] to

the second Create(Todo todo), we now have multiple attributes. This is

perfectly acceptable but can become unreadable if there are more than

two. When that happens, it’s a best practice to put them all on the same

line.

Now let’s get this test to pass:

Download controllers/TodoControllerTest.cs

public static void AssertIsAuthorized(Type type, string action,

params Type[] parameters)

{

AssertIsAuthorized(type.GetMethod(action, parameters));

}

The test passes, and all it took was using another method of reflection,

GetMethod(). We were able to reuse our first TestHelper method and avoid

further duplication of code. We now have a class that can test both

controllers and their actions.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=108

TESTING ROUTES IN MVC 109

Now that we know a little about MVCContrib, let’s see how it helps us

test MVC routing.

5.3 Testing Routes in MVC

Routing is the backbone of MVC. We’ve seen how the friendly URLs

map to controller actions and make it easy for search engines to index

and for users to remember their favorite pages. Since we’re working on

covering our entire application with unit tests, it follows that we need

to focus on testing these URLs. With a little help from MVCContrib, this

becomes an easy task.

Let’s briefly revisit our TodoController and its Edit() action. To test this

route, we want to send the Title of the Todo we want to edit.

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Route_To_Edit_Page_With_Title()

{

"~/Todo/Edit?title=Get-A-LOT-MORE-milk".

ShouldMapTo<TodoController>(x => x.Edit("Get-A-LOT-MORE-milk"));

}

MVCContrib allows us to write a simple route test like the previous

one. We can test how the string ought to be parsed using just the string

of the URL and the extension method ShouldMapTo(). The controller is

specified in the ShouldMapTo() signature, and then we use the lambda

expression to specify what action and parameters it needs to map to.

Using this method to test routes is a helpful way to make sure they

are always working with each check-in. Route testing also comes into

play when we start building web services in Chapter 10, Building REST-

ful Web Services, on page 210. Routes for web services are important

because you’ll have other developers who are using them, which is

another good reason to make sure they don’t break.

With route testing complete, we can move on to learning to display a

user’s credentials in our pages through HttpContext.

5.4 Storing Information in Memory

Controllers interact with more than just views and models. They also

work with an object called HttpContext. This important object is where

the raw input and output for each request is stored. With HttpContext,

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=109

STORING INFORMATION IN MEMORY 110

you can manipulate directly the HttpRequest and HttpResponse classes,

linking you into the input and output of a web request.

For example, say we want to output an HTML fragment, like in Sec-

tion 5.1, Directing to Different Content Types with ActionResults, on

page 96, as an EmptyResult. We access the class HttpResponse inside our

controller’s action like Response.Write("<p>HTML fragment"</p>");. Because

MVC does a good job abstracting requests and responses from us, we

are not going to touch them inside a controller most of the time. The

significant classes inside HttpContext that we’ll learn to use are HttpSes-

sionState and the IPrincipal user.

In the previous section, we used IPrincipal without even knowing it. Every

time a user authenticates, their information goes in the HttpContext

under the property User. The user is stored in a class that implements

IPrincipal, and in the case of form authentication is stored as a Gener-

icPrincipal. This class holds the user’s name and all of the roles the user

belongs to. Accessing a user’s information within a controller through

the User looks like this:

Download controllers/SomeController.cs

public class SomeController : Controller

{

public ActionResult DisplayUserInfo()

{

ViewData["UserName"] = User.Identity.Name;

return View();

}

}

Notice how we had to drop down one level deeper into User.Identity to

get the user’s login name. This is because all IPrincipals have an IIdentity

embedded inside them. The IIdentity is who you are. Your IPrincipal is

what you have access to (see the Joe Asks. . . on page 105).

Now let’s test-drive access to the User property.

Test-Driving Authorization

We want to display “<username>’s Todos” on the to-do page. In the

previous section, we set User.Identity.Name to ViewData["UserName"] so we

could display the name of the logged-in user. Let’s test-drive this.

We first need to write a test to validate that the username is set to a

logged-in user and then check that ViewData["UserName"] is assigned to

that user’s name.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/SomeController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=110

STORING INFORMATION IN MEMORY 111

Forms Authentication vs. Windows Authentication

In the previous section, we covered Forms authentication, the
default for MVC applications. Another popular authentication
is Windows authentication, which uses who you’ve logged into
your Windows machine as, as opposed to retyping information
on the website. Most .NET intranet applications use Windows to
handle authentication, because it saves employees time reen-
tering their credentials. You can turn on Windows authentica-
tion by changing the Web.config file from this:

<authentication mode="Forms"></authentication>

to this:

<authentication mode="Windows"/>

Our unit test would look like this:

Download controllers/TodoControllerTest.cs

Line 1 [Test]
- public void Should_Set_Logged_In_User_To_ViewData()
- {
- var todoController = new TodoController();
5

- todoController.HttpContext.User =
- new GenericPrincipal(new GenericIdentity("Jonathan"), null);
-

- var result = (ViewResult) todoController.Index();
10

- Assert.AreEqual("Jonathan", result.ViewData["UserName"]);
- }

The test compiles, but there is a big problem here when we run the

test. We get a NullReferenceException on line 7 because the HttpContext is

null. Trying to set the HttpContext results in another stumbling block:

it has no setter property. The only option we have is to stub out this

object, but instead of doing this ourselves, our friends at MVCContrib

have already done the heavy lifting for us.

Using MVCContrib’s TestControllerBuilder to Test Controllers

Before we can improve our test, we’ll need to install MVCContrib. There

are two dynamic link libraries (DLLs) that we need to reference in our

project from the download: MVCContrib.TestHelper.dll and RhinoMocks.dll.

Rhino Mocks is an open source mocking and stubbing framework that

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=111

STORING INFORMATION IN MEMORY 112

Joe Asks. . .

Why Stub Your Objects?

Stub objects, also known as stubs, are nonproduction imitations
of the real object. They are useful when testing components in
isolation—in this case separating HttpContext from TodoController,
when we cannot easily create the dependent class. Since Http-

Context exists only within the web server container, we use a
stub that acts like it in its place. This lets us test TodoController

without having to start up a web server.

is popular in .NET.3 MVCContrib’s TestControllerBuilder makes extensive

use of Rhino Mocks to stub out the HttpContext.

MVCContrib’s TestHelper library provides a few shortcuts in writing our

assertions. It has its own extension method to the ActionResult to allow

us to test the result without having to do the casting that we have up

until now. For example, once these libraries are imported, the assertion

we’ve used until now—var result = (ViewResult) todoController.Index()—can

be replaced with todoController.Index().AssertViewRendered().

One of the most important components to MVCContrib is having access

to a stub of HttpContext. To implement the test, we will have to use the

crucial class TestControllersBuilder, which instruments our controller so

that we can access the HttpContext. We add the TestControllersBuilder to

the test that was failing by doing the following:

Download controllers/TodoControllerTest.cs

Line 1 [Test]
- public void Should_Set_Logged_In_User_To_ViewData()
- {
- var todoController = new TodoController();
5 var builder = new TestControllerBuilder();
- builder.InitializeController(todoController);
- builder.HttpContext.User =
- new GenericPrincipal(
- new GenericIdentity("Jonathan"), null);

10

- Assert.AreEqual("Jonathan",
- todoController.Index().
- AssertViewRendered().ViewData["UserName"]);
- }

3. RhinoMock’s home page is http://ayende.com/projects/rhino-mocks.aspx.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://ayende.com/projects/rhino-mocks.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=112

STORING INFORMATION IN MEMORY 113

Notice that on line 6, we call InitializeController(Controller controller) to set

up the stub on HttpContext. Instead of setting the context on the Todo-

Controller itself, we set it on the builder. This gets rid of the null excep-

tion and allows us to add to the controller code to make this pass:

Download controllers/TodoController.cs

public ActionResult Index()

{

ViewData["UserName"] = User.Identity.Name;

ViewData.Model = Todo.ThingsToBeDone;

return View();

}

Here we add the username to the ViewData from the HttpContext.

The assertion now passes because this code makes it work. Using

AssertViewRendered(), an extension method of MVCContrib’s TestHelper

library, saves us from doing the casting. There are other useful exten-

sions, including the AssertActionRedirect(), which replaces our usage of

casting an ActionResult as a RedirectToRouteResult. Both of these clarify

our tests and ultimately make them easier to write.

With the test passing, it’s now time to add a little code to the /View/Todo/

Index.aspx to finish off this feature. Here is a snippet of what that looks

like:

Download controllers/new_todo_index.aspx

<asp:Content ID="Content2"

ContentPlaceHolderID="MainContent" runat="server">

<h2><%= ViewData["UserName"] %>'s Todos</h2>

// ... rest of file remains the same

The view code is modified slightly to render the user’s name right into

the page heading. It’s a better practice to only reference ViewData in-

stead of directly accessing the Session, because it keeps other compo-

nents out of the view.

The HttpContext is now fully testable using MVCContrib. We can move

on to using it to implement some new functionality needed in our appli-

cation that requires the use of HttpSessionState.

Adding a Summary of Activity Using the Session

You can access the HttpSessionState through the Session property inside

any controller. Sessions are useful for storing information between

requests about the same user. For example, a shopping cart with a
Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/controllers/new_todo_index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=113

STORING INFORMATION IN MEMORY 114

When Open Source Doesn’t Apply

Sometimes we encounter a corporate policy or specific legal
requirement that prevents us from using open source. Although
this can be frustrating from a developer’s point of view, we have
to try to understand the business reason. Not all open source
projects are equal in terms of recognition. For example, NUnit
is widely accepted, whereas MVCContrib is relatively new to
market.

Many open source projects do not have official vendor support.
Often it’s just a couple of developers coding in their spare time,
and companies pay licenses for software because it’s backed
by a level of support. Companies feel they can turn to some-
one to fix bugs, or get help with using the tools, when they are
paying for support. This is why, up until now, we have not used
MVCContrib to solve all of our testing problems. But with the
more difficult way to test controllers covered, we’ll now intro-
duce a easier way.

number of products in it is a classic example of information stored

in HttpSessionState. You can add any object into the Session by assign-

ing it, like Session["key"] = "someValue";, or you can retrieve it by typing

var someVariable = Session["key"]. Be warned, though, that storing objects

in Session is expensive in terms of both memory and application perfor-

mance. Information that is a good candidate for the Session is both small

in size and will be thrown away after the user logs out. Otherwise, you

can consider storing it in the database.

Similar to User, Session is accessible via the HttpContext and requires the

use of our new tool, TestBuilderController. We want to add a page to our

application that gives us a summary of what to-dos have been added

since we’ve logged in. Analogous to the way that online banking displays

bills or transfers you’ve made during the session, GetOrganized will tell

us what Todos we’ve added since we’ve logged in.

First we’ll learn how to use the Session to track users’ Todo activities.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=114

STORING INFORMATION IN MEMORY 115

Adding Todos to the SessionSummary

We’re going create a new class, SessionSummary, to track to-dos that have

been added. This class will attach to the Session. We’ll create SessionSum-

mary under the Model directory, because it will eventually have its own

controller and views. The code for SessionSummary is as follows:

Download controllers/SessionSummary.cs

Line 1 public class SessionSummary
- {
- public List<Todo> AddedTodos { get; private set; }
-

5 public SessionSummary()
- {
- AddedTodos = new List<Todo>();
- }
-

10 public bool Equals(SessionSummary other)
- {
- if (ReferenceEquals(null, other)) return false;
- if (ReferenceEquals(this, other)) return true;
-

15 //This Equals makes sure what's in the lists is
- // compared, not the reference
- equality on the List<T> itself
- if (other.AddedTodos.Count != other.AddedTodos.Count)
- return false;

20

- for (int i = 0; i < other.AddedTodos.Count; i++)
- {
- if (!other.AddedTodos[i].Equals(AddedTodos[i]))
- return false;

25 }
- return true;
- }
-

- public override bool Equals(object obj)
30 {

- if (ReferenceEquals(null, obj)) return false;
- if (ReferenceEquals(this, obj)) return true;
- if (obj.GetType() != typeof (SessionSummary))
- return false;

35

- return Equals((SessionSummary) obj);
- }
-

- public override int GetHashCode()
40 {

- return (AddedTodos != null ? AddedTodos.GetHashCode() : 0);
- }
- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/SessionSummary.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=115

STORING INFORMATION IN MEMORY 116

This class has a list of Todo items, but since we have an uninitialized list

when the object is created, we initialize AddedTodos in the constructor.

You’ll notice on line 17 that the Equals() method checks the contents of

the list, not the reference to the list itself.

The next step is to write a test for TodoController’s Create(Todo todo) to

verify that after we create the Todo we also put it into the Session. This

means going back to modify the old test Should_Add_Todo_Item(), from

Section 3.3, Creating a To-Do, on page 56, to look like this:

Download controllers/TodoControllerTest.cs

[Test]

public void Should_Add_Todo_Item()

{

var todo = new Todo

{Title = "Learn more about ASP.NET MVC Controllers"};

var sessionSummary = new SessionSummary();

sessionSummary.AddedTodos.Add(todo);

var todoController = new TodoController();

var builder = new TestControllerBuilder();

builder.InitializeController(todoController);

todoController.Create(todo).

AssertActionRedirect().ToAction("Index"));

Assert.Contains(todo, Todo.ThingsToBeDone);

Assert.AreEqual(sessionSummary,

todoController.Session["SessionSummary"]);

}

Similarly to testing the User, we need to initialize a TestControllerBuilder to

ensure we don’t get a NullReferenceException when trying to access the

Session.

Note that we use the method AssertActionRedirect() in conjunction with

ToAction(string actionName) instead of doing an Assert.AreEquals(). This is

another convenience method of MVCContrib that helps shorten and

clarify our controller tests.

This test is now failing, and to get it passing, we’ll need to modify the

private method CreateTodo(). We want to make the change there so that

when a Thought converts to a Todo, it is also added to the SessionSummary.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=116

STORING INFORMATION IN MEMORY 117

Adding the SessionSummary to the Session looks like this:

Download controllers/TodoController.cs

Line 1 private void CreateTodo(Todo todo)
2 {
3 Todo.ThingsToBeDone.Add(todo);
4 if (Session["SessionSummary"] == null)
5 Session["SessionSummary"] = new SessionSummary();
6

7 var summary = ((SessionSummary) Session["SessionSummary"]);
8 summary.AddedTodos.Add(todo);
9 }

This makes the test pass! Looking at this code, we’ll see that we first

check whether a Session has been stored in the key SessionSummary on

line 4. This check is important to prevent a null object the first time a

user adds a Todo.

The other code worthy of note is on line 7, where we cast the result from

the Session to a SessionSummary that we expect. This is how to retrieve

objects from the Session. We don’t need to reassign the Session after we

modify SessionSummary, because it updates by reference. Now that we

have the Session populated with the information we need, we can display

it to the user.

Displaying Session Information

Having all this information in the Session is the first step. The second

step is to display the information to users of GetOrganized. In this case

we’re talking about to-do items, but often we’ll have objects that require

more than one screen to completely fill in. For example, if your user reg-

istration requires a lot of information, it might be split up into multiple

screens. Using the Session to store the information until all steps are

complete prevents against premature database calls.

Now let’s display those Todos. We’ll need a new controller to display our

SessionSummary. Driving this from a test looks like this:

Download controllers/SessionControllerTest.cs

Line 1 [Test]
- public void Should_Display_SessionSummary_On_Index()
- {
- var summary = new SessionSummary {
5 AddedTodos = {
- new Todo { Title = "Complete Management Report"}
- }
- };
-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/controllers/SessionControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=117

STORING INFORMATION IN MEMORY 118

10 var sessionController = new SessionController();
- var builder = new TestControllerBuilder();
- builder.InitializeController(sessionController);
- builder.Session["SessionSummary"] = summary;
-

15 Assert.AreEqual(summary,
- sessionController.Index().AssertViewRendered().ViewData.Model);
- }

This test fails because we are not setting anything up in the model in

SessionController. The one thing that is different in this test is on line

13. We are setting up the expectation that there is information in the

session from a previous request. Let’s get the test to pass:

Download controllers/SessionController.cs

Line 1 public class SessionController : Controller
2 {
3 public ActionResult Index()
4 {
5 if (Session["SessionSummary"] == null)
6 Session["SessionSummary"] = new SessionSummary();
7

8 return View(Session["SessionSummary"]);
9 }

10 }

The test bar is now green, and we also made use of the shortcut we

learned earlier on line 8 to pass the model in the View(). We perform a

similar check if the Session is null, like we did on TodoController’s private

method CreateTodo().

Having a working controller that sets the model means we can display

the content using a simple typed view, as shown here:

Download controllers/Session_Index.aspx

<%@ Page Title="" Language="C#"

MasterPageFile="~/Views/Shared/Site.Master" Inherits=

"System.Web.Mvc.ViewPage<GetOrganized.Models.SessionSummary>"%>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"

runat="server">

<h2>New Things You Have to Do</h2>

<% foreach (var todo in Model.AddedTodos)

{%>

<%= Html.Encode(todo.Title) %>

<%} %>

</asp:Content>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/SessionController.cs
http://media.pragprog.com/titles/jmasp/code/controllers/Session_Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=118

MANIPULATING FILES 119

Figure 5.5: Use HttpSessionState to display information that is short-

lived, like the newly added to-dos since login.

The view code iterates through the AddedTodos to display the items in

an unordered list. This satisfies our need, and now we know what new

todos we’ve added this session, as shown in Figure 5.5.

HttpContext can help with more than just session information. It can

also be used to upload and download files. To do this, it collaborates

with the action result FilePathResult.

5.5 Manipulating Files

A picture is worth a thousand words, and what better way to illustrate

this than to have us upload sketches, diagrams, and photos when we

create a new Thought in our application. We’ll also need to view and

download these images with the help of FilePathResult, an action result

that streams a file from the web server to our desktop. In this section,

we’re going to deal with uploading an image and downloading it to be

saved on our computer.

The following code is not production ready because of a security con-

cern. When you allow users to upload files to your site, it’s a best prac-

tice to have your web application save them to a directory that is not

accessible over the Web. This allows you to preform some validations,

such as a virus scan, before making it available for others to see. To

simplify the learning here, these sorts of precautions have been skipped

intentionally.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=119

MANIPULATING FILES 120

Upload Images to Our Thoughts

On the create screen, we’re going to add a field to upload an image that

we can review later. Before we modify /View/Thought/Create.aspx, we are

going to extend the test of the Create(Thought thought) method in the

ThoughtController. We should review what the old test does right now,

prior to changing it:

Download controllers/ThoughtControllerTest.cs

[Test]

public void Should_Add_A_Thought_On_Create()

{

Thought newThought = new Thought

{

Id = 3,

Name = "Research big screen TVs",

Topic = Topic.Topics.Find(topic => topic.Name == "Home"),

};

var result = (RedirectToRouteResult)

new ThoughtController().Create(newThought);

Assert.Contains(newThought, Thought.Thoughts);

Assert.AreEqual("Index", result.RouteValues["Action"]);

}

The test adds a Thought to the ThoughtController, ensures it is added to

the collection Thought.Thoughts, and redirects to the Index() action.

Now we will introduce a little more of Rhino Mocks than we have used

previously. Because uploaded files are accessed via HttpContext.Request.

Files, we have to stub out the files beyond what TestControllerBuilder is

capable of doing. When we add new files and store them in a direc-

tory (in the upcoming example the UserContent directory), we need to

make sure they are uniquely named. A primitive way of doing this is to

randomly generate a number to prepend to the filename; for example,

picture.jpg becomes 12345-picture.jpg. The modified test therefore ends

up looking like this:

Download controllers/ThoughtControllerTest.cs

Line 1 [Test]
- public void Should_Add_A_Thought_And_Upload_An_Image_On_Create()
- {
- Thought newThought = new Thought
5 {
- Id = 3,
- Name = "Research big screen TVs",
- Topic = Topic.Topics.Find(topic => topic.Name == "Home"),
- };

10

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/controllers/ThoughtControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=120

MANIPULATING FILES 121

- MockRepository mocks = new MockRepository();
- var file = mocks.Stub<HttpPostedFileBase>();
- Expect.Call(file.FileName).Return("bigscreen.jpg");
- Expect.Call(file.ContentLength).Return(12);

15 mocks.Replay(file);
-

- var thoughtController = new ThoughtController();
- var builder = new TestControllerBuilder();
- builder.InitializeController(thoughtController);

20 builder.Files["ImageAttachment"] = file;
-

- thoughtController.Create(newThought).
- AssertActionRedirect().ToAction("Index");
-

25 Assert.Contains(newThought, Thought.Thoughts);
-

- Assert.IsTrue(newThought.
- ImageAttachment.Contains("UserContent/"));
- Assert.IsTrue(newThought.

30 ImageAttachment.Contains("-bigscreen.jpg"));
- }

On line 11, we introduce the MockRepository from Rhino Mocks. This

class generates new stubs or mocks. Since the interface to Request.Files

is read-only, we create a stub from MockRepository that will fake out

calls to HttpPostedFile, which is the file we are pretending to upload.

We need to receive a filename back, so on line 13 we use Rhino Mocks’

method Expect() to stub the property FileName to return bigscreen.jpg. To

finish off our stub, we call Replay(object obj) with HttpPostedFile.

Replay(object obj) tells Rhino Mocks to execute the commands contained

in the last Expect() statement.

With our stub HttpPostedFile configured, we use TestControllerBuilder to call

the actual attachment on line 20. This means we are expecting to have

an input tag with the name ImageAttachment on the page where we

upload the file. To test the randomly added numbers to the filename,

we have to do two separate AreEquals() calls on line 28. Another way to

test random numbers is to inject the behavior through a provider that

we can stub out, but in this case it’s a simple enough workaround.

The test is now failing. Let’s get it to pass:

Download controllers/ThoughtController.cs

Line 1 [AcceptVerbs(HttpVerbs.Post)]
- public ActionResult Create(Thought newThought)
- {
- newThought.Topic =
5 Topic.Topics.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ThoughtController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=121

MANIPULATING FILES 122

- Find(topic => topic.Id == newThought.Topic.Id);
-

- HttpPostedFileBase file = Request.Files["ImageAttachment"];
- if (file.ContentLength != 0)

10 {
- int randomNumber =
- new Random().
- Next(100000, Int32.MaxValue);
- string imgUrl =

15 "UserContent/" + randomNumber
- + "-" + file.FileName;
- file.SaveAs(
- Server.MapPath("~/UserContent") + "/" +
- randomNumber + "-" + file.FileName);

20 newThought.ImageAttachment = imgUrl;
- }
-

- Thought.Thoughts.Add(newThought);
- return RedirectToAction("Index");

25 }

On line 8, we pull the file out of the Request.Files and ensure that some-

one has actually attached a file before we prepare to save it to the web

server. The Random class adds a six- to ten-digit number to the filename

we save on line 13. This helps prevent against name clashes, but to be

sure, we might have done a File.Exists before actually saving the file on

line 19 and attaching it back to the Thought.

Once you add the ImageAttachment to Thought, the test passes. We can

take a look at how to wire this up with our /View/Thought/Create.aspx:

Download controllers/Thought_Create.aspx

<form action="Create" method="post" enctype="multipart/form-data">

<fieldset>

<legend>Fields</legend>

<p>

<label for="Id">Id:</label>

<%= Html.TextBox("Id") %>

<%= Html.ValidationMessage("Id", "*") %>

</p>

<p>

<label for="Name">Name:</label>

<%= Html.TextBox("Name") %>

<%= Html.ValidationMessage("Name", "*") %>

</p>

<p>

<label for="Topic">Topic:</label>

<%= Html.DropDownList("Topic.Id",

(List<SelectListItem>) ViewData["Topics"])%>

</p>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/Thought_Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=122

MANIPULATING FILES 123

Figure 5.6: Adding an input tag of the type File adds the browse option

to attach the file.

<p>

Attachment: <input type="file" name="ImageAttachment" />

</p>

<p>

<input type="submit" value="Create" />

</p>

</fieldset>

</form>

Uploading files to a site involves modifying the HTML of the page to

accept multipart form data. This means we need to remove the HTML.

BeginForm() with coding our own form to have an encoding, enctype, of

multipart/form-data. We also had to add the input field with the name

ImageAttachment and the type file to line up with the string we are look-

ing for on the controller side. We can see the code in action in Fig-

ure 5.6. Next we’ll download and view our images.

Downloading with FilePathResult

Saving or displaying a file’s contents is just as important as upload-

ing it. GetOrganized needs to have the ability to display the attached

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=123

MANIPULATING FILES 124

images or download them when viewing a Thought. Since uploading is

now working, we can now proceed to get the download going.

We’ll want to write a test for a new action called Download(int id), which

will return the FilePathResult. Our test will be as follows:

Download controllers/ThoughtControllerTest.cs

[Test]

public void Should_Download_File_With_Random_Number_Removed_From_Name()

{

var expectedThought = Thought.Thoughts.First();

expectedThought.ImageAttachment =

"UserContent/232923-picture.jpg";

var fileresult = new ThoughtController().

Download(expectedThought.Id).

AssertResultIs<FilePathResult>();

//actual filename on web server

Assert.AreEqual("~/UserContent/232923-picture.jpg",

fileresult.FileName);

//file name that user downloads

Assert.AreEqual("picture.jpg",fileresult.FileDownloadName);

}

The key to this test is that we use another MVCContrib method, Assert-

ResultIs<FilePathResult>(), to validate that we are returning a file to the

output. The other two fields we’ll assert are FileName, which represents

the file on the web server itself, and FileDownloadName, the filename

that is saved on the user’s computer. In this test, we wanted to make

sure that our random numbers are excluded from the download name

because they really have no meaning to the user.

Let’s move on to getting the test to pass:

Download controllers/ThoughtController.cs

//

// GET: /Thought/Download/5

public FilePathResult Download(int id)

{

Thought thought = Thought.Thoughts.Find(x => x.Id == id);

return File("~/" +

thought.ImageAttachment, "application/octet-stream",

Path.GetFileName(thought.ImageAttachment)

.Split(new[] {'-'}, 2)[1]);

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/controllers/ThoughtController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=124

MANIPULATING FILES 125

To return a FilePathResult, we use the File() method. We specify the phys-

ical path to the file on the web server, which we get from ImageAttach-

ment, the content type of application/octet-stream, and the name we want

to save the file as on the user’s machine. To get the physical path of the

file, we had to add ~/ to the path, because this marker signifies the root

of the web application.

The Multipurpose Internet Mail Extensions (MIME) type is set to

application/octet-stream to prompt the user to a download the file, as

opposed to viewing the image in the browser. For example, a MIME type

of image/jpg would render the same file in the browser as an image. In

the final parameter of File(), we call Split() on the filename to remove the

random numbers.

This causes the test to pass, but now we need to add a link to download

our attached images on the /View/Thought/Index.aspx view:

Download controllers/Thought_Index.aspx

<% //inside View/Thought/Index.aspx %>

<td>

<%= item.ImageAttachment != null ?

Html.ActionLink("Download Image", "Download", new { item.Id })

: MvcHtmlString.Empty %>

</td>

Since not every Thought has an image attached to it, the link we place

on the Index.aspx page needs to be dependent on whether the ImageAt-

tachment property has been set (Figure 5.7, on the next page). After that

check, we need to generate an action link to the Download() action and

pass the Id of the Thought.

We can now upload and download images in GetOrganized. Most busi-

ness users today are very familiar with email attachments and expect

uploading and downloading to be part of their applications.

Up Next

We’ve built security using action filters and learned to download files

with action results. We also know how to have the controller use HttpSes-

sionState to store certain kinds of information. We will continue to lever-

age these features throughout our development of GetOrganized and in

Part III, “Integrating with Other Frameworks,” of this book.

Next up, we’ll zoom in on how to make our views more visually appeal-

ing and reusable with the help of master pages, and we’ll see a few more

useful HTML helpers.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/controllers/Thought_Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=125

MANIPULATING FILES 126

Figure 5.7: Changing the MIME type to application/octet-stream prompts

the user to download or open the file.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=126

It is better to be beautiful than to be good, but it is better to

be good than to be ugly.

Oscar Wilde

Chapter 6

Enhancing Views with HTML
Helpers and Master Pages

Building a successful web application requires excellent design and

usability, not just killer functionality. Take Facebook, for example.

When Facebook first came out, it had pretty much the same functional-

ity as MySpace, but it was cleaner and more usable. Facebook’s design

focused on a simple three-column layout, while MySpace’s had mul-

tiple tiles that allowed users to put whatever HTML markup on their

home pages they wanted. Facebook gained popularity in part because

MySpace’s design was less usable.1 Therefore, let’s not neglect design;

in this chapter, we’ll work on making our sample application look good.

So far, we’ve used HTML helpers to render, create, and edit model data

using common tags such as textboxes and drop-downs. GetOrganized

currently leaves a lot to be desired in terms of style. In this chapter,

we’ll work on improving the look of the site with Cascading Style Sheets

(CSS) and the implementation of master pages. We’ll also work on build-

ing our own HTML helper to move presentation logic out of the view and

into a testable class. This will feed into how to validate user inputs and

display friendly, informative validation messages. Finally, we’ll discuss

advanced view helpers, which is the MVC analog of traditional ASP.NET

web controls. All of these will make GetOrganized a more user-friendly

application.

To start off, we’ll work on learning a new HTML helper method to render

radio buttons (Figure 6.1, on the following page).

1. See http://web.archive.org/web/20050101092643/http://www.myspace.com/. This link is very

slow to load; you may have to try it several times.

http://web.archive.org/web/20050101092643/http://www.myspace.com/

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 128

Figure 6.1: Radio buttons display choices in a more visible way than a

drop-down does.

6.1 Making Our Site Presentable with HTML Helpers

Sometimes we want to display a choice to a user that emphasizes a big-

ger consequence than a drop-down does. Radio buttons work well for

this purpose, because they clearly show the user that they are making a

choice between different paths. For GetOrganized, we want to empha-

size the choice between a Thought and a Todo that we want to tackle

later. When we left the ThoughtController class in Section 4.4, Controllers

Talking to Controllers, on page 87, we were converting a Thought into a

Todo. That works well for a Thought that maps easily to a single task, but

we also want to be able to process big ideas and ideas that we want to

tackle in the future. For example, converting the Thought “Build a com-

piler” into a single Todo doesn’t make a lot of sense. That’s a project that

will take a considerable amount of our time, and right now we’re busy

enough learning MVC. However, if we think the idea will still interest

us in the future, we will want to put it into a new Someday category.

To build this feature, we need to modify the Process.aspx view by adding

the choice of turning a Thought into a Todo or a Someday.

Processing Thoughts Take II: Actionable or Maybe Someday

First let’s drive the conversion of a Thought through a test. To do this,

we need to modify the Thought model slightly:

Download views/Thought.cs

Line 1 public class Thought
- {
- public static List<Thought> Somedays = new List<Thought>
- {
5 new Thought{Name = "Learn Smalltalk",
- Topic = Topic.Topics.Find(topic => topic.Name == "Work")}
- };
-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Thought.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=128

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 129

- public static List<Thought> CurrentThoughts = new List<Thought>
10 {

- new Thought{Name = "Learn C# 3.5",
- Topic = Topic.Topics.Find(topic => topic.Name == "Work")},
- new Thought{Name = "Build a Killer Web Application",
- Topic = Topic.Topics.Find(topic => topic.Name == "Home")}

15 };
-

- public int Id { get; set; }
- public Topic Topic { get; set; }
- public string Name { get; set; }

20 public string ImageAttachment { get; set; }
- }

Instead of creating a class called Someday, we can add a list to store

our Somedays on line 3. We didn’t create a new class here because a

Someday looks exactly like a Thought, except that we aren’t going to put

it into action for a long time. The single responsibility principle of object-

oriented programming (see the Joe Asks. . . on the following page) tells

us that each class has a single job or function. It would be hard to

define a new job for a Someday that is different from a Thought; therefore,

we won’t create a new class.

The variable name Thoughts is now ambiguous, so renaming it to Cur-

rentThoughts helps clear this up. We rename the collection Thoughts to

CurrentThoughts on line 9. Renaming is a common refactoring. With Re-

Sharper, we use the shortcut F2 to help us clarify the intent of a class.

After any refactoring, it’s a good practice to run the whole test suite.

This makes sure everything still works before we proceed; remember

“red, green, refactor” back in Figure 2.2, on page 34?

Let’s write a test inside ThoughtControllerTest, which looks like this:

Download views/ThoughtControllerTest.cs

[Test]

public void Should_Convert_A_Thought_To_A_Someday()

{

Thought writeACompiler = new Thought { Name = "Write a Compiler" };

new ThoughtController().MakeASomeday(writeACompiler).

AssertActionRedirect().ToAction("Process");

Assert.Contains(writeACompiler, Thought.Somedays);

Assert.IsFalse(Thought.CurrentThoughts.Contains(writeACompiler));

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/ThoughtControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=129

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 130

Joe Asks. . .

What Is the Single Responsibility Principle?

Often abbreviated as SRP, the single responsibility principle is
one of five principles in SOLID object-oriented design.∗ SRP says
that each class has only one responsibility. This is one test to see
whether a class needs to be broken up into two or whether it
deserves to exist at all. For example, if you have a class that
you describe as “This class manages a user’s address and how
they log in and what they’ve bought recently...,” then it’s doing
too much. Using the word “and” when describing your class is
a code smell. Remember to keep SRP in mind because it helps
keep your classes concise.

∗. http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Here we make two assertions to ensure that a Thought gets removed

from CurrentThoughts and moved into Somedays. We then assert a redi-

rect to the action Process() using the MVCContrib extension method

AssertActionRedirect.ToAction(string actionName).

Let’s get this test to pass by implementing the new method in Thought-

Controller:

Download views/ThoughtController.cs

// POST: /Thought/MakeASomeday

[HttpPost]

public ActionResult MakeASomeday(Thought aThoughtToDoSomeday)

{

Thought.Somedays.Add(aThoughtToDoSomeday);

Thought.CurrentThoughts.Remove(aThoughtToDoSomeday);

return RedirectToAction("Process");

}

The implementation of the method MakeASomeday() follows the asser-

tions laid out in the test. We remove the new Thought from the Current-

Thoughts collection and add it to the Somedays collection. We redirect to

the Process() action to prompt the user to work on the next Thought.

Report erratum

this copy is (P1.0 printing, June 2010)

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://media.pragprog.com/titles/jmasp/code/views/ThoughtController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=130

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 131

We need to make this work for the view, so we’ll modify the code in

Process.aspx and introduce the radio button selector shown here:

Download views/Process.aspx

Line 1 Actionable: <%= Html.RadioButton("IsActionable",
- "Action", true, new {id = "actionRadio"}) %>
- Maybe Someday: <%= Html.RadioButton("IsActionable",
- "MaybeSomeday", false, new {id = "someDayRadio"}) %>
5

- <div id="actionDiv">
- <fieldset>
- <legend>Actionable</legend>
- <% //... convert Todo form removed to shorten %>

10 </fieldset>
- </div>
- <div id="someDayDiv">
- <% using (Html.BeginForm("MakeASomeday", "Thought")) {%>
- <fieldset>

15 <legend>Maybe Someday</legend>
- <p>
- <%= Html.Hidden("Id", Model.Id) %>
- <%= Html.Hidden("Name", Model.Name) %>
- <%= Html.Hidden("Topic.Id", Model.Topic.Id) %>

20 <input type="submit" value="Do it Someday" />
- </p>
- </fieldset>
- <% } %>
- </div>

First note the introduction of the radio button HTML helper method

RadioButton(string propertyName, string valueOfSelection, bool isSelected). We

add two radio buttons on line 2: one if the user thinks the Thought is

actionable and the other if it’s a maybe-someday activity. We introduce

another important component to HTML helpers on these lines as new {id

= "actionRadio"} is passed into the parameters. Using this syntax creates

a unique id attribute when the page renders. This isn’t exclusive to

radio buttons. We can use the last parameter of HTML helpers to pass

in any HTML attributes we want rendered. Another example is to pass

in a CSS class attribute, which we’ll do in Section 6.1, Adding a Dash

of CSS to HTML Helpers, on page 133. If you are unfamiliar with CSS, a

quick tutorial is available on Patrick Griffith’s website.2

2. http://www.htmldog.com/guides/cssbeginner/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Process.aspx
http://www.htmldog.com/guides/cssbeginner/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=131

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 132

Figure 6.2: Displaying both divs here is bad user design. Let’s use

jQuery to hide and show only what is selected.

We create two different HTML div tags on lines 6 and 12 to build up

separate HTML forms for both scenarios. On line 13 in doItSomedayDiv,

we wire up the form to point to the ThoughtController with the MakeA-

Someday() action. After adding this, we can fire up the application and

then move Thoughts into the collection of activities we’ll take on Someday

(Figure 6.2).

We now have a new problem: whichever radio button the user selects,

two divs are displayed. To fix this, we pull out a little jQuery to make

the page more usable.

Hide and Showing Divs with jQuery

Back in Section 4.3, Adding a Little Color with jQuery, on page 80, we

inserted a color picker to GetOrganized. This time we’re going to use

jQuery to show either the actionable or the maybe-someday section

based on which radio button is selected. If jQuery is totally unfamiliar

to you, it will be helpful to read through the basics of selector, events,

and effects in the tutorial at http://jquery.com.

Report erratum

this copy is (P1.0 printing, June 2010)

http://jquery.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=132

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 133

For now, we want to hide the right div when the user clicks the Action-

able or Maybe Someday button. The following is how this looks in our

Process.aspx:

Download views/Process.aspx

Line 1 <asp:Content ID="Content2" ContentPlaceHolderID="Head"
- runat="server">
- <script type="text/javascript">
- $(document).ready(function(){
5

- $("#actionRadio").click(function(){
- $("#actionDiv").slideDown();
- $("#someDayDiv").slideUp();
- });

10

- $("#someDayRadio").click(function(){
- $("#actionDiv").slideUp();
- $("#someDayDiv").slideDown();
- });

15 });
- </script>
- </asp:Content>

On line 2, we add our JavaScript to the head section of the page by

using the content placeholder. We’ll talk more about content placehold-

ers later in this chapter in Section 6.3, Simplifying Page Layouts with

Master Pages, on page 139. Next we define our standard jQuery block

where our JavaScript code will execute:

$(document).ready(function(){ ... })

Both lines 6 and 11 are essentially inverses of the same function. They

each start by wiring up the click event to their respective radio but-

ton. Next, we’ll hide one div with slideUp and show the other with the

slideDown jQuery effects. When we load up the page and click the radio

buttons, we can now hide and show the right div for the job.

We’re looking a lot better, but when the page first loads, we still see two

boxes. Let’s use a little CSS to hide both of these divs when the page

first loads.

Adding a Dash of CSS to HTML Helpers

When we first wrote the code for Process.aspx in the previous section, we

gave the divs specific names, and we can access them via jQuery.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Process.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=133

MAKING OUR SITE PRESENTABLE WITH HTML HELPERS 134

To hide these divs when the page loads, we’ll define two of the styles in

our CSS, like so:

Download views/Process.aspx

<asp:Content ID="Content2" ContentPlaceHolderID="Head"

runat="server">

<style type="text/css">

#actionDiv

{

display: none;

}

#someDayDiv

{

display: none;

}

</style>

// ... omitted javascript ...

</asp:Content>

Instead of a script tag, we create a style tag to set up our CSS styles

for the two divs. jQuery allows us to select elements by ID; CSS has

the same feature. We define two styles: one for #actionDiv and the other

for #someDayDiv. The display attribute for each is set to none. Note that

most of the time we will extract our styles and JavaScript into separate

files. To extract CSS into a separate file, all we need to do is insert the

following code:

<link rel="stylesheet" type="text/css" href="FileName.css" />

Then remove the style tags and paste the contents into the new file.

Similarly, for JavaScript, we just insert the HTML:

<script type="javascript" src="FileName.js"></script>

Now place the contents of our script into that file, and presto! Separat-

ing CSS and JavaScript into files makes them easier to read most of the

time.

At the start of this chapter, we said we wanted to improve the look and

feel of the site. This is most easily accomplished through CSS. By using

the id and class HTML attributes while we program our views, we can

then apply styles in a separate file for the whole site. Not only does this

ensure consistency, but it makes it easy to tweak the visual look when

all the styling is in one place.

We’ve talked about applying styles through the id attribute, but we

also need to know how to use the class attribute. CSS classes act on

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Process.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=134

BUILDING A CUSTOM HTML HELPER 135

every element in the HTML document that has the class="nameOfClass"

attribute applied to it. Having CSS classes on our HTML helper allows

us to customize the look and feel of the site. In the previous section,

we learned about adding a parameter for the radio button with new {id

= "nameOfId"}. Similarly, if we want to add a CSS class, we do it like new

{@class = "className"}. Notice that we had to apply the special character

@ because in C# class is a keyword that signifies a new object definition,

which causes a compiler error.

Knowing more about how to use HTML helpers, we can now work on

extending HTML helpers to build our own Color drop-down box. When

we create a Thought and select its Topic, we visually associate a color

with it.

6.2 Building a Custom HTML Helper

When developing applications, standard HTML helpers will meet a great

number of our needs. However, there are often situations we have to

extend them such as when we want to display standard input tags in

slightly different ways, across more than one page. Traditional ASP.NET

would have accomplished this through web or user controls. With MVC,

we do this through custom HTML helpers. We will also talk about

advanced HTML helpers in Section 6.5, Replacing Web Controls with

Advanced HTML Helpers, on page 146.

Back in Section 4.2, Using the FormCollection and TempData Objects,

on page 77, we used the ToHtml() method on ColorTranslator right inside

the view. Since there are no unit tests covering views, this is never a

good practice. We want to make our view code as simple as possible,

so we wrap up such logic into separate view helpers. In this section,

we’ll extend the normal drop-down to display the colors of the Topics it

contains.

Colorizing a Drop-Down List

Instead of tagging on to the Html class with an extension method, we

are going to create our own class to avoid confusion. This advanta-

geous approach keeps objects small and specific. It can be confusing

to have everything extend Html as the application’s codebase becomes

larger. First we create a directory to hold our view helper. By conven-

tion we can add the directory ViewHelpers to give them a home. We can

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=135

BUILDING A CUSTOM HTML HELPER 136

now test-drive a ColorDropDownHelper by creating a test fixture called

ColorDropDownHelperTest:

Download views/ColorDropDownHelperTest.cs

using GetOrganized.ViewHelpers;

[Test]

public void Should_Render_Colored_DropDown_Markup()

{

var workTopic = new List<Topic> { new Topic {Id=1,

Name="Work", Color= Color.Red} };

Assert.AreEqual(

"<select id=\"Topic_Id\" " +

"name=\"Topic.Id\" style=\"background-color: transparent;\">"+

"<option style=\"color: white; background-color: Red\" "+

"value=\"1\">Work</option></select>",

ColorDropDownHelper.Topic("Topic.Id", workTopic));

}

This test gives the actual HTML output that we want the HTML helper

to produce. In this case, we’ll generate select and option tags populated

with information from the Topic we want. We expect that the result-

ing call to Topic(string propertyName, List<Topic> topics) will modify the style

attribute in the HTML to be the specific background color of that Topic.

If we pass in the workTopic with the Topic color of red, we will see an

option tag render in red. This test is now failing, so let’s get it passing:

Download views/ColorDropDownHelper.cs

public static class ColorDropDownHelper

{

public static string Topic(string name, List<Topic> options)

{
Ê var select = new TagBuilder("select");
Ë select.MergeAttribute("style", "background-color: transparent;");

select.MergeAttribute("name", name);

select.GenerateId(name);

Ì var optionBuilder = new StringBuilder();

foreach (var option in options)

{

var optionTag = new TagBuilder("option");
Í optionTag.MergeAttribute("value", option.Id.ToString());

optionTag.MergeAttribute("style", "color: white; background-color: "
Î + ColorTranslator.ToHtml(option.Color));

optionTag.SetInnerText(option.Name);

optionBuilder.Append(
Ï optionTag.ToString(TagRenderMode.Normal));

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/ColorDropDownHelperTest.cs
http://media.pragprog.com/titles/jmasp/code/views/ColorDropDownHelper.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=136

BUILDING A CUSTOM HTML HELPER 137

Ð select.InnerHtml = optionBuilder.ToString();

return select.ToString(TagRenderMode.Normal);

}

}

This is a fairly large block of code, so we’ll use the previous markers

to guide us. First we’ll use the TagBuilder class at marker Ê. This class

generates the HTML relating to the tag we are using and includes some

other helpful methods. That brings us to the Ë marker where we use the

MergeAttribute() to tack on the transparent background color. Firefox

and other standards-compliant browsers like Opera and Safari require

that this be set to transparent to allow users to see the colors that we

are setting on individual drop-down options. However, there is still a

problem with this helper because the currently selected option doesn’t

display the proper color. This could be solved using JavaScript, but

for now we’ll leave it to be fixed later. We also use the MergeAttribute()

method to add the name attribute of the tag so that it wires up to the

next HTTP POST. This is because forms take what is posted by name,

never by ID. This method also renders properties such as Topic.Id into

Topic_Id, replacing the dot with an underscore.

Let’s move on to building up the options for our drop-down in marker Ì.

We want to create a StringBuilder because the current TagBuilder that ships

with MVC does not currently support nesting them together. We need

to iterate through each Topic in the list to render an option tag. This is

similar to what we did to create the select tag on the name attribute. We

set the value attribute to the Id of the option tag in marker Í. We then set

each option to its Topic’s background color using the converter method

ToHtml() at marker Î. After that we add the appropriate TagRenderMode

at marker Ï. The output we use is set to Normal mode, which renders

the tag with full start and end tags. For example, the select tag looks

like <select><\select> in Normal mode. The other render modes are useful

in different situations. For example, if we are making a tag that closes

itself like an image tag, we can use SelfClose. If we have a tag that spans

a larger part of the page like a div, we can use the StartTag and EndTag

render options. Finally, we join the options we’ve built with the Select

tag. Using InnerHtml in the Select tag, we assign all the options to be

rendered inside in marker Ð.

This gets our test to pass, but we’ll need to make some changes to the

ThoughtController’s Create() to make sure we no longer return a list of

SelectItems.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=137

BUILDING A CUSTOM HTML HELPER 138

We’ll now modify the existing test:

Download views/ThoughtControllerTest.cs

[Test]

public void Should_List_Topics_When_Creating_New_Thoughts()

{

var expectedList = Topic.Topics;

var viewDataOfTopics = new ThoughtController().

Create().AssertViewRendered().ViewData["Topics"];

Assert.AreEqual(expectedList, viewDataOfTopics);

}

This code is simplified with the help of MVCContrib and the logic moved

to the view helper. We now call an AssertViewRendered() and return a

viewDataOfTopics to assert against the loaded list. Because we’ve now

removed the need for SelectItems, the following implementation code is

also reduced:

Download views/ThoughtController.cs

public ActionResult Create()

{

ViewData["RealTopics"] = Topic.Topics;

return View();

}

Not only is the test passing now, but it also has a much slimmer Cre-

ate() method. All we do here is load the list of Topics into ViewData. Let’s

now move on to adding our HTML helper to the /Thought/Create.aspx

view:

Download views/Create.aspx

Line 1 <%@ Page Title=""
- Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
- Inherits="System.Web.Mvc.ViewPage<GetOrganized.Models.Thought>" %>
- <%@ Import Namespace="GetOrganized.Models"%>
5 <%@ Import Namespace="GetOrganized.ViewHelpers"%>
-

- <asp:Content ID="Content1"
- ContentPlaceHolderID="MainContent" runat="server">
- <!-- form setup and the rest of the form omitted -->

10 <p>
- <label for="Topic">Topic:</label>
- <%= ColorDropDownHelper.Topic("Topic.Id",
- (List<Topic>) ViewData["RealTopics"]) %>
- </p>

15 </asp:Content>

Adding the import statement on line 5 references our new view helper

and allows us to use it on line 12. With our drop-down complete, users

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/views/ThoughtController.cs
http://media.pragprog.com/titles/jmasp/code/views/Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=138

SIMPLIFYING PAGE LAYOUTS WITH MASTER PAGES 139

of GetOrganized will be better able to categorize Thoughts into different

Topics.

Let’s move on to changing the layout of our site to make it look a whole

lot nicer.

6.3 Simplifying Page Layouts with Master Pages

We first used a master page in Section 4.3, Adding a Little Color with

jQuery, on page 80 when we added the jQuery JavaScript file to the

head section of the HTML page. A master page is a common template

for a group of views. We can think of it as a superclass that contains

generic layout information for all our views. Master pages have been

a feature of ASP.NET ever since 2.0 and are available in MVC as well.

ContentPlaceHolder tags are key elements of a master page. They are

defined areas of the page that are specific to each view. Placeholders

are present in all the view code we’ve worked on so far; we just haven’t

gone into detail about how they work. To start, we’ll spruce up GetOr-

ganized’s home page with the help of the Microsoft ASP.NET Design

Gallery.

Using the ASP.NET Design Gallery

The ASP.NET Design Gallery is a collection of free designs for sites that

take you beyond the blue-gray MVC layout.3 Each layout contains at

least a Site.Master master page and a Site.css CSS file. Most also contain

additional images, view helpers, and JavaScript that help the site look

even better. For GetOrganized, we’re going to use the layout called Gray

Round to give us rounded corners and a simple menu. Even though

the template has a readme.txt file that explains the installation process,

let’s go through the process together.

First we need to download this layout and unzip it.4 The structure of

these templates includes both a C# and a Visual Basic version, but we

are interested only in the C# version in the folder DesignTemplateCS. This

template has a Site.Master file, a Site.css file, three images, and a custom

HTML helper called MenuItemHelper. Before copying over the Site.Master

file, we need to extract the three lines we added to include jQuery and

the ColorPicker plug-in.

3. http://www.asp.net/mvc/gallery

4. http://www.asp.net:80/mvc/gallery/View.aspx?itemid=21

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.asp.net/mvc/gallery
http://www.asp.net:80/mvc/gallery/View.aspx?itemid=21
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=139

SIMPLIFYING PAGE LAYOUTS WITH MASTER PAGES 140

Download views/site.master.clip

<head>

<!-- omitted other scripts -->

<link href="../../Content/colorpicker.css"

rel="Stylesheet" type="text/css" />

<script type="text/javascript"

src="<%=ResolveUrl("~/Scripts/jquery-1.4.1.js") %>">

</script>

<script type="text/javascript"

src="<%=ResolveUrl("~/Scripts/colorpicker.js") %>">

</script>

<asp:ContentPlaceHolder ID="Head" runat="server" />

</head>

Copy them to the clipboard for now. You’ll paste them back in a few

minutes after we move the whole template over. Bringing the template

over means overwriting the following files:

• Site.Master goes in the Views/Shared directory.

• Site.css and the three image files go in the Content directory.

• MenuItemHelper goes in the ViewHelpers directory.

After copying all the files and including them in our Visual Studio solu-

tion, we paste the contents of the old master page back into the new

Site.master. We also tweak it so it will work with our application:

Download views/Site.Master

Line 1 <%@ Master Language="C#"
- Inherits="System.Web.Mvc.ViewMasterPage" %>
- <%@ Import Namespace="Helpers" %>
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
5 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- <html xmlns="http://www.w3.org/1999/xhtml">
-

- <head>
- <meta http-equiv="Content-Type"

10 content="text/html; charset=iso-8859-1" />
- <link href="<%=ResolveUrl("~/Content/colorpicker.css") %>"
- rel="Stylesheet" type="text/css" />
- <link href="<%=ResolveUrl("~/Content/Site.css") %>"
- rel="stylesheet" type="text/css" />

15 <link href="<%=ResolveUrl("~/Content/colorpicker.css") %>"
- rel="stylesheet" type="text/css" />
- <script type="text/javascript"
- src="<%=ResolveUrl("~/Scripts/jquery-1.4.1.js") %>"></script>
- <script type="text/javascript"

20 src="<%=ResolveUrl("~/Scripts/colorpicker.js") %>"></script>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/site.master.clip
http://media.pragprog.com/titles/jmasp/code/views/Site.Master
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=140

SIMPLIFYING PAGE LAYOUTS WITH MASTER PAGES 141

- <asp:ContentPlaceHolder ID="Head" runat="server" />
- </head>
-

- <body>
25 <div class="page">

-

- <div id="header">
- <div id="title">
- <h1>Get Organized</h1>

30 </div>
-

- <div id="logindisplay">
- <% Html.RenderPartial("LogonUserControl"); %>
- </div>

35

- <div id="menucontainer">
- <ul id="menu">
- <%= Html.MenuItem("Home", "Index", "Home")%>
- <%= Html.MenuItem("My Todos", "Index", "Todo")%>

40 <%= Html.MenuItem("Thoughts", "Index", "Thought")%>
- <%= Html.MenuItem("Process Thoughts",
- "Process", "Thought")%>
-
- </div>

45 </div>
-

- <div id="main">
- <asp:ContentPlaceHolder ID="MainContent" runat="server" />
-

50 <div id="footer">
- GetOrganized © Copyright 2010
- </div>
- </div>
- </div>

55 </body>
- </html>

First we make sure to paste the contents above the ContentPlaceHolder

with the ID TitleContent on line 16. Put it above so that any jQuery

placed in the head ContentPlaceHolder executes correctly. Then rename

this placeholder to head on line 21 to ensure that our existing views

continue to work properly. We replace the default title on every page

with GetOrganized on line 29. MenuItemHelper, which generates a menu

of links, is another cool thing we get with this template. We can add all

the links to our existing controllers to the menu on line 38. The site is

now looking spiffy, as shown in Figure 6.3, on the next page.

Before we move on, let’s touch up our site’s home page by modifying

View/Home/Index.aspx. We’d like to add some more obvious links to the

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=141

SIMPLIFYING PAGE LAYOUTS WITH MASTER PAGES 142

Figure 6.3: Applying an ASP.NET design takes about five to ten minutes,

and the effect is dramatic.

page so users can quickly link to their Todo list, Thought creation, or

the process Thought screen. To do this, we’ll introduce the ActionLink()

HTML helper method. To render the links on the home page, we do the

following:

Download views/Index.aspx

Line 1 ﻿<asp:Content ID="indexContent"
- ContentPlaceHolderID="MainContent" runat="server">
- <h2>Quick Links</h2>
-
5 <%= Html.ActionLink("My Todos",
- "Index", "Todo") %>
- <%= Html.ActionLink("Input Your Thoughts",
- "Create", "Thought") %>
- <%= Html.ActionLink("Process Thoughts into Todos",

10 "Process", "Thought") %>
-
- </asp:Content>

Notice how we use ContentPlaceHolderID="MainContent" to encapsulate

the whole view. It will render inside the master page where Content-

PlaceHolder is defined. On line 5, we use the method Html.ActionLink(string

linkText, string actionName, string controllerName) to render three links to

commonly used features of GetOrganized. We also remove the link to

http://asp.net/mvc to make the site look more finished (Figure 6.4, on

the following page).

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Index.aspx
http://asp.net/mvc
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=142

ADDING VALIDATIONS USING MODELSTATEDICTIONARY 143

Figure 6.4: Views can render links with the help of Html.ActionLink.

Now we’ll deal with an key feature of every web application: field valida-

tion. We need to make sure end users properly input Todos into GetOr-

ganized. Valid data is essential and often underestimated in web appli-

cation development. Luckily, MVC helps us out here.

6.4 Adding Validations Using ModelStateDictionary

Validating end-user input happens on almost every page of a web appli-

cation. Sometimes we want to make sure passwords don’t contain spe-

cial characters. Other times we want to ensure a phone number con-

forms to a certain format (such as xxx-xxxx). Because it is such a com-

mon thing to do, MVC provides a simple way of validating model objects

through the ModelStateDictionary class. Any entry that does not conform

to the rules we define adds the specific error to the dictionary. The

dictionary is then available to be rendered by the view. We first saw val-

idation crop up in our views back in Section 3.3, Creating a To-Do, on

page 56, where we saw the Html.ValidationSummary tag. This tag displays

a summary of all validation errors stored in the ModelStateDictionary.

Let’s learn how to use this class by applying validation logic in our

Todo. We are going to make sure that the Title can be a maximum of

twenty-five characters long.

Validation logic lives in the model. In this example, a Todo’s Title needs

to brief. We create the IValidatable interface and apply it to any model

that requires validation.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=143

ADDING VALIDATIONS USING MODELSTATEDICTIONARY 144

Download views/IValidatable.cs

// a marker for Models that can be validated

public interface IValidatable

{

void Validate(ModelStateDictionary state);

}

The interface has only one method, Validate(ModelStateDictionary state),

which contains specific validations when we apply it to the Todo class.

We save this class to the Models/Validation directory in the Web project

to keep it separate from the actual model classes. Let’s write a test to

check for the validation logic on Todo:

Download views/TodoTest.cs

Line 1 [TestFixture]
- public class TodoTest
- {
-

5 [Test]
- public void Title_Length_Should_Be_To_Maximum_Of_25_Characters()
- {
- Todo longTodo = new Todo {Title="123456789ABCDEF123456789ABCDEF"};
- Todo twentyFiveCharacterTodo =

10 new Todo{Title="123456789ABCDEF1234567"};
- Todo shortTodo = new Todo{Title="1234"};
-

- Assert.IsFalse(IsValid(longTodo));
- Assert.IsTrue(IsValid(twentyFiveCharacterTodo));

15 Assert.IsTrue(IsValid(shortTodo));
- }
-

- private bool IsValid(IValidatable toValidate)
- {

20 ModelStateDictionary state = new ModelStateDictionary();
- toValidate.Validate(state);
- return state.IsValid;
- }
-

25 }

This test covers three scenarios: too big (longTodo), just right (twentyFive-

CharacterTodo), and small (shortTodo). After setting up the data, we run

the first assertion on line 13, which calls up the private method

IsValid(IValidateable toValidate) on line 18. We then call on the ModelState-

Dictionary property IsValid() to see whether there are any errors within

the model we just validated on line 22. This gives us a proper failing

test once we add IValidatable to Todo.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/IValidatable.cs
http://media.pragprog.com/titles/jmasp/code/views/TodoTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=144

ADDING VALIDATIONS USING MODELSTATEDICTIONARY 145

Let’s now get this to pass:

Download views/Todo.cs

Line 1 public class Todo : IValidatable
- {
- public string Title { get; set; }
-

5 public void Validate(ModelStateDictionary state)
- {
- if (Title.Length > 25)
- state.AddModelError("Title",
- "Name must not exceed 25 characters");

10 }
- //... omitted rest of class ...
- }

First we implement the IValidatable interface on line 5 and perform our

validation. We have only one validation, which is to check that the

Length of the Title is no longer than twenty-five characters. If this val-

idation fails, we add an error to the ModelStateDictionary through its

method AddModelError(string propertyThatIsValidated, string errorMessage) on

line 9. As we start to add more validations, instead of relying on IsValid,

we can check for the presence of the error message we were expecting

to be thrown. This test is now passing, and we’re ready to move on to

modifying the TodoController to check that the model is valid. We add a

test to the TodoControllerTest to test-drive this:

Download views/TodoControllerTest.cs

[Test]

public void Should_Display_Errors_When_Todo_Is_Not_Valid()

{

var invalidTodo =

new Todo {Title = "123456789ABCDEF123456789ABCDEF"};

var modelState = todoController.Create(invalidTodo).

AssertViewRendered().ViewData.ModelState;

Assert.IsTrue(

modelState.ContainsKey("Title length must be between 0 and 25"));

}

Here we simply want the Create() action to render the Create.aspx screen

again when validation fails. We assert that the error with the key Title

is in the ModelState. This style of searching for the presence of keys in

the ModelState is helpful when we are unit testing additional validations

independently, such as when we are checking that only hex values are

entered for Color, for example.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Todo.cs
http://media.pragprog.com/titles/jmasp/code/views/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=145

REPLACING WEB CONTROLS WITH ADVANCED HTML HELPERS 146

Let’s move onto the controller code:

Download views/TodoController.cs

Line 1 // POST: /Todo/Create
- [Authorize]
- [HttpPost]
- public ActionResult Create(Todo todo)
5 {
- todo.Validate(ModelState);
-

- if (ModelState.IsValid)
- {

10 CreateTodo(todo);
- return RedirectToAction("Index");
- }
- else

- {
15 return View();

- }
- }

We need to validate the model on line 6 by calling our IValidatable inter-

face. Notice that we pass in ModelState, which is a ModelStateDictionary

that exists inside every controller. This object will also be passed to the

view to allow validation error messages to be displayed.

We replace our try/catch block with an if/else on lines 8 and 13 by call-

ing ModelState.IsValid. This is a big victory since swallowing exceptions

is never a good idea (see the Joe Asks. . . on page 60). Doing so makes

it hard to determine what piece of code threw the exception.

Our Create.aspx view is already set up to display validation errors with

an Html.ValidationSummary and several Html.ValidationMessage tags. These

were generated when we used the create view template, so they don’t

need any changes. In Figure 6.5, on the next page, we see the validation

error message telling us a Todo’s Title is too long.

This covers a simple type of validation, but more complicated exam-

ples come up in real-world applications. We’ll cover more sophisticated

validations in Section 9.5, Linking NHibernate and MVC Validations, on

page 203. For now we can move on to a more advanced type of HTML

helper that comes with MVCContrib: the Grid.

6.5 Replacing Web Controls with Advanced HTML Helpers

There has been a huge investment in ASP.NET web controls over the

past eight years. A lot of MVC’s barrier to entry will be eliminated by

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=146

REPLACING WEB CONTROLS WITH ADVANCED HTML HELPERS 147

Figure 6.5: Html.ValidationSummary displays all the errors at the top of

the page. Html.ValidationMessage puts an indicator next to the field that

fails validation.

replacing them with more complex HTML helpers or what we’ll call

advanced HTML helpers. Advanced helpers are feature-rich and re-

usable across different applications, unlike standard HTML helpers.

A custom HTML view helper is specific to one application like our Color

drop-down, but an advanced helper is useful across many MVC appli-

cations. Advanced helpers start out as a custom HTML helper but

evolve into a reusable component as its features become more com-

plex. An example of an open source advanced view helper is the MVC-

Contrib Grid, located in the MvcContrib.UI.Grid namespace. This compo-

nent is analogous to the traditional ASP.NET GridView but extends the

HTML helper to render it. Grids give us a way to list data in a tabu-

lar format, which is a common operation in most web applications. To

demonstrate how this component works, we’re going to reimplement

our /View/Todo/Index.aspx view using the Grid.

There is a short Grid tutorial on the author Jeremy Skinner’s blog.5

The example we’re using is similar to one that Jeremy explains in his

blog. The Grid uses a concept called method chaining, which is common

for domain-specific languages (DSLs). You might have seen this before

5. http://www.jeremyskinner.co.uk/2009/02/08/rewriting-the-mvccontrib-grid/

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.jeremyskinner.co.uk/2009/02/08/rewriting-the-mvccontrib-grid/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=147

REPLACING WEB CONTROLS WITH ADVANCED HTML HELPERS 148

when working with jQuery selectors, where every selector returns an

array to be operated on again:

$("li").(".hidden")

This jQuery returns an array of list elements and then selects elements

inside that array that have the CSS class hidden. Chaining allows us

to tack additional attributes or features onto an existing statement,

eliminating the need for multiple statements. This can be awkward to

use at first, but you’ll quickly realize the benefits through a reduction

of verbose code.

Before we can call Html.Grid, we need to reference the MVCContrib as-

sembly in our project. Simply add the MvcContrib.dll file to the Web

project in GetOrganized. Since we now have the reference, we can jump

right into the /View/Todo/Index.aspx. We remove the existing table and

iterate through a foreach loop with a single call to Html.Grid:

Download views/Todo_Index.aspx

Line 1 <%@ Import Namespace="GetOrganized.Models"%>
- <%@ Import Namespace="MvcContrib.UI.Grid"%>
-

- <asp:Content ID="Content1" ContentPlaceHolderID="head"
5 runat="server">
- <title>My Todos</title>
- </asp:Content>
-

- <asp:Content ID="Content2" ContentPlaceHolderID="MainContent"
10 runat="server">

- <h2><%= ViewData["UserName"] %>'s Todos</h2>
-

- <%= Html.Grid(Model).Columns(column => {
- column.For(

15 todo =>
- Html.ActionLink("Delete", "Delete", new {todo.Title})).
- Named("Delete").DoNotEncode();
- column.For(
- todo =>

20 Html.ActionLink("Edit", "Edit", new { todo.Title })).
- Named("Edit").DoNotEncode();
- column.For(todo => todo.Title);
- })
- .Attributes(style => "text-align: center;")

25 .Empty("You have completed everything. Congrats!")
- %>
-

- <p>
- <%= Html.ActionLink("Create New", "Create") %>

30 </p>
- </asp:Content>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/views/Todo_Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=148

REPLACING WEB CONTROLS WITH ADVANCED HTML HELPERS 149

Since there is no unit testing of the view, we can’t test-drive this. How-

ever, we still have confidence because MVCContrib’s Grid has been well

unit tested by its authors. Note the reduction in line count on this view.

We’ve gone from several pages of code to a short paragraph that does the

same thing. We also see extensive usage of lambda expressions when

defining columns in the Grid. We’ll see a lot more of this in Section 8.3,

Mapping with Fluent NHibernate, on page 177.

Before we can call the Grid, we add an import statement on line 2.

This lets us call the Grid on line 13 where we pass it the model. The

model must be of type IEnumerable<T> for the Grid to work. We then

define columns with the method Columns(). This method takes a lambda

expression for building all the columns we want. Here we want to define

three: the delete link, the edit link, and the Title of the Todo.

For each column we use the method column.For() on line 14 to define

what we want to render. On line 16, we render an HTML link just like we

did previously, except we use the variable todo, which is defined in the

column.For() method. We ensure that the HTML generated for the action

link does not become encoded, which is the default behavior of the Grid.

Line 17 overrides the encoding with the aptly named DoNotEncode()

method. The other two columns follow a similar pattern.

We can also add HTML attributes to the columns on line 24, where we

set the style to align the text of the columns to center. Another useful

feature of the Grid is to display a message when there is no data in the

list. On line 25, we call the method Empty() and pass it in the message

we want displayed when the list is empty. The Grid renders both sce-

narios, one with a set of Todos (Figure 6.6, on the following page) and

one without any (Figure 6.7, on the next page).

Advanced HTML helpers like the Grid simplify the task of displaying

repetitive data. In the near future, more open source and commercial

advanced HTML helpers will become available.

Up Next

We learned more about how to make our site look better through master

pages. We also learned how to move logic from the view itself into either

a custom HTML helper or an advanced one. We touched on adding

validation to our models and having errors display on the view. In the

next chapter, we’ll continue learning about views by seeing how to use

Ajax and partial views. Partials continue to improve the design and

usability of our site while reducing duplicate code.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=149

REPLACING WEB CONTROLS WITH ADVANCED HTML HELPERS 150

Figure 6.6: The MVCContrib Grid displays tabular data with minimal

markup in the view.

Figure 6.7: Using the Empty() method takes care of situations when

there’s nothing in the list.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=150

Far more thought and care go into the composition of any

prominent ad in a newspaper or magazine than go into the

writing of their features and editorials.

Marshall McLuhan

Chapter 7

Composing Views
with Ajax and Partials

Ajax and embedded apps (such as Flash) are changing users’ browsing

experience. In the Microsoft stack, you’ll be using technologies such

as Silverlight, Ajax, and a lot of JavaScript to develop rich Internet

applications (RIAs) with code that executes on the user’s browser. For

example, the latest release of Firefox 3.5 supports the concept of worker

threads. This lets you run JavaScript in the background similar to the

way a desktop application does.

First we’ll focus on improving usability through Ajax. MVC has several

controller ActionResults that help with Ajax calls. MVC also comes bun-

dled with jQuery, which has easy Ajax support. We’ll then introduce

partial views, which allow us to generate fragments of HTML. Partials

reduce duplicate view code, as we’ll learn in Section 7.3, Using Partials

to Reduce Duplication, on page 161. GetOrganized is missing Ajax cur-

rently. To make the application feel more responsive, we’ll be adding

a few new features there. We’ll also cover how to perform common

Ajax operations that many applications require—including GetOrga-

nized. We’ll learn to delete models with the HTTP POST method without

having to click a submit button. Also, one of the most commonly used

Ajax features is to perform an autocomplete search, like Google Suggest

does. We’ll learn how to do that using a jQuery plug-in with MVC.1

1. I’d like to thank my colleague Joe Poon for helping develop the content in this

chapter. It is based on a presentation that we did for a .NET user group in Calgary,

Canada, in 2009. The slides and code are available for download on Joe’s blog at

http://joepoon.com/blog/2009/05/14/jquery-at-the-calgarynet-user-group/.

http://joepoon.com/blog/2009/05/14/jquery-at-the-calgarynet-user-group/

WORKING WITH AJAX 152

7.1 Working with Ajax

Before we work on deleting a Todo with HTTP POST, we’re going to start

with a few principles of Ajax development. This includes getting Visual

Studio to display the jQuery API to help us with our syntax.

In a nutshell, Ajax is a browser-based technology that is called using

JavaScript. It generally is used to update web pages without having to

navigate to a new page or refresh an existing one. Ajax enriches the

user’s experience of a website by reducing the number of times a user

refreshes the page and has to navigate to multiple pages to get some-

thing done. However, some browsers either do not support JavaScript

or have disabled it for security reasons. Some mobile devices have yet

to build in support for JavaScript libraries such as jQuery. This is why

we need to take care to ensure that there is an alternative to Ajax to get

the job done. Supporting less “rich” clients is often referred to as grace-

ful degradation. Simply put, the web page will still work on browsers

that may not support JavaScript or Ajax. Later in Section 7.2, Finding

It in a Snap with Autocomplete, on page 157, we’ll delve into this.

Most end users will be using Ajax, so dealing with graceful degradation

presents the problem of duplicating your programming effort. To pre-

vent having two separate implementations, we need to keep the code

common. Luckily, MVC has the IsAjaxRequest() method available to you

within each controller that can help you create a single implementation.

Doing this avoids the creation of controller actions such as CreateWith-

AJAX(), which does almost the same thing as Create() does.

Working with Ajax involves more JavaScript and jQuery than we have

done so far. One way to help us with the syntax is to enable IntelliSense

for jQuery. This is done by downloading a hot fix to Visual Studio 2008.2

Enabling IntelliSense helps us move between C# and JavaScript with

less stress on the brain. If jQuery is completely unfamiliar to you, take a

look at http://jquery.com for tutorials and simple walk-throughs. If you’re

using Visual Studio 2010, there’s no need to apply a hot fix.

Keeping in mind graceful degradation and having IntelliSense turned

on, we can start working on our first Ajax feature in GetOrganized.

We’re going to delete a Todo by using an HTTP POST.

2. http://code.msdn.microsoft.com/KB958502/Release/ProjectReleases.aspx?ReleaseId=1736

Report erratum

this copy is (P1.0 printing, June 2010)

http://jquery.com
http://code.msdn.microsoft.com/KB958502/Release/ProjectReleases.aspx?ReleaseId=1736
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=152

WORKING WITH AJAX 153

Deleting with HTTP POST

The first Ajax operation we’ll do will revisit the way we deleted Todos in

Section 3.4, Deleting: Creating an Action Without a View, on page 62.

We will now restrict that controller action to allow only HTTP POST.

Starting out we’ll just modify the action method shown here:

Download ajax/TodoController.cs

Line 1 // GET: /Todo/Delete/Title={name of todo}
- [AllowedVerbs(HttpVerb.HttpPost)]
- public ActionResult Delete(string title)
- {
5 Todo.ThingsToBeDone.
- Remove(
- Todo.ThingsToBeDone.Find(todo => todo.Title == title));
-

- if (Request.IsAjaxRequest())
10 return new EmptyResult();

-

- return RedirectToAction("Index");
- }

On line 2, we restrict the Delete() operation to HTTP POST. That was

easy enough, but now our view /View/Todo/Index.aspx will have problems

because it currently tries to delete via an HTTP GET. We also need to

detect whether the call is made with Ajax on line 9. This prevents us

from sending a redirect to a request that really needs no response at all.

In this case, we want to return an EmptyResult because the Ajax request

doesn’t need any data to complete its operation.

Before we can implement our jQuery, we’ll need to create another HTML

helper. This is because in the View/Todo/Index.aspx view we use the Grid

view component. The Grid only accepts a function for each table col-

umn, not hand-coded HTML. Our new HTML helper will create links,

which are anchor tags with specific id and class attributes. An exercise

to flex your NUnit skills is to write your own test for LinkHelper and see

whether you can drive your own implementation. We’ll place this helper

with the others in ViewHelpers:

Download ajax/LinkHelper.cs

Line 1 using System.Web.Mvc;
- using System.Web.Routing;
-

- namespace GetOrganized.ViewHelpers
5 {
- public static class LinkHelper
- {

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/ajax/LinkHelper.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=153

WORKING WITH AJAX 154

- public static string Link(this HtmlHelper helper,
- string linkText, string url, object htmlAttributes)

10 {
- var builder = new TagBuilder("a");
-

- builder.MergeAttributes(
- new RouteValueDictionary(htmlAttributes));

15 builder.Attributes.Add("href", url);
- builder.SetInnerText(linkText);
-

- return builder.ToString();
- }

20 }
- }

This HTML helper is similar to the one we created in Section 6.2, Col-

orizing a Drop-Down List, on page 135. The last parameter of the helper

on line 9 allows us to pass in anonymous objects from our views. Back

in Section 6.1, Adding a Dash of CSS to HTML Helpers, on page 133,

we added a class or id attribute to an HTML helper. This lets us call the

helper and add our own style:

Html.ActionLink("name","action", new { @class = "someCssClass"})

This saves us from having many overloading signatures for our helper.

This way we can pass in whatever other attributes into the tag we

need. To turn this object of attributes into something that TagBuilder

can digest, we convert it to a RouteDictionary on line 14. Once converted

to an IDictionary<string, object>, it is merged into the tag and can be ren-

dered to the view. Since we have our HTML helper coded, we can move

on to the main event—adding jQuery to our view that allows us to delete

a Todo:

Download ajax/Site.Master

Line 1 <head>
- <meta http-equiv="Content-Type"
- content="text/html; charset=iso-8859-1" />
- <link href="../../Content/colorpicker.css"
5 rel="Stylesheet" type="text/css" />
- <link href="../../Content/Site.css"
- rel="stylesheet" type="text/css" />
- <link href="../../Content/colorpicker.css"
- rel="stylesheet" type="text/css" />

10 <script type="text/javascript"
- src="../../Scripts/jquery-1.4.1.js"></script>
- <script type="text/javascript"
- src="../../Scripts/colorpicker.js"></script>
-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Site.Master
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=154

WORKING WITH AJAX 155

15 <script type="text/javascript"
- src="../../Scripts/jquery.autocomplete.js"></script>
- <link href="../../Content/jquery.autocomplete.css"
- rel="stylesheet" type="text/css" />
-

20 <script type="text/javascript"
- src="../../Scripts/jquery-ui-1.8rc3.min.js"></script>
-

- <script type="text/javascript"
- src="../../Scripts/jquery.livequery.js"></script>

25

- <asp:ContentPlaceHolder ID="Head" runat="server" />
- </head>

We’ll be using several other jQuery plug-ins to get this chapter’s code

to work. We’ve added them to the Site.Master so they’re available to

all views. On line 16, we add three jQuery plug-ins: Autocomplete,3

jQuery-UI,4 and Live Query.5 Some plug-ins, like Autocomplete, come

with a CSS file to add the proper look when it’s used. With the neces-

sary JavaScript and CSS files referenced, we can then add the jQuery

we need to do an HTTP POST delete in the View/Todo/Index.aspx file:

Download ajax/Index.aspx

Line 1 <%@ Page Title="" Language="C#"
- MasterPageFile="~/Views/Shared/Site.Master"
- Inherits="System.Web.Mvc.ViewPage<IEnumerable<Todo>>" %>
- <%@ Import Namespace="System.Drawing"%>
5 <%@ Import Namespace="GetOrganized.Models"%>
- <%@ Import Namespace="GetOrganized.ViewHelpers"%>
- <%@ Import Namespace="MvcContrib.UI.Grid"%>
-

- <asp:Content ID="Content1"
10 ContentPlaceHolderID="head" runat="server">

- <title>Index</title>
- <script type="text/javascript" language="javascript">
- $(document).ready(function() {
- $(".deleteTodoLink").click(function() {

15 var element = $(this);
- var todoTitle = element.attr("id");
-

- $.post(
- "Todo/Delete",

20 { title: todoTitle },

3. http://www.pengoworks.com/workshop/jquery/autocomplete.htm

4. http://jqueryui.com/download

5. http://plugins.jquery.com/project/livequery

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Index.aspx
http://www.pengoworks.com/workshop/jquery/autocomplete.htm
http://jqueryui.com/download
http://plugins.jquery.com/project/livequery
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=155

WORKING WITH AJAX 156

- function() {
- element.closest("tr").
- fadeOut("slow", function()
- { $(this).remove(); });

25 }
-);
- });
- });
- </script>

30 </asp:Content>
-

- <asp:Content ID="Content2"
- ContentPlaceHolderID="MainContent" runat="server">
- <h2><%= ViewData["UserName"] %>'s Todos</h2>

35

- <%= Html.Grid(Model).Columns(column => {
- column.For(
- x =>
- Html.Link("Delete", "#", new { id = x.Title,

40 @class = "deleteTodoLink" })).DoNotEncode();
- column.For(
- x =>
- Html.ActionLink("Edit", "Edit", new { x.Title })).
- Named("Edit").DoNotEncode();

45 column.For(x => x.Title);
- })
- .Attributes(style => "text-align: center;")
- .Empty("You have completed everything. Congrats!")
- %>

50

- <p>
- <%= Html.ActionLink("Create New", "Create") %>
- </p>
- </asp:Content>

The first thing to notice is that all of our jQuery code lives inside the

ContentPlaceHolder head at the top of the file. This keeps things more

cleanly separated and makes factoring our jQuery into a separate file

easier if we find it becoming too large.

We need to add a reference to GetOrganized.ViewHelpers on line 6. This

lets us use our new LinkHelper inside the Grid on line 39. Notice how

we use anonymous object initialization here to pass in a class and

id attributes. These attributes make using jQuery selectors easier to

determine which delete link is clicked. Let’s get to the jQuery code itself.

On line 22, we select the element that is clicked through a jQuery selec-

tor using the keyword this. jQuery selectors return an array of HTML

elements, so in this case we are selecting the anchor tag. This allows us

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=156

FINDING IT IN A SNAP WITH AUTOCOMPLETE 157

to grab the id attribute, which is the Title of the Todo that we want to

delete. We are now ready to perform our Ajax call. The $.post() on line

18 is how we instruct jQuery to make our HTTP POST call to the con-

troller. This method takes three parameters. The first two are the URL

and the querystring parameters that it will use to make the request.

The last parameter takes a function that gives instructions of what to

do when the HTTP POST has completed successfully. Here it removes

the Todo row from the table by having it fade out slowly. To select the

element that will be deleted, we call element.closest("tr") on line 22. We

get the link’s closest table row—the tr tag—and the column’s parent.

This selects the whole row we want to delete. On line 24, we remove

the row from the HTML document using the remove() method and the

jQuery fade() effect.

Running the program with F5 will now show that Todos delete with a

nice fade effect. This helps visually indicate to users which items are

deleted. Since we have a little more Ajax in our tool belt, it’s time to add

one of the most popular Ajax functions: autocomplete.

7.2 Finding It in a Snap with Autocomplete

When customers want to build search into a site nowadays, they prob-

ably want autocomplete. Search used to involve a lot of back and forth

between screens or clicks to get the result you were looking for. With

autocomplete, the search results are right there for you to read and to

provide immediate feedback as you type.

For GetOrganized, it’d sure be nice to help jog our memory by searching

for all the Thoughts we’ve input. Perhaps you’ve written an idea down

with a lot of details but can’t remember the exact title you want to find.

Searching is not only a useful feature—it’s also a way for us to learn

how to implement autocomplete with jQuery and MVC.

A benefit to working in jQuery is the large number of high-quality plug-

ins you can download and use. In Section 7.1, Deleting with HTTP

POST , on page 153, we added the jQuery Autocomplete plug-in to the

Site.Master so that it is available for use. There are numerous autocom-

plete plug-ins for jQuery, some of which are more advanced than the

one we are using. For example, you might want to handle callbacks

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=157

FINDING IT IN A SNAP WITH AUTOCOMPLETE 158

that return data in JSON instead of plain text. For that case, then JQ

Autocomplete might better suit your needs.6

Before we can autocomplete with jQuery, we must implement a search

in the ThoughtController. That means starting with a test.

Download ajax/ThoughtControllerTest.cs

Line 1 [Test]
2 public void Should_Find_Thoughts_By_Text_Match_Case_Insensitive()
3 {
4 var learnCsharp = Thought.CurrentThoughts[0];
5 var contentResult = (ContentResult)
6 new ThoughtController().Search("learn");
7

8 Assert.AreEqual(learnCsharp.Name, contentResult.Content);
9 }

This test sets the expectation that we’ll find the Thought called Learn C#

3.5 based on the user typing in learn. This means that our search algo-

rithm should be case insensitive. The other thing to note is that because

we’ll use this action with Ajax, more specifically a jQuery autocomplete

plug-in, we need to return plain content to the response. We test for the

presence of ContentResult on line 6. Let’s get this test passing:

Download ajax/ThoughtController.cs

Line 1 public ActionResult Search(string q)
- {
- var searchResults = Thought.CurrentThoughts.FindAll(
- thought => thought.Name.ToLower().Contains(q.ToLower()));
5

- var autocompleteResults =
- String.Join("\n",
- searchResults.ConvertAll(g => g.Name).ToArray());
-

10 return Content(autocompleteResults);
- }

On line 1, we named our search parameter q. This is because the jQuery

plug-in expects the parameter to be named that way. Normally it’s not a

good idea to name parameters with single characters because it makes

it a lot harder for developers (yourself included) to understand a vari-

able’s or method’s intent. We also make the search case insensitive on

line 4. An easy way to do this is by making everything lowercase with

the ToLower() method. Our search algorithm is very primitive; for more

advanced text search, see the sidebar on page 163. The next step is to

6. http://www.devbridge.com/projects/autocomplete/jquery/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/ajax/ThoughtController.cs
http://www.devbridge.com/projects/autocomplete/jquery/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=158

FINDING IT IN A SNAP WITH AUTOCOMPLETE 159

bring the results into a line-separated format on line 8. The Autocom-

plete plug-in wants each result on a new line, so we join all the Thought’s

Names using the String.Join() method. We take all of these results and

send them back to the response with the Content(object result) method.

The test passes, but we need a way to send users to the actual Thought

they selected. Right now we can view a Thought only by Id. The next test

will be to let us redirect a request that asks for a Thought by Name and

send it to the /View/Thought/Detail/Id page.

Download ajax/ThoughtControllerTest.cs

Line 1 [Test]
2 public void Should_Find_Thought_By_Name_And_Redirect_To_Details_View()
3 {
4 var routeValueDictionary = new ThoughtController().
5 FindDetails("Learn C# 3.5").
6 AssertActionRedirect().RouteValues;
7

8 Assert.AreEqual("Details", routeValueDictionary["action"]);
9 Assert.AreEqual(1, routeValueDictionary["id"]);

10 }

This tests the ThoughtController action FindDetails(). On line 4, we use a

RouteValueDictionary, which is a specialized Dictionary<string, object>. We

are testing that the redirect to the details view has the corresponding

Id associated with the Thought. The implementation of FindDetails() looks

like this:

Download ajax/ThoughtController.cs

Line 1 //
- // GET: /Thought/FindDetails?nameOfThought={name}
-

- public ActionResult FindDetails(string nameOfThought)
5 {
- var thought = Thought.CurrentThoughts.
- Find(x => x.Name == nameOfThought);
-

- return RedirectToAction("Details",
10 new { id = thought.Id });

- }

With a simple lambda expression, we can find the associated Id of the

Thought. On line 10, we direct to the details view. Note how we use

anonymous object notation here to pass in the id to the method. This

notation is used throughout MVC to make passing RouteValueDictionary

data easier, like how we did for LinkHelper. The test is now passing, and

it’s time to implement our autocomplete jQuery.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/ThoughtControllerTest.cs
http://media.pragprog.com/titles/jmasp/code/ajax/ThoughtController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=159

FINDING IT IN A SNAP WITH AUTOCOMPLETE 160

Download ajax/Home_Index.aspx

Line 1 <asp:Content ID="indexHead" ContentPlaceHolderID="head"
- runat="server">
- <title>Home Page</title>
- <script type="text/javascript" language="javascript">
5 $(document).ready(function() {
- $("#searchThoughtsTextBox").
- autocomplete("Thought/Search", { minChars: 1 });
- $("#searchButton").click(function() {
- window.location = "Thought/FindDetails?nameOfThought=" +

10 escape($("#searchThoughtsTextBox")[0].value);
- });
- });
- </script>
- </asp:Content>

15

- <asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
- runat="server">
- <!-- omitted quick link code -->
-

20 <h2>Search Thoughts</h2>
- <input id="searchThoughtsTextBox" name="title" type="text" />
- <input id="searchButton" type="submit" value="Find" />
- </asp:Content>

The first thing we need to do is actually add our textbox and submit

button to support search on line 21. We talked about using graceful

degradation earlier. Here we are in part satisfying the needs of non-

JavaScript browsers, because we can type in the name of the Thought.

To fully support graceful degradation for our search feature, we’d have

to do more work than just this, but it’s an important principle to keep

in mind for production web applications.

Having the textbox on the page will allow us to hook up the jQuery Auto-

complete plug-in on line 7. The plug-in takes numerous other options,

but we’re interested only in the basic usage. We’ll supply the URL for

it to perform an HTTP GET and {minChars : 1} to start “autocompleting”

after the first character is typed in by the user. That’s it for autocom-

plete, but we also want to be able to hook the submit button to redi-

rect the browser to the Thought detail page. This one doesn’t require

jQuery but the plain old JavaScript window.location property on line 9.

Instead of using the JavaScript getElementById(), we use a jQuery selec-

tor on line 10. Because all jQuery selectors return an array of objects,

we use the first element of the array $(".class")[0] to get the element.

The other JavaScript method, escape(), encodes the string into a URL.

That’s autocomplete in a snap (see Figure 7.1, on the next page)!

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Home_Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=160

USING PARTIALS TO REDUCE DUPLICATION 161

Figure 7.1: Autocomplete makes searching more interactive.

Other Useful jQuery Plug-Ins

Autocomplete, jQuery-UI, and Color Picker (Section 4.3, Adding a Little

Color with jQuery, on page 80) are just three of hundreds of useful

jQuery plug-ins. You can use plug-ins to do everything from creating

Ajax requests to creating visually impressive effects (see Figure 7.2, on

the next page).

Plug-ins are nice, but there are even more features of MVC that will also

save us time and duplication. Welcome to the world of MVC partials.

7.3 Using Partials to Reduce Duplication

Because of the concept of graceful degradation, we will eventually have

view code that is exactly the same on two different pages. Partials help

solve this problem that using Ajax introduces.

Partials are like view fragments. For developers who come from a tradi-

tional ASP.NET background, partials are comparable to user controls.

They allow us to write out a bit of view once and reuse it across multi-

ple views. There is one partial that we are using already, and that is the

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=161

USING PARTIALS TO REDUCE DUPLICATION 162

Function Plug-in Name URL

Multiple file upload Uploadify
http://www.uploadify.

com/

Editing fields without

clicking Submit

In-Line Text Edit
http://www.

codenothing.com/

archives/jquery/

inline-text-edit/

Drag and drop $.event.special.drag
http://blog.

threedubmedia.

com/2008/08/

eventspecialdrag.

html

Client-side validation jQuery Validation
http://bassistance.

de/jquery-plugins/

jquery-plugin-validation/

Figure 7.2: jQuery plug-ins by function

LogOnUserControl.ascx in the View/Shared directory. The partial renders

either the user’s name or the signup and login links, and since it is

used on every page, it is referenced in the Site.Master. All of this reduces

duplication and makes maintaining our code a lot easier.

Let’s take a look at partials in action. Our next feature for GetOrganized

is to actually create the Todos without leaving the main /View/Todo/

Index.aspx page. We’d better create a new partial from a section of the

/View/Todo/Create.aspx if we don’t want to repeat ourselves (remember

the DRY principle!).

Refactoring to Use a Partial

To perform this refactoring, we’re going to move most of the view code

from the Create.aspx view to a new partial view. We’ll then render this

partial inside the Create.aspx view, and everything will look and work as

it did before.

We create a partial with the Add View Wizard (Figure 7.3, on page 164).

In the wizard, you’ll select the first check box indicating that you want

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.uploadify.com/
http://www.uploadify.com/
http://www.codenothing.com/archives/jquery/inline-text-edit/
http://www.codenothing.com/archives/jquery/inline-text-edit/
http://www.codenothing.com/archives/jquery/inline-text-edit/
http://www.codenothing.com/archives/jquery/inline-text-edit/
http://blog.threedubmedia.com/2008/08/eventspecialdrag.html
http://blog.threedubmedia.com/2008/08/eventspecialdrag.html
http://blog.threedubmedia.com/2008/08/eventspecialdrag.html
http://blog.threedubmedia.com/2008/08/eventspecialdrag.html
http://blog.threedubmedia.com/2008/08/eventspecialdrag.html
http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://bassistance.de/jquery-plugins/jquery-plugin-validation/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=162

USING PARTIALS TO REDUCE DUPLICATION 163

More Robust Text Searches

Searching text is arguably one of the most important features
of a business to consumer (B2C) website. Imagine how much
Amazon invests in making books easier to find for end users.
Although we may never have the resources of Amazon or
Google when it comes to text search, we can use several tools
that will get us closer.

The first, and more traditionally used, is a free-text index
that most relational databases, including Microsoft SQL Server,
have. Although fairly good in results, this can put a lot of
demand on your database to manage these indexes. A pop-
ular alternative is to use the open source project Lucene.∗

Lucene manages text searching as a stand-alone server, so
from an infrastructure perspective, this allows you to scale out
more Lucene servers as your text-based searching increases.
Oren Eini wrote an article on how to integrate NHibernate with
Lucene, giving us the power of both the database and an
excellent text search engine. †

∗. http://lucene.apache.org/java/docs/index.html

†. http://ayende.com/Blog/archive/2007/03/18/Googlize-your-entities-NHibernate--Lucene.NET-Integration.aspx

to create a partial. It’s worth noting that you can make strongly typed

partials as well, but in this case we’re just going to copy and paste them

from Create.aspx into our newly created CreateElements.ascx.

Download ajax/CreateElements.ascx

Line 1 <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
- <% using (Html.BeginForm()) {%>
- <fieldset>
- <legend>Fields</legend>
5 <div class="editor-label">
- <%= Html.LabelFor(model => model.Title) %>
- </div>
- <div class="editor-field">
- <%= Html.TextBoxFor(model => model.Title) %>

10 <%= Html.ValidationMessageFor(model => model.Title) %>
- </div>
- <p>
- <input type="submit" value="Create" />
- </p>

15 </fieldset>
- <% } %>

Report erratum

this copy is (P1.0 printing, June 2010)

http://lucene.apache.org/java/docs/index.html
http://ayende.com/Blog/archive/2007/03/18/Googlize-your-entities-NHibernate--Lucene.NET-Integration.aspx
http://media.pragprog.com/titles/jmasp/code/ajax/CreateElements.ascx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=163

USING PARTIALS TO REDUCE DUPLICATION 164

Figure 7.3: Creating partials helps you reduce duplicate markup.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=164

USING PARTIALS TO REDUCE DUPLICATION 165

Here we move the entire HTML form tag into the partial including all

the textboxes, validations, and submit button. Line 1 of the partial indi-

cates that it inherits from System.Web.Mvc.ViewUserControl. This is the

base class for all partials. We didn’t change any other code here except

to extend the HTML form tag to give it the id of CreateTodo. This allows

us to use jQuery to intercept the submit button click event and instead

do an Ajax call. Right now, however, we’re going to want to restore the

Create.aspx to its former glory.

Download ajax/Create.aspx

Line 1 <asp:Content ID="Content2"
- ContentPlaceHolderID="MainContent" runat="server">
-

- <h2>Create Todo</h2>
5 <%= Html.ValidationSummary() %>
-

- <% Html.RenderPartial("CreateElements"); %>
-

- <div>
10 <%=Html.ActionLink("Back to List", "Index") %>

- </div>
- </asp:Content>

Rendering a partial is done through the HTML helper method RenderPar-

tial(string partialName) on line 7. Notice that we don’t specify a directory of

the partial, like /View/Todo/CreateElements.ascx. Instead, we rely on the

MVC framework’s view engine to perform this search on our behalf. The

default WebFormViewEngine looks inside two virtual directories. The first

is the location of the calling view, in this case /View/Todo, and the other

is the /View/Shared. View engines are another key extensibility point in

the MVC framework (the Joe Asks. . . on the next page).

Partials can also take model or other view data as a parameter, which

we didn’t need to do here. This is useful if you’re rendering the details

of part of a model such as a customer’s address, for example. That’s all

we need to do to get our partial working. You can hit F5 and verify that

the original Create.aspx is still working. Up next, let’s add some Ajax.

Creating New Models with Ajax

Because we have extracted the CreateElements.ascx partial, we can now

improve the user’s experience by adding a new Todo straight from /View/

Todo/Index.aspx. You can accomplish this by adding the partial to the

/View/Todo/Index.aspx in a hidden div tag.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Create.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=165

USING PARTIALS TO REDUCE DUPLICATION 166

Joe Asks. . .

When to Use a Different View Engine?

Sometimes it’s a personal preference to move to something
like NHamel∗ or StringTemplate;† however, there are some clear
advantages to going with them. First, they can be a lot more
succinct in the number of lines of code. The same view in
NHamel might take up less space by providing conventions like
autoterminating the end of your tags. The other is to enforce
less logic in the view. For StringTemplate, there is no if or else syn-
tax available to you, so this forces you to place all conditional
logic into view helpers.

The big downside to using one of these alternative view engines
or extending them to create your own is support. Most main-
stream ASP.NET developers will be much more familiar with the
Web Forms view engine instead of the more exotic NHaml or
StringTemplate. If your team is more experienced and you have
the confidence that you can provide supporting documenta-
tion to the people who will eventually support your application,
then using a custom view engine can be a really good idea.

∗. http://code.google.com/p/nhaml/

†. http://code.google.com/p/string-template-view-engine-mvc/

We’re going to use some more jQuery to reveal and hide the partial as

the user sees fit:

Download ajax/Index.aspx

Line 1 <asp:Content ID="Content1"
- ContentPlaceHolderID="head" runat="server">
- <script type="text/javascript" language="javascript">
- $(document).ready(function() {
5 // omitted jQuery code from previous step
-

- $("#Create_Link").click(function() {
- $("#Create_Div").slideToggle("slow");
- });

10 $("#Create_Link")[0].href = "#";
- });
- </script>
- </asp:Content>
- <asp:Content ID="Content2"

15 ContentPlaceHolderID="MainContent" runat="server">

Report erratum

this copy is (P1.0 printing, June 2010)

http://code.google.com/p/nhaml/
http://code.google.com/p/string-template-view-engine-mvc/
http://media.pragprog.com/titles/jmasp/code/ajax/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=166

USING PARTIALS TO REDUCE DUPLICATION 167

- <!-- omitted grid code -->
- <p>
- <%= Html.ActionLink("Create New", "Create",
- null, new { id="Create_Link"}) %>

20 </p>
- <div id="Create_Div" style="display:none">
- <% Html.RenderPartial("CreateElements"); %>
- </div>
- </asp:Content>

We add the partial on line 22 and hide it by setting the display attribute

to none. This way when the screen loads for the first time, our form

doesn’t take up all the real estate. We then add a link on line 19 that

users can click to reveal or hide the div. We put an id attribute on the

link and the div so that we can manipulate them with jQuery.

The first select on line 8 wires up the click event to the link on the page.

This invokes the slideToggle(var speed) to hide or show the div with an

animation slide effect. What’s helpful about this method is it handles

both show and hide scenarios. The other selector, on line 10, takes

care of graceful degradation by setting the link to reference itself. This

way users who don’t have JavaScript will still be able to use the old

Create.aspx view. In Figure 7.4, on the following page, we can see how

the finished slider saves us space on the View/Todo/Index.aspx view.

Adding without leaving the screen works well, but you’ll notice it’s still

refreshing the page every time we add a new Todo. Before you can add

a jQuery post(), you’ll need to modify the TodoController to return some

JSON.

Download ajax/TodoController.cs

Line 1 // POST: /Todo/Create
- [AcceptVerbs(HttpVerbs.Post)]
- public ActionResult Create(Todo todo)
- {
5 todo.Validate(ModelState);
-

- if (ModelState.IsValid)
- {
- CreateTodo(todo);

10 if (Request.IsAjaxRequest())
- return Json(todo);
- return RedirectToAction("Index");
- }
- else

15 {
- return View();
- }
- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=167

USING PARTIALS TO REDUCE DUPLICATION 168

Figure 7.4: jQuery toggling can help free up page real estate.

On line 10, we check whether the request is sent by Ajax using the IsA-

jaxRequest() method. We talked about this method before in Section 7.1,

Working with Ajax, on page 152 but didn’t explain how it performs its

magic. When a web request is sent via Ajax, it adds the HTTP header

X-Requested-With: XMLHttpRequest to let the web server know this is a dif-

ferent kind of request. IsAjaxRequest() is checking for the presence of

that header and returns true if it is there. In our case, the Ajax request

needs to return our Todo as JSON.

The last thing we have to do is add some jQuery to the Index.aspx page,

and we’ll have a newly created Todo without a screen refresh.

Download ajax/Index.aspx

Line 1 <asp:Content ID="Content1"
- ContentPlaceHolderID="head" runat="server">
- <script type="text/javascript" language="javascript">
- $(document).ready(function() {
5 $("#CreateTodo").submit(function() {
- $.post(
- $(this).attr('action'),
- $("#CreateTodo").serialize(),

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=168

USING PARTIALS TO REDUCE DUPLICATION 169

-

10 function(data, textStatus) {
- var html =
- "<tr><td><a id=\"" + data.Title + "\"" +
- "class=\"deleteTodoLink\" href=\"#\">" +
- "Delete</td>" +

15 "<td><a href=\"/Todo/Edit?Title="
- + data.Title + "\">Edit</td>" +
- "<td>" + data.Title + "</td></tr>";
-

- $(html).appendTo($("#main table")).
20 effect("highlight", {}, 3000);

- },
- // Return type
- "json"
-);

25 return false;
- });
- }

We want to create a new Todo but also dynamically add it to the HTML

Document Object Model (DOM) so the page doesn’t have to be refreshed.

First we have to intercept the submit button click on line 5. We use

the usual jQuery post() command and grab the URL from the HTML

form’s action attribute. There is a special method called serialize() that

turns your form input tags into a querystring. We do this on line 8 as

the second parameter to the POST.

The usage of this post() is slightly different from when we deleted a Todo.

Here we want a callback from the server on line 11. This method takes

the JSONified Todo and inserts it into a new row. The row is attached

to the DOM on line 20 with a little jQuery UI effect that highlights the

new row. Because we’re expecting JSON, we also specify that as the

last parameter to the post() on line 23.

We can now add without a page refresh. Highlighting the new row

clearly shows the user what they created. However, there is one prob-

lem. When you click delete on any of the newly created Todos, nothing

happens. This is because the jQuery we wrote to handle delete events

only wired up ones that existed when the document loaded. Luckily,

jQuery has a very popular plug-in called Live Query that can solve this

for us without a fuss.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=169

USING PARTIALS TO REDUCE DUPLICATION 170

Download ajax/Index.aspx

Line 1 <script type="text/javascript" language="javascript">
- $(document).ready(function() {
- $(".deleteTodoLink").livequery('click', function() {
- var element = $(this);
5 var todoTitle = element.attr("id");
-

- $.post(
- "Todo/Delete",
- { title: todoTitle },

10 function() {
- element.closest("tr").
- fadeOut("slow", function()
- { $(this).remove(); });
- }

15);
- });
- });
- </script>
- </asp:Content>

On line 3, we replaced the click(function()) with livequery(’click’, function().

Live Query works by observing the jQuery DOM manipulation methods

like append() and addClass() to detect changes to the DOM and rewire

events as necessary. So long as the DOM is modified through valid

jQuery methods or plug-ins, Live Query is your savior.

With that change at hand, our create and delete with Ajax is complete

and functional. Long live Web 2.0!

Up Next

In this chapter, we learned to use the jQuery Ajax method $.post(). We

also saw how jQuery plug-ins save us valuable development time for

common features like autocomplete. We saw how using partials reduces

code duplication when adding Ajax. Keep in mind that partials are sim-

ilar to traditional ASP.NET user controls, except they do not have any

state or application logic in them.

Next up, you’ll find out about the ORM that we’ll use to replace these

ugly static lists we’ve been using. No need to dust off those SQL skills,

because we’re about to learn to use NHibernate.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/ajax/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=170

Part III

Integrating with Other

Frameworks

It is a common experience that a problem difficult at night is

resolved in the morning after the committee of sleep has

worked on it.

John Steinbeck

Chapter 8

Persisting Your Models
Up until now we’ve been working mostly with MVC on its own. However,

no framework is an island, and MVC is no exception. To complete an

MVC application from end to end, we’ll need to make it work with other

frameworks. This part of the book will introduce how to do this with

a few frameworks, specifically NHibernate and Castle Windsor. In this

part, we’ll also work on setting up web services to integrate with other

applications.

Although we will work through these particular frameworks, the ap-

proach to integration is similar for other frameworks. So, even if you

choose to use a different persistence framework, these chapters will

provide a reference for how to integrate.

This chapter introduces NHibernate. We’ve gotten by with using static

lists to store our models long enough. It’s time to replace them with

the NHibernate persistence framework, which saves us valuable time

by handling the chore of persisting and retrieving objects from the

database. It abstracts Structured Query Language (SQL) and allows

us to keep our focus on objects instead. NHibernate translates between

our models and the columns and rows in the database.

We’ll be covering a lot of ground with NHibernate, so we’re going to

split the information into the next two chapters. This chapter deals

with setting up NHibernate and getting CRUD operations going for

the Todo model. You’ll see how to use the repository pattern to map

your MVC models to be persistable objects by creating a TodoRepository

class. You will also see how to configure NHibernate with the help of

FluentNHibernate.

In Chapter 9, Integrating Repositories with Controllers, on page 188,

we’ll join the TodoRepository back into the MVC framework. By the end

MVC’S NEXT TOP MODEL: NHIBERNATE 173

of these two chapters, GetOrganized will be saving and retrieving all the

information in the database. You’ll have a solid foundation for using

NHibernate when working on your own MVC projects.

Before we dive into setting up NHibernate, it is important to understand

the different approaches to using an ORM with MVC. The approach we

use in this book will cover a large number of cases, but it’s good to

know the alternative design patterns and frameworks that fit the other

circumstances.

8.1 MVC’s Next Top Model: NHibernate

MVC lets you choose the best way for your project to store and retrieve

model data. We’re using NHibernate because it’s the most mature ORM

in .NET, and it’s based on an even more mature Java project: Hibernate.

There is a ton of free online documentation associated with NHibernate,

and its performance and reliability are second to none.

NHibernate isn’t your only option. LINQ to SQL is also popularly paired

with MVC. It is a quick and easy framework to get you started and is

bundled as part of the .NET Framework 3.5. Although starting out with

NHibernate is a little more demanding initially, the trade-offs of learn-

ing a more robust ORM will quickly outweigh that initial investment.

NHibernate is very flexible, but we’ll be using only a small fraction of

its power in this book. For more in-depth coverage, I suggest reading

NHibernate in Action [KBKH09], because it discusses caching, batch-

ing, and advanced queries using Hibernate Query Language (HQL).

Another project to watch is the LINQ provider to NHibernate, which

will give you the query syntax of LINQ instead of string-based HQL.1

Because NHiberate is so flexible, we’ll need to choose one way to use it

in GetOrganized.

When to Use Active Record, Query Object, or the Repository

Pattern

There are many ways that applications implement persistence. Active

Record, Query Object, and Repository are among the most common

design patterns used in enterprise software development.

1. http://sourceforge.net/projects/nhibernate/files

Report erratum

this copy is (P1.0 printing, June 2010)

http://sourceforge.net/projects/nhibernate/files
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=173

USING THE REPOSITORY PATTERN 174

All these patterns are described in more detail in Patterns of Enter-

prise Application Architecture [Fow03] by Martin Fowler. The Repository

pattern insulates the data access code by creating a layer of classes

to translate back to application code. The advantage to Repository is

it has a clear separation of concerns between application logic and

ORM/database access code. Active Record has been popularized more

recently by Ruby on Rails. Instead of using Repository classes to encap-

sulate the ORM code, it uses the model classes themselves to manage

data access. NHibernate can also be configured to use the Active Record

pattern.2 Query Object is a pattern that propagates a number of small

lightweight classes that contain a complex query. This can prevent your

Repository or Active Record objects from becoming too large but more

importantly can encourage query reuse.

For GetOrganized, we’re going to use the Repository pattern because

it’s the easiest to understand and get started with. It’s also the most

frequently seen in .NET web applications. The Repository pattern insu-

lates the data access code by creating a layer of classes to translate

back to application code. It gives you a place to put code that deals

with any data access optimizations or quirks that can come up while

using an ORM. In ASP.NET MVC, the repository class manipulates data

access, and the controller class coordinates a user’s request.

There is no straightforward answer to the question of which one is the

best to use. Although not as religiously debated as “angle brackets on

their own line,” it is the source of a lot of discussion in developer com-

munities. Remember that any design pattern implemented poorly will

make a bad name for itself.

8.2 Using the Repository Pattern

This pattern keeps our data access code in a discrete set of objects.

This lets us test our ORM code independently of our controller code.

Since GetOrganized already has a number of model objects, we’re only

going to convert the Todo static lists into a TodoRepository. The rest of the

object code will be converted and available for download with the rest of

the solution. Before we can test-drive new repositories in GetOrganized,

we need to configure NHibernate to work against our database. For this

2. http://www.castleproject.org/ActiveRecord

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.castleproject.org/ActiveRecord
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=174

USING THE REPOSITORY PATTERN 175

we’ll use Fluent NHibernate, a project that helps simplify configuration

and class mapping for NHibernate.

Configuring NHibernate Fluently

First we’ll create a second database instance to run our repository tests

against. This protects the other instance from being overwritten as we

run repository tests. If you don’t recall how to do this, take a look

back at Section 5.2, Set Up SQL Server for the Membership Provider,

on page 101. We’ll call this database instance test_GetOrganized. The

next thing to do is create a new test project to hold our persistence

test called Test.Persistence just like we created Test.Unit. Having sepa-

rate projects for persistence tests allows us to monitor more easily if

tests living in Test.Unit are wrongly accessing the database. You’ll need

to download and add references to the latest copy of Fluent NHiber-

nate binaries. For this book, we’re using Build #636.3 Place these files

in your Library folder, the same place you’ve stored NUnit and Rhino

Mocks. Don’t forget to add a reference to the Web project because that

is where the repositories and configuration code will live.

Inside our Web project, we’re going to need to add a directory called

Persistence. This is where we’ll store classes related to the connection

and configuration for NHibernate. We’ll also create the subdirectory

Repositories to hold the repository classes for our project. We’ll add one

more subdirectory called ClassMaps to hold our database-to-class map-

ping files, Section 8.3, Mapping with Fluent NHibernate, on page 177.

That will be our basic housekeeping for new directories. Let’s create the

class NHibernateConfiguration to hold configuration information:

Download persistingmodels/NHibernateConfiguration.cs

Line 1 using System;
- using FluentNHibernate.Cfg;
- using FluentNHibernate.Cfg.Db;
- using NHibernate;
5 using NHibernate.Cfg;
- using NHibernate.Dialect;
- using NHibernate.Tool.hbm2ddl;
-

- namespace GetOrganized.Persistence
10 {

- public class NHibernateConfiguration
- {
- public static ISessionFactory SessionFactory { get; private set; }
-

3. http://fluentnhibernate.org/downloads/fluentnhibernate-binary-1.0.0.636.zip

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/NHibernateConfiguration.cs
http://fluentnhibernate.org/downloads/fluentnhibernate-binary-1.0.0.636.zip
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=175

USING THE REPOSITORY PATTERN 176

15 public static void Init(IPersistenceConfigurer databaseConfig,
- Action<Configuration> schemaConfiguration)
- {
- SessionFactory = Fluently.Configure()
- .Database(

20 databaseConfig)
- .Mappings(m => m.FluentMappings.
- AddFromAssemblyOf<NHibernateConfiguration>())
- .ExposeConfiguration(schemaConfiguration)
- .BuildSessionFactory();

25 }
-

- public static ISession CreateAndOpenSession()
- {
- return SessionFactory.OpenSession();

30 }
- }
- }

On line 13, we declare the NHibernate SessionFactory, which acts as our

connection manager to the database. It also supports data caching and

other NHibernate features. The factory provides an ISession that the class

used to make calls to the database. An ISession is expensive to create,

because it is obtaining connections to the database. You only want to

use one per request. We’ll use the method CreateAndOpenSession() on

line 29 to wrap the SessionFactory and provide an open and ready ISession

that our repositories can access.

Configuring NHibernate is done through the Init(IPersistenceConfigurer

databaseConfig, Action<Configuration> schemaConfiguration) on line 16.

The first parameter is the database configuration; for example, MsSql-

Configuration.MsSql2005 specifies a connection to SQL Server 2005. The

second parameter allows us to pass in some particularly useful NHiber-

nate objects, SchemaUpdate or SchemaExport. SchemaUpdate compares

the current database schema to one that you’ve defined in your NHiber-

nate mappings. SchemaExport just wipes out the existing schema with

whatever NHibernate mappings you’ve defined. This is useful from a

testing perspective; however, you’d never do this for a production data-

base! The second parameter is in use on line 23 where the NHibernate

configuration is exposed, allowing the schema update or export to be

performed.

The meat of the Init() is to configure the SessionFactory. This is done

based on database information on line 19 as well as model class map-

ping information. We’re going to cover class mappings in Section 8.3,

Mapping with Fluent NHibernate, on the next page, but on line 21, we

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=176

MAPPING WITH FLUENT NHIBERNATE 177

tell NHibernate that our mapping files are all in the same assembly as

NHibernateConfiguration. Fluent NHibernate will load all the class maps

into the configuration, instead of manually adding a line to a configura-

tion file each time we create a new mapping. This is a similar technique

to what we’ll use when we introduce how to register controllers and

repositories with Windsor Container in Section 9.2, Using Inversion of

Control with the IControllerFactory, on page 192.

NHibernateConfiguration will be used by both test and production code,

but before we can initialize a useful SessionFactory, we’ll need to map

some classes to the database.

8.3 Mapping with Fluent NHibernate

For an ORM to do its job, it needs instructions on how your objects

map to database tables. The simplest way to do this is automapping.

Automapping can be configured to look for specific namespaces so that

only your actual model classes are mapped. This prevents controller

classes, for example, from being mapped to the database. Automap-

ping works by matching .NET data types to the equivalent data type

for the database. For example, the .NET Integer Int32 would translate

to the int data type in SQL Server. Adding automapping to your Fluent

NHibernate configuration is as simple as appending the following code

to our Fluently.Configure() in NHibernateConfiguration:

Download persistingmodels/NHibernateConfiguration.cs

var model = AutoMap.AddFromAssemblyOf<NHibernateConfiguration>()

.Where(t => t.Namespace == "GetOrganized.Models");

var configuration = Fluently.Configure()

.Database(databaseConfig)

.Mappings(m => m.AutoMappings.Add(model));

configuration.BuildSessionFactory();

However, automapping will take you only so far, such as when you need

to specify specific relationships and data types. That is why we’ll be

working with class maps. Traditionally these maps exist as XML files,

one for each class. Our Todo class would have an embedded XML file

called Todo-mapping.xml. Fluent NHibernate lets us map classes using

C# classes by inheriting the class ClassMap. Using C# classes to map

makes it easier to check for syntax errors and also makes navigating

the class map files easier.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/NHibernateConfiguration.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=177

MAPPING WITH FLUENT NHIBERNATE 178

We’re going to store all our maps in the directory Persistence/ClassMaps.

Let’s map Todo using Fluent NHibernate:

Download persistingmodels/TodoMap.cs

Line 1 using FluentNHibernate.Mapping;
- using GetOrganized.Models;
-

- namespace GetOrganized.Persistence.ClassMaps
5 {
- public class TodoMap : ClassMap<Todo>
- {
- public TodoMap()
- {

10 Id(x => x.Title);
- Map(x => x.Completed);
- Map(x => x.Outcome);
- References(x => x.Topic).ForeignKey().Not.LazyLoad();
- }

15 }
- }

The class inherits from ClassMap and uses Todo as the generic type. The

object to database mapping happens in the constructor of TodoMap.

On line 10, we map the Title as the primary key using the Id(). The

other fields are mapped on line 11 using the Map() method. We can

also specify how long we want that string to be in the database by

adding Map(x => x.Outcome).Length(250), where Outcome will now be an

nvarchar(250) column in the database.

When it comes to referencing another type like Topic where we have a

many-to-one relationship, we use the method References() on line 13. We

also add the method ForeignKey() to ensure that our database schema

generates an actual foreign key constraint.

The Not.LazyLoad() lets NHibernate know that it should completely load

the Topic associated with each Todo. The default behavior of NHibernate,

like most ORMs, is to load objects lazily—that is, to only bring back the

first layer of information. Details of objects like Topic are only fetched

as needed. This prevents performance problems with the underlying

database pulling too much information when it’s not required. This will

come in handy in Section 10.2, Listing Models as XML, on page 216

when we need to serialize this object as XML.

Now it’s your turn. To finish this project, we need a TopicMap; go ahead

and create one. If you get stuck, the complete solution is in the down-

loadable code in the GetOrganizedFinal/ folder when you unzip it.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/TodoMap.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=178

CREATING AND READING RECORDS 179

As you’ve seen, Fluent NHibernate makes mapping easy. You’ll learn

about other relationships such as many-to-one and many-to-many in

Section 8.7, Additional ORM Data Relationships, on page 186. For now,

we can move onto test-driving our first repository.

8.4 Creating and Reading Records

We want GetOrganized’s create, read, update, and delete functions to

now work with the database. This means test-driving the TodoRepository.

The first test will be to read a Todo out of the database. However, if

there is nothing in there to begin with, what are we going to read? If we

start by testing the create function, how can we verify that our creation

worked without reading that data back out again? Because we can’t test

one without the other, we’ll have to test the read and create together.

Since we’ll be creating a repository for each model, it would be a good

idea to put the configuration and setup of the NHibernate’s ISession in

one place. We’ll create a base class test fixture, RepositoryTestBase, that

all of our repository test fixtures inherit from:

Download persistingmodels/RepositoryTestBase.cs

Line 1 public class RepositoryTestBase
- {
- protected ISession session;
-

5 [SetUp]
- public void setup()
- {
- NHibernateConfiguration.Init(
- MsSqlConfiguration.MsSql2005.ConnectionString(

10 builder =>
- builder.Server("localhost").
- Database("test_GetOrganized").
- TrustedConnection()),
- RebuildDatabase());

15

- session = NHibernateConfiguration.CreateAndOpenSession();
- }
-

- [TearDown]
20 public void teardown()

- {
- if (session != null) session.Dispose();
- }
-

25 private Action<Configuration> RebuildDatabase()
- {
- return config => new SchemaExport(config).Create(false, true);
- }
- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/RepositoryTestBase.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=179

CREATING AND READING RECORDS 180

On line 8, we specify the test database we created back in Section 8.2,

Configuring NHibernate Fluently, on page 175. If you have a lot of per-

sistence tests and are finding things are running too slow, you might

consider connecting to an in-memory database like SQLite. To connect

to SQLite, just use the following code instead in your database section:

SQLiteConfiguration.Standard.InMemory()

To get SQLite to work, you’ll need to download the .NET drivers,4 but

note that the SchemaExport is currently not working properly. On line

16, we make sure that a new ISession is available for each test. In the

configuration, we also specify that we want to wipe out the database

and use the latest schema (based on our class maps) on line 27. The

method Create(bool createScript, bool dropExistingSchema) on the Schema-

Export performs this for us. If you wanted the Data Definition Language

(DDL) from NHibernate, you can specify the first parameter, bool create-

Script, to be true.

We need to take care to clean up the session on line 22 by calling

Dispose() if it hasn’t been called already. We do this explicitly to free

up connections to the database. Whenever external resources such as

database connections are being used, practice good housekeeping, and

ensure they are being recycled.

Now we’ll move onto our TodoRepositoryTest, which inherits from our

RepositoryTestBase.

Download persistingmodels/TodoRepositoryTest.cs

Line 1 [TestFixture]
- public class TodoRepositoryTest : RepositoryTestBase
- {
- private TodoRepository repository;
5

- [SetUp]
- public void Setup()
- {
- //remove this call to setup once ReSharper

10 //unit test runner supports NUnit 2.5
- setup();
- repository = new TodoRepository(session);
- }
-

15 [Test]
- public void Should_Create_And_Read()
- {
- Todo todo = CreateTodo();

4. http://sqlite.phxsoftware.com

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/TodoRepositoryTest.cs
http://sqlite.phxsoftware.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=180

CREATING AND READING RECORDS 181

- var actual = (IList) repository.GetAll();
20 Assert.Contains(todo, actual);

- Assert.AreEqual(1, actual.Count);
- }
-

- private Todo CreateTodo()
25 {

- var todo = new Todo {Title = "Build Repositories",
- Outcome = "Database is working"};
- repository.SaveOrUpdate(todo);
-

30 session.Flush();
- return todo;
- }
- }

On line 12, we create our TodoRepository with an NHibernate ISession

in the setup portion of the test fixture. This ensures we’ll get a new

repository to test against in every test. When it comes to our create and

read test, the first thing we do is perform the create Todo on line 28.

We’ve extracted this into a private method called CreateTodo() because

every one of our tests, including edit and delete, will need some data to

validate that these operations work. Notice how the name of the method

is SaveOrUpdate(), because NHibernate will determine this for us based

on the mapping we’ve set up already.

Once the Todo is created, we need to force a connection to the database

with the Flush() method on the session. NHibernate knows that it’s costly

to connect to the database and so tries to minimize the number of times

it does this. One way to guarantee that a call is made to the database

is to invoke Flush() in our code. For tests this is OK because we’re sim-

ulating multiple requests, but for most cases of our production code,

we can leave this up to NHibernate to decide when to call out to the

database.

With the Todo created, we can now perform our read operation on line

19. This is the second method, GetAll(), that we’ll need to work on to get

this test to pass. We’ll assert that the actual Todo is in the collection and

that there is only one item in the collection. To get this test passing,

we’re going to need to create a base repository class as well as the

actual TodoRepository because we don’t want to repeat the same CRUD

over and over again. Let’s get part of the test passing by creating the

BaseRepository inside Persistence/Repositories in our Web project.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=181

CREATING AND READING RECORDS 182

Specifying Additional Criteria

You can add other criteria by specifying the Expression class
along with one or more of its various methods. For example,
if you wanted to return all the Todos with the Topic of “Work,”
you can do that with Expression.Eq(x => x.Topic.Title == "Work").
Alternatively, NHibernate has its own full-blown query lan-
guage called Hibernate Query Language. HQL gives you a
more powerful query syntax. For more complicated queries
and longer-running projects, it is the recommended approach.
CreateCriteria() is much more suited for some dynamic queries.∗

The LINQ provider for NHibernate is yet another way to express
criteria for queries and will allow you to use LINQ syntax to
query NHibernate.

∗. http://avende.com/Blog/archieve/2009/06/01/nhiberate-queries-ndash-should-i-use-hql-or-criteria.aspx

Download persistingmodels/BaseRepository.cs

Line 1 public abstract class BaseRepository<T>
- {
- protected readonly ISession session;
-

5 protected BaseRepository(ISession session)
- {
- this.session = session;
- }
-

10 public virtual void SaveOrUpdate(T model)
- {
- session.SaveOrUpdate(model);
- }
- }

First, we’ll need to handle the constructor on line 5. This simplifies

the constructors for each repository because all repositories use the

ISession. By declaring it as a protected member, we let repositories that

inherit the base access it. Next, we’ll implement our create method by

delegating to NHibernate’s method of handling the create or update on

line 10. Using generics with the T prevents us from having cast from

one type to another. Having this inside the RepositoryBase makes its

children more concise. All public methods need to also use the keyword

virtual. This is because eventually we’ll use Rhino Mocks to mock out

Report erratum

this copy is (P1.0 printing, June 2010)

http://avende.com/Blog/archieve/2009/06/01/nhiberate-queries-ndash-should-i-use-hql-or-criteria.aspx
http://media.pragprog.com/titles/jmasp/code/persistingmodels/BaseRepository.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=182

EDITING MODELS 183

the repositories, and it requires methods to be virtual. Similarly, when

we have a class, such as Todo, its methods and properties must also

be virtual. Both Rhino Mocks and NHibernate use a technology called

dynamic proxy, which allows a C# class to be generated at runtime that

has different behavior than the real class. Let’s now move onto the

TodoRepository, which will inherit from BaseRepository.

Download persistingmodels/TodoRepository.cs

Line 1 public class TodoRepository : BaseRepository<Todo>
2 {
3 public TodoRepository(ISession session) : base(session) { }
4

5 public virtual IList<Todo> GetAll()
6 {
7 return session.CreateCriteria(typeof (Todo)).List<Todo>();
8 }
9 }

Because so much is abstracted into the base class, there is only one

method we need to implement in TodoRepository. On line 7, we use the

NHibernate method CreateCriteria(Type typeOfModel) to specify a con-

straint on the kinds of Todos we want back. In this case, we are inter-

ested in all of the Todos, so we don’t add any other restrictions. Calling

List<Todo>() turns the results into a list of Todos. This code makes both

conditions of the test pass. With this working, let’s move on to editing

an existing Todo to persist.

8.5 Editing Models

Since our TodoRepository already handles editing with the SaveOrUp-

date(), we just need to make sure that it works based on our mappings.

Download persistingmodels/TodoRepositoryTest.cs

Line 1 [Test]
- public void Should_Edit()
- {
- var originalTodo = CreateTodo();
5

- session.Clear();
-

- var toModify = repository.Get(originalTodo.Title);
- toModify.Outcome = "Get Update working";

10 repository.SaveOrUpdate(toModify);
-

- session.Flush();
- session.Clear();
-

15 var actual = (IList)repository.GetAll();

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/TodoRepository.cs
http://media.pragprog.com/titles/jmasp/code/persistingmodels/TodoRepositoryTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=183

EDITING MODELS 184

Joe Asks. . .

Where Are Your Interfaces?

Most of the time when you see the Repository pattern imple-
mented, you’re going to see a lot of matching interfaces. For
example, the TodoRepository will implement ITodoRepository. This
leads to code navigation hell, because when you are following
code in the IDE, you are brought to the interface, not the con-
crete implementation. Having all these interfaces also violates
the true reason we have an interface as a language feature.
Interfaces are for when you have more than one implementa-
tion to a common problem. When it comes to the Repository
pattern, most applications use a single ORM.

The reason you’ll see an interface for each repository stems
from a limitation of older mocking frameworks. A mocking
framework like NMock∗ is only able to mock out interfaces.
Luckily, we’re using Rhino Mocks, which lets you mock out any-
thing with virtual methods. That’s why for GetOrganized we’re
not going to carry on this proliferation of useless interfaces.

∗. http://www.nmock.org

- Assert.Contains(toModify, actual);
- Assert.IsFalse(actual.Contains(originalTodo));
- }

To test that editing works, we need to create a new Todo. We then reload

it from the database, make some changes to it, and save it back again.

We’ll verify those changes were committed to the database. On line 4,

we create our test Todo. After creating our model, we need to clear

the NHibernate ISession cache on line 6. The method Clear() removes

all items in the cache, allowing us to simulate that our changes are

getting persisted to the database. After we load back the Todo from the

database, we modify its Outcome and save our changes on line 10. We

explicitly flush and clear the session to ensure that the edits get back

to the database. We then load them back and assert that the change we

made happened. We also check that the original Todo is no longer there

in order to rule out the case of creating two Todos instead of updating

the existing one. The test requires a new method, GetAll(), on line 8,

which we’ll need to implement in the BaseRepository to get this test to

compile.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=184

DELETING RECORDS 185

Download persistingmodels/BaseRepository.cs

public virtual T Get(object primaryKey)

{

return (T) session.Get(typeof (T), primaryKey);

}

Similar to how we implemented SaveOrUpdate(), the Get() delegates its

work to the NHibernate ISession’s method to retrieve a single object

based on primary key. With that method working, our test is now pass-

ing. Our last operation is to handle deleting a Todo.

8.6 Deleting Records

We test deleting the same way we tested editing. We’ll need to create a

new Todo but this time delete it and verify that it is no longer there.

Download persistingmodels/TodoRepositoryTest.cs

Line 1 [Test]
2 public void Should_Delete()
3 {
4 var originalTodo = CreateTodo();
5 repository.Delete(originalTodo);
6 session.Flush();
7 session.Clear();
8 Assert.IsEmpty((ICollection) repository.GetAll());
9 }

On line 5, we try to delete the newly created Todo. After a quick session

flush and clear, we call the Repository’s GetAll() and check to see that

there are no items in the database. To get this test to pass, we’ll need

to implement the Delete() method in the BaseRepository.

Download persistingmodels/BaseRepository.cs

public virtual void Delete(T model)

{

session.Delete(model);

}

Because this is a candidate for a generic operation, we put it in the

base class. The method passes the responsibility of the delete onto the

ISession to the real work of removing the item for the database. With

these couple lines of code, we now have a fully functional repository

that we can use in Chapter 9, Integrating Repositories with Controllers,

on page 188.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/persistingmodels/BaseRepository.cs
http://media.pragprog.com/titles/jmasp/code/persistingmodels/TodoRepositoryTest.cs
http://media.pragprog.com/titles/jmasp/code/persistingmodels/BaseRepository.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=185

ADDITIONAL ORM DATA RELATIONSHIPS 186

Before we move onto integrating NHibernate into MVC, let’s cover a few

more types of relationships that will likely come up when mapping your

classes, like one-to-many and many-to-many.

8.7 Additional ORM Data Relationships

We’ve already demonstrated a many-to-one when we said that there are

many Todos to each Topic. We’ll touch on two other important types of

relationships that are often modeled in web applications.

One-to-Many

This is where one model has a collection of another. For example, if we

said that a Todo can have more than one Topic, that would make it a

one-to-many relationship. To express this in Fluent NHibernate, we use

the method HasMany() in a class map constructor. So, our hypothetical

class map of a Todo with multiple Topics would look like HasMany(x =>

x.Topics). We’ll also need to add the collection itself to the Todo for this to

work.

Many-to-Many

Every so often, we need to express a two-way relationship where two

models each hold a collection of one another. A classic example of this is

with users and roles. There are many users in a system, each with one

or more roles. Similarly, roles have many different users. Mapping this

in Fluent NHibernate gives us the HasManyToMany() method. The code

for the user-to-roles relationships would look like HasManyToMany(x = >

x.Roles). A many-to-many relationship requires the creation of a separate

intermediate database table. Fluent NHibernate lets us name that table

explicitly if we want by adding .WithTableName("UserRoles").

There is a lot more to cover in NHibernate than we can do here with-

out taking us too far away from MVC. I highly recommend the Flu-

ent NHibernate website for other examples and how-tos on common

database setups and advanced mapping support.5

Up Next

With NHibernate set up and our repositories crafted, it’s time to get

these working with the rest of our solution. The next chapter is all about

5. http://fluentnhibernate.org

Report erratum

this copy is (P1.0 printing, June 2010)

http://fluentnhibernate.org
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=186

ADDITIONAL ORM DATA RELATIONSHIPS 187

integrating our repository with a controller. This will make GetOrga-

nized remember all of our Todos whenever we shut down our web server.

Away with static lists!

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=187

Great things are not done by impulse but by a series of

small things brought together.

Vincent van Gogh

Chapter 9

Integrating Repositories
with Controllers

In the previous chapter, we built our first repository to access and mod-

ify the database. A repository on its own won’t do anything unless it’s

tied back into MVC, though. This means getting the repository working

with a controller. For GetOrganized, we’ll take the TodoController and

have it retrieve information directly from the TodoRepository. This will

finally rid us of the static list Todo.ThingsToBeDone.

To do that, we’ll use an open source product called the Castle Windsor

container that will help create controllers with their respective reposi-

tories. That will leave us in a good place to begin test-driving controllers

by mocking out the repositories.

Once we have repositories integrated with controllers, we can simplify

the way we validate models. We’ll apply NHibernate’s built-in validation

framework to our MVC models. This makes validations easier to read

and implement.

Finally, we’ll take a look at NHProfiler, a commercial NHibernate profiler

that can help you easily identify performance problems with your usage

of NHibernate. It’s worth knowing the basics of a profiler like NHProfiler

to help spot performance problems early on.

Some of the code in this chapter was adapted from the open source

project Sharp-Architecture.1 Sharp-Architecture provides a highly test-

able architecture for an ASP.NET MVC application. Here it has helped

with setting up the NHibernate session and handling the database

transactions.

1. http://www.sharparchitecture.net/

http://www.sharparchitecture.net/

FIXING THE NHIBERNATE SESSION INSIDE MVC 189

The first thing we need to do to integrate NHibernate into MVC is to get

the NHibernate session going.

9.1 Fixing the NHibernate Session Inside MVC

For NHibernate to work with MVC, we’ll need a place to store the

NHibernate ISession. For this job, we’ll create a class called NHibernate-

SessionStorage located in the Persistence in the Web project right next to

the NHibernateConfiguration class. It will be responsible for retrieving and

opening the NHibernate ISession in the HttpContext for every web request

that comes in.

Download repositoriesAndControllers/NHibernateSessionStorage.cs

Line 1 public class NHibernateSessionStorage
- {
- private const string CURRENT_SESSION_KEY =
- "nhibernate.current_session";
5

- public static ISession RetrieveSession()
- {
- HttpContext context = HttpContext.Current;
- if (!context.Items.Contains(CURRENT_SESSION_KEY)) OpenCurrent();

10 var session = context.Items[CURRENT_SESSION_KEY] as ISession;
- return session;
- }
-

- private static void OpenCurrent()
15 {

- ISession session = NHibernateConfiguration.CreateAndOpenSession();
- HttpContext context = HttpContext.Current;
- context.Items[CURRENT_SESSION_KEY] = session;
- }

20

- public static void DisposeCurrent()
- {
- if (!HttpContext.Current.Items.Contains(CURRENT_SESSION_KEY))
- return;

25 ISession session = RetrieveSession();
- if (session != null && session.IsOpen)
- session.Close();
- HttpContext context = HttpContext.Current;
- context.Items.Remove(CURRENT_SESSION_KEY);

30 }
- }

The public method RetrieveSession() returns an NHibernate ISession. On

line 8, we obtain the current HttpContext, which is used as the storage

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/NHibernateSessionStorage.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=189

FIXING THE NHIBERNATE SESSION INSIDE MVC 190

device. We then check to see whether an ISession exists in the collection

of Items under the key CURRENT_SESSION_KEY. This makes the method

RetrieveSession() safe to call multiple times by either opening a new ISes-

sion on line 14 or returning the one that has already been opened for

this web request. If the request has no ISession, then OpenSession() is

called and asks NHibernateConfiguration to create a new one. It then

stores the ISession back into the HttpContext.

The other public method, DisposeCurrent(), closes and releases the

NHibernate ISession from the HttpContext. On line 24, we make sure

that an ISession exists in the HttpContext, because only requests that

use NHibernate will have one. If there is no ISession, then we don’t want

to call RetrieveSession(), because that opens a new one.

Now we’ll put the NHibernateSessionStorage and NHibernateConfiguration

to work. We’ll need to modify Global.asax.cs to initialize NHibernate and

make sure every web request has an ISession. Also, Global.asax.cs will be

responsible for safely disposing of the NHibernate ISession once the web

request is finished.

Download repositoriesAndControllers/Global.asax.cs

Line 1 public class MvcApplication : HttpApplication
- {
- private readonly object lockObject = new object();
- private bool wasNHibernateInitialized;
5

- private void Application_BeginRequest(object sender, EventArgs e)
- {
- InitializeNHibernate();
- }

10

- private void Application_EndRequest(object sender, EventArgs e)
- {
- NHibernateSessionStorage.DisposeCurrent();
- }

15

- private void InitializeNHibernate()
- {
- if (!wasNHibernateInitialized)
- {

20 lock (lockObject)
- {
- if (!wasNHibernateInitialized)
- {
- NHibernateConfiguration.Init(

25 MsSqlConfiguration.MsSql2005.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=190

FIXING THE NHIBERNATE SESSION INSIDE MVC 191

- ConnectionString(builder => builder.
- FromConnectionStringWithKey("ApplicationServices")),
- UpdateDatabase());
-

30 wasNHibernateInitialized = true;
- }
- }
- }
- }

35

- private Action<Configuration> UpdateDatabase()
- {
- return config => new SchemaUpdate(config).Execute(false, true);
- }

40 }

Every web request that comes into MVC triggers the method Appli-

cation_BeginRequest(). Alternatively, you can create an HttpModule that

runs the same code and wire it up in Web.config. Here we’ll just mod-

ify the ASP.NET life-cycle events directly in Global.asax.cs for ease of

readability.

Application_BeginRequest() checks to see whether NHibernate has been

initialized. It never calls RetrieveSession() as you might expect. This is

because there might be some controllers that don’t require database

connectivity and therefore never use a session. Instead, an ISession is

retrieved only when a repository needs one. This will be covered a little

later in Section 9.2, Using Factory Methods in Castle Windsor to Retrieve

Sessions, on page 196.

The private method InitializeNHibernate() calls NHibernateConfiguration in

a thread-safe way. It uses the two private members, lockObject and

wasNHibernateInitialized, to ensure thread safety. On line 18, we quickly

check to see whether NHibernate has been initialized already, since we

want to do this only once. Next on line 20, we use the keyword lock to

instruct the program to get an exclusive lock on lockObject. This pre-

vents any other thread (incoming web request) from running the rest

of this code while the current thread does. To be extra safe, we’ll do

a second check on the wasNHibernateInitialized on line 22 to make sure

that milliseconds before we got the lock another thread didn’t already

initialize the NHibernate.

Once we’re sure about the first thread to initialize NHibernate, we call

NHibernateConfiguration to do the job. We pass it the connection string

from the Web.Config on line 27. This is the same connection string we

set in Section 5.2, Set Up SQL Server for the Membership Provider, on

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=191

USING INVERSION OF CONTROL WITH THE ICONTROLLERFACTORY 192

page 101. Also, the database schema is set to be upgraded on line 28 by

calling Execute(bool generateSQLscript, bool performUpgradeOnDatabase).

Just as we want to ensure we create only one NHibernate session per

web request, we also want to safely dispose them once the request

is complete. The method Application_EndRequest() is called by ASP.NET

after the request is completed. This is where we call NHibernateSession-

Storage’s DisposeCurrent() method to clean up this resource.

This is all the setup we need to have one NHibernate ISession per request.

We can now move on to initializing our repositories and ISessions using

an Inversion of Control (IoC) container.

9.2 Using Inversion of Control with the IControllerFactory

As your web application gets larger and more complex, there tends to be

a lot more duplication of code. This can happen when you have a team

of developers who aren’t on the same page about how you do something

like creating a repository. For example, the easiest way to create a new

repository is to directly invoke the new keyword. Easiest isn’t always

the smartest. After a while, you’ll catch yourself repeating this line of

code over and over again.

One way to avoid this repetition is to create a RepositoryFactory class.

The factory will give you a particular repository in a state that is con-

figured and ready to use. Now all the configuration of the particular

repository is in one place. So, the RepositoryFactory helps reduce the

duplication and allows developers on teams to create objects in a con-

sistent manner. They do have a downside, however. If repositories start

to have their own dependencies on other objects, then you’ll end up

making the RepositoryFactory more complicated than it needs to be.

Luckily, these headaches of dependency and object creation can be

solved by using an Inversion of Control container. An IoC container

manages and resolves dependencies between objects. They also cen-

tralize object creation, similar to the RepositoryFactory, except they do

this for all classes of objects in your application.

For our IoC container, we’ll be using the open source Castle Windsor

container. There are many IoC containers in the .NET space, other than

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=192

USING INVERSION OF CONTROL WITH THE ICONTROLLERFACTORY 193

Castle Windsor. StructureMap,2 Ninject,3 Unity,4 and Spring.NET,5 all

perform the same job in roughly the same way. We’re going to use the

Castle Windsor container because it is among the most popular and has

a lot of documentation for working with both MVC and NHibernate.

Now let’s hook the Castle Windsor container into MVC.

Treat Your Objects like Royalty at Castle Windsor

Back in Section 5.1, IControllerFactory: Where Controllers Are Born, on

page 98, you saw that the IControllerFactory is the entry interface for the

creation of all controllers. Naturally, this is the most logical place to

create and inject the repositories into the controllers.

First, download Castle Windsor 2.0,6 and add the following DLLs to

your Lib folder:

• Castle.Core.dll

• Castle.DynamicProxy2.dll

• Castle.MicroKernel.dll

• Castle.Windsor.dll

Creating objects in Castle Windsor is fairly straightforward. You first

need to register the type of classes with the Castle Windsor container

and then ask the container for an object of that type:

Download repositoriesAndControllers/WindsorSample.cs

IWindsorContainer container = new WindsorContainer();

container.Register<Foo>();

Foo newFoo = container.Resolve<Foo>();

Here we create a new Castle Windsor container, register a Foo, and then

obtain a new Foo. You use the Register() method to register a type and

call Resolve() to get a new object. The default behavior of Castle Windsor

is to return the exact object that was registered. In Castle Windsor

terminology, this is known as having a LifestyleType of Singleton, meaning

we only ever have one of these objects in the system. Most of the time

we want a new object, so we’ll set the LifestyleType to Transient. You can

register an object with a specific lifestyle like this:

2. http://structuremap.sourceforge.net/Default.htm

3. http://ninject.org

4. http://www.microsoft.com/downloads/details.aspx?displaylang=en\&FamilyID=ab3f2168-fea1-4fc2-b40c-7867d99d4b6a

5. http://www.springframework.net

6. http://sourceforge.net/projects/castleproject/files/InversionOfControl/2.0/Castle-Windsor-2.0.zip/download

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/WindsorSample.cs
http://structuremap.sourceforge.net/Default.htm
http://ninject.org
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=ab3f2168-fea1-4fc2-b40c-7867d99d4b6a
http://www.springframework.net
http://sourceforge.net/projects/castleproject/files/InversionOfControl/2.0/Castle-Windsor-2.0.zip/download
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=193

USING INVERSION OF CONTROL WITH THE ICONTROLLERFACTORY 194

Download repositoriesAndControllers/WindsorSample.cs

container.Register<Foo>(LifestyleType.Trasient);

That’s how to use Castle Windsor in its simplest way. Now it’s time to

use Castle Windsor to register both controllers and repositories. To get

those controllers out, we’re going to need to change the DefaultController-

Factory to do that. Luckily, MVCContrib already has written the code to

take care of this for us.

MVCContrib has two classes related to this function: WindsorController-

Factory and WindsorExtensions. Extensions adds the method RegisterCon-

trollers() to the IWindsorContainer, allowing us to register all the controllers

in our Web project. To demonstrate how the factory code works, we’ll

include a snippet of it here. It’s good to know in case you ever end up

building your own controller factory one day:

Download repositoriesAndControllers/WindsorControllerFactory.cs

public class WindsorControllerFactory : DefaultControllerFactory

{

private IWindsorContainer _container;

protected override IController GetControllerInstance(

RequestContext context, Type controllerType)

{

if(controllerType == null)

{

throw new HttpException(404,

string.Format("The controller for path '{0}' " +

"could not be found or it does not implement IController.",

context.HttpContext.Request.Path));

}

return (IController)_container.Resolve(controllerType);

}

}

WindsorControllerFactory extends the DefaultControllerFactory and overrides

the GetControllerInstance(). This checks for a null type and then uses an

overload of the Resolve(Type typeToReturn) method to return the appro-

priate controller.

This will take care of the controller creation, but we need to replace

the DefaultControllerFactory with the new WindsorControllerFactory in the

Global.asax.cs.

Download repositoriesAndControllers/Global.asax.cs

Line 1 public class MvcApplication : HttpApplication

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/WindsorSample.cs
http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/WindsorControllerFactory.cs
http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=194

USING INVERSION OF CONTROL WITH THE ICONTROLLERFACTORY 195

- {
- //omit NHibernateConfiguration code...
-

5 protected void Application_Start()
- {
- SetupWindsorContainer();
- RegisterRoutes(RouteTable.Routes);
- }

10

- private void SetupWindsorContainer()
- {
- IWindsorContainer container = new WindsorContainer();
-

15 RegisterControllers(container);
- RegisterNHibernateSessionFactory(container);
- RegisterRepositories(container);
- }
-

20 private void RegisterControllers(IWindsorContainer container)
- {
- ControllerBuilder.Current.
- SetControllerFactory(new WindsorControllerFactory(container));
- container.RegisterControllers(typeof (HomeController).Assembly);

25 }
- }

We only want to register Castle Windsor once, so the Application_Start()

method is the right place for the job. It is called once when the applica-

tion starts up when the first web request arrives. In this method, we’ll

call SetupWindsorContainer(), which contains three private methods that

will set up the container.

We are registering the WindsorControllerFactory in the RegisterControllers(I-

WindsorContainer container) method. We’ll talk about the RegisterNHiber-

nateSessionFactory() and RegisterRepositories() later in Section 9.2, Using

Factory Methods in Castle Windsor to Retrieve Sessions, on the following

page. To register the controllers, we access the ControllerBuilder on line

22. This object lets us assign the WindsorControllerFactory with the Castle

Windsor container as the new IControllerFactory. On line 24, we use the

WindsorExtension class’s extension method to register all the controllers

in the same assembly as the HomeController.

This takes care of registering controllers with Castle Windsor, but we

also need to register other components like our repositories and the

NHibernate ISessions.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=195

USING INVERSION OF CONTROL WITH THE ICONTROLLERFACTORY 196

Using Factory Methods in Castle Windsor to Retrieve Sessions

A static method that returns a newly created object is called a factory

method. NHibernateSessionStorage has a nontraditional factory method

called RetrieveSession(). It is nontraditional in the sense that the method

returns the same object every time it is created, whereas a true factory

will produce new objects every time. In this case, we want the same ISes-

sion to be used for the lifetime of a single web request. This is because

NHibernate ISessions are expensive to create.

Castle Windsor has a special way to register factory methods. This will

provide a way for the repositories we register to obtain an ISession.

Download repositoriesAndControllers/Global.asax.cs

Line 1 private void RegisterNHibernateSessionFactory(
2 IWindsorContainer container)
3 {
4 container.AddFacility<FactorySupportFacility>();
5 container.Register(Component.For<ISession>().
6 UsingFactoryMethod(() =>
7 NHibernateSessionStorage.RetrieveSession()).
8 LifeStyle.Is(LifestyleType.Transient));
9 }

A facility is an extension point of the Castle Windsor framework. Here

we are using the FactorySupportFacility on line 4. The facility gives pro-

viders a way to register factory methods, which we do on line 5, for

the ISession type. We call the method UsingFactoryMethod() and pass it a

lambda expression on line 6 to specify that the source of the ISession

is on the factory method RetrieveSession(). Finally, we instruct Castle

Windsor that the ISession is Transient on line 8 so that we get a new one

every time one is requested.

With ISessions registered with the factory method, the last step is to

register the repositories themselves:

Download repositoriesAndControllers/Global.asax.cs

Line 1 private void RegisterRepositories(IWindsorContainer container)
- {
- IEnumerable<Type> repositories = Assembly.GetExecutingAssembly().
- GetTypes().Where(IsRepository);
5

- foreach (Type repository in repositories)
- {
- container.AddComponentLifeStyle(repository.Name, repository,
- LifestyleType.Transient);

10 }
- }
-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Global.asax.cs
http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=196

INJECTING REPOSITORIES INTO CONTROLLERS 197

- private bool IsRepository(Type type)
- {

15 return type.Namespace != null && type.IsClass && !type.IsAbstract &&
- type.Namespace.Contains("GetOrganized.Persistence.Repositories");
- }

On line 4, we obtain a list of repositories from the executing assembly

(GetOrganized.dll). We restrict the types of classes we get back using

the LINQ method Where() with the expression IsRepository() on line 15.

This method filters back classes that are concrete (not abstract or an

interface) and in the namespace GetOrganized.Persistence.Repositories. For

each repository, we register it as transient on line 9 so every request

has its own copy.

We have completed registration of the controllers, the repositories, and

the NHibernate ISession. Our Castle Windsor container is now ready to

serve a web request near you. We can now test-drive our controllers

using our newly registered repositories.

9.3 Injecting Repositories into Controllers

All of this registration is the background work to replacing static lists

with repositories. We learned how to test-drive the repository back in

Section 8.4, Creating and Reading Records, on page 179. It’s time now

to test-drive controllers that contain one or more repositories. We do

this by mocking out the repository using Rhino Mocks.

Once you become comfortable with mocking the repository, this will

become the preferred order for test-driving your code. By starting with

controller tests, you get a better idea of what data you will need based

on the action it performs.

For example, while test-driving the controller action ProcessOrder(), you

uncover that you need to modify both Order and Customer models. If you

had started test-driving the OrderRepository first, you might not have

seen the need to modify Customer until later. By understanding your

coding requirements earlier, you will reduce this kind of rework.

Let’s put this into practice. We’re going modify the TodoController, which

we last left off in Section 5.4, Test-Driving Authorization, on page 110.

For this test, we’re going to work on the Index() action. Let’s test-drive

this by mocking the TodoRepository.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=197

INJECTING REPOSITORIES INTO CONTROLLERS 198

Download repositoriesAndControllers/TodoControllerTest.cs

Line 1 [TestFixture]
- public class TodoControllerTest
- {
- private TestControllerBuilder builder;
5 private TodoController todoController;
- private MockRepository mocks;
- private ISession session;
- private TodoRepository todoRepository;
-

10 [SetUp]
- public void setup()
- {
- mocks = new MockRepository();
- builder = new TestControllerBuilder();

15 session = mocks.DynamicMock<ISession>();
- todoRepository = mocks.StrictMock<TodoRepository>(session);
- todoController = new TodoController(todoRepository);
- builder.InitializeController(todoController);
- }

20

- [Test]
- public void Should_Display_Todo_List_And_Logged_In_Users_Name()
- {
- const string userName = "Jonathan";

25 var todoList = new List<Todo>
- { new Todo { Title = "Refactor to NHibernate" } };
-

- builder.HttpContext.User =
- new GenericPrincipal(new GenericIdentity(userName), null);

30

- Expect.Call(todoRepository.GetAll()).Return(todoList);
- mocks.ReplayAll();
-

- var viewData = todoController.Index().
35 AssertViewRendered().ViewData;

-

- Assert.AreEqual(todoList, viewData.Model);
-

- Assert.AreEqual(userName, viewData["UserName"]);
40 mocks.VerifyAll();

- }
- }

To add a mock object, we set it up in the Setup() portion so that it is

available to all tests in the fixture. On line 16, we use StrictMock<Todo-

Repository>() to create the mock object. We then inject that mock into

the TodoController constructor on line 17.

The test itself will use the Expect object, which is part of Rhino Mocks,

which we already downloaded and installed in Section 5.4, Using MVC-

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/TodoControllerTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=198

INJECTING REPOSITORIES INTO CONTROLLERS 199

Contrib’s TestControllerBuilder to Test Controllers, on page 111. This

object is used to add expected behavior to the mock repository. On line

31, we set the expectation that TodoRepository’s method GetAll() will be

called and will return the todoList. The expectation needs to be replayed

in the mocks collection itself, so on line 32 we use the method ReplayAll().

Alternatively, you can call the mock object explicitly using Replay(object

mockObject).

Rhino Mocks objects need to be replayed for them to emulate the de-

sired behavior. Other mock frameworks, like NMock,7 inherently do

this for you but at the cost of having to hard-code the names of the

methods you want to mock in a string.

Mock objects will cause the test to fail only if they are improperly or

never called. For this to happen, we need a verification step. All mock

frameworks (including Rhino Mocks and NMock) have this built into

them. After our normal assertions, we call VerifyAll() at the end of the test

on line 40. Again, there is a second flavor of Verify(object mockObject)

that verifies only a single mockObject. This test won’t compile until we

create a new constructor for TodoController that accepts a TodoRepository.

Let’s get this test to pass:

Download repositoriesAndControllers/TodoController.cs

Line 1 [Authorize]
- public class TodoController : Controller
- {
- private readonly TodoRepository repository;
5

- public TodoController(TodoRepository repository)
- {
- this.repository = repository;
- }

10

- //
- // GET: /Todo/
-

- public ActionResult Index()
15 {

- ViewData["UserName"] = User.Identity.Name;
-

- ViewData.Model = repository.GetAll();
-

20 return View();
- }
- }

7. http://nmock.org

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/TodoController.cs
http://nmock.org
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=199

CREATING A CUSTOM ACTION FILTER 200

First we add the new constructor on line 6. The repository is set to a

private readonly member to ensure that it is never modified after con-

struction. In the Index() action itself, we simple remove the call to the

static list. Instead of using Todo.ThingsToBeDone, we now call todoReposi-

tory’s GetAll() method on line 18. This makes the test pass. We’ve finally

removed our static list and replaced it with a more testable repository.

The rest of the GetOrganized solution needs to be converted in a similar

way. Any time you have a call to the static list, it will be replaced with a

call to the repository. The full conversion is available in the download-

able code, available in the GetOrganizedFinal/ folder.

Another important aspect to ensuring our controllers work with repos-

itories is to have them manage NHibernate transactions.

9.4 Creating a Custom Action Filter: The [Transaction] Attribute

Transactions are a programmatic boundary that marks the start and

end of one or more database operations. They are an “all or none” guar-

antee that commits all the operations or rolls them all back if something

goes wrong.

Most operations that update or save models ought be transactional,

such as if there are multiple models being modified but one of those

updates goes wrong and we don’t want any of those changes saved.

Otherwise, it’d be hard to know which models were modified and which

failed. Let’s say it’s because of invalid information in only one of the

models. In this case, you don’t want the system to have updated and

saved half or three quarters of the models.

This is where a transaction can save you from worrying about these sce-

narios. They save you from the nightmare of inconsistent data brought

about by the application. Trust me, you don’t want to explain to your

boss that it was your code that created database soup.

What transactions don’t do is ensure against stale data. For example,

if one person is on the edit screen and another person clicks the save

button first, then transactions will not save you from this headache.

One technique is to perform a checksum on the data and before saving

the data check to see whether the data is consistent with what it was

before you are making the change. Alternatively, you can compare the

timestamps on the records.

Those who know transactions from ADO.NET will be familiar with cre-

ating a using block around a System.Transactions.Transaction object. This

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=200

CREATING A CUSTOM ACTION FILTER 201

object wraps your database operations and then commits them if every-

thing went well. Otherwise, it rolls those operations back. This code

becomes repetitive, so for MVC and NHibernate we’ll create a custom

action filter to handle it. First, we need to build the capability of access-

ing the NHibernate ITransaction object, which is available off the ISession:

Download repositoriesAndControllers/NHibernateSessionStorage.cs

public class NHibernateSessionStorage

{

//omit start of class...

public static ITransaction Transaction

{

get { return RetrieveSession().Transaction;}

}

}

We create a new getter property called Transaction, which exposes the

current web request’s ISession. With that now available to us, we can

create our TransactionAttribute action filter:

Download repositoriesAndControllers/TransactionAttribute.cs

Line 1 public class TransactionAttribute : ActionFilterAttribute
- {
- public override void OnActionExecuting(
- ActionExecutingContext filterContext)
5 {
- NHibernateSessionStorage.Transaction.Begin();
- }
-

- public override void OnActionExecuted(
10 ActionExecutedContext filterContext)

- {
- ITransaction currentTransaction =
- NHibernateSessionStorage.Transaction;
-

15 if (currentTransaction.IsActive)
- {
- if (filterContext.Exception == null)
- {
- currentTransaction.Commit();

20 }
- else

- {
- currentTransaction.Rollback();
- }

25 }
- }
- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/NHibernateSessionStorage.cs
http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/TransactionAttribute.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=201

CREATING A CUSTOM ACTION FILTER 202

This code is a modified version of the one available in Sharp Archi-

tecture.8 During the OnActionExecuting(), which happens at the start of

the controller’s action, we begin the NHibernate transaction on line 6.

At the end of the action, the action filter method OnActionExecuted() is

called to check whether to commit or roll back the ITransaction.

If an ITransaction has already been committed or rolled back (explicitly

by the program), we don’t want to do this again. On line 15, we check

the property IsActive to guard against this scenario. For a transaction

to be eligible for a commit, it must contain no Exceptions. We check for

that on line 17.

To show off the [Transaction] attribute in action, we’ll create a contrived

example. Say we want to open 1,000 database records and update the

timestamp:

Download repositoriesAndControllers/MassModificationController.cs

public class MassModificationController : Controller

{

[Transaction]

public ActionResult UpdateTimeStamp()

{

for (int i = 1; i < 1001; i++)

{

var model = repository.Get(i);

model.LastUpdated = DateTime.Now;

repository.SaveOrUpdate(model);

}

}

}

This example illustrates one way of using a transaction in MVC. If

something fails during one of the updates to the models, you don’t

want only some of the records being left modified. Since we apply the

[Transaction] attribute, we are safe from this scenario.

The code inside UpdateTimeStamp() is all wrapped up in one NHibernate

ITransaction so that if an exception is thrown, then the TransactionAttribute

class will detect it and call Rollback(). This will revert all the changes,

preserving the integrity of the data and allowing the operation to be

tried again later.

We now have repositories integrated into the controllers and the tests

to support it. We also have the ability to wrap controller actions with

8. http://github.com/codai/Sharp-Architecture/blob/master/src/SharpArch/SharpArch.Web/NHibernate/TransactionAttribute.cs

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/MassModificationController.cs
http://github.com/codai/Sharp-Architecture/blob/master/src/SharpArch/SharpArch.Web/NHibernate/TransactionAttribute.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=202

LINKING NHIBERNATE AND MVC VALIDATIONS 203

transactions. Now we’ll leverage NHibernate’s model validation frame-

work to save us time when performing validations.

9.5 Linking NHibernate and MVC Validations

Earlier, in Section 6.4, Adding Validations Using ModelStateDictionary,

on page 143, we used ModelStateDictionary to make sure a Todo had a

Title of no more than twenty-five characters long. NHibernate has its

own validation framework that is very similar to the new ASP.NET one

(discussion on page 15). Based on the way we implemented validation,

adding NHibernate support is only a few steps away.

Instead of implementing the IValidatable interface on every model, we

can instead use an extension method. Extension methods allow us to

add new methods to classes without modifying the class code. We’ve

already used them before, because all HTML helpers are extension

methods of the Html class.

This approach to NHibernate validations and MVC was inspired from a

blog post by David Hayden.9 We’ll modify the existing IValidatable inter-

face and add an extension method in a new ValidationExtension class.

Both of these classes will live in the Models/Validation directory. First

let’s modify the existing interface:

Download repositoriesAndControllers/IValidatable.cs

using System.Web.Mvc;

namespace GetOrganized.Models.Validator

{

/// <summary>

/// Marker for Models that can run

/// ValidationExtension.Validatable(ModelState state)

/// </summary>

public interface IValidatable { }

}

We removed the method Validate(ModelStateDictionary state) and used

this interface as a marker for models that can be validated.

9. http://www.pnpguidance.net/post/NHibernateValidatorTutorialValidateBusinessObjectsMVC.aspx

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/IValidatable.cs
http://www.pnpguidance.net/post/NHibernateValidatorTutorialValidateBusinessObjectsMVC.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=203

LINKING NHIBERNATE AND MVC VALIDATIONS 204

Now we’ll add a new extension method:

Download repositoriesAndControllers/ValidationExtension.cs

public static class ValidationExtension

{

public static void Validate(this IValidatable model,

ModelStateDictionary state)

{

InvalidValue[] invalidValues =

new ValidatorEngine().Validate(model);

foreach (var error in invalidValues)

{

var errorMessage = error.PropertyName + " " + error.Message;

state.AddModelError(errorMessage, errorMessage);

}

}

}

To get NHibernate validations to work, you will need to download the

NHibernate Contrib Validator package; for this book, we’re using

1.2.0.CR1.10 You’ll add NHibernate.Validator.dll (contained within the

NHibernate Contrib download) to your Lib directory. Also, add this ref-

erence to your Web project. Iterate through InvalidArgs collection, and

add to ModelStateDictionary as errors come up.

Notice how we created the variable errorMessage by concatenating the

PropertyName and the Message. This is done to make the keys in the

ModelStateDictionary unique for multiple validations of the same field.

For example, if we added a restriction on the length and on the kinds

of characters allowed in the Name property, we’d want to display both

error messages if both rules were triggered.

Before the code can work, we need to modify the Todo class to support

NHibernate validations:

Download repositoriesAndControllers/Todo.cs

public class Todo : IValidatable

{

[Length(0,25)]

public string Title { get; set; }

//... omitted rest of class ...

}

10. http://sourceforge.net/projects/nhcontrib/files/NHibernate.Validator/1.2.0%20CR1/NHibernate.Validator-1.2.0.CR1-bin.zip/download

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/ValidationExtension.cs
http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Todo.cs
http://sourceforge.net/projects/nhcontrib/files/NHibernate.Validator/1.2.0%20CR1/NHibernate.Validator-1.2.0.CR1-bin.zip/download
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=204

LINKING NHIBERNATE AND MVC VALIDATIONS 205

Joe Asks. . .

What About Ajax Validations?

Since we introduced Ajax functions in Chapter 7, Compos-
ing Views with Ajax and Partials, on page 151, we broke the
Todo/Index.aspx screen. Right now the validation logic works only
on the Todo/Create.aspx page because our jQuery does not
handle errors. One way to preserve the Ajax as well as the vali-
dation logic is to use an open source tool called xVal.∗

xVal bridges NHibernate validations back to any client-side val-
idation technology including jQuery validation (Figure 7.2, on
page 162) and ASP.NET JavaScript validations. It is authored by
Steve Sanderson, and he provides an easy-to-follow tutorial on
his blog. †

∗. http://xval.codeplex.com

†. http://blog.codeville.net/2009/02/27/xval-08-beta-now-released/

We replaced the method Validate() with the NHibernate validation attri-

bute [Length(0,25)]. There are many other validation attributes like [Email]

for email or [Pattern("regularExpression")] for regular expressions. You can

also extend and create your own validators. Apply the [ValidatorClass]

attribute, and point it to a class that implements NHibernate.Validator.

Engine.IValidator. This makes reusing validation logic easy and, of course,

testable.

With our Todo modified, we can now let the controller perform the

actual validation. The code will work without modification. Because

we replaced the interface method with an extension method, we didn’t

have to change the TodoController code at all. The code for that con-

troller is described in Section 6.4, Adding Validations Using ModelState-

Dictionary, on page 143. However, these validations don’t provide nice

messages back when Ajax is being used (see the Joe Asks. . . on the

current page).

With NHibernate validations all wired up, we can quickly touch on how

to help deal with performance problems by profiling NHibernate.

Report erratum

this copy is (P1.0 printing, June 2010)

http://xval.codeplex.com
http://blog.codeville.net/2009/02/27/xval-08-beta-now-released/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=205

PREVENTING PERFORMANCE PROBLEMS WITH PROFILING 206

9.6 Preventing Performance Problems with Profiling

The good thing about the architecture presented in this chapter is that

there is only one NHibernate ISession per web request. This means you

won’t run into a common performance problem of having more than

one ISession. However, you can still write NHibernate code to load large

amounts of data, such as your whole customer database. Or perhaps

you might end up modifying and saving hundreds of models within the

same controller.

Such scenarios can grind your application to a halt. Sometimes find-

ing the performance killer is easy. Other times it can be hair-pulling

experience. Thankfully, there are tools like NHProf that can help you

pinpoint where your NHibernate code is going down the wrong path.

Download the latest build from NHProf’s website.11 You’ll need to reg-

ister by email to get a thirty-day trial. After you’ve activated the trial,

you need to copy HibernatingRhinos.NHibernate.Profiler.Appender.dll to your

lib directory. Also, add it as a reference to the GetOrganized Web project,

and add the following code to your Global.asax.cs:

Download repositoriesAndControllers/Global.asax.cs

Line 1 protected void Application_Start()
2 {
3 SetupWindsorContainer();
4 RegisterRoutes(RouteTable.Routes);
5

6 HibernatingRhinos.NHibernate.Profiler.
7 Appender.NHibernateProfiler.Initialize();
8 }

Activating profiling in your application is done on line 7. You don’t want

this line to go into production code, because it will slow down the sys-

tem. You can now launch the NHProf client HibernatingRhinos.NHibernate.

Profiler.Client.exe, and presto! You’re profiling! When you hit the http://

localhost/Todo/Index URL, you’ll see the following output on the NHPro-

filer screen in Figure 9.1, on the following page.

NHProfiler will give you detailed information about what is going on

with your database and NHibernate code. It will point out the time it

takes to run particular queries as well as provide statistics on your

NHibernate session factory.

11. http://nhprof.com

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/Global.asax.cs
http://localhost/Todo/Index
http://localhost/Todo/Index
http://nhprof.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=206

PREVENTING PERFORMANCE PROBLEMS WITH PROFILING 207

Figure 9.1: NHProf reveals both the exact SQL that is occuring as well

as NHibernate statistics such as the number of sessions.

For example, when writing this chapter and profiling a page in GetOr-

ganized, NHProfiler picked up a big problem. The method DisposeCur-

rent() in the NHibernateSessionStorage was opening multiple NHibernate

ISessions for every request. It was creating an ISession for each HTTP GET

call, including every CSS, image, and JavaScript file. By adding a check

in the HttpContext for an existing ISession, the code started to behave as

it was intended. It creates a single ISession for every request that uses a

repository. It would have been difficult to spot that problem without a

profiler.

Profiling often reveals other problems, such as when large amounts of

data are being read repeatedly. One solution to this is to use second-

level caching. In this book we won’t cover how to use second-level

caching in NHibernate, but there are many useful articles online that

do.12 A popular option for a second-level cache is to use a Memcached13

server. Memcached is an open source in-memory caching server that

12. http://ayende.com/Blog/archive/2009/04/24/nhibernate-2nd-level-cache.aspx

13. http://www.cnblogs.com/RicCC/archive/2007/10/13/NHibernate-Memcached.html

Report erratum

this copy is (P1.0 printing, June 2010)

http://ayende.com/Blog/archive/2009/04/24/nhibernate-2nd-level-cache.aspx
http://www.cnblogs.com/RicCC/archive/2007/10/13/NHibernate-Memcached.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=207

PREVENTING PERFORMANCE PROBLEMS WITH PROFILING 208

temporarily stores data for faster retrieval. This is one of many solu-

tions that can address a performance problem.

Having the profiler running on a daily basis will help you catch perfor-

mance problems. It will help you understand how to best use NHiber-

nate. NHProfiler also gives you tips and warnings about your NHiber-

nate code that can also save you time.

In case you don’t want to shell out the cash for NHProfiler, there are

also free options available.

A Free Alternative: NHibernate Interceptors

One alternative to using this commercial product is to create your

own NHibernate Interceptor. Interceptors are an architectural exten-

sion point of NHibernate similar in principle to MVC action filters. They

hook into NHibernate events before, during, and after a call to the

database is made. I attended a presentation where Oren Eni, a contrib-

utor to NHibernate, showed off a rather novel usage of an NHibernate

Interceptor. Let’s call the Interceptor LocalMachineProdSimulatorIntercep-

tor and have it add a one-second delay to every NHibernate database

call:

Download repositoriesAndControllers/LocalMachineProdSimulatorInterceptor.cs

public class LocalMachineProdSimulatorInterceptor : IInterceptor

{

public void PreFlush(ICollection entities)

{

Thread.Sleep(1000);

}

}

The class implements NHibernate.IInterceptor, which has all the events

that you can hook into. In our case, we’re interested in PreFlush() be-

cause this is the event that happens prior to a database connection.

We tell the application to Sleep(int miliseconds) for 1,000 milliseconds to

simulate the network call.

This forces developers working on their local machine to feel the pain

of a production situation. In production, web servers and database

servers are separate physical machines. Every database call requires

a round-trip on the network, which adds up to pages loading slower

than they do on a local developer machine. Oren’s interceptor provides

an easy way to simulate this on your machine. Another good use of

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/repositoriesAndControllers/LocalMachineProdSimulatorInterceptor.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=208

PREVENTING PERFORMANCE PROBLEMS WITH PROFILING 209

NHibernate interceptors is to help with creating an audit trail for all

your models.14

That completes our introduction to NHibernate and how it’s an essen-

tial tie-in to MVC. NHibernate gives you a way to store and retrieve

models in a relational database without having to use SQL.

The other repositories and controllers in GetOrganized have been con-

verted to use NHibernate and are available for download with the source

code for this book. You can find the complete solution in the GetOrga-

nizedFinal/ folder when you unzip it.

Up Next

The marriage of repository and controller was made possible by MVC’s

IControllerFactory interface and the Castle Windsor container. We also

know how to better leverage NHibernate’s validation framework within

MVC. If we run into trouble with performance, we can use NHProfiler

to help highlight the problem.

To put the finishing touches on MVC applications in general, we’re

going to cover how to consume and publish web services. Next up,

we’ll create our own web service to allow Todos to be added by other

applications and published to Blogger’s web services.

14. http://stackoverflow.com/questions/892220/nhibernate-interceptor-auditing-inserted-object-id

Report erratum

this copy is (P1.0 printing, June 2010)

http://stackoverflow.com/questions/892220/nhibernate-interceptor-auditing-inserted-object-id
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=209

I have made this letter longer than usual, only because I

have not had the time to make it shorter.

Blaise Pascal

Chapter 10

Building RESTful Web Services
Take it from Pascal; it’s more effort to make a point in fewer words. Web

services have become the de facto standard for communication among

applications, but they have traditionally been verbose and require gen-

erated code to get the communication set up properly. MVC itself does

not come prepackaged with any web services framework. However, by

using a few objects within MVCContrib and relying on a REST-style

syntax, we can publish web services that even Pascal will be proud of.

We’re going to build a couple of web services from the Todo model. You’ll

see how you can expose models for other programmers to use. We’ll

return lists of Todo as plain old XML (POX) and expose a web service

that adds new models. A lot of enterprise development effort these days

involves integrating systems. Setting up web services like this will make

it easier for you to integrate with other applications.

Of course, the communication needs to flow both ways. We’ll also learn

about how to communicate with other people’s web services. For GetOr-

ganized, this means publishing a Todo as a blog entry on Blogger.1

Let’s start with a little context about web services themselves and where

the technology is at across the industry.

10.1 Use SOAP or Take a REST Instead?

Web services—programmable interfaces over HTTP—are a way for web

applications to communicate with each other. Microsoft introduced

Simple Object Access Protocol (SOAP) in 1998, and it quickly became

1. http://www.blogger.com

http://www.blogger.com

USE SOAP OR TAKE A REST INSTEAD? 211

Application A Application B

Create SOAP
Envelope

Turn Model into
XML

Send SOAP
Message

Parse SOAP
Envelope

Parse XML into
Model

Do
Something ...

Figure 10.1: Sending SOAP messages takes extra processing.

the standard enabling applications written in different languages to talk

to each other.

The idea was all well and good, but the industry started to realize that

SOAP is bulky and difficult to work with (see Figure 10.1). For example,

when coding up a .NET ASMX web service using SOAP, it was difficult

to generate a Java client to work with it automatically. The promise of

interoperability was not truly delivered, and so a simpler solution was

created.

Representational State Transfer (REST) was introduced as a simpler

way for web applications to talk (see Figure 10.2, on the following page).

REST relies on the basic verbs built into HTTP such as GET, POST,

DELETE, and PUT to describe the kinds of operations being performed.

Also, REST relies on well-named URLs to describe the resource that is

being operated on. ASP.NET MVC, by default, uses RESTful URLs such

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=211

USE SOAP OR TAKE A REST INSTEAD? 212

Application A Application B

Turn Model into
XML

Send REST
Message

Parse XML into
Model

Do
Something ...

Figure 10.2: REST is simpler than SOAP.

as http://localhost/Todo/Create to create a new Todo. This is in contrast

to a SOAP definition that uses a lot of XML to describe the same thing.

Most web service vendors are now moving to support both SOAP and

REST, but for this chapter we’ll focus exclusively on REST because

it is simpler to use. Microsoft’s standard web services package, Win-

dows Communication Foundation (WCF), now supports both SOAP and

REST. The MVC team is also working on better integration with WCF in

a future version (see the Joe Asks. . . on the next page).

Although WCF seems like the most common choice for most .NET devel-

opers when it comes to building web services, we won’t be using it here.

This is mainly because it is unnecessarily complicated for most real-

world scenarios. Just like REST is simpler than SOAP, we can leverage

what’s already in MVC to produce simpler services than WCF gives us.

For more information, MSDN has decent resources on WCF to get you

started.2

With this background on RESTful web services, let’s dig into creating

our first one.

2. http://msdn.microsoft.com/en-ca/netframework/aa663324.aspx

Report erratum

this copy is (P1.0 printing, June 2010)

http://localhost/Todo/Create
http://msdn.microsoft.com/en-ca/netframework/aa663324.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=212

CREATING A WEB SERVICE 213

Joe Asks. . .

How About the MVC REST Extension?

This extension relies on replacing the ControllerFactory with one
that recognizes different formats. It is a bit too early to adopt,
but it’s worth keeping an eye on as it matures. Some form of
this will probably make it into MVC 3.0. You can download a
preview of the code on CodePlex.∗

∗. http://aspnet.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24471#DownloadId=79561

10.2 Creating a Web Service

Test-driving web services requires that we create a third test project,

Test.Integration, so named because the classes we are testing require

external resources. In our case, we’ll be relying on both our Web project

and the Google’s Blogger web services to be running.

Creating a web services is a three-step process. First, we authenticate

against the service. This is similar to what we do when we log on to

a site. Second, we prepare the parameters in the request and send it.

Lastly, we receive the response and translate it into usable objects.

Let’s get started with the first step: authentication.

Using Forms Authentication with HttpWebRequest

Production web services generally use basic authentication over SSL.

This means each request sends the username and password along for

the ride. Unfortunately, this means that the credentials you give out to

other developers who will use your services need to be part of Windows

authentication, and in most cases that means being in Active Directory.

GetOrganized, like many of the applications you will write, uses Forms

authentication, which we covered in the sidebar on page 111. This

means that users of the system are stored elsewhere—or in our case,

the database. The simplest way around this is to have consumers of

your web services authenticate like everyone else by using Forms

authentication.

To make a web request in .NET, we use the System.Net.HttpWebRequest

object. On it, we set the URL and parameters we need to complete our

Report erratum

this copy is (P1.0 printing, June 2010)

http://aspnet.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=24471#DownloadId=79561
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=213

CREATING A WEB SERVICE 214

request. On a successful connection, it returns a System.Net.HttpWebRe-

sponse, which we’ll use to extract the received data.

To start, we’ll create a new test fixture called TodoWebServiceTest, which

will handle this section’s tests. The first test will verify authentication

is working:

Download webServices/TodoWebServiceTest.cs

[TestFixture]

public class TodoWebServiceTest

{

[Test]

public void Should_Authenticate_Against_Form()

{

HttpWebResponse response =

WebServiceUtil.AuthenticateWithForms("jonathan", "password",

"http://localhost:1901/Account/LogOn");

Assert.AreEqual(1, response.Cookies.Count);

Assert.AreEqual(".ASPXAUTH", response.Cookies[0].Name);

}

}

Here we create a web request that returns the HttpWebResponse from a

new class we’ll create called WebServiceUtil. The method AuthenticateWith-

Forms() takes the username, the password, and the URL of the Account-

Controller’s action LogOn().

If we authenticate successfully, the response will have exactly one

Cookie. The Cookie will have the default name .AUTH and contain the

authentication token for future requests. You can change the name that

ASP.NET gives this cookie in the Web.config file’s authentication section,

but for our purposes here, the default will do.

To make the test pass, we’ll need to create WebServiceUtil in a new Com-

mon directory in the Web project.

Download webServices/WebServiceUtil.cs

Line 1 public class WebServiceUtil
- {
- public static HttpWebResponse AuthenticateWithForms(string username,
- string password, string url)
5 {
- string parameters = "&userName=" + username +
- "&password=" + password + "&rememberMe=true";
-

- return SendWebRequest(url, parameters,
10 "application/x-www-form-urlencoded");

- }

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoWebServiceTest.cs
http://media.pragprog.com/titles/jmasp/code/webServices/WebServiceUtil.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=214

CREATING A WEB SERVICE 215

-

- public static HttpWebResponse SendWebRequest(string uri,
- string parameters, string contentType, params Cookie[] cookies)

15 {
- var request = (HttpWebRequest) WebRequest.Create(uri);
-

- request.CookieContainer = new CookieContainer();
- if (cookies !=null)

20 cookies.ToList().ForEach(cookie =>
- request.CookieContainer.Add(cookie));
-

- request.AllowAutoRedirect = false;
- request.Method = "POST";

25 request.ContentType = contentType;
- request.ContentLength = parameters.Length;
-

- using (var requestWriter = new StreamWriter(
- request.GetRequestStream(), System.Text.Encoding.ASCII))

30 {
- requestWriter.Write(parameters);
- }
-

- return (HttpWebResponse) request.GetResponse();
35 }

- }

On line 7, we convert the incoming parameters into a querystring that

the web service will accept. We then specify that the content type of the

request is application/x-www-form-urlencoded. This lets the service know

this is a form request.

The call to the method SendWebRequest(string uri, string parameters, string

contentType, params Cookie[] cookies) creates the HttpWebRequest. The

new request is created via the WebRequest’s static method Create(string

url). We also have built the method to accept a Cookie on line 21. This

is so we can reuse this method for authenticated requests. Also, it can

be used for both GET and POST requests. We’ve hard-coded it for POST

on line 24 since all the requests we’re sending will accept this.

To get the parameters into the request stream, we use a StreamWriter

on the HttpWebRequest’s GetRequestStream() on line 31. This example

encodes the parameters to the ASCII format. Our method then returns

an HttpWebResponse by calling the method GetResponse().

You’ll need to launch your web browser and then run the test, which

will now pass. Alternatively, if relaunching the site gets to be annoying,

you can deploy the site to Internet Information Services (IIS) locally.

This is covered in Section 12.2, Deploying Locally to IIS, on page 256.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=215

CREATING A WEB SERVICE 216

Now that authentication is working, we can work on getting a list of

Todos back in the form of XML.

Listing Models as XML

In the next test, we’ll need to create two requests, one for authentication

and one to call a list of Todos via the Index() action. The goal is to return

an XML document instead of an HTML representation of the Todos.

Although this is written as a test, this code will look similar to what

other developers (if using .NET) will use to access this service.

Download webServices/TodoWebServiceTest.cs

Line 1 [Test]
- public void Should_Get_List_Of_Todos_As_XML()
- {
- var authenticateResponse =
5 WebServiceUtil.AuthenticateWithForms("jonathan", "password",
- "http://localhost:1901/Account/LogOn");
-

- var responseWithXML =
- WebServiceUtil.SendWebRequest("http://localhost:1901/Todo/",

10 string.Empty, "text/xml", authenticateResponse.Cookies[0]);
-

- var xmlReader = XmlReader.Create(
- responseWithXML.GetResponseStream());
-

15 XDocument todoDoc = XDocument.Load(xmlReader);
-

- Assert.AreEqual("ArrayOfTodo", todoDoc.Root.Name.ToString());
- Assert.AreEqual("Todo",
- todoDoc.Root.Elements("Todo").First().Name.ToString());

20 Assert.AreEqual("Title", todoDoc.Root.Elements("Todo").
- Elements("Title").First().Name.ToString());
- Assert.AreEqual("Id", todoDoc.Root.Elements("Todo").
- Elements("Id").First().Name.ToString());
- }

First we obtain a cookie by authenticating on line 6. Then, once we

have the token, we can pass it along to the second request on line 10.

We then have to set the request header to be text/xml so our controller’s

action realizes this is a web service request.

From this request, we’ll expect an XML document that has a root node

of list-todo and contains two todo elements. Each of these elements will

have a Title and Id.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoWebServiceTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=216

CREATING A WEB SERVICE 217

To get this XML out of the response, we use an XmlReader, which pro-

vides an easy way to parse out elements that we want to assert against.

Now we’ll get this test to pass:

Download webServices/TodoController.cs

public ActionResult Index()

{

ViewData["UserName"] = User.Identity.Name;

ViewData.Model = repository.GetAll();

if (Request.Headers["Content-Type"] == "text/xml")

return new XmlResult(ViewData.Model);

else

return View();

}

We modified very little in this action. We just add a check to see whether

the Request.Header["Content-Type"] is of the type text/xml. If it is, we return

an XmlResult. This class comes from MVC Contrib and will automatically

serialize your model as XML.

You can use a similar pattern to return the result as JSON. Simply

have the HTTP’s accept header be set to text/json, and inspect for that

header in the controller’s action.

So, we now know how to return XML from a web service, but we’ll also

need to send XML to the service. Next, we’ll take XML as part of the

request to create a Todo.

Sending XML in the Request Using Model Binding

Some developers might not be comfortable sending in a querystring

of parameters to your web service. This is because if you change the

name of any of the members of your model, it will break their code.

For example, if we changed the Todo’s Title property to Name, it would

force other developers to have to modify their code. Breaking your own

unit test is acceptable; breaking someone else’s code by changing the

interface is just asking for trouble.

Luckily, MVC has yet another extension point called model binding,

which lets us create a less volatile interface that programmers can

rely on.

We’re going to create a custom model binder for our Todo class. We’ll call

it TopicXmlBinder. MVC lets us apply a model binder next to the action’s

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=217

CREATING A WEB SERVICE 218

parameter with the ModelBinderAttribute. This overrides the DefaultMod-

elBinder, which translates form requests into models.

This means we can safely change the Todo model and map it back to

the XML using this custom binder class. Let’s write our test to drive the

code for the binder:

Download webServices/TodoWebServiceTest.cs

Line 1 [Test]
- public void Should_Send_Xml_To_Create_Todo()
- {
- var xdoc = new XDocument(
5 new XDeclaration("1.0", "utf-8", "yes"),
- new XElement("todo", new XElement("title", "foo")));
-

- string xml = xdoc.Declaration + xdoc.ToString(SaveOptions.None);
-

10 var authRequest =
- WebServiceUtil.AuthenticateWithForms("jonathan", "password",
- "http://localhost:1901/Account/LogOn");
-

- var xmlRequest =
15 WebServiceUtil.SendWebRequest(

- "http://localhost:1901/Todo/CreateWithXml",
- xml, "text/xml", authRequest.Cookies[0]);
-

- var xmlReader =
20 XmlReader.Create(xmlRequest.GetResponseStream());

- XDocument todoDoc = XDocument.Load(xmlReader);
-

- Assert.AreEqual("Todo", todoDoc.Root.Name.ToString());
- Assert.AreEqual("foo" ,

25 todoDoc.Root.Element(XName.Get("Title")).Value);
- }

We’re using a new LINQ class called XDocument, which makes con-

structing XML documents easier than using the older Microsoft Sys-

tem.Xml namespace. With XDocument, we’ll build up a well-formed Todo

as XML. For the XML declaration and the contents of the document to

both be sent, we concatenate them together on line 8.

Similar to the previous test, we make an authentication request so we

can get a cookie back.

We use a RESTful name to indicate that we’re creating using XML, so

the action is called CreateWithXML(). However, if you are publishing an

interface that might have multiple versions, it’s a good idea to reflect

that in the URL. The simplest way to do this would be to deploy a

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoWebServiceTest.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=218

CREATING A WEB SERVICE 219

separate website for any supported version of the web service. You’ll

learn more about creating automated deployments in Chapter 12, Build

and Deployment, on page 247. Otherwise, when you make a change to

the service, you might break other developers’ code.

Finally, we get our response back and use an XmlReader to parse the

XML. We can then assert against the different elements and validate

that the information is correct. Now let’s get the test to pass.

Create a new binder in the directory Models/Binders:

Download webServices/TodoXmlBinder.cs

Line 1 public class TodoXmlBinder : IModelBinder
- {
- public object BindModel(ControllerContext controllerContext,
- ModelBindingContext bindingContext)
5 {
- using (var reader= new StreamReader(
- controllerContext.RequestContext.
- HttpContext.Request.InputStream))
- {

10 var rawXml = XmlReader.Create(reader);
- XDocument doc = XDocument.Load(rawXml);
- var todoTitle = doc.Root.Element(XName.Get("title")).Value;
-

- var todo = new Todo();
15 todo.Title = todoTitle;

- return todo;
- }
- }
- }

Model binders all implement the IModelBinder interface. This exposes the

method BindModel(), which has both the ControllerContext and a Model-

BindingContext. The ControllerContext gives us access to the HttpContext.

We use this to get the raw InputStream on line 8.

Out of the stream we create an XmlReader, which allows us to parse the

XML document. On line 14, we create the new Todo and assign it values

from the request. To complete the binding, we assign the bindingCon-

text.Model the new Todo and also return the model on line 16.

The test isn’t passing yet, because we need to create the new action on

the controller:

Download webServices/TodoController.cs

[Authorize]

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult CreateWithXml(

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoXmlBinder.cs
http://media.pragprog.com/titles/jmasp/code/webServices/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=219

PUBLISHING TO BLOGGER 220

[ModelBinder(typeof(TodoXmlBinder))] Todo todo)

{

Create(todo);

return new XmlResult(todo);

}

The action delegates to the existing Create() to do work. Since the model

binder already mapped the XML to the model, there isn’t much to do

here. We simply call the XmlResult so that an XML version of the newly

created Todo can be returned to the application that submitted the

request. The test is now passing, and we can take a REST.

Now we have a fully published RESTful web service! By exposing ser-

vices in this fashion, not only did we enable simple integration with

other applications, but we also applied the DRY principle by reusing

the Create() action.

Now that we’ve learned how to publish our own web services, we can

tackle consuming others’ services.

10.3 Publishing to Blogger

Let’s assume that you’re going to start a blog by creating an account

at http://www.blogger.com. Blogger is a free site that lets you post your

thoughts and ideas to anyone who wants to read them.

Writing a decent blog post takes time and effort. Adding a feature to

GetOrganized that transforms a Todo into a draft blog article can save

precious time in the publishing process.

We’ll walk through how to do it with Blogger; then you can use the same

knowledge to integrate with other services. For Blogger, it is a two-step

process, as illustrated in Figure 10.3, on the next page.

Google has been pretty good about making its services accessible to

developers. Its GData interface allows for authorization and publication

to most of its services, including Blogger. To access its services, we’ll

first need to authenticate using the AuthSub interface.3

Download webServices/BloggerGatewayTest.cs

[TestFixture]

public class BloggerGatewayTest

{

3. http://code.google.com/apis/accounts/docs/AuthSub.html#AuthSubRequest

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.blogger.com
http://media.pragprog.com/titles/jmasp/code/webServices/BloggerGatewayTest.cs
http://code.google.com/apis/accounts/docs/AuthSub.html#AuthSubRequest
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=220

PUBLISHING TO BLOGGER 221

Your Site

Google User
Authorization

Page

Return URL and an

Authorization Token

Google
Blogger
Service

Step 1

Step 2

Authenticate Request

Send Publish Draft to

Blogger

Return

HTTP CREATED (201)

Figure 10.3: First you authenticate, and then you publish your blog

post.

[Test]

public void Should_Authenticate_With_Blogger()

{

var gateway = new BloggerGateway();

var googleURL = gateway.AuthenticateURL("foo");

Assert.AreEqual(

"https://www.google.com/accounts/AuthSubRequest?" +

"next=http://10.1.10.12:1901/Todo/BloggerAuthorized" +

"?title=foo&scope=" +

"http://www.blogger.com/feeds/2580952471083668495/" +

"posts/default", googleURL);

}

}

We create an instance of BloggerGateway to encapsulate the logic nec-

essary to communicate with Blogger. Google’s web services require a

human interaction to allow our site to access its Google account (see

the sidebar on the following page). Therefore, we need to send along

other information like the Todo’s Title because Google will redirect us to

the URL we give it.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=221

PUBLISHING TO BLOGGER 222

Stubbing + Web Services = Fewer Headaches

Another effective use of a mocking framework is to create stubs
for web services that you talk to. It removes the need to have
those services available when you’re developing on your local
machine. To do so, simply register a stub with Castle Windsor
instead of the class that makes a network call to the real web
service.

To verify that all this occurred, we simply check the response URL for

the presence of google and check that our parameter is there. Let’s get

this test green:

Download webServices/BloggerGateway.cs

public class BloggerGateway

{

const string ipAddressOfSite = "10.1.10.12";

const long blogId = 2580952471083668495;

public string AuthenticateURL(string todoTitle)

{

return string.Format(

"https://www.google.com/accounts/AuthSubRequest" +

"?next=http://{0}/Todo/BloggerAuthorized?title={1}" +

"&scope=http://www.blogger.com/feeds/{2}/posts/default"

, ipAddressOfSite, todoTitle, blogId);

}

}

We’ll use my blog as a test case.4 Let’s hard-code both the ipAddress of

our site as well as the unique identifier for the blog we want to modify.

We also pass in the title of the Todo. Google requires that two param-

eters be passed to its service for authorization. The first is next, which

instructs Google to redirect to our site’s URL on successful authoriza-

tion. In this case, we’re setting this to the ipAddress of our computer.

Next is the scope parameter, which specifies the URL of the Google ser-

vice from which we are requesting information. Here we want to put in

the unique blog address that we want to access.

Again, since authentication requires human interaction, we cannot

automate beyond this without registering our site with Google. So for

4. http://jonathanmccracken.blogspot.com

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/BloggerGateway.cs
http://jonathanmccracken.blogspot.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=222

PUBLISHING TO BLOGGER 223

now, we’ll switch to manual testing to verify the rest of the gateway.

After the user types in their Google account credentials, they’ll be redi-

rected to the controller’s action BloggerAuthorized().

Before we can work on that controller action, we’ll first need to inject a

BloggerGateway into the constructor:

Download webServices/TodoController.cs

private readonly TodoRepository repository;

private readonly BloggerGateway gateway;

public TodoController(TodoRepository repository,

BloggerGateway gateway)

{

this.repository = repository;

this.gateway = gateway;

}

This is exactly what we did for the Repository pattern; we pass in the

BloggerGateway at the time we construct the object. This allows us to

mock out the gateway for testing purposes. With the constructor fixed

up, we can now work on the BloggerAuthorized() action:

Download webServices/TodoController.cs

public ActionResult BloggerAuthorized(string title, string token)

{

var todo = repository.GetAll().Where(x => x.Title == title);

gateway.PublishAsDraft(todo, token);

return Redirect("http://jonathanmccracken.blogspot.com");

}

This is the action that would be called by Google’s web service. It will

have a unique security token, generated by Google, and also contain

our Todo title. At this point we’re authorized to make a single request to

the Google API.

Next, we’ll look up the proper model using our repository and then call

the next method on BloggerGateway’s PublishAsDraft(). On a successful

publish, we’re also going to redirect the user to the blog itself to start

authoring. In a real application, the blog address wouldn’t be hard-

coded.

With the controller ready, we need to finish the gateway code:

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoController.cs
http://media.pragprog.com/titles/jmasp/code/webServices/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=223

PUBLISHING TO BLOGGER 224

Download webServices/BloggerGateway.cs

public void PublishAsDraft(Todo todo, string token)

{

string xml = string.Format(

@"<entry xmlns='http://www.w3.org/2005/Atom'>

<title type='text'>{0}</title>

<content type='xhtml'>

<p>Empty</p>

</content>

<app:control xmlns:app='http://purl.org/atom/app#'>

<app:draft>yes</app:draft>

</app:control>

</entry>", todo.Title);

string blogFeedUri = "http://www.blogger.com/feeds/" +

blogId + "/posts/default";

var response =

WebServiceUtil.SendWebRequestWithAuthToken(blogFeedUri, xml,

"application/atom+xml", token);

if (response.StatusCode != HttpStatusCode.Created)

throw new WebException(response.StatusCode.ToString());

}

Publishing to the Google service is similar to how we constructed an

XML document for our own service in the previous section. In this case,

Google is expecting an XML document with the root element entry. The

entire Blogger specification for this XML is documented online.5

To make the XML more readable, it’s been included in a formatted string.

We substitute in the title of the blog entry with the Todo Title. We then

pass in the unique URL for the blog feed, along with the security token

Google gave us. Finally, we’ll check that the response we received was

CREATED (HTTP 201), or else we throw a WebException along with the

HttpStatusCode to indicate something went wrong.

Because we’re sending a different kind of web request, we need a new

method on WebServiceUtil that will send the token we received from

Google along with the request:

Download webServices/WebServiceUtil.cs

Line 1 public static HttpWebResponse SendWebRequestWithAuthToken(
- string uri, string parameters, string contentType, string token,

5. http://code.google.com/apis/blogger/docs/2.0/developers_guide_protocol.html

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/BloggerGateway.cs
http://media.pragprog.com/titles/jmasp/code/webServices/WebServiceUtil.cs
http://code.google.com/apis/blogger/docs/2.0/developers_guide_protocol.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=224

PUBLISHING TO BLOGGER 225

- params Cookie[] cookies)
- {
5 HttpWebRequest request =
- CreateRequest(uri, cookies, contentType, parameters);
- if (token != null)
- request.Headers.Add("Authorization",
- "AuthSub token=\"" + token + "\"");

10 WriteRequest(parameters, request);
- return (HttpWebResponse)request.GetResponse();
- }

Here we added a few lines to append an HTTP header with the autho-

rization token on line 8. We also refactored the class to support both

web request methods. On line 6 we make sure the secure request does

not encode the parameters since Google’s service is expecting content

in XML format. Similarly, on line 10 we make sure that both utility

methods share the same logic to write the output of the requests. For

the complete refactored class, check out GetOrganizedFinal in the down-

loadable code.

Now that our gateway will publish a draft, we need to hook the View/To-

do/Index.aspx page up so users can blog their Todo:

Download webServices/TodoController.cs

public ActionResult PublishToBlogger(string title)

{

Todo todo = repository.GetAll().Where(x => x.Title == title).First();

return Redirect(gateway.AuthenticateURL(todo.Title));

}

This action calls the BloggerGateway to authenticate with Google. We

obtain the proper URL that includes both the Title and the blog we’re

trying to publish to. It’s simply a matter of using the Redirect() to send

the user to the authentication page (see Figure 10.4, on the next page).

Before this controller will run, we’ll need to add a definition for the

BloggerGateway with the Castle Windsor container.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/TodoController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=225

PUBLISHING TO BLOGGER 226

Figure 10.4: Google’s data AuthSub in action

Download webServices/Global.ascx.cs

private void SetupWindsorContainer()

{

IWindsorContainer container = new WindsorContainer();

//register other components

RegisterGateways(container);

}

private void RegisterGateways(IWindsorContainer container)

{

container.AddComponentLifeStyle("bloggerGateway",

typeof(BloggerGateway), LifestyleType.Transient);

}

Since we have only one gateway, we can just wire it up manually.

Because the gateway has some state (blogId and ipAddress), we need

to ensure that its lifestyle is Transient.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/Global.ascx.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=226

PUBLISHING TO BLOGGER 227

Now that the component is registered with Castle Windsor, we need

to perform one final step. We’ll add another column to the grid in the

Index.aspx view:

Download webServices/Index.aspx

<%= Html.Grid(Model).Columns(column => {

column.For(

x =>

Html.ActionLink("Blog it!","PublishToBlogger",

new { x.Title }))

.DoNotEncode();

//omitted rest of Grid

The Grid view helper lets us add columns with ease. We add a new link

using the ActionLink() method and make sure to pass it the Title of the

Todo.

That completes our integration with Blogger. We can now publish a

common Todo into the start of an award-winning blog post! Just remem-

ber that Google will need to have access to your web server for this to

work, so make sure the proper firewall ports are open.

Working through these examples gives you an approach for exposing

your own web services as well as publishing to other web services.

Whether you’re talking to public sites like Google or a private intracom-

pany portal, you now know how to talk to someone else’s web service

and have them talk back to you.

Up Next

We’ve completed GetOrganized by publishing our own web services for

models. We’ve also successfully integrated with Blogger’s public web

service. You’ll find publishing and consuming RESTful web services

saves you and the developers you need to integrate with a lot of time.

Now it’s time to add more security, logging, and error handling to the

application.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/webServices/Index.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=227

Part IV

Security and Deployment

A small leak can sink a great ship.

Benjamin Franklin

Chapter 11

Security,
Error Handling, and Logging

We have our MVC application to a point that it’s almost ready to pub-

lish. In this part, we’ll focus on essential concepts that will help make

our applications bullet-proof. Deploying the application, and deploying

it often, is one of the keys to successful software development. In Chap-

ter 12, Build and Deployment, on page 247, we’ll learn how to do set

this up automatically. We’ll also learn about building security, error

handling, and logging into our MVC applications. This will make sure,

like Benjamin Franklin reminds us, that we fix or are able to detect any

leaks in our web application.

When developing code, we’re often focused on getting the most critical

features out as quickly as possible. With the pressure of deadlines and

launch dates, we sometimes neglect the less obvious parts of the sys-

tem, more commonly called nonfunctional requirements. Nonfunctional

requirements include things such as security, logging, and error han-

dling. The repercussions of putting code into production without these

elements can be disastrous.

It’s important to address nonfunctional requirements in tandem with

new features. Don’t leave these until the end of your project; otherwise,

you’ll end up with security holes and unhandled exceptions all over

your code. On top of that, if you don’t have logging throughout your

codebase, you’ll have little visibility into the code when a production

problem occurs.

This chapter is all about learning how to reduce the risk of that hap-

pening. We’ll see how to secure our applications by preventing scripting

attacks. Then we’ll implement some robust error-handling solutions to

APPLYING ADDITIONAL SECURITY 230

deal with unhandled exceptions. Finally, we’ll set up a logging frame-

work to help us diagnose production problems when they happen.

11.1 Applying Additional Security

So far in this book we’ve covered how to handle both authorization

and authentication (see Section 5.2, Logging In, on page 100). Although

these form the basics of security, there is more to securing a site than

just logging in and assigning roles to users. To protect a site, we’re

also going to have to handle encryption of sensitive information and

plugging up security vulnerabilities.

Although not comprehensive, because .NET security could comprise a

whole book, these next few sections cover the major areas of vulnera-

bility and how you can fix them using MVC. We’ll work through adding

site encryption and a variety of client-side scripting attacks. We’ll also

touch on how to implement a custom ASP.NET Membership provider,

which gives more control over user information and authentication.

Let’s start by protecting the transport layer using HTTPS.

Encrypting Traffic Using SSL

The first way to secure sensitive information is to force the user’s brow-

ser to use Secure Sockets Layer (SSL). SSL is a communication protocol

that encrypts all the traffic between the web server and browser. This

protects the information from outside viewing or tampering. You can

tell whether a website is using SSL to protect your information if the

web address starts with an https:// instead of http://. This is why SSL

is often referred to as HTTPS.

Switching the user over to HTTPS automatically is easy in MVC. The

action filter RequireHttpsAttribute does the job. This filter detects whether

the incoming request is using SSL and, if not, forces a redirect with

HTTPS enabled.

Download securityErrorHandlingAndLogging/SecuredController.cs

public class SecuredController : Controller

{

[RequireHttps]

public ActionResult Secured()

{

return View();

}

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/SecuredController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=230

APPLYING ADDITIONAL SECURITY 231

You can apply the filter to the controller level or for an individual action

like we did here. Adding SSL incurs a performance overhead, so use it

wisely. Most commercial ecommerce sites use SSL only for login and

account management pages, while the rest of the site remains unse-

cured. However, if you’re handling sensitive information, then there is

no other choice but to use SSL for the entire site.

When testing this locally, the web server that comes with Visual Studio

does not support SSL, so you’ll have to switch to IIS to accomplish this.

You can change this setting in Project Properties on the Web tab.

Also, you will need to generate a self-signed SSL certificate for your

machine. There are several ways to do this depending on which version

of IIS you’re using. If you’re using IIS 5.1, which comes with Windows

XP, the best way is to download OpenSSL and follow the steps detailed

on Dylan Beattie’s blog.1 If you’re using IIS 6.0, which comes with Win-

dows 2003, then using the IIS Resource Kit is the easiest way. You can

find instructions for IIS 6.0 on Jonathan Maltz’s site.2 If you’re using

Vista or Windows 7, then you have IIS 7 or 7.5, and Scott Guthrie’s blog

has a tutorial on how to set up an SSL certificate.3

Just adding SSL to secure pages is not a silver bullet. There are other

kinds of attacks that we need to guard against, and cross-site scripting

(XSS) is one of them.

Preventing Cross-Site Scripting

One of the more dangerous kinds of attacks is broadly known as XSS.

It is the injection of malicious client-side scripts into your web applica-

tion to compromise or manipulate other users. Most XSS vulnerabilities

occur because web application authors fail to sanitize the HTML that

is displayed to the user. This results in JavaScript being executed on a

user’s browser that was never supposed to be executed.

At first glance, XSS vulnerabilities might appear to be harmless. This is

especially apparent if your site does not post content that other users

can view, unlike a social networking site. In that case, who cares if

someone submits JavaScript back to their own browser, since it will

only compromise the person who sent it. However, attackers have been

using phony emails that exploit sites vulnerable to XSS to compromise

other people’s information.

1. http://www.dylanbeattie.net/docs/openssl_iis_ssl_howto.html

2. http://www.visualwin.com/SelfSSL/

3. http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.dylanbeattie.net/docs/openssl_iis_ssl_howto.html
http://www.visualwin.com/SelfSSL/
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7-using-self-signed-certificates.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=231

APPLYING ADDITIONAL SECURITY 232

For example, let’s say you were sent an email from your favorite hobby

website. Unfortunately, that site has an XSS vulnerability, and the

email’s link also contains scripts that visit all the popular banking web-

sites and sends your session information to the attacker. In the case

that you’ve logged into your banking site in the past fifteen minutes

prior to clicking the phony email link, you could risk someone having

full access to your accounts!

XSS attacks are also a problem when users are allowed to publish infor-

mation that other users can see. With these kinds of attacks, no phony

emails are required. Users simply visiting a page will be vulnerable to

injected scripts. For example, let’s say an attacker posts a similar script

that visits your banking sites to a message board. Another user is look-

ing through message posts and comes across the message with the

hidden malicious script. All of a sudden you’re in the same boat as

with the email attack, because your browser will execute the script as

soon as you read the message post.

The best way to prevent against XSS attacks is to encode all the infor-

mation you display to the user. In MVC, we can use the HTML helper

method Encode(), which cancels out any scripting an attacker would

have submitted.

Download securityErrorHandlingAndLogging/EncodeHtml.aspx

<%= Html.Encode("<SCRIPT>alert(\"attacked!\")</SCRIPT>") %>

Here we’re using the Encode() to render harmless a potential XSS at-

tack. The method converts special characters such as quotes and angle

brackets to HTML-safe representations. If you were to load the page

from the following code and view the source code, it would look quotes

and angle brackets to HTML-safe representations. If you were to load

the page from the following code and view the source code, it would

look like this:

<SCRIPT>alert(\"attacked!\")</SCRIPT>

Although this might not be pretty, it’s effectively harmless to the user’s

browser. It’s a good practice to encode all information that is being

displayed to the user. For more information on the different types of

attacks, the public hacker’s site4 contains hundreds of attacks you can

test against your site to make sure it is safe.

4. http://ha.ckers.org/xss.html

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/EncodeHtml.aspx
http://ha.ckers.org/xss.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=232

APPLYING ADDITIONAL SECURITY 233

With the release of ASP.NET 4.0 (included with Visual Studio 2010),

you can also use a special syntax in your views:

<%: //do stuff here :%>

These angle brackets will automatically HTML-encode all the output,

and you’ll also notice if you are using Visual Studio 2010 that the gen-

erated templates for views use these angle brackets by default.

Another attack that we need to worry about is called cross-site request

forgery (CSRF).

Guarding Against Cross-Site Request Forgery Attacks

Unlike XSS attacks that rely on the user trusting the site to be safe,

CSRF attacks result from a site being sent commands on behalf of

trusted users who have not authorized these commands. Popular at-

tacks have used email schemes to access people’s bank accounts by

creating clickable links or links disguised as image tags that execute

commands that the victims never intended.

These attacks rely on authentication cookies being active and so are

difficult to prevent without additional measures.

Lucky for us, MVC has a way to protect against this kind of forgery. By

adding a antiforgery token to a view and checking for that token using

a action filter, you can prevent a CSRF attack. Start by applying the

antiforgery token to the page that will submit a sensitive command or

transaction:

Download securityErrorHandlingAndLogging/WireMoney.aspx

Line 1 <form action="Wire" method="post">

2

3 <%= Html.AntiForgeryToken() %>
4

5 Wire Money: <%= Html.TextBox("money") %>
6

7 <input type="submit" value="Wire" />

8 </form>

On line 3, we use the HTML helper method AntiForgeryToken() to generate

a hidden field on the form. Also, it generates a cookie that is specific to

the next request. The next step is to check for that token when the user

submits the action:

Download securityErrorHandlingAndLogging/MoneyController.cs

public class MoneyController : Controller

{

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/WireMoney.aspx
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/MoneyController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=233

APPLYING ADDITIONAL SECURITY 234

[ValidateAntiForgeryToken]

public ActionResult Wire(decimal money)

{

//transfer money

}

}

We apply the action filter ValidateAntiForgeryToken to the Wire() action to

check for the presence of the cookie and hidden field. Without knowing

this additional token, the wire transfer attack will not work, because

MVC will throw an error if it is not there.

It seems like a pain to add this logic to all of your views and actions,

but for now it is the only way to ensure key transactions are protected.

In the future, the MVC team is looking at ways to incorporate this into

every request, but for now you should think about applying it to every

command that attackers might target.

On a last note for security, we’ll also want to know how to customize

authentication and authorization by touching on the ASP.NET Mem-

bership API.

Customizing the ASP.NET Membership Provider

Back in Section 5.2, Logging In, on page 100, we worked through how

to use the default ASP.NET Membership provider. That provider used

stored procedures to achieve all its functionality. Because this is dif-

ferent from how the rest of our architecture works using NHibernate, it

makes sense to replace it with our own provider.

Another advantage to customizing the Membership API is it gives you

more control to integrate with third-party authentication services like

Google and Microsoft (see the sidebar on the next page).

Implementing a custom membership provider means inheriting the Sys-

tem.Web.MembershipProvider class and overriding its methods and prop-

erties. We’ll also need to implement a role provider from System.Web.Role-

Provider. The role provider handles creating, deleting, and adding user

to roles, while the Membership provider creates and manages user

accounts.

See Section 8.4, Creating and Reading Records, on page 179 to refresh

your memory on how to build a UserRepository class and a UserMap class.

When you’ve done so, you can jump right into your own NHibernateMem-

bershipProvider, which will delegate to the UserRepository for any database

work.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=234

APPLYING ADDITIONAL SECURITY 235

Facebook, Google, and Microsoft Live Authentication

Asking a user who visits your site to create a new username and
password is one of those annoying steps you often force first-
time visitors into. Luckily, a software company called RPXNow
is making it easier for you. It allows you to register new users
on your site using one of their existing accounts at a major
provider like Google, Facebook, and Microsoft Live. Best of all,
RPXNow provides this for free, along with commercial support if
you need it.

To get started, download the open source rpxlib project from
Google Code.∗ It’s a simple set of steps to add a custom
provider to your IoC container. In no time you’ll have peo-
ple registering using their Facebook accounts. RPXNow also
supports Google, Microsoft Live, Twitter, Yahoo, MySpaceID,
OpenID, AOL, VeriSign, and myOpenID.

∗. http://code.google.com/p/rpxlib/wiki/GettingStartedWithMVC

Download securityErrorHandlingAndLogging/NHibernateMembershipProvider.cs

public class NHibernateMembershipProvider : MembershipProvider

{

private UserRepository userRepository;

public NHibernateMembershipProvider()

{

userRepository = new UserRepository();

}

public NHibernateMembershipProvider(UserRepository userRepository)

{

this.userRepository = userRepository;

}

public override MembershipUser CreateUser(

string username, string password,

string email, string passwordQuestion,

string passwordAnswer, bool isApproved,

Object providerUserKey,

out MembershipCreateStatus status)

{

userRepository.Create(username, password, email);

status = status.Success;

Report erratum

this copy is (P1.0 printing, June 2010)

http://code.google.com/p/rpxlib/wiki/GettingStartedWithMVC
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/NHibernateMembershipProvider.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=235

APPLYING ADDITIONAL SECURITY 236

}

//omit rest of the implementation of the class

}

Because the provider is going to be created much earlier in the ASP.NET

life cycle than when the Castle Windsor container exists (Section 9.2,

Treat Your Objects like Royalty at Castle Windsor, on page 193), we

need to add the UserRepository ourselves. This means that when coding

the UserRepository, we cannot inject an NHibernate ISession and instead

grab it from the HttpContext manually for every method call.

For testing purposes, we also support a constructor with a dependency

injection of UserRepository. The implementation of the overridden meth-

ods in the provider is delegated to the UserRepository.

When implementing methods such as CreateUser() and handling param-

eters like password, it is critical that you do not store this informa-

tion in clear text. The best way to store passwords is using a one-

way hash. Specifically, we will use the SHA-256 algorithm found in

System.Security.Cryptography. This algorithm prevents administrators or

potential intruders from learning passwords if they have access to your

database. Also, adding what is known as a salt phrase further obfus-

cates the encrypted password. Salt phrases are random bits of infor-

mation to help further improve encryption. For example, if you hash

the password foo, it will result in 32 bytes of data. By adding a salt to

the password, like salty, you now hash the two strings together to give

you a completely different result. Salting improves security by further

obscuring passwords from people nosing around your database.

It is not necessary to implement all the provider methods if your appli-

cation does not need them all. However, you must override Validate-

User(string userName, string password) in order for login to work.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=236

APPLYING ADDITIONAL SECURITY 237

We’ll follow the same pattern of delegating to the RoleRepository for the

NHibernateRoleProvider.

Download securityErrorHandlingAndLogging/NHibernateRoleProvider.cs

public class NHibernateRoleProvider : RoleProvider

{

private RoleRepository roleRepository;

public NHibernateRoleProvider()

{

roleRepository = new RoleRepository();

}

public NHibernateRoleProvider(RoleRepository roleRepository)

{

this.roleRepository = roleRepository;

}

public override void AddUsersToRoles(

string[] usernames, string[] roleNames)

{

roleRepository.AddUsersToRoles(usernames, roleNames);

}

//omit rest of class implementation

}

This provider manages the roles of the users. We’ve implemented Add-

UsersToRoles(), which takes a list of users and roles as arguments. You’ll

also need to make sure you implement GetRolesForUser(string userName)

for your user’s roles to be populated.

Finally, you’ll need to change your Web.config to include the provider

using the following code:

Download securityErrorHandlingAndLogging/Web.Config

Line 1 <system.web>

- <membership defaultProvider="NHibernateMembershipProvider" >

- <providers>

- <clear/>

5 <add
- name="NHibernateMembershipProvider"
- type="GetOrganized.Membership.NHibernateMembershipProvider"
- enablePasswordRetrieval="false"
- enablePasswordReset="false" />

10 </providers>

- </membership>

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/NHibernateRoleProvider.cs
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=237

USING AN ACTION FILTER TO HANDLE ERRORS 238

- <roleManager defaultProvider="NHibernateRoleProvider"

- <providers>

- <clear />

15 <add
- name="NHibernateRoleProvider"
- type="GetOrganized.Membership.NHibernateRoleProvider"/>
- </providers>

- </roleManager>

20 </system.web>

On line 2, we specify the default provider for membership to be NHiber-

nateMembershipProvider. Defining that provider follows by adding the

name and fully qualified namespace of the class. You can also turn

on or off features of the provider here. Since we’ve implemented the

bare minimum, we’ll turn off the password reset and retrieval features

for now.

On line 12, we define the role provider in a similar fashion. In both

cases, we start with a clear element that removes any of the default

providers that are installed.

Your application is now free from stored procedures, and you can begin

to add third-party authentication schemes as you want.

So, your application is now super secure. But just because you’ve

implemented security doesn’t mean that you’ll be free of production

problems. Unhandled exceptions can mar even the most secure site.

11.2 Using an Action Filter to Handle Errors

Most of the time, we’ll try to catch exceptions that happen in our code

by surrounding them with a try and catch block. Not all of our code is

surrounded by these blocks, so unhandled exceptions pass through.

MVC provides a handy action filter to help us catch these unhandled

exceptions called HandleErrorAttribute. By capturing unhandled excep-

tions, you are in essence handling them and not letting them be seen

in their raw form by users of the system. When combined with effective

logging techniques, handling exceptions gives you insight into produc-

tion issues before your users can report it.

Here is a simple demonstration of applying it to an entire controller:

Download securityErrorHandlingAndLogging/ErrorHandlingController.cs

[HandleError]

public class ErrorHandlingController : Controller

{

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/ErrorHandlingController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=238

USING AN ACTION FILTER TO HANDLE ERRORS 239

Applying this action filter will catch all unhandled exceptions thrown in

this controller. When one of the controller’s actions throw an unhandled

exception, this filter will redirect the user to the /View/Shared/Error.aspx

view. However, if you create your own Error.aspx in the controller’s view

folder, it will use that one instead. This lets you write customized error

pages for controllers when you need to do so.

Handling Custom HTTP Error Codes with MVC

There are other errors that are generated outside the web application.

For example, when you try to access a page or resource that is not

there, the web server generates a 404 Page Not Found error. By default

IIS will send you to a generic Page Not Found page, but this can con-

fuse your users because it does not comply with the style of your site.

Customizing how to handle HTTP errors like these is tied into how do

the setup, and we use the [HandleError] action filter, which we’ll work

through now.

To handle these error codes and to enable the [HandleError] action filter

to work, you’ll need to enable a setting in the Web.config file:

Download securityErrorHandlingAndLogging/Web.Config

<system.web>

<customErrors mode="On">

</customErrors>

</system.web>

By turning on custom logging, the HandleError filter will now work. When

modifying this section of the Web.config file, we can also direct the user

to specific web pages depending on the HTTP status error code.

Download securityErrorHandlingAndLogging/Web.Config

<customErrors mode="On" defaultRedirect="DefaultErrorPage.html">

<error statusCode="404" redirect="PageNotFound.html"/>

<error statusCode="500" redirect="InternalError.html"/>

</customErrors>

For example, here we send all 404 Page Not Found errors to the Page-

NotFound.html page. Similarly, if there is an internal server error for

the request, a 500 error, we redirect the browser to the InternalError.html

page. Otherwise, the default page that will be displayed is DefaultError-

Page.html. For a complete list of HTTP status codes, check out

Wikipedia.5

5. http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=239

USING AN ACTION FILTER TO HANDLE ERRORS 240

If you want your error pages to be generated by MVC to comply with

the style of the rest of your site instead of the previous plain HTML,

you can change the URLs to go to a custom ErrorController. Just create a

standard controller with all the error codes you’d like to support:

Download securityErrorHandlingAndLogging/ErrorController.cs

public class ErrorController : Controller

{

public ActionResult Index()

{

return View();

}

public ActionResult PageNotFound()

{

Response.StatusCode = (int)HttpStatusCode.NotFound;

return View();

}

public ActionResult InternalError()

{

Response.StatusCode = (int)HttpStatusCode.InternalServerError;

return View();

}

}

We had to specify the return codes to the response in each of the

actions so that the user’s browser registers the kind of error that was

returned. Also, we’ll need to create views in the /View/Error/ directory to

correspond to each action, like /View/Error/NotFound.aspx. Now instead of

using the DefaultErrorPage.html, PageNotFound.html, and InternalError.html

pages in Web.config, we’ll specify the URL routes for the ErrorController

like so:

Download securityErrorHandlingAndLogging/Web.Config

<customErrors mode="On" defaultRedirect="~/Error">

<error statusCode="404" redirect="~/Error/PageNotFound"/>

<error statusCode="500" redirect="~/Error/InternalError"/>

</customErrors>

Most exceptions that we throw are not HTTP status code errors. For

instance, a SqlException will not trigger a 500 error when it is thrown.

This is where MVC’s [HandleError] catches those exceptions for us. You

can also apply [HandleError] to a single action:

Download securityErrorHandlingAndLogging/ErrorHandlingController.cs

[HandleError]

public ActionResult HandleError()

{

throw new Exeception();

}

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/ErrorController.cs
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/ErrorHandlingController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=240

USING LOGGING TO SEE WHAT WENT WRONG 241

The sample action HandleError() will always throw a new general excep-

tion. It will then redirect it to the shared error view. You can also specify

a type of exception that you want to catch and a corresponding view you

want to direct them to.

Download securityErrorHandlingAndLogging/ErrorHandlingController.cs

[HandleError(ExceptionType = typeof(SqlException),

View = "DatabaseError")]]

public ActionResult CallDatabase()

{

throw new SqlExeception();

}

In this example, we apply the HandleError with additional parameters.

We want to catch all SqlExceptions that are thrown and redirect them

to the view /Shared/DatabaseError.aspx. This will give your users more

information about what went wrong. For example, if you’re integrating

with someone else’s web service, you might want to let people know

that the service is currently unavailable.

Error handling can also be dealt with more generically inside Global.

asax.cs. This is done by catching the event in the method Application_

Error(). The following is an example:

Download securityErrorHandlingAndLogging/Global.asax.cs

protected void Application_Error()

{

Exception error = Server.GetLastError();

// log something using this exception

}

Using the object Server’s method GetLastError(), it retrieves the last ex-

ception that was thrown. With the exception available to you, the next

step is to log it so that you’ll be able to see the errors that users are

experiencing.

11.3 Using Logging to See What Went Wrong

Error handling without logging is like having glass frames without

lenses. Without it, you’ll never be able to see what’s going on with your

application when things go wrong.

Logging and monitoring help report production issues and trends before

you’re overwhelmed with user requests. Since they say that only 50

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/ErrorHandlingController.cs
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=241

USING LOGGING TO SEE WHAT WENT WRONG 242

percent of customers who have a negative experience actually report it,

having robust logging in place will help address that.6

In this section, we’re going to cover the basics of logging. We’ll cover two

open source logging frameworks for .NET logging that make writing to

error logs easy. We’ll also briefly touch on the application monitoring

provided as part of ASP.NET to help you keep track of the site’s general

health.

Logging in .NET

Many logging frameworks exist in .NET, but since NHibernate uses

Log4Net and it’s one of the best supported open source .NET logging

frameworks, we are going to use it. Simply download the Log4Net’s li-

braries to your Lib folder, and add log4net.dll to your project references.7

Using Log4Net

Log4Net can have simple or more complex configurations based on your

needs. For our purposes, we’re going to use a basic configuration.

Log4Net has a concept called an appender that can be configured to

publish logs to separate mediums, such as email or RSS. You can add

a FileAppender to write the messages to the web server’s file system.

Adding an appender requires that you create a Log4Net configuration

section in your Web.config file or add it pragmatically when the web

application starts up:

Download securityErrorHandlingAndLogging/Global.asax.cs

public void Application_Start()

{

//omitted other code

FileAppender appender = new FileAppender();

appender.File = "GetOrganized.log";

log4net.Config.BasicConfigurator.Configure(appender);

}

Here we add the FileAppender along with the name of the log file, GetOr-

ganized.log. Using the BasicConfigurator simplifies the configuration of

Log4Net. As your logging requirements become more complex, it’s prob-

ably best to resort to a separate configuration file.

To make logging available to all our controllers and repositories, we’ll

need to add it to the Windsor container.

6. http://www.newtoncomputing.com/zips/basicfacts.pdf

7. http://logging.apache.org/log4net/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Global.asax.cs
http://www.newtoncomputing.com/zips/basicfacts.pdf
http://logging.apache.org/log4net/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=242

USING LOGGING TO SEE WHAT WENT WRONG 243

Adding Log4Net to Windsor

Back in Section 9.2, Using Factory Methods in Castle Windsor to Retrieve

Sessions, on page 196 we used a Windsor facility to supply us with

NHibernate ISession objects. Here, we’re going to use the Log4Net inte-

gration facility Castle.Services.Logging.Log4netIntegration.dll that comes

with Windsor to hook in Log4Net. The facility will then provide ILoggers

to classes that require them, such as repositories and controllers.

First let’s create a sample controller that will take an ILogger:

Download securityErrorHandlingAndLogging/LoggingController.cs

public class LoggingController : Controller

{

private ILogger logger;

public LoggingController(ILogger logger)

{

this.logger = logger;

}

}

The interface needs to be ILogger for the facility to work correctly. With

Log4Net injected, we can create an action that performs different kinds

of logging:

Download securityErrorHandlingAndLogging/LoggingController.cs

public ActionResult LoggingTest()

{

logger.Debug("debugging");

logger.Info("application started up");

logger.Warn("something bad may happen");

logger.Error("something bad happened");

logger.Fatal("something really bad happened");

}

We’re using all five levels of logging available to us. The severity and

the frequency of these messages should be the indicator for which one

to use for the situation. For example, if the server’s memory resources

are nearly out, you might choose to log a Fatal(). If you’re logging that

someone failed a login attempt, you might use Info() instead.

Based on how you’ve configured Log4Net to work, the message will be

directed to the appropriate destination. In our case, all messages will

be logged to the file GetOrganized. However, you could have all Error()

and Fatal() logs be sent by email or to the Windows event log. All of that

can be done by changing the configuration of Log4Net, without having

to touch our logging code.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/LoggingController.cs
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/LoggingController.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=243

USING LOGGING TO SEE WHAT WENT WRONG 244

Logging All Unhandled Errors

Revisiting our catchall error handler in Global.asax.cs, we now have the

means to log it using Log4Net:

Download securityErrorHandlingAndLogging/Global.asax.cs

protected void Application_Error()

{

Exception error = Server.GetLastError();

container.Get<ILogger>().Fatal(error);

}

First you need to move the IWindsorContainer to a member variable for

you to be able to reference it here. After that, just use the Get() to get

your ILogger to perform the logging.

Alternatively, you can use a more pluggable option to display unhan-

dled errors called ELMAH.

ELMAH: A Logging Alternative

There is an open source pluggable logging framework called Error Log-

ging Modules and Handlers (ELMAH)8 that works easily with both

ASP.NET and MVC. What makes ELMAH such a good alternative is that

it provides a nice web interface for viewing messages. Another advan-

tage is that it is able to include an additional dump of form and session

data that were in memory at the time of the error. Finally, it supports

notifications to Twitter and RSS out of the box. If you need Twitter or

RSS support, you’re probably best to go with ELMAH; otherwise, you

can stick to the more popular Log4Net.

Once you’ve downloaded and included the DLL reference, you’ll need to

add the following code to your Web.config file to set it up:

Download securityErrorHandlingAndLogging/Web.Config

Line 1 <sectionGroup name="elmah">

- <section name="security" requirePermission="false"
- type="Elmah.SecuritySectionHandler, Elmah" />
- <section name="errorLog" requirePermission="false"
5 type="Elmah.ErrorLogSectionHandler, Elmah" />
- <section name="errorMail" requirePermission="false"
- type="Elmah.ErrorMailSectionHandler, Elmah" />
- <section name="errorFilter" requirePermission="false"
- type="Elmah.ErrorFilterSectionHandler, Elmah" />

10 </sectionGroup>

-

8. http://code.google.com/p/elmah/wiki/MVC

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Global.asax.cs
http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://code.google.com/p/elmah/wiki/MVC
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=244

CHECKING FOR A PULSE WITH ASP.NET HEALTH MONITORING 245

- <elmah>

- <errorLog type="Elmah.XmlFileErrorLog, Elmah"

- logPath="~/App_Data" />
15 </elmah>

-

- <system.web>

- <httpModules>

- <add verb="POST,GET,HEAD" path="elmah.axd"

20 type="Elmah.ErrorLogPageFactory, Elmah" />
- </httpModules>

- </system.web>

-

- <location path="elmah.axd">

25 <system.web>

- <authorization>

- <deny users="jonathan" />

- </authorization>

- </system.web>

30 </location>

On line 13, we configure everything to a set of XML files in the App_Data

of your web application. ELMAH works through an ASP.NET feature

called HttpModules, which works as part of the ASP.NET request life

cycle. We add the ELMAH module to our request pipeline on line 19.

The great thing about ELMAH is that you can view all the errors via the

web address http://yourapplication/elmah.axd.

Because we don’t want just anyone to view these logs, we add a Location

element to secure the URL on line 24.

With basic logging covered, we’re next going to delve into application

health monitoring. This will round out our understanding of how to

keep ahead of production problems.

11.4 Checking for a Pulse with ASP.NET Health Monitoring

Health monitoring differs slightly from logging because it refers to the

overall availability of an application. This definition can differ based on

how you implement logging. For example, if you end up creating logging

events in your code that check whether the connection to the database

works every five minutes, you’ve implemented your own health moni-

toring using the logging framework. This isn’t a bad thing to do nec-

essarily, but there are separate frameworks and products that do the

same job already. Think of application health monitoring like a heart

rate monitor, constantly displaying data on how the application is

Report erratum

this copy is (P1.0 printing, June 2010)

http://yourapplication/elmah.axd
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=245

CHECKING FOR A PULSE WITH ASP.NET HEALTH MONITORING 246

doing. Monitoring that your website is up and running is important

so that you can respond quickly if it does go down.

ASP.NET has a built-in health monitoring solution that covers certain

events such as start-up and shutdown. These types of events are useful

to monitor because when you’re supporting your application, it’s impor-

tant to know how many servers are available. Similar to logging frame-

works, monitoring can also be configured to be sent to many different

sources. The good thing about ASP.NET’s application health monitoring

is that it takes only a single line to configure:

Download securityErrorHandlingAndLogging/Web.Config

<system.web>

<healthMonitoring Enabled="true" />

</system.web>

Inside the Web.config file, add the health monitoring config section. This

will by default direct ASP.NET errors to the Windows event logs. It

can also be set up to send email notifications or write to a database.

If you want to send these events to another source, like Twitter, for

example, you can always implement your own System.Web.Management.

WebEventProvider.

Up Next

We’ve learned to apply additional security to our applications and pro-

tect against malicious users. We’ve also worked through setting up

more robust error handling and logging so that our application is easier

to monitor.

We’ve built our ASP.NET MVC application from start to finish. There’s

just one thing left to do: deploy it into production.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/securityErrorHandlingAndLogging/Web.Config
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=246

People in their handlings of affairs often fail when they are

about to succeed. If one remains as careful at the end as he

was at the beginning, there will be no failure.

Lao Tzu

Chapter 12

Build and Deployment
Getting software into production is the most common point of fail-

ure. At least that’s Roy Singham’s point of view in his essay “Solving

the Business Software Last Mile” from The ThoughtWorks Anthology

[Tho08]. Singham suggests the only way to reduce this risk of fail-

ure is to develop a discipline of continuous deployment. That’s exactly

what we’re going to work on in this chapter—getting disciplined about

deploying our ASP.NET MVC applications often.

In this chapter, we’re going to learn about how to automate the process

of deployment. First, we’ll create an automated build that is portable

across all machines. Next, we’ll extend that build to remotely manage

deployment to other servers.

12.1 Automating Builds

Think about your daily developer activities. You write a test, watch it

fail, get the test to pass, and then check in the code to version control.

At every step you need to compile your code. You’ll also find yourself

deploying to your local web server to simulate a more production-like

environment. You might also be checking your application’s code cov-

erage by running a report.

Doing all this manually becomes boring quickly. Also, mistakes can

happen when steps in the process are forgotten or incorrectly per-

formed. We’ve all run into the situation where we’re sure we fixed a

bug, but there it is on the customer’s machine. At that point, we make

the useless excuse, “But it works on my machine.”

Fixing these kinds of problems requires an approach that is called

build automation. It is a way to delegate these tasks to something that

AUTOMATING BUILDS 248

Version Control and Automated Builds

Adding version control to your automated build helps ensure
you have the right version for the right environment. Most build
systems can be configured to interact with the version control
system. Common tasks include automatically tagging success-
ful builds with the version number or retrieving and building a
specific version of the application.

Having your build version control aware helps keep your team
on the same page about what needs to be promoted to which
environment and reduces the risks of human error. For more
information on integrating MSBuild with common version con-
trol systems like Team System and Subversion, you can read
more about the Tigris MSBuild tasks.∗

∗. http://msbuildtasks.tigris.org

doesn’t mind repetition: your computer. Mike Clark explains in Prag-

matic Project Automation [Cla04] that effective automated builds are

CRISP: Complete, Repeatable, Informative, Scheduleable, and Portable.

Complete builds have a list of everything that is required to deploy the

software. Repeatable means the build can be reproduced on another

machine, usually in conjunction with version control. Informative

builds broadcast relevant information, such as if tests are failing, to

multiple formats like the console and XML. It makes the system more

reliable if you schedule frequent deployments. To schedule a build,

it needs to be complete and repeatable. Complete builds start from a

blank slate and then compile and deploy the code. Repeatable builds

reply on completeness; otherwise, you won’t be able to repeat the pro-

cess. Finally, if a build is portable, it can run on different machines.

In this chapter, we’re going to focus on creating a build that covers all

these criteria except for version control (see the sidebar on the current

page).

Lucky for us there are plenty of tools to help with build automation in

.NET, such as NAnt, MSBuild, and more recently Psake (which uses

PowerShell). There are other tools, such as continuous integration ser-

vers, that we won’t cover here but that can augment your automation

(see the sidebar on the following page). We’re going to use MSBuild

Report erratum

this copy is (P1.0 printing, June 2010)

http://msbuildtasks.tigris.org
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=248

USING MSBUILD TO AUTOMATE THE BUILD 249

Continuous Integration

Another advantage to having an automated build is it allows
you to take advantage of continuous integration (CI) servers.
These servers will run your build after every check-in to version
control. One of the most popular CI servers is Cruise Control
.NET.∗ We won’t be covering CI here, but once you have an
automated build going, it is a fairly simple process (and reward-
ing). You can read more about CI by reading Martin Fowler’s
blog post about it.†

∗. http://sourceforge.net/projects/ccnet/

†. http://martinfowler.com/articles/continuousIntegration.html

because it comes with the rest of the .NET Framework and is already

installed both locally and on production machines.

12.2 Using MSBuild to Automate the Build

The simplest way to introduce MSBuild is to use it against a Visual

Studio project file. All Visual Studio project files (.sln, .proj, or .targets) are

all MSBuild files. Executing MSBuild against the GetOrganized solution

file will compile the entire project, as we can see here:

C:\Development\GetOrganized>

C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe GetOrganized.sln

...

compilation output omitted

...

Build succeeded.

0 Error(s)

Time Elapsed 00:00:36.51

A copy of MSBuild.exe is located for each version of the .NET Frame-

work under Windows\Microsoft.NET\Framework\vX.XX. To run MSBuild, we

pass it the build file as the argument. MSBuild will execute the default

instructions, known as a target, which in this case is to compile the

whole solution.

The output of the build is fairly informative and has been truncated

here to save pages. It will let you know about compiler warnings or

errors and the time it takes to perform the whole build.

Report erratum

this copy is (P1.0 printing, June 2010)

http://sourceforge.net/projects/ccnet/
http://martinfowler.com/articles/continuousIntegration.html
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=249

USING MSBUILD TO AUTOMATE THE BUILD 250

Let’s go ahead and create our own build file. To start with, we’ll make

our build file compile the solution. This is the same thing the GetOr-

ganized.sln file does already, but it will serve as an introduction to how

MSBuild and build files work. The filename of the MSBuild file will be

Build.msbuild, and we’ll keep it in the root directory of our solution, right

next to the solution file GetOrganized.sln.

Download buildAndDeploy/Build.msbuild

Line 1 <Project DefaultTargets="All"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3

4 <Target Name="All" DependsOnTargets="Compile" />

5

6 <Target Name="Compile" >

7

8 </Target>

9

10 </Project>

This is our first look at an MSBuild file. Build files are XML with the root

node Project. The XML namespace also needs to be referenced, as we do

on line 2. There also needs to be a default target, which we define as All.

Targets define stages in the build process. Build files have numerous

targets such as Compile, Clean, Documentation, and Deploy.

Our first target, All, is defined on line 4. This target is completely empty

but uses the attribute DependsOnTarget, which instructs MSBuild to

call those targets before it runs. The attribute lets you chain targets

together. In this case, we’re adding Compile as the first step in the

default build process.

Targets are composed of individual tasks. Tasks perform some sort of

work, such as copying files, connecting to a remote computer, or com-

piling source code. On line 7, we add the Compile target. We’ve left it

empty for now, but the next step is to add a compile task.

Download buildAndDeploy/Build.msbuild

Line 1 <Target Name="Compile" >

2 <MSBuild Projects="GetOrganized.sln" Targets="Build" />

3 </Target>

Here we’re using the MSBuild task to compile the solution on line 2. This

task is doing the same thing we would have done on the command line

to run MSBuild against the GetOrganized.sln solution file.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=250

USING MSBUILD TO AUTOMATE THE BUILD 251

Now let’s execute against our build file:

C:\Development\GetOrganized>

C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe

Build.msbuild /t:Compile

...

compilation output omitted

...

Build succeeded.

0 Error(s)

Time Elapsed 00:00:30.43

MSBuild is now doing all our compiling. We passed in an optional argu-

ment called /t:Compile to instruct MSBuild to execute only that target.

Since we specified the default target All in our build file, this is redun-

dant in this case. However, it is important to know how to specifically

call a build target. This is because as your project grows, each target

will take longer to run. If you can skip targets by calling only the spe-

cific ones you need, you’ll save yourself time. Next, we need to add the

database to our build.

Incrementally Deploying Your Database

Setting up your database to the latest version of the schema is a useful

thing to automate in the build. It saves manually re-creating databases

to reflect the current codebase.

There are several ways of doing this. You can generate a SQL script

and store it in a specific folder like DatabaseDeltaScripts using a tool

like db.deploy.NET (see the sidebar on page 253). However, there is a

trend toward building database migrations using a modern language,

such as C# instead of SQL. This method has become popular because

it takes advantage of object-oriented language features to reduce dupli-

cation and make migrations easier to read. This is the method we’ll use.

To help us with build C# migrations, we’ll use Migrator.NET, an open

source database migration framework.

Introducing Migrator.NET

Migrator.NET lets you create C# migration files to upgrade your data-

base. It also has NAnt and MSBuild tasks you add to your build to

execute those migrations.

To get started, you’ll want to download the DLLs (Migrator.Framework.dll,

Migrator.Providers.dll, Migrator.dll, and Migrator.MSBuild.dll) and put them in

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=251

USING MSBUILD TO AUTOMATE THE BUILD 252

your Lib folder.1 There is also a Migrator.Targets file that you’ll need to

copy to Lib for the MSBuild task. Next, add a reference to Migrator.Frame-

work.dll in your Web project, and you’ll be able to create your first migra-

tion file. To keep your code organized, it’s best to create a separate

folder in your project called Migrations.

To show how migrations work, we’ll add a migration that adds our Todo

and Topic tables:

Download buildAndDeploy/AddTopicAndTodoTables.cs

Line 1 [Migration(20100101081010)]
- public class AddTopicAndTodoTables : Migration
- {
- public override void Up()
5 {
- Database.AddTable("Topic",
- new Column("Id", DbType.Int32, ColumnProperty.PrimaryKey),
- new Column("Name", DbType.String, 100),
- new Column("ColorHtml", DbType.String, 255)

10);
-

- Database.AddTable("Todo",
- new Column("Id", DbType.Int32, ColumnProperty.PrimaryKey),
- new Column("Title", DbType.String, 25),

15 new Column("Outcome", DbType.String, 100),
- new Column("Complete", DbType.Boolean),
- new Column("Topic_Id", DbType.Int32)
-);
-

20 Database.AddForeignKey("FK_Todo_Topic",
- "Todo", "Topic_Id", "Topic", "Id");
- }
-

- public override void Down()
25 {

- Database.RemoveForeignKey("Todo", "FK_Todo_Topic");
- Database.RemoveTable("Todo");
- Database.RemoveTable("Topic");
- }

30 }

All migration classes have two things in common. First they all inherit

the Migration class, which forces the class to override the Up() and Down()

methods. The migration class also has the attribute [Migration], which

represents the sequence the migration falls into. This can be done by

starting with 1 and incrementing every migration; however, a better

1. http://code.google.com/p/migratordotnet/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/AddTopicAndTodoTables.cs
http://code.google.com/p/migratordotnet/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=252

USING MSBUILD TO AUTOMATE THE BUILD 253

An Alternative: dbDeploy .NET

db.deploy.NET takes SQL scripts and runs them in sequence
against the database to bring them up to the current version.
Using NHibernate’s SchemaUpdate object to produce a SQL
script is one way to generate the delta scripts. Alternative, they
can be created by hand.

Using db.deploy.NET lets you avoid having to write classes to do
migrations. However, this is becoming less popular with devel-
opers. Modern development efforts are focusing more time in
object-oriented languages such as C# as opposed to SQL.

practice is to use a timestamp. This ensures uniqueness if multiple

developers are writing migrations at the same time.

The Up() method is the database logic for upgrading the database. Its

complement is the Down() method, which downgrades the database to

the previous version. Both methods use the key object Database to per-

form operations against the database.

Within Up(), we start by adding a table on line 6. This AddTable() takes

multiple Column objects that represent columns in the database table.

We add the Topic table first and then the Todo after because one of its

columns references Topic. On line 17, we add this column, which is

known as a foreign key. A foreign key is a way to reference information

that is listed in another table. To enforce the integrity of a foreign key,

we add a constraint to the database on line 21. This constraint makes

sure that rows in the Todo table reference a valid TopicId.

When it comes to the Down() method, we remove things in reverse order.

We start by removing the foreign key constraint on line 26. We do this

before we start dropping the tables because the database will complain

if you don’t remove the foreign key constraint first. Next, we remove the

two tables using the method RemoveTable(string nameOfTable).

With both methods implemented, this completes this migration. As you

can see, reading the migrations is a lot easier than dropping into SQL

to see what a table does. They also are reversible, which is useful if you

need to downgrade a database.

Let’s run the migration against our database.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=253

USING MSBUILD TO AUTOMATE THE BUILD 254

Using the Migrator.NET Task

Migrator has an MSBuild task to do the migration for us. So, let’s create

a new target in our build file to upgrade the database to the latest

version:

Download buildAndDeploy/Build.msbuild

Line 1 <UsingTask AssemblyFile="lib\Migrator.MSBuild.dll"
- TaskName="Migrator.MSBuild.Migrate" />
-

- ...omit other targets...
5

- <Target Name="Migrate" DependsOnTargets="Compile">

- <Migrate Provider="SqlServer"

- Connectionstring="Database=GetOrganized;Data Source=localhost;
- User Id=user;Password=password;"

10 Migrations="GetOrganized\bin\GetOrganized.dll"/>
- </Target>

To include other MSBuild files in your build, use the UsingTask ele-

ment. On line 2, we include the Migrator .NET DLL in the Lib directory.

This enables the migrate task, which we then use on line 7. The task

takes a Connectionstring to the database as one of its attributes. Also,

you need to specify a Provider for the database type. Finally, you need to

provide the assembly that the migrations are in by using the Migrations

attribute.

Executing this target will upgrade your database to the latest version.

With the most current database ready, we can now run our persistence

and unit tests against it.

Adding Unit Tests to the Build

Making tests part of the build is an important step for continuous inte-

gration. It’s also makes it easier to run the full suite of tests before

checking your code in. Since MSBuild does not have a task for running

NUnit tests, we need to get that from somewhere else.

As we saw in the previous section, we can extend MSBuild with cus-

tom tasks. Tigris, an open source consortium, provides an MSBuild

project extension with more than 85 useful tasks, one of which is an

NUnit task. To use it in our build file, you’ll need to download the

MSBuild tasks from Tigris.2 There are two files that need to be added

to the Lib folder in your solution, the MSBuild.Community.Tasks.dll and the

2. http://msbuildtasks.tigris.org/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://msbuildtasks.tigris.org/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=254

USING MSBUILD TO AUTOMATE THE BUILD 255

MSBuild.Community.Tasks.Targets. The latter is an MSBuild file that imports

all custom tasks.

The NUnit task uses the nunit-console.exe. We covered how to use this

command-line utility in Section 2.2, Watching the Test Fail, on page 39.

Getting this MSBuild task working means you’ll also need to add the fol-

lowing files to your Lib folder from NUnit: nunit-console.exe, nunit.core.dll,

nunit-console-runner.dll, nunit.util.dll, and nunit.core.interfaces.dll.

With those files in place, we can reference the custom tasks in our build

file:

Download buildAndDeploy/Build.msbuild

<PropertyGroup>

<MSBuildCommunityTasksPath>.</MSBuildCommunityTasksPath>

</PropertyGroup>

<Import Project="Lib\MSBuild.Community.Tasks.Targets" />

Here we use the import element to reference the MSBuild.Community.Tasks.

Targets for the additional tasks. We also had to add a property to point

those target tasks to the right directory. The directory we specify here

is . because the file we’re importing, MSBuild.Community.Tasks.Targets, is

in the same directory as all the community task DLLs and the NUnit

binaries. Now we’ll add the Nunit target and task.

Download buildAndDeploy/Build.msbuild

<Target Name="Test" DependsOnTargets="Compile;Migrate">

<NUnit Assemblies="Test.Unit\bin\Debug\Test.Unit.dll;

Test.Persistence\bin\Debug\Test.Persistence.dll"

ToolPath="lib" />

</Target>

The Nunit task takes the Assemblies where your unit tests are. In this

case, we’re using two projects and separating them by a semicolon.

This will run all the NUnit tests and output the results to the screen.

There are other options with this task that will allow you to output the

result as XML, which is useful for continuous integration servers to

report on. Note that we need to add the property ToolPath to point the

task to the Lib directory where nunit-console.exe and the other NUnit files

are located.

With both database migrations and tests running, it’s time to deploy the

site to our local IIS to see how it to bring it one step closer to production.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=255

USING MSBUILD TO AUTOMATE THE BUILD 256

Deploying Locally to IIS

With the site compiled, tested, and database ready, it’s time to deploy it

to IIS. Deploying to IIS instead of the Visual Studio Cassini web server

is important because that is what it will use in production.

We’ve already installed the Tigris Community MSBuild tasks, which

have all the tasks we need. Let’s add those tasks to a deploy target:

Download buildAndDeploy/Build.msbuild

Line 1 <Target Name="LocalDeploy" DependsOnTargets="Compile;Migrate">

-

- <PropertyGroup>

- <VirtualDirectory>C:\inetpub\GetOrganized</VirtualDirectory>
5 <VirtualDirectoryName>GetOrganized</VirtualDirectoryName>
- </PropertyGroup>

-

- <WebDirectoryDelete VirtualDirectoryName="$(VirtualDirectoryName)"
- ContinueOnError="true" />

10 <RemoveDir Directories="$(VirtualDirectory)" />

-

- <ItemGroup>

- <WebFiles Include="GetOrganized***.*" Exclude="**\.svn**"/>

- </ItemGroup>

15 <Copy SourceFiles="@(WebFiles)"

- DestinationFolder="$(VirtualDirectory)\%(RecursiveDir)"/>
-

- <WebDirectoryCreate VirtualDirectoryName="$(VirtualDirectoryName)"
- VirtualDirectoryPhysicalPath="$(VirtualDirectory)" />

20 </Target>

Here we define a couple of properties using the PropertyGroup ele-

ment. Properties are like member variables. The first we create is Vir-

tualDirectory, which is for the physical directory where the website is

located. VirtualDirectoryName is the name of the virtual directory we

access through IIS. In this example, we’d be accessing the URL http://

localhost/GetOrganized.

Targets should be repeatable, so we need to begin by removing the web-

site if it exists. On line 9, we use the WebDirectoryDelete task. We also

use the RemoveDir task to delete the contents of the physical directory.

We also set the property ContinueOnError to true, because the first time

this task runs, there will be no directory to delete, and we don’t want it

to fail during the rest of the task.

Finally, we use the Copy task to move the new site over on line 15. This

also re-creates the directory structure. We need to add an ItemGroup

with the wildcard **/*.* to recursively copy all the files. We also will

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://localhost/GetOrganized
http://localhost/GetOrganized
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=256

USING MSBUILD TO AUTOMATE THE BUILD 257

want to exclude special files like source control—in this case Subver-

sion—by adding the **\.svn** to the Exclude attribute. This is refer-

enced as @(WebFiles) in the copy command. Note the use of /%(Recur-

siveDir) to the Copy task. This lets the Copy task know that you want to

preserve the directory structure from the source it is copied from. We

then use the WebDirectoryCreate task to build a virtual directory.

This deploys the site locally. However, you might get the error mes-

sage Login failed for user ’{MACHINE NAME}\ASPNET’. because some

versions of IIS will try to run as the user ASPNET, which won’t have

access to the database. To correct this, add ASPNET as a database user

through SQL Server Management Studio. Simply add the db_owner

under User Mappings tab.

Now we’ll fix up the All target to complete all the targets we’ve created

so far:

Download buildAndDeploy/Build.msbuild

<Target Name="All"

DependsOnTargets="Compile;Migrate;Test;LocalDeploy" />

Specifying the default targets in this order allows us to invoke MSBuild

without specifying any parameters. It’s important to note how we mi-

grate the database before running tests. This is because we want to

make sure the database is in the correct state for the persistence tests.

To make it one step easier to run your command-line build, you might

find it useful to wrap your MSBuild in a .bat file. For example, you could

have a filename build.bat that looks like this:

Download buildAndDeploy/build.bat

C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe Build.msbuild /t:%1

This way, you can avoid the path to MSBuild and your build file itself.

The %1 is the batch file notation for the first parameter you pass to

build.bat. This allows you to pass any target to run, like Deploy, if you

didn’t want to run the full test suite.

Now that we have a fully functional build file, there are some nuances of

getting deployments working depending on which version of IIS you’re

using. The next few sections address each version of the Windows oper-

ating system and its corresponding version of IIS.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/build.bat
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=257

USING MSBUILD TO AUTOMATE THE BUILD 258

Microsoft’s Web Deployment Tool

This tool is another way to deploy your site to multiple servers. It
is downloadable from Microsoft’s site or using the Web Installer
Platform.∗ Although it cannot be automated via MSBuild, it
does make the process simpler than doing it manually via the
command prompt. A useful thing about this tool in that the
1.1 version supports running a SQL script against a remote
database.

∗. http://www.iis.net/expand/WebDeploymentTool

IIS 5.1 on Windows XP Pro

If you have IIS 5.1, you’ll need to add a wildcard mapping within IIS.

This will make sure the URLs are captured by the aspnet_isapi.dll ISAPI

filter. To add the mapping, you need to open the IIS control panel. Next

right-click Default Website, and click the Configuration button. With

the new window open, click the Add a New Mapping button. Set the

extension .* and the executable to aspnet_isapi.dll, which is normally

installed in C:\Windows\Microsoft.NET\Framework\v2.0.50727. Do not check

the box “Verify that file exists,” since the URLs for MVC do not reference

physical files.

IIS 6.0 on Windows Server 2003 or XP Pro x64

You can do the same for IIS 6.0 by using a wildcard, but for a pro-

duction environment, this will incur a performance hit. Essentially

all requests, including image, CSS, and JavaScript files, are directed

through the ASP.NET filter. A process was refined by Steve Sanderson

to use Helicon’s rewrite engine.3

Once you install this rewriter,4 you want to add a rewrite rule. This rule

will add an .aspx extension to most requests so that the aspnet_isapi.dll

will catch it. Here’s a look at the rewrite rule:

Download buildAndDeploy/httpd.ini

Line 1 # Add extensions to this rule to avoid them being processed by ASP.NET
2 RewriteRule (.*)\.(css|gif|png|jpeg|jpg|js|zip) $1.$2 [I,L]
3

3. http://blog.codeville.net/2008/07/04/options-for-deploying-aspnet-mvc-to-iis-6/

4. http://www.isapirewrite.com/

Report erratum

this copy is (P1.0 printing, June 2010)

http://www.iis.net/expand/WebDeploymentTool
http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/httpd.ini
http://blog.codeville.net/2008/07/04/options-for-deploying-aspnet-mvc-to-iis-6/
http://www.isapirewrite.com/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=258

DEPLOYING TO PRODUCTION 259

4 # Prefixes URLs with "rewritten.aspx/", so that ASP.NET handles them
5 RewriteRule /(.*) /rewritten.aspx/$1 [I]

On line 2, we exclude all files that we don’t want processed by ASP.NET.

We’ve listed CSS, images files, and ZIP files. For every other request, we

want to append .aspx on line 5.

Before the request is processed, we append some logic to the Applica-

tion_BeginRequest() in the Global.asax.cs to strip the .aspx from the URL.

Download buildAndDeploy/Global.asax.cs

protected void Application_BeginRequest(Object sender, EventArgs e)

{

HttpApplication app = sender as HttpApplication;

if (app != null)

if (app.Request.

AppRelativeCurrentExecutionFilePath == "~/rewritten.aspx")

app.Context.RewritePath(

app.Request.Url.PathAndQuery.Replace("/rewritten.aspx", "")

);

}

The code checks the request for the rewritten.aspx file in the Request.App-

RelativeCurrentExecutionFilePath and uses String.Replace() to remove it.

Now you have IIS 6.0 working with ASP.NET MVC without the per-

formance restrictions.

IIS 7.0 or 7.5 on Windows Server 2008 R2, Windows 7, and Vista

This is the simplest configuration of them all. Run the Turn Windows

Features On or Off program, and ensure that ASP.NET, ISAPI Exten-

sions, and ISAPI Filters are all selected. All that you need to do is make

sure your website’s Application Pool option is set to Integrated Mode,

and you’re done!

With all the local deployment steps complete, we can leverage all this

automation and get production deployment going.

12.3 Deploying to Production

There are a couple of steps involved in getting our code into produc-

tion. First we need to upload the site via FTP, and then we deploy the

site to IIS. There are multiple ways to do this (see the sidebar on the

previous page), but we’re going to set up an automated deployment. By

automating these steps, we’ll avoid having to manually do this for every

deployment. This will make deployments much more enjoyable.

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Global.asax.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=259

DEPLOYING TO PRODUCTION 260

Uploading the Site Using FTP

Remote file upload can be done through the FTP task as part of Tigris’s

community tasks. To make it easier to upload the entire solution, we’ll

also compress the files into a zip file.

Download buildAndDeploy/Build.msbuild

<Target Name="Ftp" DependsOnTargets="Compile">

<ItemGroup>

<WebFiles Include="GetOrganized***.*"/>

</ItemGroup>

<Zip Files="@(WebFiles)" ZipFileName="GetOrganized.zip" />

<FtpUpload LocalFile="GetOrganized.zip"

RemoteUri="ftp://localhost/" RemoteFiles="GetOrganized.zip" />

</Target>

The Zip task takes a list of Files or a pattern to match the files to com-

press. Also, it specifies a ZipFileName as the name of the archive to cre-

ate. After the archive is created, we then proceed to upload it using the

FtpUpload task. It uploads a single file using the LocalFile property. The

FTP site to connect to is specified using the RemoteUri attribute. This

example is connecting to an unsecured site, since no credentials are

provided.

To connect to a secure site, you can add the properties UserName and

Password.

Running this task will upload the site to the remote computer. If you

don’t have MVC installed on the remote server, you’ll need to complete

an extra step to the Web project file (see the sidebar on the following

page).

With the site uploaded, we’ll need to execute some MSBuild tasks re-

motely to complete the deployment. For that we’ll use a handy com-

mand-line utility provided by Microsoft.

Performing Remote Management at the Command Line

We are going to use a package called PSTools that contains the

executable psexec.exe, a free utility provided by Microsoft’s TechNet.5

This command-line utility allows you to execute remote commands.

5. http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=260

DEPLOYING TO PRODUCTION 261

Using MVC Without Installing MVC

It’s possible to have your MVC application run on a machine
that does not have it installed. This might be the case
if you’re running in a hosted environment. In those cases,
you’ll need to take some additional steps. Add all the
MVC libraries—System.Web.Mvc.dll, System.Web.Routing.dll, and
System.Web.Abstractions.dll—to the Lib directory. Next copy these
files either using MSBuild or using Visual Studio’s Solution Explorer
to the bin directory. This will make sure that you don’t need MVC
to be installed for your application to run.

psexec.exe works off the remote computer’s $Admin share to remove the

need to manually install the server-side program.

To begin with, try to connect to your local machine to make sure every-

thing is working prior to connecting to a remote machine. So in the

examples below, just specify your computer’s IP address to start.

After you download the zip file, place the psexec.exe executable in your

Lib folder.

First it’s important to test that the connection works between your local

machine and the remote server. To do this, we’ll use the Windows net

command. The following is an example of connecting to a remote file

share:

C:\Development\GetOrganized\Lib>

net use Z: \\192.168.0.100/$Admin /user:Administrator password

...

Drive Mounted Successfully.

Here we use the command net to mount the $Admin file share on the

remote computer with the IP address of 192.168.0.100. To pass creden-

tials, we specify the username Administrator and the password pass-

word. The drive successfully mounts, so we’re clear to use psexec.exe.

Sometimes problems occur because of firewall restrictions. In these

cases, make sure file sharing ports are open and there are no inter-

mediary firewalls preventing file sharing from occurring. Generally, this

works best if you’re on the same domain or network, but it is possible

to do this over the Internet.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=261

DEPLOYING TO PRODUCTION 262

Next, we can invoke psexec.exe to run a simple command like hostname,

which outputs the friendly name of the computer.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=262

DEPLOYING TO PRODUCTION 263

C:\Development\GetOrganized\Lib>

psexec \\192.168.0.100 -u Administrator -p password hostname

...

hostname

production_server_A

We instruct psexec to connect to 192.168.0.100 and pass it the proper

credentials. The last argument is the command we want to specify on

the remote machine. The output is an echo of the command we sent

and the output of the remote machine’s host name, which is produc-

tion_server_A.

Now let’s get practical and start remotely executing MSBuild. We’re

going to get the remote server to execute MSBuild against the FTP folder

that was uploaded in the previous section:

C:\Development\GetOrganized\Lib>

psexec \\192.168.0.100 -u Administrator -p password

C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe

C:\ftp\upload\Build.msbuild /t:Compile

...

Error: C:\ftp\upload\Build.msbuild file not found

This example uses psexec.exe to execute the MSBuild target Compile on

the remote server. Similar to the way we executed hostname, here we

execute our MSBuild.exe and pass it both our build file Build.msbuild

and the target Compile.

Although MSBuild executes, it can’t find our build file. This is because

it is still in a zip file. To uncompress it, we’re going to upload our build

files separately, which is part of what we will do in the next section.

We have MSBuild being called remotely now, but we had to execute the

command manually. Next we’ll make this command work with our own

MSBuild custom task.

Building a Custom MSBuild Task to Remote In

Custom MSBuild tasks are easy to create for whatever automation task

you require. In this case, we’re going to use one to wrap psexec.exe and

allow us to include its usage in our build file.

The interface to wrap MSBuild tasks is Microsoft.Build.Framework.ITask. To

make life easier from a logging perspective, Microsoft also provides a

concrete class called Microsoft.Build.Utilities.Task.

You’ll need to add the references to both Microsoft.Build.Framework.dll and

Microsoft.Build.Utilities.dll to the project to use them.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=263

DEPLOYING TO PRODUCTION 264

There is only one method to override, and that is Execute(). Let’s code

up our custom task:

Download buildAndDeploy/RemoteTask.cs

Line 1 public class RemoteTask : Task
- {
- public string ExecutableLocation {get;set;}
- public string RemoteIP {get;set;}
5 public string UserName {get;set;}
- public string Password {get;set;}
- public string WorkingDirectory {get;set;}
- public string RemoteCommand {get;set;}
- public string Parameters {get;set;}

10

- public override bool Execute()
- {
- string psExecCommand = ExecutableLocation + "\\"
- + "psexec.exe";

15

- string psExecArguements = "\\\\" + RemoteIP
- + " -u " + UserName + " -p " + Password;
-

- string remoteCommand = "-w \"" + WorkingDirectory +
20 "\" \"" + RemoteCommand + "\" " + Parameters;

- try

- {
- Process p = Process.Start(
- psExecCommand, psExecArguments + " " + remoteCommand);

25

- p.WaitForExit();
- return true;
- }
- catch (Exception e)

30 {
- Log.LogError(e.Message);
- return false;
- }
- }

35 }

Whichever properties you make public in your class can be accessed

via the XML markup. RemoteIP, for example, is set as follows:

<RemoteTask RemoteIP="192.168.0.100" />

We set up six properties in our RemoteTask here to correspond to all the

things that will vary, such as credentials, locations of the program to

execute, and its parameters.

When building up the remote commands, we need to specify what the

working directory on the remote machine is. We use the switch -w for

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/RemoteTask.cs
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=264

DEPLOYING TO PRODUCTION 265

this on line 19. This will make sure that your paths work when you

execute remote commands.

Next, we use Process.Start() to execute the command-line tool. In the

happy path, all things go well, and we return true on line 27. If some-

thing exceptional happens, we use the MSBuild logger to record the

error on line 31. This code is fairly brittle because it does not vali-

date all the properties. For your tasks, you could craft something more

robust.

Once you’ve compiled the task into a DLL, you need to reference it in

your build file like so:

Download buildAndDeploy/Build.msbuild

<UsingTask TaskName="RemoteTask"

AssemblyFile="GetOrganized\bin\GetOrganized.dll" />

The UsingTask element imports your custom task into the build file. If we

compiled the custom task as part of the sample project, GetOrganized,

then the assembly would be GetOrganized.dll.

With the remote task available, we need to add to the Ftp target in our

build file. This will fix the problem we had in the previous section of

psexec.exe not being able to find our build file.

After the target is finished uploading the zip file to the remote location,

we’ll want it to execute a yet to be created MSBuild target called Publish.

Download buildAndDeploy/Build.msbuild

Line 1 <Target Name="Ftp" DependsOnTargets="Compile">

- //omit previous code
-

- <FtpUpload LocalFile="Build.bat"
5 RemoteUri="ftp://192.168.0.1/" RemoteFiles="Build.bat" />
-

- <FtpUpload LocalFile="Build.msbuild"
- RemoteUri="ftp://192.168.0.1/" RemoteFiles="Build.msbuild"/>
-

10 <FtpUpload LocalFile="Lib\MSBuild.Community.Tasks.dll"
- RemoteUri="ftp://192.168.0.1/"
- RemoteFiles="MSBuild.Community.Tasks.dll"/>
-

- <FtpUpload LocalFile="Lib\MSBuild.Community.Tasks.targets"
15 RemoteUri="ftp://192.168.0.1/"

- RemoteFiles="MSBuild.Community.Tasks.targets"/>
-

- <RemoteTask RemoteIP="192.168.0.1"

- UserName="Administrator"
20 Password="Password"

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=265

DEPLOYING TO PRODUCTION 266

- ExecutableLocation="Lib"
- RemoteCommand="C:\Development\GetOrganized\Build.bat"
- WorkingDirectory="C:\Development\GetOrganized"
- Parameters="Publish" />

25

- </Target>

The first time this runs, no build file will exist on the remote machine.

We need to upload four additional files. This includes the Build.bat, our

abbreviation for running our project’s custom build file. Build.msbuild is

the build file itself. Finally, we need to include the MSBuild community

tasks, MSBuild.Community.Tasks.dll, along with the build file, MSBuild.Com-

munity.Targets.targets, from the Lib folder.

On line 18, we invoke RemoteTask. We set each of the parameters to

connect with our remote server and execute the Publish target on the

remote machine.

Next, we’ll add this new target for publishing so that when the remote

call happens, we don’t get a “Target not found” error:

Download buildAndDeploy/Build.msbuild

<Target Name="Publish">

<Unzip ZipFileName="GetOrganized.zip"

TargetDirectory="C:\inetpub\GetOrganized" />

<CallTargets Targets="LocalDeploy"/>

</Target>

The Publish target first unzips the contents of the file. It then runs the

local deploy target using the CallTargets task. This will reuse our work

from the LocalDeploy target to publish the site remotely.

Success! Your site can now be automatically deployed both locally and

remotely, saving you hours of time having to repeat this process man-

ually. Now that you have a handle on the overall process, check out an

open source project called CM.NET.6 This project aims to provide best-

practice build and deployment scripts for MSBuild and NAnt. With the

knowledge you’ve gained in this chapter, going through the build scripts

and using them for your next project will save you even more time.

We now have our build and deployment automated. With the basics

of build automation in hand, you’re now set up nicely to start using

6. http://wiki.github.com/bbyars/CM.NET/

Report erratum

this copy is (P1.0 printing, June 2010)

http://media.pragprog.com/titles/jmasp/code/buildAndDeploy/Build.msbuild
http://wiki.github.com/bbyars/CM.NET/
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=266

DEPLOYING TO PRODUCTION 267

a Continuous Integration (CI) server. To get started with CI, consider

trying out Cruise Control.NET, an open-source CI server. 7

That’s All, Folks

Having read and worked through the examples in this book, you’re well

armed to dive into your next project with MVC and TDD. Of course,

there is always more to learn, and a good way to do that is to visit some

key MVC sites:

• Scott Guthrie’s blog (corporate vice president at Microsoft of the

.NET Platform and one of the original authors of ASP.NET): http://

weblogs.asp.net/scottgu

• Phil Haack’s blog (senior programmer for Microsoft and one of the

core developers of ASP.NET MVC): http://haacked.com

• Online user group for monthly tutorials on all things MVC: http://

www.c4mvc.net

Just as important as learning more about MVC is going deeper into the

related frameworks and libraries that we touched on in the book. Here

are some resources and blogs for specific technologies:

• Oren Eini’s (aka Ayende Rahien) blog on NHibernate, the Windsor

container, and Rhino Mocks: http://www.ayende.com

• John Resig’s blog on jQuery: http://ejohn.org/

• Microsoft’s MSBuild Team Blog: http://blogs.msdn.com/visualstudio/

archive/tags/MSBuild/default.aspx

• Jetbrain’s ReSharper and .NET Tool Blog: http://blogs.jetbrains.com/

dotnet/

• The ALT .NET Community, a non-Microsoft-based view on all

things .NET: http://altdotnet.org/

• My .NET and ASP.NET MVC adventures: http://jonathanmccracken.

blogspot.com

Congratulations! You’re far along in the journey to becoming a strong

MVC developer. With the experience and knowledge you’ve gained here,

you’ll be able to tackle the challenges of web application development

like never before. As you continue to learn, I encourage you to share

your experiences and best practices with the community by blogging or

posting in the forums.

7. http://ccnet.thoughtworks.com

Report erratum

this copy is (P1.0 printing, June 2010)

http://weblogs.asp.net/scottgu
http://weblogs.asp.net/scottgu
http://haacked.com
http://www.c4mvc.net
http://www.c4mvc.net
http://www.ayende.com
http://ejohn.org/
http://blogs.msdn.com/visualstudio/archive/tags/MSBuild/default.aspx
http://blogs.msdn.com/visualstudio/archive/tags/MSBuild/default.aspx
http://blogs.jetbrains.com/dotnet/
http://blogs.jetbrains.com/dotnet/
http://altdotnet.org/
http://jonathanmccracken.blogspot.com
http://jonathanmccracken.blogspot.com
http://ccnet.thoughtworks.com
http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=267

Appendix A

Bibliography

[All02] David Allen. Getting Things Done: The Art of Stress-Free Pro-

ductivity. Penguin, New York, 2002.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[BK10] Bear Bibeault and Yehuda Katz. jQuery in Action. Manning

Publications Co., Greenwich, CT, second edition, 2010.

[Cla04] Mike Clark. Pragmatic Project Automation. How to Build,

Deploy, and Monitor Java Applications. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-

ture. Addison Wesley Longman, Reading, MA, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

APPENDIX A. BIBLIOGRAPHY 269

[HT04] Andrew Hunt and David Thomas. Pragmatic Unit Testing In

C# with NUnit. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2004.

[KBKH09] Pierre Henri Kuaté, Christian Bauer, Gavin King, and Tobin

Harris. NHibernate in Action. Manning Publications Co.,

Greenwich, CT, 2009.

[Mas06] Mike Mason. Pragmatic Version Control Using Subversion.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, second edition, 2006.

[Tho08] ThoughtWorks. ThoughtWorks Anthology. The Pragmatic

Programmers, LLC, Raleigh, NC, and Dallas, TX, 2008.

Report erratum

this copy is (P1.0 printing, June 2010)

http://books.pragprog.com/titles/jmasp/errata/add?pdf_page=269

Index
Symbols
<%= %> syntax, 27

~/ in pathnames, 125

A
[AcceptVerbs] attribute, 94

access restriction, 94

AccountController class, 45, 100, 105

action filters, 12, 59, 93–100

handling errors with, 238–241

login feature, creating, 100–109

action results, 96–98

ActionLink() method, 142

ActionResult class, 51, 96

actions, 25

actions without views, 62–66

Active Record pattern, when to use,

173

“Add action methods for Create,

Update, Delete, and Details

Scenarios” box, 50

Add View Wizard, 162

advanced HTML helpers, 146–149

Ajax, 151–157

autocomplete search, 157–161

creating new models with, 165–170

deleting with HTTP POST, 153–157

Ajax validations, 205

anonymous types, 65

antiforgery tokens, 233

AntiForgeryToken() method, 233

appenders (Log4Net), 242

Application_BeginRequest() method, 191

Application_EndRequest() method, 192

Application_Error() method, 241

application health monitoring, 245–246

Application_Start() method, 195

areas, 15

AreEqual() method, 38

ASP.NET Design Gallery, 139

ASP.NET libraries, 10

ASP.NET Membership API, 234–238

ASP.NET MVC, differences from

ASP.NET Web Forms, 10–12

ASP.NET MVC, how it works, 19–20

ASP.NET MVC, installing, 21

ASP.NET MVC, version 2.0 features,

14–16

ASP.NET web controls, replacing with

HTML helpers, 146–149

ASP.NET Web Forms, 10–12, 20

ASP.NET Web Site Administration Tool,

104

aspnet_regsql.exe program, 102

aspnet_isapi.dll extension, 28

ASPX files, 26

AssertActionRedirect() method, 113, 116

assertions, 38

AssertResultIs method, 124

AssertViewRendered() method, 113, 138

asynchronous controllers, 16

AuthenticateWithForms() method, 214

authentication, 100–109

against web services, 213–215

authorization vs., 105

customizing with Membership API,

234–238

Forms vs. Windows, 111

information of, storing, 110

SSL for, 231

see also security

authentication

cross-site request forgery (CSRF),

233

authorization

authentication vs., 105

customizing with Membership API,

234–238

[AUTHORIZE] ATTRIBUTE CONTROLLERS DIRECTORY

SSL for, 231

testing, 105, 110

see also security

[Authorize] attribute, 94, 105

AuthSub interface, 220

auto properties, 49

auto setter properties, 49

Autocomplete plug-in, 155, 157–161

autocomplete search, 157–161

automapping, 177

automatic builds, 247–249

using MSBuild for, 249–259

B
BasicConfigurator class, 242

.bat files, 257

BeginRequest() method, 29

BindModel() method, 219

Blogger, publishing to, 220–227

build automation, 247–249

using MSBuild for, 249–259

build files, 250

C
C# classes for mapping, 177

caching, 95

second-level caching, 207

case-insensitive search, 158

Castle Windsor container, 188,

192–197

making logging available to, 243

publishing to Blogger, 225

retrieving sessions, 196–197

catching exceptions, 60

CDN (Content Delivery Network), 81

Celerity browser, 55n

chaining, see method chaining

checksum for data checks, 200

class attribute (CSS), 131

class attribute (HTML), 134

class maps, 176–179

classes

CSS classes, 134

generating with ReSharper, 48

having no responsibility, 130

migration classes, 252

naming, 48

single responsibility principle, 129,

130

ClassMap class, 177

Clear() method, 184

code refactoring, see refactoring

code testing, see entries at test

code-behind, 20

Color Picker plug-in, 161

colorizing drop-down lists, 135–139

ColorPicker plug-in (JQuery), 80, 82

ColorTranslator class (System.Drawing), 77

Columns() method, 149

command-line remote management,

260

complete builds, 248

configuration, see convention over

configuration

Configuration Manager, 102

confirmation box, prompting with, 65

connection string, 102

Content Delivery Network (CDN), 81

Content directory, 45

ContentPlaceHolder element, 81, 139,

141

ContentResult class, 96

ContinueOnError property, 256

continuous integration, 249

control flow, 28

controller methods, return values on,

51

controller return type, see action

results

ControllerContext() class, 219

controllers, 25

creating, 50

first test for, writing, 47

IControllerFactory interface, 98

integrating repositories with,

188–209

injecting repositories into

controllers, 197–200

inversion of control, 192–197

profiling, 206–209

storing sessions, 189–192

transactions, 200–202

validation framework, 203–205

interacting with HttpContext, 109–119

making logging available to, 243

registering with Castle Windsor, 194

session information, displaying,

117–119

talking to controllers, 87–92

testing, 83

with multiple repositories, 199

Controllers directory, 45

271

CONTROLLERS ERROR HANDLING

controllers, filters and results with, see

action filters

convention over configuration, 11, 25

ConvertAll() method, 85

cookies, naming, 214

Copy task (MSBuild), 256

Create() method (SchemaExport), 180

Create() method (WebRequest), 215

CreateAndOpenSession() method, 176

CreateCriteria() method, 183

cross-site request forgery (CSRF), 233

cross-site scripting (XSS), 27, 231–233

CSRF (cross-site request forgery), 233

CSS classes, 134

CSS in HTML helpers, 133–135

custom membership providers, 234

custom routes, 30

D
data annotations, 15

data caching, 95

second-level caching, 207

data encryption with SSL, 230–231

data relationships, 186

data source value (connection string),

102

data validation, see validation

database records

deleting, 185–186

editing, 183–185

transactions, 200–202

working with, 179–182

databases

creating, 101

incremental deployment, 251

profiling, 206–209

db.deploy.NET, 253

dead code, 31

debugging with test first methodology,

32

declarative programming, 94

default routes, 51

DefaultControllerFactory class, 100

Delete() method, for HTTP POST, 153

deleting content with HTTP POST, 64

deleting models (example), 62–66

deleting records, 185–186

deleting with HTTP POST, 153–157

dependency injection, 12, 100

DependsOnTarget attribute, 250

deployment

build automation, 247–249

using MSBuild for, 249–259

incremental, 251

locally to IIS, 256

to production, 259–267

design, importance of, 127

Design Gallery, 139

design patterns, selecting, 173

display attribute (CSS), 134

DisplayFor() method, 27

Dispose() method, 180

DisposeCurrent() method, 190, 192

divs, hiding and showing, 132–133

.dll libraries, storing, 36

Document Object Model (DOM)

new models, with Ajax, 165–170

DOM (Document Object Model)

new models, with Ajax, 165–170

Don’t Repeat Yourself (DRY) principle,

34, 74

refactoring and, 91

DoNotEncode() method, 149

Down() method (Migration), 253

downloading files with HttpContext,

119–125

drop-down lists

colorizing, 135–139

populating, 85

DropDownList() method, 86

DRY principle, 34, 74

refactoring and, 91

dynamic proxy, 183

E
edge cases, 90

Edge network, 81

editing models, 183–185

EditorFor() method, 15

EmptyResult class, 98

Encode() method, 27, 232

encodings (enctypes), 123

encryption

passwords, storing, 236

with SSL, 230–231

end-user validations, 143–146

EndTag render mode, 137

Equality generator (ReSharper), 76

equality, about, 73

Equals() method, 72–77

error handling

action filters for, 238–241

272

ERROR LOGGING MODULES AND HANDLERS (ELMAH) [HTTPPOST] ATTRIBUTE

logging unhandled errors, 244

swallowing exceptions, 60, 146

Error Logging Modules and Handlers

(ELMAH), 244

errors, swallowing, 60

escape() method (JavaScript), 160

exceptions, swallowing, 60, 146

Execute() method, 98

Expect class (Rhino Mocks), 198

Expect() method, 121

Express edition of SQL Server 2008, 22

Express edition of Visual Studio 2008,

22

Expression class, 182

extensibility, 11

extension methods, 203

F
Facebook authentication, 235

facilities, Castle Windsor, 196

factory methods, 196–197

FactorySupportFacility class, 196

fade() effect (jQuery), 157

failure, observing, 39

field validations, 143–146

File method, 125

FileContentResult class, 98

FilePathResult class, 96

downloading with, 124

files, CSS, 134

files, JavaScript, 134

files, manipulating with HttpContext,

119–125

FileStreamResult class, 96

filters, see action filters

firewall restrictions, 261

First property (LINQ), 88

first unit test, writing, 45

500 errors, handling, 239

flow of control, 28

Flush() method, 181

foreign keys, 253

ForeignKey() method, 178

forgery attacks, 233

FormCollection class, 77–80

FormCollection parameter, 59

Forms authentication, 111, 213–215

404 errors, handling, 239

free-text indexes for search, 163

FTP, uploading site via, 260

functional code, 33, 40

G
GData interface, 220

GenericPrincipal class, 110

GetControllerInstance() method, 194

GetLastError() method, 241

GetMethod() method, 108

GetRequestStream method, 215

GetResponse() method, 215

GetType() method, 106

Global.asax directory, 47

Google authentication, 235

Google Blogger, publishing to, 220–227

graceful degradation, 152, 160

Gray Round layout, 139

Grid namespace, 147–149

H
[HandleError] attribute, 95, 239, 240

HandleErrorAttribute action filter, 238

HasMany() method, 186

HasManyToMany() method, 186

health monitoring, 245–246

Hello World application, 36–40

helper methods, 14

helpers, see HTML helpers

Hibernate project, 173

Hibernate Query Language (HQL), 182

HomeController class, 45

HQL (Hibernate Query Language), 182

html class, extending, 135

HTML.DisplayFor() method, 27

HTML.EditorFor() method, 15

HTML.Encode() method, 27

HTML helpers

building custom, 135–139

CSS in, 133–135

radio buttons, 128–135

replacing web controls with, 146–149

syntax for enclosing, 53

HTML markup control, 10

HTML.RenderAction() method, 16

Html.ValidationMessage tag, 146

HTML.ValidationSummary property, 62

Html.ValidationSummary tag, 143, 146

HTTP error codes, handling, 239

HTTP GET, deleting with, 64

HTTP POST, deleting with, 64, 153–157

HttpContext class, 109–119

uploading and downloading files,

119–125

[HttpPost] attribute, 59, 94

273

HTTPS PROTOCOL MASTER PAGES

HTTPS protocol, 230

HttpSessionState class, 98, 113

HttpWebRequest, Forms authentication

with, 213–215

HttpWebResponse class, 214

I
IControllerFactory interface, 98, 192–197

id attribute (HTML), 134

identifiers for models, 66

IEnumerable interface, 85

[IgnoreFromCoverage] attribute, 76

IInterceptor interface, 208

IIS, deployment to, 256, 258

images, uploading, see uploading files

with HttpContext

IModelBinder interface, 219

In-Line Text Edit plug-in, 162

incremental deployment, 251

index() method, 19, 25

default route, 51

Init() method, for NHibernate, 176

Initial Catalog value (connection

string), 102

InitializeController() method, 113

InitializeNHibernate method, 191

injecting repositories into controllers,

197–200

input validation, see validation

installing

ReSharper plug-in, 23

installing MVC, 21

installing MVCContrib, 111

installing NUnit framework, 35

IntelliSense, enabling, 152

interceptors, NHibernate, 208

interfaces, 184

Inversion of Control (IoC), 100,

192–197

IoC (Inversion of Control), 100,

192–197

IPrincipal interface, 110

IsAjaxRequest() method, 152, 168

ISAPI filter, 28

ISession interface, 176, 179, 189–192

clearing cache, 184

registering factory methods, 196–197

ITask interface, 263

ITransaction interface (NHibernate), 201

IValidatable interface, 143, 203

J
JavaScript files, 134

JavascriptResult class, 98

JetBrains, 23

jQuery

Ajax support, 151

Autocomplete plug-in, 155, 157–161

Color Picker plug-in, 161

divs, hiding and showing, 132–133

enabling IntelliSense for, 152

jQuery-UI plug-in, 155

Live Query plug-in, 155, 169

method chaining, 147

jQuery library, 80–86

referencing CDN with, 81

jQuery validation, 162, 205

jQuery-UI plug-in, 155

JSON format, 97

JsonResult class, 96

L
layout, page, see master pages;

Site.Master file

layouts, see master pages

length validation, 145

Lib folder, 36

LifestyleType class (Castle Windsor), 193

link elements, 134

LINQ for NHibernate, 182

LINQ queries, 87

LINQ to SQL framework, 173

Live Query plug-in, 155, 169

local deployment, 256

Log4Net framework, 242–245

logging, 241–245

unhandled errors, 244

logging in, 100–109

LogOnUserControl.ascx file, 162

Lucene project, 163

M
magic keys, 57

many-to-many relationships, 186

many-to-one relationships, 178

Map() method, 178

mapping classes, 176–179

MapRoute() method, 30

markup control, 10

master pages, 52, 139–143

Site.Master file, 81

274

MBUNIT TEST FRAMEWORK ONE-TO-MANY RELATIONSHIPS

mbUnit test framework, 35

Membership API, 234–238

Memcached server, 207

MenuItemHelper helper, 139, 141

MergeAttribute() method, 137

method chaining, 147

Microsoft authentication, 235

Microsoft Web Installer platform, 22

Microsoft Windows Communication

Foundation (WCF), 212

[Migration] attribute, 252

migration classes, 252

migration files, 251

Migrator.NET, 251–259

MIME types, 125

MockRepository class, 121

model binding, 59, 217–220

model objects, Equals() for, 72–77

Model property (ViewResult), 51

model, in MVC pattern, 18

Model-View-Controller pattern, 18, 21

models

classes for, 48

creating new, with Ajax, 165–170

data relationships in, 186

deleting (example), 62–66

editing, 183–185

identifiers for, 66

persisting with NHibernate, 172–186

class maps, 177–179

configuring NHibernate, 174–177

working with database records,

179–182

testing, 49

transactional operations with,

200–202

Models directory, 47

ModelStateDictionary class, 143–146, 204

monitoring, see logging

Move refactoring, 107

MSBuild, 248–259

custom tasks, 263

executing remotely, 263

NUnit tests, 254–255

multipart form data, 123

MVC, see entries at ASP.NET MVC

MVC (Model-View-Controller) pattern,

18, 21

MVC, using without installing, 261

MVC projects, see projects

MVC routing, testing, 109

MVCContrib Grid namespace, 147–149

MVCContrib project, 93

installing, 111

MVCContrib.TestHelper.dll file, 111

MVCRouteHandler class, 98

N
Named Pipes configuration, 102

naming cookies, 214

naming parameters, 158

naming projects, 45

naming test classes, 48

navigation with custom routes, 30

net command (Windows), 261

new syntax, 131

new projects, creating, 24

NHaml view engine, 27, 166

NHibernate Contrib Validator package,

204

NHibernate framework, 172–186

configuring, 174–177

editing database, 183–185

Hibernate Query Language (HQL),

182

mapping with, 177–179

storing session inside MVC, 189–192

validation framework, 203–205

working with database records,

179–182

NHibernate Interceptors, 208

NHProf tool, 206–209

NHProfiler profiler, 188

Ninject container, 193

NMock framework, 199

nonfunctional requirements, 229

see also error handling; logging;

security

Normal mode, 137

null checks, 73

NUnit task (MSBuild), 254

NUnit test framework

Hello World example, 36–40

installing, 35

nunit-console.exe utility, 39

nunit-gui.exe utility, 39

NVelocity view engine, 27

O
Object class, 73

onclick attribute, 65

one-to-many relationships, 186

275

OPEN SOURCE REST (REPRESENTATIONAL STATE TRANSFER)

open source, 114

OpenSession() method, 190

OpenSSL, 231

option tags (HTML), 136

ORM data relationships, 186

output caching, 95

[OutputCache] attribute, 95

P
page access restrictions, 94

page layouts, see master pages

parameters, naming, 158

partial views (partials), 151, 161–170

refactoring to use, 162

passwords, salting, 236

persistence framework, 12, 19

persistency testing, 175

persisting models with NHibernate,

172–186

class maps, 177–179

configuring NHibernate, 174–177

working with database records,

179–182

placeholders, 139

PNUnit, 36

$.post() method, 157, 169

production, deployment to, 259–267

Professional version of Studio Version,

22

profiling, 206–209

projects

creating new, 24

naming, 45

structure of, 45

prompting users for confirmation, 65

PSTools package, 260

publishing to Blogger, 220–227

Q
Query Object pattern, when to use, 173

Quote-O-Matic application, 24–29

R
radio buttons, 128–135

Random class, 122

random numbers, testing, 121

reading database records, 179–182

records, database

deleting, 185–186

editing, 183–185

transactions, 200–202

working with, 179–182

RedirectToAction() method, 91, 96

RedirectToRouteResult class, 58, 96

reducing dead code, 31

refactoring, 33, 91

DRY principle, 34

reference equality, 73

References() method, 178

reflection, 105

Register() method (Castle Windsor), 193

RegisterControllers() method, 194, 195

registering controllers with Castle

Windsor, 194

Remote file upload, 260

remote management, 260

RemoveDir task (MSBuild), 256

renaming, 129

RenderAction() method, 16

RenderPartial() method, 165

repeatable builds, 248

Replay() method, 121

repositories

integrating with controllers, 188–209

injecting repositories into

controllers, 197–200

inversion of control, 192–197

profiling, 206–209

storing sessions, 189–192

transactions, 200–202

validation framework, 203–205

making logging available to, 243

registering, 196

Repository pattern, 174–177

interfaces with, 184

when to use, 173

repository tests, 175

requests, see web requests, flow of

RequireHttpsAttribute action filter, 230

ReSharper plug-in, 21, 22, 39

generating classes with, 48

generating equals, 76

important shortcuts for, 57

installing, 23

Move refactoring, 107

naming test classes for, 48

using statements, 77

Resolve() method (Castle Windsor), 193,

194

REST (Representational State Transfer)

about, 211

276

RESTRICTING PAGE ACCESS STUB OBJECTS (STUBS)

creating RESTful web services,

213–220

SOAP vs., 210–212

restricting page access, 94

results, see action filters

RetrieveSession() method, 189, 196

return type, controller, see action

results

return values on controller methods, 51

reversibility of refactorings, 91

Rhino Mocks framework, 111, 121

testing controllers with multiple

repositories, 199

role providers, 234

RoleRepository class, 237

RouteValueDictionary class, 159

RouteValues collection, 59

routing, testing, 109

RPXNow, 235

S
salting, 236

SchemaExport class, 176, 180

SchemaUpdate class, 176

Scripts directory, 47

search, autocomplete, 157–161

search engine optimization, 11

second-level caching, 207

Secure Sockets Layer (SSL), 230–231

security, 230

authentication, 100–109

cross-site request forgery (CSRF),

233

cross-site scripting (XSS), 27,

231–233

customizing with Membership API,

234–238

firewall restrictions, 261

salting passwords, 236

uploading files, 119

see also authentication;

authorization

Security tab (ASP.NET Web Site

Administration Tool), 104

select tags (HTML), 136

SelectListItem class, 85

SelfClose render mode, 137

SendWebRequest() method, 215

serialize() method, 169

session information, displaying,

117–119

Session property, 113

SessionFactory class, 176

sessions, 79

retrieving with factory methods,

196–197

[SetUp] attribute, 58, 74

SetupWindsorContainer method, 195

Shared directory, 84

Sharp-Architecture project, 188

ShouldMapTo() method, 109

Simple Object Access Protocol (SOAP),

210–212

single responsibility principle, 129, 130

Site.css files, 139

Site.Master files, 81, 139

adding jQuery plug-ins, 155

site upload via FTP, 260

slideDown effect (jQuery), 133

slideUp effect (jQuery), 133

SOAP (Simple Object Access Protocol),

210–212

software requirements for ASP.NET

MVC, 21

span tag (HTML), 27

Split() method, 125

Spring.NET container, 193

SQLite, 180

SRP, see single responsibility principle

SSL (Secure Sockets Layer), 230–231

SSL certificate, 231

stale data, transactions and, 200

StartTag render mode, 137

static lists, 49

stored procedures, 102

storing

.dll libraries, 36

information in memory, 109–119

ISession interface, 189–192

passwords, 236

repository classes, 175

templated views, 84

views, 26

StreamWriter class, 215

String.Join() method, 159

StringTemplate view engine, 27, 55,

166

strongly typed methods, 14

strongly typed partials, 163

StructureMap container, 193

stub objects (stubs), 112

for web services, 222

277

STYLE ELEMENTS VALIDATEANTIFORGERYTOKEN ACTION FILTER

style elements, 134

styles, see CSS in HTML helpers

Subversion system, 22

swallowing exceptions, 60, 146

System.Reflection namespace, 105

System.Web.Mvc.ViewUserControl class,

165

T
TagBuilder class, 137

TagRenderMode class, 137

targets (MSBuild), 249, 250

Task class, 263

TDD, see test-driven development

[TearDown] attribute, 58

TempData class, 77–80

TempDataDictionary string, 78

templated views, 15, 83–85

sharing, 84

[Test] attribute, 37

test failure, observing, 39

test first methodology, 31

test-driven development (TDD), 12,

31–40

cycle of, 33

Hello World example, 36–40

installing NUnit, 35

testability, 11, 31

TestControllersBuilder class, 112

TestDriven.Net plug-in, 39

TestHelper library, 112

testing

authorization, 105, 110

controllers, 83

with multiple repositories, 199

creating tests, in general, 47

database edits, 183–185

database record deletion, 185–186

edge cases, 90

first unit test, challenge of, 45

models, 49

MVCContrib Grid, 149

random numbers, 121

repository tests, 175

route testing, 109

SSL, 231

value equality, 73–75

views, 55

text searches, 163

That() method, 38

this keyword, 156

Tigris consortium, 254

ToHtml() method, 135

Topic.Id parameter (DropDownList), 86

[Transaction] attribute, 202

TransactionAttribute action filter, 201–202

transactions, 200–202

transparent background color, using,

137

Trim() method, 78

try and catch blocks

swallowing exceptions with, 60

type equality, 73

typeof() method, 106

U
unit tests, 12, 31, see also test-driven

development

adding to builds, 254–255

for authentication, 105, 110

avoiding side effects of other, 58

edge cases, 90

first, challenge of, 45

Hello World application, 37

views, 55

see also entries at test

Unity container, 193

unused code, reducing, 31

Up() method (Migration), 252

Uploadify plug-in, 162

uploading files with HttpContext,

119–125

uploading site via FTP, 260

UrlRoutingModule class, 98

URLs

custom routes, 30

with REST, 211

search engine optimization and, 11

translating to appropriate method,

25

usability, importance of, 127

user input validation, see validation

User property, HttpContext, 110

UserRepository class, 234

users, prompting with confirmation, 65

using statements, 77

UsingFactoryMethod() method, 196

UsingTask elements, 254

V
Validate() method (IValidatable), 144

ValidateAntiForgeryToken action filter, 234

278

VALIDATION ZIP TASK (MSBUILD)

validation

data annotations, 15

of user input, 143–146

validation framework, NHibernate,

203–205

ValidationMessage tag, 146

ValidationSummary property, 62

ValidationSummary tag, 143, 146

[ValidatorClass] attribute, 205

value equality, 73–75

testing, 73–75

Verify() method (Rhino Mocks), 199

VerifyAll() method (Rhino Mocks), 199

version control, 248

version control system, 22

View() method, 25

view, in MVC pattern, 18

view engine, 27, 165

choosing which to use, 166

view helpers, see HTML helpers

view layouts, see master pages

view state, 20

view templates, see templated views

ViewData property, 51

ViewName property (ViewResult), 57

ViewResult class, 51

ViewResult type, 96

views, 19

actions with, 62–66

adding, 52

composing with Ajax, 152–157

partial, 151, 161–170

refactoring to use, 162

storing, 26

testing, 55

Views directory, 47

ViewUserControl class, 165

Visual Studio 2010, 21

Visual Studio Express edition, 21

Visual Studio Unit Testing Framework,

35

Visual SVN plug-in, 22

W
WCF (Windows Communication

Foundation), 212

Web.config file, 102

web controls, 20

web controls, replacing with HTML

helpers, 146–149

Web Forms view engine, 11, 27

Web Installer platform, 22

web requests

Forms authentication for, 213–215

how processed, 98

sending XML in, 217–220

storing I/O of, 109–119

for XML documents, 216

web requests, flow of, 28

web services, 210–227

creating, 213–220

publishing to Blogger, 220–227

returning XML from, 216

SOAP vs. REST, 210–212

WebDirectoryCreate task (MSBuild),

257

WebDirectoryDelete task (MSBuild),

256

WebFormViewEngine view engine, 165

Windows authentication, 111

Windows Communication Foundation

(WCF), 212

Windows event log, 243

WindsorControllerFactory class, 194

WindsorExtensions class, 194

X
X-Requested-With: XMLHttpRequest header,

168

XDocument class, 218

XML

returning from web services, 216

sending in web requests, 217–220

XmlReader class, 217, 219

XSS (cross-site scripting), 27, 231–233

xUnit test framework, 35

xVal utility, 205

Z
Zip task (MSBuild), 260

279

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of June 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

Continued on next page

pragprog.com

Title Year ISBN Pages

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Ajax: A Web 2.0 Primer 2006 9780976694083 296

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Continued on next page

Title Year ISBN Pages

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 300

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

	Team rebOOk

