
www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide
to symfony

■ ■ ■

François Zaninotto and
Fabien Potencier

Zaninotto_786-9 FRONT.fm Page i Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to symfony

Copyright © 2007 by Sensio SA

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and one Back-Cover Text: “Apress (http://www.apress.com/)
and the authors ask for your support by buying the print edition through any online or retail outlet.” A copy
of the license is included in the section entitled “GNU Free Documentation License.”

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-786-6

ISBN-10 (pbk): 1-59059-786-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editors: Marilyn Smith and Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreaders: Linda Marousek and April Eddy
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Zaninotto_786-9 FRONT.fm Page ii Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

To Anne-Marie.
—François Zaninotto

For Thomas and Hélène, with love.

—Fabien Potencier

Zaninotto_786-9 FRONT.fm Page iii Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

Zaninotto_786-9 FRONT.fm Page iv Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors . xxi

About Sensio Labs . xxiii

Acknowledgments . xxv

Introduction . xxvii

License . xxix

PART 1 ■ ■ ■ The Basics
■CHAPTER 1 Introducing Symfony . 3

■CHAPTER 2 Exploring Symfony’s Code . 13

■CHAPTER 3 Running Symfony . 35

■CHAPTER 4 The Basics of Page Creation . 49

■CHAPTER 5 Configuring Symfony . 61

PART 2 ■ ■ ■ The Core Architecture
■CHAPTER 6 Inside the Controller Layer . 83

■CHAPTER 7 Inside the View Layer . 113

■CHAPTER 8 Inside the Model Layer . 141

PART 3 ■ ■ ■ Special Features
■CHAPTER 9 Links and the Routing System . 171

■CHAPTER 10 Forms . 191

■CHAPTER 11 Ajax Integration . 221

■CHAPTER 12 Caching . 245

■CHAPTER 13 I18N and L10N . 265

Zaninotto_786-9 FRONT.fm Page v Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

vi

PART 4 ■ ■ ■ Development Tools
■CHAPTER 14 Generators . 281

■CHAPTER 15 Unit and Functional Testing . 317

■CHAPTER 16 Application Management Tools . 345

■CHAPTER 17 Extending Symfony . 367

PART 5 ■ ■ ■ Becoming a Symfony Expert
■CHAPTER 18 Performance . 397

■CHAPTER 19 Mastering Symfony’s Configuration Files . 417

■APPENDIX GNU Free Documentation License . 437

■INDEX . 445

Zaninotto_786-9 FRONT.fm Page vi Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors . xxi

About Sensio Labs . xxiii

Acknowledgments . xxv

Introduction . xxvii

License . xxix

PART 1 ■ ■ ■ The Basics
■CHAPTER 1 Introducing Symfony . 3

Symfony in Brief . 3
Symfony Features . 3

Who Made Symfony and Why? . 5

The Symfony Community . 5

Is Symfony for Me?. 6

Fundamental Concepts . 6

PHP 5 . 7

Object-Oriented Programming (OOP) . 7
Magic Methods . 7

PHP Extension and Application Repository (PEAR) 7

Object-Relational Mapping (ORM). 8
Rapid Application Development (RAD) . 9
YAML . 10

Summary . 11

■CHAPTER 2 Exploring Symfony’s Code . 13

The MVC Pattern . 13

MVC Layering . 14

Layer Separation Beyond MVC . 18

Symfony’s MVC Implementation . 22

Symfony Core Classes . 25

Zaninotto_786-9 FRONT.fm Page vii Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

Code Organization . 25

Project Structure: Applications, Modules, and Actions 25

File Tree Structure . 26

Common Instruments . 31

Parameter Holders . 31

Constants . 33

Class Autoloading . 33

Summary . 34

■CHAPTER 3 Running Symfony . 35

Installing the Sandbox . 35

Installing the Symfony Libraries . 37

Installing the Symfony PEAR Package . 37

Checking Out Symfony from the SVN Repository 38

Setting Up an Application . 39

Creating the Project . 39

Creating the Application . 40

Configuring the Web Server . 41

Setting Up a Virtual Host . 41

Configuring a Shared-Host Server . 42

Troubleshooting . 44

Typical Problems . 44

Symfony Resources . 45

Source Versioning . 45

Summary . 47

■CHAPTER 4 The Basics of Page Creation . 49

Creating a Module Skeleton . 49

Adding a Page . 51

Adding an Action . 51

Adding a Template . 53

Passing Information from the Action to the Template 54

Gathering Information from the User with Forms 54

Linking to Another Action . 56

Getting Information from the Request . 58

Summary . 59

Zaninotto_786-9 FRONT.fm Page viii Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

■CHAPTER 5 Configuring Symfony . 61

The Configuration System . 61

YAML Syntax and Symfony Conventions . 62

Help, a YAML File Killed My App! . 65

Overview of the Configuration Files . 66

Project Configuration . 66

Application Configuration . 67

Module Configuration . 70

Environments . 71

What Is an Environment? . 71

Configuration Cascade . 73

The Configuration Cache . 75

Accessing the Configuration from Code . 75

The sfConfig Class . 76

Custom Application Settings and app.yml . 77

Tips for Getting More from Configuration Files . 78

Using Constants in YAML Configuration Files 78

Using Scriptable Configuration . 79

Browsing Your Own YAML File . 79

Summary . 80

PART 2 ■ ■ ■ The Core Architecture
■CHAPTER 6 Inside the Controller Layer . 83

The Front Controller . 83

The Front Controller’s Job in Detail . 84

The Default Front Controller . 84

Calling Another Front Controller to Switch the Environment 85

Batch Files . 85

Actions . 86

The Action Class . 86

Alternative Action Class Syntax . 88

Retrieving Information in the Action . 88

Action Termination . 89

Skipping to Another Action . 91

Repeating Code for Several Actions of a Module 93

Accessing the Request . 94

Zaninotto_786-9 FRONT.fm Page ix Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

User Session . 96

Accessing the User Session. 96

Flash Attributes . 98

Session Management . 98

Action Security . 100

Access Restriction . 100

Granting Access . 101

Complex Credentials. 103

Validation and Error-Handling Methods . 104

Filters . 105

The Filter Chain . 106

Building Your Own Filter . 108

Filter Activation and Parameters . 109

Sample Filters . 110

Module Configuration . 111

Summary . 112

■CHAPTER 7 Inside the View Layer . 113

Templating . 113

Helpers . 114

Page Layout. 117

Template Shortcuts . 119

Code Fragments . 119

Partials . 120

Components . 122

Slots . 124

View Configuration . 126

The view.yml File . 127

The Response Object . 129

View Configuration Settings. 130

Component Slots . 135

Output Escaping . 137

Activating Output Escaping . 137

Escaping Strategy . 138

Escaping Helpers . 139

Escaping Arrays and Objects . 139

Summary . 140

Zaninotto_786-9 FRONT.fm Page x Wednesday, January 3, 2007 10:09 AM

■C O N T E N T S xi

■CHAPTER 8 Inside the Model Layer . 141

Why Use an ORM and an Abstraction Layer? . 141

Symfony’s Database Schema . 143

Schema Example . 143

Basic Schema Syntax . 144

Model Classes . 145

Base and Custom Classes . 146

Object and Peer Classes . 146

Accessing Data . 147

Retrieving the Column Value . 148

Retrieving Related Records . 148

Saving and Deleting Data . 150

Retrieving Records by Primary Key. 150

Retrieving Records with Criteria . 151

Using Raw SQL Queries . 154

Using Special Date Columns . 155

Database Connections . 156

Extending the Model . 157

Adding New Methods . 157

Overriding Existing Methods . 158

Using Model Behaviors. 159

Extended Schema Syntax . 159

Attributes . 160

Column Details . 161

Foreign Keys . 162

Indexes. 163

Empty Columns . 164

I18n Tables . 164

Beyond the schema.yml: The schema.xml 165

Don’t Create the Model Twice . 166

Building a SQL Database Structure Based on an
Existing Schema . 166

Generating a YAML Data Model from an Existing Database 167

Summary . 168

Zaninotto_786-9 FRONT.fm Page xi Wednesday, January 3, 2007 10:09 AM

xii ■C O N T E N T S

PART 3 ■ ■ ■ Special Features
■CHAPTER 9 Links and the Routing System . 171

What Is Routing? . 171

URLs As Server Instructions . 171

URLs As Part of the Interface. 172

How It Works . 174

URL Rewriting . 176

Link Helpers . 177

Hyperlinks, Buttons, and Forms . 177

Link Helper Options . 178

Fake GET and POST Options . 179

Forcing Request Parameters As GET Variables 180

Using Absolute Paths . 181

Routing Configuration . 182

Rules and Patterns . 183

Pattern Constraints . 184

Setting Default Values . 186

Speeding Up Routing by Using the Rule Name 186

Adding an .html Extension . 187

Creating Rules Without routing.yml . 188

Dealing with Routes in Actions . 189

Summary . 190

■CHAPTER 10 Forms . 191

Form Helpers . 191

Main Form Tag . 191

Standard Form Elements . 192

Date Input Widgets . 195

Rich Text Editing . 197

Country and Language Selection . 198

Form Helpers for Objects . 199

Populating Drop-Down Lists with Objects . 200

Creating a Drop-Down List Based on a Foreign Key Column 201

Updating Objects. 202

Zaninotto_786-9 FRONT.fm Page xii Wednesday, January 3, 2007 10:09 AM

■C O N T E N T S xiii

Form Validation . 203

Validators . 203

Validation File . 205

Redisplaying the Form . 206

Displaying the Error Messages in the Form 207

Repopulating the Form . 209

Standard Symfony Validators . 210

Named Validators . 213

Restricting the Validation to a Method . 214

What Does a Validation File Look Like? . 214

Complex Validation . 215

Creating a Custom Validator . 215

Using Array Syntax for Form Fields . 217

Executing a Validator on an Empty Field . 217

Summary . 219

■CHAPTER 11 Ajax Integration . 221

Basic JavaScript Helpers . 221

JavaScript in Templates. 222

Updating a DOM Element. 223

Graceful Degradation . 224

Prototype . 224

Ajax Helpers . 226

Ajax Link . 228

Ajax-Driven Forms . 228

Periodically Calling Remote Functions . 231

Remote Call Parameters . 231

Updating Distinct Elements According to the Response Status. . . 231

Updating an Element According to Position 232

Updating an Element According to a Condition 232

Determining the Ajax Request Method . 233

Authorizing Script Execution . 233

Creating Callbacks . 234

Creating Visual Effects . 235

JSON . 236

Zaninotto_786-9 FRONT.fm Page xiii Wednesday, January 3, 2007 10:09 AM

xiv ■C O N T E N T S

Performing Complex Interactions with Ajax . 238

Autocompletion . 239

Drag-and-Drop . 240

Sortable Lists . 241

Edit in Place. 242

Summary . 243

■CHAPTER 12 Caching . 245

Caching the Response . 245

Global Cache Settings . 246

Caching an Action . 246

Caching a Partial, Component, or Component Slot 248

Caching a Template Fragment . 249

Configuring the Cache Dynamically . 251

Using the Super Fast Cache . 253

Removing Items from the Cache . 254

Clearing the Entire Cache . 254

Clearing Selective Parts of the Cache . 255

Cache Directory Structure . 257

Clearing the Cache Manually. 258

Testing and Monitoring Caching . 258

Building a Staging Environment . 258

Monitoring Performance . 259

Benchmarking . 260

Identifying Cache Parts . 260

HTTP 1.1 and Client-Side Caching . 260

Adding an ETag Header to Avoid Sending Unchanged Content . . . 261

Adding a Last-Modified Header to Avoid Sending
Still Valid Content . 261

Adding Vary Headers to Allow Several
Cached Versions of a Page. 262

Adding a Cache-Control Header to Allow Client-Side Caching . . . 262

Summary . 263

Zaninotto_786-9 FRONT.fm Page xiv Wednesday, January 3, 2007 10:09 AM

■C O N T E N T S xv

■CHAPTER 13 I18N and L10N . 265

User Culture . 265

Setting the Default Culture . 266

Changing the Culture for a User . 266

Determining the Culture Automatically. 267

Standards and Formats . 268

Outputting Data in the User’s Culture . 268

Getting Data from a Localized Input . 269

Text Information in the Database . 270

Creating Localized Schema . 270

Using the Generated I18n Objects . 271

Interface Translation . 272

Configuring Translation . 272

Using the Translation Helper . 272

Using Dictionary Files . 273

Managing Dictionaries . 274

Handling Other Elements Requiring Translation 275

Handling Complex Translation Needs. 275

Calling the Translation Helper Outside a Template 277

Summary . 277

PART 4 ■ ■ ■ Development Tools
■CHAPTER 14 Generators . 281

Code Generation Based on the Model . 281

Scaffolding and Administration . 282

Initiating or Generating Code . 282

Example Data Model. 282

Scaffolding . 284

Generating a Scaffolding . 284

Initiating a Scaffolding . 286

Administration . 286

Initiating an Administration Module . 287

A Look at the Generated Code. 288

Introducing the generator.yml Configuration File 289

Zaninotto_786-9 FRONT.fm Page xv Wednesday, January 3, 2007 10:09 AM

xvi ■C O N T E N T S

Generator Configuration . 290

Fields . 291

View Customization . 297

List View–Specific Customization . 299

Edit View–Specific Customization. 304

Dealing with Foreign Keys . 307

Adding Interactions . 308

Form Validation . 311

Restricting User Actions Using Credentials 312

Modifying the Presentation of Generated Modules 312

Using a Custom Style Sheet . 313

Creating a Custom Header and Footer . 313

Customizing the Theme . 314

Summary . 316

■CHAPTER 15 Unit and Functional Testing . 317

Automated Tests . 317

Unit and Functional Tests . 317

Test-Driven Development . 318

The Lime Testing Framework . 319

Unit Tests . 319

What Do Unit Tests Look Like? . 320

Unit Testing Methods . 321

Testing Parameters . 323

The test-unit Task. 324

Stubs, Fixtures, and Autoloading . 325

Functional Tests . 328

What Do Functional Tests Look Like? . 328

Browsing with the sfTestBrowser Object . 330

Using Assertions . 332

Using CSS Selectors . 334

Working in the Test Environment . 336

The test-functional Task . 337

Test Naming Practices . 338

Special Testing Needs . 339

Executing Tests in a Test Harness . 339

Accessing a Database . 340

Testing the Cache . 341

Testing Interactions on the Client . 342

Summary . 344

Zaninotto_786-9 FRONT.fm Page xvi Wednesday, January 3, 2007 10:09 AM

■C O N T E N T S xvii

■CHAPTER 16 Application Management Tools . 345

Logging . 345

PHP Logs . 345

Symfony Logs . 346

Debugging . 349

Symfony Debug Mode . 349

Symfony Exceptions . 350

Xdebug Extension . 351

Web Debug Toolbar . 352

Manual Debugging . 356

Populating a Database . 358

Fixture File Syntax . 358

Launching the Import . 359

Using Linked Tables . 359

Deploying Applications . 360

Freezing a Project for FTP Transfer . 360

Using rsync for Incremental File Transfer . 361

Ignoring Irrelevant Files . 363

Managing a Production Application . 363

Summary . 365

■CHAPTER 17 Extending Symfony . 367

Mixins . 367

Understanding Multiple Inheritance . 367

Mixing Classes . 368

Declaring a Class As Extendable. 370

Registering Extensions . 372

Extending with More Precision . 374

Factories . 375

Bridges to Other Framework Components . 377

Plug-Ins . 378

Finding Symfony Plug-Ins . 379

Installing a Plug-In . 380

Anatomy of a Plug-In . 383

How to Write a Plug-In . 386

Summary . 393

Zaninotto_786-9 FRONT.fm Page xvii Wednesday, January 3, 2007 10:09 AM

xviii ■C O N T E N T S

PART 5 ■ ■ ■ Becoming a Symfony Expert
■CHAPTER 18 Performance . 397

Tweaking the Server . 397

Tweaking the Model . 398

Optimizing Propel Integration . 398

Limiting the Number of Objects to Hydrate 399

Minimizing the Number of Queries with Joins. 399

Avoid Using Temporary Arrays . 402

Bypassing the ORM . 403

Speeding Up the Database . 404

Tweaking the View . 406

Using the Fastest Code Fragment . 406

Speeding Up the Routing Process. 406

Skipping the Template . 407

Restricting the Default Helpers . 407

Compressing the Response . 408

Tweaking the Cache . 408

Clearing Selective Parts of the Cache . 408

Generating Cached Pages . 409

Using a Database Storage System for Caching 410

Bypassing Symfony . 411

Caching the Result of a Function Call. 411

Caching Data in the Server . 412

Deactivating the Unused Features . 413

Optimizing Your Code . 414

Core Compilation . 414

The sfOptimizer Plug-In . 415

Summary . 416

Zaninotto_786-9 FRONT.fm Page xviii Wednesday, January 3, 2007 10:09 AM

■C O N T E N T S xix

■CHAPTER 19 Mastering Symfony’s Configuration Files 417

Symfony Settings . 417

Default Modules and Actions. 417

Optional Feature Activation . 419

Feature Configuration . 421

Extending the Autoloading Feature . 424

Custom File Structure . 426

The Basic File Structure . 426

Customizing the File Structure . 428

Modifying the Project Web Root . 428

Linking to Symfony Libraries . 429

Understanding Configuration Handlers . 430

Default Configuration Handlers . 430

Adding Your Own Handler . 431

Controlling PHP Settings . 434

Summary . 435

■APPENDIX GNU Free Documentation License . 437

■INDEX . 445

Zaninotto_786-9 FRONT.fm Page xix Wednesday, January 3, 2007 10:09 AM

www.allitebooks.com

http://www.allitebooks.org

Zaninotto_786-9 FRONT.fm Page xx Wednesday, January 3, 2007 10:09 AM

xxi

About the Authors

■FRANÇOIS ZANINOTTO is a consultant and project manager for Internet application projects.
He graduated from the French business school Ecole des Mines in 1997 with a specialization
in computer science. He tried quite a few jobs before settling on the Internet business: social
worker in a children’s facility, manager of a bike rental shop, web project manager for a tire
manufacturer, writer of a travel guide on Germany for the same tire manufacturer, logistician
for Médecins Sans Frontières, and IT architect for a consumer credit company. He joined the
Sensio web agency in 2003, and since then has managed many Internet and intranet web appli-
cation projects, dealing with complex usability issues, agile development methodologies, and
cutting-edge web techniques. When the symfony project started, he took responsibility for the
documentation, and wrote the symfony online book and tutorials.

■FABIEN POTENCIER is a serial entrepreneur. Since he was ten, he always dreamed of creating and
running companies. He started his career with an engineering degree from the French business
school Ecole des Mines and an MBA in entrepreneurship from HEC Paris. In 1998, right after
graduation, Fabien founded his very first company with a fellow student. The company was a
web agency focused on simplicity and open source technologies, and was called Sensio. His
acute technical knowledge and his endless curiosity won him the confidence of many French
big corporate companies. While Sensio kept growing (at the time of writing, it has more than
30 employees), Fabien started other businesses: an indoor go-kart circuit in Lille (France),
an auto spare parts e-commerce shop, and an autopilot training business riding on the most
famous French racetracks. Fabien is the main developer of the symfony framework and is
responsible for 95% of its code. Today, Fabien spends most of his time as Sensio’s CEO and as
the symfony project leader.

Zaninotto_786-9 FRONT.fm Page xxi Wednesday, January 3, 2007 10:09 AM

Zaninotto_786-9 FRONT.fm Page xxii Wednesday, January 3, 2007 10:09 AM

xxiii

About Sensio Labs

Sensio is a French web agency well known for its innovative ideas on web development.
Founded in 1998 by Fabien Potencier, Gregory Pascal, and Samuel Potencier, Sensio benefited
from the Internet growth of the late 1990s and situated itself as a major player for building
complex web applications. It survived the Internet bubble burst by applying professional and
industrial methods to a business where most players seemed to reinvent the wheel for each
project. Most of Sensio’s clients are large French corporations, who hire its teams to deal with
small- to middle-scale projects with strong time-to-market and innovation constraints.

Today, Sensio’s activity is divided in two business lines:

• Extreme Sensio deals with the interactive marketing projects and provides consulting on
Internet communication strategies. It builds online communication campaigns from
early conception to final product (websites, mailings, videos, viral marketing, and so on).

• Sensio Labs develops interactive web applications, both for dot-com and traditional
companies. This division also provides auditing, consulting, and training on Internet
technologies and complex application deployment. It helps define the global Internet
strategy of large-scale industrial players. Sensio Labs has projects in France and abroad.

For its own needs, Sensio Labs develops the symfony framework and sponsors its deploy-
ment as an open source project. This means that symfony is built from experience and is really
employed in many web applications, including those of large corporations.

Since its beginnings nine years ago, Sensio has always based its strategy on strong technical
expertise. The company focuses on open source technologies, and as for dynamic scripting
languages, Sensio offers developments in all LAMP platforms (Perl, Python, PHP, and Ruby,
even if the latter doesn’t start with a P). Sensio acquired strong experience on the best frame-
works using these languages, and often develops web applications in Django, Rails, and, of
course, symfony.

Sensio is always open to new business opportunities, so if you ever need help developing a
web application, learning symfony, or evaluating a symfony development, feel free to contact
us at info@sensio.com. The consultants, project managers, web designers, and developers of
Sensio can handle projects from A to Z.

Zaninotto_786-9 FRONT.fm Page xxiii Wednesday, January 3, 2007 10:09 AM

Zaninotto_786-9 FRONT.fm Page xxiv Wednesday, January 3, 2007 10:09 AM

xxv

Acknowledgments

The authors would like to thank the Apress team, including Jason, Kylie, Marilyn, Katie, Ami,
and all the people who collaborated on the writing of this book.

Acknowledgments also go to the Sensio team, particularly to those who were willing to take
their personal time to develop and write this book.

The symfony community, who asked thousands of questions about the framework, is also
to be thanked, for they made us understand that this book should contain many practical tips.

And lastly, the authors would like to thank the reader of this book, who contributes to the
development of the symfony project by this purchase, and would like to welcome every reader
into the community.

Zaninotto_786-9 FRONT.fm Page xxv Wednesday, January 3, 2007 10:09 AM

Zaninotto_786-9 FRONT.fm Page xxvi Wednesday, January 3, 2007 10:09 AM

xxvii

Introduction

When symfony first appeared in October 2005, many people heard about it mainly because of
its extensive documentation. Unlike with other open source projects, you don’t have to dig into
the symfony code to understand how a method works or what a feature does. Documentation
has always been a major concern among the symfony core team, and that’s why we wrote this
book: to leverage the adoption of the framework we initiated, to serve as a reference for the
1.0 release, and to allow enterprise use of a framework written primarily for professionals.

Who This Book Is For
For this book, you need a basic understanding of PHP 5 and object-oriented programming. Of
course, having already developed web applications in PHP before reading this book is a plus,
for you will see this book as a collection of answers to the questions you regularly ask yourself.

How This Book Is Structured
In this book, you will learn how to use symfony to build web applications. The chapters are
grouped into five parts:

• The Basics covers all the general concepts and prerequisites for starting symfony.

• The Core Architecture describes how the three layers of the Model-View-Controller (MVC)
architecture are implemented in symfony, and how to build pages and applications
according to this separation.

• Special Features explains how to use symfony’s mechanisms for shortening the development
of smart URLs, forms and validation, Ajax interactions, caching, and internationalized
applications.

• Development Tools covers the resources provided by symfony to make day-to-day
development tasks easier: code generators, unit testing framework, command-line
tasks, and plug-ins.

• Becoming a Symfony Expert reveals a few secret corners of the symfony code and shows
you how to tweak the framework’s behavior.

Conventions Used in This Book
In the code examples, the names starting with my are just examples of actual names. For
instance, you will see myproject, myapp, and mymodule. In your own code, replace these with the

Zaninotto_786-9 FRONT.fm Page xxvii Wednesday, January 3, 2007 10:09 AM

xxviii ■I N T R O D U CT I O N

real names of your project, application, and module. Not surprisingly, the words Foo and Bar
(and sometimes FooBar) will be used as sample content for strings. Also, in syntax explanations,
three Xs represent a sample name. For instance, validateXXX() is the syntax of a method that
can be named validateUpdate(), validateEdit(), and so on.

Code lines longer than the book page width are indicated with a ➥ character. When you
see this symbol at the end of a line, it means that you should read this line and the following as
a single line. Here’s an example:

 <?php echo link_to('I never say my name', 'mymodule/myaction?name=anonymous', ➥

'class=foobar') ?>

Each command that should be typed in a *nix shell or a Windows command line starts with
a greater-than sign:

> symfony clear-cache

In some code examples, the output of a script when viewed by a browser is written directly
after the script code, preceded by an arrow, as follows:

<?php echo "Hello, World!" ?>
 => Hello, World!

On the other hand, the output of a command appears between two horizontal separators,
as follows:

> php symfony -V

symfony version 1.0.0

Contacting the Authors
You can chat with François and Fabien on the #symfony IRC channel on freenode (irc://irc.
freenode.net/symfony) or send them an e-mail at the following addresses:

francois.zaninotto@symfony-project.com
fabien.potencier@symfony-project.com

Be aware that they both live in France, so depending where you’re writing from, there
might be a delay in the response due to the difference in time zone.

Zaninotto_786-9 FRONT.fm Page xxviii Wednesday, January 3, 2007 10:09 AM

■I N T R O D U C T I O N xxix

License
The symfony framework is available under the MIT license, reproduced hereafter.
Copyright © 2004-2007 Fabien Potencier

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Symfony integrates and/or uses code from third-party projects: Mojavi3 (MVC framework),
Propel (object-relational mapping), Creole (database abstraction), Phing (CLI utility), Unicode
(i18n), Dynarch (JavaScript calendar), Prototype (JavaScript library), script.aculo.us
(JavaScript library), famfamfam (icons), Prado (i18n classes), PHPMailer (mail functions),
Spyc (YAML parser), pake (CLI utility), and lime (testing framework). Refer to the online
copyright file at http://www.symfony-project.com/trac/browser/trunk/COPYRIGHT.

Zaninotto_786-9 FRONT.fm Page xxix Wednesday, January 3, 2007 10:09 AM

5cb24788f7d6c3f19354cd5a76819e76
www.allitebooks.com

http://www.allitebooks.org

Zaninotto_786-9 FRONT.fm Page xxx Wednesday, January 3, 2007 10:09 AM

■ ■ ■

P A R T 1

The Basics

Zaninotto_786-9 C01.fm Page 1 Thursday, December 21, 2006 1:02 PM

Zaninotto_786-9 C01.fm Page 2 Thursday, December 21, 2006 1:02 PM

3

■ ■ ■

C H A P T E R 1

Introducing Symfony

What can symfony do for you? What’s required to use it? This chapter answers these questions.

Symfony in Brief
A framework streamlines application development by automating many of the patterns employed
for a given purpose. A framework also adds structure to the code, prompting the developer
to write better, more readable, and more maintainable code. Ultimately, a framework makes
programming easier, since it packages complex operations into simple statements.

Symfony is a complete framework designed to optimize the development of web applications
by way of several key features. For starters, it separates a web application’s business rules, server
logic, and presentation views. It contains numerous tools and classes aimed at shortening the
development time of a complex web application. Additionally, it automates common tasks so
that the developer can focus entirely on the specifics of an application. The end result of these
advantages means there is no need to reinvent the wheel every time a new web application is built!

Symfony was written entirely in PHP 5. It has been thoroughly tested in various real-world
projects, and is actually in use for high-demand e-business websites. It is compatible with
most of the available databases engines, including MySQL, PostgreSQL, Oracle, and Microsoft
SQL Server. It runs on *nix and Windows platforms. Let’s begin with a closer look at its features.

Symfony Features
Symfony was built in order to fulfill the following requirements:

• Easy to install and configure on most platforms (and guaranteed to work on standard
*nix and Windows platforms)

• Database engine-independent

• Simple to use, in most cases, but still flexible enough to adapt to complex cases

• Based on the premise of convention over configuration—the developer needs to
configure only the unconventional

• Compliant with most web best practices and design patterns

• Enterprise-ready—adaptable to existing information technology (IT) policies and
architectures, and stable enough for long-term projects

Zaninotto_786-9 C01.fm Page 3 Thursday, December 21, 2006 1:02 PM

4 C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y

• Very readable code, with phpDocumentor comments, for easy maintenance

• Easy to extend, allowing for integration with other vendor libraries

Automated Web Project Features

Most of the common features of web projects are automated within symfony, as follows:

• The built-in internationalization layer allows for both data and interface translation,
as well as content localization.

• The presentation uses templates and layouts that can be built by HTML designers
without any knowledge of the framework. Helpers reduce the amount of presentation
code to write by encapsulating large portions of code in simple function calls.

• Forms support automated validation and repopulation, and this ensures a good quality
of data in the database and a better user experience.

• Output escaping protects applications from attacks via corrupted data.

• The cache management features reduce bandwidth usage and server load.

• Authentication and credential features facilitate the creation of restricted sections and
user security management.

• Routing and smart URLs make the page address part of the interface and search-engine
friendly.

• Built-in e-mail and API management features allow web applications to go beyond the
classic browser interactions.

• Lists are more user-friendly thanks to automated pagination, sorting, and filtering.

• Factories, plug-ins, and mixins provide a high level of extensibility.

• Ajax interactions are easy to implement thanks to one-line helpers that encapsulate
cross-browser-compatible JavaScript effects.

Development Environment and Tools

To fulfill the requirements of enterprises having their own coding guidelines and project
management rules, symfony can be entirely customized. It provides, by default, several
development environments and is bundled with multiple tools that automate common
software-engineering tasks:

• The code-generation tools are great for prototyping and one-click back-end administration.

• The built-in unit and functional testing framework provides the perfect tools to allow
test-driven development.

• The debug panel accelerates debugging by displaying all the information the developer
needs on the page he's working on.

Zaninotto_786-9 C01.fm Page 4 Thursday, December 21, 2006 1:02 PM

C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y 5

• The command-line interface automates application deployment between two servers.

• Live configuration changes are possible and effective.

• The logging features give administrators full details about an application’s activities.

Who Made Symfony and Why?
The first version of symfony was released in October 2005 by project founder Fabien Potencier,
coauthor of this book. Fabien is the CEO of Sensio (http://www.sensio.com/), a French web
agency well known for its innovative views on web development.

Back in 2003, Fabien spent some time inquiring about the existing open source develop-
ment tools for web applications in PHP. He found that none fulfilled the previously described
requirements. When PHP 5 was released, he decided that the available tools had reached a
mature enough stage to be integrated into a full-featured framework. He subsequently spent a
year developing the symfony core, basing his work on the Mojavi Model-View-Controller (MVC)
framework, the Propel object-relational mapping (ORM), and the Ruby on Rails templating
helpers.

Fabien originally built symfony for Sensio’s projects, because having an effective frame-
work at your disposal presents an ideal way to develop applications faster and more efficiently.
It also makes web development more intuitive, and the resulting applications are more robust
and easier to maintain. The framework entered the proving grounds when it was employed
to build an e-commerce website for a lingerie retailer, and subsequently was applied to other
projects.

After successfully using symfony for a few projects, Fabien decided to release it under an
open source license. He did so to donate this work to the community, to benefit from user feed-
back, to showcase Sensio’s experience, and because it’s fun.

■Note Why “symfony” and not “FooBarFramework”? Because Fabien wanted a short name containing an
s, as in Sensio, and an f, as in framework—easy to remember and not associated with another development
tool. Also, he doesn’t like capital letters. symfony was close enough, even if not completely English, and it was
also available as a project name. The other alternative was “baguette.”

For symfony to be a successful open source project, it needed to have extensive documen-
tation, in English, to increase the adoption rate. Fabien asked fellow Sensio employee François
Zaninotto, the other author of this book, to dig into the code and write an online book about it.
It took quite a while, but when the project was made public, it was documented well enough to
appeal to numerous developers. The rest is history.

The Symfony Community
As soon as the symfony website (http://www.symfony-project.com/) was launched, numerous
developers from around the world downloaded and installed the framework, read the online
documentation, and built their first application with symfony, and the buzz began to mount.

Zaninotto_786-9 C01.fm Page 5 Thursday, December 21, 2006 1:02 PM

6 C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y

Web application frameworks were getting popular at that time, and the need for a full-
featured framework in PHP was high. Symfony offered a compelling solution due to its impres-
sive code quality and significant amount of documentation—two major advantages over the
other players in the framework category. Contributors soon began to surface, proposing patches
and enhancements, proofreading the documentation, and performing other much-needed roles.

The public source repository and ticketing system offer a variety of ways to contribute, and
all volunteers are welcome. Fabien is still the main committer in the trunk of the source code
repository, and guarantees the quality of the code.

Today, the symfony forum, mailing lists, and Internet Relay Chat (IRC) channel offer ideal
support outlets, with seemingly each question getting an average of four answers. Newcomers
install symfony every day, and the wiki and code snippets sections host a lot of user-contributed
documentation. The number of known symfony applications increases by an average of five per
week, and counting.

The symfony community is the third strength of the framework, and we hope that you will
join it after reading this book.

Is Symfony for Me?
Whether you are a PHP 5 expert or a newcomer to web application programming, you will be
able to use symfony. The main factor in deciding whether or not to do so is the size of your project.

If you want to develop a simple website with five to ten pages, limited access to a database,
and no obligations to ensuring its performance or providing documentation, then you should
stick with PHP alone. You wouldn’t gain much from a web application framework, and using
object orientation or an MVC model would likely only slow down your development process.
As a side note, symfony is not optimized to run efficiently on a shared server where PHP scripts
can run only in Common Gateway Interface (CGI) mode.

On the other hand, if you develop more complex web applications, with heavy business
logic, PHP alone is not enough. If you plan on maintaining or extending your application in the
future, you will need your code to be lightweight, readable, and effective. If you want to use the
latest advances in user interaction (like Ajax) in an intuitive way, you can’t just write hundreds
of lines of JavaScript. If you want to have fun and develop fast, then PHP alone will probably be
disappointing. In all these cases, symfony is for you.

And, of course, if you are a professional web developer, you already know all the benefits
of web application frameworks, and you need one that is mature, well documented, and has a
large community. Search no more, for symfony is your solution.

■Tip If you would like a visual demonstration, take a look at the screencasts available from the symfony
website. You will see how fast and fun it is to develop applications with symfony.

Fundamental Concepts
Before you get started with symfony, you should understand a few basic concepts. Feel free
to skip ahead if you already know the meaning of OOP, ORM, RAD, DRY, KISS, TDD, YAML,
and PEAR.

Zaninotto_786-9 C01.fm Page 6 Thursday, December 21, 2006 1:02 PM

C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y 7

PHP 5
Symfony is developed in PHP 5 (http://www.php.net/) and dedicated to building web applica-
tions with the same language. Therefore, a solid understanding of PHP 5 is required to get the
most out of the framework.

Developers who already know PHP 4 but not PHP 5 should mainly focus on the language’s
new object-oriented model.

Object-Oriented Programming (OOP)
Object-oriented programming (OOP) will not be explained in this chapter. It needs a whole
book itself! Because symfony makes extensive use of the object-oriented mechanisms available
as of PHP 5, OOP is a prerequisite to learning symfony.

Wikipedia explains OOP as follows:

The idea behind object-oriented programming is that a computer program may be seen
as comprising a collection of individual units, or objects, that act on each other, as
opposed to a traditional view in which a program may be seen as a collection of functions,
or simply as a list of instructions to the computer.

PHP 5 implements the object-oriented paradigms of class, object, method, inheritance,
and much more. Those who are not familiar with these concepts are advised to read the related
PHP documentation, available at http://www.php.net/manual/en/language.oop5.basic.php.

Magic Methods
One of the strengths of PHP’s object capabilities is the use of magic methods. These are methods
that can be used to override the default behavior of classes without modifying the outside code.
They make the PHP syntax less verbose and more extensible. They are easy to recognize, because
the names of the magic methods start with two underscores (__).

For instance, when displaying an object, PHP implicitly looks for a __toString() method
for this object to see if a custom display format was defined by the developer:

$myObject = new myClass();
echo $myObject;
// Will look for a magic method
echo $myObject->__toString();

Symfony uses magic methods, so you should have a thorough understanding of them.
They are described in the PHP documentation (http://www.php.net/manual/en/language.
oop5.magic.php).

PHP Extension and Application Repository (PEAR)
PEAR is “a framework and distribution system for reusable PHP components.” PEAR allows
you to download, install, upgrade, and uninstall PHP scripts. When using a PEAR package, you
don’t need to worry about where to put scripts, how to make them available, or how to extend
the command-line interface (CLI).

Zaninotto_786-9 C01.fm Page 7 Thursday, December 21, 2006 1:02 PM

8 C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y

PEAR is a community-driven project written in PHP and shipped with standard PHP
distributions.

■Tip The PEAR website, http://pear.php.net/, provides documentation and packages grouped
by categories.

PEAR is the most professional way to install vendor libraries in PHP. Symfony advises the
use of PEAR to keep a central installation point for use across multiple projects. The symfony
plug-ins are PEAR packages with a special configuration. The symfony framework itself is avail-
able as a PEAR package.

You don’t need to know all about the PEAR syntax to use symfony. You just need to under-
stand what it does and have it installed. You can check that PEAR is installed in your computer
by typing the following in a CLI:

> pear info pear

This command will return the version number of your PEAR installation.
The symfony project has its own PEAR repository, or channel. Note that channels are

available only since version 1.4.0 of PEAR, so you should upgrade if your version is older. To
upgrade your version of PEAR, issue the following command:

> pear upgrade PEAR

Object-Relational Mapping (ORM)
Databases are relational. PHP 5 and symfony are object-oriented. In order to access the data-
base in an object-oriented way, an interface translating the object logic to the relational logic is
required. This interface is called an object-relational mapping, or ORM.

An ORM is made up of objects that give access to data and keep business rules within
themselves.

One benefit of an object/relational abstraction layer is that it prevents you from using a
syntax that is specific to a given database. It automatically translates calls to the model objects
to SQL queries optimized for the current database.

This means that switching to another database system in the middle of a project is easy.
Imagine that you have to write a quick prototype for an application, but the client has not decided
yet which database system would best suit his needs. You can start building your application
with SQLite, for instance, and switch to MySQL, PostgreSQL, or Oracle when the client is ready
to decide. Just change one line in a configuration file, and it works.

An abstraction layer encapsulates the data logic. The rest of the application does not need
to know about the SQL queries, and the SQL that accesses the database is easy to find. Developers
who specialize in database programming also know clearly where to go.

Using objects instead of records, and classes instead of tables, has another benefit: you
can add new accessors to your tables. For instance, if you have a table called Client with two
fields, FirstName and LastName, you might like to be able to require just a Name. In an object-
oriented world, this is as easy as adding a new accessor method to the Client class, like this:

Zaninotto_786-9 C01.fm Page 8 Thursday, December 21, 2006 1:02 PM

C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y 9

public function getName()
{
 return $this->getFirstName.' '.$this->getLastName();
}

All the repeated data-access functions and the business logic of the data can be maintained
within such objects. For instance, consider a class ShoppingCart in which you keep items (which
are objects). To retrieve the full amount of the shopping cart for the checkout, you can add a
getTotal() method, like this:

public function getTotal()
{
 $total = 0;
 foreach ($this->getItems() as $item)
 {
 $total += $item->getPrice() * $item->getQuantity();
 }
 return $total;
}

And that’s it. Imagine how long it would have required to write a SQL query doing the
same thing!

Propel, another open source project, is currently one of the best object/relational abstrac-
tion layers for PHP 5. Symfony integrates Propel seamlessly into the framework, so most of the
data manipulation described in this book follows the Propel syntax. This book will describe
how to use the Propel objects, but for a more complete reference, a visit to the Propel website
(http://propel.phpdb.org/trac/) is recommended.

Rapid Application Development (RAD)
Programming web applications has long been a tedious and slow job. Following the usual software
engineering life cycles (like the one proposed by the Rational Unified Process, for instance), the
development of web applications could not start before a complete set of requirements was
written, a lot of Unified Modeling Language (UML) diagrams were drawn, and tons of prelimi-
nary documentation were produced. This was due to the general speed of development, to the
lack of versatility of programming languages (you had to build, compile, restart, and who knows
what else before actually seeing your program run), and most of all, to the fact that clients were
quite reasonable and didn’t change their minds constantly.

Today, business moves faster, and clients tend to constantly change their minds in the
course of the project development. Of course, they expect the development team to adapt to
their needs and modify the structure of an application quickly. Fortunately, the use of scripting
languages like Perl and PHP makes it easy to apply other programming strategies, such as rapid
application development (RAD) or agile software development.

One of the ideas of these methodologies is to start developing as soon as possible so that
the client can review a working prototype and offer additional direction. Then the application
gets built in an iterative process, releasing increasingly feature-rich versions in short develop-
ment cycles.

The consequences for the developer are numerous. A developer doesn’t need to think
about the future when implementing a feature. The method used should be as simple and

Zaninotto_786-9 C01.fm Page 9 Thursday, December 21, 2006 1:02 PM

www.allitebooks.com

http://www.allitebooks.org

10 C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y

straightforward as possible. This is well illustrated by the maxim of the KISS principle: Keep It
Simple, Stupid.

When the requirements evolve or when a feature is added, existing code usually has to be
partly rewritten. This process is called refactoring, and happens a lot in the course of a web
application development. Code is moved to other places according to its nature. Duplicated
portions of code are refactored to a single place, thus applying the Don’t Repeat Yourself
(DRY) principle.

And to make sure that the application still runs when it changes constantly, it needs a full
set of unit tests that can be automated. If well written, unit tests are a solid way to ensure that
nothing is broken by adding or refactoring code. Some development methodologies even stip-
ulate writing tests before coding—that’s called test-driven development (TDD).

■Note There are many other principles and good habits related to agile development. One of the most
effective agile development methodologies is called Extreme Programming (abbreviated as XP), and the XP
literature will teach you a lot about how to develop an application in a fast and effective way. A good starting
place is the XP series books by Kent Beck (Addison-Wesley).

Symfony is the perfect tool for RAD. As a matter of fact, the framework was built by a web
agency applying the RAD principle for its own projects. This means that learning to use symfony is
not about learning a new language, but more about applying the right reflexes and the best
judgment in order to build applications in a more effective way.

The symfony project website proposes a step-by-step tutorial illustrating the development
of an application in an agile way. It is called askeet (http://www.symfony-project.com/askeet),
and is recommended reading for those who want to learn more about agile development.

YAML
According to the official YAML website (http://www.yaml.org/), YAML is “a straightforward
machine parsable data serialization format designed for human readability and interaction
with scripting languages.” Put another way, YAML is a very simple language used to describe
data in an XML-like way but with a much simpler syntax. It is especially useful to describe data
that can be translated into arrays and hashes, like this:

$house = array(
 'family' => array(
 'name' => 'Doe',
 'parents' => array('John', 'Jane'),
 'children' => array('Paul', 'Mark', 'Simone')
),
 'address' => array(
 'number' => 34,
 'street' => 'Main Street',
 'city' => 'Nowheretown',
 'zipcode' => '12345'
)
);

Zaninotto_786-9 C01.fm Page 10 Thursday, December 21, 2006 1:02 PM

C H A P T E R 1 ■ I N T R O D U C I N G S Y M F O N Y 11

This PHP array can be automatically created by parsing the YAML string:

house:
 family:
 name: Doe
 parents:
 - John
 - Jane
 children:
 - Paul
 - Mark
 - Simone
 address:
 number: 34
 street: Main Street
 city: Nowheretown
 zipcode: 12345

In YAML, structure is shown through indentation, sequence items are denoted by a dash,
and key/value pairs within a map are separated by a colon. YAML also has a shorthand syntax
to describe the same structure with fewer lines, where arrays are explicitly shown with [] and
hashes with {}. Therefore, the previous YAML data can be written in a shorter way, as follows:

house:
 family: { name: Doe, parents: [John, Jane], children: [Paul, Mark, Simone] }
 address: { number: 34, street: Main Street, city: Nowheretown, zipcode: 12345 }

YAML is an acronym for Yet Another Markup Language and pronounced “yamel.” The
format has been around since 2001, and YAML parsers exist for a large variety of languages.

■Tip The specifications of the YAML format are available at http://www.yaml.org/.

As you can see, YAML is much faster to write than XML (no more closing tags or explicit
quotes), and it is more powerful than .ini files (which don’t support hierarchy). That is why
symfony uses YAML as the preferred language to store configuration. You will see a lot of YAML
files in this book, but it is so straightforward that you probably don’t need to learn more about it.

Summary
Symfony is a PHP 5 web application framework. It adds a new layer on top of the PHP language,
providing tools that speed up the development of complex web applications. This book will tell
you all about it, and you just need to be familiar with the basic concepts of modern programming
to understand it—namely object-oriented programming (OOP), object-relational mapping
(ORM), and rapid application development (RAD). The only required technical background is
knowledge of PHP 5.

Zaninotto_786-9 C01.fm Page 11 Thursday, December 21, 2006 1:02 PM

Zaninotto_786-9 C01.fm Page 12 Thursday, December 21, 2006 1:02 PM

13

■ ■ ■

C H A P T E R 2

Exploring Symfony’s Code

At first glance, the code behind a symfony-driven application can seem quite daunting. It
consists of many directories and scripts, and the files are a mix of PHP classes, HTML, and even
an intermingling of the two. You’ll also see references to classes that are otherwise nowhere to
be found within the application folder, and the directory depth stretches to six levels. But once
you understand the reason behind all of this seeming complexity, you’ll suddenly feel like it’s
so natural that you wouldn’t trade the symfony application structure for any other. This chapter
explains away that intimidated feeling.

The MVC Pattern
Symfony is based on the classic web design pattern known as the MVC architecture, which
consists of three levels:

• The model represents the information on which the application operates—its business
logic.

• The view renders the model into a web page suitable for interaction with the user.

• The controller responds to user actions and invokes changes on the model or view
as appropriate.

Figure 2-1 illustrates the MVC pattern.
The MVC architecture separates the business logic (model) and the presentation (view),

resulting in greater maintainability. For instance, if your application should run on both stan-
dard web browsers and handheld devices, you just need a new view; you can keep the original
controller and model. The controller helps to hide the detail of the protocol used for the request
(HTTP, console mode, mail, and so on) from the model and the view. And the model abstracts
the logic of the data, which makes the view and the action independent of, for instance, the
type of database used by the application.

Zaninotto_786-9 C02.fm Page 13 Friday, December 22, 2006 2:19 PM

14 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Figure 2-1. The MVC pattern

MVC Layering
To help you understand MVC’s advantages, let’s see how to convert a basic PHP application
to an MVC-architectured application. A list of posts for a weblog application will be a perfect
example.

Flat Programming

In a flat PHP file, displaying a list of database entries might look like the script presented in
Listing 2-1.

Listing 2-1. A Flat Script

<?php

// Connecting, selecting database
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

// Performing SQL query
$result = mysql_query('SELECT date, title FROM post', $link);

Zaninotto_786-9 C02.fm Page 14 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 15

?>

<html>
 <head>
 <title>List of Posts</title>
 </head>
 <body>
 <h1>List of Posts</h1>
 <table>
 <tr><th>Date</th><th>Title</th></tr>
<?php
// Printing results in HTML
while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
{
echo "\t<tr>\n";
printf("\t\t<td> %s </td>\n", $row['date']);
printf("\t\t<td> %s </td>\n", $row['title']);
echo "\t</tr>\n";
}
?>
 </table>
 </body>
</html>

<?php

// Closing connection
mysql_close($link);

?>

That’s quick to write, fast to execute, and impossible to maintain. The following are the
major problems with this code:

• There is no error-checking (what if the connection to the database fails?).

• HTML and PHP code are mixed, even interwoven together.

• The code is tied to a MySQL database.

Isolating the Presentation

The echo and printf calls in Listing 2-1 make the code difficult to read. Modifying the HTML
code to enhance the presentation is a hassle with the current syntax. So the code can be split
into two parts. First, the pure PHP code with all the business logic goes in a controller script, as
shown in Listing 2-2.

Zaninotto_786-9 C02.fm Page 15 Friday, December 22, 2006 2:19 PM

16 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Listing 2-2. The Controller Part, in index.php

<?php

// Connecting, selecting database
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

// Performing SQL query
$result = mysql_query('SELECT date, title FROM post', $link);

// Filling up the array for the view
$posts = array();
while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
{
 $posts[] = $row;
}

// Closing connection
mysql_close($link);

// Requiring the view
require('view.php');

?>

The HTML code, containing template-like PHP syntax, is stored in a view script, as shown
in Listing 2-3.

Listing 2-3. The View Part, in view.php

<html>
 <head>
 <title>List of Posts</title>
 </head>
 <body>
 <h1>List of Posts</h1>
 <table>
 <tr><th>Date</th><th>Title</th></tr>

Zaninotto_786-9 C02.fm Page 16 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 17

 <?php foreach ($posts as $post): ?>
 <tr>
 <td><?php echo $post['date'] ?></td>
 <td><?php echo $post['title'] ?></td>
 </tr>
 <?php endforeach; ?>
 </table>
 </body>
</html>

A good rule of thumb to determine whether the view is clean enough is that it should contain
only a minimum amount of PHP code, in order to be understood by an HTML designer without
PHP knowledge. The most common statements in views are echo, if/endif, foreach/endforeach,
and that’s about all. Also, there should not be PHP code echoing HTML tags.

All the logic is moved to the controller script, and contains only pure PHP code, with no
HTML inside. As a matter of fact, you should imagine that the same controller could be reused
for a totally different presentation, perhaps in a PDF file or an XML structure.

Isolating the Data Manipulation

Most of the controller script code is dedicated to data manipulation. But what if you need the
list of posts for another controller, say one that would output an RSS feed of the weblog posts?
What if you want to keep all the database queries in one place, to avoid code duplication? What
if you decide to change the data model so that the post table gets renamed weblog_post? What
if you want to switch to PostgreSQL instead of MySQL? In order to make all that possible, you
need to remove the data-manipulation code from the controller and put it in another script,
called the model, as shown in Listing 2-4.

Listing 2-4. The Model Part, in model.php

<?php

function getAllPosts()
{
 // Connecting, selecting database
 $link = mysql_connect('localhost', 'myuser', 'mypassword');
 mysql_select_db('blog_db', $link);

 // Performing SQL query
 $result = mysql_query('SELECT date, title FROM post', $link);

Zaninotto_786-9 C02.fm Page 17 Friday, December 22, 2006 2:19 PM

18 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

 // Filling up the array
 $posts = array();
 while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
 {
 $posts[] = $row;
 }

 // Closing connection
 mysql_close($link);

 return $posts;
}

?>

The revised controller is presented in Listing 2-5.

Listing 2-5. The Controller Part, Revised, in index.php

<?php

// Requiring the model
require_once('model.php');

// Retrieving the list of posts
$posts = getAllPosts();

// Requiring the view
require('view.php');

?>

The controller becomes easier to read. Its sole task is to get the data from the model and
pass it to the view. In more complex applications, the controller also deals with the request, the
user session, the authentication, and so on. The use of explicit names for the functions of the
model even makes code comments unnecessary in the controller.

The model script is dedicated to data access and can be organized accordingly. All parameters
that don’t depend on the data layer (like request parameters) must be given by the controller and
not accessed directly by the model. The model functions can be easily reused in another controller.

Layer Separation Beyond MVC
So the principle of the MVC architecture is to separate the code into three layers, according to
its nature. Data logic code is placed within the model, presentation code within the view, and
application logic within the controller.

Other additional design patterns can make the coding experience even easier. The model,
view, and controller layers can be further subdivided.

Zaninotto_786-9 C02.fm Page 18 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 19

Database Abstraction

The model layer can be split into a data access layer and a database abstraction layer. That way,
data access functions will not use database-dependent query statements, but call some other
functions that will do the queries themselves. If you change your database system later, only
the database abstraction layer will need updating.

An example of a MySQL-specific data access layer is presented in Listing 2-6, followed by
a sample database abstraction layer in Listing 2-7.

Listing 2-6. The Database Abstraction Part of the Model

<?php

function open_connection($host, $user, $password)
{
 return mysql_connect($host, $user, $password);
}

function close_connection($link)
{
 mysql_close($link);
}

function query_database($query, $database, $link)
{
 mysql_select_db($database, $link);

 return mysql_query($query, $link);
}

function fetch_results($result)
{
 return mysql_fetch_array($result, MYSQL_ASSOC);
}

Listing 2-7. The Data Access Part of the Model

function getAllPosts()
{
 // Connecting to database
 $link = open_connection('localhost', 'myuser', 'mypassword');

 // Performing SQL query
 $result = query_database('SELECT date, title FROM post', 'blog_db', $link);

Zaninotto_786-9 C02.fm Page 19 Friday, December 22, 2006 2:19 PM

www.allitebooks.com

http://www.allitebooks.org

20 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

 // Filling up the array
 $posts = array();
 while ($row = fetch_results($result))
 {
 $posts[] = $row;
 }

 // Closing connection
 close_connection($link);

 return $posts;
}

?>

You can check that no database-engine dependent functions can be found in the data
access layer, making it database-independent. Additionally, the functions created in the database
abstraction layer can be reused for many other model functions that need access to the database.

■Note The examples in Listings 2-6 and 2-7 are still not very satisfactory, and there is some work left to
do to have a full database abstraction (abstracting the SQL code through a database-independent query builder,
moving all functions into a class, and so on). But the purpose of this book is not to show you how to write all
that code by hand, and you will see in Chapter 8 that symfony natively does all the abstraction very well.

View Elements

The view layer can also benefit from some code separation. A web page often contains consis-
tent elements throughout an application: the page headers, the graphical layout, the footer,
and the global navigation. Only the inner part of the page changes. That’s why the view is sepa-
rated into a layout and a template. The layout is usually global to the application, or to a group
of pages. The template only puts in shape the variables made available by the controller. Some
logic is needed to make these components work together, and this view logic layer will keep the
name view. According to these principles, the view part of Listing 2-3 can be separated into
three parts, as shown in Listings 2-8, 2-9, and 2-10.

Listing 2-8. The Template Part of the View, in mytemplate.php

<h1>List of Posts</h1>
<table>
<tr><th>Date</th><th>Title</th></tr>
<?php foreach ($posts as $post): ?>
 <tr>
 <td><?php echo $post['date'] ?></td>
 <td><?php echo $post['title'] ?></td>
 </tr>
<?php endforeach; ?>
</table>

Zaninotto_786-9 C02.fm Page 20 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 21

Listing 2-9. The View Logic Part of the View

<?php

$title = 'List of Posts';
$content = include('mytemplate.php');

?>

Listing 2-10. The Layout Part of the View

<html>
 <head>
 <title><?php echo $title ?></title>
 </head>
 <body>
 <?php echo $content ?>
 </body>
</html>

Action and Front Controller

The controller doesn’t do much in the previous example, but in real web applications, the
controller has a lot of work. An important part of this work is common to all the controllers of
the application. The common tasks include request handling, security handling, loading the
application configuration, and similar chores. This is why the controller is often divided into a
front controller, which is unique for the whole application, and actions, which contain only the
controller code specific to one page.

One of the great advantages of a front controller is that it offers a unique entry point to the
whole application. If you ever decide to close the access to the application, you will just need to
edit the front controller script. In an application without a front controller, each individual
controller would need to be turned off.

Object Orientation

All the previous examples use procedural programming. The OOP capabilities of modern
languages make the programming even easier, since objects can encapsulate logic, inherit
from one another, and provide clean naming conventions.

Implementing an MVC architecture in a language that is not object-oriented raises namespace
and code-duplication issues, and the overall code is difficult to read.

Object orientation allows developers to deal with such things as the view object, the controller
object, and the model classes, and to transform all the functions in the previous examples into
methods. It is a must for MVC architectures.

■Tip If you want to learn more about design patterns for web applications in an object-oriented context,
read Patterns of Enterprise Application Architecture by Martin Fowler (Addison-Wesley, ISBN: 0-32112-742-0).
Code examples in Fowler’s book are in Java or C#, but are still quite readable for a PHP developer.

Zaninotto_786-9 C02.fm Page 21 Friday, December 22, 2006 2:19 PM

22 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Symfony’s MVC Implementation
Hold on a minute. For a single page listing the posts in a weblog, how many components are
required? As illustrated in Figure 2-2, we have the following parts:

• Model layer

• Database abstraction

• Data access

• View layer

• View

• Template

• Layout

• Controller layer

• Front controller

• Action

Seven scripts—a whole lot of files to open and to modify each time you create a new page!
However, symfony makes things easy. While taking the best of the MVC architecture, symfony
implements it in a way that makes application development fast and painless.

First of all, the front controller and the layout are common to all actions in an application.
You can have multiple controllers and layouts, but you need only one of each. The front controller
is pure MVC logic component, and you will never need to write a single one, because symfony
will generate it for you.

The other good news is that the classes of the model layer are also generated automatically,
based on your data structure. This is the job of the Propel library, which provides class skeletons
and code generation. If Propel finds foreign key constraints or date fields, it will provide special
accessor and mutator methods that will make data manipulation a piece of cake. And the data-
base abstraction is totally invisible to you, because it is dealt with by another component,
called Creole. So if you decide to change your database engine at one moment, you have zero
code to rewrite. You just need to change one configuration parameter.

And the last thing is that the view logic can be easily translated as a simple configuration
file, with no programming needed.

Zaninotto_786-9 C02.fm Page 22 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 23

Figure 2-2. Symfony workflow

That means that the list of posts described in our example would require only three files to
work in symfony, as shown in Listings 2-11, 2-12, and 2-13.

Zaninotto_786-9 C02.fm Page 23 Friday, December 22, 2006 2:19 PM

24 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Listing 2-11. list Action, in myproject/apps/myapp/modules/weblog/actions/actions.class.php

<?php
class weblogActions extends sfActions
{
 public function executeList()
 {
 $this->posts = PostPeer::doSelect(new Criteria());
 }
}

?>

Listing 2-12. list Template, in myproject/apps/myapp/modules/weblog/templates/
listSuccess.php

<h1>List of Posts</h1>
<table>
<tr><th>Date</th><th>Title</th></tr>
<?php foreach ($posts as $post): ?>
 <tr>
 <td><?php echo $post->getDate() ?></td>
 <td><?php echo $post->getTitle() ?></td>
 </tr>
<?php endforeach; ?>
</table>

Listing 2-13. list View, in myproject/apps/myapp/modules/weblog/config/view.yml

listSuccess:
 metas: { title: List of Posts }

In addition, you will still need to define a layout, as shown in Listing 2-14, but it will be
reused many times.

Listing 2-14. Layout, in myproject/apps/myapp/templates/layout.php

<html>
 <head>
 <?php echo include_title() ?>
 </head>
 <body>
 <?php echo $sf_data->getRaw('sf_content') ?>
 </body>
</html>

And that is really all you need. This is the exact code required to display the very same page
as the flat script shown earlier in Listing 2-1. The rest (making all the components work together) is

Zaninotto_786-9 C02.fm Page 24 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 25

handled by symfony. If you count the lines, you will see that creating the list of posts in an MVC
architecture with symfony doesn’t require more time or coding than writing a flat file. Never-
theless, it gives you huge advantages, notably clear code organization, reusability, flexibility,
and much more fun. And as a bonus, you have XHTML conformance, debug capabilities, easy
configuration, database abstraction, smart URL routing, multiple environments, and many
more development tools.

Symfony Core Classes
The MVC implementation in symfony uses several classes that you will meet quite often in
this book:

• sfController is the controller class. It decodes the request and hands it to the action.

• sfRequest stores all the request elements (parameters, cookies, headers, and so on).

• sfResponse contains the response headers and contents. This is the object that will even-
tually be converted to an HTML response and be sent to the user.

• The context singleton (retrieved by sfContext::getInstance()) stores a reference to all
the core objects and the current configuration; it is accessible from everywhere.

You will learn more about these objects in Chapter 6.
As you can see, all the symfony classes use the sf prefix, as do the symfony core variables

in the templates. This should avoid name collisions with your own classes and variables, and
make the core framework classes sociable and easy to recognize.

■Note Among the coding standards used in symfony, UpperCamelCase is the standard for class and vari-
able naming. Two exceptions exist: core symfony classes start with sf, which is lowercase, and variables
found in templates use the underscore-separated syntax.

Code Organization
Now that you know the different components of a symfony application, you’re probably
wondering how they are organized. Symfony organizes code in a project structure and puts the
project files into a standard tree structure.

Project Structure: Applications, Modules, and Actions
In symfony, a project is a set of services and operations available under a given domain name,
sharing the same object model.

Inside a project, the operations are grouped logically into applications. An application can
normally run independently of the other applications of the same project. In most cases, a project
will contain two applications: one for the front-office and one for the back-office, sharing the same
database. But you can also have one project containing many mini-sites, with each site as a
different application. Note that hyperlinks between applications must be in the absolute form.

Zaninotto_786-9 C02.fm Page 25 Friday, December 22, 2006 2:19 PM

26 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Each application is a set of one or more modules. A module usually represents a page or a
group of pages with a similar purpose. For example, you might have the modules home, articles,
help, shoppingCart, account, and so on.

Modules hold actions, which represent the various actions that can be done in a module.
For example, a shoppingCart module can have add, show, and update actions. Generally, actions
can be described by a verb. Dealing with actions is almost like dealing with pages in a classic
web application, although two actions can result in the same page (for instance, adding a comment
to a post in a weblog will redisplay the post with the new comment).

■Tip If this represents too many levels for a beginning project, it is very easy to group all actions into one
single module, so that the file structure can be kept simple. When the application gets more complex, it will
be time to organize actions into separate modules. As mentioned in Chapter 1, rewriting code to improve its
structure or readability (but preserving its behavior) is called refactoring, and you will do this a lot when
applying RAD principles.

Figure 2-3 shows a sample code organization for a weblog project, in a project/ applica-
tion/module/action structure. But be aware that the actual file tree structure of the project will
differ from the setup shown in the figure.

Figure 2-3. Example of code organization

File Tree Structure
All web projects generally share the same types of contents, such as the following:

• A database, such as MySQL or PostgreSQL

• Static files (HTML, images, JavaScript files, style sheets, and so on)

Zaninotto_786-9 C02.fm Page 26 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 27

• Files uploaded by the site users and administrators

• PHP classes and libraries

• Foreign libraries (third-party scripts)

• Batch files (scripts to be launched by a command line or via a cron table)

• Log files (traces written by the application and/or the server)

• Configuration files

Symfony provides a standard file tree structure to organize all these contents in a logical
way, consistent with the architecture choices (MVC pattern and project/application/module
grouping). This is the tree structure that is automatically created when initializing every project,
application, or module. Of course, you can customize it completely, to reorganize the files and
directories at your convenience or to match your client’s requirements.

Root Tree Structure

These are the directories found at the root of a symfony project:

apps/
 frontend/
 backend/
batch/
cache/
config/
data/
 sql/
doc/
lib/
 model/
log/
plugins/
test/
 unit/
 functional/
web/
 css/
 images/
 js/
 uploads/

Table 2-1 describes the contents of these directories.

Zaninotto_786-9 C02.fm Page 27 Friday, December 22, 2006 2:19 PM

28 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Application Tree Structure

The tree structure of all application directories is the same:

apps/
 [application name]/
 config/
 i18n/
 lib/
 modules/
 templates/
 layout.php
 error.php
 error.txtdelete

Table 2-2 describes the application subdirectories.

Table 2-1. Root Directories

Directory Description

apps/ Contains one directory for each application of the project (typically, frontend and
backend for the front and back office).

batch/ Contains PHP scripts called from a command line or a scheduler, to run
batch processes.

cache/ Contains the cached version of the configuration, and (if you activate it) the cache
version of the actions and templates of the project. The cache mechanism (detailed in
Chapter 12) uses these files to speed up the answer to web requests. Each applica-
tion will have a subdirectory here, containing preprocessed PHP and HTML files.

config/ Holds the general configuration of the project.

data/ Here, you can store the data files of the project, like a database schema, a SQL file
that creates tables, or even a SQLite database file.

doc/ Stores the project documentation, including your own documents and the docu-
mentation generated by PHPdoc.

lib/ Dedicated to foreign classes or libraries. Here, you can add the code that needs to
be shared among your applications. The model/ subdirectory stores the object
model of the project (described in Chapter 8).

log/ Stores the applicable log files generated directly by symfony. It can also contain
web server log files, database log files, or log files from any part of the project.
Symfony creates one log file per application and per environment (log files are
discussed in Chapter 16).

plugins/ Stores the plug-ins installed in the application (plug-ins are discussed in Chapter 17).

test/ Contains unit and functional tests written in PHP and compatible with the
symfony testing framework (discussed in Chapter 15). During the project setup,
symfony automatically adds some stubs with a few basic tests.

web/ The root for the web server. The only files accessible from the Internet are the ones
located in this directory.

Zaninotto_786-9 C02.fm Page 28 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 29

■Note The i18n/, lib/, and modules/ directories are empty for a new application.

The classes of an application are not able to access methods or attributes in other applications
of the same project. Also note that hyperlinks between two applications of the same project
must be in absolute form. You need to keep this last constraint in mind during initialization,
when you choose how to divide your project into applications.

Module Tree Structure

Each application contains one or more modules. Each module has its own subdirectory in the
modules directory, and the name of this directory is chosen during the setup.

This is the typical tree structure of a module:

apps/
 [application name]/
 modules/
 [module name]/
 actions/
 actions.class.php
 config/
 lib/
 templates/
 indexSuccess.php
 validate/

Table 2-2. Application Subdirectories

Directory Description

config/ Holds a hefty set of YAML configuration files. This is where most of the applica-
tion configuration is, apart from the default parameters that can be found in the
framework itself. Note that the default parameters can still be overridden here if
needed. You’ll learn more about application configuration in the Chapter 5.

i18n/ Contains files used for the internationalization of the application—mostly interface
translation files (Chapter 13 deals with internationalization). You can bypass this
directory if you choose to use a database for internationalization.

lib/ Contains classes and libraries that are specific to the application.

modules/ Stores all the modules that contain the features of the application.

templates/ Lists the global templates of the application—the ones that are shared by all
modules. By default, it contains a layout.php file, which is the main layout in
which the module templates are inserted.

Zaninotto_786-9 C02.fm Page 29 Friday, December 22, 2006 2:19 PM

www.allitebooks.com

http://www.allitebooks.org

30 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Table 2-3 describes the module subdirectories.

■Note The config/, lib/, and validate/ directories are empty for a new module.

Web Tree Structure

There are very few constraints for the web directory, which is the directory of publicly accessible
files. Following a few basic naming conventions will provide default behaviors and useful
shortcuts in the templates. Here is an example of a web directory structure:

web/
 css/
 images/
 js/
 uploads/

Conventionally, the static files are distributed in the directories listed in Table 2-4.

Table 2-3. Module Subdirectories

Directory Description

actions/ Generally contains a single class file named actions.class.php, in which you
can store all the actions of the module. You can also write different actions of
a module in separate files.

config/ Can contain custom configuration files with local parameters for the module.

lib/ Stores classes and libraries specific to the module.

templates/ Contains the templates corresponding to the actions of the module. A default
template, called indexSuccess.php, is created during module setup.

validate/ Dedicated to configuration files used for form validation (discussed in Chapter 10).

Table 2-4. Typical Web Subdirectories

Directory Description

css/ Contains style sheets with a .css extension.

images/ Contains images with a .jpg, .png, or .gif format.

js/ Holds JavaScript files with a .js extension.

uploads/ Must contain the files uploaded by the users. Even though the directory usually
contains images, it is distinct from the images directory so that the synchronization of
the development and production servers does not affect the uploaded images.

Zaninotto_786-9 C02.fm Page 30 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 31

■Note Even though it is highly recommended that you maintain the default tree structure, it is possible to
modify it for specific needs, such as to allow a project to run in a server with different tree structure rules and
coding conventions. Refer to Chapter 19 for more information about modifying the file tree structure.

Common Instruments
A few techniques are used repeatedly in symfony, and you will meet them quite often in
this book and in your own projects. These include parameter holders, constants, and class
autoloading.

Parameter Holders
Many of the symfony classes contain a parameter holder. It is a convenient way to encapsulate
attributes with clean getter and setter methods. For instance, the sfResponse class holds a param-
eter holder that you can retrieve by calling the getParameterHolder() method. Each parameter
holder stores data the same way, as illustrated in Listing 2-15.

Listing 2-15. Using the sfResponse Parameter Holder

$response->getParameterHolder()->set('foo', 'bar');
echo $response->getParameterHolder()->get('foo');
 => 'bar'

Most of the classes using a parameter holder provide proxy methods to shorten the code
needed for get/set operations. This is the case for the sfResponse object, so you can do the
same as in Listing 2-15 with the code of Listing 2-16.

Listing 2-16. Using the sfResponse Parameter Holder Proxy Methods

$response->setParameter('foo', 'bar');
echo $response->getParameter('foo');
 => 'bar'

The parameter holder getter accepts a default value as a second argument. This provides a
useful fallback mechanism that is much more concise than possible with a conditional state-
ment. See Listing 2-17 for an example.

Listing 2-17. Using the Attribute Holder Getter’s Default Value

// The 'foobar' parameter is not defined, so the getter returns an empty value
echo $response->getParameter('foobar');
 => null

Zaninotto_786-9 C02.fm Page 31 Friday, December 22, 2006 2:19 PM

32 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

// A default value can be used by putting the getter in a condition
if ($response->hasParameter('foobar'))
{
 echo $response->getParameter('foobar');
}
else
{
 echo 'default';
}
 => default

// But it is much faster to use the second getter argument for that
echo $response->getParameter('foobar', 'default');
 => default

The parameter holders even support namespaces. If you specify a third argument to a
setter or a getter, it is used as a namespace, and the parameter will be defined only within that
namespace. Listing 2-18 shows an example.

Listing 2-18. Using the sfResponse Parameter Holder Namespace

$response->setParameter('foo', 'bar1');
$response->setParameter('foo', 'bar2', 'my/name/space');
echo $response->getParameter('foo');
 => 'bar1'
echo $response->getParameter('foo', null, 'my/name/space');
 => 'bar2'

Of course, you can add a parameter holder to your own classes to take advantage of its
syntax facilities. Listing 2-19 shows how to define a class with a parameter holder.

Listing 2-19. Adding a Parameter Holder to a Class

class MyClass
{
 protected $parameter_holder = null;

 public function initialize ($parameters = array())
 {
 $this->parameter_holder = new sfParameterHolder();
 $this->parameter_holder->add($parameters);
 }

 public function getParameterHolder()
 {
 return $this->parameter_holder;
 }
}

Zaninotto_786-9 C02.fm Page 32 Friday, December 22, 2006 2:19 PM

C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S CO D E 33

Constants
Surprisingly, you will find very few constants in symfony. This is because constants have a major
drawback in PHP: you can’t change their value once they are defined. So symfony uses its own
configuration object, called sfConfig, which replaces constants. It provides static methods to
access parameters from everywhere. Listing 2-20 demonstrates the use of sfConfig class methods.

Listing 2-20. Using the sfConfig Class Methods Instead of Constants

// Instead of PHP constants,
define('SF_FOO', 'bar');
echo SF_FOO;
// Symfony uses the sfConfig object
sfConfig::set('sf_foo', 'bar');
echo sfConfig::get('sf_foo');

The sfConfig methods support default values, and you can call the sfConfig::set() method
more than once on the same parameter to change its value. Chapter 5 discusses sfConfig
methods in more detail.

Class Autoloading
Classically, when you use a class method or create an object in PHP, you need to include the
class definition first.

include 'classes/MyClass.php';
$myObject = new MyClass();

But on large projects with many classes and a deep directory structure, keeping track of all
the class files to include and their paths takes a lot of time. By providing an __autoload() function
(or a spl_autoload_register() function), symfony makes include statements unnecessary,
and you can write directly:

$myObject = new MyClass();

Symfony will then look for a MyClass definition in all files ending with php in one of the
project’s lib/ directories. If the class definition is found, it will be included automatically.

So if you store all your classes in lib/ directories, you don’t need to include classes anymore.
That’s why the symfony projects usually do not contain any include or require statements.

■Note For better performance, the symfony autoloading scans a list of directories (defined in an internal
configuration file) during the first request. It then registers all the classes these directories contain and stores
the class/file correspondence in a PHP file as an associative array. That way, future requests don’t need to do
the directory scan anymore. This is why you need to clear the cache every time you add or move a class
file in your project by calling the symfony clear-cache command. You will learn more about the cache
in Chapter 12, and about the autoloading configuration in Chapter 19.

Zaninotto_786-9 C02.fm Page 33 Friday, December 22, 2006 2:19 PM

34 C H A P T E R 2 ■ E X P L O R I N G S Y M F O N Y ’ S C O D E

Summary
Using an MVC framework forces you to divide and organize your code according to the frame-
work conventions. Presentation code goes to the view, data manipulation code goes to the
model, and the request manipulation logic goes to the controller. It makes the application of
the MVC pattern both very helpful and quite restricting.

Symfony is an MVC framework written in PHP 5. Its structure is designed to get the best of
the MVC pattern, but with great ease of use. Thanks to its versatility and configurability, symfony is
suitable for all web application projects.

Now that you understand the underlying theory behind symfony, you are almost ready to
develop your first application. But before that, you need a symfony installation up and running
on your development server.

Zaninotto_786-9 C02.fm Page 34 Friday, December 22, 2006 2:19 PM

35

■ ■ ■

C H A P T E R 3

Running Symfony

As you’ve learned in previous chapters, the symfony framework is a set of files written in PHP.
A symfony project uses these files, so installing symfony means getting these files and making
them available for the project.

Being a PHP 5 framework, symfony requires PHP 5. Make sure you have it installed by
opening a command line and typing this command:

> php -v

PHP 5.2.0 (cli) (built: Nov 2 2006 11:57:36)
Copyright (c) 1997-2006 The PHP Group
Zend Engine v2.2.0, Copyright (c) 1998-2006 Zend Technologies

If the version number is 5.0 or higher, then you’re ready for the installation, as described
in this chapter.

Installing the Sandbox
If you just want to see what symfony is capable of, you’ll probably go for the fast installation.
In that case, you need the sandbox.

The sandbox is a simple archive of files. It contains an empty symfony project including all
the required libraries (symfony, pake, lime, Creole, Propel, and Phing), a default application,
and basic configuration. It will work out of the box, without specific server configuration or any
additional packages.

To install it, download the sandbox archive from http://www.symfony-project.com/get/
sf_sandbox.tgz. Unpack it under the root web directory configured for your server (usually
web/ or www/). For the purposes of uniformity, this chapter will assume you unpacked it to the
directory sf_sandbox/.

■Caution Having all the files under the root web directory is fine for your own tests in a local host, but is
a bad practice in a production server. It makes all the internals of your application visible to end users.

Zaninotto_786-9 C03.fm Page 35 Thursday, December 7, 2006 9:49 AM

36 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

Test your installation by executing the symfony CLI. Go to the new sf_sandbox/ directory
and type the following on a *nix system:

> ./symfony -V

On Windows, issue this command:

> symfony -V

You should see the sandbox version number:

symfony version 1.0.0

Now make sure that your web server can browse the sandbox by requesting this URL:

http://localhost/sf_sandbox/web/frontend_dev.php/

You should see a congratulations page that looks like Figure 3-1, and it means that your
installation is finished. If not, then an error message will guide you through the configuration
changes needed. You can also refer to the “Troubleshooting” section later in this chapter.

Figure 3-1. Sandbox congratulations page

The sandbox is intended for you to practice with symfony on a local computer, not to
develop complex applications that may end up on the Web. However, the version of symfony
shipped with the sandbox is fully functional and equivalent to the one you can install via PEAR.

To uninstall a sandbox, just remove the sf_sandbox/ directory from your web/ folder.

Zaninotto_786-9 C03.fm Page 36 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 37

Installing the Symfony Libraries
When developing an application, you will probably need to install symfony twice: once for your
development environment and once for the host server (unless your host already has symfony
installed). For each server, you will probably want to avoid duplication by keeping all the
symfony files in a single place, whether you develop only one application or several applications.

Since the symfony framework evolves quickly, a new stable version could very well be
released only a few days after your first installation. You need to think of the framework
upgrade as a major concern, and that’s another reason why you should share one instance of
the symfony libraries across all your symfony projects.

When it comes to installing the libraries for a real application development, you have two
alternatives:

• The PEAR installation is recommended for most people. It can be easily shared and
upgraded, and the installation process is straightforward.

• The Subversion (SVN) installation is meant to be used only by advanced PHP developers,
who want to take advantage of the latest patches, add features of their own, and/or
contribute to the symfony project.

Symfony integrates a few other packages:

• pake is a CLI utility.

• lime is a unit testing utility.

• Creole is a database abstraction engine. Just like PHP Data Objects (PDO), it provides an
interface between your code and the database SQL code, and makes it possible to switch
to another engine.

• Propel is for ORM. It provides object persistence and query service.

• Phing is a CLI for Propel.

Pake and lime are developed by the symfony team. Creole, Propel, and Phing come from
another team and are released under the GNU Lesser Public General License (LGPL). All these
packages are bundled with symfony.

Installing the Symfony PEAR Package
The symfony PEAR package contains the symfony libraries and all its dependencies. It also
contains a script that will extend your CLI to include the symfony command.

The first step to install it is to add the symfony channel to PEAR, by issuing this command:

> pear channel-discover pear.symfony-project.com

To see the libraries available in this channel, type the following:

> pear remote-list -c symfony

Zaninotto_786-9 C03.fm Page 37 Thursday, December 7, 2006 9:49 AM

38 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

Now you are ready to install the latest stable version of symfony. Issue this command:

> pear install symfony/symfony

downloading symfony-1.0.0.tgz ...
Starting to download symfony-1.0.0.tgz (1,283,270 bytes)
...
...
.............done: 1,283,270 bytes
install ok: channel://pear.symfony-project.com/symfony-1.0.0

That’s it. The symfony files and CLI are installed. Check that the installation succeeded by
calling the new symfony command line, asking for the version number:

> symfony -V

symfony version 1.0.0

■Tip If you prefer to install the most recent beta, which has the latest bug fixes and enhancements, type
pear install symfony/symfony-beta instead. Beta releases are not completely stable and are generally
not recommended for production environments.

The symfony libraries are now installed in directories as follows:

• $php_dir/symfony/ contains the main libraries.

• $data_dir/symfony/ contains the skeleton of symfony applications; default modules;
and configuration, i18n data, and so on.

• $doc_dir/symfony/ contains the documentation.

• $test_dir/symfony/ contains unit tests.

The _dir variables are part of your PEAR configuration. To see their values, type the following:

>pear config-show

Checking Out Symfony from the SVN Repository
For production servers, or when PEAR is not an option, you can download the latest version of
the symfony libraries directly from the symfony Subversion repository by requesting a checkout:

> mkdir /path/to/symfony
> cd /path/to/symfony
> svn checkout http://svn.symfony-project.com/tags/RELEASE_1_0_0/ .

Zaninotto_786-9 C03.fm Page 38 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 39

The symfony command, available only for PEAR installations, is a call to the /path/to/
symfony/data/bin/symfony script. So the following would be the equivalent to the symfony -V
command for an SVN installation:

> php /path/to/symfony/data/bin/symfony -V

symfony version 1.0.0

If you chose an SVN installation, you probably already have an existing symfony project.
For this project to make use of the symfony files, you need to change the two variables defined
in your project’s config/config.php file, as follows:

<?php

$sf_symfony_lib_dir = '/path/to/symfony/lib/';
$sf_symfony_data_dir = '/path/to/symfony/data/';

Chapter 19 proposes other ways to link a project with a symfony installation (including
symbolic links and relative paths).

■Tip Alternatively, you can also download the PEAR package (http://pear.symfony-project.com/
get/symfony-1.0.0.tgz) and unpack it somewhere. You will have the same result as with a checkout.

Setting Up an Application
As you learned in Chapter 2, symfony gathers related applications in projects. All the applica-
tions of a project share the same databases. In order to set up an application, you must first set
up a project.

Creating the Project
Each symfony project follows a predefined directory structure. The symfony command line
automates the creation of new projects by initiating the skeleton of the project, with the proper
tree structure and access rights. So to create a project, simply create a new directory and ask
symfony to make it a project.

For a PEAR installation, issue these commands:

> mkdir ~/myproject
> cd ~/myproject
> symfony init-project myproject

For an SVN installation, create a project with these commands:

Zaninotto_786-9 C03.fm Page 39 Thursday, December 7, 2006 9:49 AM

www.allitebooks.com

http://www.allitebooks.org

40 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

> mkdir ~/myproject
> cd ~/myproject
> php /path/to/symfony/data/bin/symfony init-project myproject

The symfony command must always be called from the project’s root directory (myproject/
in the preceding examples), because all the tasks performed by this command are project-specific.

Symfony will create a directory structure that looks like this:

apps/
batch/
cache/
config/
data/
doc/
lib/
log/
plugins/
test/
web/

■Tip The init-project task adds a symfony script in the project root directory. This PHP script does the
same as the symfony command installed by PEAR, so you can call php symfony instead of symfony if you
don’t have native command-line support (for SVN installations).

Creating the Application
The project is not yet ready to be viewed, because it requires at least one application. To
initialize it, use the symfony init-app command and pass the name of the application as an
argument:

> symfony init-app myapp

This will create a myapp/ directory in the apps/ folder of the project root, with a default
application configuration and a set of directories ready to host the file of your website:

apps/
 myapp/
 config/
 i18n/
 lib/
 modules/
 templates/

Some PHP files corresponding to the front controllers of each default environment are
also created in the project web directory:

Zaninotto_786-9 C03.fm Page 40 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 41

web/
 index.php
 myapp_dev.php

index.php is the production front controller of the new application. Because you created
the first application of the project, symfony created a file called index.php instead of myapp.php
(if you now add a new application called mynewapp, the new production front controller will be
named mynewapp.php). To run your application in the development environment, call the front
controller myapp_dev.php. You’ll learn more about these environments in Chapter 5.

Configuring the Web Server
The scripts of the web/ directory are the entry points to the application. To be able to access
them from the Internet, the web server must be configured. In your development server, as well
as in a professional hosting solution, you probably have access to the Apache configuration and
you can set up a virtual host. On a shared-host server, you probably have access only to an
.htaccess file.

Setting Up a Virtual Host
Listing 3-1 is an example of Apache configuration, where a new virtual host is added in the
httpd.conf file.

Listing 3-1. Sample Apache Configuration, in apache/conf/httpd.conf

<VirtualHost *:80>
 ServerName myapp.example.com
 DocumentRoot "/home/steve/myproject/web"
 DirectoryIndex index.php
 Alias /sf /$sf_symfony_data_dir/web/sf
 <Directory "/$sf_symfony_data_dir/web/sf">
 AllowOverride All
 Allow from All
 </Directory>
 <Directory "/home/steve/myproject/web">
 AllowOverride All
 Allow from All
 </Directory>
</VirtualHost>

In the configuration in Listing 3-1, the /path/to/symfony/data placeholder must be
replaced by the actual path. For example, for a PEAR installation in *nix, you should type some-
thing like this:

 Alias /sf /usr/local/lib/php/data/symfony/web/sf

Zaninotto_786-9 C03.fm Page 41 Thursday, December 7, 2006 9:49 AM

42 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

■Note The alias to the web/sf/ directory is not mandatory. It allows Apache to find images, style sheets,
and JavaScript files for the web debug toolbar, the admin generator, the default symfony pages, and the Ajax
support. An alternative to this alias would be to create a symbolic link (symlink) or copy the /path/to/
symfony/data/web/sf/ directory to myproject/web/sf/.

Restart Apache, and that’s it. Your newly created application can now be called and viewed
through a standard web browser at the following URL:

http://localhost/myapp_dev.php/

You should see a congratulations page similar to the one shown earlier in Figure 3-1.

URL REWRITING

Symfony uses URL rewriting to display “smart URLs”—meaningful locations that display well on search engines
and hide all the technical data from the user. You will learn more about this feature, called routing, in Chapter 9.

If your version of Apache is not compiled with the mod_rewrite module, check that you have the
mod_rewrite Dynamic Shared Object (DSO) installed and the following lines in your httpd.conf:

AddModule mod_rewrite.c
LoadModule rewrite_module modules/mod_rewrite.so

For Internet Information Services (IIS), you will need isapi/rewrite installed and running. Check the
symfony online documentation for a detailed IIS installation guide.

Configuring a Shared-Host Server
Setting up an application in a shared host is a little trickier, since the host usually has a specific
directory layout that you can’t change.

■Caution Doing tests and development directly in a shared host is not a good practice. One reason is that
it makes the application visible even if it is not finished, revealing its internals and opening large security breaches.
Another reason is that the performance of shared hosts is often not sufficient to browse your application with
the debug tools on efficiently. So you should not start your development with a shared-host installation, but
rather build your application locally and deploy it to the shared host when it is finished. Chapter 16 will tell you
more about deployment techniques and tools.

Let’s imagine that your shared host requires that the web folder is named www/ instead of
web/, and that it doesn’t give you access to the httpd.conf file, but only to an .htaccess file in
the web folder.

Zaninotto_786-9 C03.fm Page 42 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 43

In a symfony project, every path to a directory is configurable. Chapter 19 will tell you
more about it, but in the meantime, you can still rename the web directory to www and have the
application take it into account by changing the configuration, as shown in Listing 3-2. These
lines are to be added to the end of the application config.php file.

Listing 3-2. Changing the Default Directory Structure Settings, in apps/myapp/config/config.php

$sf_root_dir = sfConfig::get('sf_root_dir');
sfConfig::add(array(
 'sf_web_dir_name' => $sf_web_dir_name = 'www',
 'sf_web_dir' => $sf_root_dir.DIRECTORY_SEPARATOR.$sf_web_dir_name,
 'sf_upload_dir' => $sf_root_dir.DIRECTORY_SEPARATOR.$sf_web_dir_name ➥

 .DIRECTORY_SEPARATOR.sfConfig::get('sf_upload_dir_name'),
));

The project web root contains an .htaccess file by default. It is shown in Listing 3-3. Modify
it as necessary to match your shared host requirements.

Listing 3-3. Default .htaccess Configuration, Now in myproject/www/.htaccess

Options +FollowSymLinks +ExecCGI

<IfModule mod_rewrite.c>
 RewriteEngine On

 # we skip all files with .something
 RewriteCond %{REQUEST_URI} \..+$
 RewriteCond %{REQUEST_URI} !\.html$
 RewriteRule .* - [L]

 # we check if the .html version is here (caching)
 RewriteRule ^$ index.html [QSA]
 RewriteRule ^([^.]+)$ $1.html [QSA]
 RewriteCond %{REQUEST_FILENAME} !-f

 # no, so we redirect to our front web controller
 RewriteRule ^(.*)$ index.php [QSA,L]
</IfModule>

big crash from our front web controller
ErrorDocument 500 "<h2>Application error</h2>symfony application➥

 failed to start properly"

You should now be ready to browse your application. Check the congratulation page by
requesting this URL:

http://www.example.com/myapp_dev.php/

Zaninotto_786-9 C03.fm Page 43 Thursday, December 7, 2006 9:49 AM

44 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

OTHER SERVER CONFIGURATIONS

Symfony is compatible with other server configurations. You can, for instance, access a symfony application
using an alias instead of a virtual host. You can also run a symfony application with an IIS server. There are as
many techniques as there are configurations, and it is not the purpose of this book to explain them all.

To find directions for a specific server configuration, refer to the symfony wiki (http://www.
symfony-project.com/trac/wiki), which contains many step-by-step tutorials.

Troubleshooting
If you encounter problems during the installation, try to make the best out of the errors or
exceptions thrown to the shell or to the browser. They are often self-explanatory and may even
contain links to specific resources on the Web about your issue.

Typical Problems
If you are still having problems getting symfony running, check the following:

• Some PHP installations come with both a PHP 4 and a PHP 5 command. In that case, the
command line is probably php5 instead of php, so try calling php5 symfony instead of
the symfony command. You may also need to add SetEnv PHP_VER 5 to your .htaccess
configuration, or rename the scripts of the web/ directory from .php to .php5. The error
thrown by a PHP 4 command line trying to access symfony looks like this:

Parse error, unexpected ',', expecting '(' in .../symfony.php on line 19.

• The memory limit, defined in the php.ini, must be set to 16M at least. The usual symptom
for this problem is an error message when installing symfony via PEAR or using the
command line.

Allowed memory size of 8388608 bytes exhausted

• The zend.ze1_compatibility_mode setting must be set to off in your php.ini. If it is not,
trying to browse to one of the web scripts will produce an “implicit cloning” error:

Strict Standards: Implicit cloning object of class 'sfTimer' ➥

because of 'zend.ze1_compatibility_mode'

Zaninotto_786-9 C03.fm Page 44 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 45

• The log/ and cache/ directories of your project must be writable by the web server.
Attempts to browse a symfony application without these directory permissions will
result in an exception:

sfCacheException [message] Unable to write cache file ➥

"/usr/myproject/cache/frontend/prod/config/config_config_handlers.yml.php"

• The include path of your system must include the path to the php command, and the
include path of your php.ini must contain a path to PEAR (if you use PEAR).

• Sometimes, there is more than one php.ini on a server’s file system (for instance, if you
use the WAMP package), so it is difficult to know which php.ini is used. Make the setting
changes described in the previous items in all the php.ini files that you can find.

■Note Although it is not mandatory, it is strongly advised, for performance reasons, to set the
magic_quotes_gpc and register_globals settings to off in your php.ini.

Symfony Resources
You can check if your problem has already happened to someone else and find solutions in
various places:

• The symfony installation forum (http://www.symfony-project.com/forum/) is full of
installation questions about a given platform, environment, configuration, host, and
so on.

• The archives of the users mailing-list (http://groups.google.fr/group/symfony-users)
are also searchable. You may find similar experiences to your own there.

• The symfony wiki (http://www.symfony-project.com/trac/wiki#Installingsymfony)
contains step-by-step tutorials, contributed by symfony users, about installation.

If you don’t find any answer, try posing your question to the symfony community. You can
post your query in the forum, the mailing list, or even drop to the #symfony IRC channel to get
feedback from the most active members of the community.

Source Versioning
Once the setup of the application is done, starting a source versioning (or version control)
process is recommended. Source versioning keeps track of all modifications in the code, gives
access to previous releases, facilitates patching, and allows for efficient team work. Symfony
natively supports CVS, although Subversion (http://subversion.tigris.org/) is recommended.
The following examples show the commands for Subversion, and assume that you already
have a Subversion server installed and that you wish to create a new repository for your project.

Zaninotto_786-9 C03.fm Page 45 Thursday, December 7, 2006 9:49 AM

46 C H A P T E R 3 ■ R U N N I N G S Y M F O N Y

For Windows users, a recommended Subversion client is TortoiseSVN (http://tortoisesvn.
tigris.org/). For more information about source versioning and the commands used here,
consult the Subversion documentation.

The following example assumes that $SVNREP_DIR is defined as an environment variable. If
you don’t have it defined, you will need to substitute the actual location of the repository in
place of $SVNREP_DIR.

So let’s create the new repository for the myproject project:

> svnadmin create $SVNREP_DIR/myproject

Then the base structure (layout) of the repository is created with the trunk, tags, and
branches directories with this pretty long command:

> svn mkdir -m "layout creation" file:///$SVNREP_DIR/myproject/trunk ➥

file:///$SVNREP_DIR/myproject/tags file:///$SVNREP_DIR/myproject/branches

This will be your first revision. Now you need to import the files of the project except the
cache and log temporary files:

> cd ~/myproject
> rm -rf cache/*
> rm -rf log/*
> svn import -m "initial import" . file:///$SVNREP_DIR/myproject/trunk

Check the committed files by typing the following:

> svn ls file:///$SVNREP_DIR/myproject/trunk/

That seems good. Now the SVN repository has the reference version (and the history) of all
your project files. This means that the files of the actual ~/myproject/ directory need to refer
to the repository. To do that, first rename the myproject/ directory—you will erase it soon if
everything works well—and do a checkout of the repository in a new directory:

> cd ~
> mv myproject myproject.origin
> svn co file:///$SVNREP_DIR/myproject/trunk myproject
> ls myproject

That’s it. Now you can work on the files located in ~/myproject/ and commit your modifi-
cations to the repository. Don’t forget to do some cleanup and erase the myproject.origin/
directory, which is now useless.

There is one remaining thing to set up. If you commit your working directory to the repos-
itory, you may copy some unwanted files, like the ones located in the cache and log directories
of your project. So you need to specify an ignore list to SVN for this project. You also need to set
full access to the cache/ and log/ directories again:

> cd ~/myproject
> chmod 777 cache
> chmod 777 log
> svn propedit svn:ignore log
> svn propedit svn:ignore cache

Zaninotto_786-9 C03.fm Page 46 Thursday, December 7, 2006 9:49 AM

C H A P T E R 3 ■ R U N N I N G S Y M F O N Y 47

The default text editor configured for SVN should launch. If this doesn’t happen, make
Subversion use your preferred editor by typing this:

> export SVN_EDITOR=<name of editor>
> svn propedit svn:ignore log
> svn propedit svn:ignore cache

Now simply add all files from the subdirectories of myproject/ that SVN should ignore
when committing:

*

Save and quit. You’re finished.

Summary
To test and play with symfony on your local server, your best option for installation is definitely
the sandbox, which contains a preconfigured symfony environment.

For a real development or in a production server, opt for the PEAR installation or the SVN
checkout. This will install the symfony libraries, and you still need to initialize a project and an
application. The last step of the application setup is the server configuration, which can be done in
many ways. Symfony works perfectly fine with a virtual host, and it is the recommended solution.

If you have any problems during installation, you will find many tutorials and answers to
frequently asked questions on the symfony website. If necessary, you can submit your problem
to the symfony community, and you will get a quick and effective answer.

Once your project is initiated, it is a good habit to start a version-control process.
Now that you are ready to use symfony, it is time to see how to build a basic web application.

Zaninotto_786-9 C03.fm Page 47 Thursday, December 7, 2006 9:49 AM

Zaninotto_786-9 C03.fm Page 48 Thursday, December 7, 2006 9:49 AM

49

■ ■ ■

C H A P T E R 4

The Basics of Page Creation

Curiously, the first tutorial that programmers follow when learning a new language or a
framework is the one that displays “Hello, world!” on the screen. It is strange to think of the
computer as something that can greet the whole world, since every attempt in the artificial
intelligence field has so far resulted in poor conversational abilities. But symfony isn’t dumber
than any other program, and the proof is, you can create a page that says “Hello, <Your Name
Here>” with it.

This chapter will teach you how to create a module, which is a structural element that
groups pages. You will also learn how to create a page, which is divided into an action and a
template, because of the MVC pattern. Links and forms are the basic web interactions; you will
see how to insert them in a template and handle them in an action.

Creating a Module Skeleton
As Chapter 2 explained, symfony groups pages into modules. Before creating a page, you need
to create a module, which is initially an empty shell with a file structure that symfony can
recognize.

The symfony command line automates the creation of modules. You just need to call the
init-module task with the application name and the module name as arguments. In the previous
chapter, you created a myapp application. To add a mymodule module to this application, type
the following commands:

> cd ~/myproject
> symfony init-module myapp mymodule

>> dir+ ~/myproject/apps/myapp/modules/mymodule
>> dir+ ~/myproject/apps/myapp/modules/mymodule/actions
>> file+ ~/myproject/apps/myapp/modules/mymodule/actions/actions.class.php
>> dir+ ~/myproject/apps/myapp/modules/mymodule/config
>> dir+ ~/myproject/apps/myapp/modules/mymodule/lib
>> dir+ ~/myproject/apps/myapp/modules/mymodule/templates
>> file+ ~/myproject/apps/myapp/modules/mymodule/templates/indexSuccess.php
>> dir+ ~/myproject/apps/myapp/modules/mymodule/validate
>> file+ ~/myproject/test/functional/myapp/mymoduleActionsTest.php

Zaninotto_786-9 C04.fm Page 49 Thursday, December 21, 2006 12:53 PM

50 C H A P T E R 4 ■ T H E B A S I CS O F PA G E C R E A T I O N

>> tokens ~/myproject/test/functional/myapp/mymoduleActionsTest.php
>> tokens ~/myproject/apps/myapp/modules/mymodule/actions/actions.class.php
>> tokens ~/myproject/apps/myapp/modules/mymodule/templates/indexSuccess.php

Apart from the actions/, config/, lib/, templates/, and validate/ directories, this command
created only three files. The one in the test/ folder concerns unit tests, and you don’t need to
bother with it until Chapter 15. The actions.class.php (shown in Listing 4-1) forwards to the
default module congratulation page. The templates/indexSuccess.php file is empty.

Listing 4-1. The Default Generated Action, in actions/actions.class.php

<?php

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 $this->forward('default', 'module');
 }
}

■Note If you look at an actual actions.class.php file, you will find more than these few lines, including
a lot of comments. This is because symfony recommends using PHP comments to document your project and
prepares each class file to be compatible with the phpDocumentor tool (http://www.phpdoc.org/).

For each new module, symfony creates a default index action. It is composed of an action
method called executeIndex and a template file called indexSuccess.php. The meanings of the
execute prefix and Success suffix will be explained in Chapters 6 and 7, respectively. In the
meantime, you can consider that this naming is a convention. You can see the corresponding
page (reproduced in Figure 4-1) by browsing to the following URL:

http://localhost/myapp_dev.php/mymodule/index

The default index action will not be used in this chapter, so you can remove the
executeIndex() method from the actions.class.php file, and delete the indexSuccess.php file
from the templates/ directory.

■Note Symfony offers other ways to initiate a module than the command line. One of them is to create the
directories and files yourself. In many cases, actions and templates of a module are meant to manipulate data
of a given table. As the necessary code to create, retrieve, update, and delete records from a table is often the
same, symfony provides a mechanism called scaffolding to generate this code for you. Refer to Chapter 14
for more information about this technique.

Zaninotto_786-9 C04.fm Page 50 Thursday, December 21, 2006 12:53 PM

C H A P T E R 4 ■ T H E B AS I CS O F P A G E C R E A T I O N 51

Figure 4-1. The default generated index page

Adding a Page
In symfony, the logic behind pages is stored in the action, and the presentation is in templates.
Pages without logic (still) require an empty action.

Adding an Action
The “Hello, world!” page will be accessible through a myAction action. To create it, just add an
executeMyAction method to the mymoduleActions class, as shown in Listing 4-2.

Listing 4-2. Adding an Action Is Like Adding an Execute Method to the Action Class

<?php

class mymoduleActions extends sfActions
{
 public function executeMyAction()
 {
 }
}

The name of the action method is always executeXxx(), where the second part of the name
is the action name with the first letter capitalized.

Now, if you request the following URL:

Zaninotto_786-9 C04.fm Page 51 Thursday, December 21, 2006 12:53 PM

52 C H A P T E R 4 ■ T H E B A S I CS O F PA G E C R E A T I O N

http://localhost/myapp_dev.php/mymodule/myAction

symfony will complain that the myActionSuccess.php template is missing. That’s normal;
in symfony, a page is always made of an action and a template.

■Caution URLs (not domain names) are case-sensitive, and so is symfony (even though the method
names are case-insensitive in PHP). This means that if you add an executemyaction() method, or an
executeMyaction(), and then you call myAction with the browser, symfony will return a 404 error.

URLS ARE PART OF THE RESPONSE

Symfony contains a routing system that allows you to have a complete separation between the actual action
name and the form of the URL needed to call it. This allows for custom formatting of the URL as if it were part
of the response. You are no longer limited by the file structure nor by the request parameters; the URL for an
action can look like the phrase you want. For instance, the call to the index action of a module called article
usually looks like this:

http://localhost/myapp_dev.php/article/index?id=123

This URL retrieves a given article from a database. In this example, it retrieves an article (with id=123)
in the Europe section that specifically discusses finance in France. But the URL can be written in a completely
different way with a simple change in the routing.yml configuration file:

http://localhost/articles/europe/france/finance.html

Not only is the resulting URL search engine-friendly, it is also significant for the user, who can then use
the address bar as a pseudo command line to do custom queries, as in the following:

http://localhost/articles/tagged/finance+france+euro

Symfony knows how to parse and generate smart URLs for the user. The routing system automatically
peels the request parameters from a smart URL and makes them available to the action. It also formats the
hyperlinks included in the response so that they look “smart.” You will learn more about this feature in Chapter 9.

Overall, this means that the way you name the actions of your applications should not be influenced by
the way the URL used to call them should look, but by the actions’ functions in the application. An action name
explains what the action actually does, and it’s often a verb in the infinitive form (like show, list, edit, and
so on). Action names can be made totally invisible to the end user, so don’t hesitate to use explicit action
names (like listByName or showWithComments). You will economize on code comments to explain your
action function, plus the code will be much easier to read.

Zaninotto_786-9 C04.fm Page 52 Thursday, December 21, 2006 12:53 PM

C H A P T E R 4 ■ T H E B AS I CS O F P A G E C R E A T I O N 53

Adding a Template
The action expects a template to render itself. A template is a file located in the templates/
directory of a module, named by the action and the action termination. The default action
termination is a “success,” so the template file to be created for the myAction action is to be
called myActionSuccess.php.

Templates are supposed to contain only presentational code, so keep as little PHP code in
them as possible. As a matter of fact, a page displaying “Hello, world!” can have a template as
simple as the one in Listing 4-3.

Listing 4-3. The mymodule/templates/myActionSuccess.php Template

<p>Hello, world!</p>

If you need to execute some PHP code in the template, you should avoid using the usual
PHP syntax, as shown in Listing 4-4. Instead, write your templates using the PHP alternative
syntax, as shown in Listing 4-5, to keep the code understandable for non-PHP programmers.
Not only will the final code be correctly indented, but it will also help you keep the complex
PHP code in the action, because only control statements (if, foreach, while, and so on) have
an alternative syntax.

Listing 4-4. The Usual PHP Syntax, Good for Actions, But Bad for Templates

<p>Hello, world!</p>
<?php

if ($test)
{
 echo "<p>".time()."</p>";
}

?>

Listing 4-5. The Alternative PHP Syntax, Good for Templates

<p>Hello, world!</p>
<?php if ($test): ?>
<p><?php echo time(); ?></p>
<?php endif; ?>

■Tip A good rule of thumb to check if the template syntax is readable enough is that the file should not
contain HTML code echoed by PHP or curly brackets. And most of the time, when opening a <?php, you will
close it with ?> in the same line.

Zaninotto_786-9 C04.fm Page 53 Thursday, December 21, 2006 12:53 PM

54 C H A P T E R 4 ■ T H E B A S I CS O F PA G E C R E A T I O N

Passing Information from the Action to the Template
The job of the action is to do all the complicated calculation, data retrieval, and tests, and to set
variables for the template to be echoed or tested. Symfony makes the attributes of the action
class (accessed via $this->variableName in the action) directly accessible to the template in the
global namespace (via $variableName). Listings 4-6 and 4-7 show how to pass information from
the action to the template.

Listing 4-6. Setting an Action Attribute in the Action to Make It Available to the Template

<?php

class mymoduleActions extends sfActions
{
 public function executeMyAction()
 {
 $today = getdate();
 $this->hour = $today['hours'];
 }
}

Listing 4-7. The Template Has Direct Access to the Action Attributes

<p>Hello, world!</p>
<?php if ($hour >= 18): ?>
<p>Or should I say good evening? It's already <?php echo $hour ?>.</p>
<?php endif; ?>

■Note The template already has access to a few pieces of data without the need of any variable setup
in the action. Every template can call methods of the $sf_context, $sf_request, $sf_params, and
$sf_user objects. They contain data related to the current context, request, request parameters, and
session. You will soon learn how to use them efficiently.

Gathering Information from the User with Forms
Forms are a good way to get information from the user. Writing form and form elements in
HTML can sometimes be cumbersome, especially when you want to be XHTML-compliant.
You could include form elements in symfony templates the usual way, as shown in Listing 4-8,
but symfony provides helpers that make this task easier.

Zaninotto_786-9 C04.fm Page 54 Thursday, December 21, 2006 12:53 PM

C H A P T E R 4 ■ T H E B AS I CS O F P A G E C R E A T I O N 55

Listing 4-8. Templates Can Include Usual HTML Code

<p>Hello, world!</p>
<?php if ($hour >= 18): ?>
<p>Or should I say good evening? It's already <?php echo $hour ?>.</p>
<?php endif; ?>
<form method="post" target="/myapp_dev.php/mymodule/anotherAction">
 <label for="name">What is your name?</label>
 <input type="text" name="name" id="name" value="" />
 <input type="submit" value="Ok" />
</form>

A helper is a PHP function defined by symfony that is meant to be used within templates.
It outputs some HTML code and is faster to use than writing the actual HTML code by yourself.
Using symfony helpers, you can have the same result as in Listing 4-8 with the code shown in
Listing 4-9.

Listing 4-9. It Is Faster and Easier to Use Helpers Than to Use HTML Tags

<p>Hello, world!</p>
<?php if ($hour >= 18): ?>
<p>Or should I say good evening? It's already <?php echo $hour ?>.</p>
<?php endif; ?>
<?php echo form_tag('mymodule/anotherAction') ?>
 <?php echo label_for('name', 'What is your name?') ?>
 <?php echo input_tag('name') ?>
 <?php echo submit_tag('Ok') ?>
</form>

HELPERS ARE HERE TO HELP YOU

If, in the example in Listing 4-9, you think the helper version is not really faster to write than the HTML one,
consider this one:

<?php
$card_list = array(
 'VISA' => 'Visa',
 'MAST' => 'MasterCard',
 'AMEX' => 'American Express',
 'DISC' => 'Discover');
echo select_tag('cc_type', options_for_select($card_list, 'AMEX'));
?>

Zaninotto_786-9 C04.fm Page 55 Thursday, December 21, 2006 12:53 PM

56 C H A P T E R 4 ■ T H E B A S I CS O F PA G E C R E A T I O N

 This outputs the following HTML:

<select name="cc_type" id="cc_type">
 <option value="VISA">Visa</option>
 <option value="MAST">MasterCard</option>
 <option value="AMEX" selected="selected">American Express</option>
 <option value="DISC">Discover</option>
</select>

The benefit of helpers in templates is raw speed of coding, clarity of code, and concision. The only price
to pay is the time to learn them, which will end when you finish this book, and the time to write <?php echo ?>,
for which you should already have a shortcut in your favorite text editor. So you could not use the symfony
helpers in templates and write HTML the way you always did, but this would be a great loss and much less fun.

Note that the use of the short opening tags (<?=, equivalent to <?php echo) is not recommended for
professional web applications, since your production web server may be able to understand more than one
scripting language and consequently get confused. Besides, the short opening tags do not work with the
default PHP configuration and need server tweaking to be activated. Ultimately, when you have to deal with
XML and validation, it falls short because <? has a special meaning in XML.

Form manipulation deserves a whole chapter of its own, since symfony provides many
tools, mostly helpers, to make it easier. You will learn more about these helpers in Chapter 10.

Linking to Another Action
You already know that there is a total decoupling between an action name and the URL used to
call it. So if you create a link to anotherAction in a template as in Listing 4-10, it will only work
with the default routing. If you later decide to change the way the URLs look, then you will need
to review all templates to change the hyperlinks.

Listing 4-10. Hyperlinks, the Classic Way

 I never say my name

To avoid this hassle, you should always use the link_to() helper to create hyperlinks to
your application’s actions. Listing 4-11 demonstrates the use of the hyperlink helper.

Listing 4-11. The link_to() Helper

<p>Hello, world!</p>
<?php if ($hour >= 18): ?>
<p>Or should I say good evening? It's already <?php echo $hour ?>.</p>
<?php endif; ?>

Zaninotto_786-9 C04.fm Page 56 Thursday, December 21, 2006 12:53 PM

C H A P T E R 4 ■ T H E B AS I CS O F P A G E C R E A T I O N 57

<?php echo form_tag('mymodule/anotherAction') ?>
 <?php echo label_for('name', 'What is your name?') ?>
 <?php echo input_tag('name') ?>
 <?php echo submit_tag('Ok') ?>
 <?php echo link_to('I never say my name', ➥

 'mymodule/anotherAction?name=anonymous') ?>
</form>

The resulting HTML will be the same as previously, except that when you change your
routing rules, all the templates will behave correctly and reformat the URLs accordingly.

The link_to() helper, like many other helpers, accepts another argument for special
options and additional tag attributes. Listing 4-12 shows an example of an option argument
and the resulting HTML. The option argument is either an associative array or a simple string
showing key=value couples separated by blanks.

Listing 4-12. Most Helpers Accept an Option Argument

// Option argument as an associative array
<?php echo link_to('I never say my name', 'mymodule/anotherAction?name=anonymous',
 array(
 'class' => 'special_link',
 'confirm' => 'Are you sure?',
 'absolute' => true
)) ?>

// Option argument as a string
<?php echo link_to('I never say my name', 'mymodule/anotherAction?name=anonymous',
 'class=special_link confirm=Are you sure? absolute=true') ?>

// Both calls output the same
 => <a class="special_link" onclick="return confirm('Are you sure?');"
 href="http://localhost/myapp_dev.php/mymodule/anotherAction/name/anonymous">
 I never say my name

Whenever you use a symfony helper that outputs an HTML tag, you can insert additional
tag attributes (like the class attribute in the example in Listing 4-12) in the option argument.
You can even write these attributes in the “quick-and-dirty” HTML 4.0 way (without double
quotes), and symfony will output them in nicely formatted XHTML. That’s another reason why
helpers are faster to write than HTML.

■Note Because it requires an additional parsing and transformation, the string syntax is a little slower than
the array syntax.

Like the form helpers, the link helpers are numerous and have many options. Chapter 9
will describe them in detail.

Zaninotto_786-9 C04.fm Page 57 Thursday, December 21, 2006 12:53 PM

58 C H A P T E R 4 ■ T H E B A S I CS O F PA G E C R E A T I O N

Getting Information from the Request
Whether the user sends information via a form (usually in a POST request) or via the URL (GET
request), you can retrieve the related data from the action with the getRequestParameter()
method of the sfActions object. Listing 4-13 shows how, in anotherAction, you retrieve the
value of the name parameter.

Listing 4-13. Getting Data from the Request Parameter in the Action

<?php

class mymoduleActions extends sfActions
{
 ...

 public function executeAnotherAction()
 {
 $this->name = $this->getRequestParameter('name');
 }
}

If the data manipulation is simple, you don’t even need to use the action to retrieve the
request parameters. The template has access to an object called $sf_params, which offers a
get() method to retrieve the request parameters, just like the getRequestParameter() in the action.

If executeAnotherAction() were empty, Listing 4-14 shows how the
anotherActionSuccess.php template would retrieve the same name parameter.

Listing 4-14. Getting Data from the Request Parameter Directly in the Template

<p>Hello, <?php echo $sf_params->get('name') ?>!</p>

■Note Why not use the $_POST, $_GET, or $_REQUEST variables instead? Because then your URLs will be
formatted differently (as in http://localhost/articles/europe/france/finance.html, without ?
nor =), the usual PHP variables won’t work anymore, and only the routing system will be able to retrieve the
request parameters. And you may want to add input filtering to prevent malicious code injection, which is only
possible if you keep all request parameters in one clean parameter holder.

The $sf_params object is more powerful than just giving a getter equivalent to an array. For
instance, if you only want to test the existence of a request parameter, you can simply use the
$sf_params->has() method instead of testing the actual value with get(), as in Listing 4-15.

Zaninotto_786-9 C04.fm Page 58 Thursday, December 21, 2006 12:53 PM

C H A P T E R 4 ■ T H E B AS I CS O F P A G E C R E A T I O N 59

Listing 4-15. Testing the Existence of a Request Parameter in the Template

<?php if ($sf_params->has('name')): ?>
 <p>Hello, <?php echo $sf_params->get('name') ?>!</p>
<?php else: ?>
 <p>Hello, John Doe!</p>
<?php endif; ?>

You may have already guessed that this can be written in a single line. As with most
getter methods in symfony, both the getRequestParameter() method in the action and the
$sf_params->get() method in the template (which, as a matter of fact, calls the same method
on the same object) accept a second argument: the default value to be used if the request
parameter is not present.

<p>Hello, <?php echo $sf_params->get('name', 'John Doe') ?>!</p>

Summary
In symfony, pages are composed of an action (a method in the actions/actions.class.php file
prefixed with execute) and a template (a file in the templates/ directory, usually ending with
Success.php). They are grouped in modules, according to their function in the application.
Writing templates is facilitated by helpers, which are functions provided by symfony that return
HTML code. And you need to think of the URL as a part of the response, which can be formatted
as needed, so you should refrain for using any direct reference to the URL in action naming or
request parameter retrieval.

Once you know these basic principles, you can already write a whole web application with
symfony. But it would take you way too long, since almost every task you will have to achieve
during the course of the application development is facilitated one way or another by some
symfony feature . . . which is why the book doesn’t stop now.

Zaninotto_786-9 C04.fm Page 59 Thursday, December 21, 2006 12:53 PM

Zaninotto_786-9 C04.fm Page 60 Thursday, December 21, 2006 12:53 PM

61

■ ■ ■

C H A P T E R 5

Configuring Symfony

To be simple and easy to use, symfony defines a few conventions, which should satisfy the
most common requirements of standard applications without need for modification. However,
using a set of simple and powerful configuration files, it is possible to customize almost every-
thing about the way the framework and your application interact with each other. With these
files, you will also be able to add specific parameters for your applications.

This chapter explains how the configuration system works:

• The symfony configuration is kept in files written in YAML, although you can always
choose another format.

• Configuration files are at the project, application, and module levels in a project’s direc-
tory structure.

• You can define several sets of configuration settings; in symfony, a set of configuration is
called an environment.

• The values defined in the configuration files are available from the PHP code of your
application.

• Additionally, symfony authorizes PHP code in YAML files and other tricks to make the
configuration system even more flexible.

The Configuration System
Regardless of purpose, most web applications share a common set of characteristics. For
instance, some sections can be restricted to a subset of users, or the pages can be decorated by
a layout, or a form can be filled with the user input after a failed validation. A framework defines
a structure for emulating these characteristics, and the developer can further tweak them by
changing a configuration setting. This strategy saves a lot of development time, since many
changes don’t require a single line of code, even if there is a lot of code behind. It is also much
more efficient, because it ensures such information can be maintained in a single and easily
identifiable location.

However, this approach has two serious drawbacks:

• Developers end up writing endlessly complex XML files.

• In a PHP architecture, every request takes much longer to process.

Zaninotto_786-9 C05.fm Page 61 Thursday, December 7, 2006 9:58 AM

62 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

Taking these disadvantages into account, symfony uses configuration files only for what
they are best at doing. As a matter of fact, the ambition of the configuration system in symfony
is to be:

Powerful: Almost every aspect that can be managed using configuration files is managed
using configuration files.

Simple: Many aspects of configuration are not shown in a normal application, since they
seldom need to be changed.

Easy: Configuration files are easy to read, to modify, and to create by the developer.

Customizable: The default configuration language is YAML, but it can be INI, XML, or
whatever format the developer prefers.

Fast: The configuration files are never processed by the application but by the configura-
tion system, which compiles them into a fast-processing chunk of code for the PHP server.

YAML Syntax and Symfony Conventions
For its configuration, symfony uses the YAML format by default, instead of more traditional INI
or XML formats. YAML shows structure through indentation and is fast to write. Its advantages
and basic rules were already described in Chapter 1. However, you need to keep a few conven-
tions in mind when writing YAML files. This section introduces several of the most prominent
conventions. For a complete dissertation on the topic, visit the YAML website ((http://www.
yaml.org/).

First of all, never use tabs in YAML files; use spaces instead. YAML parsers can’t understand
files with tabs, so indent your lines with spaces (a double blank is the symfony convention for
indentation), as shown in Listing 5-1.

Listing 5-1. YAML Files Forbid Tabs

Never use tabs
all:
-> mail:
-> -> webmaster: webmaster@example.com

Use blanks instead
all:
 mail:
 webmaster: webmaster@example.com

If your parameters are strings starting or ending with spaces, enclose the value in single
quotes. If a string parameter contains special characters, also enclose the value in single quotes,
as shown in Listing 5-2.

Zaninotto_786-9 C05.fm Page 62 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 63

Listing 5-2. Nonstandard Strings Should Be Enclosed in Single Quotes

error1: This field is compulsory
error2: ' This field is compulsory '
error3: 'Don''t leave this field blank' # Single quotes must be doubled

You can define long strings in multiple lines, and also multiple-line strings, with the special
string headers (> and |) plus an additional indentation. Listing 5-3 demonstrates this convention.

Listing 5-3. Defining Long and Multiline Strings

accomplishment: > # Folded style, introduced by >
 Mark set a major league # Each line break is folded to a space
 home run record in 1998. # Makes YAML more readable
stats: | # Literal style, introduced by |
 65 Home Runs # All line breaks count
 0.278 Batting Average # Indentation doesn't appear in the resulting string

To define a value as an array, enclose the elements in square brackets or use the expanded
syntax with dashes, as shown in Listing 5-4.

Listing 5-4. YAML Array Syntax

Shorthand syntax for arrays
players: [Mark McGwire, Sammy Sosa, Ken Griffey]

Expanded syntax for arrays
players:
 - Mark McGwire
 - Sammy Sosa
 - Ken Griffey

To define a value as an associative array, or hash, enclose the elements in curly brackets
and always insert a space between the key and the value in the key: value couple. You can also
use the expanded syntax by adding indentation and a carriage return for every new key, as
shown in Listing 5-5.

Listing 5-5. YAML Associative Array Syntax

Incorrect syntax, blanks are missing after the colon
mail: {webmaster:webmaster@example.com,contact:contact@example.com}

Correct shorthand syntax for associative arrays
mail: { webmaster: webmaster@example.com, contact: contact@example.com }

Expanded syntax for associative arrays
mail:
 webmaster: webmaster@example.com
 contact: contact@example.com

Zaninotto_786-9 C05.fm Page 63 Thursday, December 7, 2006 9:58 AM

64 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

To give a Boolean value, use either on, 1, or true for a positive value and off, 0, or false for
a negative one. Listing 5-6 shows the possible Boolean values.

Listing 5-6. YAML Boolean Values Syntax

true_values: [on, 1, true]
false_values: [off, 0, false]

Don’t hesitate to add comments (starting with the hash mark, #) and extra spaces to values
to make your YAML files more readable, as shown in Listing 5-7.

Listing 5-7. YAML Comments Syntax and Value Alignment

This is a comment line
mail:
 webmaster: webmaster@example.com
 contact: contact@example.com
 admin: admin@example.com # extra spaces allow nice alignment of values

In some symfony configuration files, you will sometimes see lines that start with a hash
mark (and, as such, ignored by the YAML parsers) but look like usual settings lines. This is a
symfony convention: the default configuration, inherited from other YAML files located in the
symfony core, is repeated in commented lines in your application configuration, for your
information. If you want to change the value of such a parameter, you need to uncomment the
line first, as shown in Listing 5-8.

Listing 5-8. Default Configuration Is Shown Commented

The cache is off by default
settings:
cache: off

If you want to change this setting, uncomment the line first
settings:
 cache: on

Symfony sometimes groups the parameter definitions into categories. All settings of a
given category appear indented under the category header. Structuring long lists of key: value
pairs by grouping them into categories improves the readability of the configuration. Category
headers start with a dot (.). Listing 5-9 shows an example of categories.

Listing 5-9. Category Headers Look Like Keys, But Start with a Dot

all:
 .general:
 tax: 19.6

 mail:
 webmaster: webmaster@example.com

Zaninotto_786-9 C05.fm Page 64 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 65

In this example, mail is a key and general is only a category header. Everything works as if
the category header didn’t exist, as shown in Listing 5-10. The tax parameter is actually a direct
child of the all key.

Listing 5-10. Category Headers Are Only There for Readability and Are Actually Ignored

all:
 tax: 19.6

 mail:
 webmaster: webmaster@example.com

AND IF YOU DON’T LIKE YAML

YAML is just an interface to define settings to be used by PHP code, so the configuration defined in YAML files
ends up being transformed into PHP. After browsing an application, check its cached configuration (in cache/
myapp/dev/config/, for instance). You will see the PHP files corresponding to your YAML configuration.
You will learn more about the configuration cache later in this chapter.

The good news is that if you don’t want to use YAML files, you can still do what the configuration files do
by hand, in PHP or via another format (XML, INT, and so on). Throughout this book, you will meet alternative
ways to define configuration without YAML, and you will even learn to replace the symfony configuration
handlers (in Chapter 19). If you use them wisely, these tricks will enable you to bypass configuration files or
define your own configuration format.

Help, a YAML File Killed My App!
The YAML files are parsed into PHP hashes and arrays, and then the values are used in various
parts of the application to modify the behavior of the view, the controller, or the model. Many
times, when there is a problem in a YAML file, it is not detected until the value actually needs
to be used. Moreover, the error or exception that is thrown then is usually not clearly related to
the YAML configuration file.

If your application suddenly stops working after a configuration change, you should check
that you didn’t make any of the common mistakes of the inattentive YAML coder:

• You miss a space between a key and its value:

key1:value1 # A space is missing after the :

• Keys in a sequence are not indented the same way:

all:
 key1: value1
 key2: value2 # Indentation is not the same as the other sequence members
 key3: value3

• There is a reserved YAML character in a key or a value, without string delimiters:

message: tell him: go way # :, [,], { and } are reserved in YAML
message: 'tell him: go way' # Correct syntax

Zaninotto_786-9 C05.fm Page 65 Thursday, December 7, 2006 9:58 AM

66 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

• You are modifying a commented line:

key: value # Will never be taken into account due to the leading

• You set values with the same key name twice at the same level:

key1: value1
key2: value2
key1: value3 # key1 is defined twice, the value is the last one defined

• You think that the setting takes a special type, while it is always a string, until you convert it:

income: 12,345 # Until you convert it, this is still a string

Overview of the Configuration Files
Configuration is distributed into files, by subject. The files contain parameter definitions, or
settings. Some of these parameters can be overridden at several levels (project, application,
and module); some are specific to a certain level. The next chapters will deal with the configu-
ration files related to their main topic, and Chapter 19 will deal with advanced configuration.

Project Configuration
There are a few project configuration files by default. Here are the files that can be found in the
myproject/config/ directory:

config.php: This is the very first file executed by any request or command. It contains the
path to the framework files, and you can change it to use a different installation. If you add
some define statements at the end of this file, the constants will be accessible from every
application of the project. See Chapter 19 for advanced usage of this file.

databases.yml: This is where you define the access and connection settings to the data-
base (host, login, password, database name, and so on). Chapter 8 will tell you more about
it. It can also be overridden at the application level.

properties.ini: This file holds a few parameters used by the command line tool, including
the project name and the connection settings for distant servers. See Chapter 16 for an
overview of the features using this file.

rsync_exclude.txt: This file specifies which directories must be excluded from the synchroni-
zation between servers. It is discussed in Chapter 16.

schema.yml and propel.ini: These are data access configuration files used by Propel
(symfony’s ORM layer). They are used to make the Propel libraries work with the symfony
classes and the data of your project. schema.yml contains a representation of the project’s
relational data model. propel.ini is automatically generated, so you probably do not need
to modify it. If you don’t use Propel, these files are not needed. Chapter 8 will tell you more
about their use.

Zaninotto_786-9 C05.fm Page 66 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 67

These files are mostly used by external components or by the command line, or they need
to be processed even before any YAML parsing program can be loaded by the framework.
That’s why some of them don’t use the YAML format.

Application Configuration
The main part of the configuration is the application configuration. It is defined in the front
controller (in the web/ directory) for the main constants, in YAML files located in the application
config/ directory, in i18n/ directories for the internationalization files, and in the framework
files for invisible—although useful—additional application configuration.

Front Controller Configuration

The very first application configuration is actually found in the front controller; that is the very
first script executed by a request. Take a look at the default web/index.php in Listing 5-11.

Listing 5-11. The Default Production Front Controller

<?php

define('SF_ROOT_DIR', dirname(__FILE__).'/..');
define('SF_APP', 'myapp');
define('SF_ENVIRONMENT', 'prod');
define('SF_DEBUG', true);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR. ➥

 SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

sfContext::getInstance()->getController()->dispatch();

After defining the name of the application (myapp) and the environment (prod), the general
configuration file is called before the dispatching. So a few useful constants are defined here:

SF_ROOT_DIR: Project root directory (normally, should remain at its default value, unless
you change the file structure).

SF_APP: Application name in the project. Necessary to compute file paths.

SF_ENVIRONMENT: Environment name (prod, dev, or any other project-specific environment
that you define). Will determine which configuration settings are to be used. Environments
are explained later in this chapter.

SF_DEBUG: Activation of the debug mode (see Chapter 16 for details).

If you want to change one of these values, you probably need an additional front controller.
The next chapter will tell you more about front controllers and how to create a new one.

Zaninotto_786-9 C05.fm Page 67 Thursday, December 7, 2006 9:58 AM

68 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

THE ROOT DIRECTORY CAN BE ANYWHERE

Only the files and scripts located under the web root (the web/ directory in a symfony project) are available
from the outside. The front controller scripts, images, style sheets, and JavaScript files are public. All the other
files must be outside the server web root—that means they can be anywhere else.

The non-public files of a project are accessed by the front controller from the SF_ROOT_DIR path. Classically,
the root directory is one level up the web/ directory. But you can choose a completely different structure.
Imagine that your main directory structure is made of two directories, one public and one private:

symfony/ # Private area
 apps/
 batch/
 cache/
 ...
www/ # Public area
 images/
 css/
 js/
 index.php

In this case, the root directory is the symfony/ directory. So the index.php front controller simply
needs to define the SF_ROOT_DIR as follows for the application to work:

define('SF_ROOT_DIR', dirname(__FILE__).'/../symfony');

Chapter 19 will give you more information about how to tweak symfony to make it work on a specific
directory structure.

Main Application Configuration

The main application configuration is stored in files located in the myproject/apps/myapp/
config/ directory:

app.yml: This file should contain the application-specific configuration; that is, global
variables defining business or applicative logic specific to an application, which don’t
need to be stored in a database. Tax rates, shipping fares, and e-mail addresses are often
stored in this file. It is empty by default.

config.php: This file bootstraps the application, which means that it does all the very basic
initializations to allow the application to start. This is where you can customize your directory
structure or add application-specific constants (Chapter 19 provides more details). It starts
by including the project’s config.php.

factories.yml: Symfony defines its own class to handle the view, the request, the response,
the session, and so on. If you want to use your own classes instead, this is where you can
specify them. Chapter 19 provides more information.

Zaninotto_786-9 C05.fm Page 68 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 69

filters.yml: Filters are portions of code executed for every request. This file is where you
define which filters are to be processed, and it can be overridden for each module. Chapter 6
discusses filters in more detail.

logging.yml: This file defines which level of detail must be recorded in the logs, to help you
manage and debug your application. The use of this configuration is explained in Chapter 16.

routing.yml: The routing rules, which allow transforming unreadable and unbookmark-
able URLs into “smart” and explicit ones, are stored in this file. For new applications, a few
default rules exist. Chapter 9 is all about links and routing.

settings.yml: The main settings of a symfony application are defined in this file. This is
where you specify if your application has internationalization, its default language, the
request timeout and whether caching is turned on. With a one-line change in this file,
you can shut down the application so you can perform maintenance or upgrade one of
its components. The common settings and their use are described in Chapter 19.

view.yml: The structure of the default view (name of the layout, title, and meta tags; default
style sheets and JavaScript files to be included; default content-type, and so on) is set in
this file. It also defines the default value of the meta and title tags. Chapter 7 will tell you
more about this file. These settings can be overridden for each module.

Internationalization Configuration

Internationalized applications can display pages in several languages. This requires specific
configuration. There are two configuration places for internationalization:

i18n.yml of the application config/ directory: This file defines general translation settings,
such as the default culture for the translation, whether the translations come from files or
a database, and their format.

Translation files in the application i18n/ directory: These are basically dictionaries, giving
a translation for each of the phrases used in the application templates so that the pages
show translated text when the user switches language.

Note that the activation of the i18n features is set in the settings.yml file. You will find
more information about these features in Chapter 13.

Additional Application Configuration

A second set of configuration files is in the symfony installation directory (in $sf_symfony_
data_dir/config/) and doesn’t appear in the configuration directory of your applications. The
settings defined there are defaults that seldom need to be modified, or that are global to all
projects. However, if you need to modify them, just create an empty file with the same name in
your myproject/apps/myapp/config/ directory, and override the settings you want to change.
The settings defined in an application always have precedence over the ones defined in the
framework. The following are the configuration files in the symfony installation config/ directory:

Zaninotto_786-9 C05.fm Page 69 Thursday, December 7, 2006 9:58 AM

70 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

autoload.yml: This file contains the settings of the autoloading feature. This feature
exempts you from requiring custom classes in your code if they are located in specific
directories. It is described in detail in Chapter 19.

constants.php: This file contains the default application file structure. To override the
settings of this file, use the application config.php, as explained in Chapter 19.

core_compile.yml and bootstrap_compile.yml: These are lists of classes to be included to start
an application (in bootstrap_compile.yml) and to process a request (in core_compile.yml).
These classes are actually concatenated into an optimized PHP file without comments,
which will accelerate the execution by minimizing the file access operations (one file is
loaded instead of more than forty for each request). This is especially useful if you don’t
use a PHP accelerator. Optimization techniques are described in Chapter 18.

config_handlers.yml: This is where you can add or modify the handlers used to process
each configuration file. Chapter 19 provides more details.

php.yml: This file checks that the variables of the php.ini file are properly defined and
allows you to override them, if necessary. Check Chapter 19 for details.

Module Configuration
By default, a module has no specific configuration. But, if required, you can override some
application-level settings for a given module. For instance, you might do this to change the
HTML description of all the actions of a module, or to include a specific JavaScript file. You can
also choose to add new parameters restricted to a specific module to preserve encapsulation.

As you may have guessed, module configuration files must be located in a myproject/
apps/myapp/modules/mymodule/config/ directory. These files are as follows:

generator.yml: For modules generated according to a database table (scaffoldings and
administrations), this file defines how the interface displays rows and fields, and which
interactions are proposed to the user (filters, sorting, buttons, and so on). Chapter 14 will
tell you more about it.

module.yml: This file contains custom parameters specific to a module (equivalent to the
app.yml, but at the module level) and action configuration. Chapter 6 provides more details.

security.yml: This file sets access restrictions for actions. This is where you specify that a
page can be viewed only by registered users or by a subset of registered users with special
permissions. Chapter 6 will tell you more about it.

view.yml: This file contains configuration for the views of one or all of the actions of a
module. It overrides the application view.yml and is described in Chapter 7.

Data validation files: Although located in the validate/ directory instead of the config/
one, the YAML data validation files, used to control the data entered in forms, are also
module configuration files. You will learn how to use them in Chapter 10.

Most module configuration files offer the ability to define parameters for all the views or all
the actions of a module, or for a subset of them.

Zaninotto_786-9 C05.fm Page 70 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 71

TOO MANY FILES?

You might be overwhelmed by the number of configuration files present in the application. But please keep the
following in mind:

• Most of the time, you don’t need to change the configuration, since the default conventions match the
most common requirements.

• Each configuration file is related to a particular feature, and the next chapters will detail their use one
by one. When you focus on a single file, you can see clearly what it does and how it is organized.

• For professional web development, the default configuration is often not completely adapted. The
configuration files allow for an easy modification of the symfony mechanisms without code. Imagine the
amount of PHP code necessary to achieve the same amount of control.

• If all the configuration were located in one file, not only would the file be completely unreadable, but
you could not redefine configuration at several levels (see the “Configuration Cascade” section later
in this chapter).

The configuration system is one of the great strengths of symfony, because it makes symfony usable for
almost every kind of web application, and not only for the ones for which the framework was originally designed.

Environments
During the course of application development, you will probably need to keep several sets of
configuration in parallel. For instance, you will need to have the connection settings for your
tests database available during development, and the ones for your real data available for
production. To answer the need of concurrent configurations, symfony offers different
environments.

What Is an Environment?
An application can run in various environments. The different environments share the same
PHP code (apart from the front controller), but can have completely different configurations.
For each application, symfony provides three default environments: production (prod), test
(test), and development (dev). You’re also free to add as many custom environments as you wish.

So basically, environments and configuration are synonyms. For instance, a test environment
will log alerts and errors, while a prod environment will only log errors. Cache acceleration is
often deactivated in the dev environment, but activated in the test and prod environments.
The dev and test environments may need test data, stored in a database distinct from the one
used in the production environment. So the database configuration will be different between
the two environments. All environments can live together on the same machine, although a
production server generally contains only the prod environment.

In the dev environment, the logging and debugging settings are all enabled, since mainte-
nance is more important than performance. On the contrary, the prod environment has settings
optimized for performance by default, so the production configuration turns off many features.
A good rule of thumb is to navigate in the development environment until you are satisfied

Zaninotto_786-9 C05.fm Page 71 Thursday, December 7, 2006 9:58 AM

72 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

with the feature you are working on, and then switch to the production environment to check
its speed.

The test environment differs from the dev and prod environment in other ways. You interact
with this environment solely through the command line for the purpose of functional testing
and batch scripting. Consequently, the test environment is close to the production one, but it
is not accessed through a web browser. It simulates the use of cookies and other HTTP specific
components.

To change the environment in which you’re browsing your application, just change the
front controller. Until now, you have seen only the development environment, since the URLs
used in the example called the development front controller:

http://localhost/myapp_dev.php/mymodule/index

However, if you want to see how the application reacts in production, call the production
front controller instead:

http://localhost/index.php/mymodule/index

If your web server has mod_rewrite enabled, you can even use the custom symfony rewriting
rules, written in web/.htaccess. They define the production front controller as the default
execution script and allow for URLs like this:

http://localhost/mymodule/index

ENVIRONMENTS AND SERVERS

Don’t mix up the notions of environment and server. In symfony, different environments are different configu-
rations, and correspond to a front controller (the script that executes the request). Different servers correspond
to different domain names in the URL.

http://localhost/myapp_dev.php/mymodule/index
 _________ _____________
 server environment

Usually, developers work on applications in a development server, disconnected from the Internet and
where all the server and PHP configuration can be changed at will. When the time comes for releasing the
application to production, the application files are transferred to the production server and made accessible to
the end users.

This means that many environments are available on each server. For instance, you can run in the
production environment even on your development server. However, most of the time, only the production
environment should be accessible in the production server, to avoid public visibility of server configuration
and security risks.

To add a new environment, you don’t need to create a directory or to use the symfony
CLI. Simply create a new front controller and change the environment name definition in it.
This environment inherits all the default configuration plus the settings that are common to all
environments. The next chapter will show you how to do this.

Zaninotto_786-9 C05.fm Page 72 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 73

Configuration Cascade
The same setting can be defined more than once, in different places. For instance, you may
want to set the mime-type of your pages to text/html for all of the application, except for the
pages of an rss module, which will need a text/xml mime-type. Symfony gives you the ability
to write the first setting in myapp/config/view.yml and the second in myapp/modules/rss/
config/view.yml. The configuration system knows that a setting defined at the module level
must override a setting defined at the application level.

In fact, there are several configuration levels in symfony:

• Granularity levels:

• The default configuration located in the framework

• The global configuration for the whole project (in myproject/config/)

• The local configuration for an application of the project (in myproject/apps/myapp/
config/)

• The local configuration restricted to a module (in myproject/apps/myapp/modules/
mymodule/config/)

• Environment levels:

• Specific to one environment

• For all environments

Of all the properties that can be customized, many are environment-dependent. Conse-
quently, many YAML configuration files are divided by environment, plus a tail section for all
environments. The result is that typical symfony configuration looks like Listing 5-12.

Listing 5-12. The Structure of Symfony Configuration Files

Production environment settings
prod:
 ...

Development environment settings
dev:
 ...

Test environment settings
test:
 ...

Custom environment settings
myenv:
 ...

Zaninotto_786-9 C05.fm Page 73 Thursday, December 7, 2006 9:58 AM

74 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

Settings for all environments
all:
 ...

In addition, the framework itself defines default values in files that are not located in the
project tree structure, but in the $sf_symfony_data_dir/config/ directory of your symfony instal-
lation. The default configuration is set in these files as shown in Listing 5-13. These settings are
inherited by all applications.

Listing 5-13. The Default Configuration, in $sf_symfony_data_dir/config/settings.yml

 # Default settings:
 default:
 default_module: default
 default_action: index
 ...

These default definitions are repeated in the project, application, and module configura-
tion files as comments, as shown in Listing 5-14, so that you know that some parameters are
defined by default and that they can be modified.

Listing 5-14. The Default Configuration, Repeated for Information, in myapp/config/
settings.yml

#all:
 # default_module: default
 # default_action: index
 ...

This means that a property can be defined several times, and the actual value results from
a definition cascade. A parameter definition in a named environment has precedence over the
same parameter definition for all environments, which has precedence over a definition in the
default configuration. A parameter definition at the module level has precedence over the same
parameter definition at the application level, which has precedence over a definition at the
project level. This can be wrapped up in the following priority list:

1. Module

2. Application

3. Project

4. Specific environment

5. All environments

6. Default

Zaninotto_786-9 C05.fm Page 74 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 75

The Configuration Cache
Parsing YAML and dealing with the configuration cascade at runtime represent a significant
overhead for each request. Symfony has a built-in configuration cache mechanism designed to
speed up requests.

The configuration files, whatever their format, are processed by some special classes, called
handlers, that transform them into fast-processing PHP code. In the development environ-
ment, the handlers check the configuration for changes at each request, to promote interactivity.
They parse the recently modified files so that you can see a change in a YAML file immediately.
But in the production environment, the processing occurs once during the first request, and
then the processed PHP code is stored in the cache for subsequent requests. The performance
is guaranteed, since every request in production will just execute some well-optimized PHP code.

For instance, if the app.yml file contains this:

all: # Setting for all environments
 mail:
 webmaster: webmaster@example.com

then the file config_app.yml.php, located in the cache/ folder of your project, will contain this:

<?php

sfConfig::add(array(
 'app_mail_webmaster' => 'webmaster@example.com',
));

As a consequence, most of the time, the YAML files aren’t even parsed by the framework,
which relies on the configuration cache instead. However, in the development environment,
symfony will systematically compare the dates of modification of the YAML files and the cached
files, and reprocess only the ones that have changed since the previous request.

This presents a major advantage over many PHP frameworks, where configuration files
are compiled at every request, even in production. Unlike Java, PHP doesn’t share an execution
context between requests. For other PHP frameworks, keeping the flexibility of XML configuration
files requires a major performance hit to process all the configuration at every request. This is
not the case in symfony. Thanks to the cache system, the overhead caused by configuration
is very low.

There is an important consequence of this mechanism. If you change the configuration in
the production environment, you need to force the reparsing of all the configuration files for your
modification to be taken into account. For that, you just need to clear the cache, either by deleting
the content of the cache/ directory or, more easily, by calling the clear-cache symfony task:

> symfony clear-cache

Accessing the Configuration from Code
All the configuration files are eventually transformed into PHP, and many of the settings they
contain are automatically used by the framework, without further intervention. However, you
sometimes need to access some of the settings defined in the configuration files from your code

Zaninotto_786-9 C05.fm Page 75 Thursday, December 7, 2006 9:58 AM

76 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

(in actions, templates, custom classes, and so on). The settings defined in settings.yml, app.yml,
module.yml, logging.yml, and i18n.yml are available through a special class called sfConfig.

The sfConfig Class
You can access settings from within the application code through the sfConfig class. It is a
registry for configuration parameters, with a simple getter class method, accessible from every
part of the code:

// Retrieve a setting
parameter = sfConfig::get('param_name', $default_value);

Note that you can also define, or override, a setting from within PHP code:

// Define a setting
sfConfig::set('param_name', $value);

The parameter name is the concatenation of several elements, separated by underscores,
in this order:

• A prefix related to the configuration file name (sf_ for settings.yml, app_ for app.yml,
mod_ for module.yml, sf_i18n_ for i18n.yml, and sf_logging_ for logging.yml)

• The parent keys (if defined), in lowercase

• The name of the key, in lowercase

The environment is not included, since your PHP code will have access only to the values
defined for the environment in which it’s executed.

For instance, if you need to access the values defined in the app.yml file shown in Listing 5-15,
you will need the code shown in Listing 5-16.

Listing 5-15. Sample app.yml Configuration

all:
 version: 1.5
 .general:
 tax: 19.6
 default_user:
 name: John Doe
 mail:
 webmaster: webmaster@example.com
 contact: contact@example.com
dev:
 mail:
 webmaster: dummy@example.com
 contact: dummy@example.com

Zaninotto_786-9 C05.fm Page 76 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 77

Listing 5-16. Accessing Configuration Settings in PHP in the dev Environment

echo sfConfig::get('app_version');
 => '1.5'
echo sfConfig::get('app_tax'); // Remember that category headers are ignored
 => '19.6'
echo sfConfig::get('app_default_user_name);
 => 'John Doe'
echo sfConfig::get('app_mail_webmaster');
 => 'dummy@example.com'
echo sfConfig::get('app_mail_contact');
 => 'dummy@example.com'

So symfony configuration settings have all the advantages of PHP constants, but without
the disadvantages, since the value can be changed.

On that account, the settings.yml file, where you can set the framework settings for an
application, is the equivalent to a list of sfConfig::set() calls. Listing 5-17 is interpreted as
shown in Listing 5-18.

Listing 5-17. Extract of settings.yml

all:
 .settings:
 available: on
 path_info_array: SERVER
 path_info_key: PATH_INFO
 url_format: PATH

Listing 5-18. What Symfony Does When Parsing settings.yml

sfConfig::add(array(
 'sf_available' => true,
 'sf_path_info_array' => 'SERVER',
 'sf_path_info_key' => 'PATH_INFO',
 'sf_url_format' => 'PATH',
));

Refer to Chapter 19 for the meanings of the settings found in the settings.yml file.

Custom Application Settings and app.yml
Most of the settings related to the features of an application should be stored in the app.yml file,
located in the myproject/apps/myapp/config/ directory. This file is environment-dependent
and empty by default. Put in every setting that you want to be easily changed, and use the
sfConfig class to access these settings from your code. Listing 5-19 shows an example.

Zaninotto_786-9 C05.fm Page 77 Thursday, December 7, 2006 9:58 AM

78 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

Listing 5-19. Sample app.yml to Define Credit Card Operators Accepted for a Given Site

all:
 creditcards:
 fake: off
 visa: on
 americanexpress: on

dev:
 creditcards:
 fake: on

To know if the fake credit cards are accepted in the current environment, get the value of:

sfConfig::get('app_creditcards_fake');

■Tip Each time you are tempted to define a constant or a setting in one of your scripts, think about if it would
be better located in the app.yml file. This is a very convenient place to store all application settings.

When your need for custom parameters becomes hard to handle with the app.yml syntax,
you may need to define a syntax of your own. In that case, you can store the configuration in a
new file, interpreted by a new configuration handler. Refer to Chapter 19 for more information
about configuration handlers.

Tips for Getting More from Configuration Files
There are a few last tricks to learn before writing your own YAML files. They will allow you to
avoid configuration duplication and to deal with your own YAML formats.

Using Constants in YAML Configuration Files
Some configuration settings rely on the value of other settings. To avoid setting the same value
twice, symfony supports constants in YAML files. On encountering a setting name (one that can
be accessed by sfConfig::get()) in capital letters enclosed in % signs, the configuration handlers
replace them with their current value. See Listing 5-20 for an example.

Listing 5-20. Using Constants in YAML Files, Example from autoload.yml

autoload:
 symfony:
 name: symfony
 path: %SF_SYMFONY_LIB_DIR%
 recursive: on
 exclude: [vendor]

Zaninotto_786-9 C05.fm Page 78 Thursday, December 7, 2006 9:58 AM

C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y 79

The path parameter will take the value returned by sfConfig::get('sf_symfony_lib_dir'). If
you want one configuration file to rely on another, you need to make sure that the file you rely
on is already parsed (look in the symfony source to find out the order in which the configura-
tion files are parsed). app.yml is one of the last files parsed, so you may rely on others in it.

Using Scriptable Configuration
It may happen that your configuration relies on external parameters (such as a database or
another configuration file). To deal with these particular cases, the symfony configuration files
are parsed as PHP files before being passed to the YAML parser. It means that you can put PHP
code in YAML files, as in Listing 5-21.

Listing 5-21. YAML Files Can Contain PHP

all:
 translation:
 format: <?php echo sfConfig::get('sf_i18n') == true ? 'xliff' : 'none' ?>

But be aware that the configuration is parsed very early in the life of a request, so you will
not have any symfony built-in methods or functions to help you.

■Caution In the production environment, the configuration is cached, so the configuration files are parsed
(and executed) only once after the cache is cleared.

Browsing Your Own YAML File
Whenever you want to read a YAML file directly, you can use the sfYaml class. It is a YAML
parser that can turn a YAML file into a PHP associative array. Listing 5-22 presents a sample
YAML file, and Listing 5-23 shows you how to parse it.

Listing 5-22. Sample test.yml File

house:
 family:
 name: Doe
 parents: [John, Jane]
 children: [Paul, Mark, Simone]
 address:
 number: 34
 street: Main Street
 city: Nowheretown
 zipcode: 12345

Zaninotto_786-9 C05.fm Page 79 Thursday, December 7, 2006 9:58 AM

80 C H A P T E R 5 ■ C O N F I G U R I N G S Y M F O N Y

Listing 5-23. Using the sfYaml Class to Turn a YAML File into an Associative Array

$test = sfYaml::load('/path/to/test.yml');
print_r($test);

Array(
 [house] => Array(
 [family] => Array(
 [name] => Doe
 [parents] => Array(
 [0] => John
 [1] => Jane
)
 [children] => Array(
 [0] => Paul
 [1] => Mark
 [2] => Simone
)
)
 [address] => Array(
 [number] => 34
 [street] => Main Street
 [city] => Nowheretown
 [zipcode] => 12345
)
)
)

Summary
The symfony configuration system uses the YAML language to be simple and readable. The
ability to deal with multiple environments and to set parameters through a definition cascade
offers versatility to the developer. Some of the configuration can be accessed from within the
code via the sfConfig object, especially the application settings stored in the app.yml file.

Yes, symfony does have a lot of configuration files, but this approach makes it more adaptable.
Remember that you don’t need to bother with them unless your application requires a high
level of customization.

Zaninotto_786-9 C05.fm Page 80 Thursday, December 7, 2006 9:58 AM

■ ■ ■

P A R T 2

The Core Architecture

Zaninotto_786-9 C06.fm Page 81 Friday, December 22, 2006 2:20 PM

Zaninotto_786-9 C06.fm Page 82 Friday, December 22, 2006 2:20 PM

83

■ ■ ■

C H A P T E R 6

Inside the Controller Layer

In symfony, the controller layer, which contains the code linking the business logic and the
presentation, is split into several components that you use for different purposes:

• The front controller is the unique entry point to the application. It loads the configuration
and determines the action to execute.

• Actions contain the applicative logic. They check the integrity of the request and prepare
the data needed by the presentation layer.

• The request, response, and session objects give access to the request parameters, the
response headers, and the persistent user data. They are used very often in the controller
layer.

• Filters are portions of code executed for every request, before or after the action. For
example, the security and validation filters are commonly used in web applications. You
can extend the framework by creating your own filters.

This chapter describes all these components, but don’t be intimidated by their number.
For a basic page, you will probably need to write only a few lines in the action class, and that’s
all. The other controller components will be of use only in specific situations.

The Front Controller
All web requests are handled by a single front controller, which is the unique entry point to the
whole application in a given environment.

When the front controller receives a request, it uses the routing system to match an action
name and a module name with the URL typed (or clicked) by the user. For instance, the following
request URL calls the index.php script (that’s the front controller) and will be understood as a
call to the action myAction of the module mymodule:

http://localhost/index.php/mymodule/myAction

If you are not interested in symfony’s internals, that’s all that you need to know about the
front controller. It is an indispensable component of the symfony MVC architecture, but you
will seldom need to change it. So you can jump to the next section unless you really want to
know about the guts of the front controller.

Zaninotto_786-9 C06.fm Page 83 Friday, December 22, 2006 2:20 PM

84 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

The Front Controller’s Job in Detail
The front controller does the dispatching of the request, but that means a little more than just
determining the action to execute. In fact, it executes the code that is common to all actions,
including the following:

1. Define the core constants.

2. Locate the symfony libraries.

3. Load and initiate the core framework classes.

4. Load the configuration.

5. Decode the request URL to determine the action to execute and the request parameters.

6. If the action does not exist, redirect to the 404 error action.

7. Activate filters (for instance, if the request needs authentication).

8. Execute the filters, first pass.

9. Execute the action and render the view.

10. Execute the filters, second pass.

11. Output the response.

The Default Front Controller
The default front controller, called index.php and located in the web/ directory of the project, is
a simple PHP file, as shown in Listing 6-1.

Listing 6-1. The Default Production Front Controller

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'myapp');
define('SF_ENVIRONMENT', 'prod');
define('SF_DEBUG', false);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR ➥

 .SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

sfContext::getInstance()->getController()->dispatch();

The constants definition corresponds to the first step described in the previous section. Then
the front controller includes the application config.php, which takes care of steps 2 through 4. The
call to the dispatch() method of the sfController object (which is the core controller object of the
symfony MVC architecture) dispatches the request, taking care of steps 5 through 7. The last steps
are handled by the filter chain, as explained later in this chapter.

Zaninotto_786-9 C06.fm Page 84 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 85

Calling Another Front Controller to Switch the Environment
One front controller exists per environment. As a matter of fact, it is the very existence of a front
controller that defines an environment. The environment is defined in the SF_ENVIRONMENT
constant.

To change the environment in which you’re browsing your application, just choose another
front controller. The default front controllers available when you create a new application with
the symfony init-app task are index.php for the production environment and myapp_dev.php
for the development environment (provided that your application is called myapp). The default
mod_rewrite configuration will use index.php when the URL doesn’t contain a front controller
script name. So both of these URLs display the same page (mymodule/index) in the production
environment:

http://localhost/index.php/mymodule/index
http://localhost/mymodule/index

and this URL displays that same page in the development environment:

http://localhost/myapp_dev.php/mymodule/index

Creating a new environment is as easy as creating a new front controller. For instance, you
may need a staging environment to allow your customers to test the application before going
to production. To create this staging environment, just copy web/myapp_dev.php into web/
myapp_staging.php, and change the value of the SF_ENVIRONMENT constant to staging. Now,
in all the configuration files, you can add a new staging: section to set specific values for this
environment, as shown in Listing 6-2.

Listing 6-2. Sample app.yml with Specific Settings for the Staging Environment

staging:
 mail:
 webmaster: dummy@mysite.com
 contact: dummy@mysite.com
all:
 mail:
 webmaster: webmaster@mysite.com
 contact: contact@mysite.com

If you want to see how the application reacts in this new environment, call the related
front controller:

http://localhost/myapp_staging.php/mymodule/index

Batch Files
You may want to execute a script from the command line (or via a cron table) with access to all
the symfony classes and features, for instance to launch batch e-mail jobs or to periodically
update your model through a process-intensive calculation. For such a script, you need to
include the same lines as in a front controller at the beginning. Listing 6-3 shows an example
of the beginning of a batch script.

Zaninotto_786-9 C06.fm Page 85 Friday, December 22, 2006 2:20 PM

86 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Listing 6-3. Sample Batch Script

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'myapp');
define('SF_ENVIRONMENT', 'prod');
define('SF_DEBUG', false);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR ➥

 .SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

// add code here

You can see that the only missing line is the call to the dispatch() method of the sfController
object, which can be used only with a web server, not in a batch process. Defining an applica-
tion and an environment gives you access to a specific configuration. Including the application
config.php initiates the context and the autoloading.

■Tip The symfony CLI offers an init-batch task, which automatically creates a skeleton similar to the
one in Listing 6-3 in the batch/ directory. Just pass it an application name, an environment name, and a
batch name as arguments.

Actions
The actions are the heart of an application, because they contain all the application’s logic. They
use the model and define variables for the view. When you make a web request in a symfony
application, the URL defines an action and the request parameters.

The Action Class
Actions are methods named executeActionName of a class named moduleNameActions inheriting
from the sfActions class, and grouped by modules. The action class of a module is stored in an
actions.class.php file, in the module’s actions/ directory.

Listing 6-4 shows an example of an actions.class.php file with only an index action for the
whole mymodule module.

Listing 6-4. Sample Action Class, in apps/myapp/modules/mymodule/actions/actions.class.php

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {

 }
}

Zaninotto_786-9 C06.fm Page 86 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 87

■Caution Even if method names are not case-sensitive in PHP, they are in symfony. So don’t forget that
the action methods must start with a lowercase execute, followed by the exact action name with the first
letter capitalized.

In order to request an action, you need to call the front controller script with the module
name and action name as parameters. By default, this is done by appending the couple
module_name/action_name to the script. This means that the action defined in Listing 6-4 can
be called by this URL:

http://localhost/index.php/mymodule/index

Adding more actions just means adding more execute methods to the sfActions object, as
shown in Listing 6-5.

Listing 6-5. Action Class with Two Actions, in myapp/modules/mymodule/actions/actions.class.php

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 ...
 }

 public function executeList()
 {
 ...
 }
}

If the size of an action class grows too much, you probably need to do some refactoring
and move some code to the model layer. Actions should often be kept short (not more than a
few lines), and all the business logic should usually be in the model.

Still, the number of actions in a module can be important enough to lead you to split it in
two modules.

SYMFONY CODING STANDARDS

In the code examples given in this book, you probably noticed that the opening and closing curly braces
({ and }) occupy one line each. This standard makes the code easier to read.

Among the other coding standards of the framework, indentation is always done by two blank spaces;
tabs are not used. This is because tabs have a different space value according to the text editor you use, and
because code with mixed tab and blank indentation is impossible to read.

Core and generated symfony PHP files do not end with the usual ?> closing tag. This is because it is not
really needed, and because it can create problems in the output if you ever have blanks after this tag.

And if you really pay attention, you will see that a line never ends with a blank space in symfony. The
reason, this time, is more prosaic: lines ending with blanks look ugly in Fabien’s text editor.

Zaninotto_786-9 C06.fm Page 87 Friday, December 22, 2006 2:20 PM

88 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Alternative Action Class Syntax
An alternative action syntax is available to dispatch the actions in separate files, one file per
action. In this case, each action class extends sfAction (instead of sfActions) and is named
actionNameAction. The actual action method is simply named execute. The file name is the
same as the class name. This means that the equivalent of Listing 6-5 can be written with the
two files shown in Listings 6-6 and 6-7.

Listing 6-6. Single Action File, in myapp/modules/mymodule/actions/indexAction.class.php

class indexAction extends sfAction
{
 public function execute()
 {
 ...
 }
}

Listing 6-7. Single Action File, in myapp/modules/mymodule/actions/listAction.class.php

class listAction extends sfAction
{
 public function execute()
 {
 ...
 }
}

Retrieving Information in the Action
The action class offers a way to access controller-related information and the core symfony
objects. Listing 6-8 demonstrates how to use them.

Listing 6-8. sfActions Common Methods

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 // Retrieving request parameters
 $password = $this->getRequestParameter('password');

 // Retrieving controller information
 $moduleName = $this->getModuleName();
 $actionName = $this->getActionName();

Zaninotto_786-9 C06.fm Page 88 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 89

 // Retrieving framework core objects
 $request = $this->getRequest();
 $userSession = $this->getUser();
 $response = $this->getResponse();
 $controller = $this->getController();
 $context = $this->getContext();

 // Setting action variables to pass information to the template
 $this->setVar('foo', 'bar');
 $this->foo = 'bar'; // Shorter version

 }
}

THE CONTEXT SINGLETON

You already saw, in the front controller, a call to sfContext::getInstance(). In an action, the getContext()
method returns the same singleton. It is a very useful object that stores a reference to all the symfony core
objects related to a given request, and offers an accessor for each of them:

• sfController: The controller object (->getController())

• sfRequest: The request object (->getRequest())

• sfResponse: The response object (->getResponse())

• sfUser: The user session object (->getUser())

• sfDatabaseConnection: The database connection (->getDatabaseConnection())

• sfLogger: The logger object (->getLogger())

• sfI18N: The internationalization object (->getI18N())

You can call the sfContext::getInstance() singleton from any part of the code.

Action Termination
Various behaviors are possible at the conclusion of an action’s execution. The value returned
by the action method determines how the view will be rendered. Constants of the sfView class
are used to specify which template is to be used to display the result of the action.

If there is a default view to call (this is the most common case), the action should end
as follows:

return sfView::SUCCESS;

Symfony will then look for a template called actionNameSuccess.php. This is defined as the
default action behavior, so if you omit the return statement in an action method, symfony will
also look for an actionNameSuccess.php template. Empty actions will also trigger that behavior.
See Listing 6-9 for examples of successful action termination.

Zaninotto_786-9 C06.fm Page 89 Friday, December 22, 2006 2:20 PM

90 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Listing 6-9. Actions That Will Call the indexSuccess.php and listSuccess.php Templates

public function executeIndex()
{
 return sfView::SUCCESS;
}

public function executeList()
{
}

If there is an error view to call, the action should end like this:

return sfView::ERROR;

Symfony will then look for a template called actionNameError.php.
To call a custom view, use this ending:

return 'MyResult';

Symfony will then look for a template called actionNameMyResult.php.
If there is no view to call—for instance, in the case of an action executed in a batch process—

the action should end as follows:

return sfView::NONE;

No template will be executed in that case. It means that you can bypass completely the
view layer and output HTML code directly from an action. As shown in Listing 6-10, symfony
provides a specific renderText() method for this case. This can be useful when you need
extreme responsiveness of the action, such as for Ajax interactions, which will be discussed in
Chapter 11.

Listing 6-10. Bypassing the View by Echoing the Response and Returning sfView::NONE

public function executeIndex()
{
 echo "<html><body>Hello, World!</body></html>";

 return sfView::NONE;
}

// Is equivalent to
public function executeIndex()
{
 return $this->renderText("<html><body>Hello, World!</body></html>");
}

In some cases, you need to send an empty response but with some headers defined in it
(especially the X-JSON header). Define the headers via the sfResponse object, discussed in the
next chapter, and return the sfView::HEADER_ONLY constant, as shown in Listing 6-11.

Zaninotto_786-9 C06.fm Page 90 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 91

Listing 6-11. Escaping View Rendering and Sending Only Headers

public function executeRefresh()
{
 $output = '[["title","My basic letter"],["name","Mr Brown"]]';
 $this->getResponse()->setHttpHeader("X-JSON", '('.$output.')');

 return sfView::HEADER_ONLY;
}

If the action must be rendered by a specific template, ignore the return statement and use
the setTemplate() method instead.

$this->setTemplate('myCustomTemplate');

Skipping to Another Action
In some cases, the action execution ends by requesting a new action execution. For instance,
an action handling a form submission in a POST request usually redirects to another action
after updating the database. Another example is an action alias: the index action is often a way
to display a list, and actually forwards to a list action.

The action class provides two methods to execute another action:

• If the action forwards the call to another action:

$this->forward('otherModule', 'index');

• If the action results in a web redirection:

$this->redirect('otherModule/index');
$this->redirect('http://www.google.com/');

■Note The code located after a forward or a redirect in an action is never executed. You can consider that
these calls are equivalent to a return statement. They throw an sfStopException to stop the execution
of the action; this exception is later caught by symfony and simply ignored.

The choice between a redirect or a forward is sometimes tricky. To choose the best solution,
keep in mind that a forward is internal to the application and transparent to the user. As far as
the user is concerned, the displayed URL is the same as the one requested. In contrast, a redirect
is a message to the user’s browser, involving a new request from it and a change in the final
resulting URL.

If the action is called from a submitted form with method="post", you should always do a
redirect. The main advantage is that if the user refreshes the resulting page, the form will not be
submitted again; in addition, the back button works as expected by displaying the form and
not an alert asking the user if he wants to resubmit a POST request.

There is a special kind of forward that is used very commonly. The forward404() method
forwards to a “page not found” action. This method is often called when a parameter necessary

Zaninotto_786-9 C06.fm Page 91 Friday, December 22, 2006 2:20 PM

92 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

to the action execution is not present in the request (thus detecting a wrongly typed URL).
Listing 6-12 shows an example of a show action expecting an id parameter.

Listing 6-12. Use of the forward404() Method

public function executeShow()
{
 $article = ArticlePeer::retrieveByPK($this->getRequestParameter('id'));
 if (!$article)
 {
 $this->forward404();
 }
}

■Tip If you are looking for the error 404 action and template, you will find them in the $sf_symfony_
data_dir/modules/default/ directory. You can customize this page by adding a new default module
to your application, overriding the one located in the framework, and by defining an error404 action and an
error404Success template inside. Alternatively, you can set the error_404_module and error_404_
action constants in the settings.yml file to use an existing action.

Experience shows that, most of the time, an action makes a redirect or a forward after testing
something, such as in Listing 6-12. That’s why the sfActions class has a few more methods,
named forwardIf(), forwardUnless(), forward404If(), forward404Unless(), redirectIf(), and
redirectUnless(). These methods simply take an additional parameter representing a condition
that triggers the execution if tested true (for the xxxIf() methods) or false (for the xxxUnless()
methods), as illustrated in Listing 6-13.

Listing 6-13. Use of the forward404If() Method

// This action is equivalent to the one shown in Listing 6-12
public function executeShow()
{
 $article = ArticlePeer::retrieveByPK($this->getRequestParameter('id'));
 $this->forward404If(!$article);
}

// So is this one
public function executeShow()
{
 $article = ArticlePeer::retrieveByPK($this->getRequestParameter('id'));
 $this->forward404Unless($article);
}

Using these methods will not only keep your code short, but it will also make it more
readable.

Zaninotto_786-9 C06.fm Page 92 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 93

■Tip When the action calls forward404() or its fellow methods, symfony throws an sfError404Exception
that manages the 404 response. This means that if you need to display a 404 message from somewhere
where you don’t want to access the controller, you can just throw a similar exception.

Repeating Code for Several Actions of a Module
The convention to name actions executeActionName() (in the case of an sfActions class) or
execute() (in the case of an sfAction class) guarantees that symfony will find the action method.
It gives you the ability to add other methods of your own that will not be considered as actions,
as long as they don’t start with execute.

There is another useful convention for when you need to repeat several statements in each
action before the actual action execution. You can then extract them into the preExecute()
method of your action class. You can probably guess how to repeat statements after every action is
executed: wrap them in a postExecute() method. The syntax of these methods is shown in
Listing 6-14.

Listing 6-14. Using preExecute, postExecute, and Custom Methods in an Action Class

class mymoduleActions extends sfActions
{
 public function preExecute()
 {
 // The code inserted here is executed at the beginning of each action call
 ...
 }

 public function executeIndex()
 {
 ...
 }

 public function executeList()
 {
 ...
 $this->myCustomMethod(); // Methods of the action class are accessible
 }

 public function postExecute()
 {
 // The code inserted here is executed at the end of each action call
 ...
 }

Zaninotto_786-9 C06.fm Page 93 Friday, December 22, 2006 2:20 PM

94 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

 protected function myCustomMethod()
 {
 // You can also add your own methods, as long as they don't start with "execute"
 // In that case, it's better to declare them as protected or private
 ...
 }
}

Accessing the Request
You’re familiar with the getRequestParameter('myparam') method, used to retrieve the value of
a request parameter by its name. As a matter of fact, this method is a proxy for a chain of calls
to the request’s parameter holder getRequest()->getParameter('myparam'). The action class
has access to the request object, called sfWebRequest in symfony, and to all its methods, via the
getRequest() method. Table 6-1 lists the most useful sfWebRequest methods.

Table 6-1. Methods of the sfWebRequest Object

Name Function Sample Output

Request Information

getMethod() Request method Returns sfRequest::GET or
sfRequest::POST constants

getMethodName() Request method name 'POST'

getHttpHeader('Server') Value of a given HTTP header 'Apache/2.0.59 (Unix)
DAV/2 PHP/5.1.6'

getCookie('foo') Value of a named cookie 'bar'

isXmlHttpRequest()* Is it an Ajax request? true

isSecure() Is it an SSL request? true

Request Parameters

hasParameter('foo') Is a parameter present in
the request?

true

getParameter('foo') Value of a named parameter 'bar'

getParameterHolder()->getAll() Array of all request parameters

URI-Related Information

getUri() Full URI 'http://localhost/
myapp_dev.php/mymodule/
myaction'

getPathInfo() Path info '/mymodule/myaction'

getReferer()** Referrer 'http://localhost/
myapp_dev.php/'

getHost() Host name 'localhost'

Zaninotto_786-9 C06.fm Page 94 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 95

*Works only with prototype

**Sometimes blocked by proxies

The sfActions class offers a few proxies to access the request methods more quickly, as
shown in Listing 6-15.

Listing 6-15. Accessing the sfRequest Object Methods from an Action

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 $hasFoo = $this->getRequest()->hasParameter('foo');
 $hasFoo = $this->hasRequestParameter('foo'); // Shorter version
 $foo = $this->getRequest()->getParameter('foo');
 $foo = $this->getRequestParameter('foo'); // Shorter version
 }
}

For multipart requests to which users attach files, the sfWebRequest object provides a
means to access and move these files, as shown in Listing 6-16.

Listing 6-16. The sfWebRequest Object Knows How to Handle Attached Files

class mymoduleActions extends sfActions
{
 public function executeUpload()
 {

getScriptName() Front controller path
and name

'myapp_dev.php'

Client Browser Information

getLanguages() Array of accepted languages Array(
 [0] => fr
 [1] => fr_FR
 [2] => en_US
 [3] => en
)

getCharsets() Array of accepted charsets Array(
 [0] => ISO-8859-1
 [1] => UTF-8
 [2] => *
)

getAcceptableContentType() Array of accepted
content types

Array(
 [0] => text/xml
 [1] => text/html

Table 6-1. Methods of the sfWebRequest Object

Name Function Sample Output

Zaninotto_786-9 C06.fm Page 95 Friday, December 22, 2006 2:20 PM

96 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

 if ($this->getRequest()->hasFiles())
 {
 foreach ($this->getRequest()->getFileNames() as $fileName)
 {
 $fileSize = $this->getRequest()->getFileSize($fileName);
 $fileType = $this->getRequest()->getFileType($fileName);
 $fileError = $this->getRequest()->hasFileError($fileName);
 $uploadDir = sfConfig::get('sf_upload_dir');
 $this->getRequest()->moveFile('file', $uploadDir.'/'.$fileName);
 }
 }
 }
}

You don’t have to worry about whether your server supports the $_SERVER or the $_ENV
variables, or about default values or server-compatibility issues—the sfWebRequest methods
do it all for you. Besides, their names are so evident that you will no longer need to browse the
PHP documentation to find out how to get information from the request.

User Session
Symfony automatically manages user sessions and is able to keep persistent data between
requests for users. It uses the built-in PHP session-handling mechanisms and enhances them
to make them more configurable and easier to use.

Accessing the User Session
The session object for the current user is accessed in the action with the getUser() method and
is an instance of the sfUser class. This class contains a parameter holder that allows you to
store any user attribute in it. This data will be available to other requests until the end of the
user session, as shown in Listing 6-17. User attributes can store any type of data (strings, arrays,
and associative arrays). They can be set for every individual user, even if that user is not identified.

Listing 6-17. The sfUser Object Can Hold Custom User Attributes Existing Across Requests

class mymoduleActions extends sfActions
{
 public function executeFirstPage()
 {
 $nickname = $this->getRequestParameter('nickname');

 // Store data in the user session
 $this->getUser()->setAttribute('nickname', $nickname);
 }

Zaninotto_786-9 C06.fm Page 96 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 97

 public function executeSecondPage()
 {
 // Retrieve data from the user session with a default value
 $nickname = $this->getUser()->getAttribute('nickname', 'Anonymous Coward');
 }
}

■Caution You can store objects in the user session, but it is strongly discouraged. This is because the
session object is serialized between requests and stored in a file. When the session is deserialized, the class
of the stored objects must already be loaded, and that’s not always the case. In addition, there can be “stalled”
objects if you store Propel objects.

Like many getters in symfony, the getAttribute() method accepts a second argument,
specifying the default value to be used when the attribute is not defined. To check whether an
attribute has been defined for a user, use the hasAttribute() method. The attributes are stored
in a parameter holder that can be accessed by the getAttributeHolder() method. It allows for
easy cleanup of the user attributes with the usual parameter holder methods, as shown in
Listing 6-18.

Listing 6-18. Removing Data from the User Session

class mymoduleActions extends sfActions
{
 public function executeRemoveNickname()
 {
 $this->getUser()->getAttributeHolder()->remove('nickname');
 }

 public function executeCleanup()
 {
 $this->getUser()->getAttributeHolder()->clear();
 }
}

The user session attributes are also available in the templates by default via the $sf_user
variable, which stores the current sfUser object, as shown in Listing 6-19.

Listing 6-19. Templates Also Have Access to the User Session Attributes

<p>
 Hello, <?php echo $sf_user->getAttribute('nickname') ?>
</p>

Zaninotto_786-9 C06.fm Page 97 Friday, December 22, 2006 2:20 PM

98 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

■Note If you need to store information just for the duration of the current request—for instance, to
pass information through a chain of action calls—you may prefer the sfRequest class, which also has
getAttribute() and setAttribute() methods. Only the attributes of the sfUser object are persistent
between requests.

Flash Attributes
A recurrent problem with user attributes is the cleaning of the user session once the attribute
is not needed anymore. For instance, you may want to display a confirmation after updating
data via a form. As the form-handling action makes a redirect, the only way to pass information
from this action to the action it redirects to is to store the information in the user session. But
once the confirmation message is displayed, you need to clear the attribute; otherwise, it will
remain in the session until it expires.

The flash attribute is an ephemeral attribute that you can define and forget, knowing that
it will disappear after the very next request and leave the user session clean for the future. In
your action, define the flash attribute like this:

$this->setFlash('attrib', $value);

The template will be rendered and delivered to the user, who will then make a new request
to another action. In this second action, just get the value of the flash attribute like this:

$value = $this->getFlash('attrib');

Then forget about it. After delivering this second page, the attrib flash attribute will be
flushed. And even if you don’t require it during this second action, the flash will disappear from
the session anyway.

If you need to access a flash attribute from a template, use the $sf_flash object:

<?php if ($sf_flash->has('attrib')): ?>
 <?php echo $sf_flash->get('attrib') ?>
<?php endif; ?>

or just:

<?php echo $sf_flash->get('attrib') ?>

Flash attributes are a clean way of passing information to the very next request.

Session Management
Symfony’s session-handling feature completely masks the client and server storage of the session
IDs to the developer. However, if you want to modify the default behaviors of the session-
management mechanisms, it is still possible. This is mostly for advanced users.

On the client side, sessions are handled by cookies. The symfony session cookie is called
symfony, but you can change its name by editing the factories.yml configuration file, as shown
in Listing 6-20.

Zaninotto_786-9 C06.fm Page 98 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 99

Listing 6-20. Changing the Session Cookie Name, in apps/myapp/config/factories.yml

all:
 storage:
 class: sfSessionStorage
 param:
 session_name: my_cookie_name

■Tip The session is started (with the PHP function session_start()) only if the auto_start parameter
is set to true in factories.yml (which is the case by default). If you want to start the user session manually,
disable this setting of the storage factory.

Symfony’s session handling is based on PHP sessions. This means that if you want the client-
side management of sessions to be handled by URL parameters instead of cookies, you just need
to change the use_trans_sid setting in your php.ini. Be aware that this is not recommended.

session.use_trans_sid = 1

On the server side, symfony stores user sessions in files by default. You can store them in
your database by changing the value of the class parameter in factories.yml, as shown in
Listing 6-21.

Listing 6-21. Changing the Server Session Storage, in apps/myapp/config/factories.yml

all:
 storage:
 class: sfMySQLSessionStorage
 param:
 db_table: SESSION_TABLE_NAME # Name of the table storing the sessions
 database: DATABASE_CONNECTION # Name of the database connection to use

The available session storage classes are sfMySQLSessionStorage,
sfPostgreSQLSessionStorage, and sfPDOSessionStorage; the latter is preferred. The optional
database setting defines the database connection to be used; symfony will then use
databases.yml (see Chapter 8) to determine the connection settings (host, database name,
user, and password) for this connection.

Session expiration occurs automatically after sf_timeout seconds. This constant is 30 minutes
by default and can be modified for each environment in the settings.yml configuration file, as
shown in Listing 6-22.

Listing 6-22. Changing Session Lifetime, in apps/myapp/config/settings.yml

default:
 .settings:
 timeout: 1800 # Session lifetime in seconds

Zaninotto_786-9 C06.fm Page 99 Friday, December 22, 2006 2:20 PM

100 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Action Security
The ability to execute an action can be restricted to users with certain privileges. The tools
provided by symfony for this purpose allow the creation of secure applications, where users
need to be authenticated before accessing some features or parts of the application. Securing
an application requires two steps: declaring the security requirements for each action and
logging in users with privileges so that they can access these secure actions.

Access Restriction
Before being executed, every action passes by a special filter that checks if the current user has
the privileges to access the requested action. In symfony, privileges are composed of two parts:

• Secure actions require users to be authenticated.

• Credentials are named security privileges that allow organizing security by group.

Restricting access to an action is simply made by creating and editing a YAML configura-
tion file called security.yml in the module config/ directory. In this file, you can specify the
security requirements that users must fulfill for each action or for all actions. Listing 6-23
shows a sample security.yml.

Listing 6-23. Setting Access Restrictions, in apps/myapp/modules/mymodule/config/security.yml

read:
 is_secure: off # All users can request the read action

update:
 is_secure: on # The update action is only for authenticated users

delete:
 is_secure: on # Only for authenticated users
 credentials: admin # With the admin credential

all:
 is_secure: off # off is the default value anyway

Actions are not secure by default, so when there is no security.yml or no mention of an
action in it, actions are accessible by everyone. If there is a security.yml, symfony looks for the
name of the requested action and, if it exists, checks the fulfillment of the security requirements.
What happens when a user tries to access a restricted action depends on his credentials:

• If the user is authenticated and has the proper credentials, the action is executed.

• If the user is not identified, he will be redirected to the default login action.

• If the user is identified but doesn’t have the proper credentials, he will be redirected to
the default secure action, shown in Figure 6-1.

Zaninotto_786-9 C06.fm Page 100 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 101

The default login and secure pages are pretty simple, and you will probably want to customize
them. You can configure which actions are to be called in case of insufficient privileges in the appli-
cation settings.yml by changing the value of the properties shown in Listing 6-24.

Figure 6-1. The default secure action page

Listing 6-24. Default Security Actions Are Defined in apps/myapp/config/security.yml

all:
 .actions:
 login_module: default
 login_action: login

 secure_module: default
 secure_action: secure

Granting Access
To get access to restricted actions, users need to be authenticated and/or to have certain
credentials. You can extend a user’s privileges by calling methods of the sfUser object. The
authenticated status of the user is set by the setAuthenticated() method. Listing 6-25 shows a
simple example of user authentication.

Listing 6-25. Setting the Authenticated Status of a User

class myAccountActions extends sfActions
{
 public function executeLogin()
 {

Zaninotto_786-9 C06.fm Page 101 Friday, December 22, 2006 2:20 PM

102 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

 if ($this->getRequestParameter('login') == 'foobar')
 {
 $this->getUser()->setAuthenticated(true);
 }
 }

 public function executeLogout()
 {
 $this->getUser()->setAuthenticated(false);
 }
}

Credentials are a bit more complex to deal with, since you can check, add, remove, and
clear credentials. Listing 6-26 describes the credential methods of the sfUser class.

Listing 6-26. Dealing with User Credentials in an Action

class myAccountActions extends sfActions
{
 public function executeDoThingsWithCredentials()
 {
 $user = $this->getUser();

 // Add one or more credentials
 $user->addCredential('foo');
 $user->addCredentials('foo', 'bar');

 // Check if the user has a credential
 echo $user->hasCredential('foo'); => true

 // Check if the user has one of the credentials
 echo $user->hasCredential(array('foo', 'bar')); => true

 // Check if the user has both credentials
 echo $user->hasCredential(array('foo', 'bar'), true); => true

 // Remove a credential
 $user->removeCredential('foo');
 echo $user->hasCredential('foo'); => false

 // Remove all credentials (useful in the logout process)
 $user->clearCredentials();
 echo $user->hasCredential('bar'); => false
 }
}

Zaninotto_786-9 C06.fm Page 102 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 103

If a user has the 'foo' credential, that user will be able to access the actions for which the
security.yml requires that credential. Credentials can also be used to display only authorized
content in a template, as shown in Listing 6-27.

Listing 6-27. Dealing with User Credentials in a Template

 <?php echo link_to('section1', 'content/section1') ?>
 <?php echo link_to('section2', 'content/section2') ?>
 <?php if ($sf_user->hasCredential('section3')): ?>
 <?php echo link_to('section3', 'content/section3') ?>
 <?php endif; ?>

As for the authenticated status, credentials are often given to users during the login process.
This is why the sfUser object is often extended to add login and logout methods, in order to set
the security status of users in a central place.

■Tip Among the symfony plug-ins, the sfGuardPlugin extends the session class to make login and
logout easy. Refer to Chapter 17 for more information.

Complex Credentials
The YAML syntax used in the security.yml file allows you to restrict access to users having a combi-
nation of credentials, using either AND-type or OR-type associations. With such a combination,
you can build a complex workflow and user privilege management system—for instance, a
content management system (CMS) back-office accessible only to users with the admin credential,
where articles can be edited only by users with the editor credential and published only by the
ones with the publisher credential. Listing 6-28 shows this example.

Listing 6-28. Credentials Combination Syntax

editArticle:
 credentials: [admin, editor] # admin AND editor

publishArticle:
 credentials: [admin, publisher] # admin AND publisher

userManagement:
 credentials: [[admin, superuser]] # admin OR superuser

Each time you add a new level of square brackets, the logic swaps between AND and OR.
So you can create very complex credential combinations, such as this:

credentials: [[root, [supplier, [owner, quasiowner]], accounts]]
 # root OR (supplier AND (owner OR quasiowner)) OR accounts

Zaninotto_786-9 C06.fm Page 103 Friday, December 22, 2006 2:20 PM

104 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Validation and Error-Handling Methods
Validating the action input—mostly request parameters—is a repetitive and tedious task. Symfony
offers a built-in request validation system, using methods of the action class.

Let’s start with an example. When a user makes a request for myAction, symfony always
looks for a method called validateMyAction() first. If it is found, then symfony executes it. The
return value of this validation method determines the next method to be executed: if it returns
true, then executeMyAction() is executed; otherwise, handleErrorMyAction() is executed. And,
if in the latter case, handleErrorMyAction() doesn’t exist, symfony looks for a generic handleError()
method. If that doesn’t exist either, it simply returns sfView::ERROR to render the myActionError.
php template. Figure 6-2 depicts this process.

Figure 6-2. The validation process

Zaninotto_786-9 C06.fm Page 104 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 105

So the key to validation is to respect the naming conventions for the action methods:

• validateActionName is the validation method, returning true or false. It is the first
method looked for when the action ActionName is requested. If it doesn’t exist, the action
method is executed directly.

• handleErrorActionName is the method called when the validation method fails. If it doesn’t
exist, the Error template is displayed.

• executeActionName is the action method. It must exist for all actions.

Listing 6-29 shows an example of an action class with validation methods. Whether the
validation passes or fails in this example, the myActionSuccess.php template will be executed,
but not with the same parameters.

Listing 6-29. Sample Validation Methods

class mymoduleActions extends sfActions
{
 public function validateMyAction()
 {
 return ($this->getRequestParameter('id') > 0);
 }

 public function handleErrorMyAction()
 {
 $this->message = "Invalid parameters";

 return sfView::SUCCESS;
 }

 public function executeMyAction()
 {
 $this->message = "The parameters are correct";
 }
}

You can put any code you want in the validate() methods. Just make sure they return
either true or false. As it is a method of the sfActions class, it has access to the sfRequest and
sfUser objects as well, which can be really useful for input and context validation.

You could use this mechanism to implement form validation (that is, control the values
entered by the user in a form before processing it), but this is the type of repetitive task for
which symfony provides automated tools, as described in Chapter 10.

Filters
The security process can be understood as a filter by which all requests must pass before executing
the action. According to some tests executed in the filter, the processing of the request is
modified—for instance, by changing the action executed (default/secure instead of the requested

Zaninotto_786-9 C06.fm Page 105 Friday, December 22, 2006 2:20 PM

106 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

action in the case of the security filter). Symfony extends this idea to filter classes. You can
specify any number of filter classes to be executed before the action execution or before the
response rendering, and do this for every request. You can see filters as a way to package some
code, similar to preExecute() and postExecute(), but at a higher level (for a whole application
instead of for a whole module).

The Filter Chain
Symfony actually sees the processing of a request as a chain of filters. When a request is received by
the framework, the first filter (which is always the sfRenderingFilter) is executed. At some
point, it calls the next filter in the chain, then the next, and so on. When the last filter (which
is always sfExecutionFilter) is executed, the previous filter can finish, and so on back to the
rendering filter. Figure 6-3 illustrates this idea with a sequence diagram, using an artificially
small filter chain (the real one contains more filters).

Figure 6-3. Sample filter chain

This process justifies the structure of the filter classes. They all extend the sfFilter class,
and contain one execute() method, expecting a $filterChain object as parameter. Somewhere
in this method, the filter passes to the next filter in the chain by calling $filterChain->execute().
See Listing 6-30 for an example. So basically, filters are divided into two parts:

• The code before the call to $filterChain->execute() executes before the action execution.

• The code after the call to $filterChain->execute() executes after the action execution
and before the rendering.

Zaninotto_786-9 C06.fm Page 106 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 107

Listing 6-30. Filter Class Struture

class myFilter extends sfFilter
{
 public function execute ($filterChain)
 {
 // Code to execute before the action execution
 ...

 // Execute next filter in the chain
 $filterChain->execute();

 // Code to execute after the action execution, before the rendering
 ...
 }
}

The default filter chain is defined in an application configuration file called filters.yml,
and is shown in Listing 6-31. This file lists the filters that are to be executed for every request.

Listing 6-31. Default Filter Chain, in myapp/config/filters.yml

rendering: ~
web_debug: ~
security: ~

Generally, you will want to insert your own filters here

cache: ~
common: ~
flash: ~
execution: ~

These declarations have no parameter (the tilde character, ~, means “null” in YAML),
because they inherit the parameters defined in the symfony core. In the core, symfony defines
class and param settings for each of these filters. For instance, Listing 6-32 shows the default
parameters for the rendering filter.

Listing 6-32. Default Parameters of the rendering Filter, in $sf_symfony_data_dir/config/
filters.yml

rendering:
 class: sfRenderingFilter # Filter class
 param: # Filter parameters
 type: rendering

By leaving the empty value (~) in the application filters.yml, you tell symfony to apply
the filter with the default settings defined in the core.

Zaninotto_786-9 C06.fm Page 107 Friday, December 22, 2006 2:20 PM

108 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

You can customize the filter chain in various ways:

• Disable some filters from the chain by adding an enabled: off parameter. For instance,
to disable the web debug filter, write:

web_debug:
 enabled: off

Do not remove an entry from the filters.yml to disable a filter; symfony would throw an
exception in this case.

• Add your own declarations somewhere in the chain (usually after the security filter) to
add a custom filter (as discussed in the next section). Be aware that the rendering filter
must be the first entry, and the execution filter must be the last entry of the filter chain.

• Override the default class and parameters of the default filters (notably to modify the
security system and use your own security filter).

■Tip The enabled: off parameter works well to disable your own filters, but you can deactivate the
default filters via the settings.yml file, by modifying the values of the web_debug, use_security,
cache, and use_flash settings. This is because each of the default filters has a condition parameter that
tests the value of these settings.

Building Your Own Filter
It is pretty simple to build a filter. Create a class definition similar to the one shown in Listing 6-30,
and place it in one of the project’s lib/ folders to take advantage of the autoloading feature.

As an action can forward or redirect to another action and consequently relaunch the full
chain of filters, you might want to restrict the execution of your own filters to the first action
call of the request. The isFirstCall() method of the sfFilter class returns a Boolean for this
purpose. This call only makes sense before the action execution.

These concepts are clearer with an example. Listing 6-33 shows a filter used to auto-log
users with a specific MyWebSite cookie, which is supposedly created by the login action. It is a
rudimentary but working way to implement the “remember me” feature offered in login forms.

Listing 6-33. Sample Filter Class File, Saved in apps/myapp/lib/rememberFilter.class.php

class rememberFilter extends sfFilter
{
 public function execute($filterChain)
 {
 // Execute this filter only once
 if ($this->isFirstCall())
 {
 // Filters don't have direct access to the request and user objects.
 // You will need to use the context object to get them
 $request = $this->getContext()->getRequest();
 $user = $this->getContext()->getUser();

Zaninotto_786-9 C06.fm Page 108 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 109

 if ($request->getCookie('MyWebSite'))
 {
 // sign in
 $user->setAuthenticated(true);
 }
 }

 // Execute next filter
 $filterChain->execute();
 }
}

In some cases, instead of continuing the filter chain execution, you will need to forward to a
specific action at the end of a filter. sfFilter doesn’t have a forward() method, but sfController
does, so you can simply do that by calling the following:

return $this->getController()->forward('mymodule', 'myAction');

■Note The sfFilter class has an initialize() method, executed when the filter object is created.
You can override it in your custom filter if you need to deal with filter parameters (defined in filters.yml,
as described next) in your own way.

Filter Activation and Parameters
Creating a filter file is not enough to activate it. You need to add your filter to the filter chain,
and for that, you must declare the filter class in the filters.yml, located in the application or
in the module config/ directory, as shown in Listing 6-34.

Listing 6-34. Sample Filter Activation File, Saved in apps/myapp/config/filters.yml

rendering: ~
web_debug: ~
security: ~

remember: # Filters need a unique name
 class: rememberFilter
 param:
 cookie_name: MyWebSite
 condition: %APP_ENABLE_REMEMBER_ME%

cache: ~
common: ~
flash: ~
execution: ~

Zaninotto_786-9 C06.fm Page 109 Friday, December 22, 2006 2:20 PM

110 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

When activated, the filter is executed for each request. The filter configuration file can
contain one or more parameter definitions under the param key. The filter class has the ability
to get the value of these parameters with the getParameter() method. Listing 6-35 demonstrates
how to get a filter parameter value.

Listing 6-35. Getting the Parameter Value, in apps/myapp/lib/rememberFilter.class.php

class rememberFilter extends sfFilter
{
 public function execute ($filterChain)
 {
 ...
 if ($request->getCookie($this->getParameter('cookie_name')))
 ...
 }
}

The condition parameter is tested by the filter chain to see if the filter must be executed.
So your filter declarations can rely on an application configuration, just like the one in Listing 6-34.
The remember filter will be executed only if your application app.yml shows this:

all:
 enable_remember_me: on

Sample Filters
The filter feature is useful to repeat code for every action. For instance, if you use a distant
analytics system, you probably need to put a code snippet calling a distant tracker script in
every page. You could put this code in the global layout, but then it would be active for all of the
application. Alternatively, you could place it in a filter, such as the one shown in Listing 6-36,
and activate it on a per-module basis.

Listing 6-36. Google Analytics Filter

class sfGoogleAnalyticsFilter extends sfFilter
{
 public function execute($filterChain)
 {
 // Nothing to do before the action
 $filterChain->execute();

 // Decorate the response with the tracker code
 $googleCode = '
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
 _uacct="UA-'.$this->getParameter('google_id').'";urchinTracker();
</script>';

Zaninotto_786-9 C06.fm Page 110 Friday, December 22, 2006 2:20 PM

C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R L A Y E R 111

 $response = $this->getContext()->getResponse();
 $response->setContent(str_ireplace('</body>', $googleCode.'</body>', ➥

 $response->getContent()));
 }
}

Be aware that this filter is not perfect, as it should not add the tracker on responses that are
not HTML.

Another example would be a filter that switches the request to SSL if it is not already, to
secure the communication, as shown in Listing 6-37.

Listing 6-37. Secure Communication Filter

class sfSecureFilter extends sfFilter
{
 public function execute($filterChain)
 {
 $context = $this->getContext();
 $request = $context->getRequest();
 if (!$request->isSecure())
 {
 $secure_url = str_replace('http', 'https', $request->getUri());
 return $context->getController()->redirect($secure_url);
 // We don't continue the filter chain
 }
 else
 {
 // The request is already secure, so we can continue
 $filterChain->execute();
 }
 }
}

Filters are used extensively in plug-ins, as they allow you to extend the features of an appli-
cation globally. Refer to Chapter 17 to learn more about plug-ins, and see the online wiki
(http://www.symfony-project.com/trac/wiki) for more filter examples.

Module Configuration
A few module behaviors rely on configuration. To modify them, you must create a module.yml
file in the module’s config/ directory and define settings on a per-environment basis (or under
the all: header for all environments). Listing 6-38 shows an example of a module.yml file for the
mymodule module.

Zaninotto_786-9 C06.fm Page 111 Friday, December 22, 2006 2:20 PM

112 C H A P T E R 6 ■ I N S I D E T H E C O N T R O L L E R LA Y E R

Listing 6-38. Module Configuration, in apps/myapp/modules/mymodule/config/module.yml

all: # For all environments
 enabled: true
 is_internal: false
 view_name: sfPhpView

The enabled parameter allows you to disable all actions of a module. All actions are redirected
to the module_disabled_module/module_disabled_action action (as defined in settings.yml).

The is_internal parameter allows you to restrict the execution of all actions of a module
to internal calls. For example, this is useful for mail actions that you must be able to call from
another action, to send an e-mail message, but not from the outside.

The view_name parameter defines the view class. It must inherit from sfView. Overriding
this value allows you to use other view systems, with other templating engines, such as Smarty.

Summary
In symfony, the controller layer is split into two parts: the front controller, which is the unique
entry point to the application for a given environment, and the actions, which contain the page
logic. An action has the ability to determine how its view will be executed, by returning one of
the sfView constants. Inside an action, you can manipulate the different elements of the context,
including the request object (sfRequest) and the current user session object (sfUser).

Combining the power of the session object, the action object, and the security configuration
provides a complete security system, with access restriction and credentials. Special validate()
and handleError() methods in actions allow handling of request validation. And if the
preExecute() and postExecute() methods are made for reusability of code inside a module,
the filters authorize the same reusability for all the applications by making controller code
executed for every request.

Zaninotto_786-9 C06.fm Page 112 Friday, December 22, 2006 2:20 PM

113

■ ■ ■

C H A P T E R 7

Inside the View Layer

The view is responsible for rendering the output correlated to a particular action. In symfony,
the view consists of several parts, with each part designed to be easily modified by the person
who usually works with it.

• Web designers generally work on the templates (the presentation of the current action
data) and on the layout (containing the code common to all pages). These are written in
HTML with small embedded chunks of PHP, which are mostly calls to helpers.

• For reusability, developers usually package template code fragments into partials or
components. They use slots and component slots to affect more than one zone of the
layout. Web designers can work on these template fragments as well.

• Developers focus on the YAML view configuration file (setting the properties of the
response and other interface elements) and on the response object. When dealing with
variables in the templates, the risks of cross-site scripting must not be ignored, and a
good comprehension of output escaping techniques is required to safely record user
data.

But whatever your role is, you will find useful tools to speed up the tedious job of presenting
the results of the action. This chapter covers all of these tools.

Templating
Listing 7-1 shows a typical symfony template. It contains some HTML code and some basic PHP
code, usually calls to variables defined in the action (via $this->name = 'foo';) and helpers.

Listing 7-1. A Sample indexSuccess.php Template

<h1>Welcome</h1>
<p>Welcome back, <?php echo $name ?>!</p>
What would you like to do?
 <?php echo link_to('Read the last articles', 'article/read') ?>
 <?php echo link_to('Start writing a new one', 'article/write') ?>

Zaninotto_786-9 C07.fm Page 113 Thursday, December 21, 2006 12:51 PM

114 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

As explained in Chapter 4, the alternative PHP syntax is preferable for templates to make
them readable for non-PHP developers. You should keep PHP code to a minimum in templates,
since these files are the ones used to design the GUI of the application, and are sometimes
created and maintained by another team, specialized in presentation but not in application
logic. Keeping the logic inside the action also makes it easier to have several templates for a
single action, without any code duplication.

Helpers
Helpers are PHP functions that return HTML code and can be used in templates. In Listing 7-1, the
link_to() function is a helper. Sometimes, helpers are just time-savers, packaging code snippets
frequently used in templates. For instance, you can easily imagine the function definition for
this helper:

<?php echo input_tag('nickname') ?>
 => <input type="text" name="nickname" id="nickname" value="" />

It should look like Listing 7-2.

Listing 7-2. Sample Helper Definition

function input_tag($name, $value = null)
{
 return '<input type="text" name="'.$name.'" id="'.$name.'" ➥

 value="'.$value.'" />';
}

As a matter of fact, the input_tag() function built into symfony is a little more compli-
cated than that, as it accepts a third parameter to add other attributes to the <input> tag.
You can check its complete syntax and options in the online API documentation (http://
www.symfony-project.com/api/symfony.html).

Most of the time, helpers carry intelligence and save you long and complex coding:

<?php echo auto_link_text('Please visit our website www.example.com') ?>
 => Please visit our website www.example.com

Helpers facilitate the process of writing templates and produce the best possible HTML
code in terms of performance and accessibility. You can always use plain HTML, but helpers
are usually faster to write.

■Tip You may wonder why the helpers are named according to the underscore syntax rather than the
camelCase convention, used everywhere else in symfony. This is because helpers are functions, and all the
core PHP functions use the underscore syntax convention.

Zaninotto_786-9 C07.fm Page 114 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 115

Declaring Helpers

The symfony files containing helper definitions are not autoloaded (since they contain functions,
not classes). Helpers are grouped by purpose. For instance, all the helper functions dealing
with text are defined in a file called TextHelper.php, called the Text helper group. So if you need
to use a helper in a template, you must load the related helper group earlier in the template by
declaring it with the use_helper() function. Listing 7-3 shows a template using the auto_
link_text() helper, which is part of the Text helper group.

Listing 7-3. Declaring the Use of a Helper

// Use a specific helper group in this template
<?php echo use_helper('Text') ?>
...
<h1>Description</h1>
<p><?php echo auto_link_text($description) ?></p>

■Tip If you need to declare more than one helper group, add more arguments to the use_helper() call.
For instance, to load both the Text and the Javascript helper groups in a template, call <?php echo ➥
use_helper('Text', 'Javascript') ?>.

A few helpers are available by default in every template, without need for declaration.
These are helpers of the following helper groups:

Helper: Required for helper inclusion (the use_helper() function is, in fact, a helper itself)

Tag: Basic tag helper, used by almost every helper

Url: Links and URL management helpers

Asset: Helpers populating the HTML <head> section, and providing easy links to external
assets (images, JavaScript, and style sheet files)

Partial: Helpers allowing for inclusion of template fragments

Cache: Manipulation of cached code fragments

Form: Form input helpers

The list of the standard helpers, loaded by default for every template, is configurable in the
settings.yml file. So if you know that you will not use the helpers of the Cache group, or that
you will always use the ones of the Text group, modify the standard_helpers setting accordingly.
This will speed up your application a bit. You cannot remove the first four helper groups in the
preceding list (Helper, Tag, Url, and Asset), because they are compulsory for the templating
engine to work properly. Consequently, they don’t even appear in the list of standard helpers.

Zaninotto_786-9 C07.fm Page 115 Thursday, December 21, 2006 12:51 PM

116 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

■Tip If you ever need to use a helper outside a template, you can still load a helper group from anywhere
by calling sfLoader::loadHelpers($helpers), where $helpers is a helper group name or an array of
helper group names. For instance, if you want to use auto_link_text() in an action, you need to call
sfLoader::loadHelpers('Text') first.

Frequently Used Helpers

You will learn about some helpers in detail in later chapters, in relation with the feature they
are helping. Listing 7-4 gives a brief list of the default helpers that are used a lot, together with
the HTML code they return.

Listing 7-4. Common Default Helpers

// Helper group
<?php echo use_helper('HelperName') ?>
<?php echo use_helper('HelperName1', 'HelperName2', 'HelperName3') ?>

// Tag group
<?php echo tag('input', array('name' => 'foo', 'type' => 'text')) ?>
<?php echo tag('input', 'name=foo type=text') ?> // Alternative options syntax
 => <input name="foo" type="text" />
<?php echo content_tag('textarea', 'dummy content', 'name=foo') ?>
 => <textarea name="foo">dummy content</textarea>

// Url group
<?php echo link_to('click me', 'mymodule/myaction') ?>
=> click me // Depends on the routing settings

// Asset group
<?php echo image_tag('myimage', 'alt=foo size=200x100') ?>
 =>
<?php echo javascript_include_tag('myscript') ?>
 => <script language="JavaScript" type="text/javascript" src="/js/myscript.js"> ➥

 </script>
<?php echo stylesheet_tag('style') ?>
 => <link href="/stylesheets/style.css" media="screen" rel="stylesheet" ➥

 type="text/css" />

There are many other helpers in symfony, and it would take a full book to describe
all of them. The best reference for helpers is the online API documentation (http://
www.symfony-project.com/api/symfony.html), where all the helpers are well documented,
with their syntax, options, and examples.

Zaninotto_786-9 C07.fm Page 116 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 117

Adding Your Own Helpers

Symfony ships with a lot of helpers for various purposes, but if you don’t find what you need in
the API documentation, you will probably want to create a new helper. This is very easy to do.

Helper functions (regular PHP functions returning HTML code) should be saved in a file
called FooBarHelper.php, where FooBar is the name of the helper group. Store the file in the
apps/myapp/lib/helper/ directory (or in any helper/ directory created under one of the lib/
folders of your project) so it can be found automatically by the use_helper('FooBar') helper
for inclusion.

■Tip This system even allows you to override the existing symfony helpers. For instance, to redefine all the
helpers of the Text helper group, just create a TextHelper.php file in your apps/myapp/lib/helper/
directory. Whenever you call use_helper('Text'), symfony will use your helper group rather than its own.
But be careful: as the original file is not even loaded, you must redefine all the functions of a helper group to
override it; otherwise, some of the original helpers will not be available at all.

Page Layout
The template shown in Listing 7-1 is not a valid XHTML document. The DOCTYPE definition and
the <html> and <body> tags are missing. That’s because they are stored somewhere else in the
application, in a file called layout.php, which contains the page layout. This file, also called the
global template, stores the HTML code that is common to all pages of the application to avoid
repeating it in every template. The content of the template is integrated into the layout, or, if
you change the point of view, the layout “decorates” the template. This is an application of the
decorator design pattern, illustrated in Figure 7-1.

■Tip For more information about the decorator and other design patterns, see Patterns of Enterprise Application
Architecture by Martin Fowler (Addison-Wesley, ISBN: 0-32112-742-0).

Figure 7-1. Decorating a template with a layout

Listing 7-5 shows the default page layout, located in the application templates/ directory.

Zaninotto_786-9 C07.fm Page 117 Thursday, December 21, 2006 12:51 PM

118 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

Listing 7-5. Default Layout, in myproject/apps/myapp/templates/layout.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <?php echo include_http_metas() ?>
 <?php echo include_metas() ?>
 <?php echo include_title() ?>
 <link rel="shortcut icon" href="/favicon.ico" />
</head>
<body>

<?php echo $sf_data->getRaw('sf_content') ?>

</body>
</html>

The helpers called in the <head> section grab information from the response object and the
view configuration. The <body> tag outputs the result of the template. With this layout, the
default configuration, and the sample template in Listing 7-1, the processed view looks like
Listing 7-6.

Listing 7-6. The Layout, the View Configuration, and the Template Assembled

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <meta name="title" content="symfony project" />
 <meta name="robots" content="index, follow" />
 <meta name="description" content="symfony project" />
 <meta name="keywords" content="symfony, project" />
 <title>symfony project</title>
 <link rel="stylesheet" type="text/css" href="/css/main.css" />
 <link rel="shortcut icon" href="/favicon.ico">
</head>
<body>

<h1>Welcome</h1>
<p>Welcome back, <?php echo $name ?>!</p>
What would you like to do?
 <?php echo link_to('Read the last articles', 'article/read') ?>
 <?php echo link_to('Start writing a new one', 'article/write') ?>

</body>
</html>

Zaninotto_786-9 C07.fm Page 118 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 119

The global template can be entirely customized for each application. Add in any HTML
code you need. This layout is often used to hold the site navigation, logo, and so on. You can
even have more than one layout, and decide which layout should be used for each action. Don’t
worry about JavaScript and style sheet inclusion for now; the “View Configuration” section
later in this chapter shows how to handle that.

Template Shortcuts
In templates, a few symfony variables are always available. These shortcuts give access to the
most commonly needed information in templates, through the core symfony objects:

$sf_context: The whole context object (instance of sfContext)

$sf_request: The request object (instance of sfRequest)

$sf_params: Parameters of the request

$sf_user: The current user session object (instance of sfUser)

The previous chapter detailed useful methods of the sfRequest and sfUser objects. You
can actually call these methods in templates through the $sf_request and $sf_user variables.
For instance, if the request includes a total parameter, its value is available in the template
with the following:

// Long version
<?php echo $sf_request->getParameter('total'); ?>

// Shorter version
<?php echo $sf_params->get('total'); ?>

// Equivalent to the following action code
echo $this->getRequestParameter('total');

Code Fragments
You may often need to include some HTML or PHP code in several pages. To avoid repeating
that code, the PHP include() statement will suffice most of the time.

For instance, if many of the templates of your application need to use the same fragment
of code, save it in a file called myFragment.php in the global template directory (myproject/apps/
myapp/templates/) and include it in your templates as follows:

<?php include(sfConfig::get('sf_app_template_dir').'/myFragment.php') ?>

But this is not a very clean way to package a fragment, mostly because you can have different
variable names between the fragment and the various templates including it. In addition, the
symfony cache system (described in Chapter 12) has no way to detect an include, so the fragment
cannot be cached independently from the template. Symfony provides three alternative types
of intelligent code fragments to replace includes:

Zaninotto_786-9 C07.fm Page 119 Thursday, December 21, 2006 12:51 PM

120 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

• If the logic is lightweight, you will just want to include a template file having access to
some data you pass to it. For that, you will use a partial.

• If the logic is heavier (for instance, if you need to access the data model and/or modify
the content according to the session), you will prefer to separate the presentation from
the logic. For that, you will use a component.

• If the fragment is meant to replace a specific part of the layout, for which default content
may already exist, you will use a slot.

■Note Another code fragment type, called a component slot, is to be used when the nature of the fragment
depends on the context (for instance, if the fragment needs to be different for the actions of a given module).
Component slots are described later in this chapter.

The inclusion of these fragments is achieved by helpers of the Partial group. These helpers
are available from any symfony template, without initial declaration.

Partials
A partial is a reusable chunk of template code. For instance, in a publication application, the
template code displaying an article is used in the article detail page, and also in the list of the
best articles and the list of latest articles. This code is a perfect candidate for a partial, as illus-
trated in Figure 7-2.

Figure 7-2. Reusing partials in templates

Just like templates, partials are files located in the templates/ directory, and they contain
HTML code with embedded PHP. A partial file name always starts with an underscore (_), and
that helps to distinguish partials from templates, since they are located in the same templates/
folders.

A template can include partials whether it is in the same module, in another module, or in
the global templates/ directory. Include a partial by using the include_partial() helper, and
specify the module and partial name as a parameter (but omit the leading underscore and the
trailing .php), as described in Listing 7-7.

Zaninotto_786-9 C07.fm Page 120 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 121

Listing 7-7. Including a Partial in a Template of the mymodule Module

// Include the myapp/modules/mymodule/templates/_mypartial1.php partial
// As the template and the partial are in the same module,
// you can omit the module name
<?php include_partial('mypartial1') ?>

// Include the myapp/modules/foobar/templates/_mypartial2.php partial
// The module name is compulsory in that case
<?php include_partial('foobar/mypartial2') ?>

// Include the myapp/templates/_mypartial3.php partial
// It is considered as part of the 'global' module
<?php include_partial('global/mypartial3') ?>

Partials have access to the usual symfony helpers and template shortcuts. But since partials
can be called from anywhere in the application, they do not have automatic access to the variables
defined in the action calling the templates that includes them, unless passed explicitly as an
argument. For instance, if you want a partial to have access to a $total variable, the action
must hand it to the template, and then the template to the helper as a second argument of the
include_partial() call, as shown in Listings 7-8, 7-9, and 7-10.

Listing 7-8. The Action Defines a Variable, in mymodule/actions/actions.class.php

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 $this->total = 100;
 }
}

Listing 7-9. The Template Passes the Variable to the Partial, in mymodule/templates/
indexSuccess.php

<p>Hello, world!</p>
<?php include_partial('mypartial', array('mytotal' => $total)) ?>

Listing 7-10. The Partial Can Now Use the Variable, in mymodule/templates/_mypartial.php

<p>Total: <?php echo $mytotal ?></p>

■Tip All the helpers so far were called by <?php echo functionName() ?>. The partial helper, however, is
simply called by <?php include_partial() ?>, without echo, to make it behave similar to the regular
PHP include() statement. If you ever need a function that returns the content of a partial without actually
displaying it, use get_partial() instead. All the include_ helpers described in this chapter have a get_
counterpart that can be called together with an echo statement.

Zaninotto_786-9 C07.fm Page 121 Thursday, December 21, 2006 12:51 PM

122 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

Components
In Chapter 2, the first sample script was split into two parts to separate the logic from the presenta-
tion. Just like the MVC pattern applies to actions and templates, you may need to split a partial
into a logic part and a presentation part. In such a case, you should use a component.

A component is like an action, except it’s much faster. The logic of a component is kept
in a class inheriting from sfComponents, located in an action/components.class.php file. Its
presentation is kept in a partial. Methods of the sfComponents class start with the word execute,
just like actions, and they can pass variables to their presentation counterpart in the same way
that actions can pass variables. Partials that serve as presentation for components are named
by the component (without the leading execute, but with an underscore instead). Table 7-1
compares the naming conventions for actions and components.

■Tip Just as you can separate actions files, the sfComponents class has an sfComponent counterpart
that allows for single component files with the same type of syntax.

For instance, suppose you have a sidebar displaying the latest news headlines for a given
subject, depending on the user’s profile, which is reused in several pages. The queries necessary to
get the news headlines are too complex to appear in a simple partial, so they need to be moved
to an action-like file—a component. Figure 7-3 illustrates this example.

For this example, shown in Listings 7-11 and 7-12, the component will be kept in its own
module (called news), but you can mix components and actions in a single module if it makes
sense from a functional point of view.

Table 7-1. Action and Component Naming Conventions

Convention Actions Components

Logic file actions.class.php components.class.php

Logic class extends sfActions sfComponents

Method naming executeMyAction() executeMyComponent()

Presentation file naming myActionSuccess.php _myComponent.php

Zaninotto_786-9 C07.fm Page 122 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 123

Figure 7-3. Using components in templates

Listing 7-11. The Components Class, in modules/news/actions/components.class.php

<?php

class newsComponents extends sfComponents
{
 public function executeHeadlines()
 {
 $c = new Criteria();
 $c->addDescendingOrderByColumn(NewsPeer::PUBLISHED_AT);
 $c->setLimit(5);
 $this->news = NewsPeer::doSelect($c);
 }
}

Listing 7-12. The Partial, in modules/news/templates/_headlines.php

<div>
 <h1>Latest news</h1>

 <?php foreach($news as $headline): ?>

 <?php echo $headline->getPublishedAt() ?>
 <?php echo link_to($headline->getTitle(), ➥

 'news/show?id='.$headline->getId()) ?>

 <?php endforeach ?>

</div>

Zaninotto_786-9 C07.fm Page 123 Thursday, December 21, 2006 12:51 PM

124 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

Now, every time you need the component in a template, just call this:

<?php include_component('news', 'headlines') ?>

Just like the partials, components accept additional parameters in the shape of an associative
array. The parameters are available to the partial under their name, and in the component via
the $this object. See Listing 7-13 for an example.

Listing 7-13. Passing Parameters to a Component and Its Template

// Call to the component
<?php include_component('news', 'headlines', array('foo' => 'bar')) ?>

// In the component itself
echo $this->foo;
 => 'bar'

// In the _headlines.php partial
echo $foo;
 => 'bar'

You can include components in components, or in the global layout, as in any regular
template. Like actions, components’ execute methods can pass variables to the related partial
and have access to the same shortcuts. But the similarities stop there. A component doesn’t
handle security or validation, cannot be called from the Internet (only from the application
itself), and doesn’t have various return possibilities. That’s why a component is faster to execute
than an action.

Slots
Partials and components are great for reusability. But in many cases, code fragments are required
to fill a layout with more than one dynamic zone. For instance, suppose that you want to add
some custom tags in the <head> section of the layout, depending on the content of the action.
Or, suppose that the layout has one major dynamic zone, which is filled by the result of the
action, plus a lot of other smaller ones, which have a default content defined in the layout but
can be overridden at the template level.

For these situations, the solution is a slot. Basically, a slot is a placeholder that you can put
in any of the view elements (in the layout, a template, or a partial). Filling this placeholder is
just like setting a variable. The filling code is stored globally in the response, so you can define
it anywhere (in the layout, a template, or a partial). Just make sure to define a slot before including
it, and remember that the layout is executed after the template (this is the decoration process),
and the partials are executed when they are called in a template. Does it sound too abstract?
Let’s see an example.

Imagine a layout with one zone for the template and two slots: one for the sidebar and the
other for the footer. The slot values are defined in the templates. During the decoration process, the
layout code wraps the template code, and the slots are filled with the previously defined values,
as illustrated in Figure 7-4. The sidebar and the footer can then be contextual to the main action.
This is like having a layout with more than one “hole.”

Zaninotto_786-9 C07.fm Page 124 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 125

Figure 7-4. Layout slots defined in a template

Seeing some code will clarify things further. To include a slot, use the include_slot() helper.
The has_slot() helper returns true if the slot has been defined before, providing a fallback
mechanism as a bonus. For instance, define a placeholder for a 'sidebar' slot in the layout and
its default content as shown in Listing 7-14.

Listing 7-14. Including a 'sidebar' Slot in the Layout

<div id="sidebar">
<?php if (has_slot('sidebar'): ?>
 <?php include_slot('sidebar') ?>
<?php else: ?>
 <!-- default sidebar code -->
 <h1>Contextual zone</h1>
 <p>This zone contains links and information
 relative to the main content of the page.</p>
<?php endif; ?>
</div>

Each template has the ability to define the contents of a slot (actually, even partials can do
it). As slots are meant to hold HTML code, symfony offers a convenient way to define them: just
write the slot code between a call to the slot() and end_slot() helpers, as in Listing 7-15.

Listing 7-15. Overriding the 'sidebar' Slot Content in a Template

...
<?php slot('sidebar') ?>
 <!-- custom sidebar code for the current template-->
 <h1>User details</h1>
 <p>name: <?php echo $user->getName() ?></p>
 <p>email: <?php echo $user->getEmail() ?></p>
<?php end_slot() ?>

The code between the slot helpers is executed in the context of the template, so it has
access to all the variables that were defined in the action. Symfony will automatically put the
result of this code in the response object. It will not be displayed in the template, but made
available for future include_slot() calls, like the one in Listing 7-14.

Slots are very useful to define zones meant to display contextual content. They can also be
used to add HTML code to the layout for certain actions only. For instance, a template displaying

Zaninotto_786-9 C07.fm Page 125 Thursday, December 21, 2006 12:51 PM

126 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

the list of the latest news might want to add a link to an RSS feed in the <head> part of the layout.
This is achieved simply by adding a 'feed' slot in the layout and overriding it in the template
of the list.

WHERE TO FIND TEMPLATE FRAGMENTS

People working on templates are usually web designers, who may not know symfony very well and may have
difficulties finding template fragments, since they can be scattered all over the application. These few guide-
lines will make them more comfortable with the symfony templating system.

First of all, although a symfony project contains many directories, all the layouts, templates, and template
fragments files reside in directories named templates/. So as far as a web designer is concerned, a project
structure can be reduced to something like this:

myproject/
 apps/
 application1/
 templates/ # Layouts for application 1
 modules/
 module1/
 templates/ # Templates and partials for module 1
 module2/
 templates/ # Templates and partials for module 2
 module3/
 templates/ # Templates and partials for module 3

All other directories can be ignored.
When meeting an include_partial(), web designers just need to understand that only the first argu-

ment is important. This argument’s pattern is module_name/partial_name, and that means that the presen-
tation code is to be found in modules/module_name/templates/_partial_name.php.

For the include_component() helper, module name and partial name are the first two arguments.
As for the rest, a general idea about what helpers are and which helpers are the most common in templates
should be enough to start designing templates for symfony applications.

View Configuration
In symfony, a view consists of two distinct parts:

• The HTML presentation of the action result (stored in the template, in the layout, and in
the template fragments)

• All the rest, including the following:

• Meta declarations: Keywords, description, or cache duration.

• Page title: Not only does it help users with several browser windows open to find yours,
but it is also very important for search sites’ indexing.

Zaninotto_786-9 C07.fm Page 126 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 127

• File inclusions: JavaScript and style sheet files.

• Layout: Some actions require a custom layout (pop-ups, ads, and so on) or no layout
at all (such as Ajax actions).

In the view, all that is not HTML is called view configuration, and symfony provides two
ways to manipulate it. The usual way is through the view.yml configuration file. It can be used
whenever the values don’t depend on the context or on database queries. When you need to set
dynamic values, the alternative method is to set the view configuration via the sfResponse
object attributes directly in the action.

■Note If you ever set a view configuration parameter both via the sfResponse object and via the
view.yml file, the sfResponse definition takes precedence.

The view.yml File
Each module can have one view.yml file defining the settings of its views. This allows you to
define view settings for a whole module and per view in a single file. The first-level keys of the
view.yml file are the module view names. Listing 7-16 shows an example of view configuration.

Listing 7-16. Sample Module-Level view.yml

editSuccess:
 metas:
 title: Edit your profile

editError:
 metas:
 title: Error in the profile edition

all:
 stylesheets: [my_style]
 metas:
 title: My website

■Caution Be aware that the main keys in the view.yml file are view names, not action names. As a
reminder, a view name is composed of an action name and an action termination. For instance, if the edit
action returns sfView::SUCCESS (or returns nothing at all, since it is the default action termination), then
the view name is editSuccess.

Zaninotto_786-9 C07.fm Page 127 Thursday, December 21, 2006 12:51 PM

128 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

The default settings for the module are defined under the all: key in the module view.yml.
The default settings for all the application views are defined in the application view.yml. Once
again, you recognize the configuration cascade principle:

• In apps/myapp/modules/mymodule/config/view.yml, the per-view definitions apply only
to one view and override the module-level definitions.

• In apps/myapp/modules/mymodule/config/view.yml, the all: definitions apply to all the
actions of the module and override the application-level definitions.

• In apps/myapp/config/view.yml, the default: definitions apply to all modules and all
actions of the application.

■Tip Module-level view.yml files don’t exist by default. The first time you need to adjust a view configuration
parameter for a module, you will have to create an empty view.yml in its config/ directory.

After seeing the default template in Listing 7-5 and an example of a final response in
Listing 7-6, you may wonder where the header values come from. As a matter of fact, they are
the default view settings, defined in the application view.yml and shown in Listing 7-17.

Listing 7-17. Default Application-Level View Configuration, in apps/myapp/config/view.yml

default:
 http_metas:
 content-type: text/html

 metas:
 title: symfony project
 robots: index, follow
 description: symfony project
 keywords: symfony, project
 language: en

 stylesheets: [main]

 javascripts: []

 has_layout: on
 layout: layout

Each of these settings will be described in detail in the “View Configuration Settings”
section.

Zaninotto_786-9 C07.fm Page 128 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 129

The Response Object
Although part of the view layer, the response object is often modified by the action. Actions can
access the symfony response object, called sfResponse, via the getResponse() method. Listing 7-18
lists some of the sfResponse methods often used from within an action.

Listing 7-18. Actions Have Access to the sfResponse Object Methods

class mymoduleActions extends sfActions
{
 public function executeIndex()
 {
 $response = $this->getResponse();

 // HTTP headers
 $response->setContentType('text/xml');
 $response->setHttpHeader('Content-Language', 'en');
 $response->setStatusCode(403);
 $response->addVaryHttpHeader('Accept-Language');
 $response->addCacheControlHttpHeader('no-cache');

 // Cookies
 $response->setCookie($name, $content, $expire, $path, $domain);

 // Metas and page headers
 $response->addMeta('robots', 'NONE');
 $response->addMeta('keywords', 'foo bar');
 $response->setTitle('My FooBar Page');
 $response->addStyleSheet('custom_style');
 $response->addJavaScript('custom_behavior');
 }
}

In addition to the setter methods shown here, the sfResponse class has getters that return
the current value of the response attributes.

The header setters are very powerful in symfony. Headers are sent as late as possible (in the
sfRenderingFilter), so you can alter them as much as you want and as late as you want. They
also provide very useful shortcuts. For instance, if you don’t specify a charset when you call
setContentType(), symfony automatically adds the default charset defined in the settings.yml file.

$response->setContentType('text/xml');
echo $response->getContentType();
 => 'text/xml; charset=utf-8'

The status code of responses in symfony is compliant with the HTTP specification. Exceptions
return a status 500, pages not found return a status 404, normal pages return a status 200, pages
not modified can be reduced to a simple header with status code 304 (see Chapter 12 for details),
and so on. But you can override these defaults by setting your own status code in the action
with the setStatusCode() response method. You can specify a custom code and a custom message,

Zaninotto_786-9 C07.fm Page 129 Thursday, December 21, 2006 12:51 PM

130 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

or simply a custom code—in which case, symfony will add the most common message for
this code.

$response->setStatusCode(404, 'This page no longer exists');

■Tip Before sending the headers, symfony normalizes their names. So you don’t need to bother about
writing content-language instead of Content-Language in a call to setHttpHeader(), as symfony
will understand the former and automatically transform it to the latter.

View Configuration Settings
You may have noticed that there are two kinds of view configuration settings:

• The ones that have a unique value (the value is a string in the view.yml file and the response
uses a set method for those)

• The ones with multiple values (for which view.yml uses arrays and the response uses an
add method)

Keep in mind that the configuration cascade erases the unique value settings but piles up
the multiple values settings. This will become more apparent as you progress through this chapter.

Meta Tag Configuration

The information written in the <meta> tags in the response is not displayed in a browser but is
useful for robots and search engines. It also controls the cache settings of every page. Define
these tags under the http_metas: and metas: keys in view.yml, as in Listing 7-19, or with the
addHttpMeta() and addMeta() response methods in the action, as in Listing 7-20.

Listing 7-19. Meta Definition As Key: Value Pairs in view.yml

http_metas:
 cache-control: public

metas:
 description: Finance in France
 keywords: finance, France

Listing 7-20. Meta Definition As Response Settings in the Action

$this->getResponse()->addHttpMeta('cache-control', 'public');
$this->getResponse()->addMeta('description', 'Finance in France');
$this->getResponse()->addMeta('keywords', 'finance, France');

Adding an existing key will replace its current content by default. For HTTP meta tags, you
can add a third parameter and set it to false to have the addHttpMeta() method (as well as the
setHttpHeader()) append the value to the existing one, rather than replacing it.

Zaninotto_786-9 C07.fm Page 130 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 131

$this->getResponse()->addHttpMeta('accept-language', 'en');
$this->getResponse()->addHttpMeta('accept-language', 'fr', false);
echo $this->getResponse()->getHttpHeader('accept-language');
 => 'en, fr'

In order to have these meta tags appear in the final document, the include_http_metas()
and include_metas() helpers must be called in the <head> section (this is the case in the default
layout; see Listing 7-5). Symfony automatically aggregates the settings from all the view.yml
files (including the default one shown in Listing 7-17) and the response attribute to output
proper <meta> tags. The example in Listing 7-19 ends up as shown in Listing 7-21.

Listing 7-21. Meta Tags Output in the Final Page

<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="cache-control" content="public" />
<meta name="robots" content="index, follow" />
<meta name="description" content="Finance in France" />
<meta name="keywords" content="finance, France" />

As a bonus, the HTTP header of the response is also impacted by the http-metas: definition,
even if you don’t have any include_http_metas() helpers in the layout, or if you have no layout
at all. For instance, if you need to send a page as plain text, define the following view.yml:

http_metas:
 content-type: text/plain

has_layout: false

Title Configuration

The page title is a key part to search engine indexing. It is also very useful with modern browsers
that provide tabbed browsing. In HTML, the title is both a tag and meta information of the page, so
the view.yml file sees the title: key as a child of the metas: key. Listing 7-22 shows the title
definition in view.yml, and Listing 7-23 shows the definition in the action.

Listing 7-22. Title Definition in view.yml

indexSuccess:
 metas:
 title: Three little piggies

Listing 7-23. Title Definition in the Action—Allows for Dynamic Titles

$this->getResponse()->setTitle(sprintf('%d little piggies', $number));

In the <head> section of the final document, the title definition sets the <meta name="title">
tag if the include_metas() helper is present, and the <title> tag if the include_title() helper
is present. If both are included (as in the default layout of Listing 7-5), the title appears twice in
the document source (see Listing 7-6), which is harmless.

Zaninotto_786-9 C07.fm Page 131 Thursday, December 21, 2006 12:51 PM

132 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

File Inclusion Configuration

Adding a specific style sheet or JavaScript file to a view is easy, as Listings 7-24 and 7-25
demonstrate.

Listing 7-24. File Inclusion in view.yml

indexSuccess:
 stylesheets: [mystyle1, mystyle2]
 javascripts: [myscript]

Listing 7-25. File Inclusion in the Action

$this->getResponse()->addStylesheet('mystyle1');
$this->getResponse()->addStylesheet('mystyle2');
$this->getResponse()->addJavascript('myscript');

In each case, the argument is a file name. If the file has a logical extension (.css for a style
sheet and .js for a JavaScript file), you can omit it. If the file has a logical location (/css/ for a
style sheet and /js/ for a JavaScript file), you can omit it as well. Symfony is smart enough to
figure out the correct extension or location.

Unlike the meta and title definitions, the file inclusion definitions don’t require any helper
in the template or layout to be included. This means that the previous settings will output the
HTML code of Listing 7-26, whatever the content of the template and the layout.

Listing 7-26. File Inclusion Result—No Need for a Helper Call in the Layout

<head>
...
<link rel="stylesheet" type="text/css" media="screen" href="/css/mystyle1.css" />
<link rel="stylesheet" type="text/css" media="screen" href="/css/mystyle2.css" />
<script language="javascript" type="text/javascript" src="/js/myscript.js">
</script>
</head>

■Note Style sheet and JavaScript inclusions in the response are performed by a filter called sfCommonFilter.
It looks for a <head> tag in the response, and adds the <link> and <script> just before the closing </head>.
This means that the inclusion can’t take place if there is no <head> tag in your layout or templates.

Remember that the configuration cascade principle applies, so any file inclusion defined
in the application view.yml makes it appear in every page of the application. Listings 7-27, 7-28,
and 7-29 demonstrate this principle.

Zaninotto_786-9 C07.fm Page 132 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 133

Listing 7-27. Sample Application view.yml

default:
 stylesheets: [main]

Listing 7-28. Sample Module view.yml

indexSuccess:
 stylesheets: [special]

all:
 stylesheets: [additional]

Listing 7-29. Resulting indexSuccess View

<link rel="stylesheet" type="text/css" media="screen" href="/css/main.css" />
<link rel="stylesheet" type="text/css" media="screen" href="/css/additional.css" />
<link rel="stylesheet" type="text/css" media="screen" href="/css/special.css" />

If you need to remove a file defined at a higher level, just add a minus sign (-) in front of the
file name in the lower-level definition, as shown in Listing 7-30.

Listing 7-30. Sample Module view.yml That Removes the Files Defined at the Application Level

indexSuccess:
 stylesheets: [-main, special]

all:
 stylesheets: [additional]

To remove all style sheets or JavaScript files, use the following syntax:

indexSuccess:
 stylesheets: [-*]
 javascripts: [-*]

You can be more accurate and define an additional parameter to force the position where
to include the file (first or last position):

// In the view.yml
indexSuccess:
 stylesheets: [special: { position: first }]

// In the action
$this->getResponse()->addStylesheet('special', 'first');

To specify media for a style sheet inclusion, you can change the default style sheet tag
options, as shown in Listings 7-31, 7-32, and 7-33.

Zaninotto_786-9 C07.fm Page 133 Thursday, December 21, 2006 12:51 PM

134 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

Listing 7-31. Style Sheet Inclusion with Media in view.yml

indexSuccess:
 stylesheets: [main, paper: { media: print }]

Listing 7-32. Style Sheet Inclusion with Media in the Action

$this->getResponse()->addStylesheet('paper', '', array('media' => 'print'));

Listing 7-33. Resulting View

<link rel="stylesheet" type="text/css" media="print" href="/css/paper.css" />

Layout Configuration

According to the graphical charter of your website, you may have several layouts. Classic
websites have at least two: the default layout and the pop-up layout.

You have already seen that the default layout is myproject/apps/myapp/templates/
layout.php. Additional layouts must be added in the same global templates/ directory. If you
want a view to use a myapp/templates/my_layout.php file, use the syntax shown in Listing 7-34
in view.yml or in Listing 7-35 in the action.

Listing 7-34. Layout Definition in view.yml

indexSuccess:
 layout: my_layout

Listing 7-35. Layout Definition in the Action

$this->setLayout('my_layout');

Some views don’t need any layout at all (for instance, plain text pages or RSS feeds). In that
case, set has_layout to false, as shown in Listings 7-36 and 7-37.

Listing 7-36. Layout Removal in view.yml

indexSuccess:
 has_layout: false

Listing 7-37. Layout Removal in the Action

$this->setLayout(false);

■Note Ajax actions views have no layout by default.

Zaninotto_786-9 C07.fm Page 134 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 135

Component Slots
Combining the power of view components and view configuration brings a new perspective to
view development: the component slot system. It is an alternative to slots focusing on reusability
and layer separation. So component slots are more structured than slots, but a little slower to
execute.

Just like slots, component slots are named placeholders that you can declare in the view
elements. The difference resides in the way the filling code is determined. For a slot, the code
is set in another view element; for a component slot, the code results from the execution of a
component, and the name of this component comes from the view configuration. You will
understand component slots more clearly after seeing them in action.

To set a component slot placeholder, use the include_component_slot() helper. This function
expects a label as a parameter. For instance, suppose that the layout.php file of the application
contains a contextual sidebar. Listing 7-38 shows how the component slot helper would be
included.

Listing 7-38. Including a Component Slot with the Name 'sidebar'

...
<div id="sidebar">
 <?php include_component_slot('sidebar') ?>
</div>

Define the correspondence between the component slot label and a component name in
the view configuration. For instance, set the default component for the sidebar component
slot in the application view.yml, under the components header. The key is the component slot
label; the value must be an array containing a module and a component name. Listing 7-39
shows an example.

Listing 7-39. Defining the Default 'sidebar' Slot Component, in myapp/config/view.yml

default:
 components:
 sidebar: [bar, default]

So when the layout is executed, the sidebar component slot is filled with the result of the
executeDefault() method of the barComponents class located in the bar module, and this method
will display the _default.php partial located in modules/bar/templates/.

The configuration cascade gives you the ability to override this setting for a given module.
For instance, in a user module, you may want the contextual component to display the user
name and the number of articles that the user published. In that case, specialize the sidebar
slot setting in the module view.yml, as shown in Listing 7-40.

Listing 7-40. Specializing the 'sidebar' Slot Component, in myapp/modules/user/config/view.yml

all:
 components:
 sidebar: [bar, user]

Zaninotto_786-9 C07.fm Page 135 Thursday, December 21, 2006 12:51 PM

136 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

The component definitions to handle this slot should look like the ones in Listing 7-41.

Listing 7-41. Components Used by the 'sidebar'Slot, in modules/bar/actions/
components.class.php

class barComponents extends sfComponents
{
 public function executeDefault()
 {
 }

 public function executeUser()
 {
 $current_user = $this->getUser()->getCurrentUser();
 $c = new Criteria();
 $c->add(ArticlePeer::AUTHOR_ID, $current_user->getId());
 $this->nb_articles = ArticlePeer::doCount($c);
 $this->current_user = $current_user;
 }
}

Listing 7-42 shows the views for these two components.

Listing 7-42. Partials Used by the 'sidebar'Slot Components, in modules/bar/templates/

// _default.php
<p>This zone contains contextual information.</p>

// _user.php
<p>User name: <?php echo $current_user->getName() ?></p>
<p><?php echo $nb_articles ?> articles published</p>

Component slots can be used for breadcrumbs, contextual navigations, and dynamic
insertions of all kinds. As components, they can be used in the global layout and regular
templates, or even in other components. The configuration setting the component of a slot is
always taken from the configuration of the last action called.

If you need to suspend the use of a component slot for a given module, just declare an
empty module/component for it, as shown in Listing 7-43.

Listing 7-43. Disabling a Component Slot in view.yml

all:
 components:
 sidebar: []

Zaninotto_786-9 C07.fm Page 136 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 137

Output Escaping
When you insert dynamic data in a template, you must be sure about the data integrity. For
instance, if data comes from forms filled in by anonymous users, there is a risk that it may
include malicious scripts intended to launch cross-site scripting (XSS) attacks. You must be
able to escape the output data, so that any HTML tag it contains becomes harmless.

As an example, suppose that a user fills an input field with the following value:

<script>alert(document.cookie)</script>

If you echo this value without caution, the JavaScript will execute on every browser and
allow for much more dangerous attacks than just displaying an alert. This is why you must
escape the value before displaying it, so that it becomes something like this:

<script>alert(document.cookie)</script>

You could escape your output manually by enclosing every unsure value in a call to
htmlentities(), but that approach would be very repetitive and error-prone. Instead, symfony
provides a special system, called output escaping, which automatically escapes every variable
output in a template. It is activated by a simple parameter in the application settings.yml.

Activating Output Escaping
Output escaping is configured globally for an application in the settings.yml file. Two parameters
control the way that output escaping works: the strategy determines how the variables are
made available to the view, and the method is the default escaping function applied to the data.

The next sections describe these settings in detail but, basically, all you need to do to acti-
vate output escaping is to set the escaping_strategy parameter to both instead of its default
value bc, as shown in Listing 7-44.

Listing 7-44. Activating Output Escaping, in myapp/config/settings.yml

all:
 .settings:
 escaping_strategy: both
 escaping_method: ESC_ENTITIES

This will add htmlentities() to all variable output by default. For instance, suppose that
you define a test variable in an action as follows:

$this->test = '<script>alert(document.cookie)</script>';

With output escaping turned on, echoing this variable in the template will output the
escaped data:

echo $test;
 => ><script>alert(document.cookie)</script>

Activating output escaping also gives access to an $sf_data variable in every template. It is
a container object referencing all the escaped variables. So you can also output the test variable
with the following:

Zaninotto_786-9 C07.fm Page 137 Thursday, December 21, 2006 12:51 PM

138 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

echo $sf_data->get('test');
=> ><script>alert(document.cookie)</script>

■Tip The $sf_data object implements the Array interface, so instead of using the $sf_data->get ➥

('myvariable'), you can retrieve escaped values by calling $sf_data['myvariable']. But it is not a
real array, so functions like print_r() will not work as expected.

This object also gives you access to the unescaped, or raw, data. This is useful when a variable
stores HTML code meant to be interpreted by the browser, provided that you trust this vari-
able. Call the getRaw() method when you need to output the raw data.

echo $sf_data->getRaw('test');
 => <script>alert(document.cookie)</script>

You will have to access raw data each time you need variables containing HTML to be
really interpreted as HTML. You can now understand why the default layout uses
$sf_data->getRaw('sf_content') to include the template, rather than a simpler $sf_content,
which breaks when output escaping is activated.

Escaping Strategy
The escaping_strategy setting determines the way variables are output by default. The
following are the possible values:

bc (backward compatible mode): Variables are not escaped, but an escaped version of
each variable is available through the $sf_data container. So the data is raw by default,
unless you choose to use the escaped value via the $sf_data object. This is the default
value, and you should be aware that with this strategy, your application is subject to XSS
attack risks.

both: All variables are escaped by default. Values are also made available in the $sf_data
container. This is the recommended strategy, since you will be at risk only if you volun-
tarily output raw data. In some cases, you will have to use unescaped data—for instance, if
you output a variable that contains HTML with the intention that this HTML be rendered
as such in the browser. So be aware that if you switch to this strategy with a partially devel-
oped application, some features may break. The best choice is to use this setting right from
the beginning.

on: Values are available only in the $sf_data container. This is the most secure and fastest
way to deal with escaping, because each time you output a variable, you must choose if
you want to use the escaped version with get() or the raw version with getRaw(). So you
are always aware of the possibility that data may be corrupted.

off: Turns off output escaping. The $sf_data container is not available in templates. You
can choose to use this strategy rather than bc to speed up your application if you are sure
that you will never need to access escaped data.

Zaninotto_786-9 C07.fm Page 138 Thursday, December 21, 2006 12:51 PM

C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R 139

Escaping Helpers
Escaping helpers are functions returning an escaped version of their input. They can be provided
as a default escaping_method in the settings.yml file or to specify an escaping method for a
specific value in the view. The following escaping helpers are available:

ESC_RAW: Doesn't escape the value.

ESC_ENTITIES: Applies the PHP function htmlentities() to the input with ENT_QUOTES as
the quote style.

ESC_JS: Escapes a value to be put into a JavaScript string that is going to be used as HTML.
This is useful for escaping things where HTML is going to be dynamically changed using
JavaScript.

ESC_JS_NO_ENTITIES: Escapes a value to be put into a JavaScript string but does not add
entities. This is useful if the value is going to be displayed using a dialog box (for example,
for a myString variable used in javascript:alert(myString);).

Escaping Arrays and Objects
Output escaping not only works for strings, but also for arrays and objects. Any values that are
objects or arrays will pass on their escaped state to their children. Assuming your strategy is set
to both, Listing 7-45 demonstrates the escaping cascade.

Listing 7-45. Escaping Also Works for Arrays and Objects

// Class definition
class myClass
{
 public function testSpecialChars($value = '')
 {
 return '<'.$value.'>';
 }
}

// In the action
$this->test_array = array('&', '<', '>');
$this->test_array_of_arrays = array(array('&'));
$this->test_object = new myClass();

// In the template
<?php foreach($test_array as $value): ?>
 <?php echo $value ?>
<?php enforeach; ?>
 => & < >
<?php echo $test_array_of_arrays[0][0] ?>
 => &
<?php echo $test_object->testSpecialChars('&') ?>
 => <&>

Zaninotto_786-9 C07.fm Page 139 Thursday, December 21, 2006 12:51 PM

140 C H A P T E R 7 ■ I N S I D E T H E V I E W L A Y E R

As a matter of fact, the variables in the template are not of the type you might expect. The
output escaping system “decorates” them and transforms them into special objects:

<?php echo get_class($test_array) ?>
 => sfOutputEscaperArrayDecorator
<?php echo get_class($test_object) ?>
 => sfOutputEscaperObjectDecorator

This explains why some usual PHP functions (like array_shift(), print_r(), and so on)
don’t work on escaped arrays anymore. But they can be still be accessed using [], be traversed
using foreach, and they give back the right result with count() (count() works only with PHP 5.2
or later). And in templates, the data should be read-only anyway, so most access will be through
the methods that do work.

You still have a way to retrieve the raw data through the $sf_data object. In addition, methods
of escaped objects are altered to accept an additional parameter: an escaping method. So you
can choose an alternative escaping method each time you display a variable in a template, or
opt for the ESC_RAW helper to deactivate escaping. See Listing 7-46 for an example.

Listing 7-46. Methods of Escaped Objects Accept an Additional Parameter

<?php echo $test_object->testSpecialChars('&') ?>
=> <&>
// The three following lines return the same value
<?php echo $test_object->testSpecialChars('&', ESC_RAW) ?>
<?php echo $sf_data->getRaw('test_object')->testSpecialChars('&') ?>
<?php echo $sf_data->get('test_object', ESC_RAW)->testSpecialChars('&') ?>
 => <&>

If you deal with objects in your templates, you will use the additional parameter trick a lot,
since it is the fastest way to get raw data on a method call.

■Caution The usual symfony variables are also escaped when you turn on output escaping. So be aware
that $sf_user, $sf_request, $sf_param, and $sf_context still work, but their methods return escaped
data, unless you add ESC_RAW as a final argument to their method calls.

Summary
All kinds of tools are available to manipulate the presentation layer. The templates are built in
seconds, thanks to helpers. The layouts, partials, components, and component slots bring both
modularity and reusability. The view configuration takes advantage of the speed of YAML to
handle (mostly) page headers. The configuration cascade exempts you from defining every
setting for each view. For every modification of the presentation that depends on dynamic
data, the action has access to the sfResponse object. And the view is secure from XSS attacks,
thanks to the output escaping system.

Zaninotto_786-9 C07.fm Page 140 Thursday, December 21, 2006 12:51 PM

141

■ ■ ■

C H A P T E R 8

Inside the Model Layer

Much of the discussion so far has been devoted to building pages, and processing requests
and responses. But the business logic of a web application relies mostly on its data model.
Symfony’s default model component is based on an object/relational mapping layer known
as the Propel project (http://propel.phpdb.org/). In a symfony application, you access data
stored in a database and modify it through objects; you never address the database explicitly.
This maintains a high level of abstraction and portability.

This chapter explains how to create an object data model, and the way to access and modify
the data in Propel. It also demonstrates the integration of Propel in Symfony.

Why Use an ORM and an Abstraction Layer?
Databases are relational. PHP 5 and symfony are object-oriented. In order to most effectively
access the database in an object-oriented context, an interface translating the object logic to
the relational logic is required. As explained in Chapter 1, this interface is called an object-relational
mapping (ORM), and it is made up of objects that give access to data and keep business rules
within themselves.

The main benefit of an ORM is reusability, allowing the methods of a data object to be
called from various parts of the application, even from different applications. The ORM layer
also encapsulates the data logic—for instance, the calculation of a forum user rating based on
how many contributions were made and how popular these contributions are. When a page
needs to display such a user rating, it simply calls a method of the data model, without worrying
about the details of the calculation. If the calculation changes afterwards, you will just need to
modify the rating method in the model, leaving the rest of the application unchanged.

Using objects instead of records, and classes instead of tables, has another benefit: They
allow you to add new accessors to your objects that don’t necessarily match a column in a table.
For instance, if you have a table called client with two fields named first_name and last_name,
you might like to be able to require just a Name. In an object-oriented world, it is as easy as
adding a new accessor method to the Client class, as in Listing 8-1. From the application point
of view, there is no difference between the FirstName, LastName, and Name attributes of the Client
class. Only the class itself can determine which attributes correspond to a database column.

Zaninotto_786-9 C08.fm Page 141 Thursday, December 21, 2006 12:50 PM

142 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Listing 8-1. Accessors Mask the Actual Table Structure in a Model Class

public function getName()
{
 return $this->getFirstName.' '.$this->getLastName();
}

All the repeated data-access functions and the business logic of the data itself can be kept
in such objects. Suppose you have a ShoppingCart class in which you keep Items (which are
objects). To get the full amount of the shopping cart for the checkout, write a custom method
to encapsulate the actual calculation, as shown in Listing 8-2.

Listing 8-2. Accessors Mask the Data Logic

public function getTotal()
{
 $total = 0;
 foreach ($this->getItems() as $item)
 {
 $total += $item->getPrice() * $item->getQuantity();
 }

 return $total;
}

There is another important point to consider when building data-access procedures:
Database vendors use different SQL syntax variants. Switching to another database manage-
ment system (DBMS) forces you to rewrite part of the SQL queries that were designed for the
previous one. If you build your queries using a database-independent syntax, and leave the
actual SQL translation to a third-party component, you can switch database systems without
pain. This is the goal of the database abstraction layer. It forces you to use a specific syntax
for queries, and does the dirty job of conforming to the DBMS particulars and optimizing the
SQL code.

The main benefit of an abstraction layer is portability, because it makes switching to another
database possible, even in the middle of a project. Suppose that you need to write a quick
prototype for an application, but the client hasn’t decided yet which database system would
best suit his needs. You can start building your application with SQLite, for instance, and switch to
MySQL, PostgreSQL, or Oracle when the client is ready to decide. Just change one line in a
configuration file, and it works.

Symfony uses Propel as the ORM, and Propel uses Creole for database abstraction. These
two third-party components, both developed by the Propel team, are seamlessly integrated
into symfony, and you can consider them as part of the framework. Their syntax and conven-
tions, described in this chapter, were adapted so that they differ from the symfony ones as little
as possible.

Zaninotto_786-9 C08.fm Page 142 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 143

■Note In a symfony project, all the applications share the same model. That’s the whole point of the project
level: regrouping applications that rely on common business rules. This is the reason that the model is independent
from the applications and the model files are stored in a lib/model/ directory at the root of the project.

Symfony’s Database Schema
In order to create the data object model that symfony will use, you need to translate whatever
relational model your database has to an object data model. The ORM needs a description of
the relational model to do the mapping, and this is called a schema. In a schema, you define the
tables, their relations, and the characteristics of their columns.

Symfony’s syntax for schemas uses the YAML format. The schema.yml files must be located
in the myproject/config/ directory.

■Note Symfony also understands the Propel native XML schema format, as described in the “Beyond the
schema.yml: The schema.xml” section later in this chapter.

Schema Example
How do you translate a database structure into a schema? An example is the best way to under-
stand it. Imagine that you have a blog database with two tables: blog_article and blog_comment,
with the structure shown in Figure 8-1.

Figure 8-1. A blog database table structure

The related schema.yml file should look like Listing 8-3.

Zaninotto_786-9 C08.fm Page 143 Thursday, December 21, 2006 12:50 PM

144 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Listing 8-3. Sample schema.yml

propel:
 blog_article:
 _attributes: { phpName: Article }
 id:
 title: varchar(255)
 content: longvarchar
 created_at:
 blog_comment:
 _attributes: { phpName: Comment }
 id:
 article_id:
 author: varchar(255)
 content: longvarchar
 created_at:

Notice that the name of the database itself (blog) doesn’t appear in the schema.yml file.
Instead, the database is described under a connection name (propel in this example). This is
because the actual connection settings can depend on the environment in which your application
runs. For instance, when you run your application in the development environment, you will
access a development database (maybe blog_dev), but with the same schema as the production
database. The connection settings will be specified in the databases.yml file, described in the
“Database Connections” section later in this chapter. The schema doesn’t contain any detailed
connection to settings, only a connection name, to maintain database abstraction.

Basic Schema Syntax
In a schema.yml file, the first key represents a connection name. It can contain several tables,
each having a set of columns. According to the YAML syntax, the keys end with a colon, and the
structure is shown through indentation (one or more spaces, but no tabulations).

A table can have special attributes, including the phpName (the name of the class that will be
generated). If you don’t mention a phpName for a table, symfony creates it based on the camelCase
version of the table name.

■Tip The camelCase convention removes underscores from words, and capitalizes the first letter of inner
words. The default camelCase versions of blog_article and blog_comment are BlogArticle and
BlogComment. The name of this convention comes from the appearance of capitals inside a long word,
suggestive of the humps of a camel.

A table contains columns. The column value can be defined in three different ways:

Zaninotto_786-9 C08.fm Page 144 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 145

• If you define nothing, symfony will guess the best attributes according to the column
name and a few conventions that will be described in the “Empty Columns” section later
in this chapter. For instance, the id column in Listing 8-3 doesn’t need to be defined.
Symfony will make it an auto-incremented integer, primary key of the table. The article_id
in the blog_comment table will be understood as a foreign key to the blog_article table
(columns ending with _id are considered to be foreign keys, and the related table is
automatically determined according to the first part of the column name). Columns called
created_at are automatically set to the timestamp type. For all these columns, you don’t
need to specify any type. This is one of the reasons why schema.yml is so easy to write.

• If you define only one attribute, it is the column type. Symfony understands the usual
column types: boolean, integer, float, date, varchar(size), longvarchar (converted, for
instance, to text in MySQL), and so on. For text content over 256 characters, you need to
use the longvarchar type, which has no size (but cannot exceed 65KB in MySQL). Note
that the date and timestamp types have the usual limitations of Unix dates and cannot be
set to a date prior to 1970-01-01. As you may need to set older dates (for instance, for dates
of birth), a format of dates “before Unix” can be used with bu_date and bu_timestamp.

• If you need to define other column attributes (like default value, required, and so on),
you should write the column attributes as a set of key: value. This extended schema
syntax is described later in the chapter.

Columns can also have a phpName attribute, which is the capitalized version of the name
(Id, Title, Content, and so on) and doesn’t need overriding in most cases.

Tables can also contain explicit foreign keys and indexes, as well as a few database-specific
structure definitions. Refer to the “Extended Schema Syntax” section later in this chapter to
learn more.

Model Classes
The schema is used to build the model classes of the ORM layer. To save execution time, these
classes are generated with a command-line task called propel-build-model.

> symfony propel-build-model

Typing this command will launch the analysis of the schema and the generation of base
data model classes in the lib/model/om/ directory of your project:

• BaseArticle.php

• BaseArticlePeer.php

• BaseComment.php

• BaseCommentPeer.php

Zaninotto_786-9 C08.fm Page 145 Thursday, December 21, 2006 12:50 PM

146 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

In addition, the actual data model classes will be created in lib/model/:

• Article.php

• ArticlePeer.php

• Comment.php

• CommentPeer.php

You defined only two tables, and you end up with eight files. There is nothing wrong, but
it deserves some explanation.

Base and Custom Classes
Why keep two versions of the data object model in two different directories?

You will probably need to add custom methods and properties to the model objects (think
about the getName() method in Listing 8-1). But as your project develops, you will also add
tables or columns. Whenever you change the schema.yml file, you need to regenerate the object
model classes by making a new call to propel-build-model. If your custom methods were written
in the classes actually generated, they would be erased after each generation.

The Base classes kept in the lib/model/om/ directory are the ones directly generated from
the schema. You should never modify them, since every new build of the model will completely
erase these files.

On the other hand, the custom object classes, kept in the lib/model/ directory, actually
inherit from the Base ones. When the propel-build-model task is called on an existing model,
these classes are not modified. So this is where you can add custom methods.

Listing 8-4 presents an example of a custom model class as created by the first call to the
propel-build-model task.

Listing 8-4. Sample Model Class File, in lib/model/Article.php

<?php

class Article extends BaseArticle
{
}

It inherits all the methods of the BaseArticle class, but a modification in the schema will
not affect it.

The mechanism of custom classes extending base classes allows you to start coding, even
without knowing the final relational model of your database. The related file structure makes
the model both customizable and evolutionary.

Object and Peer Classes
Article and Comment are object classes that represent a record in the database. They give access
to the columns of a record and to related records. This means that you will be able to know the
title of an article by calling a method of an Article object, as in the example shown in Listing 8-5.

Zaninotto_786-9 C08.fm Page 146 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 147

Listing 8-5. Getters for Record Columns Are Available in the Object Class

$article = new Article();
...
$title = $article->getTitle();

ArticlePeer and CommentPeer are peer classes; that is, classes that contain static methods to
operate on the tables. They provide a way to retrieve records from the tables. Their methods
usually return an object or a collection of objects of the related object class, as shown in Listing 8-6.

Listing 8-6. Static Methods to Retrieve Records Are Available in the Peer Class

$articles = ArticlePeer::retrieveByPks(array(123, 124, 125));
// $articles is an array of objects of class Article

■Note From a data model point of view, there cannot be any peer object. That’s why the methods of the
peer classes are called with a :: (for static method call), instead of the usual -> (for instance method call).

So combining object and peer classes in a base and a custom version results in four classes
generated per table described in the schema. In fact, there is a fifth class created in the lib/
model/map/ directory, which contains metadata information about the table that is needed for
the runtime environment. But as you will probably never change this class, you can forget
about it.

Accessing Data
In symfony, your data is accessed through objects. If you are used to the relational model and
using SQL to retrieve and alter your data, the object model methods will likely look compli-
cated. But once you’ve tasted the power of object orientation for data access, you will probably
like it a lot.

But first, let’s make sure we share the same vocabulary. Relational and object data model
use similar concepts, but they each have their own nomenclature:

Relational Object-Oriented

Table Class

Row, record Object

Field, column Property

Zaninotto_786-9 C08.fm Page 147 Thursday, December 21, 2006 12:50 PM

148 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Retrieving the Column Value
When symfony builds the model, it creates one base object class for each of the tables defined
in the schema.yml. Each of these classes comes with default constructors, accessors, and muta-
tors based on the column definitions: The new, getXXX(), and setXXX() methods help to create
objects and give access to the object properties, as shown in Listing 8-7.

Listing 8-7. Generated Object Class Methods

$article = new Article();
$article->setTitle('My first article');
$article->setContent('This is my very first article.\n Hope you enjoy it!');

$title = $article->getTitle();
$content = $article->getContent();

■Note The generated object class is called Article, which is the phpName given to the blog_article
table. If the phpName were not defined in the schema, the class would have been called BlogArticle. The
accessors and mutators use a camelCase variant of the column names, so the getTitle() method retrieves
the value of the title column.

To set several fields at one time, you can use the fromArray() method, also generated for
each object class, as shown in Listing 8-8.

Listing 8-8. The fromArray() Method Is a Multiple Setter

$article->fromArray(array(
 'title' => 'My first article',
 'content' => 'This is my very first article.\n Hope you enjoy it!',
));

Retrieving Related Records
The article_id column in the blog_comment table implicitly defines a foreign key to the
blog_article table. Each comment is related to one article, and one article can have many
comments. The generated classes contain five methods translating this relationship in an
object-oriented way, as follows:

$comment->getArticle(): To get the related Article object

$comment->getArticleId(): To get the ID of the related Article object

$comment->setArticle($article): To define the related Article object

$comment->setArticleId($id): To define the related Article object from an ID

$article->getComments(): To get the related Comment objects

Zaninotto_786-9 C08.fm Page 148 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 149

The getArticleId() and setArticleId() methods show that you can consider the article_id
column as a regular column and set the relationships by hand, but they are not very interesting.
The benefit of the object-oriented approach is much more apparent in the three other methods.
Listing 8-9 shows how to use the generated setters.

Listing 8-9. Foreign Keys Are Translated into a Special Setter

$comment = new Comment();
$comment->setAuthor('Steve');
$comment->setContent('Gee, dude, you rock: best article ever!);

// Attach this comment to the previous $article object
$comment->setArticle($article);

// Alternative syntax
// Only makes sense if the object is already saved in the database
$comment->setArticleId($article->getId());

Listing 8-10 shows how to use the generated getters. It also demonstrates how to chain
method calls on model objects.

Listing 8-10. Foreign Keys Are Translated into Special Getters

// Many to one relationship
echo $comment->getArticle()->getTitle();
 => My first article
echo $comment->getArticle()->getContent();
 => This is my very first article.
 Hope you enjoy it!

// One to many relationship
$comments = $article->getComments();

The getArticle() method returns an object of class Article, which benefits from the
getTitle() accessor. This is much better than doing the join yourself, which may take a few
lines of code (starting from the $comment->getArticleId() call).

The $comments variable in Listing 8-10 contains an array of objects of class Comment. You
can display the first one with $comments[0] or iterate through the collection with foreach ➥
($comments as $comment).

■Note Objects from the model are defined with a singular name by convention, and you can now under-
stand why. The foreign key defined in the blog_comment table causes the creation of a getComments()
method, named by adding an s to the Comment object name. If you gave the model object a plural name, the
generation would lead to a method named getCommentss(), which doesn’t make sense.

Zaninotto_786-9 C08.fm Page 149 Thursday, December 21, 2006 12:50 PM

150 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Saving and Deleting Data
By calling the new constructor, you created a new object, but not an actual record in the
blog_article table. Modifying the object has no effect on the database either. In order to save
the data into the database, you need to call the save() method of the object.

$article->save();

The ORM is smart enough to detect relationships between objects, so saving the $article
object also saves the related $comment object. It also knows if the saved object has an existing
counterpart in the database, so the call to save() is sometimes translated in SQL by an INSERT,
and sometimes by an UPDATE. The primary key is automatically set by the save() method, so
after saving, you can retrieve the new primary key with $article->getId().

■Tip You can check if an object is new by calling isNew(). And if you wonder if an object has been modified and
deserves saving, call its isModified() method.

If you read comments to your articles, you might change your mind about the interest of
publishing on the Internet. And if you don’t appreciate the irony of article reviewers, you can
easily delete the comments with the delete() method, as shown in Listing 8-11.

Listing 8-11. Delete Records from the Database with the delete()Method on the Related Object

foreach ($article->getComments() as $comment)
{
 $comment->delete();
}

■Tip Even after calling the delete() method, an object remains available until the end of the request.
To determine if an object is deleted in the database, call the isDeleted() method.

Retrieving Records by Primary Key
If you know the primary key of a particular record, use the retrieveByPk() class method of the
peer class to get the related object.

$article = ArticlePeer::retrieveByPk(7);

The schema.yml file defines the id field as the primary key of the blog_article table, so this
statement will actually return the article that has id 7. As you used the primary key, you know
that only one record will be returned; the $article variable contains an object of class Article.

In some cases, a primary key may consist of more than one column. In those cases, the
retrieveByPK() method accepts multiple parameters, one for each primary key column.

Zaninotto_786-9 C08.fm Page 150 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 151

You can also select multiple objects based on their primary keys, by calling the generated
retrieveByPKs() method, which expects an array of primary keys as a parameter.

Retrieving Records with Criteria
When you want to retrieve more than one record, you need to call the doSelect() method of
the peer class corresponding to the objects you want to retrieve. For instance, to retrieve objects of
class Article, call ArticlePeer::doSelect().

The first parameter of the doSelect() method is an object of class Criteria, which is a
simple query definition class defined without SQL for the sake of database abstraction.

An empty Criteria returns all the objects of the class. For instance, the code shown in
Listing 8-12 retrieves all the articles.

Listing 8-12. Retrieving Records by Criteria with doSelect()—Empty Criteria

$c = new Criteria();
$articles = ArticlePeer::doSelect($c);

// Will result in the following SQL query
SELECT blog_article.ID, blog_article.TITLE, blog_article.CONTENT,
 blog_article.CREATED_AT
FROM blog_article;

HYDRATING

The call to ::doSelect() is actually much more powerful than a simple SQL query. First, the SQL is opti-
mized for the DBMS you choose. Second, any value passed to the Criteria is escaped before being inte-
grated into the SQL code, which prevents SQL injection risks. Third, the method returns an array of objects,
rather than a result set. The ORM automatically creates and populates objects based on the database result
set. This process is called hydrating.

For a more complex object selection, you need an equivalent of the WHERE, ORDER BY, GROUP BY,
and other SQL statements. The Criteria object has methods and parameters for all these
conditions. For example, to get all comments written by Steve, ordered by date, build a
Criteria as shown in Listing 8-13.

Listing 8-13. Retrieving Records by Criteria with doSelect()—Criteria with Conditions

$c = new Criteria();
$c->add(CommentPeer::AUTHOR, 'Steve');
$c->addAscendingOrderByColumn(CommentPeer::CREATED_AT);
$comments = CommentPeer::doSelect($c);

// Will result in the following SQL query
SELECT blog_comment.ARTICLE_ID, blog_comment.AUTHOR, blog_comment.CONTENT,
 blog_comment.CREATED_AT

Zaninotto_786-9 C08.fm Page 151 Thursday, December 21, 2006 12:50 PM

152 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

FROM blog_comment
WHERE blog_comment.author = 'Steve'
ORDER BY blog_comment.CREATED_AT ASC;

The class constants passed as parameters to the add() methods refer to the property names.
They are named after the capitalized version of the column names. For instance, to address the
content column of the blog_article table, use the ArticlePeer::CONTENT class constant.

■Note Why use CommentPeer::AUTHOR instead of blog_comment.AUTHOR, which is the way it will
be output in the SQL query anyway? Suppose that you need to change the name of the author field to
contributor in the database. If you used blog_comment.AUTHOR, you would have to change it in every
call to the model. On the other hand, by using CommentPeer::AUTHOR, you simply need to change the
column name in the schema.yml file, keep phpName as AUTHOR, and rebuild the model.

Table 8-1 compares the SQL syntax with the Criteria object syntax.

Table 8-1. SQL and Criteria Object Syntax

SQL Criteria

WHERE column = value ->add(column, value);

WHERE column <> value ->add(column, value, Criteria::NOT_EQUAL);

Other Comparison Operators

> , < Criteria::GREATER_THAN, Criteria::LESS_THAN

>=, <= Criteria::GREATER_EQUAL, Criteria::LESS_EQUAL

IS NULL, IS NOT NULL Criteria::ISNULL, Criteria::ISNOTNULL

LIKE, ILIKE Criteria::LIKE, Criteria::ILIKE

IN, NOT IN Criteria::IN, Criteria::NOT_IN

Other SQL Keywords

ORDER BY column ASC ->addAscendingOrderByColumn(column);

ORDER BY column DESC ->addDescendingOrderByColumn(column);

LIMIT limit ->setLimit(limit)

OFFSET offset ->setOffset(offset)

FROM table1, table2 WHERE
table1.col1 = table2.col2

->addJoin(col1, col2)

FROM table1 LEFT JOIN table2 ON
table1.col1 = table2.col2

->addJoin(col1, col2, Criteria::LEFT_JOIN)

FROM table1 RIGHT JOIN table2 ON
table1.col1 = table2.col2

->addJoin(col1, col2, Criteria::RIGHT_JOIN)

Zaninotto_786-9 C08.fm Page 152 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 153

■Tip The best way to discover and understand which methods are available in generated classes is to look
at the Base files in the lib/model/om/ folder after generation. The method names are pretty explicit, but if
you need more comments on them, set the propel.builder.addComments parameter to true in the
config/propel.ini file and rebuild the model.

Listing 8-14 shows another example of Criteria with multiple conditions. It retrieves all
the comments by Steve on articles containing the word “enjoy,” ordered by date.

Listing 8-14. Another Example of Retrieving Records by Criteria with doSelect()—Criteria with
Conditions

$c = new Criteria();
$c->add(CommentPeer::AUTHOR, 'Steve');
$c->addJoin(CommentPeer::ARTICLE_ID, ArticlePeer::ID);
$c->add(ArticlePeer::CONTENT, '%enjoy%', Criteria::LIKE);
$c->addAscendingOrderByColumn(CommentPeer::CREATED_AT);
$comments = CommentPeer::doSelect($c);

// Will result in the following SQL query
SELECT blog_comment.ID, blog_comment.ARTICLE_ID, blog_comment.AUTHOR,
 blog_comment.CONTENT, blog_comment.CREATED_AT
FROM blog_comment, blog_article
WHERE blog_comment.AUTHOR = 'Steve'
 AND blog_article.CONTENT LIKE '%enjoy%'
 AND blog_comment.ARTICLE_ID = blog_article.ID
ORDER BY blog_comment.CREATED_AT ASC

Just as SQL is a simple language that allows you to build very complex queries, the Criteria
object can handle conditions with any level of complexity. But since many developers think
first in SQL before translating a condition into object-oriented logic, the Criteria object may
be difficult to comprehend at first. The best way to understand it is to learn from examples and
sample applications. The symfony project website, for instance, is full of Criteria building
examples that will enlighten you in many ways.

In addition to the doSelect() method, every peer class has a doCount() method, which
simply counts the number of records satisfying the criteria passed as a parameter and returns
the count as an integer. As there is no object to return, the hydrating process doesn’t occur in
this case, and the doCount() method is faster than doSelect().

The peer classes also provide doDelete(), doInsert(), and doUpdate() methods, which all
expect a Criteria as a parameter. These methods allow you to issue DELETE, INSERT, and UPDATE
queries to your database. Check the generated peer classes in your model for more details on
these Propel methods.

Finally, if you just want the first object returned, replace doSelect() with a doSelectOne()
call. This may be the case when you know that a Criteria will return only one result, and the
advantage is that this method returns an object rather than an array of objects.

Zaninotto_786-9 C08.fm Page 153 Thursday, December 21, 2006 12:50 PM

154 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

■Tip When a doSelect() query returns a large number of results, you might want to display only a subset
of it in your response. Symfony provides a pager class called sfPropelPager, which automates the pagination of
results. Check the API documentation at http://www.symfony-project.com/api/symfony.html for
more information and usage examples.

Using Raw SQL Queries
Sometimes, you don’t want to retrieve objects, but want to get only synthetic results calculated
by the database. For instance, to get the latest creation date of all articles, it doesn’t make sense
to retrieve all the articles and to loop on the array. You will prefer to ask the database to return
only the result, because it will skip the object hydrating process.

On the other hand, you don’t want to call the PHP commands for database management
directly, because then you would lose the benefit of database abstraction. This means that you
need to bypass the ORM (Propel) but not the database abstraction (Creole).

Querying the database with Creole requires that you do the following:

1. Get a database connection.

2. Build a query string.

3. Create a statement out of it.

4. Iterate on the result set that results from the statement execution.

If this looks like gibberish to you, the code in Listing 8-15 will probably be more explicit.

Listing 8-15. Custom SQL Query with Creole

$connection = Propel::getConnection();
$query = 'SELECT MAX(%s) AS max FROM %s';
$query = sprintf($query, ArticlePeer::CREATED_AT, ArticlePeer::TABLE_NAME);
$statement = $connnection->prepareStatement($query);
$resultset = $statement->executeQuery();
$resultset->next();
$max = $resultset->getInt('max');

Just like Propel selections, Creole queries are tricky when you first start using them. Once
again, examples from existing applications and tutorials will show you the right way.

■Caution If you are tempted to bypass this process and access the database directly, you risk losing the
security and abstraction provided by Creole. Doing it the Creole way is longer, but it forces you to use good
practices that guarantee the performance, portability, and security of your application. This is especially true
for queries that contain parameters coming from a untrusted source (such as an Internet user). Creole does
all the necessary escaping and secures your database. Accessing the database directly puts you at risk of
SQL-injection attacks.

Zaninotto_786-9 C08.fm Page 154 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 155

Using Special Date Columns
Usually, when a table has a column called created_at, it is used to store a timestamp of the date
when the record was created. The same applies to updated_at columns, which are to be updated
each time the record itself is updated, to the value of the current time.

The good news is that symfony will recognize the names of these columns and handle their
updates for you. You don’t need to manually set the created_at and updated_at columns; they
will automatically be updated, as shown in Listing 8-16. The same applies for columns named
created_on and updated_on.

Listing 8-16. created_at and updated_at Columns Are Dealt with Automatically

$comment = new Comment();
$comment->setAuthor('Steve');
$comment->save();

// Show the creation date
echo $comment->getCreatedAt();
 => [date of the database INSERT operation]

Additionally, the getters for date columns accept a date format as an argument:

echo $comment->getCreatedAt('Y-m-d');

REFACTORING TO THE DATA LAYER

When developing a symfony project, you often start by writing the domain logic code in the actions. But the
database queries and model manipulation should not be stored in the controller layer. So all the logic related
to the data should be moved to the model layer. Whenever you need to do the same request in more than one
place in your actions, think about transferring the related code to the model. It helps to keep the actions short
and readable.

For example, imagine the code needed in a blog to retrieve the ten most popular articles for a given tag
(passed as request parameter). This code should not be in an action, but in the model. In fact, if you need to
display this list in a template, the action should simply look like this:

public function executeShowPopularArticlesForTag()
{
 $tag = TagPeer::retrieveByName($this->getRequestParameter('tag'));
 $this->foward404Unless($tag);
 $this->articles = $tag->getPopularArticles(10);
}

The action creates an object of class Tag from the request parameter. Then all the code needed to query
the database is located in a ->getPopularArticles() method of this class. It makes the action more readable,
and the model code can easily be reused in another action.

Moving code to a more appropriate location is one of the techniques of refactoring. If you do it often, your
code will be easy to maintain and to understand by other developers. A good rule of thumb about when to do
refactoring to the data layer is that the code of an action should rarely contain more than ten lines of PHP code.

Zaninotto_786-9 C08.fm Page 155 Thursday, December 21, 2006 12:50 PM

156 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Database Connections
The data model is independent from the database used, but you will definitely use a database.
The minimum information required by symfony to send requests to the project database is the
name, the access codes, and the type of database. These connection settings should be entered
in the databases.yml file located in the config/ directory. Listing 8-17 shows an example of such
a file.

Listing 8-17. Sample Database Connection Settings, in myproject/config/databases.yml

prod:
 propel:
 param:
 host: mydataserver
 username: myusername
 password: xxxxxxxxxx

all:
 propel:
 class: sfPropelDatabase
 param:
 phptype: mysql # Database vendor
 hostspec: localhost
 database: blog
 username: login
 password: passwd
 port: 80
 encoding: utf-8 # Default charset for table creation
 persistent: true # Use persistent connections

The connection settings are environment-dependent. You can define distinct settings
for the prod, dev, and test environments, or any other environment in your application.
This configuration can also be overridden per application, by setting different values in an
application-specific file, such as in apps/myapp/config/databases.yml. For instance, you can
use this approach to have different security policies for a front-end and a back-end applica-
tion, and define several database users with different privileges in your database to handle this.

For each environment, you can define many connections. Each connection refers to a
schema being labeled with the same name. In the example in Listing 8-17, the propel connection
refers to the propel schema in Listing 8-3.

The permitted values of the phptype parameter are the ones of the database systems
supported by Creole:

• mysql

• sqlserver

• pgsql

Zaninotto_786-9 C08.fm Page 156 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 157

• sqlite

• oracle

hostspec, database, username, and password are the usual database connection settings.
They can also be written in a shorter way as a data source name (DSN). Listing 8-18 is equivalent
to the all: section of Listing 8-17.

Listing 8-18. Shorthand Database Connection Settings

all:
 propel:
 class: sfPropelDatabase
 param:
 dsn: mysql://login:passwd@localhost/blog

If you use a SQLite database, the hostspec parameter must be set to the path of the data-
base file. For instance, if you keep your blog database in data/blog.db, the databases.yml file
will look like Listing 8-19.

Listing 8-19. Database Connection Settings for SQLite Use a File Path As Host

 all:
 propel:
 class: sfPropelDatabase
 param:
 phptype: sqlite
 database: %SF_DATA_DIR%/blog.db

Extending the Model
The generated model methods are great but often not sufficient. As soon as you implement
your own business logic, you need to extend it, either by adding new methods or by overriding
existing ones.

Adding New Methods
You can add new methods to the empty model classes generated in the lib/model/ directory.
Use $this to call methods of the current object, and use self:: to call static methods of the
current class. Remember that the custom classes inherit methods from the Base classes located
in the lib/model/om/ directory.

For instance, for the Article object generated based on Listing 8-3, you can add a magic
__toString() method so that echoing an object of class Article displays its title, as shown in
Listing 8-20.

Zaninotto_786-9 C08.fm Page 157 Thursday, December 21, 2006 12:50 PM

158 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Listing 8-20. Customizing the Model, in lib/model/Article.php

<?php

class Article extends BaseArticle
{
 public function __toString()
 {
 return $this->getTitle(); // getTitle() is inherited from BaseArticle
 }
}

You can also extend the peer classes—for instance, to add a method to retrieve all articles
ordered by creation date, as shown in Listing 8-21.

Listing 8-21. Customizing the Model, in lib/model/ArticlePeer.php

<?php

class ArticlePeer extends BaseArticlePeer
{
 public static function getAllOrderedByDate()
 {
 $c = new Criteria();
 $c->addAscendingOrderByColumn(self:CREATED_AT);
 return self::doSelect($c);

 }
}

The new methods are available in the same way as the generated ones, as shown in
Listing 8-22.

Listing 8-22. Using Custom Model Methods Is Like Using the Generated Methods

foreach (ArticlePeer::getAllOrderedByDate() as $article)
{
 echo $article; // Will call the magic __toString() method
}

Overriding Existing Methods
If some of the generated methods in the Base classes don’t fit your requirements, you can still
override them in the custom classes. Just make sure that you use the same method signature
(that is, the same number of arguments).

For instance, the $article->getComments() method returns an array of Comment objects, in
no particular order. If you want to have the results ordered by creation date, with the latest
comment coming first, then override the getComments() method, as shown in Listing 8-23. Be
aware that the original getComments() method (found in lib/model/om/BaseArticle.php) expects a
criteria value and a connection value as parameters, so your function must do the same.

Zaninotto_786-9 C08.fm Page 158 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 159

Listing 8-23. Overriding Existing Model Methods, in lib/model/Article.php

public function getComments($criteria = null, $con = null)
{
 // Objects are passed by reference in PHP5, so to avoid modifying the original,
 // you must clone it
 $criteria = clone $criteria;
 $criteria->addDescendingOrderByColumn(ArticlePeer::CREATED_AT);

 return parent::getComments($criteria, $con);
}

The custom method eventually calls the one of the parent Base class, and that’s good practice.
However, you can completely bypass it and return the result you want.

Using Model Behaviors
Some model modifications are generic and can be reused. For instance, methods to make a
model object sortable and an optimistic lock to prevent conflicts between concurrent object
saving are generic extensions that can be added to many classes.

Symfony packages these extensions into behaviors. Behaviors are external classes that
provide additional methods to model classes. The model classes already contain hooks, and
symfony knows how to extend them by way of sfMixer (see Chapter 17 for details).

To enable behaviors in your model classes, you must modify one setting in the config/
propel.ini file:

propel.builder.AddBehaviors = true // Default value is false

There is no behavior bundled by default in symfony, but they can be installed via plug-ins.
Once a behavior plug-in is installed, you can assign the behavior to a class with a single line. For
instance, if you install the sfPropelParanoidBehaviorPlugin in your application, you can extend
an Article class with this behavior by adding the following at the end of the Article.class.php:

sfPropelBehavior::add('Article', array(
 'paranoid' => array('column' => 'deleted_at')
));

After rebuilding the model, deleted Article objects will remain in the database,
invisible to the queries using the ORM, unless you temporarily disable the behavior with
sfPropelParanoidBehavior::disable().

Check the list of symfony plug-ins in the wiki to find behaviors (http://www.symfony-project.
com/trac/wiki/SymfonyPlugins#Propelbehaviorplugins). Each has its own documentation
and installation guide.

Extended Schema Syntax
A schema.yml file can be simple, as shown in Listing 8-3. But relational models are often
complex. That’s why the schema has an extensive syntax able to handle almost every case.

Zaninotto_786-9 C08.fm Page 159 Thursday, December 21, 2006 12:50 PM

160 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Attributes
Connections and tables can have specific attributes, as shown in Listing 8-24. They are set
under an _attributes key.

Listing 8-24. Attributes for Connections and Tables

propel:
 _attributes: { noXsd: false, defaultIdMethod: none, package: lib.model }
 blog_article:
 _attributes: { phpName: Article }

You may want your schema to be validated before code generation takes place. To do
that, deactivate the noXSD attribute for the connection. The connection also supports the
defaultIdMethod attribute. If none is provided, then the database’s native method of gener-
ating IDs will be used—for example, autoincrement for MySQL, or sequences for PostgreSQL.
The other possible value is none.

The package attribute is like a namespace; it determines the path where the generated
classes are stored. It defaults to lib/model/, but you can change it to organize your model in
subpackages. For instance, if you don’t want to mix the core business classes and the classes
defining a database-stored statistics engine in the same directory, then define two schemas
with lib.model.business and lib.model.stats packages.

You already saw the phpName table attribute, used to set the name of the generated class
mapping the table.

Tables that contain localized content (that is, several versions of the content, in a related
table, for internationalization) also take two additional attributes (see Chapter 13 for details),
as shown in Listing 8-25.

Listing 8-25. Attributes for i18n Tables

propel:
 blog_article:
 _attributes: { isI18N: true, i18nTable: db_group_i18n }

DEALING WITH MULTIPLE SCHEMAS

You can have more than one schema per application. Symfony will take into account every file ending with
schema.yml or schema.xml in the config/ folder. If your application has many tables, or if some tables
don’t share the same connection, you will find this approach very useful.

Consider these two schemas:

// In config/business-schema.yml
propel:
 blog_article:
 _attributes: { phpName: Article }
 id:
 title: varchar(50)

Zaninotto_786-9 C08.fm Page 160 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 161

// In config/stats-schema.yml
propel:
 stats_hit:
 _attributes: { phpName: Hit }
 id:
 resource: varchar(100)
 created_at:

Both schemas share the same connection (propel), and the Article and Hit classes will be gener-
ated under the same lib/model/ directory. Everything happens as if you had written only one schema.

You can also have different schemas use different connections (for instance, propel and propel_bis,
to be defined in databases.yml) and organize the generated classes in subdirectories:

// In config/business-schema.yml
propel:
 blog_article:
 _attributes: { phpName: Article, package: lib.model.business }
 id:
 title: varchar(50)

// In config/stats-schema.yml
propel_bis:
 stats_hit:
 _attributes: { phpName: Hit, package.lib.model.stat }
 id:
 resource: varchar(100)
 created_at:

Many applications use more than one schema. In particular, some plug-ins have their own schema and
package to avoid messing with your own classes (see Chapter 17 for details).

Column Details
The basic syntax gives you two choices: let symfony deduce the column characteristics from its
name (by giving an empty value) or define the type with one of the type keywords. Listing 8-26
demonstrates these choices.

Listing 8-26. Basic Column Attributes

propel:
 blog_article:
 id: # Let symfony do the work
 title: varchar(50) # Specify the type yourself

But you can define much more for a column. If you do, you will need to define column
settings as an associative array, as shown in Listing 8-27.

Zaninotto_786-9 C08.fm Page 161 Thursday, December 21, 2006 12:50 PM

162 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Listing 8-27. Complex Column Attributes

propel:
 blog_article:
 id: { type: integer, required: true, ➥

 primaryKey: true, autoIncrement: true }
 name: { type: varchar(50), default: foobar, index: true }
 group_id: { type: integer, foreignTable: db_group, ➥

 foreignReference: id, onDelete: cascade }

The column parameters are as follows:

type: Column type. The choices are boolean, tinyint, smallint, integer, bigint, double,
float, real, decimal, char, varchar(size), longvarchar, date, time, timestamp, bu_date,
bu_timestamp, blob, and clob.

required: Boolean. Set it to true if you want the column to be required.

default: Default value.

primaryKey: Boolean. Set it to true for primary keys.

autoIncrement: Boolean. Set it to true for columns of type integer that need to take an
auto-incremented value.

sequence: Sequence name for databases using sequences for autoIncrement columns
(for example, PostgreSQL and Oracle).

index: Boolean. Set it to true if you want a simple index or to unique if you want a unique
index to be created on the column.

foreignTable: A table name, used to create a foreign key to another table.

foreignReference: The name of the related column if a foreign key is defined via
foreignTable.

onDelete: Determines the action to trigger when a record in a related table is deleted. When
set to setnull, the foreign key column is set to null. When set to cascade, the record is
deleted. If the database engine doesn’t support the set behavior, the ORM emulates it. This
is relevant only for columns bearing a foreignTable and a foreignReference.

isCulture: Boolean. Set it to true for culture columns in localized content tables (see
Chapter 13).

Foreign Keys
As an alternative to the foreignTable and foreignReference column attributes, you can add
foreign keys under the _foreignKeys: key in a table. The schema in Listing 8-28 will create a
foreign key on the user_id column, matching the id column in the blog_user table.

Zaninotto_786-9 C08.fm Page 162 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 163

Listing 8-28. Foreign Key Alternative Syntax

propel:
 blog_article:
 id:
 title: varchar(50)
 user_id: { type: integer }
 _foreignKeys:
 -
 foreignTable: blog_user
 onDelete: cascade
 references:
 - { local: user_id, foreign: id }

The alternative syntax is useful for multiple-reference foreign keys and to give foreign keys
a name, as shown in Listing 8-29.

Listing 8-29. Foreign Key Alternative Syntax Applied to Multiple Reference Foreign Key

 _foreignKeys:
 my_foreign_key:
 foreignTable: db_user
 onDelete: cascade
 references:
 - { local: user_id, foreign: id }
 - { local: post_id, foreign: id }

Indexes
As an alternative to the index column attribute, you can add indexes under the _indexes: key
in a table. If you want to define unique indexes, you must use the _uniques: header instead.
Listing 8-30 shows the alternative syntax for indexes.

Listing 8-30. Indexes and Unique Indexes Alternative Syntax

propel:
 blog_article:
 id:
 title: varchar(50)
 created_at:
 _indexes:
 my_index: [title, user_id]
 _uniques:
 my_other_index: [created_at]

The alternative syntax is useful only for indexes built on more than one column.

Zaninotto_786-9 C08.fm Page 163 Thursday, December 21, 2006 12:50 PM

164 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

Empty Columns
When meeting a column with no value, symfony will do some magic and add a value of its own.
See Listing 8-31 for the details added to empty columns.

Listing 8-31. Column Details Deduced from the Column Name

// Empty columns named id are considered primary keys
id: { type: integer, required: true, primaryKey: true, autoIncrement: true }

// Empty columns named XXX_id are considered foreign keys
foobar_id: { type: integer, foreignTable: db_foobar, foreignReference: id }

// Empty columns named created_at, updated at, created_on and updated_on
// are considered dates and automatically take the timestamp type
created_at: { type: timestamp }
updated_at: { type: timestamp }

For foreign keys, symfony will look for a table having the same phpName as the beginning of
the column name, and if one is found, it will take this table name as the foreignTable.

I18n Tables
Symfony supports content internationalization in related tables. This means that when you
have content subject to internationalization, it is stored in two separate tables: one with the
invariable columns and another with the internationalized columns.

In a schema.yml file, all that is implied when you name a table foobar_i18n. For instance,
the schema shown in Listing 8-32 will be automatically completed with columns and table
attributes to make the internationalized content mechanism work. Internally, symfony will
understand it as if it were written like Listing 8-33. Chapter 13 will tell you more about i18n.

Listing 8-32. Implied i18n Mechanism

propel:
 db_group:
 id:
 created_at:

 db_group_i18n:
 name: varchar(50)

Listing 8-33. Explicit i18n Mechanism

propel:
 db_group:
 _attributes: { isI18N: true, i18nTable: db_group_i18n }
 id:
 created_at:

Zaninotto_786-9 C08.fm Page 164 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 165

 db_group_i18n:
 id: { type: integer, required: true, primaryKey: true, ➥

 foreignTable: db_group, foreignReference: id, onDelete: cascade }
 culture: { isCulture: true, type: varchar(7), required: true, ➥

 primaryKey: true }
 name: varchar(50)

Beyond the schema.yml: The schema.xml
As a matter of fact, the schema.yml format is internal to symfony. When you call a propel-
command, symfony actually translates this file into a generated-schema.xml file, which is the
type of file expected by Propel to actually perform tasks on the model.

The schema.xml file contains the same information as its YAML equivalent. For example,
Listing 8-3 is converted to the XML file shown in Listing 8-34.

Listing 8-34. Sample schema.xml, Corresponding to Listing 8-3

<?xml version="1.0" encoding="UTF-8"?>
 <database name="propel" defaultIdMethod="native" noXsd="true" package="lib.model">
 <table name="blog_article" phpName="Article">
 <column name="id" type="integer" required="true" primaryKey="true" ➥

 autoIncrement="true" />
 <column name="title" type="varchar" size="255" />
 <column name="content" type="longvarchar" />
 <column name="created_at" type="timestamp" />
 </table>
 <table name="blog_comment" phpName="Comment">
 <column name="id" type="integer" required="true" primaryKey="true" ➥

 autoIncrement="true" />
 <column name="article_id" type="integer" />
 <foreign-key foreignTable="blog_article">
 <reference local="article_id" foreign="id"/>
 </foreign-key>
 <column name="author" type="varchar" size="255" />
 <column name="content" type="longvarchar" />
 <column name="created_at" type="timestamp" />
 </table>
 </database>

The description of the schema.xml format can be found in the documentation and the
“Getting Started” sections of the Propel project website (http://propel.phpdb.org/docs/
user_guide/chapters/appendices/AppendixB-SchemaReference.html).

The YAML format was designed to keep the schemas simple to read and write, but the
trade-off is that the most complex schemas can’t be described with a schema.yml file. On the
other hand, the XML format allows for full schema description, whatever its complexity, and
includes database vendor-specific settings, table inheritance, and so on.

Symfony actually understands schemas written in XML format. So if your schema is too
complex for the YAML syntax, if you have an existing XML schema, or if you are already familiar

Zaninotto_786-9 C08.fm Page 165 Thursday, December 21, 2006 12:50 PM

166 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

with the Propel XML syntax, you don’t have to switch to the symfony YAML syntax. Place your
schema.xml in the project config/ directory, build the model, and there you go.

PROPEL IN SYMFONY

All the details given in this chapter are not specific to symfony, but rather to Propel. Propel is the preferred
object/relational abstraction layer for symfony, but you can choose an alternative one. However, symfony
works more seamlessly with Propel, for the following reasons:

• All the object data model classes and the Criteria class are autoloading classes. As soon as you use
them, symfony will include the right files, and you don’t need to manually add the file inclusion statements.

• In symfony, Propel doesn’t need to be launched nor initialized. When an object uses Propel, the library
initiates by itself.

• Some symfony helpers use Propel objects as parameters to achieve high-level tasks (such as pagination
or filtering).

• Propel objects allow rapid prototyping and generation of a backend for your application (Chapter 14 provides
more details).

• The schema is faster to write through the schema.yml file.

And, as Propel is independent of the database used, so is symfony.

Don’t Create the Model Twice
The trade-off of using an ORM is that you must define the data structure twice: once for the
database, and once for the object model. Fortunately, symfony offers command-line tools to
generate one based on the other, so you can avoid duplicate work.

Building a SQL Database Structure Based on an Existing
Schema
If you start your application by writing the schema.yml file, symfony can generate a SQL query
that creates the tables directly from the YAML data model. To use the query, go to your root
project directory and type this:

> symfony propel-build-sql

A lib.model.schema.sql file will be created in myproject/data/sql/. Note that the gener-
ated SQL code will be optimized for the database system defined in the phptype parameter of the
propel.ini file.

You can use the schema.sql file directly to build the tables. For instance, in MySQL, type this:

> mysqladmin -u root -p create blog
> mysql -u root -p blog < data/sql/lib.model.schema.sql

Zaninotto_786-9 C08.fm Page 166 Thursday, December 21, 2006 12:50 PM

C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R 167

The generated SQL is also helpful to rebuild the database in another environment, or to
change to another DBMS. If the connection settings are properly defined in your propel.ini,
you can even use the symfony propel-insert-sql command to do this automatically.

■Tip The command line also offers a task to populate your database with data based on a text file. See
Chapter 16 for more information about the propel-load-data task and the YAML fixture files.

Generating a YAML Data Model from an Existing Database
Symfony can use the Creole database access layer to generate a schema.yml file from an existing
database, thanks to introspection (the capability of databases to determine the structure of
the tables on which they are operating). This can be particularly useful when you do reverse-
engineering, or if you prefer working on the database before working on the object model.

In order to do this, you need to make sure that the project propel.ini file points to the
correct database and contains all connection settings, and then call the propel-build-schema
command:

> symfony propel-build-schema

A brand-new schema.yml file built from your database structure is generated in the config/
directory. You can build your model based on this schema.

The schema-generation command is quite powerful and can add a lot of database-dependent
information to your schema. As the YAML format doesn’t handle this kind of vendor informa-
tion, you need to generate an XML schema to take advantage of it. You can do this simply by
adding an xml argument to the build-schema task:

> symfony propel-build-schema xml

Instead of generating a schema.yml file, this will create a schema.xml file fully compatible
with Propel, containing all the vendor information. But be aware that generated XML schemas
tend to be quite verbose and difficult to read.

THE PROPEL.INI CONFIGURATION

The propel-build-sql and propel-build-schema tasks don’t use the connection settings defined in
the databases.yml file. Rather, these tasks use the connection settings in another file, called propel.ini
and stored in the project config/ directory:

propel.database.createUrl = mysql://login:passwd@localhost
propel.database.url = mysql://login:passwd@localhost/blog

This file contains other settings used to configure the Propel generator to make generated model classes
compatible with symfony. Most settings are internal and of no interest to the user, apart from a few:

Zaninotto_786-9 C08.fm Page 167 Thursday, December 21, 2006 12:50 PM

168 C H A P T E R 8 ■ I N S I D E T H E M O D E L L A Y E R

// Base classes are autoloaded in symfony
// Set this to true to use include_once statements instead
// (Small negative impact on performance)
propel.builder.addIncludes = false

// Generated classes are not commented by default
// Set this to true to add comments to Base classes
// (Small negative impact on performance)
propel.builder.addComments = false

// Behaviors are not handled by default
// Set this to true to be able to handle them
propel.builder.AddBehaviors = false

After you make a modification to the propel.ini settings, don’t forget to rebuild the model so the
changes will take effect.

Summary
Symfony uses Propel as the ORM and Creole as the database abstraction layer. It means that
you must first describe the relational schema of your database in YAML before generating the
object model classes. Then, at runtime, use the methods of the object and peer classes to retrieve
information about a record or a set of records. You can override them and extend the model
easily by adding methods to the custom classes. The connection settings are defined in a
databases.yml file, which can support more than one connection. And the command line
contains special tasks to avoid duplicate structure definition.

The model layer is the most complex of the symfony framework. One reason for this
complexity is that data manipulation is an intricate matter. The related security issues are
crucial for a website and should not be ignored. Another reason is that symfony is more suited
for middle- to large-scale applications in an enterprise context. In such applications, the auto-
mations provided by the symfony model really represent a gain of time, worth the investment
in learning its internals.

So don’t hesitate to spend some time testing the model objects and methods to fully
understand them. The solidity and scalability of your applications will be a great reward.

Zaninotto_786-9 C08.fm Page 168 Thursday, December 21, 2006 12:50 PM

■ ■ ■

P A R T 3

Special Features

Zaninotto_786-9 C09.fm Page 169 Wednesday, December 13, 2006 5:57 AM

Zaninotto_786-9 C09.fm Page 170 Wednesday, December 13, 2006 5:57 AM

171

■ ■ ■

C H A P T E R 9

Links and the Routing System

Links and URLs deserve particular treatment in a web application framework. This is because
the unique entry point of the application (the front controller) and the use of helpers in templates
allow for a complete separation between the way URLs work and their appearance. This is
called routing. More than a gadget, routing is a useful tool to make web applications even more
user-friendly and secure. This chapter will tell you everything you need to know to handle
URLs in your symfony applications:

• What the routing system is and how it works

• How to use link helpers in templates to enable routing of outgoing URLs

• How to configure the routing rules to change the appearance of URLs

You will also find a few tricks for mastering routing performance and adding finishing
touches.

What Is Routing?
Routing is a mechanism that rewrites URLs to make them more user-friendly. But to under-
stand why this is important, you must first take a few minutes to think about URLs.

URLs As Server Instructions
URLs carry information from the browser to the server required to enact an action as desired
by the user. For instance, a traditional URL contains the file path to a script and some parameters
necessary to complete the request, as in this example:

http://www.example.com/web/controller/article.php?id=123456&format_code=6532

This URL conveys information about the application’s architecture and database. Devel-
opers usually hide the application’s infrastructure in the interface (for instance, they choose
page titles like “Personal profile page” rather than “QZ7.65”). Revealing vital clues to the internals
of the application in the URL contradicts this effort and has serious drawbacks:

Zaninotto_786-9 C09.fm Page 171 Wednesday, December 13, 2006 5:57 AM

172 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

• The technical data appearing in the URL creates potential security breaches. In the preceding
example, what happens if an ill-disposed user changes the value of the id parameter?
Does this mean the application offers a direct interface to the database? Or what if the
user tries other script names, like admin.php, just for fun? All in all, raw URLs offer an easy
way to hack an application, and managing security is almost impossible with them.

• The unintelligibility of URLs makes them disturbing wherever they appear, and they
dilute the impact of the surrounding content. And nowadays, URLs don’t appear only in
the address bar. They appear when a user hovers the mouse over a link, as well as in
search results. When users look for information, you want to give them easily under-
standable clues regarding what they found, rather than a confusing URL such as the one
shown in Figure 9-1.

Figure 9-1. URLs appear in many places, such as in search results.

• If one URL has to be changed (for instance, if a script name or one of its parameters
is modified), every link to this URL must be changed as well. It means that modifications
in the controller structure are heavyweight and expensive, which is not ideal in agile
development.

And it could be much worse if symfony didn’t use the front controller paradigm; that is, if
the application contained many scripts accessible from the Internet, in many directories, such
as these:

http://www.example.com/web/gallery/album.php?name=my%20holidays
http://www.example.com/web/weblog/public/post/list.php
http://www.example.com/web/general/content/page.php?name=about%20us

In this case, developers would need to match the URL structure with the file structure,
resulting in a maintenance nightmare when either structure changed.

URLs As Part of the Interface
The idea behind routing is to consider the URL as part of the interface. The application can
format a URL to bring information to the user, and the user can use the URL to access resources
of the application.

This is possible in symfony applications, because the URL presented to the end user is
unrelated to the server instruction needed to perform the request. Instead, it is related to the
resource requested, and it can be formatted freely. For instance, symfony can understand the
following URL and have it display the same page as the first URL shown in this chapter:

http://www.example.com/articles/finance/2006/activity-breakdown.html

Zaninotto_786-9 C09.fm Page 172 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 173

The benefits are immense:

• URLs actually mean something, and they can help the users decide if the page behind a
link contains what they expect. A link can contain additional details about the resource
it returns. This is particularly useful for search engine results. Additionally, URLs some-
times appear without any mention of the page title (think about when you copy a URL in
an e-mail message), and in this case, they must mean something on their own. See
Figure 9-2 for an example of a user-friendly URL.

Figure 9-2. URLs can convey additional information about a page, like the publication date.

• URLs written in paper documents are easier to type and remember. If your company
website appears as http://www.example.com/controller/web/index.jsp?id=ERD4 on
your business card, it will probably not receive many visits.

• The URL can become a command-line tool of its own, to perform actions or retrieve
information in an intuitive way. Applications offering such a possibility are faster to use
for power users.

// List of results: add a new tag to narrow the list of results
http://del.icio.us/tag/symfony+ajax
// User profile page: change the name to get another user profile
http://www.askeet.com/user/francois

• You can change the URL formatting and the action name/parameters independently,
with a single modification. It means that you can develop first, and format the URLs
afterwards, without totally messing up your application.

• Even when you reorganize the internals of an application, the URLs can remain the
same for the outside world. It makes URLs persistent, which is a must because it allows
bookmarking on dynamic pages.

• Search engines tend to skip dynamic pages (ending with .php, .asp, and so on) when
they index websites. So you can format URLs to have search engines think they are
browsing static content, even when they meet a dynamic page, thus resulting in better
indexing of your application pages.

• It is safer. Any unrecognized URL will be redirected to a page specified by the developer,
and users cannot browse the web root file structure by testing URLs. The actual script
name called by the request, as well as its parameters, is hidden.

The correspondence between the URLs presented to the user and the actual script name
and request parameters is achieved by a routing system, based on patterns that can be modified
through configuration.

Zaninotto_786-9 C09.fm Page 173 Wednesday, December 13, 2006 5:57 AM

174 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

■Note How about assets? Fortunately, the URLs of assets (images, style sheets, and JavaScript) don’t
appear much during browsing, so there is no real need for routing for those. In symfony, all assets are located
under the web/ directory, and their URL matches their location in the file system. However, you can manage
dynamic assets (handled by actions) by using a generated URL inside the asset helper. For instance, to display
a dynamically generated image, use image_tag(url_for('captcha/image?key='.$key)).

How It Works
Symfony disconnects the external URL and its internal URI. The correspondence between the
two is made by the routing system. To make things easy, symfony uses a syntax for internal
URIs very similar to the one of regular URLs. Listing 9-1 shows an example.

Listing 9-1. External URL and Internal URI

// Internal URI syntax
<module>/<action>[?param1=value1][¶m2=value2][¶m3=value3]...

// Example internal URI, which never appears to the end user
article/permalink?year=2006&subject=finance&title=activity-breakdown

// Example external URL, which appears to the end user
http://www.example.com/articles/finance/2006/activity-breakdown.html

The routing system uses a special configuration file, called routing.yml, in which you can
define routing rules. Consider the rule shown in Listing 9-2. It defines a pattern that looks like
articles/*/*/* and names the pieces of content matching the wildcards.

Listing 9-2. A Sample Routing Rule

article_by_title:
 url: articles/:subject/:year/:title.html
 param: { module: article, action: permalink }

Every request sent to a symfony application is first analyzed by the routing system (which
is simple because every request in handled by a single front controller). The routing system
looks for a match between the request URL and the patterns defined in the routing rules. If a
match is found, the named wildcards become request parameters and are merged with the
ones defined in the param: key. See how it works in Listing 9-3.

Listing 9-3. The Routing System Interprets Incoming Request URLs

// The user types (or clicks on) this external URL
http://www.example.com/articles/finance/2006/activity-breakdown.html

Zaninotto_786-9 C09.fm Page 174 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 175

// The front controller sees that it matches the article_by_title rule
// The routing system creates the following request parameters
 'module' => 'article'
 'action' => 'permalink'
 'subject' => 'finance'
 'year' => '2006'
 'title' => 'activity-breakdown'

■Tip The .html extension of the external URL is a simple decoration and is ignored by the routing system.
Its sole interest is to makes dynamic pages look like static ones. You will see how to activate this extension
in the “Routing Configuration” section later in this chapter.

The request is then passed to the permalink action of the article module, which has all the
required information in the request parameters to determine which article is to be shown.

But the mechanism also must work the other way around. For the application to show
external URLs in its links, you must provide the routing system with enough data to determine
which rule to apply to it. You also must not write hyperlinks directly with <a> tags—this would
bypass routing completely—but with a special helper, as shown in Listing 9-4.

Listing 9-4. The Routing System Formats Outgoing URLs in Templates

// The url_for() helper transforms an internal URI into an external URL
<a href="<?php echo url_for('article/permalink?subject=finance&year=2006 ➥

&title=activity-breakdown') ?>">click here

// The helper sees that the URI matches the article_by_title rule
// The routing system creates an external URL out of it
 => <a href="http://www.example.com/articles/finance/2006/ ➥

 activity-breakdown.html">click here

// The link_to() helper directly outputs a hyperlink
// and avoids mixing PHP with HTML
<?php echo link_to(
 'click here',
 'article/permalink?subject=finance&year=2006&title=activity-breakdown'
) ?>

// Internally, link_to() will make a call to url_for() so the result is the same
=> <a href="http://www.example.com/articles/finance/2006/ ➥

 activity-breakdown.html">click here

So routing is a two-way mechanism, and it works only if you use the link_to() helper to
format all your links.

Zaninotto_786-9 C09.fm Page 175 Wednesday, December 13, 2006 5:57 AM

176 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

URL Rewriting
Before getting deeper into the routing system, one matter needs to be clarified. In the examples
given in the previous section, there is no mention of the front controller (index.php or
myapp_dev.php) in the internal URIs. The front controller, not the elements of the application,
decides the environment. So all the links must be environment-independent, and the front
controller name can never appear in internal URIs.

There is no script name in the examples of generated URLs either. This is because generated
URLs don’t contain any script name in the production environment by default. The
no_script_name parameter of the settings.yml file precisely controls the appearance of the
front controller name in generated URLs. Set it to off, as shown in Listing 9-5, and the URLs
output by the link helpers will mention the front controller script name in every link.

Listing 9-5. Showing the Front Controller Name in URLs, in apps/myapp/settings.yml

prod:
 .settings
 no_script_name: off

Now, the generated URLs will look like this:

http://www.example.com/index.php/articles/finance/2006/activity-breakdown.html

In all environments except the production one, the no_script_name parameter is set to off
by default. So when you browse your application in the development environment, for instance,
the front controller name always appears in the URLs.

http://www.example.com/myapp_dev.php/articles/finance/2006/activity-breakdown.html

In production, the no_script_name is set to on, so the URLs show only the routing informa-
tion and are more user-friendly. No technical information appears.

http://www.example.com/articles/finance/2006/activity-breakdown.html

But how does the application know which front controller script to call? This is where URL
rewriting comes in. The web server can be configured to call a given script when there is none
in the URL.

In Apache, this is possible once you have the mod_rewrite extension activated. Every
symfony project comes with an .htaccess file, which adds mod_rewrite settings to your server
configuration for the web/ directory. The default content of this file is shown in Listing 9-6.

Listing 9-6. Default Rewriting Rules for Apache, in myproject/web/.htaccess

<IfModule mod_rewrite.c>
 RewriteEngine On

 # we skip all files with .something
 RewriteCond %{REQUEST_URI} \..+$
 RewriteCond %{REQUEST_URI} !\.html$
 RewriteRule .* - [L]

Zaninotto_786-9 C09.fm Page 176 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 177

 # we check if the .html version is here (caching)
 RewriteRule ^$ index.html [QSA]
 RewriteRule ^([^.]+)$ $1.html [QSA]
 RewriteCond %{REQUEST_FILENAME} !-f

 # no, so we redirect to our front web controller
 RewriteRule ^(.*)$ index.php [QSA,L]
</IfModule>

The web server inspects the shape of the URLs it receives. If the URL does not contain a
suffix and if there is no cached version of the page available (Chapter 12 covers caching), then
the request is handed to index.php.

However, the web/ directory of a symfony project is shared among all the applications and
environments of the project. It means that there is usually more than one front controller in the
web directory. For instance, a project having a frontend and a backend application, and a dev
and prod environment, contains four front controller scripts in the web/ directory:

index.php // frontend in prod
frontend_dev.php // frontend in dev
backend.php // backend in prod
backend_dev.php // backend in dev

The mod_rewrite settings can specify only one default script name. If you set no_script_name to
on for all the applications and environments, all URLs will be interpreted as requests to the
frontend application in the prod environment. This is why you can have only one application
with one environment taking advantage of the URL rewriting for a given project.

■Tip There is a way to have more than one application with no script name. Just create subdirectories in
the web root, and move the front controllers inside them. Change the SF_ROOT_DIR constants definition
accordingly, and create the .htaccess URL rewriting configuration that you need for each application.

Link Helpers
Because of the routing system, you should use link helpers instead of regular <a> tags in your
templates. Don’t look at it as a hassle, but rather as an opportunity to keep your application
clean and easy to maintain. Besides, link helpers offer a few very useful shortcuts that you don’t
want to miss.

Hyperlinks, Buttons, and Forms
You already know about the link_to() helper. It outputs an XHTML-compliant hyperlink, and
it expects two parameters: the element that can be clicked and the internal URI of the resource
to which it points. If, instead of a hyperlink, you want a button, use the button_to() helper.
Forms also have a helper to manage the value of the action attribute. You will learn more about
forms in the next chapter. Listing 9-7 shows some examples of link helpers.

Zaninotto_786-9 C09.fm Page 177 Wednesday, December 13, 2006 5:57 AM

178 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

Listing 9-7. Link Helpers for <a>, <input>, and <form> Tags

// Hyperlink on a string
<?php echo link_to('my article', 'article/read?title=Finance_in_France') ?>
 => my article

// Hyperlink on an image
<?php echo link_to(image_tag('read.gif'), 'article/read?title=Finance_in_France') ?>
 =>

// Button tag
<?php echo button_to('my article', 'article/read?title=Finance_in_France') ?>
 => <input value="my article" type="button" ➥

 onclick="document.location.href='/routed/url/to/Finance_in_France';" />

// Form tag
<?php echo form_tag('article/read?title=Finance_in_France') ?>
 => <form method="post" action="/routed/url/to/Finance_in_France" />

Link helpers can accept internal URIs as well as absolute URLs (starting with http://, and
skipped by the routing system) and anchors. Note that in real-world applications, internal
URIs are built with dynamic parameters. Listing 9-8 shows examples of all these cases.

Listing 9-8. URLs Accepted by Link Helpers

// Internal URI
<?php echo link_to('my article', 'article/read?title=Finance_in_France') ?>
 => my article

// Internal URI with dynamic parameters
<?php echo link_to('my article', 'article/read?title='.$article->getTitle()) ?>

// Internal URI with anchors
<?php echo link_to('my article', 'article/read?title=Finance_in_France#foo') ?>
 => my article

// Absolute URL
<?php echo link_to('my article', 'http://www.example.com/foobar.html') ?>
 => my article

Link Helper Options
As explained in Chapter 7, helpers accept an additional options argument, which can be an
associative array or a string. This is true for link helpers, too, as shown in Listing 9-9.

Zaninotto_786-9 C09.fm Page 178 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 179

Listing 9-9. Link Helpers Accept Additional Options

// Additional options as an associative array
<?php echo link_to('my article', 'article/read?title=Finance_in_France', array(
 'class' => 'foobar',
 'target' => '_blank'
)) ?>

// Additional options as a string (same result)
<?php echo link_to('my article', 'article/read?title=Finance_in_France', ➥

 'class=foobar target=_blank') ?>
 => ➥

 my article

You can also add one of the symfony-specific options for link helpers: confirm and popup.
The first one displays a JavaScript confirmation dialog box when the link is clicked, and the
second opens the link in a new window, as shown in Listing 9-10.

Listing 9-10. 'confirm' and 'popup' Options for Link Helpers

<?php echo link_to('delete item', 'item/delete?id=123', 'confirm=Are you sure?') ?>
 => <a onclick="return confirm('Are you sure?');"
 href="/routed/url/to/delete/123.html">add to cart

<?php echo link_to('add to cart', 'shoppingCart/add?id=100', 'popup=true') ?>
 => <a onclick="window.open(this.href);return false;"
 href="/fo_dev.php/shoppingCart/add/id/100.html">add to cart

<?php echo link_to('add to cart', 'shoppingCart/add?id=100', array(
 'popup' => array('Window title', 'width=310,height=400,left=320,top=0')
)) ?>
 => <a onclick="window.open(this.href,'Window title', ➥

 'width=310,height=400,left=320,top=0');return false;"
 href="/fo_dev.php/shoppingCart/add/id/100.html">add to cart

These options can be combined.

Fake GET and POST Options
Sometimes web developers use GET requests to actually do a POST. For instance, consider the
following URL:

http://www.example.com/index.php/shopping_cart/add/id/100

This request will change the data contained in the application, by adding an item to a
shopping cart object, stored in the session or in a database. This URL can be bookmarked,
cached, and indexed by search engines. Imagine all the nasty things that might happen to the
database or to the metrics of a website using this technique. As a matter of fact, this request
should be considered as a POST, because search engine robots do not do POST requests
on indexing.

Zaninotto_786-9 C09.fm Page 179 Wednesday, December 13, 2006 5:57 AM

180 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

Symfony provides a way to transform a call to a link_to() or button_to() helper into an
actual POST. Just add a post=true option, as shown in Listing 9-11.

Listing 9-11. Making a Link Call a POST Request

<?php echo link_to('go to shopping cart', 'shoppingCart/add?id=100', 'post=true') ?>
 => <a onclick="f = document.createElement('form'); document.body.appendChild(f);
 f.method = 'POST'; f.action = this.href; f.submit();return false;"
 href="/shoppingCart/add/id/100.html">go to shopping cart

This <a> tag has an href attribute, and browsers without JavaScript support, such as search
engine robots, will follow the link doing the default GET. So you must also restrict your action
to respond only to the POST method, by adding something like the following at the beginning
of the action:

$this->forward404If($request->getMethod() != sfRequest::POST);

Just make sure you don’t use this option on links located in forms, since it generates its
own <form> tag.

It is a good habit to tag as POST the links that actually post data.

Forcing Request Parameters As GET Variables
According to your routing rules, variables passed as parameters to a link_to() are transformed
into patterns. If no rule matches the internal URI in the routing.yml file, the default rule trans-
forms module/action?key=value into /module/action/key/value, as shown in Listing 9-12.

Listing 9-12. Default Routing Rule

<?php echo link_to('my article', 'article/read?title=Finance_in_France') ?>
=> my article

If you actually need to keep the GET syntax—to have request parameters passed under the
?key=value form—you should put the variables that need to be forced outside the URL parameter,
in the query_string option. All the link helpers accept this option, as demonstrated in Listing 9-13.

Listing 9-13. Forcing GET Variables with the query_string Option

<?php echo link_to('my article', 'article/read?title=Finance_in_France', array(
 'query_string' => 'title=Finance_in_France'
)) ?>
=> my article

A URL with request parameters appearing as GET variables can be interpreted by a script
on the client side, and by the $_GET and $_REQUEST variables on the server side.

Zaninotto_786-9 C09.fm Page 180 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 181

ASSET HELPERS

Chapter 7 introduced the asset helpers image_tag(), stylesheet_tag(), and javascript_include_
tag(), which allow you to include an image, a style sheet, or a JavaScript file in the response. The paths to
such assets are not processed by the routing system, because they link to resources that are actually located
under the public web directory.

You don’t need to mention a file extension for an asset. Symfony automatically adds .png, .js, or .css
to an image, JavaScript, or style sheet helper call. Also, symfony will automatically look for those assets in the
web/images/, web/js/, and web/css/ directories. Of course, if you want to include a specific file format
or a file from a specific location, just use the full file name or the full file path as an argument. And don’t bother
to specify an alt attribute if your media file has an explicit name, since symfony will determine it for you.

<?php echo image_tag('test') ?>
<?php echo image_tag('test.gif') ?>
<?php echo image_tag('/my_images/test.gif') ?>
 =>

To fix the size of an image, use the size attribute. It expects a width and a height in pixels, separated
by an x.

<?php echo image_tag('test', 'size=100x20')) ?>
 =>

If you want the asset inclusion to be done in the <head> section (for JavaScript files and style sheets),
you should use the use_stylesheet() and use_javascript() helpers in your templates, instead of the
_tag() versions in the layout. They add the asset to the response, and these assets are included before the
</head> tag is sent to the browser.

Using Absolute Paths
The link and asset helpers generate relative paths by default. To force the output to absolute
paths, set the absolute option to true, as shown in Listing 9-14. This technique is useful for
inclusions of links in an e-mail message, RSS feed, or API response.

Listing 9-14. Getting Absolute URLs Instead of Relative URLs

<?php echo url_for('article/read?title=Finance_in_France') ?>
 => '/routed/url/to/Finance_in_France'
<?php echo url_for('article/read?title=Finance_in_France', true) ?>
 => 'http://www.example.com/routed/url/to/Finance_in_France'

Zaninotto_786-9 C09.fm Page 181 Wednesday, December 13, 2006 5:57 AM

182 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

<?php echo link_to('finance', 'article/read?title=Finance_in_France') ?>
 => finance
<?php echo link_to('finance', 'article/read?title=Finance_in_France', ➥

 'absolute=true') ?>
 => finance

// The same goes for the asset helpers
<?php echo image_tag('test', 'absolute=true') ?>
<?php echo javascript_include_tag('myscript', 'absolute=true') ?>

THE MAIL HELPER

Nowadays, e-mail-harvesting robots prowl about the Web, and you can’t display an e-mail address on a
website without becoming a spam victim within days. This is why symfony provides a mail_to() helper.

The mail_to() helper takes two parameters: the actual e-mail address and the string that should be
displayed. Additional options accept an encode parameter to output something pretty unreadable in HTML,
which is understood by browsers but not by robots.

<?php echo mail_to('myaddress@mydomain.com', 'contact') ?>
 => contact
<?php echo mail_to('myaddress@mydomain.com', 'contact', 'encode=true') ?>
 => ct... ess

Encoded e-mail messages are composed of characters transformed by a random decimal and hexadecimal
entity encoder. This trick stops most of the address-harvesting spambots for now, but be aware that the
harvesting techniques evolve rapidly.

Routing Configuration
The routing system does two things:

• It interprets the external URL of incoming requests and transforms it into an internal
URI, to determine the module/action and the request parameters.

• It formats the internal URIs used in links into external URLs (provided that you use the
link helpers).

The conversion is based on a set of routing rules. These rules are stored in a routing.yml
configuration file located in the application config/ directory. Listing 9-15 shows the default
routing rules, bundled with every symfony project.

Zaninotto_786-9 C09.fm Page 182 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 183

Listing 9-15. The Default Routing Rules, in myapp/config/routing.yml

default rules
homepage:
 url: /
 param: { module: default, action: index }

default_symfony:
 url: /symfony/:action/*
 param: { module: default }

default_index:
 url: /:module
 param: { action: index }

default:
 url: /:module/:action/*

Rules and Patterns
Routing rules are bijective associations between an external URL and an internal URI. A typical
rule is made up of the following:

• A unique label, which is there for legibility and speed, and can be used by the link
helpers

• A pattern to be matched (url key)

• An array of request parameter values (param key)

Patterns can contain wildcards (represented by an asterisk, *) and named wildcards (starting
with a colon, :). A match to a named wildcard becomes a request parameter value. For instance,
the default rule defined in Listing 9-15 will match any URL like /foo/bar, and set the module
parameter to foo and the action parameter to bar. And in the default_symfony rule, symfony is
a keyword and action is named wildcard parameter.

The routing system parses the routing.yml file from the top to the bottom and stops at the
first match. This is why you must add your own rules on top of the default ones. For instance,
the URL /foo/123 matches both of the rules defined in Listing 9-16, but symfony first tests
my_rule:, and as that rule matches, it doesn’t even test the default: one. The request is handled by
the mymodule/myaction action with bar set to 123 (and not by the foo/123 action).

Listing 9-16. Rules Are Parsed Top to Bottom

my_rule:
 url: /foo/:bar
 param: { module: mymodule, action: myaction }

default rules
default:
 url: /:module/:action/*

Zaninotto_786-9 C09.fm Page 183 Wednesday, December 13, 2006 5:57 AM

184 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

■Note When a new action is created, it does not imply that you must create a routing rule for it. If the
default module/action pattern suits you, then forget about the routing.yml file. If, however, you want to
customize the action’s external URL, add a new rule above the default one.

Listing 9-17 shows the process of changing the external URL format for an article/read
action.

Listing 9-17. Changing the External URL Format for an article/read Action

<?php echo url_for('my article', 'article/read?id=123) ?>
 => /article/read/id/123 // Default formatting

// To change it to /article/123, add a new rule at the beginning
// of your routing.yml
article_by_id:
 url: /article/:id
 param: { module: article, action: read }

The problem is that the article_by_id rule in Listing 9-17 breaks the default routing for all
the other actions of the article module. In fact, a URL like article/delete will match this rule
instead of the default one, and call the read action with id set to delete instead of the delete
action. To get around this difficulty, you must add a pattern constraint so that the article_by_id
rule matches only URLs where the id wildcard is an integer.

Pattern Constraints
When a URL can match more than one rule, you must refine the rules by adding constraints, or
requirements, to the pattern. A requirement is a set of regular expressions that must be matched by
the wildcards for the rule to match.

For instance, to modify the article_by_id rule so that it matches only URLs where the id
parameter is an integer, add a line to the rule, as shown in Listing 9-18.

Listing 9-18. Adding a Requirement to a Routing Rule

article_by_id:
 url: /article/:id
 param: { module: article, action: read }
 requirements: { id: \d+ }

Now an article/delete URL can’t match the article_by_id rule anymore, because the
'delete' string doesn’t satisfy the requirements. Therefore, the routing system will keep on
looking for a match in the following rules and finally find the default rule.

Zaninotto_786-9 C09.fm Page 184 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 185

PERMALINKS

A good security guideline for routing is to hide primary keys and replace them with significant strings as much
as possible. What if you wanted to give access to articles from their title rather than from their ID? It would
make external URLs look like this:

http://www.example.com/article/Finance_in_France

To that extent, you need to create a new permalink action, which will use a slug parameter instead of
an id one, and add a new rule for it:

article_by_id:
 url: /article/:id
 param: { module: article, action: read }
 requirements: { id: \d+ }

article_by_slug:
 url: /article/:slug
 param: { module: article, action: permalink }

The permalink action needs to determine the requested article from its title, so your model must
provide an appropriate method.

public function executePermalink()
{
 $article = ArticlePeer::retrieveBySlug($this->getRequestParameter('slug');
 $this->forward404Unless($article); // Display 404 if no article matches slug
 $this->article = $article; // Pass the object to the template
}

You also need to replace the links to the read action in your templates with links to the permalink one,
to enable correct formatting of internal URIs.

// Replace
<?php echo link_to('my article', 'article/read?id='.$article->getId()) ?>

// With
<?php echo link_to('my article', 'article/permalink?slug='.$article ➥

->getSlug()) ?>

Thanks to the requirements line, an external URL like /article/Finance_in_France matches the
article_by_slug rule, even though the article_by_id rule appears first.

Note that as articles will be retrieved by slug, you should add an index to the slug column in the
Article model description to optimize database performance.

Zaninotto_786-9 C09.fm Page 185 Wednesday, December 13, 2006 5:57 AM

186 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

Setting Default Values
You can give named wildcards a default value to make a rule work, even if the parameter is not
defined. Set default values in the param: array.

For instance, the article_by_id rule doesn’t match if the id parameter is not set. You can
force it, as shown in Listing 9-19.

Listing 9-19. Setting a Default Value for a Wildcard

article_by_id:
 url: /article/:id
 param: { module: article, action: read, id: 1 }

The default parameters don’t need to be wildcards found in the pattern. In Listing 9-20,
the display parameter takes the value true, even if it is not present in the URL.

Listing 9-20. Setting a Default Value for a Request Parameter

article_by_id:
 url: /article/:id
 param: { module: article, action: read, id: 1, display: true }

If you look carefully, you can see that article and read are also default values for module
and action variables not found in the pattern.

■Tip You can define a default parameter for all the routing rules by defining the sf_routing_default
configuration parameter. For instance, if you want all the rules to have a theme parameter set to default by
default, add the line sfConfig::set('sf_routing_defaults', array('theme' => 'default')); to
your application’s config.php.

Speeding Up Routing by Using the Rule Name
The link helpers accept a rule label instead of a module/action pair if the rule label is preceded
by an at sign (@), as shown in Listing 9-21.

Listing 9-21. Using the Rule Label Instead of the Module/Action

<?php echo link_to('my article', 'article/read?id='.$article->getId()) ?>

// can also be written as
<?php echo link_to('my article', '@article_by_id?id='.$article->getId()) ?>

There are pros and cons to this trick. The advantages are as follows:

Zaninotto_786-9 C09.fm Page 186 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 187

• The formatting of internal URIs is done much faster, since symfony doesn’t have to browse
all the rules to find the one that matches the link. In a page with a great number of routed
hyperlinks, the boost will be noticeable if you use rule labels instead of module/action pairs.

• Using the rule label helps to abstract the logic behind an action. If you decide to change
an action name but keep the URL, a simple change in the routing.yml file will suffice. All
of the link_to() calls will still work without further change.

• The logic of the call is more apparent with a rule name. Even if your modules and
actions have explicit names, it is often better to call @display_article_by_slug than
article/display.

On the other hand, a disadvantage is that adding new hyperlinks becomes less self-
evident, since you always need to refer to the routing.yml file to find out which label is to be
used for an action.

The best choice depends on the project. In the long run, it’s up to you.

■Tip During your tests (in the dev environment), if you want to check which rule was matched for a given
request in your browser, develop the “logs and msgs” section of the web debug toolbar and look for a line
specifying “matched route XXX.” You will find more information about the web debug mode in Chapter 16.

Adding an .html Extension
Compare these two URLs:

http://myapp.example.com/article/Finance_in_France
http://myapp.example.com/article/Finance_in_France.html

Even if it is the same page, users and (robots) may see it differently because of the URL.
The second URL evokes a deep and well-organized web directory of static pages, which is
exactly the kind of websites that search engines know how to index.

To add a suffix to every external URL generated by the routing system, change the suffix
value in the application settings.yml, as shown in Listing 9-22.

Listing 9-22. Setting a Suffix for All URLs, in myapp/config/settings.yml

prod:
 .settings
 suffix: .html

The default suffix is set to a period (.), which means that the routing system doesn’t add a
suffix unless you specify it.

It is sometimes necessary to specify a suffix for a unique routing rule. In that case, write the
suffix directly in the related url: line of the routing.yml file, as shown in Listing 9-23. Then the
global suffix will be ignored.

Zaninotto_786-9 C09.fm Page 187 Wednesday, December 13, 2006 5:57 AM

188 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

Listing 9-23. Setting a Suffix for One URL, in myapp/config/routing.yml

article_list:
 url: /latest_articles
 param: { module: article, action: list }

article_list_feed:
 url: /latest_articles.rss
 param: { module: article, action: list, type: feed }

Creating Rules Without routing.yml
As is true of most of the configuration files, the routing.yml is a solution to define routing rules,
but not the only one. You can define rules in PHP, either in the application config.php file or in
the front controller script, but before the call to dispatch(), because this method determines
the action to execute according to the present routing rules. Defining rules in PHP authorizes
you to create dynamic rules, depending on configuration or other parameters.

The object that handles the routing rules is the sfRouting singleton. It is available from
every part of the code by requiring sfRouting::getInstance(). Its prependRoute() method adds
a new rule on top of the existing ones defined in routing.yml. It expects four parameters, which
are the same as the parameters needed to define a rule: a route label, a pattern, an associative
array of default values, and another associative array for requirements. For instance, the
routing.yml rule definition shown in Listing 9-18 is equivalent to the PHP code shown in
Listing 9-24.

Listing 9-24. Defining a Rule in PHP

sfRouting::getInstance()->prependRoute(
 'article_by_id', // Route name
 '/article/:id', // Route pattern
 array('module' => 'article', 'action' => 'read'), // Default values
 array('id' => '\d+'), // Requirements
);

The sfRouting singleton has other useful methods for handling routes by hand: clearRoutes(),
hasRoutes(), getRoutesByName(), and so on. Refer to the API documentation (http://www.
symfony-project.com/api/symfony.html) to learn more.

■Tip Once you start to fully understand the concepts presented in this book, you can increase your under-
standing of the framework by browsing the online API documentation or, even better, the symfony source. Not
all the tweaks and parameters of symfony can be described in this book. The online documentation, however,
is limitless.

Zaninotto_786-9 C09.fm Page 188 Wednesday, December 13, 2006 5:57 AM

C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M 189

Dealing with Routes in Actions
If you need to retrieve information about the current route—for instance, to prepare a future
“back to page xxx” link—you should use the methods of the sfRouting object. The URIs returned by
the getCurrentInternalUri() method can be used in a call to a link_to() helper, as shown in
Listing 9-25.

Listing 9-25. Using sfRouting to Get Information About the Current Route

// If you require a URL like
http://myapp.example.com/article/21

// Use the following in article/read action
$uri = sfRouting::getInstance()->getCurrentInternalUri();
 => article/read?id=21

$uri = sfRouting::getInstance()->getCurrentInternalUri(true);
 => @article_by_id?id=21

$rule = sfRouting::getInstance()->getCurrentRouteName();
 => article_by_id

// If you just need the current module/action names,
// remember that they are actual request parameters
$module = $this->getRequestParameter('module');
$action = $this->getRequestParameter('action');

If you need to transform an internal URI into an external URL in an action—just as url_for()
does in a template—use the genUrl() method of the sfController object, as shown in Listing 9-26.

Listing 9-26. Using sfController to Transform an Internal URI

$uri = 'article/read?id=21';

$url = $this->getController()->genUrl($uri);
 => /article/21

$url = $this->getController()->genUrl($uri);
=> http://myapp.example.com/article/21

Zaninotto_786-9 C09.fm Page 189 Wednesday, December 13, 2006 5:57 AM

190 C H A P T E R 9 ■ L I N K S A N D T H E R O U T I N G S Y S T E M

Summary
Routing is a two-way mechanism designed to allow formatting of external URLs so that they are
more user-friendly. URL rewriting is required to allow the omission of the front controller name
in the URLs of one of the applications of each project. You must use link helpers each time you
need to output a URL in a template if you want the routing system to work both ways. The
routing.yml file configures the rules of the routing system and uses an order of precedence and
rule requirements. The settings.yml file contains additional settings concerning the presence
of the front controller name and a possible suffix in external URLs.

Zaninotto_786-9 C09.fm Page 190 Wednesday, December 13, 2006 5:57 AM

191

■ ■ ■

C H A P T E R 1 0

Forms

When writing templates, much of a developer’s time is devoted to forms. Despite this, forms
are generally poorly designed. Since much attention is required to deal with default values,
formatting, validation, repopulation, and form handling in general, some developers tend to
skim over some important details in the process. Accordingly, symfony devotes special atten-
tion to this topic. This chapter describes the tools that automate many of these requirements
while speeding up forms development:

• The form helpers provide a faster way to write form inputs in templates, especially for
complex elements such as dates, drop-down lists, and rich text.

• When a form is devoted to editing the properties of an object, the templating can be
further accelerated by using object form helpers.

• The YAML validation files facilitate form validation and repopulation.

• Validators package the code required to validate input. Symfony bundles validators for
the most common needs, and it is very easy to add custom validators.

Form Helpers
In templates, HTML tags of form elements are very often mixed with PHP code. Form helpers
in symfony aim to simplify this task and to avoid opening <?php echo tags repeatedly in the
middle of <input> tags.

Main Form Tag
As explained in the previous chapter, you must use the form_tag() helper to create a form,
since it transforms the action given as a parameter into a routed URL. The second argument
can support additional options—for instance, to change the default method, change the default
enctype, or specify other attributes. Listing 10-1 shows examples.

Listing 10-1. The form_tag() Helper

<?php echo form_tag('test/save') ?>
 => <form method="post" action="/path/to/save">

Zaninotto_786-9 C10.fm Page 191 Thursday, December 21, 2006 1:04 PM

192 C H A P T E R 1 0 ■ F O R M S

<?php echo form_tag('test/save', 'method=get multipart=true class=simpleForm') ?>
 => <form method="get" enctype="multipart/form-data" class="simpleForm" ➥

 action="/path/to/save">

As there is no need for a closing form helper, you should use the HTML </form> tag, even
if it doesn’t look good in your source code.

Standard Form Elements
With form helpers, each element in a form is given an id attribute deduced from its name attribute
by default. This is not the only useful convention. See Listing 10-2 for a full list of standard form
helpers and their options.

Listing 10-2. Standard Form Helpers Syntax

// Text field (input)
<?php echo input_tag('name', 'default value') ?>
 => <input type="text" name="name" id="name" value="default value" />

// All form helpers accept an additional options parameter
// It allows you to add custom attributes to the generated tag
<?php echo input_tag('name', 'default value', 'maxlength=20') ?>
 => <input type="text" name="name" id="name" value="default value" ➥

 maxlength="20" />

// Long text field (text area)
<?php echo textarea_tag('name', 'default content', 'size=10x20') ?>
 => <textarea name="name" id="name" cols="10" rows="20">
 default content
 </textarea>

// Check box
<?php echo checkbox_tag('single', 1, true) ?>
<?php echo checkbox_tag('driverslicense', 'B', false) ?>
 => <input type="checkbox" name="single" id="single" value="1" ➥

 checked="checked" />
 <input type="checkbox" name="driverslicense" id="driverslicense" ➥

 value="B" />

// Radio button
<?php echo radiobutton_tag('status[]', 'value1', true) ?>
<?php echo radiobutton_tag('status[]', 'value2', false) ?>
 => <input type="radio" name="status[]" id="status_value1" value="value1" ➥

 checked="checked" />
 <input type="radio" name="status[]" id="status_value2" value="value2" />

// Dropdown list (select)
<?php echo select_tag('payment',
 '<option selected="selected">Visa</option>

Zaninotto_786-9 C10.fm Page 192 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 193

 <option>Eurocard</option>
 <option>Mastercard</option>')
?>
 => <select name="payment" id="payment">
 <option selected="selected">Visa</option>
 <option>Eurocard</option>
 <option>Mastercard</option>
 </select>

// List of options for a select tag
<?php echo options_for_select(array('Visa', 'Eurocard', 'Mastercard'), 0) ?>
 => <option value="0" selected="selected">Visa</option>
 <option value="1">Eurocard</option>
 <option value="2">Mastercard</option>

// Dropdown helper combined with a list of options
<?php echo select_tag('payment', options_for_select(array(
 'Visa',
 'Eurocard',
 'Mastercard'
), 0)) ?>
 => <select name="payment" id="payment">
 <option value="0" selected="selected">Visa</option>
 <option value="1">Eurocard</option>
 <option value="2">Mastercard</option>
 </select>

// To specify option names, use an associative array
<?php echo select_tag('name', options_for_select(array(
 'Steve' => 'Steve',
 'Bob' => 'Bob',
 'Albert' => 'Albert',
 'Ian' => 'Ian',
 'Buck' => 'Buck'
), 'Ian')) ?>
 => <select name="name" id="name">
 <option value="Steve">Steve</option>
 <option value="Bob">Bob</option>
 <option value="Albert">Albert</option>
 <option value="Ian" selected="selected">Ian</option>
 <option value="Buck">Buck</option>
 </select>

// Dropdown list with multiple selection (selected values can be an array)
<?php echo select_tag('payment', options_for_select(
 array('Visa' => 'Visa', 'Eurocard' => 'Eurocard', 'Mastercard' => 'Mastercard'),
 array('Visa', 'Mastecard'),
), array('multiple' => true))) ?>

Zaninotto_786-9 C10.fm Page 193 Thursday, December 21, 2006 1:04 PM

194 C H A P T E R 1 0 ■ F O R M S

 => <select name="payment[]" id="payment" multiple="multiple">
 <option value="Visa" selected="selected">Visa</option>
 <option value="Eurocard">Eurocard</option>
 <option value="Mastercard">Mastercard</option>
 </select>
// Drop-down list with multiple selection (selected values can be an array)
<?php echo select_tag('payment', options_for_select(
 array('Visa' => 'Visa', 'Eurocard' => 'Eurocard', 'Mastercard' => 'Mastercard'),
 array('Visa', 'Mastecard')
), 'multiple=multiple') ?>
 => <select name="payment" id="payment" multiple="multiple">
 <option value="Visa" selected="selected">
 <option value="Eurocard">Eurocard</option>
 <option value="Mastercard" selected="selected">Mastercard</option>
 </select>

// Upload file field
<?php echo input_file_tag('name') ?>
 => <input type="file" name="name" id="name" value="" />

// Password field
<?php echo input_password_tag('name', 'value') ?>
 => <input type="password" name="name" id="name" value="value" />

// Hidden field
<?php echo input_hidden_tag('name', 'value') ?>
 => <input type="hidden" name="name" id="name" value="value" />

// Submit button (as text)
<?php echo submit_tag('Save') ?>
 => <input type="submit" name="submit" value="Save" />

// Submit button (as image)
<?php echo submit_image_tag('submit_img') ?>
 => <input type="image" name="submit" src="/images/submit_img.png" />

The submit_image_tag() helper uses the same syntax and has the same advantages as the
image_tag().

■Note For radio buttons, the id attribute is not set by default to the value of the name attribute, but to a
combination of the name and the value. That’s because you need to have several radio button tags with the
same name to obtain the automated “deselecting the previous one when selecting another” feature, and the
id=name convention would imply having several HTML tags with the same id attribute in your page, which
is strictly forbidden.

Zaninotto_786-9 C10.fm Page 194 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 195

HANDLING FORM SUBMISSION

How do you retrieve the data submitted by users through forms? It is available in the request parameters, so
the action only needs to call $this->getRequestParameter($elementName) to get the value.

A good practice is to use the same action to display and handle the form. According to the request method
(GET or POST), either the form template is called or the form is handled and the request is redirected to
another action.

// In mymodule/actions/actions.class.php
public function executeEditAuthor()
{
 if ($this->getRequest()->getMethod() != sfRequest::POST)
 {
 // Display the form
 return sfView::SUCCESS;
 }
 else
 {
 // Handle the form submission
 $name = $this->getRequestParameter('name');
 ...
 $this->redirect('mymodule/anotheraction');
 }
}

For this to work, the form target must be the same action as the one displaying it.

// In mymodule/templates/editAuthorSuccess.php
<?php echo form_tag('mymodule/editAuthor') ?>

...

Symfony offers specialized form helpers to do asynchronous requests in the background.
The next chapter, which focuses on Ajax, provides more details.

Date Input Widgets
Forms are often used to retrieve dates. Dates in the wrong format are the main reason for form-
submission failures. The input_date_tag() helper can assist the user in entering a date with an
interactive JavaScript calendar, if you set the rich option to true, as shown in Figure 10-1.

Zaninotto_786-9 C10.fm Page 195 Thursday, December 21, 2006 1:04 PM

196 C H A P T E R 1 0 ■ F O R M S

Figure 10-1. Rich date input tag

If the rich option is omitted, the helper echoes three <select> tags populated with a range
of months, days, and years. You can display these drop-downs separately by calling their helpers
(select_day_tag(), select_month_tag(), and select_year_tag()). The default values of these
elements are the current day, month, and year. Listing 10-3 shows the input date helpers.

Listing 10-3. Input Date Helpers

<?php echo input_date_tag('dateofbirth', '2005-05-03', 'rich=true') ?>
 => a text input tag together with a calendar widget

<?php echo select_day_tag('day', 1, 'include_custom=Choose a day') ?>
=> <select name="day" id="day">
 <option value="">Choose a day</option>
 <option value="1" selected="selected">01</option>
 <option value="2">02</option>
 ...
 <option value="31">31</option>
 </select>

<?php echo select_month_tag('month', 1, 'include_custom=Choose a month ➥

 use_short_month=true') ?>
=> <select name="month" id="month">
 <option value="">Choose a month</option>
 <option value="1" selected="selected">Jan</option>
 <option value="2">Feb</option>
 ...
 <option value="12">Dec</option>
 </select>

<?php echo select_year_tag('year', 2007, 'include_custom=Choose a year ➥

 year_end=2010') ?>
 => <select name="year" id="year">
 <option value="">Choose a year</option>
 <option value="2006">2006</option>
 <option value="2007" selected="selected">2007</option>
 ...
 </select>

Zaninotto_786-9 C10.fm Page 196 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 197

The accepted date values for the input_date_tag() helper are the ones recognized by the
strtotime() PHP function. Listing 10-4 shows which formats can be used, and Listing 10-5
shows the ones that must be avoided.

Listing 10-4. Accepted Date Formats in Date Helpers

// Work fine
<?php echo input_date_tag('test', '2006-04-01', 'rich=true') ?>
<?php echo input_date_tag('test', 1143884373, 'rich=true') ?>
<?php echo input_date_tag('test', 'now', 'rich=true') ?>
<?php echo input_date_tag('test', '23 October 2005', 'rich=true') ?>
<?php echo input_date_tag('test', 'next tuesday', 'rich=true') ?>
<?php echo input_date_tag('test', '1 week 2 days 4 hours 2 seconds', 'rich=true') ?>

// Return null
<?php echo input_date_tag('test', null, 'rich=true') ?>
<?php echo input_date_tag('test', '', 'rich=true') ?>

Listing 10-5. Incorrect Date Formats in Date Helpers

// Date zero = 01/01/1970
<?php echo input_date_tag('test', 0, 'rich=true') ?>

// Non-English date formats don't work
<?php echo input_date_tag('test', '01/04/2006', 'rich=true') ?>

Rich Text Editing
Rich text editing is also possible in a <textarea> tag, thanks to the integration of the TinyMCE
and FCKEditor widgets. They provide a word-processor-like interface with buttons to format
text as bold, italic, and other styles, as shown in Figure 10-2.

Figure 10-2. Rich text editing

Both widgets require manual installation. As the procedure is the same for the two widgets,
only the TinyMCE rich text editing is described here. You need to download the editor from the
project website (http://tinymce.moxiecode.com/) and unpack it in a temporary folder. Copy
the tinymce/jscripts/tiny_mce/ directory into your project web/js/ directory, and define the
path to the library in settings.yml, as shown in Listing 10-6.

Zaninotto_786-9 C10.fm Page 197 Thursday, December 21, 2006 1:04 PM

198 C H A P T E R 1 0 ■ F O R M S

Listing 10-6. Setting Up the TinyMCE Library Path

all:
 .settings:
 rich_text_js_dir: js/tiny_mce

Once this is done, toggle the use of rich text editing in text areas by adding the rich=true
option. You can also specify custom options for the JavaScript editor using the tinymce_options
option. Listing 10-7 shows examples.

Listing 10-7. Rich Text Area

<?php echo textarea_tag('name', 'default content', 'rich=true size=10x20')) ?>
 => a rich text edit zone powered by TinyMCE
<?php echo textarea_tag('name', 'default content', 'rich=true size=10x20 ➥

 tinymce_options=language:"fr",theme_advanced_buttons2:"separator"')) ?>
=> a rich text edit zone powered by TinyMCE with custom parameters

Country and Language Selection
You may need to display a country selection field. But since country names are not the same in
all languages, the options of a country drop-down list should vary according to the user culture
(see Chapter 13 for more information about cultures). As shown in Listing 10-8, the select_
country_tag() helper does it all for you: It internationalizes country names and uses the standard
ISO country codes for values.

Listing 10-8. Select Country Tag Helper

<?php echo select_country_tag('country', 'AL') ?>
 => <select name="country" id="country">
 <option value="AF">Afghanistan</option>
 <option value="AL" selected="selected">Albania</option>
 <option value="DZ">Algeria</option>
 <option value="AS">American Samoa</option>
 ...

Similar to select_country_tag() helper, the select_language_tag() helper displays a list
of languages, as shown in Listing 10-9.

Listing 10-9. Select Language Tag Helper

<?php echo select_language_tag('language', 'en') ?>
 => <select name="language" id="language">
 ...
 <option value="elx">Elamite</option>
 <option value="en" selected="selected">English</option>
 <option value="enm">English, Middle (1100-1500)</option>
 <option value="ang">English, Old (ca.450-1100)</option>

Zaninotto_786-9 C10.fm Page 198 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 199

 <option value="myv">Erzya</option>
 <option value="eo">Esperanto</option>
 ...

Form Helpers for Objects
When form elements are used to edit the properties of an object, standard link helpers can
become tedious to write. For instance, to edit the telephone attribute of a Customer object, you
would write this:

<?php echo input_tag('telephone', $customer->getTelephone()) ?>
=> <input type="text" name="telephone" id="telephone" value="0123456789" />

To avoid repeating the attribute name, symfony provides an alternative object form helper
for each form helper. An object form helper deduces the name and the default value of a form
element from an object and a method name. The previous input_tag() is equivalent to this:

<?php echo object_input_tag($customer, 'getTelephone') ?>
=> <input type="text" name="telephone" id="telephone" value="0123456789" />

The economy might not look crucial for the object_input_tag(). However, every standard
form helper has a corresponding object form helper, and they all share the same syntax. It
makes generation of forms quite straightforward. That’s why the object form helpers are used
extensively in the scaffolding and generated administrations (see Chapter 14). Listing 10-10
lists the object form helpers.

Listing 10-10. Object Form Helpers Syntax

<?php echo object_input_tag($object, $method, $options) ?>
<?php echo object_input_date_tag($object, $method, $options) ?>
<?php echo object_input_hidden_tag($object, $method, $options) ?>
<?php echo object_textarea_tag($object, $method, $options) ?>
<?php echo object_checkbox_tag($object, $method, $options) ?>
<?php echo object_select_tag($object, $method, $options) ?>
<?php echo object_select_country_tag($object, $method, $options) ?>
<?php echo object_select_language_tag($object, $method, $options) ?>

There is no object_password_tag() helper, since it is a bad practice to give a default value
to a password tag, based on something the user has previously entered.

■Caution Unlike the regular form helpers, the object form helpers are available only if you declare explicitly the
use of the Object helper group in your template with use_helper('Object').

The most interesting of all object form helpers are objects_for_select() and
object_select_tag(), which concern drop-down lists.

Zaninotto_786-9 C10.fm Page 199 Thursday, December 21, 2006 1:04 PM

200 C H A P T E R 1 0 ■ F O R M S

Populating Drop-Down Lists with Objects
The options_for_select() helper, described previously with the other standard helpers, trans-
forms a PHP associative array into an options list, as shown in Listing 10-11.

Listing 10-11. Creating a List of Options Based on an Array with options_for_select()

<?php echo options_for_select(array(
 '1' => 'Steve',
 '2' => 'Bob',
 '3' => 'Albert',
 '4' => 'Ian',
 '5' => 'Buck'
), 4) ?>
 => <option value="1">Steve</option>
 <option value="2">Bob</option>
 <option value="3">Albert</option>
 <option value="4" selected="selected">Ian</option>
 <option value="5">Buck</option>

Suppose that you already have an array of objects of class Author, resulting from a Propel
query. If you want to build a list of options based on this array, you will need to loop on it to
retrieve the id and the name of each object, as shown in Listing 10-12.

Listing 10-12. Creating a List of Options Based on an Array of Objects with options_for_select()

// In the action
$options = array();
foreach ($authors as $author)
{
 $options[$author->getId()] = $author->getName();
}
$this->options = $options;

// In the template
<?php echo options_for_select($options, 4) ?>

This kind of processing happens so often that symfony has a helper to automate it:
objects_for_select(), which creates an option list based directly on an array of objects. The
helper needs two additional parameters: the method names used to retrieve the value and the
text contents of the <option> tags to be generated. So Listing 10-12 is equivalent to this simpler
form:

<?php echo objects_for_select($authors, 'getId', 'getName', 4) ?>

That’s smart and fast, but symfony goes even further, when you deal with foreign key
columns.

Zaninotto_786-9 C10.fm Page 200 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 201

Creating a Drop-Down List Based on a Foreign Key Column
The values a foreign key column can take are the primary key values of the foreign table records. If,
for instance, the article table has an author_id column that is a foreign key to an author table,
the possible values for this column are the id of all the records of the author table. Basically, a
drop-down list to edit the author of an article would look like Listing 10-13.

Listing 10-13. Creating a List of Options Based on a Foreign Key with objects_for_select()

<?php echo select_tag('author_id', objects_for_select(
 AuthorPeer::doSelect(new Criteria()),
 'getId',
 '__toString()',
 $article->getAuthorId()
)) ?>
=> <select name="author_id" id="author_id">
 <option value="1">Steve</option>
 <option value="2">Bob</option>
 <option value="3">Albert</option>
 <option value="4" selected="selected">Ian</option>
 <option value="5">Buck</option>
 </select>

The object_select_tag() does all that by itself. It displays a drop-down list populated with
the name of the possible records of the foreign table. The helper can guess the foreign table and
foreign column from the schema, so its syntax is very concise. Listing 10-13 is equivalent to
this:

<?php echo object_select_tag($article, 'getAuthorId') ?>

The object_select_tag() helper guesses the related peer class name (AuthorPeer in the
example) based on the method name passed as a parameter. However, you can specify your
own class by setting the related_class option in the third argument. The text content of the
<option> tags is the record name, which is the result of the __toString() method of the object
class (if $author->__toString() method is undefined, the primary key is used instead). In addi-
tion, the list of options is built from a doSelect() method with an empty criteria value; it returns
all the records ordered by creation date. If you prefer to display only a subset of records with a
specific ordering, create a method in the peer class returning this selection as an array of objects,
and set it in the peer_method option. Lastly, you can add a blank option or a custom option
at the top of the drop-down list by setting the include_blank and include_custom options.
Listing 10-14 demonstrates these different options for the object_select_tag() helper.

Listing 10-14. Options of the object_select_tag() Helper

// Base syntax
<?php echo object_select_tag($article, 'getAuthorId') ?>
// Builds the list from AuthorPeer::doSelect(new Criteria())

Zaninotto_786-9 C10.fm Page 201 Thursday, December 21, 2006 1:04 PM

202 C H A P T E R 1 0 ■ F O R M S

// Change the peer class used to retrieve the possible values
<?php echo object_select_tag($article, 'getAuthorId', 'related_class=Foobar') ?>
// Builds the list from FoobarPeer::doSelect(new Criteria())

// Change the peer method used to retrieve the possible values
<?php echo object_select_tag($article, 'getAuthorId', ➥

 'peer_method=getMostFamousAuthors') ?>
// Builds the list from AuthorPeer::getMostFamousAuthors(new Criteria())

// Add an <option value=""> </option> at the top of the list
<?php echo object_select_tag($article, 'getAuthorId', 'include_blank=true') ?>

// Add an <option value="">Choose an author</option> at the top of the list
<?php echo object_select_tag($article, 'getAuthorId',
 'include_custom=Choose an author') ?>

Updating Objects
A form completely dedicated to editing object properties by using object helpers is easier to
handle in an action. For instance, if you have an object of class Author with name, age, and
address attributes, the form can be coded as shown in Listing 10-15.

Listing 10-15. A Form with Only Object Helpers

<?php echo form_tag('author/update') ?>
 <?php echo object_input_hidden_tag($author, 'getId') ?>
 Name: <?php echo object_input_tag($author, 'getName') ?>

 Age: <?php echo object_input_tag($author, 'getAge') ?>

 Address:

 <?php echo object_textarea_tag($author, 'getAddress') ?>
</form>

The update action of the author module, called when the form is submitted, can simply
update the object with the fromArray() modifier generated by Propel, as shown in Listing 10-16.

Listing 10-16. Handling a Form Submission Based on Object Form Helpers

public function executeUpdate ()
{
 $author = AuthorPeer::retrieveByPk($this->getRequestParameter('id'));
 $this->forward404Unless($author);

 $author->fromArray($this->getRequest()->getParameterHolder()->getAll(), ➥

 AuthorPeer::TYPE_FIELDNAME);
 $author->save();

 return $this->redirect('/author/show?id='.$author->getId());
}

Zaninotto_786-9 C10.fm Page 202 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 203

Form Validation
Chapter 6 explained how to use the validateXXX() methods in the action class to validate the
request parameters. However, if you use this technique to validate a form submission, you will
end up rewriting the same portion of code over and over. Symfony provides an alternative
form-validation technique, relying on only a YAML file, instead of PHP code in the action class.

To demonstrate the form-validation features, let’s first consider the sample form shown in
Listing 10-17. It is a classic contact form, with name, email, age, and message fields.

Listing 10-17. Sample Contact Form, in modules/contact/templates/indexSuccess.php

<?php echo form_tag('contact/send') ?>
 Name: <?php echo input_tag('name') ?>

 Email: <?php echo input_tag('email') ?>

 Age: <?php echo input_tag('age') ?>

 Message: <?php echo textarea_tag('message') ?>

 <?php echo submit_tag() ?>
</form>

The principle of form validation is that if a user enters invalid data and submits the form,
the next page should show an error message. Let’s define what valid data should be for the
sample form, in plain English:

• The name field is required. It must be a text entry between 2 and 100 characters.

• The email field is required. It must be a text entry between 2 and 100 characters, and it
must be a valid e-mail address.

• The age field is required. It must be an integer between 0 and 120.

• The message field is required.

You could define more complex validation rules for the contact form, but these are just
fine for a demonstration of the validation possibilities.

■Note Form validation can occur on the server side and/or on the client side. The server-side validation is
compulsory to avoid corrupting a database with wrong data. The client-side validation is optional, though it
greatly enhances the user experience. The client-side validation is to be done with custom JavaScript.

Validators
You can see that the name and email fields in the example share common validation rules. Some
validation rules appear so often in web forms that symfony packages the PHP code that imple-
ments them into validators. A validator is simple class that provides an execute() method. This
method expects the value of a field as parameter, and returns true if the value is valid and false
otherwise.

Zaninotto_786-9 C10.fm Page 203 Thursday, December 21, 2006 1:04 PM

204 C H A P T E R 1 0 ■ F O R M S

Symfony ships with several validators (described in the “Standard Symfony Validators”
section later in this chapter), but let’s focus on the sfStringValidator for now. This validator
checks that an input is a string, and that its size is between two specified character amounts
(defined when calling the initialize() method). That’s exactly what is required to validate the
name field. Listing 10-18 shows how to use this validator in a validation method.

Listing 10-18. Validating Request Parameters with Reusable Validators, in modules/contact/
action/actions.class.php

public function validateSend()
{
 $name = $this->getRequestParameter('name');

 // The name field is required
 if (!$name)
 {
 $this->getRequest()->setError('name', 'The name field cannot be left blank');

 return false;
 }

 // The name field must be a text entry between 2 and 100 characters
 $myValidator = new sfStringValidator();
 $myValidator->initialize($this->getContext(), array(
 'min' => 2,
 'min_error' => 'This name is too short (2 characters minimum)',
 'max' => 100,
 'max_error' => 'This name is too long. (100 characters maximum)',
));
 if (!$myValidator->execute($name))
 {
 return false;
 }

 return true;
}

If a user submits the form in Listing 10-17 with the value a in the name field, the execute()
method of the sfStringValidator will return false (because the string length is less than the
minimum of two characters). The validateSend() method will then fail, and the handleErrorSend()
method will be called instead of the executeSend() method.

Zaninotto_786-9 C10.fm Page 204 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 205

■Tip The setError() method of the sfRequest method gives information to the template so that it can
display an error message (as explained in the “Displaying the Error Messages in the Form” section later in this
chapter). The validators set the errors internally, so you can define different errors for the different cases of
nonvalidation. That’s the purpose of the min_error and max_error initialization parameters of the
sfStringValidator.

All the rules defined in the example can be translated into validators:

• name: sfStringValidator (min=2, max=100)

• email: sfStringValidator (min=2, max=100) and sfEmailValidator

• age: sfNumberValidator (min=0, max=120)

The fact that a field is required is not handled by a validator.

Validation File
You could easily implement the validation of the contact form with validators in the
validateSend() method PHP, but that would imply repeating a lot of code. Symfony offers
an alternative way to define validation rules for a form, and it involves YAML. For instance,
Listing 10-19 shows the translation of the name field validation rules, and its results are equiv-
alent to those of Listing 10-18.

Listing 10-19. Validation File, in modules/contact/validate/send.yml

fields:
 name:
 required:
 msg: The name field cannot be left blank
 sfStringValidator:
 min: 2
 min_error: This name is too short (2 characters minimum)
 max: 100
 max_error: This name is too long. (100 characters maximum)

In a validation file, the fields header lists the fields that need to be validated, if they are
required, and the validators that should be tested on them when a value is present. The param-
eters of each validator are the same as those you would use to initialize the validator manually.
A field can be validated by as many validators as necessary.

Zaninotto_786-9 C10.fm Page 205 Thursday, December 21, 2006 1:04 PM

206 C H A P T E R 1 0 ■ F O R M S

■Note The validation process doesn’t stop when a validator fails. Symfony tests all the validators and
declares the validation failed if at least one of them fails. And even if some of the rules of the validation file
fail, symfony will still look for a validateXXX() method and execute it. So the two validation techniques are
complementary. The advantage is that, in a form with multiple failures, all the error messages are shown.

Validation files are located in the module validate/ directory, and named by the action
they must validate. For example, Listing 10-19 must be stored in a file called validate/send.yml.

Redisplaying the Form
By default, symfony looks for a handleErrorSend() method in the action class whenever the
validation process fails, or displays the sendError.php template if the method doesn’t exist.

The usual way to inform the user of a failed validation is to display the form again with an
error message. To that purpose, you need to override the handleErrorSend() method and end
it with a redirection to the action that displays the form (in the example, module/index), as
shown in Listing 10-20.

Listing 10-20. Displaying the Form Again, in modules/contact/actions/actions.class.php

class ContactActions extends sfActions
{
 public function executeIndex()
 {
 // Display the form
 }

 public function handleErrorSend()
 {
 $this->forward('contact', 'index');
 }

 public function executeSend()
 {
 // Handle the form submission
 }
}

If you choose to use the same action to display the form and handle the form submission,
then the handleErrorSend() method can simply return sfView::SUCCESS to redisplay the form
from sendSuccess.php, as shown in Listing 10-21.

Zaninotto_786-9 C10.fm Page 206 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 207

Listing 10-21. A Single Action to Display and Handle the Form, in modules/contact/actions/
actions.class.php

class ContactActions extends sfActions
{
 public function executeSend()
 {
 if ($this->getRequest()->getMethod() != sfRequest::POST)
 {
 // Prepare data for the template

 // Display the form
 return sfView::SUCCESS;
 }
 else
 {
 // Handle the form submission
 ...
 $this->redirect('mymodule/anotheraction');
 }
 }
 public function handleErrorSend()
 {
 // Prepare data for the template

 // Display the form
 return sfView::SUCCESS;
 }
}

The logic necessary to prepare the data can be refactored into a protected method of the
action class, to avoid repeating it in the executeSend() and handleErrorSend() methods.

With this new configuration, when the user types an invalid name, the form is displayed
again, but the entered data is lost and no error message explains the reason of the failure. To
address the last issue, you must modify the template that displays the form, to insert error
messages close to the faulty field.

Displaying the Error Messages in the Form
The error messages defined as validator parameters are added to the request when a field fails
validation (just as you can add an error manually with the setError() method, as in Listing 10-18).
The sfRequest object provides two useful methods to retrieve the error message: hasError()
and getError(), which each expect a field name as parameter. In addition, you can display an
alert at the top of the form to draw attention to the fact that one or many of the fields contain
invalid data with the hasErrors() method. Listings 10-22 and 10-23 demonstrate how to use
these methods.

Zaninotto_786-9 C10.fm Page 207 Thursday, December 21, 2006 1:04 PM

208 C H A P T E R 1 0 ■ F O R M S

Listing 10-22. Displaying Error Messages at the Top of the Form, in templates/indexSuccess.php

<?php if ($sf_request->hasErrors()): ?>
 <p>The data you entered seems to be incorrect.
 Please correct the following errors and resubmit:</p>

 <?php foreach($sf_request->getErrors() as $name => $error): ?>
 <?php echo $name ?>: <?php echo $error ?>
 <?php endforeach; ?>

<?php endif; ?>

Listing 10-23. Displaying Error Messages Inside the Form, in templates/indexSuccess.php

<?php echo form_tag('contact/send') ?>
 <?php if ($sf_request->hasError('name')): ?>
 <?php echo $sf_request->getError('name') ?>

 <?php endif; ?>
 Name: <?php echo input_tag('name') ?>

 ...
 <?php echo submit_tag() ?>
</form>

The conditional use of the getError() method in Listing 10-23 is a bit long to write. That’s
why symfony offers a form_error() helper to replace it, provided that you declare the use of its
helper group, Validation. Listing 10-24 replaces Listing 10-23 by using this helper.

Listing 10-24. Displaying Error Messages Inside the Form, the Short Way

<?php use_helper('Validation') ?>
<?php echo form_tag('contact/send') ?>

 <?php echo form_error('name') ?>

 Name: <?php echo input_tag('name') ?>

 ...
 <?php echo submit_tag() ?>
</form>

The form_error() helper adds a special character before and after each error message to
make the messages more visible. By default, the character is an arrow pointing down (corre-
sponding to the ↓ entity), but you can change it in the settings.yml file:

all:
 .settings:
 validation_error_prefix: ' ↓ '
 validation_error_suffix: ' ↓'

In case of failed validation, the form now displays errors correctly, but the data entered by
the user is lost. You need to repopulate the form to make it really user-friendly.

Zaninotto_786-9 C10.fm Page 208 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 209

Repopulating the Form
As the error handling is done through the forward() method (shown in Listing 10-20), the orig-
inal request is still accessible, and the data entered by the user is in the request parameters. So
you could repopulate the form by adding default values to each field, as shown in Listing 10-25.

Listing 10-25. Setting Default Values to Repopulate the Form When Validation Fails, in
templates/indexSuccess.php

<?php use_helper('Validation') ?>
<?php echo form_tag('contact/send') ?>
 <?php echo form_error('name') ?>

 Name: <?php echo input_tag('name', $sf_params->get('name')) ?>

 <?php echo form_error('email') ?>

 Email: <?php echo input_tag('email', $sf_params->get('email')) ?>

 <?php echo form_error('age') ?>

 Age: <?php echo input_tag('age', $sf_params->get('age')) ?>

 <?php echo form_error('message') ?>

 Message: <?php echo textarea_tag('message', $sf_params->get('message')) ?>

 <?php echo submit_tag() ?>
</form>

But once again, this is quite tedious to write. Symfony provides an alternative way of triggering
repopulation for all the fields of a form, directly in the YAML validation file, without changing
the default values of the elements. Just enable the fillin: feature for the form, with the syntax
described in Listing 10-26.

Listing 10-26. Activating fillin to Repopulate the Form When Validation Fails, in
validate/send.yml

fillin:
 enabled: true # Enable the form repopulation
 param:
 name: test # Form name, not needed if there is only one form in the page
 skip_fields: [email] # Do not repopulate these fields
 exclude_types: [hidden, password] # Do not repopulate these field types
 check_types: [text, checkbox, radio, password, hidden] # Do repopulate these

By default, the automatic repopulation works for text inputs, check boxes, radio buttons,
text areas, and select components (simple and multiple), but it does not repopulate password
or hidden tags. The fillin feature doesn’t work for file tags.

■Note The fillin feature works by parsing the response content in XML just before sending it to the user.
If the response is not a valid XHTML document, fillin might not work.

Zaninotto_786-9 C10.fm Page 209 Thursday, December 21, 2006 1:04 PM

210 C H A P T E R 1 0 ■ F O R M S

You might want to transform the values entered by the user before writing them back in a
form input. Escaping, URL rewriting, transformation of special characters into entities, and all
the other transformations that can be called through a function can be applied to the fields of
your form if you define the transformation under the converters: key, as shown in Listing 10-27.

Listing 10-27. Converting Input Before fillin, in validate/send.yml

fillin:
 enabled: true
 param:
 name: test
 converters: # Converters to apply
 htmlentities: [first_name, comments]
 htmlspecialchars: [comments]

Standard Symfony Validators
Symfony contains some standard validators that can be used for your forms:

• sfStringValidator

• sfNumberValidator

• sfEmailValidator

• sfUrlValidator

• sfRegexValidator

• sfCompareValidator

• sfPropelUniqueValidator

• sfFileValidator

• sfCallbackValidator

Each has a default set of parameters and error messages, but you can easily override them
through the initialize() validator method or in the YAML file. The following sections describe the
validators and show usage examples.

String Validator

sfStringValidator allows you to apply string-related constraints to a parameter.

sfStringValidator:
 values: [foo, bar]
 values_error: The only accepted values are foo and bar
 insensitive: false # If true, comparison with values is case insensitive
 min: 2
 min_error: Please enter at least 2 characters
 max: 100
 max_error: Please enter less than 100 characters

Zaninotto_786-9 C10.fm Page 210 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 211

Number Validator

sfNumberValidator verifies if a parameter is a number and allows you to apply size constraints.

sfNumberValidator:
 nan_error: Please enter an integer
 min: 0
 min_error: The value must be more than zero
 max: 100
 max_error: The value must be less than 100

E-Mail Validator

sfEmailValidator verifies if a parameter contains a value that qualifies as an e-mail address.

sfEmailValidator:
 strict: true
 email_error: This email address is invalid

RFC822 defines the format of e-mail addresses. However, it is more permissive than the
generally accepted format. For instance, me@localhost is a valid e-mail address according to
the RFC, but you probably don’t want to accept it. When the strict parameter is set to true (its
default value), only e-mail addresses matching the pattern name@domain.extension are valid.
When set to false, RFC822 is used as a rule.

URL Validator

sfUrlValidator checks if a field is a correct URL.

sfUrlValidator:
 url_error: This URL is invalid

Regular Expression Validator

sfRegexValidator allows you to match a value against a Perl-compatible regular expression
pattern.

sfRegexValidator:
 match: No
 match_error: Posts containing more than one URL are considered as spam
 pattern: /http.*http/si

The match parameter determines if the request parameter must match the pattern to be
valid (value Yes) or match the pattern to be invalid (value No).

Compare Validator

sfCompareValidator checks the equality of two different request parameters. It is very useful for
password checks.

Zaninotto_786-9 C10.fm Page 211 Thursday, December 21, 2006 1:04 PM

212 C H A P T E R 1 0 ■ F O R M S

fields:
 password1:
 required:
 msg: Please enter a password
 password2:
 required:
 msg: Please retype the password
 sfCompareValidator:
 check: password1
 compare_error: The two passwords do not match

The check parameter contains the name of the field that the current field must match to
be valid.

Propel Unique Validator

sfPropelUniqueValidator validates that the value of a request parameter doesn’t already exist
in your database. It is very useful for unique indexes.

fields:
 nickname:
 sfPropelUniqueValidator:
 class: User
 column: login
 unique_error: This login already exists. Please choose another one.

In this example, the validator will look in the database for a record of class User where the
login column has the same value as the field to validate.

File Validator

sfFileValidator applies format (an array of mime-types) and size constraints to file upload
fields.

fields:
 image:
 required:
 msg: Please upload an image file
 file: True
 sfFileValidator:
 mime_types:
 - 'image/jpeg'
 - 'image/png'
 - 'image/x-png'
 - 'image/pjpeg'
 mime_types_error: Only PNG and JPEG images are allowed
 max_size: 512000
 max_size_error: Max size is 512Kb

Zaninotto_786-9 C10.fm Page 212 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 213

Be aware that the file attribute must be set to True for the field, and the template must
declare the form as multipart.

Callback Validator

sfCallbackValidator delegates the validation to a third-party callable method or function to
do the validation. The callable method or function must return true or false.

fields:
 account_number:
 sfCallbackValidator:
 callback: is_integer
 invalid_error: Please enter a number.
 credit_card_number:
 sfCallbackValidator:
 callback: [myTools, validateCreditCard]
 invalid_error: Please enter a valid credit card number.

The callback method or function receives the value to be validated as a first parameter.
This is very useful when you want to reuse existing methods of functions, rather than create a
full validator class.

■Tip You can also write your own validators, as described in the “Creating a Custom Validator” section later
in this chapter.

Named Validators
If you see that you need to repeat a validator class and its settings, you can package it under
a named validator. In the example of the contact form, the email field needs the same
sfStringValidator parameters as the name field. So you can create a myStringValidator named
validator to avoid repeating the same settings twice. To do so, add a myStringValidator label
under the validators: header, and set the class and param keys with the details of the named
validator you want to package. You can then use the named validator just like a regular one in
the fields section, as shown in Listing 10-28.

Listing 10-28. Reusing Named Validators in a Validation File, in validate/send.yml

validators:
 myStringValidator:
 class: sfStringValidator
 param:
 min: 2
 min_error: This field is too short (2 characters minimum)
 max: 100
 max_error: This field is too long (100 characters maximum)

Zaninotto_786-9 C10.fm Page 213 Thursday, December 21, 2006 1:04 PM

214 C H A P T E R 1 0 ■ F O R M S

fields:
 name:
 required:
 msg: The name field cannot be left blank
 myStringValidator:
 email:
 required:
 msg: The email field cannot be left blank
 myStringValidator:
 sfEmailValidator:
 email_error: This email address is invalid

Restricting the Validation to a Method
By default, the validators set in a validation file are run when the action is called with the POST
method. You can override this setting globally or field by field by specifying another value in
the methods key, to allow a different validation for different methods, as shown in Listing 10-29.

Listing 10-29. Defining When to Test a Field, in validate/send.yml

methods: [post] # This is the default setting

fields:
 name:
 required:
 msg: The name field cannot be left blank
 myStringValidator:
 email:
 methods: [post, get] # Overrides the global methods settings
 required:
 msg: The email field cannot be left blank
 myStringValidator:
 sfEmailValidator:
 email_error: This email address is invalid

What Does a Validation File Look Like?
So far, you have seen only bits and pieces of a validation file. When you put everything together, the
validation rules find a clear translation in YAML. Listing 10-30 shows the complete validation
file for the sample contact form, corresponding to all the rules defined earlier in the chapter.

Listing 10-30. Sample Complete Validation File

fillin:
 enabled: true

Zaninotto_786-9 C10.fm Page 214 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 215

validators:
 myStringValidator:
 class: sfStringValidator
 param:
 min: 2
 min_error: This field is too short (2 characters minimum)
 max: 100
 max_error: This field is too long (100 characters maximum)

fields:
 name:
 required:
 msg: The name field cannot be left blank
 myStringValidator:
 email:
 required:
 msg: The email field cannot be left blank
 myStringValidator:
 sfEmailValidator:
 email_error: This email address is invalid
 age:
 sfNumberValidator
 nan_error: Please enter an integer
 min: 0
 min_error: "You're not even born. How do you want to send a message?"
 max: 120
 max_error: "Hey, grandma, aren't you too old to surf on the Internet?"
 message:
 required:
 msg: The message field cannot be left blank

Complex Validation
The validation file satisfies most needs, but when the validation is very complex, it might not
be sufficient. In this case, you can still return to the validateXXX() method in the action, or find
the solution to your problem in the following sections.

Creating a Custom Validator
Each validator is a class that extends the sfValidator class. If the validator classes shipped with
symfony are not suitable for your needs, you can easily create a new one, in any of the lib/
directories where it can be autoloaded. The syntax is quite simple: The execute() method of
the validator is called when the validator is executed. You can also define default settings in the
initialize() method.

The execute() method receives the value to validate as the first parameter and the error
message to throw as the second parameter. Both are passed as references, so you can modify
the error message from within the method.

Zaninotto_786-9 C10.fm Page 215 Thursday, December 21, 2006 1:04 PM

216 C H A P T E R 1 0 ■ F O R M S

The initialize() method receives the context singleton and the array of parameters from
the YAML file. It must first call the initialize() method of its parent sfValidator class, and
then set the default values.

Every validator has a parameter holder accessible by $this->getParameterHolder().
For instance, if you want to build an sfSpamValidator to check if a string is not spam, add

the code shown in Listing 10-31 to an sfSpamValidator.class.php file. It checks if the $value
contains more than max_url times the string 'http'.

Listing 10-31. Creating a Custom Validator, in lib/sfSpamValidator.class.php

class sfSpamValidator extends sfValidator
{
 public function execute (&$value, &$error)
 {
 // For max_url=2, the regexp is /http.*http/is
 $re = '/'.implode('.*', array_fill(0, $this ➥

 ->getParameter('max_url') + 1, 'http')).'/is';

 if (preg_match($re, $value))
 {
 $error = $this->getParameter('spam_error');

 return false;
 }

 return true;
 }

 public function initialize ($context, $parameters = null)
 {
 // Initialize parent
 parent::initialize($context);

 // Set default parameters value
 $this->setParameter('max_url', 2);
 $this->setParameter('spam_error', 'This is spam');

 // Set parameters
 $this->getParameterHolder()->add($parameters);

 return true;
 }
}

As soon as the validator is added to an autoloadable directory (and the cache cleared), you
can use it in your validation files, as shown in Listing 10-32.

Zaninotto_786-9 C10.fm Page 216 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 217

Listing 10-32. Using a Custom Validator, in validate/send.yml

fields:
 message:
 required:
 msg: The message field cannot be left blank
 sfSpamValidator:
 max_url: 3
 spam_error: Leave this site immediately, you filthy spammer!

Using Array Syntax for Form Fields
PHP allows you to use an array syntax for the form fields. When writing your own forms, or
when using the ones generated by the Propel administration (see Chapter 14), you may end up
with HTML code that looks like Listing 10-33.

Listing 10-33. Form with Array Syntax

<label for="story[title]">Title:</label>
<input type="text" name="story[title]" id="story[title]" value="default value"
 size="45" />

Using the input name as is (with brackets) in a validation file will throw a parsed-induced
error. The solution here is to replace square brackets [] with curly brackets {} in the fields
section, as shown in Listing 10-34, and symfony will take care of the conversion of the names
sent to the validators afterwards.

Listing 10-34. Validation File for a Form with Array Syntax

fields:
 story{title}:
 required: Yes

Executing a Validator on an Empty Field
You may need to execute a validator on a field that is not required, on an empty value. For
instance, this happens with a form where the user can (but may not) want to change his password,
and in this case, a confirmation password must be entered. See the example in Listing 10-35.

Listing 10-35. Sample Validation File for a Form with Two Password Fields

fields:
 password1:
 password2:
 sfCompareValidator:
 check: password1
 compare_error: The two passwords do not match

Zaninotto_786-9 C10.fm Page 217 Thursday, December 21, 2006 1:04 PM

218 C H A P T E R 1 0 ■ F O R M S

The validation process executes as follows:

• If password1 == null and password2 == null:

• The required test passes.

• Validators are not run.

• The form is valid.

• If password2 == null while password1 is not null:

• The required test passes.

• Validators are not run.

• The form is valid.

You may want to execute your password2 validator if password1 is not null. Fortunately,
the symfony validators handle this case, thanks to the group parameter. When a field is in a
group, its validator will execute if it is not empty and if one of the fields of the same group is not
empty.

So, if you change the configuration to that shown in Listing 10-36, the validation process
behaves correctly.

Listing 10-36. Sample Validation File for a Form with Two Password Fields and a Group

fields:c
 password1:
 group: password_group
 password2:
 group: password_group
 sfCompareValidator:
 check: password1
 compare_error: The two passwords do not match

The validation process now executes as follows:

• If password1 == null and password2 == null:

• The required test passes.

• Validators are not run.

• The form is valid.

• If password1 == null and password2 == 'foo':

• The required test passes.

• password2 is not null, so its validator is executed, and it fails.

• An error message is thrown for password2.

Zaninotto_786-9 C10.fm Page 218 Thursday, December 21, 2006 1:04 PM

C H A P T E R 1 0 ■ F O R M S 219

• If password1 == 'foo' and password2 == null:

• The required test passes.

• password1 is not null, so the validator for password2, which is in the same group, is
executed, and it fails.

• An error message is thrown for password2.

• If password1 == 'foo' and password2 == 'foo':

• The required test passes.

• password2 is not null, so its validator is executed, and it passes.

• The form is valid.

Summary
Writing forms in symfony templates is facilitated by the standard form helpers and their smart
options. When you design a form to edit the properties of an object, the object form helpers
simplify the task a great deal. The validation files, validation helpers, and repopulation feature
reduce the work necessary to build a robust and user-friendly server control on the value of a
field. And even the most complex validation needs can be handled, either by writing a custom
validator or by creating a validateXXX() method in the action class.

Zaninotto_786-9 C10.fm Page 219 Thursday, December 21, 2006 1:04 PM

Zaninotto_786-9 C10.fm Page 220 Thursday, December 21, 2006 1:04 PM

221

■ ■ ■

C H A P T E R 1 1

Ajax Integration

Interactions on the client side, complex visual effects, and asynchronous communication are
common in Web 2.0 applications. All those require JavaScript, but coding it by hand is often
cumbersome and time-consuming to debug. Fortunately, symfony automates many of the
common uses of JavaScript in the templates with a complete set of helpers. Many of the client-
side behaviors can even be coded without a single line of JavaScript. Developers only need to
worry about the effect they want to achieve, and symfony will deal with complex syntax and
compatibility issues.

This chapter describes the tools provided by symfony to facilitate client-side scripting:

• Basic JavaScript helpers output standards-compliant <script> tags in symfony templates,
to update a Document Object Model (DOM) element or trigger a script with a link.

• Prototype is a JavaScript library integrated in symfony, which speeds up client-side
scripting development by adding new functions and methods to the JavaScript core.

• Ajax helpers allow the user to update some parts of a page by clicking a link, submitting
a form, or modifying a form element.

• The many options of these helpers provide even greater flexibility and power, notably by
the use of callback functions.

• Script.aculo.us is another JavaScript library, also integrated in symfony, which adds
dynamic visual effects to enhance the interface and the user experience.

• JavaScript Object Notation (JSON) is a standard used to communicate between a server
and a client script.

• Complex client-side interactions, combining all the aforementioned elements, are
possible in symfony applications. Autocompletion, drag-and-drop, sortable lists, and
editable text can all be implemented with a single line of PHP—a call to a symfony
helper.

Basic JavaScript Helpers
JavaScript has long been considered as having little real use in professional web applications
due to the lack of cross-browser compatibility. Today, the compatibility issues are (mostly)
solved, and some robust libraries allow you to program complex interactions in JavaScript

Zaninotto_786-9 C11.fm Page 221 Wednesday, December 13, 2006 8:41 AM

222 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

without the need for countless lines of code and lost hours of debugging. The most popular
advance is called Ajax, which is discussed in the “Ajax Helpers” section later in this chapter.

Paradoxically, you will see very little JavaScript code in this chapter. This is because
symfony has an original approach to client-side scripting: It packages and abstracts JavaScript
behaviors into helpers, so your templates end up showing no JavaScript code at all. For the
developer, adding a behavior to an element in the page takes one line of PHP, but this helper
call does output JavaScript code, and inspecting the generated responses will reveal all the
encapsulated complexity. The helpers deal with browser consistency, complex limit cases,
extensibility, and so on, so the amount of JavaScript code they contain can be quite important.
Therefore, this chapter will teach you how not to use JavaScript to achieve effects that you use
to build with JavaScript.

All of the helpers described here are available in templates, provided that you declare the
use of the Javascript helper group.

<?php use_helper('Javascript') ?>

As you’ll soon learn, some of these helpers output HTML code, and some of them output
JavaScript code.

JavaScript in Templates
In XHTML, JavaScript code blocks must be enclosed within CDATA declarations. But pages requiring
multiple JavaScript code blocks can soon become tedious to write. That’s why symfony provides
a javascript_tag() helper, which transforms a string into an XHTML-compliant <script> tag.
Listing 11-1 demonstrates using this helper.

Listing 11-1. Inserting JavaScript with the javascript_tag() Helper

<?php echo javascript_tag("
 function foobar()
 {
 ...
 }
") ?>
 => <script type="text/javascript">
 //<![CDATA[
 function foobar()
 {
 ...
 }
 //]]>
 </script>

But the most common use of JavaScript, more than code blocks, is in a hyperlink that triggers
a particular script. The link_to_function() helper does exactly that, as shown in Listing 11-2.

Zaninotto_786-9 C11.fm Page 222 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 223

Listing 11-2. Triggering JavaScript by a Link with the link_to_function() Helper

<?php echo link_to_function('Click me!', "alert('foobar')") ?>
 => Click me!

As with the link_to() helper, you can add options to the <a> tag in the third argument.

■Note Just as the link_to() helper has a button_to() brother, you can trigger JavaScript from a
button (<input type="button">) by calling the button_to_function() helper. And if you prefer a
clickable image, just call link_to_function(image_tag('myimage'), "alert('foobar')").

Updating a DOM Element
One common task in dynamic interfaces is the update of an element in the page. This is some-
thing that you usually write as shown in Listing 11-3.

Listing 11-3. Updating an Element in JavaScript

<div id="indicator">Data processing beginning</div>
<?php echo javascript_tag("
 document.getElementById("indicator").innerHTML =
 "Data processing complete";
") ?>

Symfony provides a helper that produces JavaScript, not HTML, for this purpose, and it’s
called update_element_function(). Listing 11-4 shows its use.

Listing 11-4. Updating an Element in JavaScript with the update_element_function() Helper

<div id="indicator">Data processing beginning</div>
<?php echo javascript_tag(
 update_element_function('indicator', array(
 'content' => "Data processing complete",
))
) ?>

You might be wondering why this helper is particularly useful, since it’s at least as long as
the actual JavaScript code. It’s really a matter of readability. For instance, you might want to
insert content before or after an element, remove an element instead of just updating it, or
even do nothing according to a certain condition. In such cases, the JavaScript code becomes
somewhat messier, but the update_element_function() keeps the template very readable, as
you can see in Listing 11-5.

Zaninotto_786-9 C11.fm Page 223 Wednesday, December 13, 2006 8:41 AM

224 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-5. Options of the update_element_function() Helper

// Insert content just after the 'indicator' element
update_element_function('indicator', array(
 'position' => 'after',
 'content' => "Data processing complete",
));

// Remove the element before the 'indicator', and only if $condition is true
update_element_function('indicator', array(
 'action' => $condition ? 'remove' : 'empty',
 'position' => 'before',
))

The helper makes your templates easier to understand than any JavaScript code, and you
have a single syntax for similar behaviors. That’s also why the helper name is so long: It makes
the code self-sufficient, without the need of extra comments.

Graceful Degradation
The <noscript> tag allows you to specify some HTML code that is displayed only by browsers
that do not have JavaScript support. Symfony complements this with a helper that works the
other way around: It qualifies some code so that only browsers that actually support JavaScript
execute it. The if_javascript() and end_if_javascript() helpers facilitate the creation of
applications that degrade gracefully, as demonstrated in Listing 11-6.

Listing 11-6. Using the if_javascript() Helper to Allow Graceful Degradation

<?php if_javascript(); ?>
 <p>You have JavaScript enabled.</p>
<?php end_if_javascript(); ?>

<noscript>
 <p>You don't have JavaScript enabled.</p>
</noscript>

■Note You don’t need to include echo when calling the if_javascript() and end_if_javascript()
helpers.

Prototype
Prototype is a great JavaScript library that extends the possibilities of the client scripting language,
adds the missing functions you’ve always dreamed of, and offers new mechanisms to manipulate
the DOM. The project website is http://prototype.conio.net/.

Zaninotto_786-9 C11.fm Page 224 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 225

The Prototype files are bundled with the symfony framework and accessible in every new
symfony project, in web/sf/prototype/. This means that you can use Prototype by adding the
following code to your action:

$prototypeDir = sfConfig::get('sf_prototype_web_dir');
$this->getResponse()->addJavascript($prototypeDir.'/js/prototype');

or by adding it in the view.yml file:

all:
 javascripts: [%SF_PROTOTYPE_WEB_DIR%/js/prototype]

■Note Since the symfony Ajax helpers, described in the next section, rely on Prototype, the Prototype
library is already included automatically as soon as you use one of them. It means that you won’t need to
manually add the Prototype JavaScript to your response if your template calls a _remote helper.

Once the Prototype library is loaded, you can take advantage of all the new functions it
adds to the JavaScript core. This book’s purpose is not to describe them all, but you will easily
find good documentation about Prototype on the Web, including at the following websites:

• Particletree: http://particletree.com/features/quick-guide-to-prototype/

• Sergio Pereira: http://www.sergiopereira.com/articles/prototype.js.html

• Script.aculo.us: http://wiki.script.aculo.us/scriptaculous/show/Prototype

One of the functions Prototype adds to JavaScript is the dollar function, $(). Basically, this
function is a simple shortcut to document.getElementById(), but a little more powerful. See
Listing 11-7 for an example of its use.

Listing 11-7. Using the $() Function to Get an Element by ID in JavaScript

node = $('elementID');

// Means the same as
node = document.getElementById('elementID');

// It can also retrieve more than one element at a time
// And in this case the result is an array of DOM elements
nodes = $('firstDiv', 'secondDiv');

Prototype also provides a function that the JavaScript core really lacks, which returns an
array of all the DOM elements that have the class passed as argument:

nodes = document.getElementByClassName('myclass');

Zaninotto_786-9 C11.fm Page 225 Wednesday, December 13, 2006 8:41 AM

226 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

However, you will seldom use it, because Prototype provides an even more powerful function
called double dollar, $$(). This function returns an array of DOM elements based on a CSS
selector. So the previous call can also be written as follows:

nodes = $$('.myclass');

Thanks to the power of CSS selectors, you can parse the DOM by class, ID, and parent-child
and previous-next relationships even more easily than you would with an XPath expression.
You can even access elements with a complex selector combining all these:

nodes = $$('body div#main ul li.last img > span.legend');

One last example of the syntax enhancements provided by Prototype is the each array iterator.
It provides the same concision as in PHP, added to the ability to define anonymous functions
and closures in JavaScript. You will probably use it a lot if you code JavaScript by hand.

var vegetables = ['Carrots', 'Lettuce', 'Garlic'];
vegetables.each(function(food) { alert('I love ' + food); });

Because programming in JavaScript with Prototype is much more fun than doing it by
hand, and because it is also part of symfony, you should really spend a few minutes to read the
related documentation.

Ajax Helpers
What if you wanted to update an element in the page, not with JavaScript as in Listing 11-5, but
with a PHP script executed by the server? This would give you the opportunity to change part
of the page according to a server response. The remote_function() helper does exactly that, as
demonstrated in Listing 11-8.

Listing 11-8. Using the remote_function() Helper

<div id="myzone"></div>
<?php echo javascript_tag(
 remote_function(array(
 'update' => 'myzone',
 'url' => 'mymodule/myaction',
))
) ?>

■Note The url parameter can contain either an internal URI (module/action?key1=value1&...) or a
routing rule name, just as in a regular url_for().

When called, this script will update the element of id myzone with the response or the request
of the mymodule/myaction action. This kind of interaction is called Ajax, and it’s the heart of

Zaninotto_786-9 C11.fm Page 226 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 227

highly interactive web applications. Here is how Wikipedia (http://en.wikipedia.org/wiki/
AJAX) describes it:

Ajax makes web pages feel more responsive by exchanging small amounts of data with
the server behind the scenes, so that the entire web page does not have to be reloaded
each time the user makes a change. This is meant to increase the web page’s interactivity,
speed, and usability.

Ajax relies on XMLHttpRequest, a JavaScript object that behaves like a hidden frame, which
you can update from a server request and reuse to manipulate the rest of your web page. This
object is quite low level, and different browsers deal with it in different ways, so handling Ajax
requests manually usually means writing long portions of code. Fortunately, Prototype encap-
sulates all the code necessary to deal with Ajax and provides a simpler Ajax object, and symfony
relies on this object. This is why the Prototype library is automatically loaded once you use an
Ajax helper in a template.

■Caution The Ajax helpers won’t work if the URL of the remote action doesn’t belong to the same domain
as the current page. This restriction exists for security reasons, and relies on browsers limitations that cannot
be bypassed.

An Ajax interaction is made up of three parts: a caller (a link, a button, a form, a clock, or
any control that the user manipulates to launch the action), a server action, and a zone in the
page to display the response of the action. You can build more complex interactions if the
remote action returns data to be processed by a javascript function on the client side. Symfony
provides multiple helpers to insert Ajax interaction in your templates, all containing the word
remote in their name. They also share a common syntax—an associative array with all the Ajax
parameters in it. Be aware that the Ajax helpers output HTML code, not JavaScript.

HOW ABOUT AJAX ACTIONS?

Actions called as remote functions are regular actions. They follow routing, can determine the view to render
the response with their return, pass variables to the templates, and alter the model just like other actions.

However, when called through Ajax, actions return true to the following call:

$isAjax = $this->getIsXmlHttpRequest();

Symfony knows that an action is in an Ajax context and can adapt the response processing accordingly.
Therefore, by default, Ajax actions don’t include the web debug toolbar in the development environment. Also,
they skip the decoration process (their template is not included in a layout by default). If you want an Ajax view
to be decorated, you need to specify explicitly has_layout: true for this view in the module view.yml file.

One more thing: Because responsiveness is crucial in Ajax interactions, if the response is not too complex, it
might be a good idea to avoid creating a view and instead return the response directly from the action. So you
can use the renderText() method in the action to skip the template and boost Ajax requests.

Zaninotto_786-9 C11.fm Page 227 Wednesday, December 13, 2006 8:41 AM

228 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Ajax Link
Ajax links form a large share of the Ajax interactions available in Web 2.0 applications. The
link_to_remote() helper outputs a link that calls, not surprisingly, a remote function. The
syntax is very similar to that of link_to() (except that the second parameter is the associative
array of Ajax options), as shown in Listing 11-9.

Listing 11-9. Ajax Link with the link_to_remote() Helper

<div id="feedback"></div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
)) ?>

In this example, clicking the 'Delete this post' link will issue a call to the post/delete
action in the background. The response returned by the server will appear in the element of
id feedback. This process is illustrated in Figure 11-1.

Figure 11-1. Triggering a remote update with a hyperlink

You can use an image instead of a string to bear the link, use a rule name instead of an
internal module/action URL, and add options to the <a> tag in a third argument, as shown in
Listing 11-10.

Listing 11-10. Options of the link_to_remote() Helper

<div id="emails"></div>
<?php echo link_to_remote(image_tag('refresh'), array(
 'update' => 'emails',
 'url' => '@list_emails',
), array(
 'class' => 'ajax_link',
)) ?>

Ajax-Driven Forms
Web forms typically call another action, but this causes the whole page to be refreshed. The
correspondence of the link_to_function() for a form would be that the form submission only

feedback

post/delete ActionDelete this post

deleteSuccess
Template

Delete this post

Zaninotto_786-9 C11.fm Page 228 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 229

updates an element in the page with the server response. This is what the form_remote_tag()
helper does, and its syntax is demonstrated in Listing 11-11.

Listing 11-11. Ajax Form with the form_remote_tag() Helper

<div id="item_list"></div>
<?php echo form_remote_tag(array(
 'update' => 'item_list',
 'url' => 'item/add',
)) ?>
 <label for="item">Item:</label>
 <?php echo input_tag('item') ?>
 <?php echo submit_tag('Add') ?>
</form>

A form_remote_tag() opens a <form>, just like the regular form_tag() helper. Submitting
this form will issue a POST request to the item/add action in the background, with the item field
as a request parameter. The response will replace the contents of the item_list element, as
illustrated in Figure 11-2. Close an Ajax form with a regular </form> closing tag.

Figure 11-2. Triggering a remote update with a form

■Caution Ajax forms can’t be multipart. This is a limitation of the XMLHttpRequest object. This means
you can’t handle file uploads via an Ajax form. There are workarounds though—for instance, using a hidden
iframe instead of an XMLHttpRequest (see an implementation at http://www.air4web.com/files/
upload/).

If you want to allow a form to work in both page mode and Ajax mode, the best solution is
to define it like a regular form, but to provide, in addition to the normal submit button, a
second button (<input type="button" />) to submit the form in Ajax. Symfony calls this button
submit_to_remote(). This will help you build Ajax interactions that degrade gracefully. See an
example in Listing 11-12.

item_list

Item:

item/add Action

addSuccess
Template

foobar

Add

Item: foobar

Add

Zaninotto_786-9 C11.fm Page 229 Wednesday, December 13, 2006 8:41 AM

230 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-12. A Form with Regular and Ajax Submission

<div id="item_list"></div>
<?php echo form_tag('@item_add_regular') ?>
 <label for="item">Item:</label>
 <?php echo input_tag('item') ?>
 <?php if_javascript(); ?>
 <?php echo submit_to_remote('ajax_submit', 'Add in Ajax', array(
 'update' => 'item_list',
 'url' => '@item_add',
)) ?>
 <?php end_if_javascript(); ?>
 <noscript>
 <?php echo submit_tag('Add') ?>
 </noscript>
</form>

Another example of combined use of remote and regular submit tags is a form that edits an
article. It can offer a preview button in Ajax and a publish button that does a regular submission.

■Note When the user presses the Enter key, the form is submitted using the action defined in the main
<form> tag—in this example, a regular action.

Modern forms can also react not only when submitted, but also when the value of a field is
being updated by a user. In symfony, you use the observe_field() helper for that. Listing 11-13
shows an example of using this helper to build a suggestion feature: Each character typed in an
item field triggers an Ajax call refreshing the item_suggestion element in the page.

Listing 11-13. Calling a Remote Function When a Field Value Changes with observe_field()

<?php echo form_tag('@item_add_regular') ?>
 <label for="item">Item:</label>
 <?php echo input_tag('item') ?>
 <div id="item_suggestion"></div>
 <?php echo observe_field('item', array(
 'update' => 'item_suggestion',
 'url' => '@item_being_typed',
)) ?>
 <?php echo submit_tag('Add') ?>
</form>

The module/action written in the @item_being_typed rule will be called each time the user
changes the value of the observed field (item), even without submitting the form. The action
will be able to get the current item value from the value request parameter. If you want to pass
something other than the value of the observed field, you can specify it as a JavaScript expression
in the with parameter. For instance, if you want the action to get a param parameter, write the
observe_field() helper as shown in Listing 11-14.

Zaninotto_786-9 C11.fm Page 230 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 231

Listing 11-14. Passing Your Own Parameters to the Remote Action with the with Option

<?php echo observe_field('item', array(
 'update' => 'item_suggestion',
 'url' => '@item_being_typed',
 'with' => "'param=' + value",
)) ?>

Note that this helper doesn’t output an HTML element, but instead outputs a behavior for
the element passed as a parameter. You will see more examples of JavaScript helpers assigning
behaviors later in this chapter.

If you want to observe all the fields of a form, you should use the observe_form() helper,
which calls a remote function each time one of the form fields is modified.

Periodically Calling Remote Functions
Last but not least, the periodically_call_remote() helper is an Ajax interaction triggered every
few seconds. It is not attached to an HTML control, but runs transparently in the background,
as a behavior of the whole page. This can be of great use to track the position of the mouse,
autosave the content of a large text area, and so on. Listing 11-15 shows an example of using
this helper.

Listing 11-15. Periodically Calling a Remote Function with periodically_call_remote()

<div id="notification"></div>
<?php echo periodically_call_remote(array(
 'frequency' => 60,
 'update' => 'notification',
 'url' => '@watch',
 'with' => "'param=' + $('mycontent').value",
)) ?>

If you don’t specify the number of seconds (frequency) to wait between two calls to the
remote function, the default value of 10 seconds is used. Note that the with parameter is eval-
uated in JavaScript, so you can use Prototype functions in it, such as the dollar function, $().

Remote Call Parameters
All the Ajax helpers described in the previous sections can take other parameters, in addition to
the update and url parameters. The associative array of Ajax parameters can alter and tweak
the behavior of the remote calls and the processing of their response.

Updating Distinct Elements According to the Response Status
If the remote action fails, the remote helpers can choose to update another element than the
one updated by a successful response. To that purpose, just split the value of the update param-
eter into an associative array, and set different values for the element to update in cases of
success and failure. This is of great use if, for instance, there are many Ajax interactions in a
page and one error feedback zone. Listing 11-16 demonstrates handling a conditional update.

Zaninotto_786-9 C11.fm Page 231 Wednesday, December 13, 2006 8:41 AM

232 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-16. Handling a Conditional Update

<div id="error"></div>
<div id="feedback"></div>
<p>Hello, World!</p>
<?php echo link_to_remote('Delete this post', array(
 'update' => array('success' => 'feedback', 'failure' => 'error')
 'url' => 'post/delete?id='.$post->getId(),
)) ?>

■Tip Only HTTP error codes (500, 404, and all codes not in the 2XX range) will trigger the failure update,
not the actions returning sfView::ERROR. So if you want to make an action return an Ajax failure, it must
call $this->getResponse()->setStatusCode(404) or similar.

Updating an Element According to Position
Just as with the update_element_function() helper, you can specify the element to update as
relative to a specific element by adding a position parameter. Listing 11-17 shows an example.

Listing 11-17. Using the Position Parameter to Change the Response Location

<div id="feedback"></div>
<p>Hello, World!</p>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'position' => 'after',
)) ?>

This will insert the response of the Ajax call after the feedback element; that is, between the
<div> and the <p>. With this method, you can do several Ajax calls and see the responses accu-
mulate after the update element.

The position parameter can take the following values:

before: Before the element

after: After the element

top: At the top of the content of the element

bottom: At the bottom of the content of the element

Updating an Element According to a Condition
A remote call can take an additional parameter to allow confirmation by the user before actually
submitting the XMLHttpRequest, as shown in Listing 11-18.

Zaninotto_786-9 C11.fm Page 232 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 233

Listing 11-18. Using the Confirm Parameter to Ask for a Confirmation Before Calling the Remote
Function

<div id="feedback"></div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'confirm' => 'Are you sure?',
)) ?>

A JavaScript dialog box showing “Are you sure?” will pop up when the user clicks the link,
and the post/delete action will be called only if the user confirms his choice by clicking OK.

The remote call can also be conditioned by a test performed on the browser side (in
JavaScript), if you provide a condition parameter, as shown in Listing 11-19.

Listing 11-19. Conditionally Calling the Remote Function According to a Test on the Client Side

<div id="feedback"></div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'condition' => "$('elementID') == true",
)) ?>

Determining the Ajax Request Method
By default, Ajax requests are made with the POST method. If you want to make an Ajax call that
doesn’t modify data, or if you want to display a form that has built-in validation as the result of
an Ajax call, you might need to change the Ajax request method to GET. The method option
alters the Ajax request method, as shown in Listing 11-20.

Listing 11-20. Changing the Ajax Request Method

<div id="feedback"></div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'method' => 'get',
)) ?>

Authorizing Script Execution
If the response code of the Ajax call (the code sent by the server, inserted in the update element)
contains JavaScript, you might be surprised to see that these scripts are not executed by default.
This is to reduce remote attack risks and to allow script execution only when the developer
knows for sure what code is in the response.

That’s why you need to declare explicitly the ability to execute scripts in remote responses,
with the script option. Listing 11-21 gives an example of an Ajax call declaring that JavaScript
from the remote response can be executed.

Zaninotto_786-9 C11.fm Page 233 Wednesday, December 13, 2006 8:41 AM

234 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-21. Authorizing Script Execution in the Ajax Response

<div id="feedback"></div>
// If the response of the post/delete action contains JavaScript,
// allow it to be executed by the browser
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'script' => true,
)) ?>

If the remote template contains Ajax helpers (such as remote_function()), be aware that
these PHP functions generate JavaScript code, and they won’t execute unless you add the
'script' => true option.

■Note Even if you enable script execution for the remote response, you won’t actually see the scripts in the
remote code, if you use a tool to check the generated code. The scripts will execute but will not appear in the code.
Although peculiar, this behavior is perfectly normal.

Creating Callbacks
One important drawback of Ajax interactions is that they are invisible to the user until the zone
to update is actually updated. This means that in cases of a slow network or server failure, users
may believe that their action was taken into account, when it actually was not processed. This
is why it is important to notify the user of the events of an Ajax interaction.

By default, each remote request is an asynchronous process during which various JavaScript
callbacks can be triggered (for progress indicators and the like). All callbacks have access to the
request object, which holds the underlying XMLHttpRequest. The callbacks correspond to the
events of any Ajax interaction:

before: Before request is initiated

after: Immediately after request is initiated and before loading

loading: When the remote response is being loaded by the browser

loaded: When the browser has finished loading the remote response

interactive: When the user can interact with the remote response, even though it has not
finished loading

success: When the XMLHttpRequest is completed, and the HTTP status code is in the
2XX range

failure: When the XMLHttpRequest is completed, and the HTTP status code is not in the
2XX range

Zaninotto_786-9 C11.fm Page 234 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 235

404: When the request returns a 404 status

complete: When the XMLHttpRequest is complete (fires after success or failure, if they
are present)

For instance, it is very common to show a loading indicator when a remote call is initiated,
and to hide it once the response is received. To achieve that, simply add loading and complete
parameters to the Ajax call, as shown in Listing 11-22.

Listing 11-22. Using Ajax Callbacks to Show and Hide an Activity Indicator

<div id="feedback"></div>
<div id="indicator">Loading...</div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'loading' => "Element.show('indicator')",
 'complete' => "Element.hide('indicator')",
)) ?>

The show and hide methods, as well as the JavaScript Element object, are other useful additions
of Prototype.

Creating Visual Effects
Symfony integrates the visual effects of the script.aculo.us library, to allow you to do more than
show and hide <div> elements in your web pages. You will find good documentation on the
effects syntax in the wiki at http://script.aculo.us/. Basically, the library provides JavaScript
objects and functions that manipulate the DOM in order to achieve complex visual effects. See
a few examples in Listing 11-23. Since the result is a visual animation of certain areas in a web
page, it is recommended that you test the effects yourself to understand what they really do.
The script.aculo.us website offers a gallery where you can get an idea of the dynamic effects.

Listing 11-23. Visual Effects in JavaScript with Script.aculo.us

// Highlights the element 'my_field'
Effect.Highlight('my_field', { startcolor:'#ff99ff', endcolor:'#999999' })

// Blinds down an element
Effect.BlindDown('id_of_element');

// Fades away an element
Effect.Fade('id_of_element', { transition: Effect.Transitions.wobble })

Symfony encapsulates the JavaScript Effect object in a helper called visual_effect(), still
part of the Javascript helper group. It outputs JavaScript that can be used in a regular link, as
shown in Listing 11-24.

Zaninotto_786-9 C11.fm Page 235 Wednesday, December 13, 2006 8:41 AM

236 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-24. Visual Effects in Templates with the visual_effect() Helper

<div id="secret_div" style="display:none">I was here all along!</div>
<?php echo link_to_function(
 'Show the secret div',
 visual_effect('appear', 'secret_div')
) ?>
// Will make a call to Effect.Appear('secret_div')

The visual_effects() helper can also be used in the Ajax callbacks, as shown in Listing 11-25,
which displays an activity indicator like Listing 11-22, but is visually more satisfactory. The
indicator element appears progressively when the Ajax call starts, and it fades progressively
when the response arrives. In addition, the feedback element is highlighted after being updated by
the remote call, to draw the user’s attention to this part of the window.

Listing 11-25. Visual Effects in Ajax Callbacks

<div id="feedback"></div>
<div id="indicator" style="display: none">Loading...</div>
<?php echo link_to_remote('Delete this post', array(
 'update' => 'feedback',
 'url' => 'post/delete?id='.$post->getId(),
 'loading' => visual_effect('appear', 'indicator'),
 'complete' => visual_effect('fade', 'indicator').
 visual_effect('highlight', 'feedback'),
)) ?>

Notice how you can combine visual effects by concatenating them in a callback.

JSON
JavaScript Object Notation (JSON) is a lightweight data-interchange format. Basically, it is
nothing more than a JavaScript hash (see an example in Listing 11-26) used to carry object
information. But JSON has two great benefits for Ajax interactions: It is easy to read in JavaScript,
and it can reduce the size of a web response.

Listing 11-26. A Sample JSON Object in JavaScript

var myJsonData = {"menu": {
 "id": "file",
 "value": "File",
 "popup": {
 "menuitem": [
 {"value": "New", "onclick": "CreateNewDoc()"},
 {"value": "Open", "onclick": "OpenDoc()"},
 {"value": "Close", "onclick": "CloseDoc()"}
]
 }
}}

Zaninotto_786-9 C11.fm Page 236 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 237

If an Ajax action needs to return structured data to the caller page for further JavaScript
processing, JSON is a good format for the response. This is very useful if, for instance, one Ajax
call is to update several elements in the caller page.

For instance, imagine a caller page that looks like Listing 11-27. It has two elements that
may need to be updated. One remote helper could update only one of the elements of the page
(either the title or the name), but not both.

Listing 11-27. Sample Template for Multiple Ajax Updates

<h1 id="title">Basic letter</h1>
<p>Dear name_here,</p>
<p>Your e-mail was received and will be answered shortly.</p>
<p>Sincerely,</p>

To update both, imagine that the Ajax response can be a JSON header containing the
following array:

 [["title", "My basic letter"], ["name", "Mr Brown"]]

Then the remote call can easily interpret this response and update several fields in a row,
with a little help from JavaScript. The code in Listing 11-28 shows what could be added to the
template of Listing 11-27 to achieve this effect.

Listing 11-28. Updating More Than One Element from a Remote Response

<?php echo link_to_remote('Refresh the letter', array(
 'url' => 'publishing/refresh',
 'complete' => 'updateJSON(request, json)'
)) ?>

<?php echo javascript_tag("
function updateJSON(request, json)
{
 var nbElementsInResponse = json.length;
 for (var i = 0; i < nbElementsInResponse; i++)
 {
 Element.update(json[i][0], json[i][1]);
 }
}
") ?>

The complete callback has access to the json header of the response and can pass it to a
third-party function. This custom updateJSON() function iterates over the JSON header and for
each member of the array, updates the element named by the first parameter with the content
of the second parameter.

Listing 11-29 shows how the publishing/refresh action can return a JSON response.

Zaninotto_786-9 C11.fm Page 237 Wednesday, December 13, 2006 8:41 AM

238 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-29. Sample Action Returning a JSON Header

class publishingActions extends sfActions
{
 public function executeRefresh()
 {
 $output = '[["title", "My basic letter"], ["name", "Mr Brown"]]';
 $this->getResponse()->setHttpHeader("X-JSON", '('.$output.')');

 return sfView::HEADER_ONLY;
 }

The HTTP protocol allows JSON to be stored in a response header. As the response doesn’t
have any content, the action sends it immediately as a header only. This bypasses the view
layer entirely and is as fast as a ->renderText(), but with an even smaller response.

■Caution There is a severe limitation to the approach shown in Listing 11-29: the maximum size of HTTP
headers. There is no official limitation, but large headers may not be well transferred or interpreted by a
browser. This means that if your JSON array is large, the remote action should return a normal response, with
the JSON as a JavaScript array.

JSON has become a standard among web applications. Web services often propose responses
in JSON rather than XML to allow service integration in the client (mashup), rather than on the
server. So if you wonder which format to use for communication between your server and a
JavaScript function, JSON is probably your best bet.

■Tip Since version 5.2, PHP offers two functions, json_encode() and json_decode(), that allow you
to convert an array between the PHP syntax and the JSON syntax, and vice versa (http://www.php.net/
manual/en/ref.json.php). These facilitate the integration of JSON arrays and Ajax in general.

Performing Complex Interactions with Ajax
Among the symfony Ajax helpers, you will also find some tools that build up complex interactions
with a single call. They allow you to enhance the user experience by desktop-application-like
interactions (drag-and-drop, autocompletion, and live editing) without the need for complex
JavaScript. The following sections describe the helpers for complex interactions and show simple
examples. Additional parameters and tweaks are described in the script.aculo.us documentation.

Zaninotto_786-9 C11.fm Page 238 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 239

■Caution If complex interactions are possible, they need extra time for presentation tweaking to make
them feel natural. Use them only when you are sure that they enhance the user experience. Avoid them when
there is a risk that they will disorient users.

Autocompletion
A text-input component that shows a list of words matching the user’s entry while the user
types is called an autocompletion. With a single helper called input_auto_complete_tag(), you
can achieve this effect, provided that the remote action returns a response formatted as an
HTML item list similar to the example shown in Listing 11-30.

Listing 11-30. Example of a Response Compatible with the Autocomplete Tag

 suggestion1
 suggestion2
 ...

Insert the helper in a template as you would do with a regular text input, following the
example shown in Listing 11-31.

Listing 11-31. Using the Autocomplete Tag Helper in a Template

<?php echo form_tag('mymodule/myaction') ?>
 Find an author by name:
 <?php echo input_auto_complete_tag('author', 'default name',
 'author/autocomplete',
 array('autocomplete' => 'off'),
 array('use_style' => true)
) ?>
 <?php echo submit_tag('Find') ?>
</form>

This will call the author/autocomplete action each time the user types a character in the
author field. It’s up to you to design the action so that it determines a list of possible matches
according to the author request parameter and returns them in a format similar to Listing 11-30.
The helper will then display the list under the author tag, and clicking one of the suggestions or
selecting it with the keyboard will complete the input, as shown in Figure 11-3.

Figure 11-3. An autocompletion example

Zaninotto_786-9 C11.fm Page 239 Wednesday, December 13, 2006 8:41 AM

240 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

The third argument of the input_auto_complete_tag() helper can take the following
parameters:

use_style: Styles the response list automatically.

frequency: Frequency of the periodical call (defaults to 0.4s).

tokens: To allow tokenized incremental autocompletion. For instance, if you set this
parameter to , and if the user entered jane, george, the action would receive only the
value 'george'.

■Note The input_auto_complete_tag() helper, like the following ones, also accepts the usual remote
helper options described earlier in this chapter. In particular, it is a good habit to set loading and complete
visual effects for a better user experience.

Drag-and-Drop
The ability to grab an element with the mouse, move it, and release it somewhere else is familiar in
desktop applications but rarer in web browsers. This is because coding such behavior in plain
JavaScript is very complicated. Fortunately, it requires only one line in symfony.

The framework provides two helpers, draggable_element() and
drop_receiving_element(), that can be seen as behavior modifiers; they add observers and
abilities to the element they address. Use them to declare an element as draggable or as a
receiving element for draggable elements. A draggable element can be grabbed by clicking it
with the mouse. Until the mouse button is released, the element can be moved, or dragged,
across the window. A receiving element calls a remote function when a draggable element is
released on it. Listing 11-32 demonstrates this type of interaction with a shopping cart
receiving element.

Listing 11-32. Draggable Elements and Drop-Receiving Elements in a Shopping Cart

<ul id="items">
 <li id="item_1" class="food">Carrot
 <?php echo draggable_element('item_1', array('revert' => true)) ?>
 <li id="item_2" class="food">Apple
 <?php echo draggable_element('item_2', array('revert' => true)) ?>
 <li id="item_3" class="food">Orange
 <?php echo draggable_element('item_3', array('revert' => true)) ?>

<div id="cart">
 <p>Your cart is empty</p>
 <p>Drag items here to add them to your cart</p>
</div>

Zaninotto_786-9 C11.fm Page 240 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 241

<?php echo drop_receiving_element('cart', array(
 'url' => 'cart/add',
 'accept' => 'food',
 'update' => 'cart',
)) ?>

Each of the items of the unordered list can be grabbed by the mouse and dragged across
the window. When released, they return to their original position. When released over the cart
element, it triggers a remote call to the cart/add action. The action will be able to determine which
item was dropped in the cart element by looking at the id request parameter. So Listing 11-32
simulates a real shopping session: You grab items and release them in the cart, and then proceed
to checkout.

■Tip In Listing 11-32, the helpers are written just after the element they modify, but that is not a require-
ment. You could very well group all the draggable_element() and drop_receiving_element()
helpers at the end of the template. The important thing is the first argument of the helper call, which specifies
the identifier of the element to receive the behavior.

The draggable_element() helper accepts the following parameters:

revert: If set to true, the element will return to its original location when released. It can
also be an arbitrary function reference, called when the drag ends.

ghosting: Clones the element and drags the clone, leaving the original in place until the
clone is dropped.

snap: If set to false, no snapping occurs. Otherwise, the draggable can be dragged only to
the intersections of a grid of interval x and y, and in this case, it takes the form xy or [x,y]
or function(x,y){ return [x,y] }.

The drop_receiving_element() helper accepts the following parameters:

accept: A string or an array of strings describing CSS classes. The element will accept only
draggable elements that have one or more of these CSS classes.

hoverclass: CSS class added to the element when the user drags an accepted draggable
element over it.

Sortable Lists
Another possibility offered by draggable elements is the ability to sort a list by moving its items
with the mouse. The sortable_element() helper adds the sortable behavior to an item, and
Listing 11-33 is a good example of implementing this feature.

Zaninotto_786-9 C11.fm Page 241 Wednesday, December 13, 2006 8:41 AM

242 C H A P T E R 1 1 ■ AJ A X I N T E G R A T I O N

Listing 11-33. Sortable List Example

<p>What do you like most?</p>
<ul id="order">
 <li id="item_1" class="sortable">Carrots
 <li id="item_2" class="sortable">Apples
 <li id="item_3" class="sortable">Oranges
 // Nobody likes Brussel sprouts anyway
 <li id="item_4">Brussel sprouts

<div id="feedback"></div>
<?php echo sortable_element('order', array(
 'url' => 'item/sort',
 'update' => 'feedback',
 'only' => 'sortable';
)) ?>

By the magic of the sortable_element() helper, the element is made sortable, which
means that its children can be reordered by drag-and-drop. Each time the user drags an item
and releases it to reorder the list, an Ajax request is made with the following parameters:

POST /sf_sandbox/web/frontend_dev.php/item/sort HTTP/1.1
 order[]=1&order[]=3&order[]=2&_=

The full ordered list is passed as an array (with the format order[$rank]=$id, the $order
starting at 0, and the $id based on what comes after the underscore (_) in the list element id
property). The id property of the sortable element (order in the example) is used to name the
array of parameters.

The sortable_element() helper accepts the following parameters:

only: A string or an array of strings describing CSS classes. Only the child elements of the
sortable element with this class can be moved.

hoverclass: CSS class added to the element when the mouse is hovered over it.

overlap: Set it to horizontal if the items are displayed inline, and to vertical (the default
value) when there is one item per line (as in the example).

tag: If the list to order is not a set of elements, you must define which child elements
of the sortable element are to be made draggable (for instance, div or dl).

Edit in Place
More and more web applications allow users to edit the contents of pages directly on the page,
without the need to redisplay the content in a form. The principle of the interaction is simple.
A block of text is highlighted when the user hovers the mouse over it. If the user clicks inside the
block, the plain text is converted into a text area filled with the text of the block, and a save
button appears. The user can edit the text inside the text area, and once he saves it, the text area
disappears and the text is displayed in plain form. With symfony, you can add this editable
behavior to an element with the input_in_place_editor_tag() helper. Listing 11-34 demonstrates
using this helper.

Zaninotto_786-9 C11.fm Page 242 Wednesday, December 13, 2006 8:41 AM

C H A P T E R 1 1 ■ A J A X I N T E G R A T I O N 243

Listing 11-34. Editable Text Example

<div id="edit_me">You can edit this text</div>
<?php echo input_in_place_editor_tag('edit_me', 'mymodule/myaction', array(
 'cols' => 40,
 'rows' => 10,
)) ?>

When the user clicks the editable text, it is replaced by a text input area filled with the text,
which can be edited. When the form is submitted, the mymodule/myaction action is called in
Ajax with the edited value set as the value parameter. The result of the action updates the edit-
able element. It is very fast to write and very powerful.

The input_in_place_editor_tag() helper accepts the following parameters:

cols and rows: The size of the text input area that appears for editing (it becomes a <textarea>
if rows is more than 1).

loadTextURL: The URI of an action that is called to display the text to edit. This is useful if
the content of the editable element uses special formatting and if you want the user to edit
the text without formatting.

save_text and cancel_text: The text on the save link (defaults to “ok”) and on the cancel
link (defaults to “cancel”).

Summary
If you are tired of writing JavaScript in your templates to get client-side behaviors, the JavaScript
helpers offer a simple alternative. Not only do they automate the basic link behavior and element
update, but they also provide a way to develop Ajax interactions in a snap. With the help of the
powerful syntax enhancements provided by Prototype and the great visual effects provided by
script.aculo.us, even complex interactions take no more than a few lines to write.

And since making a highly interactive application is as easy as making static pages with
symfony, you can consider that almost all desktop applications interactions are now available
in web applications.

Zaninotto_786-9 C11.fm Page 243 Wednesday, December 13, 2006 8:41 AM

Zaninotto_786-9 C11.fm Page 244 Wednesday, December 13, 2006 8:41 AM

245

■ ■ ■

C H A P T E R 1 2

Caching

One of the ways to speed up an application is to store chunks of generated HTML code, or
even full pages, for future requests. This technique is known as caching, and it can be managed
on the server side and on the client side.

Symfony offers a flexible server-caching system. It allows saving the full response, the
result of an action, a partial, or a template fragment into a file, through a very intuitive setup
based on YAML files. When the underlying data changes, you can easily clear selective parts of
the cache with the command line or special action methods. Symfony also provides an easy
way to control the client-side cache through HTTP 1.1 headers. This chapter deals with all
these subjects, and gives you a few tips on monitoring the improvements that caching can
bring to your applications.

Caching the Response
The principle of HTML caching is simple: Part or all of the HTML code that is sent to a user
upon a request can be reused for a similar request. This HTML code is stored in a special place
(the cache/ folder in symfony), where the front controller will look for it before executing an
action. If a cached version is found, it is sent without executing the action, thus greatly speeding up
the process. If no cached version is found, the action is executed, and its result (the view) is
stored in the cache folder for future requests.

As all the pages may contain dynamic information, the HTML cache is disabled by default.
It is up to the site administrator to enable it in order to improve performance.

Symfony handles three different types of HTML caching:

• Cache of an action (with or without the layout)

• Cache of a partial, a component, or a component slot

• Cache of a template fragment

The first two types are handled with YAML configuration files. Template fragment caching
is managed by calls to helper functions in the template.

Zaninotto_786-9 C12.fm Page 245 Friday, December 22, 2006 5:39 AM

246 C H A P T E R 1 2 ■ CA C H I N G

Global Cache Settings
For each application of a project, the HTML cache mechanism can be enabled or disabled (the
default), per environment, in the cache setting of the settings.yml file. Listing 12-1 demon-
strates enabling the cache.

Listing 12-1. Activating the Cache, in myapp/config/settings.yml

dev:
 .settings:
 cache: on

Caching an Action
Actions displaying static information (not depending on database or session-dependent data)
or actions reading information from a database but without modifying it (typically, GET requests)
are often ideal for caching. Figure 12-1 shows which elements of the page are cached in this
case: either the action result (its template) or the action result together with the layout.

Figure 12-1. Caching an action

For instance, consider a user/list action that returns the list of all users of a website.
Unless a user is modified, added, or removed (and this matter will be discussed later in the
“Removing Items from the Cache” section), this list always displays the same information, so
it is a good candidate for caching.

Cache activation and settings, action by action, are defined in a cache.yml file located in
the module config/ directory. See Listing 12-2 for an example.

Listing 12-2. Activating the Cache for an Action, in myapp/modules/user/config/cache.yml

list:
 enabled: on
 with_layout: false # Default value
 lifetime: 86400 # Default value

Zaninotto_786-9 C12.fm Page 246 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 247

This configuration stipulates that the cache is on for the list action, and that the layout will not
be cached with the action (which is the default behavior). It means that even if a cached version of
the action exists, the layout (together with its partials and components) is still executed. If the
with_layout setting is set to true, the layout is cached with the action and not executed again.

To test the cache settings, call the action in the development environment from your browser.

http://myapp.example.com/myapp_dev.php/user/list

You will notice a border around the action area in the page. The first time, the area has a blue
header, showing that it did not come from the cache. Refresh the page, and the action area will have
a yellow header, showing that it did come from the cache (with a notable boost in response time).
You will learn more about the ways to test and monitor caching later in this chapter.

■Note Slots are part of the template, and caching an action will also store the value of the slots defined in
this action’s template. So the cache works natively for slots.

The caching system also works for pages with arguments. The user module may have, for
instance, a show action that expects an id argument to display the details of a user. Modify the
cache.yml file to enable the cache for this action as well, as shown in Listing 12-3.

In order to organize your cache.yml, you can regroup the settings for all the actions of a
module under the all: key, also shown in Listing 12-3.

Listing 12-3. A Full cache.yml Example, in myapp/modules/user/config/cache.yml

list:
 enabled: on
show:
 enabled: on

all:
 with_layout: false # Default value
 lifetime: 86400 # Default value

Now, every call to the user/show action with a different id argument creates a new record
in the cache. So the cache for this:

http://myapp.example.com/user/show/id/12

will be different than the cache for this:

http://myapp.example.com/user/show/id/25

■Caution Actions called with a POST method or with GET parameters are not cached.

Zaninotto_786-9 C12.fm Page 247 Friday, December 22, 2006 5:39 AM

248 C H A P T E R 1 2 ■ CA C H I N G

The with_layout setting deserves a few more words. It actually determines what kind of
data is stored in the cache. For the cache without layout, only the result of the template execution
and the action variables are stored in the cache. For the cache with layout, the whole response
object is stored. This means that the cache with layout is much faster than the cache without it.

If you can functionally afford it (that is, if the layout doesn’t rely on session-dependent
data), you should opt for the cache with layout. Unfortunately, the layout often contains some
dynamic elements (for instance, the name of the user who is connected), so action cache without
layout is the most common configuration. However, RSS feeds, pop-ups, and pages that don’t
depend on cookies can be cached with their layout.

Caching a Partial, Component, or Component Slot
Chapter 7 explained how to reuse code fragments across several templates, using the
include_partial() helper. A partial is as easy to cache as an action, and its cache activation
follows the same rules, as shown in Figure 12-2.

Figure 12-2. Caching a partial, component, or component slot

For instance, Listing 12-4 shows how to edit the cache.yml file to enable the cache on a
_my_partial.php partial located in the user module. Note that the with_layout setting doesn’t
make sense in this case.

Listing 12-4. Caching a Partial, in myapp/modules/user/config/cache.yml

_my_partial:
 enabled: on
list:
 enabled: on
...

Now all the templates using this partial won’t actually execute the PHP code of the partial,
but will use the cached version instead.

<?php include_partial('user/my_partial') ?>

Zaninotto_786-9 C12.fm Page 248 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 249

Just as for actions, partial caching is also relevant when the result of the partial depends on
parameters. The cache system will store as many versions of a template as there are different
values of parameters.

<?php include_partial('user/my_other_partial', array('foo' => 'bar')) ?>

■Tip The action cache is more powerful than the partial cache, since when an action is cached, the template is
not even executed; if the template contains calls to partials, these calls are not performed. Therefore, partial
caching is useful only if you don’t use action caching in the calling action or for partials included in the layout.

A little reminder from Chapter 7: A component is a light action put on top of a partial, and
a component slot is a component for which the action varies according to the calling actions.
These two inclusion types are very similar to partials, and support caching in the same way.
For instance, if your global layout includes a component called day with include_ ➥

component('general/day') in order to show the current date, set the cache.yml file of the
general module as follows to enable the cache on this component:

_day:
 enabled: on

When caching a component or a partial, you must decide whether to store a single version for
all calling templates or a version for each template. By default, a component is stored indepen-
dently of the template that calls it. But contextual components, such as a component that
displays a different sidebar with each action, should be stored as many times as there are templates
calling it. The caching system can handle this case, provided that you set the contextual
parameter to true, as follows:

_day:
 contextual: true
 enabled: on

■Note Global components (the ones located in the application templates/ directory) can be cached,
provided that you declare their cache settings in the application cache.yml.

Caching a Template Fragment
Action caching applies to only a subset of actions. For the other actions—those that update
data or display session-dependent information in the template—there is still room for cache
improvement but in a different way. Symfony provides a third cache type, which is dedicated
to template fragments and enabled directly inside the template. In this mode, the action is
always executed, and the template is split into executed fragments and fragments in the cache,
as illustrated in Figure 12-3.

Zaninotto_786-9 C12.fm Page 249 Friday, December 22, 2006 5:39 AM

250 C H A P T E R 1 2 ■ CA C H I N G

Figure 12-3. Caching a template fragment

For instance, you may have a list of users that shows a link of the last-accessed user, and
this information is dynamic. The cache() helper defines the parts of a template that are to be
put in the cache. See Listing 12-5 for details on the syntax.

Listing 12-5. Using the cache() Helper, in myapp/modules/user/templates/listSuccess.php

<!-- Code executed each time -->
<?php echo link_to('last accessed user', 'user/show?id='.$last_accessed_user_id) ?>

<!-- Cached code -->
<?php if (!cache('users')): ?>
 <?php foreach ($users as $user): ?>
 <?php echo $user->getName() ?>
 <?php endforeach; ?>
 <?php cache_save() ?>
<?php endif; ?>

Here’s how it works:

• If a cached version of the fragment named 'users' is found, it is used to replace
the code between the <?php if (!cache($unique_fragment_name)): ?> and the
<?php endif; ?> lines.

• If not, the code between these lines is processed and saved in the cache, identified with
the unique fragment name.

The code not included between such lines is always processed and not cached.

Zaninotto_786-9 C12.fm Page 250 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 251

■Caution The action (list in the example) must not have caching enabled, since this would bypass the
whole template execution and ignore the fragment cache declaration.

The speed boost of using the template fragment cache is not as significant as with the
action cache, since the action is always executed, the template is partially processed, and the
layout is always used for decoration.

You can declare additional fragments in the same template; however, you need to give
each of them a unique name so that the symfony cache system can find them afterwards.

As with actions and components, cached fragments can take a lifetime in seconds as a
second argument of the call to the cache() helper.

<?php if (!cache('users', 43200)): ?>

The default cache lifetime (86400 seconds, or one day) is used if no parameter is given to
the helper.

■Tip Another way to make an action cacheable is to insert the variables that make it vary into the action’s
routing pattern. For instance, if a home page displays the name of the connected user, it cannot be cached
unless the URL contains the user nickname. Another example is for internationalized applications: If you want
to enable caching on a page that has several translations, the language code must somehow be included in
the URL pattern. This trick will multiply the number of pages in the cache, but it can be of great help to speed
up heavily interactive applications.

Configuring the Cache Dynamically
The cache.yml file is one way to define cache settings, but it has the inconvenience of being
invariant. However, as usual in symfony, you can use plain PHP rather than YAML, and that
allows you to configure the cache dynamically.

Why would you want to change the cache settings dynamically? A good example is a page
that is different for authenticated users and for anonymous ones, but the URL remains the
same. Imagine an article/show page with a rating system for articles. The rating feature is
disabled for anonymous users. For those users, rating links trigger the display of a login form.
This version of the page can be cached. On the other hand, for authenticated users, clicking a
rating link makes a POST request and creates a new rating. This time, the cache must be disabled
for the page so that symfony builds it dynamically.

The right place to define dynamic cache settings is in a filter executed before the
sfCacheFilter. Indeed, the cache is a filter in symfony, just like the web debug toolbar and the
security features. In order to enable the cache for the article/show page only if the user is not
authenticated, create a conditionalCacheFilter in the application lib/ directory, as shown in
Listing 12-6.

Zaninotto_786-9 C12.fm Page 251 Friday, December 22, 2006 5:39 AM

252 C H A P T E R 1 2 ■ CA C H I N G

Listing 12-6. Configuring the Cache in PHP, in myapp/lib/conditionalCacheFilter.class.php

class conditionalCacheFilter extends sfFilter
{
 public function execute($filterChain)
 {
 $context = $this->getContext();
 if (!$context->getUser()->isAuthenticated())
 {
 foreach ($this->getParameter('pages') as $page)
 {
 $context->getViewCacheManager()->addCache($page['module'], $page['action'], ➥
array('lifeTime' => 86400));
 }
 }

 // Execute next filter
 $filterChain->execute();
 }
}

You must register this filter in the filters.yml file before the sfCacheFilter, as shown in
Listing 12-7.

Listing 12-7. Registering Your Custom Filter, in myapp/config/filters.yml

...
security: ~

conditionalCache:
 class: conditionalCacheFilter
 param:
 pages:
 - { module: article, action: show }

cache: ~
...

Clear the cache (to autoload the new filter class), and the conditional cache is ready. It
will enable the cache of the pages defined in the pages parameter only for users who are not
authenticated.

The addCache() method of the sfViewCacheManager object expects a module name, an action
name, and an associative array with the same parameters as the ones you would define in a
cache.yml file. For instance, if you want to define that the article/show action must be cached
with the layout and with a lifetime of 3600 seconds, then write the following:

Zaninotto_786-9 C12.fm Page 252 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 253

$context->getViewCacheManager()->addCache('article', 'show', array(
 'withLayout' => true,
 'lifeTime' => 3600,
));

ALTERNATIVE CACHING STORAGE

By default, the symfony cache system stores data in files on the web server hard disk. You may want to store
cache in memory (for instance, via memcache) or in a database (notably if you want to share your cache among
several servers or speed up cache removal). You can easily alter symfony’s default cache storage system
because the cache class used by the symfony view cache manager is defined in factories.yml.

The default view cache storage factory is the sfFileCache class:

view_cache:
 class: sfFileCache
 param:
 automaticCleaningFactor: 0
 cacheDir: %SF_TEMPLATE_CACHE_DIR%

You can replace the class with your own cache storage class or with one of the symfony alternative
classes (sfSQLiteCache for instance). The parameters defined under the param key are passed to the
initialize() method of your class as an associative array. Any view cache storage class must imple-
ment all methods found in the abstract sfCache class. Refer to the API documentation (http://www.
symfony-project.com/api/symfony.html) for more information on this subject.

Using the Super Fast Cache
Even a cached page involves some PHP code execution. For such a page, symfony still loads the
configuration, builds the response, and so on. If you are really sure that a page is not going to
change for a while, you can bypass symfony completely by putting the resulting HTML code
directly into the web/ folder. This works thanks to the Apache mod_rewrite settings, provided
that your routing rule specifies a pattern ending without a suffix or with .html.

You can do this by hand, page by page, with a simple command-line call:

> curl http://myapp.example.com/user/list.html > web/user/list.html

After that, every time that the user/list action is requested, Apache finds the corresponding
list.html page and bypasses symfony completely. The trade-off is that you can’t control the
page cache with symfony anymore (lifetime, automatic deletion, and so on), but the speed gain
is very impressive.

Alternatively, you can use the sfSuperCache symfony plug-in, which automates the process
and supports lifetime and cache clearing. Refer to Chapter 17 for more information about plug-ins.

Zaninotto_786-9 C12.fm Page 253 Friday, December 22, 2006 5:39 AM

254 C H A P T E R 1 2 ■ CA C H I N G

OTHER SPEEDUP TACTICS

In addition to the HTML cache, symfony has two other cache mechanisms, which are completely automated
and transparent to the developer. In the production environment, the configuration and the template translations are
cached in files stored in the myproject/cache/config/ and myproject/cache/i18n/ directories without
any intervention.

PHP accelerators (eAccelerator, APC, XCache, and so on), also called opcode caching modules, increase
performance of PHP scripts by caching them in a compiled state, so that the overhead of code parsing and
compiling is almost completely eliminated. This is particularly effective for the Propel classes, which contain
a great amount of code. These accelerators are compatible with symfony and can easily triple the speed of an
application. They are recommended in production environments for any symfony application with a large audience.

With a PHP accelerator, you can manually store persistent data in memory, to avoid doing the same
processing for each request, with the sfProcessCache class. And if you want to store the result of a CPU-
intensive function in a file, you will probably use the sfFunctionCache object. Refer to Chapter 18 for more
information about these mechanisms.

Removing Items from the Cache
If the scripts or the data of your application change, the cache will contain outdated informa-
tion. To avoid incoherence and bugs, you can remove parts of the cache in many different
ways, according to your needs.

Clearing the Entire Cache
The clear-cache task of the symfony command line erases the cache (HTML, configuration,
and i18n cache). You can pass it arguments to erase only a subset of the cache, as shown in
Listing 12-8. Remember to call it only from the root of a symfony project.

Listing 12-8. Clearing the Cache

// Erase the whole cache
> symfony clear-cache

// Short syntax
> symfony cc

// Erase only the cache of the myapp application
> symfony clear-cache myapp

// Erase only the HTML cache of the myapp application
> symfony clear-cache myapp template

// Erase only the configuration cache of the myapp application
> symfony clear-cache myapp config

Zaninotto_786-9 C12.fm Page 254 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 255

Clearing Selective Parts of the Cache
When the database is updated, the cache of the actions related to the modified data must be
cleared. You could clear the whole cache, but that would be a waste for all the existing cached
actions that are unrelated to the model change. This is where the remove() method of the
sfViewCacheManager object applies. It expects an internal URI as argument (the same kind of
argument you would provide to a link_to()), and removes the related action cache.

For instance, imagine that the update action of the user module modifies the columns of a
User object. The cached versions of the list and show actions need to be cleared, or else the old
versions, which contain erroneous data, are displayed. To handle this, use the remove()
method, as shown in Listing 12-9.

Listing 12-9. Clearing the Cache for a Given Action, in modules/user/actions/actions.class.php

public function executeUpdate()
{
 // Update a user
 $user_id = $this->getRequestParameter('id');
 $user = UserPeer::retrieveByPk($user_id);
 $this->foward404Unless($user);
 $user->setName($this->getRequestParameter('name'));
 ...
 $user->save();

 // Clear the cache for actions related to this user
 $cacheManager = $this->getContext()->getViewCacheManager();
 $cacheManager->remove('user/list');
 $cacheManager->remove('user/show?id='.$user_id);
 ...
}

Removing cached partials, components, and component slots is a little trickier. As you can
pass them any type of parameter (including objects), it is almost impossible to identify their
cached version after the fact. Let’s focus on partials, as the explanation is the same for the other
template components. Symfony identifies a cached partial with a special prefix (sf_cache_
partial), the name of the module, and the name of the partial, plus a hash of all the parameters
used to call it, as follows:

// A partial called by
<?php include_partial('user/my_partial', array('user' => $user) ?>

// Is identified in the cache as
/sf_cache_partial/user/_my_partial/sf_cache_key/bf41dd9c84d59f3574a5da244626dcc8

In theory, you could remove a cached partial with the remove() method if you knew the
value of the parameters hash used to identify it, but this is very impracticable. Fortunately, if
you add a sf_cache_key parameter to the include_partial() helper call, you can identify the
partial in the cache with something that you know. As you can see in Listing 12-10, clearing a

Zaninotto_786-9 C12.fm Page 255 Friday, December 22, 2006 5:39 AM

256 C H A P T E R 1 2 ■ CA C H I N G

single cached partial—for instance, to clean up the cache from the partial based on a modified
User—becomes easy.

Listing 12-10. Clearing Partials from the Cache

<?php include_partial('user/my_partial', array(
 'user' => $user,
 'sf_cache_key' => $user->getId()
) ?>

// Is identified in the cache as
/sf_cache_partial/user/_my_partial/sf_cache_key/12

// Clear _my_partial for a specific user in the cache with $cacheManager->re-
move('@sf_cache_partial?module=user&action=_my_partial&sf_cache_key=' ➥

.$user->getId());
You cannot use this method to clear all occurrences of a partial in the cache. You will learn

how to clear these in the “Clearing the Cache Manually” section later in this chapter.
To clear template fragments, use the same remove() method. The key identifying the fragment

in the cache is composed of the same sf_cache_partial prefix, the module name, the action
name, and the sf_cache_key (the unique name of the cache fragment included by the cache()
helper). Listing 12-11 shows an example.

Listing 12-11. Clearing Template Fragments from the Cache

<!-- Cached code -->
<?php if (!cache('users')): ?>
 ... // Whatever
 <?php cache_save() ?>
<?php endif; ?>

// Is identified in the cache as
/sf_cache_partial/user/list/sf_cache_key/users

// Clear it with
$cacheManager->remove('@sf_cache_partial?module=user&action=list&sf_cache_key=users');

SELECTIVE CACHE CLEARING CAN DAMAGE YOUR BRAIN

The trickiest part of the cache-clearing job is to determine which actions are influenced by a data update.
For instance, imagine that the current application has a publication module where publications are

listed (list action) and described (show action), along with the details of their author (an instance of the User
class). Modifying one User record will affect all the descriptions of the user’s publications and the list of publications.
This means that you need to add to the update action of the user module, something like this:

Zaninotto_786-9 C12.fm Page 256 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 257

$c = new Criteria();
$c->add(PublicationPeer::AUTHOR_ID, $this->getRequestParameter('id'));
$publications = PublicationPeer::doSelect($c);

$cacheManager = sfContext::getInstance()->getViewCacheManager();
foreach ($publications as $publication)
{
 $cacheManager->remove('publication/show?id='.$publication->getId());
}
$cacheManager->remove('publication/list');

When you start using the HTML cache, you need to keep a clear view of the dependencies between the
model and the actions, so that new errors don’t appear because of a misunderstood relationship. Keep in mind
that all the actions that modify the model should probably contain a bunch of calls to the remove() method if
the HTML cache is used somewhere in the application.

And, if you don’t want to damage your brain with too difficult an analysis, you can always clear the whole
cache each time you update the database . . .

Cache Directory Structure
The cache/ directory of your application has the following structure:

cache/ # sf_root_cache_dir
 [APP_NAME]/ # sf_base_cache_dir
 [ENV_NAME]/ # sf_cache_dir
 config/ # sf_config_cache_dir
 i18n/ # sf_i18n_cache_dir
 modules/ # sf_module_cache_dir
 template/ # sf_template_cache_dir
 [HOST_NAME]/
 all/

Cached templates are stored under the [HOST_NAME] directory (where dots are replaced by
underscores for compatibility with file systems), in a directory structure corresponding to their
URL. For instance, the template cache of a page called with:

http://www.myapp.com/user/show/id/12

is stored in:

cache/myapp/prod/template/www_myapp_com/all/user/show/id/12.cache

You should not write file paths directly in your code. Instead, you can use the file path
constants. For instance, to retrieve the absolute path to the template/ directory of the current
application in the current environment, use sfConfig::get('sf_template_cache_dir').

Knowing this directory structure will help you deal with manual cache clearing.

Zaninotto_786-9 C12.fm Page 257 Friday, December 22, 2006 5:39 AM

258 C H A P T E R 1 2 ■ CA C H I N G

Clearing the Cache Manually
Clearing the cache across applications can be a problem. For instance, if an administrator
modifies a record in the user table in a backend application, all the actions depending on this
user in the frontend application need to be cleared from the cache. The remove() method
expects an internal URI, but applications don’t know other application’s routing rules (appli-
cations are isolated from each other), so you cannot use the remove() method to clear the cache
of another application.

The solution is to manually remove the files from the cache/ directory, based on a file path.
For instance, if the backend application needs to clear the cache of the user/show action in the
frontend application for the user of id 12, it can use the following:

$sf_root_cache_dir = sfConfig::get('sf_root_cache_dir');
$cache_dir = $sf_root_cache_dir.'/frontend/prod/template/www_myapp_com/all';
unlink($cache_dir.'/user/show/id/12.cache');

But this is not very satisfactory. This command will erase only the cache of the current
environment, and it forces you to write the environment name and the current host name in
the file path. To bypass these limitations, you can use the sfToolkit::clearGlob() method. It
takes a file pattern as a parameter and accepts wildcards. For instance, you can clear the same
cache files as in the preceding example, regardless of host and environment, with this:

$cache_dir = $sf_root_cache_dir.'/frontend/*/template/*/all';
sfToolkit::clearGlob($cache_dir.'/user/show/id/12.cache');

This method is also of great use when you need to erase a cached action regardless of
certain parameters. For instance, if your application handles several languages, you may have
chosen to insert the language code in all URLs. So the link to a user profile page should look like
this:

http://www.myapp.com/en/user/show/id/12

To remove the cached profile of the user having an id of 12 in all languages, you can simply
do this:

sfToolkit::clearGlob($cache_dir.'/*/user/show/id/12.cache');

Testing and Monitoring Caching
HTML caching, if not properly handled, can create incoherence in displayed data. Each time
you disable the cache for an element, you should test it thoroughly and monitor the execution
boost to tweak it.

Building a Staging Environment
The caching system is prone to new errors in the production environment that can’t be detected in
the development environment, since the HTML cache is disabled by default in development. If
you enable the HTML cache for some actions, you should add a new environment, called staging
in this section, with the same settings as the prod environment (thus, with cache enabled) but
with web_debug set to on.

Zaninotto_786-9 C12.fm Page 258 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 259

To set it up, edit the settings.yml file of your application and add the lines shown in
Listing 12-12 at the top.

Listing 12-12. Settings for a staging Environment, in myapp/config/settings.yml

staging:
 .settings:
 web_debug: on
 cache: on

In addition, create a new front controller by copying the production one (probably
myproject/web/index.php) to a new myapp_staging.php. Edit it to change the SF_ENVIRONMENT
and SF_DEBUG values, as follows:

define('SF_ENVIRONMENT', 'staging');
define('SF_DEBUG', true);

That’s it—you have a new environment. Use it by adding the front controller name after
the domain name:

http://myapp.example.com/myapp_staging.php/user/list

■Tip Instead of copying an existing one, you can create a new front controller with the symfony command
line. For instance, to create a staging environment for the myapp application, called myapp_staging.php
and where SF_DEBUG is true, just call symfony init-controller myapp staging myapp_ ➥

staging.php true.

Monitoring Performance
Chapter 16 will explore the web debug toolbar and its contents. However, as this toolbar offers
valuable information about cached elements, here is a brief description of its cache features.

When you browse to a page that contains cacheable elements (action, partials, fragments,
and so on), the web debug toolbar (in the top-right corner of the window) shows an ignore
cache button (a green, rounded arrow), as shown in Figure 12-4. This button reloads the page
and forces the processing of cached elements. Be aware that it does not clear the cache.

The last number on the right side of the debug toolbar is the duration of the request execu-
tion. If you enable cache on a page, this number should decrease the second time you load the
page, since symfony uses the data from the cache instead of reprocessing the scripts. You can
easily monitor the cache improvements with this indicator.

Figure 12-4. Web debug toolbar for pages using caching

The debug toolbar also shows the number of database queries executed during the processing
of the request, and the detail of the durations per category (click the total duration to display

Zaninotto_786-9 C12.fm Page 259 Friday, December 22, 2006 5:39 AM

260 C H A P T E R 1 2 ■ CA C H I N G

the detail). Monitoring this data, in conjunction with the total duration, will help you do fine
measures of the performance improvements brought by the cache.

Benchmarking
The debug mode greatly decreases the speed of your application, since a lot of information is
logged and made available to the web debug toolbar. So the processed time displayed when
you browse in the staging environment is not representative of what it will be in production,
where the debug mode is turned off.

To get a better view of the process time of each request, you should use benchmarking
tools, like Apache Bench or JMeter. These tools allow load testing and provide two important
pieces of information: the average loading time of a specific page and the maximum capacity
of your server. The average loading time data is very useful for monitoring performance
improvements due to cache activation.

Identifying Cache Parts
When the web debug toolbar is enabled, the cached elements are identified in a page with a red
frame, each having a cache information box on the top left, as shown in Figure 12-5. The box
has a blue background if the element has been executed, or a yellow background if it comes
from the cache. Clicking the cache information link displays the identifier of the cache element, its
lifetime, and the elapsed time since its last modification. This will help you identify problems
when dealing with out-of-context elements, to see when the element was created and which
parts of a template you can actually cache.

Figure 12-5. Identification for cached elements in a page

HTTP 1.1 and Client-Side Caching
The HTTP 1.1 protocol defines a bunch of headers that can be of great use to further speed up
an application by controlling the browser’s cache system.

The HTTP 1.1 specifications of the World Wide Web Consortium (W3C, http://www.
w3.org/Protocols/rfc2616/rfc2616-sec14.html) describe these headers in detail. If an action
has caching enabled, and it uses the with_layout option, it can use one or more of the mecha-
nisms described in the following sections.

Even if some of the browsers of your website’s users may not support HTTP 1.1, there is no
risk in using the HTTP 1.1 cache features. A browser receiving headers that it doesn’t under-
stand simply ignores them, so you are advised to set up the HTTP 1.1 cache mechanisms.

In addition, HTTP 1.1 headers are also understood by proxies and caching servers. Even if
a user’s browser doesn’t understand HTTP 1.1, there can be a proxy in the route of the request
to take advantage of it.

Zaninotto_786-9 C12.fm Page 260 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 261

Adding an ETag Header to Avoid Sending Unchanged Content
When the ETag feature is enabled, the web server adds to the response a special header containing
a signature of the response itself.

ETag: 1A2Z3E4R5T6Y7U

The user’s browser will store this signature, and send it again together with the request
the next time it needs the same page. If the new signature shows that the page didn’t change
since the first request, the browser doesn’t send the response back. Instead, it just sends a 304:
Not modified header. It saves CPU time (if gzipping is enabled for example) and bandwidth
(page transfer) for the server, and time (page transfer) for the client. Overall, pages in a cache
with an ETag are even faster to load than pages in a cache without an ETag.

In symfony, you enable the ETag feature for the whole application in settings.yml. Here is
the default ETag setting:

all:
 .settings:
 etag: on

For actions in a cache with layout, the response is taken directly from the cache/ directory,
so the process is even faster.

Adding a Last-Modified Header to Avoid Sending Still Valid
Content
When the server sends the response to the browser, it can add a special header to specify when
the data contained in the page was last changed:

Last-Modified: Sat, 23 Nov 2006 13:27:31 GMT

Browsers can understand this header and, when requesting the page again, add an
If-Modified header accordingly:

If-Modified-Since: Sat, 23 Nov 2006 13:27:31 GMT

The server can then compare the value kept by the client and the one returned by its appli-
cation. If they match, the server returns a 304: Not modified header, saving bandwidth and
CPU time, just as with ETags.

In symfony, you can set the Last-Modified response header just as you would for another
header. For instance, you can use it like this in an action:

$this->getResponse()->setHttpHeader('Last-Modified', $this->getResponse() ➥

->getDate($timestamp));

This date can be the actual date of the last update of the data used in the page, given from
your database or your file system. The getDate() method of the sfResponse object converts a
timestamp to a formatted date in the format needed for the Last-Modified header (RFC1123).

Zaninotto_786-9 C12.fm Page 261 Friday, December 22, 2006 5:39 AM

262 C H A P T E R 1 2 ■ CA C H I N G

Adding Vary Headers to Allow Several Cached Versions of a Page
Another HTTP 1.1 header is Vary. It defines which parameters a page depends on, and is used
by browsers and proxies to build cache keys. For example, if the content of a page depends on
cookies, you can set its Vary header as follows:

Vary: Cookie

Most often, it is difficult to enable caching on actions because the page may vary according
to the cookie, the user language, or something else. If you don’t mind expanding the size of
your cache, set the Vary header of the response properly. This can be done for the whole appli-
cation or on a per-action basis, using the cache.yml configuration file or the sfResponse related
method as follows:

$this->getResponse()->addVaryHttpHeader('Cookie');
$this->getResponse()->addVaryHttpHeader('User-Agent');
$this->getResponse()->addVaryHttpHeader('Accept-Language');

Symfony will store a different version of the page in the cache for each value of these
parameters. This will increase the size of the cache, but whenever the server receives a request
matching these headers, the response is taken from the cache instead of being processed. This
is a great performance tool for pages that vary only according to request headers.

Adding a Cache-Control Header to Allow Client-Side Caching
Up to now, even by adding headers, the browser keeps sending requests to the server even if it
holds a cached version of the page. You can avoid that by adding Cache-Control and Expires
headers to the response. These headers are disabled by default in PHP, but symfony can over-
ride this behavior to avoid unnecessary requests to your server.

As usual, you trigger this behavior by calling a method of the sfResponse object. In an
action, define the maximum time a page should be cached (in seconds):

$this->getResponse()->addCacheControlHttpHeader('max_age=60');

You can also specify under which conditions a page may be cached, so that the provider’s
cache does not keep a copy of private data (like bank account numbers):

$this->getResponse()->addCacheControlHttpHeader('private=True');

Using Cache-Control HTTP directives, you get the ability to fine-tune the various cache
mechanisms between your server and the client’s browser. For a detailed review of these
directives, see the W3C Cache-Control specifications.

One last header can be set through symfony: the Expires header:

$this->getResponse()->setHttpHeader('Expires', $this->getResponse() ➥

->getDate($timestamp));

■Caution The major consequence of turning on the Cache-Control mechanism is that your server logs
won’t show all the requests issued by the users, but only the ones actually received. If the performance gets
better, the apparent popularity of the site may decrease in the statistics.

Zaninotto_786-9 C12.fm Page 262 Friday, December 22, 2006 5:39 AM

C H A P T E R 1 2 ■ C AC H I N G 263

Summary
The cache system provides variable performance boosts according to the cache type selected.
From the best gain to the least, the cache types are as follows:

• Super cache

• Action cache with layout

• Action cache without layout

• Fragment cache in the template

In addition, partials and components can be cached as well.
If changing data in the model or in the session forces you to erase the cache for the sake of

coherence, you can do it with a fine granularity for optimum performance—erase only the
elements that have changed, and keep the others.

Remember to test all the pages where caching is enabled with extra care, as new bugs may
appear if you cache the wrong elements or if you forget to clear the cache when you update the
underlying data. A staging environment, dedicated to cache testing, is of great use for that purpose.

Finally, make the best of the HTTP 1.1 protocol with symfony’s advanced cache-tweaking
features, which will involve the client in the caching task and provide even more performance
gains.

Zaninotto_786-9 C12.fm Page 263 Friday, December 22, 2006 5:39 AM

Zaninotto_786-9 C12.fm Page 264 Friday, December 22, 2006 5:39 AM

265

■ ■ ■

C H A P T E R 1 3

I18N and L10N

If you ever developed an international application, you know that dealing with every aspect of
text translation, local standards, and localized content can be a nightmare. Fortunately, symfony
natively automates all the aspects of internationalization.

As it is a long word, developers often refer to internationalization as i18n (count the letters
in the word to know why). Localization is referred to as l10n. They cover two different aspects
of multilingual web applications.

An internationalized application contains several versions of the same content in various
languages or formats. For instance, a webmail interface can offer the same service in several
languages; only the interface changes.

A localized application contains distinct information according to the country from which
it is browsed. Think about the contents of a news portal: When browsed from the United States,
it displays the latest headlines about the United States, but when browsed from France, the
headlines concern the French news. So an l10n application not only provides content transla-
tion, but the content can be different from one localized version to another.

All in all, dealing with i18n and l10n means that the application can take care of the
following:

• Text translation (interface, assets, and content)

• Standards and formats (dates, amounts, numbers, and so on)

• Localized content (many versions of a given object according to a country)

This chapter covers the way symfony deals with those elements and how you can use it to
develop internationalized and localized applications.

User Culture
All the built-in i18n features in symfony are based on a parameter of the user session called the
culture. The culture is the combination of the country and the language of the user, and it
determines how the text and culture-dependent information are displayed. Since it is serial-
ized in the user session, the culture is persistent between pages.

Zaninotto_786-9 C13.fm Page 265 Friday, December 22, 2006 5:41 AM

266 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

Setting the Default Culture
By default, the culture of new users is the default_culture. You can change this setting in the
i18n.yml configuration file, as shown in Listing 13-1.

Listing 13-1. Setting the Default Culture, in myapp/config/i18n.yml

all:
 default_culture: fr_FR

■Note During development, you might be surprised that a culture change in the i18n.yml file doesn’t
change the current culture in the browser. That’s because the session already has a culture from previous
pages. If you want to see the application with the new default culture, you need to clear the domain cookies
or restart your browser.

Keeping both the language and the country in the culture is necessary because you may
have a different French translation for users from France, Belgium, or Canada, and a different
Spanish content for users from Spain or Mexico. The language is coded in two lowercase char-
acters, according to the ISO 639-1 standard (for instance, en for English). The country is coded
in two uppercase characters, according to the ISO 3166-1 standard (for instance, GB for Great
Britain).

Changing the Culture for a User
The user culture can be changed during the browsing session—for instance, when a user decides to
switch from the English version to the French version of the application, or when a user logs in
to the application and uses the language stored in his preferences. That’s why the sfUser class
offers getter and setter methods for the user culture. Listing 13-2 shows how to use these methods
in an action.

Listing 13-2. Setting and Retrieving the Culture in an Action

// Culture setter
$this->getUser()->setCulture('en_US');

// Culture getter
$culture = $this->getUser()->getCulture();
 => en_US

Zaninotto_786-9 C13.fm Page 266 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 267

CULTURE IN THE URL

When using symfony’s localization and internationalization features, pages tend to have different versions for
a single URL—it all depends on the user session. This prevents you from caching or indexing your pages in a
search engine.

One solution is to make the culture appear in every URL, so that translated pages can be seen as different
URLs to the outside world. In order to do that, add the :sf_culture token in every rule of your application
routing.yml:

page:
 url: /:sf_culture/:page
 requirements: { sf_culture: (?:fr|en|de) }
 params: ...

article:
 url: /:sf_culture/:year/:month/:day/:slug
 requirements: { sf_culture: (?:fr|en|de) }
 params: ...

To avoid manually setting the sf_culture request parameter in every link_to(), symfony automatically
adds the user culture to the default routing parameters. It also works inbound because symfony will automatically
change the user culture if the sf_culture parameter is found in the URL.

Determining the Culture Automatically
In many applications, the user culture is defined during the first request, based on the browser
preferences. Users can define a list of accepted languages in their browser, and this data is sent
to the server with each request, in the Accept-Language HTTP header. You can retrieve it in
symfony through the sfRequest object. For instance, to get the list of preferred languages of a
user in an action, type this:

$languages = $this->getRequest()->getLanguages();

The HTTP header is a string, but symfony automatically parses it and converts it into an
array. So the preferred language of the user is accessible with $languages[0] in the preceding
example.

It can be useful to automatically set the user culture to the preferred browser languages in
a site home page or in a filter for all pages.

■Caution The Accept-Language HTTP header is not very reliable information, since users rarely know
how to modify it in their browser. Most of the time, the preferred browser language is the language of the
interface, and browsers are not available in all languages. If you decide to set the culture automatically
according to the browser preferred language, make sure you provide a way for the user to choose an alternate
language.

Zaninotto_786-9 C13.fm Page 267 Friday, December 22, 2006 5:41 AM

268 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

Standards and Formats
The internals of a web application don’t care about cultural particularities. Databases, for instance,
use international standards to store dates, amounts, and so on. But when data is sent to or
retrieved from users, a conversion needs to be made. Users won’t understand timestamps, and
they will prefer to declare their mother language as Français instead of French. So you will need
assistance to do the conversion automatically, based on the user culture.

Outputting Data in the User’s Culture
Once the culture is defined, the helpers depending on it will automatically have proper output.
For instance, the format_number() helper automatically displays a number in a format familiar
to the user, according to its culture, as shown in Listing 13-3.

Listing 13-3. Displaying a Number for the User’s Culture

<?php use_helper('Number') ?>

<?php $sf_user->setCulture('en_US') ?>
<?php echo format_number(12000.10) ?>
 => '12,000.10'

<?php $sf_user->setCulture('fr_FR') ?>
<?php echo format_number(12000.10) ?>
 => '12 000,10'

You don’t need to explicitly pass the culture to the helpers. They will look for it themselves
in the current session object. Listing 13-4 lists helpers that take into account the user culture
for their output.

Listing 13-4. Culture-Dependent Helpers

<?php use_helper('Date') ?>

<?php echo format_date(time()) ?>
 => '9/14/06'

<?php echo format_datetime(time()) ?>
 => 'September 14, 2006 6:11:07 PM CEST'

<?php use_helper('Number') ?>

<?php echo format_number(12000.10) ?>
 => '12,000.10'

<?php echo format_currency(1350, 'USD') ?>
 => '$1,350.00'

Zaninotto_786-9 C13.fm Page 268 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 269

<?php use_helper('I18N') ?>

<?php echo format_country('US') ?>
 => 'United States'

<?php format_language('en') ?>
 => 'English'

<?php use_helper('Form') ?>

<?php echo input_date_tag('birth_date', mktime(0, 0, 0, 9, 14, 2006)) ?>
 => input type="text" name="birth_date" id="birth_date" value="9/14/06" size="11" />

<?php echo select_country_tag('country', 'US') ?>
 => <select name="country" id="country"><option value="AF">Afghanistan</option>
 ...
 <option value="GB">United Kingdom</option>
 <option value="US" selected="selected">United States</option>
 <option value="UM">United States Minor Outlying Islands</option>
 <option value="UY">Uruguay</option>
 ...
 </select>

The date helpers can accept an additional format parameter to force a culture-independent
display, but you shouldn’t use it if your application is internationalized.

Getting Data from a Localized Input
If it is necessary to show data in the user’s culture, as for retrieving data, you should, as much
as possible, push users of your application to input already internationalized data. This approach
will save you from trying to figure out how to convert data with varying formats and uncertain
locality. For instance, who might enter a monetary value with comma separators in an input box?

You can frame the user input format either by hiding the actual data (as in a select_
country_tag()) or by separating the different components of complex data into several simple
inputs.

For dates, however, this is often not possible. Users are used to entering dates in their
cultural format, and you need to be able to convert such data to an internal (and international)
format. This is where the sfI18N class applies. Listing 13-5 demonstrates how this class is used.

Listing 13-5. Getting a Date from a Localized Format in an Action

$date= $this->getRequestParameter('birth_date');
$user_culture = $this->getUser()->getCulture();

// Getting a timestamp
$timestamp = sfI18N::getTimestampForCulture($date, $user_culture);

// Getting a structured date
list($d, $m, $y) = sfI18N::getDateForCulture($date, $user_culture);

Zaninotto_786-9 C13.fm Page 269 Friday, December 22, 2006 5:41 AM

270 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

Text Information in the Database
A localized application offers different content according to the user’s culture. For instance, an
online shop can offer products worldwide at the same price, but with a custom description for
every country. This means that the database must be able to store different versions of a given
piece of data, and for that, you need to design your schema in a particular way and use culture
each time you manipulate localized model objects.

Creating Localized Schema
For each table that contains some localized data, you should split the table in two parts: one
table that does not have any i18n column, and the other one with only the i18n columns.
The two tables are to be linked by a one-to-many relationship. This setup lets you add more
languages when required without changing your model. Let’s consider an example using a
Product table.

First, create tables in the schema.yml file, as shown in Listing 13-6.

Listing 13-6. Sample Schema for i18n Data, in config/schema.yml

my_connection:
 my_product:
 _attributes: { phpName: Product, isI18N: true, i18nTable: my_product_i18n }
 id: { type: integer, required: true, primaryKey: true,
 autoincrement: true }
 price: { type: float }

 my_product_i18n:
 _attributes: { phpName: ProductI18n }
 id: { type: integer, required: true, primaryKey: true,
 foreignTable: my_product, foreignReference: id }
 culture: { isCulture: true, type: varchar, size: 7, required: true,
 primaryKey: true }
 name: { type: varchar, size: 50 }

Notice the isI18N and i18nTable attributes in the first table, and the special culture column in
the second. All these are symfony-specific Propel enhancements.

The symfony automations can make this much faster to write. If the table containing inter-
nationalized data has the same name as the main table with _i18n as a suffix, and they are
related with a column named id in both tables, you can omit the id and culture columns in the
_i18n table as well as the specific i18n attributes for the main table; symfony will infer them. It
means that symfony will see the schema in Listing 13-7 as the same as the one in Listing 13-6.

Zaninotto_786-9 C13.fm Page 270 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 271

Listing 13-7. Sample Schema for i18n Data, Short Version, in config/schema.yml

my_connection:
 my_product:
 _attributes: { phpName: Product }
 id:
 price: float
 my_product_i18n:
 _attributes: { phpName: ProductI18n }
 name: varchar(50)

Using the Generated I18n Objects
Once the corresponding object model is built (don’t forget to call symfony propel-build-model
and clear the cache with a symfony cc after each modification of the schema.yml), you can use
your Product class with i18n support as if there were only one table, as shown in Listing 13-8.

Listing 13-8. Dealing with i18n Objects

$product = ProductPeer::retrieveByPk(1);
$product->setCulture('fr');
$product->setName('Nom du produit');
$product->save();

$product->setCulture('en');
$product->setName('Product name');
$product->save();

echo $product->getName();
 => 'Product name'

$product->setCulture('fr');
echo $product->getName();
 => 'Nom du produit'

If you’d rather not have to remember to change the culture each time you use an i18n
object, you can also change the hydrate() method in the object class. See an example in
Listing 13-9.

Listing 13-9. Overriding the hydrate() Method to Set the Culture, in myproject/lib/model/
Product.php

public function hydrate(ResultSet $rs, $startcol = 1)
{
 parent::hydrate($rs, $startcol);
 $this->setCulture(sfContext::getInstance()->getUser()->getCulture());
}

Zaninotto_786-9 C13.fm Page 271 Friday, December 22, 2006 5:41 AM

272 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

As for queries with the peer objects, you can restrict the results to objects having a translation
for the current culture by using the doSelectWithI18n method, instead of the usual doSelect, as
shown in Listing 13-10. In addition, it will create the related i18n objects at the same time as the
regular ones, resulting in a reduced number of queries to get the full content (refer to Chapter 18 for
more information about this method’s positive impacts on performance).

Listing 13-10. Retrieving Objects with an i18n Criteria

$c = new Criteria();
$c->add(ProductPeer::PRICE, 100, Criteria::LESS_THAN);
$products = ProductPeer::doSelectWithI18n($c, $culture);
// The $culture argument is optional
// The current user culture is used if no culture is given

So basically, you should never have to deal with the i18n objects directly, but instead pass
the culture to the model (or let it guess it) each time you do a query with the regular objects.

Interface Translation
The user interface needs to be adapted for i18n applications. Templates must be able to display
labels, messages, and navigation in several languages but with the same presentation. Symfony
recommends that you build your templates with the default language, and that you provide a
translation for the phrases used in your templates in a dictionary file. That way, you don’t need
to change your templates each time you modify, add, or remove a translation.

Configuring Translation
The templates are not translated by default, which means that you need to activate the template
translation feature in the settings.yml file prior to everything else, as shown in Listing 13-11.

Listing 13-11. Activating Interface Translation, in myapp/config/settings.yml

all:
 .settings:
 i18n: on

Using the Translation Helper
Let’s say that you want to create a website in English and French, with English being the default
language. Before even thinking about having the site translated, you probably wrote the templates
something like the example shown in Listing 13-12.

Listing 13-12. A Single-Language Template

Welcome to our website. Today's date is <?php echo format_date(date()) ?>

Zaninotto_786-9 C13.fm Page 272 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 273

For symfony to translate the phrases of a template, they must be identified as text to be
translated. This is the purpose of the __() helper (two underscores), a member of the I18N
helper group. So all your templates need to enclose the phrases to translate in such function
calls. Listing 13-12, for example, can be modified to look like Listing 13-13 (as you will see in the
“Handling Complex Translation Needs” section later in this chapter, there is an even better way to
call the translation helper in this example).

Listing 13-13. A Multiple-Language-Ready Template

<?php use_helper('I18N') ?>

<?php echo __('Welcome to our website.') ?>
<?php echo __("Today's date is ") ?>
<?php echo format_date(date()) ?>

■Tip If your application uses the I18N helper group for every page, it is probably a good idea to include it in the
standard_helpers setting in the settings.yml file, so that you avoid repeating use_helper('I18N') for
each template.

Using Dictionary Files
Each time the __() function is called, symfony looks for a translation of its argument in the
dictionary of the current user’s culture. If it finds a corresponding phrase, the translation is sent
back and displayed in the response. So the user interface translation relies on a dictionary file.

The dictionary files are written in the XML Localization Interchange File Format (XLIFF),
named according to the pattern messages.[language code].xml, and stored in the application
i18n/ directory.

XLIFF is a standard format based on XML. As it is well known, you can use third-party
translation tools to reference all text in your website and translate it. Translation firms know
how to handle such files and to translate an entire site just by adding a new XLIFF translation.

■Tip In addition to the XLIFF standard, symfony also supports several other translation back-ends for dictionaries:
gettext, MySQL, SQLite, and Creole. Refer to the API documentation for more information about configuring
these back-ends.

Listing 13-14 shows an example of the XLIFF syntax with the messages.fr.xml file necessary to
translate Listing 13-13 into French.

Zaninotto_786-9 C13.fm Page 273 Friday, December 22, 2006 5:41 AM

274 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

Listing 13-14. An XLIFF Dictionary, in myapp/i18n/messages.fr.xml

<?xml version="1.0" ?>
<xliff version="1.0">
 <file orginal="global" source-language="en_US" datatype="plaintext">
 <body>
 <trans-unit id="1">
 <source>Welcome to our website.</source>
 <target>Bienvenue sur notre site web.</target>
 </trans-unit>
 <trans-unit id="2">
 <source>Today's date is </source>
 <target>La date d'aujourd'hui est </target>
 </trans-unit>
 </body>
 </file>
</xliff>

The source-language attribute must always contain the full ISO code of your default
culture. Each translation is written in a trans-unit tag with a unique id attribute.

With the default user culture (set to en_US), the phrases are not translated and the raw argu-
ments of the __() calls are displayed. The result of Listing 13-13 is then similar to Listing 13-12.
However, if the culture is changed to fr_FR or fr_BE, the translations from the messages.fr.xml
file are displayed instead, and the result looks like Listing 13-15.

Listing 13-15. A Translated Template

Bienvenue sur notre site web. La date d'aujourd'hui est
<?php echo format_date(date()) ?>

If additional translations need to be done, simply add a new messages.XX.xml translation
file in the same directory.

Managing Dictionaries
If your messages.XX.xml file becomes too long to be readable, you can always split the translations
into several dictionary files, named by theme. For instance, you can split the messages.fr.xml
file into these three files in the application i18n/ directory:

• navigation.fr.xml

• terms_of_service.fr.xml

• search.fr.xml

Note that as soon as a translation is not to be found in the default messages.XX.xml file, you
must declare which dictionary is to be used each time you call the __() helper, using its third
argument. For instance, to output a string that is translated in the navigation.fr.xml dictionary,
write this:

<?php echo __('Welcome to our website', null, 'navigation') ?>

Zaninotto_786-9 C13.fm Page 274 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 275

Another way to organize translation dictionaries is to split them by module. Instead of
writing a single messages.XX.xml file for the whole application, you can write one in each
modules/[module_name]/i18n/ directory. It makes modules more independent from the appli-
cation, which is necessary if you want to reuse them, such as in plug-ins (see Chapter 17).

Handling Other Elements Requiring Translation
The following are other elements that may require translation:

• Images, text documents, or any other type of assets can also vary according to the user
culture. The best example is a piece of text with a special typography that is actually an
image. For these, you can create subdirectories named after the user culture:

<?php echo image_tag($sf_user->getCulture().'/myText.gif') ?>

• Error messages from validation files are automatically output by a __(), so you just need
to add their translation to a dictionary to have them translated.

• The default symfony pages (page not found, internal server error, restricted access, and
so on) are in English and must be rewritten in an i18n application. You should probably
create your own default module in your application and use __() in its templates. Refer
to Chapter 19 to see how to customize these pages.

Handling Complex Translation Needs
Translation only makes sense if the __() argument is a full sentence. However, as you sometimes
have formatting or variables mixed with words, you could be tempted to cut sentences into
several chunks, thus calling the helper on senseless phrases. Fortunately, the __() helper offers
a replacement feature based on tokens, which will help you to have a meaningful dictionary
that is easier to handle by translators. As with HTML formatting, you can leave it in the helper
call as well. Listing 13-16 shows an example.

Listing 13-16. Translating Sentences That Contain Code

// Base example
Welcome to all the new users.

There are <?php echo count_logged() ?> persons logged.

// Bad way to enable text translation
<?php echo __('Welcome to all the') ?>
<?php echo __('new') ?>
<?php echo __('users') ?>.

<?php echo __('There are') ?>
<?php echo count_logged() ?>
<?php echo __('persons logged') ?>

// Good way to enable text translation
<?php echo __('Welcome to all the new users') ?>

<?php echo __('There are %1% persons logged', array('%1%' => count_logged())) ?>

Zaninotto_786-9 C13.fm Page 275 Friday, December 22, 2006 5:41 AM

276 C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N

In this example, the token is %1%, but it can be anything, since the replacement function
used by the translation helper is strtr().

One of the common problems with translation is the use of the plural form. According to
the number of results, the text changes but not in the same way according to the language. For
instance, the last sentence in Listing 13-16 is not correct if count_logged() returns 0 or 1. You
could do a test on the return value of this function and choose which sentence to use accord-
ingly, but that would represent a lot of code. Additionally, different languages have different
grammar rules, and the declension rules of plural can be quite complex. As this problem is very
common, symfony provides a helper to deal with it, called format_number_choice(). Listing 13-17
demonstrates how to use this helper.

Listing 13-17. Translating Sentences Depending on the Value of Parameters

<?php echo format_number_choice(
 '[0]Nobody is logged|[1]There is 1 person logged|(1,+Inf]There are ➥

 %1% persons logged', array('%1%' => count_logged()), count_logged()) ?>

The first argument is the multiple possibilities of text. The second argument is the replace-
ment pattern (as with the __() helper) and is optional. The third argument is the number on
which the test is made to determine which text is taken.

The message/string choices are separated by the pipe (|) character followed by an array of
acceptable values, using the following syntax:

[1,2]: Accepts values between 1 and 2, inclusive

(1,2): Accepts values between 1 and 2, excluding 1 and 2

{1,2,3,4}: Only values defined in the set are accepted

[-Inf,0): Accepts values greater or equal to negative infinity and strictly less than 0

Any nonempty combinations of the delimiters of square brackets and parentheses are
acceptable.

The message will need to appear explicitly in the XLIFF file for the translation to work
properly. Listing 13-18 shows an example.

Listing 13-18. XLIFF Dictionary for a format_number_choice() Argument

...
<trans-unit id="3">
 <source>[0]Nobody is logged|[1]There is 1 person logged|(1,+Inf]There are ➥

 %1% persons logged</source>
 <target>[0]Personne n'est connecté|[1]Une personne est connectée|(1,+Inf]Il ➥

 y a %1% personnes en ligne</target>
</trans-unit>
...

Zaninotto_786-9 C13.fm Page 276 Friday, December 22, 2006 5:41 AM

C H A P T E R 1 3 ■ I 1 8 N A N D L 1 0 N 277

A FEW WORDS ABOUT CHARSETS

Dealing with internationalized content in templates often leads to problems with charsets. If you use a localized
charset, you will need to change it each time the user changes culture. In addition, the templates written in a
given charset will not display the characters of another charset properly.

This is why, as soon as you deal with more than one culture, all your templates must be saved in UTF-8,
and the layout must declare the content with this charset. You won’t have any unpleasant surprises if you
always work with UTF-8, and you will save yourself from a big headache.

Symfony applications rely on one central setting for the charset, in the settings.yml file. Changing
this parameter will change the content-type header of all responses.

all:
 .settings:
 charset: utf-8

Calling the Translation Helper Outside a Template
Not all the text that is displayed in a page comes from templates. That’s why you often need to
call the __() helper in other parts of your application: actions, filters, model classes, and so on.
Listing 13-19 shows how to call the helper in an action by retrieving the current instance of the
I18N object through the context singleton.

Listing 13-19. Calling __() in an Action

$this->getContext()->getI18N()->__($text, $args, 'messages');

Summary
Handling internationalization and localization in web applications is painless if you know how
to deal with the user culture. The helpers automatically take it into account to output correctly
formatted data, and the localized content from the database is seen as if it were part of a simple
table. As for the interface translation, the __() helper and XLIFF dictionary ensure that you will
have maximum versatility with minimum work.

Zaninotto_786-9 C13.fm Page 277 Friday, December 22, 2006 5:41 AM

Zaninotto_786-9 C13.fm Page 278 Friday, December 22, 2006 5:41 AM

■ ■ ■

P A R T 4

Development Tools

Zaninotto_786-9 C14.fm Page 279 Friday, December 22, 2006 5:44 AM

Zaninotto_786-9 C14.fm Page 280 Friday, December 22, 2006 5:44 AM

281

■ ■ ■

C H A P T E R 1 4

Generators

Many applications are based on data stored in a database and offer an interface to access
it. Symfony automates the repetitive task of creating a module providing data manipulation
capabilities based on a Propel object. If your object model is properly defined, symfony can
even generate an entire site administration automatically. This chapter will tell you of the two
generators bundled in symfony: scaffolding and administration generator. The latter relies on
a special configuration file with a complete syntax, so most of this chapter describes the various
possibilities of the administration generator.

Code Generation Based on the Model
In a web application, data access operations can be categorized as one of the following:

• Creation of a record

• Retrieval of records

• Update of a record (and modification of its columns)

• Deletion of a record

These operations are so common that they have a dedicated acronym: CRUD. Many pages
can be reduced to one of them. For instance, in a forum application, the list of latest posts is a
retrieve operation, and the reply to a post corresponds to a create operation.

The basic actions and templates that implement the CRUD operations for a given table are
repeatedly created in web applications. In symfony, the model layer contains enough informa-
tion to allow generating the CRUD operations code, so as to speed up the early part of the
development or the back-end interfaces.

All the code generation tasks based on the model create an entire module, and result from
a single call to the symfony command line in the shape of the following:

> symfony <TASK_NAME> <APP_NAME> <MODULE_NAME> <CLASS_NAME>

The code generation tasks are propel-init-crud, propel-generate-crud, and propel-
init-admin.

Zaninotto_786-9 C14.fm Page 281 Friday, December 22, 2006 5:44 AM

282 C H A P T E R 1 4 ■ G E N E R A T O R S

Scaffolding and Administration
During application development, code generation can be used for two distinct purposes:

A scaffolding is the basic structure (actions and templates) required to operate CRUD on a
given table. The code is minimal, since it is meant to serve as a guideline for further devel-
opment. It is a starting base that must be adapted to match your logic and presentation
requirements. Scaffoldings are mostly used during the development phase, to provide a
web access to a database, to build a prototype, or to bootstrap a module primarily based
on a table.

An administration is a sophisticated interface for data manipulation, dedicated to back-
end administration. Administrations differ from scaffoldings because their code is not
meant to be modified manually. They can be customized, extended, or assembled through
configuration or inheritance. Their presentation is important, and they take advantage of
additional features such as sorting, pagination, and filtering. An administration can be
created and handed over to the client as a finished part of the software product.

The symfony command line uses the word crud to designate a scaffolding, and admin for
an administration.

Initiating or Generating Code
Symfony offers two ways to generate code: either by inheritance (init) or by code generation
(generate).

You can initiate a module, that is, create empty classes that inherit from the framework.
This masks the PHP code of the actions and the templates to avoid them from being modified.
This is useful if your data structure is not final, or if you just need a quick interface to a database
to manipulate records. The code executed at runtime is not located in your application, but in
the cache. The command-line tasks for this kind of generation start with propel-init-.

Initiated action code is empty. For instance, an initiated article module has actions
looking like this:

class articleActions extends autoarticleActions
{
}

On the other hand, you can also generate the code of the actions and the templates so that
it can be modified. The resulting module is therefore independent from the classes of the
framework, and cannot be altered using configuration files. The command-line tasks for this
kind of generation start with propel-generate-.

As the scaffoldings are built to serve as a base for further developments, it is often best to
generate a scaffolding. On the other hand, an administration should be easy to update through
a change in the configuration, and it should remain usable even if the data model changes.
That’s why administrations are initiated only.

Example Data Model
Throughout this chapter, the listings will demonstrate the capabilities of the symfony generators
based on a simple example, which will remind you of Chapter 8. This is the well-known example of

Zaninotto_786-9 C14.fm Page 282 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 283

the weblog application, containing two Article and Comment classes. Listing 14-1 shows its
schema, illustrated in Figure 14-1.

Listing 14-1. schema.yml of the Example Weblog Application

propel:
 blog_article:
 _attributes: { phpName: Article }
 id:
 title: varchar(255)
 content: longvarchar
 created_at:
 blog_comment:
 _attributes: { phpName: Comment }
 id:
 article_id:
 author: varchar(255)
 content: longvarchar
 created_at:

Figure 14-1. Example data model

There is no particular rule to follow during the schema creation to allow code generation.
Symfony will use the schema as is and interpret its attributes to generate a scaffolding or an
administration.

■Tip To get the most out of this chapter, you need to actually do the examples. You will get a better under-
standing of what symfony generates and what can be done with the generated code if you have a view of
every step described in the listings. So you are invited to create a data structure such as the one described
previously, to create a database with a blog_article and a blog_comment table, and to populate this
database with sample data.

blog_article

id

content (O)
title (O)
created_at (O)

blog_comment

id

article_id (FK)
author (O)
content (O)
created_at (O)

Zaninotto_786-9 C14.fm Page 283 Friday, December 22, 2006 5:44 AM

284 C H A P T E R 1 4 ■ G E N E R A T O R S

Scaffolding
Scaffolding is of great use in the early days of application development. With a single command,
symfony creates an entire module based on the description of a given table.

Generating a Scaffolding
To generate the scaffolding for an article module based on the Article model class, type the
following:

> symfony propel-generate-crud myapp article Article

Symfony reads the definition of the Article class in the schema.yml and creates a set of
templates and actions based on it, in the myapp/modules/article/ directory.

The generated module contains three views. The list view, which is the default view,
displays the rows of the blog_article table when browsing to http://localhost/myapp_dev.php/
article as reproduced in Figure 14-2.

Figure 14-2. list view of the article module

Clicking an article identifier displays the show view. The details of one row appear in a
single page, as in Figure 14-3.

Figure 14-3. show view of the article module

Editing an article by clicking the edit link, or creating a new article by clicking the create
link in the list view, displays the edit view, reproduced in Figure 14-4.

Using this module, you can create new articles, and modify or delete existing ones. The
generated code is a good base for further developments. Listing 14-2 lists the generated actions
and templates of the new module.

Zaninotto_786-9 C14.fm Page 284 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 285

Figure 14-4. edit view of the article module

Listing 14-2. Generated CRUD Elements, in myapp/modules/article/

// In actions/actions.class.php
index // Forwards to the list action below
list // Displays the list of all the records of the table
show // Displays the lists of all columns of a record
edit // Displays a form to modify the columns of a record
update // Action called by the edit action form
delete // Deletes a record
create // Creates a new record

// In templates/
editSuccess.php // Record edition form (edit view)
listSuccess.php // List of all records (list view)
showSuccess.php // Detail of one record (show view)

The logic of these actions and templates is quite simple and explicit, and so rather than
reproduce and explain it all, Listing 14-3 gives just a sneak peek on the generated action class.

Listing 14-3. Generated Action Class, in myapp/modules/article/actions/actions.class.php

class articleActions extends sfActions
{
 public function executeIndex()
 {
 return $this->forward('article', 'list');
 }

 public function executeList()
 {
 $this->articles = ArticlePeer::doSelect(new Criteria());
 }

 public function executeShow()
 {
 $this->article = ArticlePeer::retrieveByPk($this->getRequestParameter('id'));
 $this->forward404Unless($this->article);
 }
 ...

Zaninotto_786-9 C14.fm Page 285 Friday, December 22, 2006 5:44 AM

286 C H A P T E R 1 4 ■ G E N E R A T O R S

Modify the generated code to fit your requirements, repeat the CRUD generation for all
the tables that you want to interact with, and you have a basic working application. Generating
a scaffolding really bootstraps development; let symfony do the dirty job for you and focus on
the interface and specifics.

Initiating a Scaffolding
Initiating a scaffolding is mostly useful when you need to check that you can access the data in
the database. It is fast to build and also fast to delete once you’re sure that everything works
fine.

To initiate a Propel scaffolding that will create an article module to deal with the records
of the Article model class name, type the following:

> symfony propel-init-crud myapp article Article

You can then access the list view using the default action:

http://localhost/myapp_dev.php/article

The resulting pages are exactly the same as for a generated scaffolding. You can use them
as a simple web interface to the database.

If you check the newly created actions.class.php in the article module, you will see that
it is empty: Everything is inherited from an auto-generated class. The same goes for the templates:
There is no template file in the templates/ directory. The code behind the initiated actions and
templates is the same as for a generated scaffolding, but lies only in the application cache
(myproject/cache/myapp/prod/module/autoArticle/).

During application development, developers initiate scaffoldings to interact with the data,
regardless of interface. The code is not meant to be customized; an initiated scaffolding can be
seen as a simple alternative to PHPmyadmin to manage data.

Administration
Symfony can generate more advanced modules, still based on model class definitions from the
schema.yml file, for the back-end of your applications. You can create an entire site administra-
tion with only generated administration modules. The examples of this section will describe
administration modules added to a backend application. If your project doesn’t have a backend
application, create its skeleton now by calling the init-app task:

> symfony init-app backend

Administration modules interpret the model by way of a special configuration file called
generator.yml, which can be altered to extend all the generated components and the module
look and feel. Such modules benefit from the usual module mechanisms described in previous
chapters (layout, validation, routing, custom configuration, autoloading, and so on). You can
also override the generated action or templates, in order to integrate your own features into the
generated administration, but generator.yml should take care of the most common require-
ments and restrict the use of PHP code only to the very specific.

Zaninotto_786-9 C14.fm Page 286 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 287

Initiating an Administration Module
With symfony, you build an administration on a per-module basis. A module is generated
based on a Propel object using the propel-init-admin task, which uses syntax similar to that
used to initiate a scaffolding:

> symfony propel-init-admin backend article Article

This call is enough to create an article module in the backend application based on the
Article class definition, and is accessible by the following:

http://localhost/backend.php/article

The look and feel of a generated module, illustrated in Figures 14-5 and 14-6, is sophisticated
enough to make it usable out of the box for a commercial application.

Figure 14-5. list view of the article module in the backend application

Figure 14-6. edit view of the article module in the backend application

Zaninotto_786-9 C14.fm Page 287 Friday, December 22, 2006 5:44 AM

288 C H A P T E R 1 4 ■ G E N E R A T O R S

The difference between the interface of the scaffolding and the one of the administration
may not look significant now, but the configurability of the administration will allow you to
enhance the basic layout with many additional features without a line of PHP.

■Note Administration modules can only be initiated (not generated).

A Look at the Generated Code
The code of the Article administration module, in the apps/backend/modules/article/ directory,
is empty because it is only initiated. The best way to review the generated code of this module is to
interact with it using the browser, and then check the contents of the cache/ folder. Listing 14-4 lists
the generated actions and the templates found in the cache.

Listing 14-4. Generated Administration Elements, in cache/backend/ENV/modules/article/

// In actions/actions.class.php
create // Forwards to edit
delete // Deletes a record
edit // Displays a form to modify the fields of a record
 // And handles the form submission
index // Forwards to list
list // Displays the list of all the records of the table
save // Forwards to edit

// In templates/
_edit_actions.php
_edit_footer.php
_edit_form.php
_edit_header.php
_edit_messages.php
_filters.php
_list.php
_list_actions.php
_list_footer.php
_list_header.php
_list_messages.php
_list_td_actions.php
_list_td_stacked.php
_list_td_tabular.php
_list_th_stacked.php
_list_th_tabular.php
editSuccess.php
listSuccess.php

Zaninotto_786-9 C14.fm Page 288 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 289

This shows that a generated administration module is composed mainly of two views, edit
and list. If you have a look at the code, you will find it to be very modular, readable, and
extensible.

Introducing the generator.yml Configuration File
The main difference between scaffoldings and administrations (apart from the fact that
administration-generated modules don’t have a show action) is that an administration relies
on parameters found in the generator.yml YAML configuration file. To see the default config-
uration of a newly created administration module, open the generator.yml file, located in the
backend/modules/article/config/generator.yml directory and reproduced in Listing 14-5.

Listing 14-5. Default Generator Configuration, in backend/modules/article/config/generator.yml

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default

This configuration is enough to generate the basic administration. Any customization is
added under the param key, after the theme line (which means that all lines added at the bottom
of the generator.yml file must at least start with four blank spaces to be properly indented).
Listing 14-6 shows a typical customized generator.yml.

Listing 14-6. Typical Complete Generator Configuration

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default

 fields:
 author_id: { name: Article author }

 list:
 title: List of all articles
 display: [title, author_id, category_id]
 fields:
 published_on: { params: date_format='dd/MM/yy' }
 layout: stacked
 params: |
 %%is_published%%%%=title%%
by %%author%%
 in %%category%% (%%published_on%%)<p>%%content_summary%%</p>
 filters: [title, category_id, author_id, is_published]
 max_per_page: 2

Zaninotto_786-9 C14.fm Page 289 Friday, December 22, 2006 5:44 AM

290 C H A P T E R 1 4 ■ G E N E R A T O R S

 edit:
 title: Editing article "%%title%%"
 display:
 "Post": [title, category_id, content]
 "Workflow": [author_id, is_published, created_on]
 fields:
 category_id: { params: disabled=true }
 is_published: { type: plain}
 created_on: { type: plain, params: date_format='dd/MM/yy' }
 author_id: { params: size=5 include_custom=>> Choose an author << }
 published_on: { credentials: [[admin, superdamin]] }
 content: { params: rich=true tinymce_options=height:150 }

The following sections explain in detail all the parameters that can be used in this config-
uration file.

Generator Configuration
The generator configuration file is very powerful, allowing you to alter the generated adminis-
tration in many ways. But such capabilities come with a price: The overall syntax description is
long to read and learn, making this chapter one of the longest in this book. The symfony website
proposes an additional resource that will help you learn this syntax: the administration generator
cheat sheet, reproduced in Figure 14-7. Download it from http://www.symfony-project.com/
uploads/assets/sfAdminGeneratorRefCard.pdf, and keep it close to you when you read the
following examples of this chapter.

The examples of this section will tweak the article administration module, as well as the
comment administration module, based on the Comment class definition. Create the latter with
the propel-init-admin task:

> symfony propel-init-admin backend comment Comment

Zaninotto_786-9 C14.fm Page 290 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 291

Figure 14-7. The administration generator cheat sheet

Fields
By default, the columns of the list view and the fields of the edit view are the columns defined
in schema.yml. With generator.yml, you can choose which fields are displayed, which ones are
hidden, and add fields of your own—even if they don’t have a direct correspondence in the
object model.

Field Settings

The administration generator creates a field for each column in the schema.yml file. Under the
fields key, you can modify the way each field is displayed, formatted, etc. For instance, the
field settings shown in Listing 14-7 define a custom label class and input type for the title
field, and a label and a tooltip for the content field. The following sections will describe in detail
how each parameter works.

Listing 14-7. Setting a Custom Label for a Column

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default

Zaninotto_786-9 C14.fm Page 291 Friday, December 22, 2006 5:44 AM

292 C H A P T E R 1 4 ■ G E N E R A T O R S

 fields:
 title: { name: Article Title, type: textarea_tag, params: class=foo }
 content: { name: Body, help: Fill in the article body }

In addition to this default definition for all the views, you can override the field settings for
a given view (list and edit), as demonstrated in Listing 14-8.

Listing 14-8. Overriding Global Settings View per View

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default

 fields:
 title: { name: Article Title }
 content: { name: Body }

 list:
 fields:
 title: { name: Title }

 edit:
 fields:
 content: { name: Body of the article }

This is a general principle: Any settings that are set for the whole module under the fields
key can be overridden by view-specific (list and edit) areas that follow.

Adding Fields to the Display

The fields that you define in the fields section can be displayed, hidden, ordered, and grouped
in various ways for each view. The display key is used for that purpose. For instance, to arrange
the fields of the comment module, use the code of Listing 14-9.

Zaninotto_786-9 C14.fm Page 292 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 293

Listing 14-9. Choosing the Fields to Display, in modules/comment/config/generator.yml

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Comment
 theme: default

 fields:
 article_id: { name: Article }
 created_at: { name: Published on }
 content: { name: Body }

 list:
 display: [id, article_id, content]

 edit:
 display:
 NONE: [article_id]
 Editable: [author, content, created_at]

The list will then display three columns, as in Figure 14-8, and the edit form will display
four fields, assembled in two groups, as in Figure 14-9.

Figure 14-8. Custom column setting in the list view of the comment module

Zaninotto_786-9 C14.fm Page 293 Friday, December 22, 2006 5:44 AM

294 C H A P T E R 1 4 ■ G E N E R A T O R S

Figure 14-9. Grouping fields in the edit view of the comment module

So you can use the display setting in two ways:

• To select the columns to display and the order in which they appear, put the fields in a
simple array—as in the previous list view.

• To group fields, use an associative array with the group name as a key, or NONE for a group
with no name. The value is still an array of ordered column names.

■Tip By default, the primary key columns never appear in either view.

Custom Fields

As a matter of fact, the fields configured in generator.yml don’t even need to correspond to
actual columns defined in the schema. If the related class offers a custom getter, it can be used
as a field for the list view; if there is a getter and/or a setter, it can also be used in the edit view.
For instance, you can extend the Article model with a getNbComments() method similar to the
one in Listing 14-10.

Listing 14-10. Adding a Custom Getter in the Model, in lib/model/Article.class.php

public function getNbComments()
{
 return $this->countComments();
}

Then nb_comments is available as a field in the generated module (notice that the getter
uses a camelCase version of the field name), as in Listing 14-11.

Zaninotto_786-9 C14.fm Page 294 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 295

Listing 14-11. Custom Getters Provide Additional Columns for Administration Modules, in
backend/modules/article/config/generator.yml

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default

 list:
 display: [id, title, nb_comments, created_at]

The resulting list view of the article module is shown in Figure 14-10.

Figure 14-10. Custom field in the list view of the article module

Custom fields can even return HTML code to display more than raw data. For instance,
you can extend the Comment class with a getArticleLink() method as in Listing 14-12.

Listing 14-12. Adding a Custom Getter Returning HTML, in lib/model/Comment.class.php

public function getArticleLink()
{
 return link_to($this->getArticle()->getTitle(),
 'article/edit?id='.$this->getArticleId());
}

You can use this new getter as a custom field in the comment/list view with the same
syntax as in Listing 14-11. See the example in Listing 14-13, and the result in Figure 14-11,
where the HTML code output by the getter (a hyperlink to the article) appears in the second
column instead of the article primary key.

Listing 14-13. Custom Getters Returning HTML Can Also Be Used As Additional Columns,
in modules/comment/config/generator.yml

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Comment
 theme: default

Zaninotto_786-9 C14.fm Page 295 Friday, December 22, 2006 5:44 AM

296 C H A P T E R 1 4 ■ G E N E R A T O R S

 list:
 display: [id, article_link, content]

Figure 14-11. Custom field in the list view of the comment module

Partial Fields

The code located in the model must be independent from the presentation. The example of the
getArticleLink() method earlier doesn’t respect this principle of layer separation, because
some view code appears in the model layer. To achieve the same goal in a correct way, you’d
better put the code that outputs HTML for a custom field in a partial. Fortunately, the admin-
istration generator allows it if you declare a field name prefixed by an underscore. In that case,
the generator.yml file of Listing 14-13 is to be modified as in Listing 14-14.

Listing 14-14. Partials Can Be Used As Additional Columns—Use the _ Prefix

 list:
 display: [id, _article_link, created_at]

For this to work, an _article_link.php partial must be created in the modules/comment/
templates/ directory, as in Listing 14-15.

Listing 14-15. Example Partial for the list View, in modules/comment/templates/_article_link.php

<?php echo link_to($comment->getArticle()->getTitle(),
 'article/edit?id='.$comment->getArticleId()) ?>

Notice that the partial template of a partial field has access to the current object through a
variable named by the class ($comment in this example). For instance, for a module built for a
class called UserGroup, the partial will have access to the current object through the $user_group
variable.

The result is the same as in Figure 14-11, except that the layer separation is respected.
If you get used to respecting the layer separation, you will end up with more maintainable
applications.

Zaninotto_786-9 C14.fm Page 296 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 297

If you need to customize the parameters of a partial field, do the same as for a normal field,
under the field key. Just don’t include the leading underscore (_) in the key—see an example
in Listing 14-16.

Listing 14-16. Partial Field Properties Can Be Customized Under the fields Key

 fields:
 article_link: { name: Article }

If your partial becomes crowded with logic, you’ll probably want to replace it with a
component. Change the _ prefix to ~ and you can define a component field, as you can see in
Listing 14-17.

Listing 14-17. Components Can Be Used As Additional Columns—Use the ~ Prefix

 ...
 list:
 display: [id, ~article_link, created_at]

In the generated template, this will result by a call to the articleLink component of the
current module.

■Note Custom and partial fields can be used in the list view, the edit view, and for filters. If you use the
same partial for several views, the context ('list', 'edit', or 'filter') is stored in the $type variable.

View Customization
To change the edit and list views’ appearance, you could be tempted to alter the templates.
But because they are automatically generated, doing so isn’t a very good idea. Instead, you
should use the generator.yml configuration file, because it can do almost everything that you
need without sacrificing modularity.

Changing the View Title

In addition to a custom set of fields, the list and edit pages can have a custom page title. For
instance, if you want to customize the title of the article views, do as in Listing 14-18. The
resulting edit view is illustrated in Figure 14-12.

Listing 14-18. Setting a Custom Title for Each View, in backend/modules/article/config/
generator.yml

 list:
 title: List of Articles
 ...

Zaninotto_786-9 C14.fm Page 297 Friday, December 22, 2006 5:44 AM

298 C H A P T E R 1 4 ■ G E N E R A T O R S

 edit:
 title: Body of article %%title%%
 display: [content]

Figure 14-12. Custom title in the edit view of the article module

As the default titles use the class name, they are often good enough—provided that your
model uses explicit class names.

■Tip In the string values of generator.yml, the value of a field can be accessed via the name of the field
surrounded by %%.

Adding Tooltips

In the list and edit views, you can add tooltips to help describe the fields that are displayed.
For instance, to add a tooltip to the article_id field of the edit view of the comment module, add
a help property in the fields definition as in Listing 14-19. The result is shown in Figure 14-13.

Listing 14-19. Setting a Tooltip in the edit View, in modules/comment/config/generator.yml

 edit:
 fields:
 ...
 article_id: { help: The current comment relates to this article }

Figure 14-13. Tooltip in the edit view of the comment module

In the list view, tooltips are displayed in the column header; in the edit view, they appear
under the input.

Zaninotto_786-9 C14.fm Page 298 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 299

Modifying the Date Format

Dates can be displayed using a custom format as soon as you use the date_format param, as
demonstrated in Listing 14-20.

Listing 14-20. Formatting a Date in the list View

 list:
 fields:
 created_at: { name: Published, params: date_format='dd/MM' }

It takes the same format parameter as the format_date() helper described in the previous
chapter.

ADMINISTRATION TEMPLATES ARE I18N READY

All of the text found in the generated templates is automatically internationalized (i.e., enclosed in a call to the
__() helper). This means that you can easily translate a generated administration by adding the translations
of the phrases in an XLIFF file, in your apps/myapp/i18n/ directory, as explained in the previous chapter.

List View–Specific Customization
The list view can display the details of a record in a tabular way, or with all the details stacked
in one line. It also contains filters, pagination, and sorting features. These features can be altered by
configuration, as described in the next sections.

Changing the Layout

By default, the hyperlink between the list view and the edit view is borne by the primary key
column. If you refer back to Figure 14-11, you will see that the id column in the comment list
not only shows the primary key of each comment, but also provides a hyperlink allowing users
to access the edit view.

If you prefer the hyperlink to the detail of the record to appear on another column, prefix
the column name by an equal sign (=) in the display key. Listing 14-21 shows how to remove
the id from the displayed fields of the comment list and to put the hyperlink on the content
field instead. Check Figure 14-14 for a screenshot.

Listing 14-21. Moving the Hyperlink for the edit View in the list View, in modules/comment/
config/generator.yml

 list:
 display: [article_link, =content]

Zaninotto_786-9 C14.fm Page 299 Friday, December 22, 2006 5:44 AM

300 C H A P T E R 1 4 ■ G E N E R A T O R S

Figure 14-14. Moving the link to the edit view on another column, in the list view of the comment
module

By default, the list view uses the tabular layout, where the fields appear as columns, as
shown previously. But you can also use the stacked layout and concatenate the fields into a
single string that expands on the full length of the table. If you choose the stacked layout, you
must set in the params key the pattern defining the value of each line of the list. For instance,
Listing 14-22 defines a stacked layout for the list view of the comment module. The result appears
in Figure 14-15.

Listing 14-22. Using a stacked Layout in the list View, in modules/comment/config/
generator.yml

 list:
 layout: stacked
 params: |
 %%=content%%

 (sent by %%author%% on %%created_at%% about %%article_link%%)
 display: [created_at, author, content]

Figure 14-15. Stacked layout in the list view of the comment module

Zaninotto_786-9 C14.fm Page 300 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 301

Notice that a tabular layout expects an array of fields under the display key, but a stacked
layout uses the params key for the HTML code generated for each record. However, the display
array is still used in a stacked layout to determine which column headers are available for the
interactive sorting.

Filtering the Results

In a list view, you can add a set of filter interactions. With these filters, users can both display
fewer results and get to the ones they want faster. Configure the filters under the filters key,
with an array of field names. For instance, add a filter on the article_id, author, and created_at
fields to the comment list view, as in Listing 14-23, to display a filter box similar to the one in
Figure 14-16. You will need to add a __toString() method to the Article class (returning, for
instance, the article title) for this to work.

Listing 14-23. Setting the Filters in the list View, in modules/comment/config/generator.yml

 list:
 filters: [article_id, author, created_at]
 layout: stacked
 params: |
 %%=content%%

 (sent by %%author%% on %%created_at%% about %%article_link%%)
 display: [created_at, author, content]

Figure 14-16. Filters in the list view of the comment module

The filters displayed by symfony depend on the column type:

• For text columns (like the author field in the comment module), the filter is a text input
allowing text-based search with wildcards (*).

• For foreign keys (like the article_id field in the comment module), the filter is a drop-
down list of the records of the related table. As for the regular object_select_tag(), the
options of the drop-down list are the ones returned by the __toString() method of the
related class.

Zaninotto_786-9 C14.fm Page 301 Friday, December 22, 2006 5:44 AM

302 C H A P T E R 1 4 ■ G E N E R A T O R S

• For date columns (like the created_at field in the comment module), the filter is a pair of
rich date tags (text fields filled by calendar widgets), allowing the selection of a time interval.

• For Boolean columns, the filter is a drop-down list having true, false, and true or false
options—the last value reinitializes the filter.

Just like you use partial fields in lists, you can also use partial filters to create a filter that
symfony doesn’t handle on its own. For instance, imagine a state field that may contain only
two values (open and closed), but for some reason you store those values directly in the field
instead of using a table relation. A simple filter on this field (of type string) would be a text-
based search, but what you want is probably a drop-down list of values. That’s easy to achieve
with a partial filter. See Listing 14-24 for an example implementation.

Listing 14-24. Using a Partial Filter

// Define the partial, in templates/_state.php
<?php echo select_tag('filters[state]', options_for_select(array(
 '' => '',
 'open' => 'open',
 'closed' => 'closed',
), isset($filters['state']) ? $filters['state'] : '')) ?>

// Add the partial filter in the filter list, in config/generator.yml
 list:
 filters: [date, _state]

Notice that the partial has access to a $filters variable, which is useful to get the current
value of the filter.

There is one last option that can be very useful for looking for empty values. Imagine that
you want to filter the list of comments to display only the ones that have no author. The problem is
that if you leave the author filter empty, it will be ignored. The solution is to set the filter_is_empty
field setting to true, as in Listing 14-25, and the filter will display an additional check box, which will
allow you to look for empty values, as illustrated in Figure 14-17.

Listing 14-25. Adding Filtering of Empty Values on the author Field in the list View

 list:
 fields:
 author: { filter_is_empty: true }
 filters: [article_id, author, created_at]

Zaninotto_786-9 C14.fm Page 302 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 303

Figure 14-17. Allowing the filtering of empty author values

Sorting the List

In a list view, the table headers are hyperlinks that can be used to reorder the list, as shown in
Figure 14-18. These headers are displayed both in the tabular and stacked layouts. Clicking
these links reloads the page with a sort parameter that rearranges the list order accordingly.

Figure 14-18. Table headers of the list view are sort controls.

You can reuse the syntax to point to a list directly sorted according to a column:

<?php echo link_to('Comment list by date', 'comment/list?sort=created_at ➥

&type=desc') ?>

You can also define a default sort order for the list view directly in the generator.yml file.
The syntax follows the example given in Listing 14-26.

Listing 14-26. Setting a Default Sort Field in the list View

 list:
 sort: created_at
 # Alternative syntax, to specify a sort order
 sort: [created_at, desc]

■Note Only the fields that correspond to an actual column are transformed into sort controls—not the
custom or partial fields.

Zaninotto_786-9 C14.fm Page 303 Friday, December 22, 2006 5:44 AM

304 C H A P T E R 1 4 ■ G E N E R A T O R S

Customizing the Pagination

The generated administration effectively deals with even large tables, because the list view
uses pagination by default. When the actual number of rows in a table exceeds the number of
maximum rows per page, pagination controls appear at the bottom of the list. For instance,
Figure 14-19 shows the list of comments with six test comments in the table but a limit of five
comments displayed per page. Pagination ensures a good performance, because only the
displayed rows are effectively retrieved from the database, and a good usability, because even
tables with millions of rows can be managed by an administration module.

Figure 14-19. Pagination controls appear on long lists.

You can customize the number of records to be displayed in each page with the
max_per_page parameter:

 list:
 max_per_page: 5

Using a Join to Speed Up Page Delivery

By default, the administration generator uses a simple doSelect() to retrieve a list of records.
But, if you use related objects in the list, the number of database queries required to display the
list may rapidly increase. For instance, if you want to display the name of the article in a list
of comments, an additional query is required for each post in the list to retrieve the related
Article object. So you may want to force the pager to use a doSelectJoinXXX() method to optimize
the number of queries. This can be specified with the peer_method parameter.

 list:
 peer_method: doSelectJoinArticle

Chapter 18 explains the concept of Join more extensively.

Edit View–Specific Customization
In an edit view, the user can modify the value of each column for a given record. Symfony
determines the type of input to display according to the data type of the column. It then generates

Zaninotto_786-9 C14.fm Page 304 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 305

an object_*_tag helper, and passes that helper the object and the property to edit. For instance,
if the article edit view configuration stipulates that the user can edit the title field:

 edit:
 display: [title, ...]

then the edit page will display a regular text input tag to edit the title because this column is
defined as a varchar type in the schema.

<?php echo object_input_tag($article, 'getTitle') ?>

Changing the Input Type

The default type-to-field conversion rules are as follows:

• A column defined as integer, float, char, varchar(size) appears in the edit view as an
object_input_tag().

• A column defined as longvarchar appears as an object_textarea_tag().

• A foreign key column appears as an object_select_tag().

• A column defined as boolean appears as an object_checkbox_tag().

• A column defined as a timestamp or date appears as an object_input_date_tag().

You may want to override these rules to specify a custom input type for a given field. To
that extent, set the type parameter in the fields definition to a specific form helper name. As
for the options of the generated object_*_tag(), you can change them with the params parameter.
See an example in Listing 14-27.

Listing 14-27. Setting a Custom Input Type and Params for the edit View

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Comment
 theme: default

 edit:
 fields:
 ## Drop the input, just display plain text
 id: { type: plain }
 ## The input is not editable
 author: { params: disabled=true }
 ## The input is a textarea (object_textarea_tag)
 content: { type: textarea_tag,
 params: rich=true css=user.css tinymce_options=width:330 }
 ## The input is a select (object_select_tag)
 article_id: { params: include_custom=Choose an article }
 ...

Zaninotto_786-9 C14.fm Page 305 Friday, December 22, 2006 5:44 AM

306 C H A P T E R 1 4 ■ G E N E R A T O R S

The params parameters are passed as options to the generated object_*_tag(). For instance,
the params definition for the preceding article_id will produce in the template the following:

<?php echo object_select_tag($comment, 'getArticleId', 'related_class=Article',
 'include_custom=Choose an article') ?>

This means that all the options usually available in the form helpers can be customized in
an edit view.

Handling Partial Fields

Partial fields can be used in edit views just like in list views. The difference is that you have to
handle by hand, in the action, the update of the column according to the value of the request
parameter sent by the partial field. Symfony knows how to handle the normal fields (corre-
sponding to actual columns), but can’t guess how to handle the inputs you may include in
partial fields.

For instance, imagine an administration module for a User class where the available fields
are id, nickname, and password. The site administrator must be able to change the password of
a user upon request, but the edit view must not display the value of the password field for
security reasons. Instead, the form should display an empty password input that the site
administrator can fill to change the value. The generator settings for such an edit view are then
similar to Listing 14-28.

Listing 14-28. Including a Partial Field in the edit View

 edit:
 display: [id, nickname, _newpassword]
 fields:
 newpassword: { name: Password, help: Enter a password to change it,
 leave the field blank to keep the current one }

The templates/_newpassword.php partial contains something like this:

<?php echo input_password_tag('newpassword', '') ?>

Notice that this partial uses a simple form helper, not an object form helper, since it is not
desirable to retrieve the password value from the current User object to populate the form input—
which could disclose the user password.

Now, in order to use the value from this control to update the object in the action, you
need to extend the updateUserFromRequest() method in the action. To do that, create a method
with the same name in the action class file with the custom behavior for the input of the partial
field, as in Listing 14-29.

Listing 14-29. Handling a Partial Field in the Action, in modules/user/actions/actions.class.php

class userActions extends sfActions
{
 protected function updateUserFromRequest()
 {
 // Handle the input of the partial field

Zaninotto_786-9 C14.fm Page 306 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 307

 $password = $this->getRequestParameter('newpassword');

 if ($password)
 {
 $this->user->setPassword($password);
 }

 // Let symfony handle the other fields
 parent::updateUserFromRequest();
 }
}

■Note In the real world, a user/edit view usually contains two password fields, the second having to
match the first one to avoid typing mistakes. In practice, as you saw in Chapter 10, this is done via a validator.
The administration-generated modules benefit from this mechanism just like regular modules.

Dealing with Foreign Keys
If your schema defines table relationships, the generated administration modules take advantage
of it and offer even more automated controls, thus greatly simplifying the relationship
management.

One-to-Many Relationships

The 1-n table relationships are taken care of by the administration generator. As is depicted
by Figure 14-1 earlier, the blog_comment table is related to the blog_article table through the
article_id field. If you initiate the module of the Comment class with the administration generator,
the comment/edit action will automatically display the article_id as a drop-down list showing
the IDs of the available records of the blog_article table (check again Figure 14-9 for an
illustration).

In addition, if you define a __toString() method in the Article object, the text of the drop-
down options use it instead of the primary keys.

If you need to display the list of comments related to an article in the article module
(n-1 relationship), you will need to customize the module a little by way of a partial field.

Many-to-Many Relationships

Symfony also takes care of n-n table relationships, but since you can’t define them in the schema,
you need to add a few parameters to the generator.yml file.

The implementation of many-to-many relationships requires an intermediate table. For
instance, if there is an n-n relation between a blog_article and a blog_author table (an article
can be written by more than one author and, obviously, an author can write more than one
article), your database will always end up with a table called blog_article_author or similar, as
in Figure 14-20.

Zaninotto_786-9 C14.fm Page 307 Friday, December 22, 2006 5:44 AM

308 C H A P T E R 1 4 ■ G E N E R A T O R S

Figure 14-20. Using a “through class” to implement many-to-many relationships

The model then has a class called ArticleAuthor, and this is the only thing that the admin-
istration generator needs—but you have to pass it as a through_class parameter of the field.

For instance, in a generated module based on the Article class, you can add a field to
create new n-n associations with the Author class if you write generator.yml as in Listing 14-30.

Listing 14-30. Handling Many-to-Many Relationships with a through_class Parameter

 edit:
 fields:
 article_author: { type: admin_double_list,
 params: through_class=ArticleAuthor }

Such a field handles links between existing objects, so a regular drop-down list is not
enough. You must use a special type of input for that. Symfony offers three widgets to help
relate members of two lists (illustrated in Figure 14-21):

• An admin_double_list is a set of two expanded select controls, together with buttons to
switch elements from the first list (available elements) to the second (selected elements).

• An admin_select_list is an expanded select control in which you can select many elements.

• An admin_check_list is a list of check box tags.

Figure 14-21. Available controls for many-to-many relationships

Adding Interactions
Administration modules allow users to perform the usual CRUD operations, but you can also
add your own interactions or restrict the possible interactions for a view. For instance, the
interaction definition shown in Listing 14-31 gives access to all the default CRUD actions on
the article module.

blog_article blog_article_author

id

title (O)
content (O)

blog_author

id

name (O)

article_id (FK)
author_id (FK)

Zaninotto_786-9 C14.fm Page 308 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 309

Listing 14-31. Defining Interactions for Each View, in backend/modules/article/config/
generator.yml

 list:
 title: List of Articles
 object_actions:
 _edit: ~
 _delete: ~
 actions:
 _create: ~

 edit:
 title: Body of article %%title%%
 actions:
 _list: ~
 _save: ~
 _save_and_add: ~
 _delete: ~

In a list view, there are two action settings: the list of actions available for every object,
and the list of actions available for the whole page. The list interactions defined in Listing 14-31
render like in Figure 14-22. Each line shows one button to edit the record and one to delete it.
At the bottom of the list, a button allows the creation of a new record.

Figure 14-22. Interactions in the list view

In an edit view, as there is only one record edited at a time, there is only one set of actions
to define. The edit interactions defined in Listing 14-31 render like in Figure 14-23. Both the
save and the save_and_add actions save the current edits in the records, the difference being that
the save action displays the edit view on the current record after saving, while the save_and_add
action displays an empty edit view to add another record. The save_and_add action is a shortcut
that you will find very useful when adding many records in rapid succession. As for the position
of the delete action, it is separated from the other buttons so that users don’t click it by mistake.

The interaction names starting with an underscore (_) tell symfony to use the default icon
and action corresponding to these interactions. The administration generator understands
_edit, _delete, _create, _list, _save, _save_and_add, and _create.

Zaninotto_786-9 C14.fm Page 309 Friday, December 22, 2006 5:44 AM

310 C H A P T E R 1 4 ■ G E N E R A T O R S

Figure 14-23. Interactions in the edit view

But you can also add a custom interaction, in which case you must specify a name starting
with no underscore, as in Listing 14-32.

Listing 14-32. Defining a Custom Interaction

 list:
 title: List of Articles
 object_actions:
 _edit: -
 _delete: -
 addcomment: { name: Add a comment, action: addComment,
 icon: backend/addcomment.png }

Each article in the list will now show the addcomment.png button, as shown in Figure 14-24.
Clicking it triggers a call to the addComment action in the current module. The primary key of the
current object is automatically added to the request parameters.

Figure 14-24. Custom interaction in the list view

The addComment action can be implemented as in Listing 14-33.

Listing 14-33. Implementing the Custom Interaction Action, in actions/actions.class.php

public function executeAddComment()
{
 $comment = new Comment();
 $comment->setArticleId($this->getRequestParameter('id'));
 $comment->save();

Zaninotto_786-9 C14.fm Page 310 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 311

 $this->redirect('comment/edit?id='.$comment->getId());
}

One last word about actions: If you want to suppress completely the actions for one category,
use an empty list, as in Listing 14-34.

Listing 14-34. Removing All Actions in the list View

 list:
 title: List of Articles
 actions: {}

Form Validation
If you take a look at the generated _edit_form.php template in your project cache/ directory,
you will see that the form fields use a special naming convention. In a generated edit view, the
input names result from the concatenation of the module name and the field name between
angle brackets.

For instance, if the edit view for the article module has a title field, the template will
look like Listing 14-35 and the field will be identified as article[title].

Listing 14-35. Syntax of the Generated Input Names

// generator.yml
generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Article
 theme: default
 edit:
 display: [title]

// Resulting _edit_form.php template
<?php echo object_input_tag($article, 'getTitle', array('control_name' =>
 'article[title]')) ?>

// Resulting HTML
<input type="text" name="article[title]" id="article[title]" value="My Title" />

This has plenty of advantages during the internal form-handling process. However, as
explained in Chapter 10, it makes the form validation configuration a bit trickier, so you have
to change square brackets, [], to curly braces, { }, in the fields definition. Also, when using a
field name as a parameter for a validator, you should use the name as it appears in the gener-
ated HTML code (that is, with the square brackets, but between quotes). Refer to Listing 14-36 for
a detail of the special validator syntax for generated forms.

Zaninotto_786-9 C14.fm Page 311 Friday, December 22, 2006 5:44 AM

312 C H A P T E R 1 4 ■ G E N E R A T O R S

Listing 14-36. Validator File Syntax for Administration-Generated Forms

Replace square brackets by curly brackets in the fields list
fields:
 article{title}:
 required:
 msg: You must provide a title
 ## For validator parameters, use the original field name between quotes
 sfCompareValidator:
 check: "user[newpassword]"
 compare_error: The password confirmation does not match the password.

Restricting User Actions Using Credentials
For a given administration module, the available fields and interactions can vary according to
the credentials of the logged user (refer to Chapter 6 for a description of symfony’s security
features).

The fields in the generator can take a credentials parameter into account so as to appear
only to users who have the proper credential. This works for the list view and the edit view.
Additionally, the generator can also hide interactions according to credentials. Listing 14-37
demonstrates these features.

Listing 14-37. Using Credentials in generator.yml

The id column is displayed only for users with the admin credential
 list:
 title: List of Articles
 layout: tabular
 display: [id, =title, content, nb_comments]
 fields:
 id: { credentials: [admin] }

The addcomment interaction is restricted to the users with the admin credential
 list:
 title: List of Articles
 object_actions:
 _edit: -
 _delete: -
 addcomment: { credentials: [admin], name: Add a comment,
 action: addComment, icon: backend/addcomment.png }

Modifying the Presentation of Generated Modules
You can modify the presentation of the generated modules so that it matches any existing
graphical charter, not only by applying your own style sheet, but also by overriding the default
templates.

Zaninotto_786-9 C14.fm Page 312 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 313

Using a Custom Style Sheet
Since the generated HTML is structured content, you can do pretty much anything you like
with the presentation.

You can define an alternative CSS to be used for an administration module instead of a
default one by adding a css parameter to the generator configuration, as in Listing 14-38.

Listing 14-38. Using a Custom Style Sheet Instead of the Default One

generator:
 class: sfPropelAdminGenerator
 param:
 model_class: Comment
 theme: default
 css: mystylesheet

Alternatively, you can also use the mechanisms provided by the module view.yml to over-
ride the styles on a per-view basis.

Creating a Custom Header and Footer
The list and edit views systematically include a header and footer partial. There is no such
partial by default in the templates/ directory of an administration module, but you just need to
add one with one of the following names to have it included automatically:

_list_header.php
_list_footer.php
_edit_header.php
_edit_footer.php

For instance, if you want to add a custom header to the article/edit view, create a file
called _edit_header.php as in Listing 14-39. It will work with no further configuration.

Listing 14-39. Example edit Header Partial, in modules/articles/template/_edit_header.php

<?php if ($article->getNbComments() > 0): ?>
 <h2>This article has <?php echo $article->getNbComments() ?> comments.</h2>
<?php endif; ?>

Notice that an edit partial always has access to the current object through a variable having
the same name as the module, and that a list partial always has access to the current pager
through the $pager variable.

Zaninotto_786-9 C14.fm Page 313 Friday, December 22, 2006 5:44 AM

314 C H A P T E R 1 4 ■ G E N E R A T O R S

CALLING THE ADMINISTRATION ACTIONS WITH CUSTOM PARAMETERS

The administration module actions can receive custom parameters using the query_string argument in a
link_to() helper. For example, to extend the previous _edit_header partial with a link to the comments
for the article, write this:

<?php if ($article->getNbComments() > 0): ?>
 <h2>This article has
 <?php echo link_to($article->getNbComments().' comments', 'comment/list',
 array('query_string' => 'filter=filter&filters%5Barticle_id%5D='.
 $article->getId())) ?></h2>
<?php endif; ?>

This query string parameter is an encoded version of the more legible

'filter=filter&filters[article_id]='.$article->getId()
It filters the comments to display only the ones related to $article. Using the query_string argument,

you can specify a sorting order and/or a filter to display a custom list view. This can also be useful for
custom interactions.

Customizing the Theme
There are other partials inherited from the framework that can be overridden in the module
templates/ folder to match your custom requirements.

The generator templates are cut into small parts that can be overridden independently,
and the actions can also be changed one by one.

However, if you want to override those for several modules in the same way, you should
probably create a reusable theme. A theme is a complete set of templates and actions that can be
used by an administration module if specified in the theme value at the beginning of generator.yml.
With the default theme, symfony uses the files defined in $sf_symfony_data_dir/generator/
sfPropelAdmin/default/.

The theme files must be located in a project tree structure, in a data/generator/
sfPropelAdmin/[theme_name]/template/ directory, and you can bootstrap a new theme by copying
the files from the default theme (located in $sf_symfony_data_dir/generator/sfPropelAdmin/
default/template/ directory). This way, you are sure that all the files required for a theme will
be present in your custom theme:

// Partials, in [theme_name]/template/templates/
_edit_actions.php
_edit_footer.php
_edit_form.php
_edit_header.php
_edit_messages.php
_filters.php

Zaninotto_786-9 C14.fm Page 314 Friday, December 22, 2006 5:44 AM

C H A P T E R 1 4 ■ G E N E R A T O R S 315

_list.php
_list_actions.php
_list_footer.php
_list_header.php
_list_messages.php
_list_td_actions.php
_list_td_stacked.php
_list_td_tabular.php
_list_th_stacked.php
_list_th_tabular.php

// Actions, in [theme_name]/template/actions/actions.class.php
processFilters() // Process the request filters
addFiltersCriteria() // Adds a filter to the Criteria object
processSort()
addSortCriteria()

Be aware that the template files are actually templates of templates, that is, PHP files that
will be parsed by a special utility to generate templates based on generator settings (this is
called the compilation phase). The generated templates must still contain PHP code to be
executed during actual browsing, so the templates of templates use an alternative syntax to
keep PHP code unexecuted for the first pass. Listing 14-40 shows an extract of a default template
of template.

Listing 14-40. Syntax of Templates of Templates

<?php foreach ($this->getPrimaryKey() as $pk): ?>
[?php echo object_input_hidden_tag($<?php echo $this->getSingularName() ?>, ➥

 'get<?php echo $pk->getPhpName() ?>') ?]
<?php endforeach; ?>

In this listing, the PHP code introduced by <? is executed immediately (at compilation),
the one introduced by [? is only executed at execution, but the templating engine finally trans-
forms the [? tags into <? tags so that the resulting template looks like this:

<?php echo object_input_hidden_tag($article, 'getId') ?>

Dealing with templates of templates is tricky, so the best advice if you want to create your
own theme is to start from the default theme, modify it step by step, and test it extensively.

■Tip You can also package a generator theme in a plug-in, which makes it even more reusable and easy
to deploy across multiple applications. Refer to Chapter 17 for more information.

Zaninotto_786-9 C14.fm Page 315 Friday, December 22, 2006 5:44 AM

316 C H A P T E R 1 4 ■ G E N E R A T O R S

BUILDING YOUR OWN GENERATOR

The scaffolding and administration generators both use a set of symfony internal components that automate
the creation of generated actions and templates in the cache, the use of themes, and the parsing of templates
of templates.

This means that symfony provides all the tools to build your own generator, which can look like the existing
ones or be completely different. The generation of a module is managed by the generate() method of the
sfGeneratorManager class. For instance, to generate an administration, symfony calls the following internally:

$generator_manager = new sfGeneratorManager();
$data = $generator_manager->generate('sfPropelAdminGenerator', $parameters);

If you want to build your own generator, you should look at the API documentation of the
sfGeneratorManager and the sfGenerator classes, and take as examples the sfAdminGenerator
and sfCRUDGenerator classes.

Summary
To bootstrap your modules or automatically generate your back-end applications, the basis is
a well-defined schema and object model. You can modify the PHP code of scaffoldings, but
administration-generated modules are to be modified mostly through configuration.

The generator.yml file is the heart of the programming of generated back-ends. It allows
for the complete customization of content, features, and the look and feel of the list and edit
views. You can manage field labels, tooltips, filters, sort order, page size, input type, foreign relation-
ships, custom interactions, and credentials directly in YAML, without a single line of PHP code.

If the administration generator doesn’t natively support the feature you need, the partial
fields and the ability to override actions provide complete extensibility. Plus, you can reuse your
adaptations to the administration generator mechanisms thanks to the theme mechanisms.

Zaninotto_786-9 C14.fm Page 316 Friday, December 22, 2006 5:44 AM

317

■ ■ ■

C H A P T E R 1 5

Unit and Functional Testing

Automated tests are one of the greatest advances in programming since object orientation.
Particularly conducive to developing web applications, they can guarantee the quality of an
application even if releases are numerous. Symfony provides a variety of tools for facilitating
automated testing, and these are introduced in this chapter.

Automated Tests
Any developer with experience developing web applications is well aware of the time it takes to
do testing well. Writing test cases, running them, and analyzing the results is a tedious job. In
addition, the requirements of web applications tend to change constantly, which leads to an
ongoing stream of releases and a continuing need for code refactoring. In this context, new
errors are likely to regularly crop up.

That’s why automated tests are a suggested, if not required, part of a successful develop-
ment environment. A set of test cases can guarantee that an application actually does what it is
supposed to do. Even if the internals are often reworked, the automated tests prevent accidental
regressions. Additionally, they compel developers to write tests in a standardized, rigid format
capable of being understood by a testing framework.

Automated tests can sometimes replace developer documentation since they can clearly
illustrate what an application is supposed to do. A good test suite shows what output should be
expected for a set of test inputs, and that is a good way to explain the purpose of a method.

The symfony framework applies this principle to itself. The internals of the framework are
validated by automated tests. These unit and functional tests are not bundled with the standard
symfony distribution, but you can check them out from the SVN repository or browse them
online at http://www.symfony-project.com/trac/browser/trunk/test.

Unit and Functional Tests
Unit tests confirm that a unitary code component provides the correct output for a given input.
They validate how functions and methods work in every particular case. Unit tests deal with
one case at a time, so for instance a single method may need several unit tests if it works differently
in certain situations.

Functional tests validate not a simple input-to-output conversion, but a complete feature.
For instance, a cache system can only be validated by a functional test, because it involves
more than one step: The first time a page is requested, it is rendered; the second time, it is

Zaninotto_786-9 C15.fm Page 317 Friday, December 22, 2006 5:48 AM

318 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

taken from the cache. So functional tests validate a process and require a scenario. In symfony,
you should write functional tests for all your actions.

For the most complex interactions, these two types may fall short. Ajax interactions, for
instance, require a web browser to execute JavaScript, so automatically testing them requires a
special third-party tool. Furthermore, visual effects can only be validated by a human.

If you have an extensive approach to automated testing, you will probably need to use a
combination of all these methods. As a guideline, remember to keep tests simple and readable.

■Note Automated tests work by comparing a result with an expected output. In other words, they evaluate
assertions (expressions like $a == 2). The value of an assertion is either true or false, and it determines
whether a test passes or fails. The word “assertion” is commonly used when dealing with automated
testing techniques.

Test-Driven Development
In the test-driven development (TDD) methodology, the tests are written before the code. Writing
tests first helps you to focus on the tasks a function should accomplish before actually developing
it. It’s a good practice that other methodologies, like Extreme Programming (XP), recommend
as well. Plus it takes into account the undeniable fact that if you don’t write unit tests first, you
never write them.

For instance, imagine that you must develop a text-stripping function. The function
removes white spaces at the beginning and at the end of the string, replaces nonalphabetical
characters by underscores, and transforms all uppercase characters to lowercase ones. In test-
driven development, you would first think about all the possible cases and provide an example
"nput and expected output for each, as shown in Table 15-1.

You would write the unit tests, run them, and see that they fail. You would then add the
necessary code to handle the first test case, run the tests again, see that the first one passes, and
go on like that. Eventually, when all the test cases pass, the function is correct.

An application built with a test-driven methodology ends up with roughly as much test code as
actual code. As you don’t want to spend time debugging your tests cases, keep them simple.

Table 15-1. A List of Test Cases for a Text-Stripping Function

Input Expected Output

" foo " "foo"

"foo bar" "foo_bar"

"-)foo:..=bar?" "__foo____bar_"

"FooBar" "foobar”

"Don't foo-bar me!" "don_t_foo_bar_me_"

Zaninotto_786-9 C15.fm Page 318 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 319

■Note Refactoring a method can create new bugs that didn’t use to appear before. That’s why it is also a
good practice to run all automated tests before deploying a new release of an application in production—this
is called regression testing.

The Lime Testing Framework
There are many unit test frameworks in the PHP world, with the most well known being PhpUnit
and SimpleTest. Symfony has its own, called lime. It is based on the Test::More Perl library,
and is TAP compliant, which means that the result of tests is displayed as specified in the Test
Anything Protocol, designed for better readability of test output.

Lime provides support for unit testing. It is more lightweight than other PHP testing
frameworks and has several advantages:

• It launches test files in a sandbox to avoid strange side effects between each test run. Not
all testing frameworks guarantee a clean environment for each test.

• Lime tests are very readable, and so is the test output. On compatible systems, lime uses
color output in a smart way to distinguish important information.

• Symfony itself uses lime tests for regression testing, so many examples of unit and functional
tests can be found in the symfony source code.

• The lime core is validated by unit tests.

• It is written in PHP, and it is fast and well coded. It is contained in a single file, lime.php,
without any dependence.

The various tests described next use the lime syntax. They work out of the box with any
symfony installation.

■Note Unit and functional tests are not supposed to be launched in production. They are developer tools,
and as such, they should be run in the developer’s computer, not in the host server.

Unit Tests
Symfony unit tests are simple PHP files ending in Test.php and located in the test/unit/
directory of your application. They follow a simple and readable syntax.

Zaninotto_786-9 C15.fm Page 319 Friday, December 22, 2006 5:48 AM

320 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

What Do Unit Tests Look Like?
Listing 15-1 shows a typical set of unit tests for the strtolower() function. It starts by an instan-
tiation of the lime_test object (you don’t need to worry about the parameters for now). Each
unit test is a call to a method of the lime_test instance. The last parameter of these methods is
always an optional string that serves as the output.

Listing 15-1. Example Unit Test File, in test/unit/strtolowerTest.php

<?php

include(dirname(__FILE__).'/../bootstrap/unit.php');
require_once(dirname(__FILE__).'/../../lib/strtolower.php');

$t = new lime_test(7, new lime_output_color());

// strtolower()
$t->diag('strtolower()');
$t->isa_ok(strtolower('Foo'), 'string',
 'strtolower() returns a string');
$t->is(strtolower('FOO'), 'foo',
 'strtolower() transforms the input to lowercase');
$t->is(strtolower('foo'), 'foo',
 'strtolower() leaves lowercase characters unchanged');
$t->is(strtolower('12#?@~'), '12#?@~',
 'strtolower() leaves non alphabetical characters unchanged');
$t->is(strtolower('FOO BAR'), 'foo bar',
 'strtolower() leaves blanks alone');
$t->is(strtolower('FoO bAr'), 'foo bar',
 'strtolower() deals with mixed case input');
$t->is(strtolower(''), 'foo',
 'strtolower() transforms empty strings into foo');

Launch the test set from the command line with the test-unit task. The command-line
output is very explicit, and it helps you localize which tests failed and which passed. See the
output of the example test in Listing 15-2.

Listing 15-2. Launching a Single Unit Test from the Command Line

> symfony test-unit strtolower

1..7
strtolower()
ok 1 - strtolower() returns a string
ok 2 - strtolower() transforms the input to lowercase
ok 3 - strtolower() leaves lowercase characters unchanged
ok 4 - strtolower() leaves non alphabetical characters unchanged
ok 5 - strtolower() leaves blanks alone

Zaninotto_786-9 C15.fm Page 320 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 321

ok 6 - strtolower() deals with mixed case input
not ok 7 - strtolower() transforms empty strings into foo
Failed test (.\batch\test.php at line 21)
got: ''
expected: 'foo'
Looks like you failed 1 tests of 7.

■Tip The include statement at the beginning of Listing 15-1 is optional, but it makes the test file an inde-
pendent PHP script that you can execute without the symfony command line, by calling php test/unit/
strtolowerTest.php.

Unit Testing Methods
The lime_test object comes with a large number of testing methods, as listed in Table 15-2.

Table 15-2. Methods of the lime_test Object for Unit Testing

Method Description

diag($msg) Outputs a comment but runs no test

ok($test, $msg) Tests a condition and passes if it is true

is($value1, $value2, $msg) Compares two values and passes if they are
equal (==)

isnt($value1, $value2, $msg) Compares two values and passes if they are
not equal

like($string, $regexp, $msg) Tests a string against a regular expression

unlike($string, $regexp, $msg) Checks that a string doesn’t match a
regular expression

cmp_ok($value1, $operator, $value2, $msg) Compares two arguments with an operator

isa_ok($variable, $type, $msg) Checks the type of an argument

isa_ok($object, $class, $msg) Checks the class of an object

can_ok($object, $method, $msg) Checks the availability of a method for an
object or a class

is_deeply($array1, $array2, $msg) Checks that two arrays have the same values

include_ok($file, $msg) Validates that a file exists and that it is prop-
erly included

fail() Always fails—useful for testing exceptions

pass() Always passes—useful for testing exceptions

skip($msg, $nb_tests) Counts as $nb_tests tests—useful for
conditional tests

todo() Counts as a test—useful for tests yet to be written

Zaninotto_786-9 C15.fm Page 321 Friday, December 22, 2006 5:48 AM

322 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

The syntax is quite straightforward; notice that most methods take a message as their last
parameter. This message is displayed in the output when the test passes. Actually, the best way
to learn these methods is to test them, so have a look at Listing 15-3, which uses them all.

Listing 15-3. Testing Methods of the lime_test Object, in test/unit/exampleTest.php

<?php

include(dirname(__FILE__).'/../bootstrap/unit.php');

// Stub objects and functions for test purposes
class myObject
{
 public function myMethod()
 {
 }
}

function throw_an_exception()
{
 throw new Exception('exception thrown');
}

// Initialize the test object
$t = new lime_test(16, new lime_output_color());

$t->diag('hello world');
$t->ok(1 == '1', 'the equal operator ignores type');
$t->is(1, '1', 'a string is converted to a number for comparison');
$t->isnt(0, 1, 'zero and one are not equal');
$t->like('test01', '/test\d+/', 'test01 follows the test numbering pattern');
$t->unlike('tests01', '/test\d+/', 'tests01 does not follow the pattern');
$t->cmp_ok(1, '<', 2, 'one is inferior to two');
$t->cmp_ok(1, '!==', true, 'one and true are not identical');
$t->isa_ok('foobar', 'string', '\'foobar\' is a string');
$t->isa_ok(new myObject(), 'myObject', 'new creates object of the right class');
$t->can_ok(new myObject(), 'myMethod', 'objects of class myObject do have a ➥

myMethod method');
$array1 = array(1, 2, array(1 => 'foo', 'a' => '4'));
$t->is_deeply($array1, array(1, 2, array(1 => 'foo', 'a' => '4')),
 'the first and the second array are the same');
$t->include_ok('./fooBar.php', 'the fooBar.php file was properly included');

try
{
 throw_an_exception();
 $t->fail('no code should be executed after throwing an exception');
}

Zaninotto_786-9 C15.fm Page 322 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 323

catch (Exception $e)
{
 $t->pass('exception catched successfully');
}

if (!isset($foobar))
{
 $t->skip('skipping one test to keep the test count exact in the condition', 1);
}
else
{
 $t->ok($foobar, 'foobar');
}

$t->todo('one test left to do');

You will find a lot of other examples of the usage of these methods in the symfony unit
tests.

■Tip You may wonder why you would use is() as opposed to ok() here. The error message output by
is() is much more explicit; it shows both members of the test, while ok() just says that the condition failed.

Testing Parameters
The initialization of the lime_test object takes as its first parameter the number of tests that
should be executed. If the number of tests finally executed differs from this number, the lime
output warns you about it. For instance, the test set of Listing 15-3 outputs as Listing 15-4. The
initialization stipulated that 16 tests were to run, but only 15 actually took place, so the output
indicates this.

Listing 15-4. The Count of Test Run Helps You to Plan Tests

> symfony test-unit example

1..16
hello world
ok 1 - the equal operator ignores type
ok 2 - a string is converted to a number for comparison
ok 3 - zero and one are not equal
ok 4 - test01 follows the test numbering pattern
ok 5 - tests01 does not follow the pattern
ok 6 - one is inferior to two
ok 7 - one and true are not identical
ok 8 - 'foobar' is a string
ok 9 - new creates object of the right class

Zaninotto_786-9 C15.fm Page 323 Friday, December 22, 2006 5:48 AM

324 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

ok 10 - objects of class myObject do have a myMethod method
ok 11 - the first and the second array are the same
not ok 12 - the fooBar.php file was properly included
Failed test (.\test\unit\testTest.php at line 27)
Tried to include './fooBar.php'
ok 13 - exception catched successfully
ok 14 # SKIP skipping one test to keep the test count exact in the condition
ok 15 # TODO one test left to do
Looks like you planned 16 tests but only ran 15.
Looks like you failed 1 tests of 16.

The diag() method doesn’t count as a test. Use it to show comments, so that your test
output stays organized and legible. On the other hand, the todo() and skip() methods count
as actual tests. A pass()/fail() combination inside a try/catch block counts as a single test.

A well-planned test strategy must contain an expected number of tests. You will find it very
useful to validate your own test files—especially in complex cases where tests are run inside
conditions or exceptions. And if the test fails at some point, you will see it quickly because the
final number of run tests won’t match the number given during initialization.

The second parameter of the constructor is an output object extending the lime_output
class. Most of the time, as tests are meant to be run through a CLI, the output is a lime_output_color
object, taking advantage of bash coloring when available.

The test-unit Task
The test-unit task, which launches unit tests from the command line, expects either a list of
test names or a file pattern. See Listing 15-5 for details.

Listing 15-5. Launching Unit Tests

// Test directory structure
test/
 unit/
 myFunctionTest.php
 mySecondFunctionTest.php
 foo/
 barTest.php

> symfony test-unit myFunction ## Run myFunctionTest.php
> symfony test-unit myFunction mySecondFunction ## Run both tests
> symfony test-unit 'foo/*' ## Run barTest.php
> symfony test-unit '*' ## Run all tests (recursive)

Zaninotto_786-9 C15.fm Page 324 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 325

Stubs, Fixtures, and Autoloading
In a unit test, the autoloading feature is not active by default. Each class that you use in a test
must be either defined in the test file or required as an external dependency. That’s why many
test files start with a group of include lines, as Listing 15-6 demonstrates.

Listing 15-6. Including Classes in Unit Tests

<?php

include(dirname(__FILE__).'/../bootstrap/unit.php');
include(dirname(__FILE__).'/../../config/config.php');
require_once($sf_symfony_lib_dir.'/util/sfToolkit.class.php');

$t = new lime_test(7, new lime_output_color());

// isPathAbsolute()
$t->diag('isPathAbsolute()');
$t->is(sfToolkit::isPathAbsolute('/test'), true,
 'isPathAbsolute() returns true if path is absolute');
$t->is(sfToolkit::isPathAbsolute('\\test'), true,
 'isPathAbsolute() returns true if path is absolute');
$t->is(sfToolkit::isPathAbsolute('C:\\test'), true,
 'isPathAbsolute() returns true if path is absolute');
$t->is(sfToolkit::isPathAbsolute('d:/test'), true,
 'isPathAbsolute() returns true if path is absolute');
$t->is(sfToolkit::isPathAbsolute('test'), false,
 'isPathAbsolute() returns false if path is relative');
$t->is(sfToolkit::isPathAbsolute('../test'), false,
 'isPathAbsolute() returns false if path is relative');
$t->is(sfToolkit::isPathAbsolute('..\\test'), false,
 'isPathAbsolute() returns false if path is relative');

In unit tests, you need to instantiate not only the object you’re testing, but also the object
it depends upon. Since unit tests must remain unitary, depending on other classes may make
more than one test fail if one class is broken. In addition, setting up real objects can be expensive,
both in terms of lines of code and execution time. Keep in mind that speed is crucial in unit
testing because developers quickly tire of a slow process.

Whenever you start including many scripts for a unit test, you may need a simple auto-
loading system. For this purpose, the sfCore class (which must be manually included) provides
an initSimpleAutoload() method, which expects an absolute path as parameter. All the classes
located under this path will be autoloaded. For instance, if you want to have all the classes
located under $sf_symfony_lib_dir/util/ autoloaded, start your unit test script as follows:

require_once($sf_symfony_lib_dir.'/util/sfCore.class.php');
sfCore::initSimpleAutoload($sf_symfony_lib_dir.'/util');

Zaninotto_786-9 C15.fm Page 325 Friday, December 22, 2006 5:48 AM

326 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

■Tip The generated Propel objects rely on a long cascade of classes, so as soon as you want to test a Propel
object, autoloading is necessary. Note that for Propel to work, you also need to include the files under the vendor/
propel/ directory (so the call to sfCore becomes sfCore::initSimpleAutoload(array(SF_ROOT_
DIR.'/lib/model', $sf_symfony_lib_dir.'/vendor/propel'));) and to add the Propel core to
the include path (by calling set_include_path($sf_symfony_lib_dir.'/vendor'.PATH_SEPARATOR.
SF_ROOT_DIR.PATH_SEPARATOR.get_include_path().

Another good workaround for the autoloading issues is the use of stubs. A stub is an alter-
native implementation of a class where the real methods are replaced with simple canned
data. It mimics the behavior of the real class, but without its cost. A good example of stubs is a
database connection or a web service interface. In Listing 15-7, the unit tests for a mapping API
rely on a WebService class. Instead of calling the real fetch() method of the actual web service
class, the test uses a stub that returns test data.

Listing 15-7. Using Stubs in Unit Tests

require_once(dirname(__FILE__).'/../../lib/WebService.class.php');
require_once(dirname(__FILE__).'/../../lib/MapAPI.class.php');

class testWebService extends WebService
{
 public static function fetch()
 {
 return file_get_contents(dirname(__FILE__).'/fixtures/data/ ➥

fake_web_service.xml');
 }
}

$myMap = new MapAPI();

$t = new lime_test(1, new lime_output_color());

$t->is($myMap->getMapSize(testWebService::fetch(), 100);

The test data can be more complex than a string or a call to a method. Complex test data is
often referred to as fixtures. For coding clarity, it is often better to keep fixtures in separate files,
especially if they are used by more than one unit test file. Also, don’t forget that symfony can
easily transform a YAML file into an array with the sfYAML::load() method. This means that
instead of writing long PHP arrays, you can write your test data in a YAML file, as in Listing 15-8.

Zaninotto_786-9 C15.fm Page 326 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 327

Listing 15-8. Using Fixture Files in Unit Tests

// In fixtures.yml:
-
 input: '/test'
 output: true
 comment: isPathAbsolute() returns true if path is absolute
-
 input: '\\test'
 output: true
 comment: isPathAbsolute() returns true if path is absolute
-
 input: 'C:\\test'
 output: true
 comment: isPathAbsolute() returns true if path is absolute
-
 input: 'd:/test'
 output: true
 comment: isPathAbsolute() returns true if path is absolute
-
 input: 'test'
 output: false
 comment: isPathAbsolute() returns false if path is relative
-
 input: '../test'
 output: false
 comment: isPathAbsolute() returns false if path is relative
-
 input: '..\\test'
 output: false
 comment: isPathAbsolute() returns false if path is relative

// In testTest.php
<?php

include(dirname(__FILE__).'/../bootstrap/unit.php');
include(dirname(__FILE__).'/../../config/config.php');
require_once($sf_symfony_lib_dir.'/util/sfToolkit.class.php');
require_once($sf_symfony_lib_dir.'/util/sfYaml.class.php');

$testCases = sfYaml::load(dirname(__FILE__).'/fixtures.yml');

$t = new lime_test(count($testCases), new lime_output_color());

Zaninotto_786-9 C15.fm Page 327 Friday, December 22, 2006 5:48 AM

328 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

// isPathAbsolute()
$t->diag('isPathAbsolute()');
foreach ($testCases as $case)
{
 $t->is(sfToolkit::isPathAbsolute($case['input']), $case['output'], ➥

 $case['comment']);
}

Functional Tests
Functional tests validate parts of your applications. They simulate a browsing session, make
requests, and check elements in the response, just like you would do manually to validate that
an action does what it’s supposed to do. In functional tests, you run a scenario corresponding
to a use case.

What Do Functional Tests Look Like?
You could run your functional tests with a text browser and a lot of regular expression assertions,
but that would be a great waste of time. Symfony provides a special object, called sfBrowser,
which acts like a browser connected to a symfony application without actually needing a
server—and without the slowdown of the HTTP transport. It gives access to the core objects of
each request (the request, session, context, and response objects). Symfony also provides an
extension of this class called sfTestBrowser, designed especially for functional tests, which has
all the abilities of the sfBrowser object plus some smart assert methods.

A functional test traditionally starts with an initialization of a test browser object. This
object makes a request to an action and verifies that some elements are present in the response.

For example, every time you generate a module skeleton with the init-module or the
propel-init-crud tasks, symfony creates a simple functional test for this module. The test
makes a request to the default action of the module and checks the response status code, the
module and action calculated by the routing system, and the presence of a certain sentence in
the response content. For a foobar module, the generated foobarActionsTest.php file looks like
Listing 15-9.

Listing 15-9. Default Functional Test for a New Module, in tests/functional/frontend/
foobarActionsTest.php

<?php

include(dirname(__FILE__).'/../../bootstrap/functional.php');

// Create a new test browser
$browser = new sfTestBrowser();
$browser->initialize();

Zaninotto_786-9 C15.fm Page 328 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 329

$browser->
 get('/foobar/index')->
 isStatusCode(200)->
 isRequestParameter('module', 'foobar')->
 isRequestParameter('action', 'index')->
 checkResponseElement('body', '!/This is a temporary page/')
;

■Tip The browser methods return an sfTestBrowser object, so you can chain the method calls for more
readability of your test files. This is called a fluid interface to the object, because nothing stops the flow of
method calls.

A functional test can contain several requests and more complex assertions; you will soon
discover all the possibilities in the upcoming sections.

To launch a functional test, use the test-functional task with the symfony command line,
as shown in Listing 15-10. This task expects an application name and a test name (omit the
Test.php suffix).

Listing 15-10. Launching a Single Functional Test from the Command Line

> symfony test-functional frontend foobarActions

get /comment/index
ok 1 - status code is 200
ok 2 - request parameter module is foobar
ok 3 - request parameter action is index
not ok 4 - response selector body does not match regex /This is a temporary page/
Looks like you failed 1 tests of 4.
1..4

The generated functional tests for a new module don’t pass by default. This is because in a
newly created module, the index action forwards to a congratulations page (included in the
symfony default module), which contains the sentence “This is a temporary page.” As long as
you don’t modify the index action, the tests for this module will fail, and this guarantees that
you cannot pass all tests with an unfinished module.

■Note In functional tests, the autoloading is activated, so you don’t have to include the files by hand.

Zaninotto_786-9 C15.fm Page 329 Friday, December 22, 2006 5:48 AM

330 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

Browsing with the sfTestBrowser Object
The test browser is capable of making GET and POST requests. In both cases, use a real URI
as parameter. Listing 15-11 shows how to write calls to the sfTestBrowser object to simulate
requests.

Listing 15-11. Simulating Requests with the sfTestBrowser Object

include(dirname(__FILE__).'/../../bootstrap/functional.php');

// Create a new test browser
$b = new sfTestBrowser();
$b->initialize();

$b->get('/foobar/show/id/1'); // GET request
$b->post('/foobar/show', array('id' => 1)); // POST request

// The get() and post() methods are shortcuts to the call() method
$b->call('/foobar/show/id/1', 'get');
$b->call('/foobar/show', 'post', array('id' => 1));

// The call() method can simulate requests with any method
$b->call('/foobar/show/id/1', 'head');
$b->call('/foobar/add/id/1', 'put');
$b->call('/foobar/delete/id/1', 'delete');

A typical browsing session contains not only requests to specific actions, but also clicks on
links and on browser buttons. As shown in Listing 15-12, the sfTestBrowser object is also capable of
simulating those.

Listing 15-12. Simulating Navigation with the sfTestBrowser Object

$b->get('/'); // Request to the home page
$b->get('/foobar/show/id/1');
$b->back(); // Back to one page in history
$b->forward(); // Forward one page in history
$b->reload(); // Reload current page
$b->click('go'); // Look for a 'go' link or button and click it

The test browser handles a stack of calls, so the back() and forward() methods work as
they do on a real browser.

■Tip The test browser has its own mechanisms to manage sessions (sfTestStorage) and cookies.

Zaninotto_786-9 C15.fm Page 330 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 331

Among the interactions that most need to be tested, those associated with forms probably
rank first. To simulate form input and submission, you have three choices. You can either make
a POST request with the parameters you wish to send, call click() with the form parameters as
an array, or fill in the fields one by one and click the submit button. They all result in the same
POST request anyhow. Listing 15-13 shows an example.

Listing 15-13. Simulating Form Input with the sfTestBrowser Object

// Example template in modules/foobar/templates/editSuccess.php
<?php echo form_tag('foobar/update') ?>
 <?php echo input_hidden_tag('id', $sf_params->get('id')) ?>
 <?php echo input_tag('name', 'foo') ?>
 <?php echo submit_tag('go') ?>
 <?php echo textarea('text1', 'foo') ?>
 <?php echo textarea('text2', 'bar') ?>
</form>

// Example functional test for this form
$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1');

// Option 1: POST request
$b->post('/foobar/update', array('id' => 1, 'name' => 'dummy', 'commit' => 'go'));

// Option 2: Click the submit button with parameters
$b->click('go', array('name' => 'dummy'));

// Option 3: Enter the form values field by field name then click the submit button
$b->setField('name', 'dummy')->
 click('go');

■Note With the second and third options, the default form values are automatically included in the form
submission, and the form target doesn’t need to be specified.

When an action finishes by a redirect(), the test browser doesn’t automatically follow the
redirection; you must follow it manually with followRedirect(), as demonstrated in Listing 15-14.

Listing 15-14. The Test Browser Doesn’t Automatically Follow Redirects

// Example action in modules/foobar/actions/actions.class.php
public function executeUpdate()
{
 ...
 $this->redirect('foobar/show?id='.$this->getRequestParameter('id'));
}

Zaninotto_786-9 C15.fm Page 331 Friday, December 22, 2006 5:48 AM

332 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

// Example functional test for this action
$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit?id=1')->
 click('go', array('name' => 'dummy'))->
 isRedirected()-> // Check that request is redirected
 followRedirect(); // Manually follow the redirection

There is one last method you should know about that is useful for browsing: restart()
reinitializes the browsing history, session, and cookies—as if you restarted your browser.

Once it has made a first request, the sfTestBrowser object can give access to the request,
context, and response objects. It means that you can check a lot of things, ranging from the text
content to the response headers, the request parameters, and configuration:

$request = $b->getRequest();
$context = $b->getContext();
$response = $b->getResponse();

THE SFBROWSER OBJECT

All the browsing methods described in Listings 15-10 to 15-13 are also available out of the testing scope,
throughout the sfBrowser object. You can call it as follows:

// Create a new browser
$b = new sfBrowser();
$b->initialize();
$b->get('/foobar/show/id/1')->
 setField('name', 'dummy')->
 click('go');
$content = $b()->getResponse()->getContent();
...

The sfBrowser object is a very useful tool for batch scripts, for instance, if you want to browse a list of
pages to generate a cached version for each (refer to Chapter 18 for a detailed example).

Using Assertions
Due to the sfTestBrowser object having access to the response and other components of the
request, you can do tests on these components. You could create a new lime_test object for that
purpose, but fortunately sfTestBrowser proposes a test() method that returns a lime_test
object where you can call the unit assertion methods described previously. Check Listing 15-15
to see how to do assertions via sfTestBrowser.

Zaninotto_786-9 C15.fm Page 332 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 333

Listing 15-15. The Test Browser Provides Testing Abilities with the test() Method

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1');
$request = $b->getRequest();
$context = $b->getContext();
$response = $b->getResponse();

// Get access to the lime_test methods via the test() method
$b->test()->is($request->getParameter('id'), 1);
$b->test()->is($response->getStatuscode(), 200);
$b->test()->is($response->getHttpHeader('content-type'), 'text/html; ➥

charset=utf-8');
$b->test()->like($response->getContent(), '/edit/');

■Note The getResponse(), getContext(), getRequest(), and test() methods don’t return an
sfTestBrowser object, therefore you can’t chain other sfTestBrowser method calls after them.

You can check incoming and outgoing cookies easily via the request and response objects,
as shown in Listing 15-16.

Listing 15-16. Testing Cookies with sfTestBrowser

$b->test()->is($request->getCookie('foo'), 'bar'); // Incoming cookie
$cookies = $response->getCookies();
$b->test()->is($cookies['foo'], 'foo=bar'); // Outgoing cookie

Using the test() method to test the request elements ends up in long lines. Fortunately,
sfTestbrowser contains a bunch of proxy methods that help you keep your functional tests
readable and short—in addition to returning an sfTestBrowser object themselves. For instance,
you can rewrite Listing 15-15 in a faster way, as shown in Listing 15-17.

Listing 15-17. Testing Directly with sfTestBrowser

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1')->
 isRequestParameter('id', 1)->
 isStatutsCode()->
 isResponseHeader('content-type', 'text/html; charset=utf-8')->
 responseContains('edit');

Zaninotto_786-9 C15.fm Page 333 Friday, December 22, 2006 5:48 AM

334 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

The status 200 is the default value of the parameter expected by isStatusCode(), so you
can call it without any argument to test a successful response.

One more advantage of proxy methods is that you don’t need to specify an output text as
you would with a lime_test method. The messages are generated automatically by the proxy
methods, and the test output is clear and readable.

get /foobar/edit/id/1
ok 1 - request parameter "id" is "1"
ok 2 - status code is "200"
ok 3 - response header "content-type" is "text/html"
ok 4 - response contains "edit"
1..4

In practice, the proxy methods of Listing 15-17 cover most of the usual tests, so you will
seldom use the test() method on an sfTestBrowser object.

Listing 15-14 showed that sfTestBrowser doesn’t automatically follow redirections. This
has one advantage: You can test a redirection. For instance, Listing 15-18 shows how to test the
response of Listing 15-14.

Listing 15-18. Testing Redirections with sfTestBrowser

$b = new sfTestBrowser();
$b->initialize();
$b->
 get('/foobar/edit/id/1')->
 click('go', array('name' => 'dummy'))->
 isStatusCode(200)->
 isRequestParameter('module', 'foobar')->
 isRequestParameter('action', 'update')->

 isRedirected()-> // Check that the response is a redirect
 followRedirect()-> // Manually follow the redirection

 isStatusCode(200)->
 isRequestParameter('module', 'foobar')->
 isRequestParameter('action', 'show');

Using CSS Selectors
Many of the functional tests validate that a page is correct by checking for the presence of text
in the content. With the help of regular expressions in the responseContains() method, you
can check displayed text, a tag’s attributes, or values. But as soon as you want to check some-
thing deeply buried in the response DOM, regular expressions are not ideal.

That’s why the sfTestBrowser object supports a getResponseDom() method. It returns a
libXML2 DOM object, much easier to parse and test than a flat text. Refer to Listing 15-19 for an
example of using this method.

Zaninotto_786-9 C15.fm Page 334 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 335

Listing 15-19. The Test Browser Gives Access to the Response Content As a DOM Object

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1');
$dom = $b->getResponseDom();
$b->test()->is($dom->getElementsByTagName('input')->item(1)->getAttribute('type'),➥

 'text');

But parsing an HTML document with the PHP DOM methods is still not fast and easy
enough. If you are familiar with the CSS selectors, you know that they are an ever more
powerful way to retrieve elements from an HTML document. Symfony provides a tool class
called sfDomCssSelector that expects a DOM document as construction parameter. It has a
getTexts() method that returns an array of strings according to a CSS selector, and a getElements()
method that returns an array of DOM elements. See an example in Listing 15-20.

Listing 15-20. The Test Browser Gives Access to the Response Content As an sfDomCssSelector
Object

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1');
$c = new sfDomCssSelector($b->getResponseDom())
$b->test()->is($c->getTexts('form input[type="hidden"][value="1"]'), array('');
$b->test()->is($c->getTexts('form textarea[name="text1"]'), array('foo'));
$b->test()->is($c->getTexts('form input[type="submit"]'), array(''));

In its constant pursuit for brevity and clarity, symfony provides a shortcut for this: the
checkResponseElement() proxy method. This method makes Listing 15-20 look like Listing 15-21.

Listing 15-21. The Test Browser Gives Access to the Elements of the Response by CSS Selectors

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit/id/1')->
 checkResponseElement('form input[type="hidden"][value="1"]', true->
 checkResponseElement('form textarea[name="text1"]', 'foo')->
 checkResponseElement('form input[type="submit"]', 1);

The behavior of the checkResponseElement() method depends on the type of the second
argument that it receives:

• If it is a Boolean, it checks that an element matching the CSS selector exists.

• If it is an integer, it checks that the CSS selector returns this number of results.

• If it is a regular expression, it checks that the first element found by the CSS selector
matches it.

Zaninotto_786-9 C15.fm Page 335 Friday, December 22, 2006 5:48 AM

336 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

• If it is a regular expression preceded by !, it checks that the first element doesn’t match
the pattern.

• For other cases, it compares the first element found by the CSS selector with the second
argument as a string.

The method accepts a third optional parameter, in the shape of an associative array. It
allows you to have the test performed not on the first element returned by the selector (if it
returns several), but on another element at a certain position, as shown in Listing 15-22.

Listing 15-22. Using the Position Option to Match an Element at a Certain Position

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit?id=1')->
 checkResponseElement('form textarea', 'foo')->
 checkResponseElement('form textarea', 'bar', array('position' => 1));

The options array can also be used to perform two tests at the same time. You can test that
there is an element matching a selector and how many there are, as demonstrated in Listing 15-23.

Listing 15-23. Using the Count Option to Count the Number of Matches

$b = new sfTestBrowser();
$b->initialize();
$b->get('/foobar/edit?id=1')->
 checkResponseElement('form input', true, array('count' => 3));

The selector tool is very powerful. It accepts most of the CSS 2.1 selectors, and you can use
it for complex queries such as those of Listing 15-24.

Listing 15-24. Example of Complex CSS Selectors Accepted by checkResponseElement()

$b->checkResponseElement('ul#list li a[href]', 'click me');
$b->checkResponseElement('ul > li', 'click me');
$b->checkResponseElement('ul + li', 'click me');
$b->checkResponseElement('h1, h2', 'click me');
$b->checkResponseElement('a[class$="foo"][href*="bar.html"]', 'my link');

Working in the Test Environment
The sfTestBrowser object uses a special front controller, set to the test environment. The
default configuration for this environment appears in Listing 15-25.

Listing 15-25. Default Test Environment Configuration, in myapp/config/settings.php

test:
 .settings:
 # E_ALL | E_STRICT & ~E_NOTICE = 2047

Zaninotto_786-9 C15.fm Page 336 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 337

 error_reporting: 2047
 cache: off
 web_debug: off
 no_script_name: off
 etag: off

The cache and the web debug toolbar are set to off in this environment. However, the
code execution still leaves traces in a log file, distinct from the dev and prod log files, so that you
can check it independently (myproject/log/myapp_test.log). In this environment, the exceptions
don’t stop the execution of the scripts—so that you can run an entire set of tests even if one
fails. You can have specific database connection settings, for instance, to use another database
with test data in it.

Before using the sfTestBrowser object, you have to initialize it. If you need to, you can
specify a hostname for the application and an IP address for the client—that is, if your application
makes controls over these two parameters. Listing 15-26 demonstrates how to do this.

Listing 15-26. Setting Up the Test Browser with Hostname and IP

$b = new sfTestBrowser();
$b->initialize('myapp.example.com', '123.456.789.123');

The test-functional Task
The test-functional task can run one or more functional tests, depending on the number of
arguments received. The rules look much like the ones of the test-unit task, except that the
functional test task always expects an application as first argument, as shown in Listing 15-27.

Listing 15-27. Functional Test Task Syntax

// Test directory structure
test/
 functional/
 frontend/
 myModuleActionsTest.php
 myScenarioTest.php
 backend/
 myOtherScenarioTest.php

Run all functional tests for one application, recursively
> symfony test-functional frontend

Run one given functional test
> symfony test-functional frontend myScenario

Run several tests based on a pattern
> symfony test-functional frontend my*

Zaninotto_786-9 C15.fm Page 337 Friday, December 22, 2006 5:48 AM

338 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

Test Naming Practices
This section lists a few good practices to keep your tests organized and easy to maintain. The
tips concern file organization, unit tests, and functional tests.

As for the file structure, you should name the unit test files using the class they are supposed to
test, and name the functional test files using the module or the scenario they are supposed
to test. See Listing 15-28 for an example. Your test/ directory will soon contain a lot of files,
and finding a test might prove difficult in the long run if you don’t follow these guidelines.

Listing 15-28. Example File Naming Practice

test/
 unit/
 myFunctionTest.php
 mySecondFunctionTest.php
 foo/
 barTest.php
 functional/
 frontend/
 myModuleActionsTest.php
 myScenarioTest.php
 backend/
 myOtherScenarioTest.php

For unit tests, a good practice is to group the tests by function or method, and start each
test group with a diag() call. The messages of each unit test should contain the name of the
function or method tested, followed by a verb and a property, so that the test output looks like
a sentence describing a property of the object. Listing 15-29 shows an example.

Listing 15-29. Example Unit Test Naming Practice

// srttolower()
$t->diag('strtolower()');
$t->isa_ok(strtolower('Foo'), 'string', 'strtolower() returns a string');
$t->is(strtolower('FOO'), 'foo', 'strtolower() transforms the input to lowercase');

strtolower()
ok 1 - strtolower() returns a string
ok 2 - strtolower() transforms the input to lowercase

Functional tests should be grouped by page and start by a request. Listing 15-30 illustrates
this practice.

Zaninotto_786-9 C15.fm Page 338 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 339

Listing 15-30. Example Functional Test Naming Practice

$browser->
 get('/foobar/index')->
 isStatusCode(200)->
 isRequestParameter('module', 'foobar')->
 isRequestParameter('action', 'index')->
 checkResponseElement('body', '/foobar/')
;

get /comment/index
ok 1 - status code is 200
ok 2 - request parameter module is foobar
ok 3 - request parameter action is index
ok 4 - response selector body matches regex /foobar/

If you follow this convention, the output of your test will be clean enough to use as a devel-
oper documentation of your project—enough so in some cases to make actual documentation
useless.

Special Testing Needs
The unit and functional test tools provided by symfony should suffice in most cases. A few
additional techniques are listed here to resolve common problems in automated testing:
launching tests in an isolated environment, accessing a database within tests, testing the
cache, and testing interactions on the client side.

Executing Tests in a Test Harness
The test-unit and test-functional tasks can launch a single test or a set of tests. But if you call
these tasks without any parameter, they launch all the unit and functional tests written in the
test/ directory. A particular mechanism is involved to isolate each test file in an independent
sandbox, to avoid contamination risks between tests. Furthermore, as it wouldn’t make sense
to keep the same output as with single test files in that case (the output would be thousands of
lines long), the tests results are compacted into a synthetic view. That’s why the execution of a
large number of test files uses a test harness, that is, an automated test framework with special
abilities. A test harness relies on a component of the lime framework called lime_harness. It
shows a test status file by file, and an overview at the end of the number of tests passed over the
total, as you see in Listing 15-31.

Zaninotto_786-9 C15.fm Page 339 Friday, December 22, 2006 5:48 AM

340 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

Listing 15-31. Launching All Tests in a Test Harness

> symfony test-unit

unit/myFunctionTest.php................ok
unit/mySecondFunctionTest.php..........ok
unit/foo/barTest.php...................not ok

Failed Test Stat Total Fail List of Failed
--
unit/foo/barTest.php 0 2 2 62 63
Failed 1/3 test scripts, 66.66% okay. 2/53 subtests failed, 96.22% okay.

The tests are executed the same way as when you call them one by one, only the output
is made shorter to be really useful. In particular, the final chart focuses on the failed tests and
helps you locate them.

You can launch all the tests with one call using the test-all task, which also uses a test
harness, as shown in Listing 15-32. This is something that you should do before every transfer
to production, to ensure that no regression has appeared since the latest release.

Listing 15-32. Launching All the Tests of a Project

> symfony test-all

Accessing a Database
Unit tests often need to access a database. To initialize a database connection, use the
getConnection() method of the Propel class, as in Listing 15-33.

Listing 15-33. Initializing a Database in a Test

$con = Propel::getConnection();

You should populate the database with fixtures before starting the tests. This can be done
via the sfPropelData object. This object can load data from a file, just like the propel-load-data
task, or from an array, as shown in Listing 15-34.

Listing 15-34. Populating a Database from a Test File

$data = new sfPropelData();

// Loading data from file
$data->loadData(sfConfig::get('sf_data_dir').'/fixtures/test_data.yml');

Zaninotto_786-9 C15.fm Page 340 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 341

// Loading data from array
$fixtures = array(
 'Article' => array(
 'article_1' => array(
 'title' => 'foo title',
 'body' => 'bar body',
 'created_at' => time(),
),
 'article_2' => array(
 'title' => 'foo foo title',
 'body' => 'bar bar body',
 'created_at' => time(),
),
),
);
$data->loadDataFromArray($fixtures);

Then, use the Propel objects as you would in a normal application, according to your
testing needs. Remember to include their files in unit tests (you can use the sfCore::
sfSimpleAutoloading() method to automate it, as explained in a tip in the “Stubs, Fixtures,
and Autoloading” section previously in this chapter). Propel objects are autoloaded in func-
tional tests.

Testing the Cache
When you enable caching for an application, the functional tests should verify that the cached
actions do work as expected.

The first thing to do is enable cache for the test environment (in the settings.yml file).
Then, if you want to test whether a page comes from the cache or whether it is generated, you
should use the isCached() test method provided by the sfTestBrowser object. Listing 15-35
demonstrates this method.

Listing 15-35. Testing the Cache with the isCached() Method

<?php

include(dirname(__FILE__).'/../../bootstrap/functional.php');

// Create a new test browser
$b = new sfTestBrowser();
$b->initialize();

$b->get('/mymodule');
$b->isCached(true); // Checks that the response comes from the cache
$b->isCached(true, true); // Checks that the cached response comes with layout
$b->isCached(false); // Checks that the response doesn't come from the cache

Zaninotto_786-9 C15.fm Page 341 Friday, December 22, 2006 5:48 AM

342 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

■Note You don’t need to clear the cache at the beginning of a functional test; the bootstrap script does it
for you.

Testing Interactions on the Client
The main drawback of the techniques described previously is that they cannot simulate JavaScript.
For very complex interactions, like with Ajax interactions for instance, you need to be able to
reproduce exactly the mouse and keyboard input that a user would do and execute scripts on
the client side. Usually, these tests are reproduced by hand, but they are very time consuming
and prone to error.

The solution is called Selenium (http://www.openqa.org/selenium/), which is a test frame-
work written entirely in JavaScript. It executes a set of actions on a page just like a regular user
would, using the current browser window. The advantage over the sfBrowser object is that
Selenium is capable of executing JavaScript in a page, so you can test even Ajax interactions
with it.

Selenium is not bundled with symfony by default. To install it, you need to create a new
selenium/ directory in your web/ directory, and in it unpack the content of the Selenium
archive (http://www.openqa.org/selenium-core/download.action). This is because Selenium
relies on JavaScript, and the security settings standard in most browsers wouldn’t allow it to
run unless it is available on the same host and port as your application.

■Caution Be careful not to transfer the selenium/ directory to your production server, since it would be
accessible by anyone having access to your web document root via the browser.

Selenium tests are written in HTML and stored in the web/selenium/tests/ directory. For
instance, Listing 15-36 shows a functional test where the home page is loaded, the link click me
is clicked, and the text “Hello, World” is looked for in the response. Remember that in order to
access the application in the test environment, you have to specify the myapp_test.php front
controller.

Listing 15-36. A Sample Selenium Test, in web/selenium/test/testIndex.html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type">
 <title>Index tests</title>
</head>
<body>
<table cellspacing="0">

Zaninotto_786-9 C15.fm Page 342 Friday, December 22, 2006 5:48 AM

CH A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G 343

<tbody>
 <tr><td colspan="3">First step</td></tr>
 <tr><td>open</td> <td>/myapp_test.php/</td> <td> </td></tr>
 <tr><td>clickAndWait</td> <td>link=click me</td> <td> </td></tr>
 <tr><td>assertTextPresent</td> <td>Hello, World!</td> <td> </td></tr>
</tbody>
</table>
</body>
</html>

A test case is represented by an HTML document containing a table with three columns:
command, target, and value. Not all commands take a value, however. In this case, either leave
the column blank or use to make the table look better. Refer to the Selenium website for
a complete list of commands.

You also need to add this test to the global test suite by inserting a new line in the table of
the TestSuite.html file, located in the same directory. Listing 15-37 shows how.

Listing 15-37. Adding a Test File to the Test Suite, in web/selenium/test/TestSuite.html

...
<tr><td>My First Test</td></tr>
...

To run the test, simply browse to

http://myapp.example.com/selenium/index.html

Select Main Test Suite, click the button to run all tests, and watch your browser as it repro-
duces the steps that you have told it to do.

■Note As Selenium tests run in a real browser, they also allow you to test browser inconsistencies. Build
your test with one browser, and test them on all the others on which your site is supposed to work with a
single request.

The fact that Selenium tests are written in HTML could make the writing of Selenium tests
a hassle. But thanks to the Firefox Selenium extension (http://seleniumrecorder.mozdev.org/),
all it takes to create a test is to execute the test once in a recorded session. While navigating in
a recording session, you can add assert-type tests by right-clicking in the browser window and
selecting the appropriate check under Append Selenium Command in the pop-up menu.

You can save the test to an HTML file to build a test suite for your application. The Firefox
extension even allows you to run the Selenium tests that you have recorded with it.

■ Note Don’t forget to reinitialize the test data before launching the Selenium test.

Zaninotto_786-9 C15.fm Page 343 Friday, December 22, 2006 5:48 AM

344 C H A P T E R 1 5 ■ U N I T A N D F U N C T I O N A L T E S T I N G

Summary
Automated tests include unit tests to validate methods or functions and functional tests to vali-
date features. Symfony relies on the lime testing framework for unit tests and provides an
sfTestBrowser class especially for functional tests. They both provide many assertion methods,
from basic to the most advanced, like CSS selectors. Use the symfony command line to launch
tests, either one by one (with the test-unit and test-functional tasks) or in a test harness
(with the test-all task). When dealing with data, automated tests use fixtures and stubs, and
this is easily achieved within symfony unit tests.

If you make sure to write enough unit tests to cover a large part of your applications
(maybe using the TDD methodology), you will feel safer when refactoring internals or adding
new features, and you may even gain some time on the documentation task.

Zaninotto_786-9 C15.fm Page 344 Friday, December 22, 2006 5:48 AM

345

■ ■ ■

C H A P T E R 1 6

Application Management Tools

During both the development and deployment phases, developers require a consistent
stream of diagnostic information in order to determine whether the application is working as
intended. This information is generally aggregated through logging and debugging utilities.
Because of the central role frameworks, such as symfony, play in driving applications, it’s
crucial that such capabilities are tightly integrated to ensure efficient developmental and oper-
ational activities.

During the life of an application on the production server, the application administrator
repeats a large number of tasks, from log rotation to upgrades. A framework must also provide
tools to automate these tasks as much as possible.

This chapter explains how symfony application management tools can answer all these needs.

Logging
The only way to understand what went wrong during the execution of a request is to review a
trace of the execution process. Fortunately, as you’ll learn in this section, both PHP and symfony
tend to log large amounts of this sort of data.

PHP Logs
PHP has an error_reporting parameter, defined in php.ini, that specifies which PHP events
are logged. Symfony allows you to override this value, per application and environment, in the
settings.yml file, as shown in Listing 16-1.

Listing 16-1. Setting the Error Reporting Level, in myapp/config/settings.yml

prod:
 .settings:
 error_reporting: 257

dev:
 .settings:
 error_reporting: 4095

Zaninotto_786-9 C16.fm Page 345 Tuesday, December 26, 2006 4:06 PM

346 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

The numbers are a short way of writing error levels (refer to the PHP documentation on
error reporting for more details). Basically, 4095 is a shortcut for E_ALL | E_STRICT, and 257
stands for E_ERROR | E_USER_ERROR (the default value for every new environment).

In order to avoid performance issues in the production environment, the server logs only
the critical PHP errors. However, in the development environment, all types of events are logged,
so that the developer can have all the information necessary to trace errors.

The location of the PHP log files depends on your php.ini configuration. If you never both-
ered about defining this location, PHP probably uses the logging facilities provided by your
web server (such as the Apache error logs). In this case, you will find the PHP logs under the
web server log directory.

Symfony Logs
In addition to the standard PHP logs, symfony can log a lot of custom events. You can find all
the symfony logs under the myproject/log/ directory. There is one file per application and per
environment. For instance, the development environment log file of the myapp application is
named myapp_dev.log, the production one is named myapp_prod.log, and so on.

If you have a symfony application running, take a look at its log files. The syntax is very
simple. For every event, one line is added to the log file of the application. Each line includes
the exact time of the event, the nature of the event, the object being processed, and any addi-
tional relevant details. Listing 16-2 shows an example of symfony log file content.

Listing 16-2. Sample Symfony Log File Content, in log/myapp_dev.php

Nov 15 16:30:25 symfony [info] {sfAction} call "barActions->executemessages()"
Nov 15 16:30:25 symfony [debug] SELECT bd_message.ID, bd_message.SENDER_ID, bd_...
Nov 15 16:30:25 symfony [info] {sfCreole} executeQuery(): SELECT bd_message.ID...
Nov 15 16:30:25 symfony [info] {sfView} set slot "leftbar" (bar/index)
Nov 15 16:30:25 symfony [info] {sfView} set slot "messageblock" (bar/mes...
Nov 15 16:30:25 symfony [info] {sfView} execute view for template "messa...
Nov 15 16:30:25 symfony [info] {sfView} render "/home/production/myproject/...
Nov 15 16:30:25 symfony [info] {sfView} render to client

You can find many details in these files, including the actual SQL queries sent to the data-
base, the templates called, the chain of calls between objects, and so on.

Symfony Log Level Configuration

There are eight levels of symfony log messages: emerg, alert, crit, err, warning, notice, info,
and debug, which are the same as the PEAR::Log package (http://pear.php.net/package/Log/)
levels. You can configure the maximum level to be logged in each environment in the logging.yml
configuration file of each application, as demonstrated in Listing 16-3.

Zaninotto_786-9 C16.fm Page 346 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 347

Listing 16-3. Default Logging Configuration, in myapp/config/logging.yml

prod:
 enabled: off
 level: err
 rotate: on
 purge: off

dev:

test:

#all:
enabled: on
level: debug
rotate: off
period: 7
history: 10
purge: on

By default, in all environments except the production environment, all the messages are
logged (up to the least important level, the debug level). In the production environment, logging is
disabled by default; if you change enabled to on, only the most important messages (from crit
to emerg) appear in the logs.

You can change the logging level in the logging.yml file for each environment to limit the
type of logged messages. The rotate, period, history, and purge settings are described in the
upcoming “Purging and Rotating Log Files” section.

■Tip The values of the logging parameters are accessible during execution through the sfConfig object
with the sf_logging_ prefix. For instance, to see if logging is enabled, call sfConfig::get('sf_
logging_enabled').

Adding a Log Message

You can manually add a message in the symfony log file from your code by using one of the
techniques described in Listing 16-4.

Listing 16-4. Adding a Custom Log Message

// From an action
$this->logMessage($message, $level);

// From a template
<?php use_helper('Debug') ?>
<?php log_message($message, $level) ?>

Zaninotto_786-9 C16.fm Page 347 Tuesday, December 26, 2006 4:06 PM

348 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

$level can have the same values as in the log messages.
Alternatively, to write a message in the log from anywhere in your application, use the

sfLogger methods directly, as shown in Listing 16-5. The available methods bear the same
names as the log levels.

Listing 16-5. Adding a Custom Log Message from Anywhere

if (sfConfig::get('sf_logging_enabled'))
{
 sfContext::getInstance()->getLogger()->info($message);
}

CUSTOMIZING THE LOGGING

Symfony’s logging system is very simple, yet it is also easy to customize. You can specify your own logging
object by calling sfLogger::getInstance()->registerLogger(). For instance, if you want to use
PEAR::Log, just add the following to your application’s config.php:

 require_once('Log.php');
 $log = Log::singleton('error_log', PEAR_LOG_TYPE_SYSTEM, 'symfony');
 sfLogger::getInstance()->registerLogger($log);

If you want to register your own logger class, the only prerequisite is that it must define a log() method.
Symfony calls this method with two parameters: $message (the message to be logged) and $priority (the
level).

Purging and Rotating Log Files

Don’t forget to periodically purge the log/ directory of your applications, because these files
have the strange habit of growing by several megabytes in a few days, depending, of course, on
your traffic. Symfony provides a special log-purge task for this purpose, which you can launch
regularly by hand or put in a cron table. For example, the following command erases the symfony
log files in applications and environments where the logging.yml file specifies purge: on (which is
the default value):

> symfony log-purge

For both better performance and security, you probably want to store symfony logs in
several small files instead of one single large file. The ideal storage strategy for log files is to
back up and empty the main log file regularly, but to keep only a limited number of backups.
You can enable such a log rotation and specify the parameters in logging.yml. For instance,
with a period of 7 days and a history (number of backups) of 10, as shown in Listing 16-6, you
would work with one active log file plus ten backup files containing seven days’ worth of history
each. Whenever the next period of seven days ends, the current active log file goes into backup,
and the oldest backup is erased.

Zaninotto_786-9 C16.fm Page 348 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 349

Listing 16-6. Configuring Log Rotation, in myapp/config/logging.yml

prod:
 rotate: on
 period: 7 ## Log files are rotated every 7 days by default
 history: 10 ## A maximum history of 10 log files is kept

To execute the log rotation, periodically execute the log-rotate task. This task only purges
files for which rotate is on. You can specify a single application and environment when calling
the task:

> symfony log-rotate myapp prod

The backup log files are stored in the logs/history/ directory and suffixed with the date
they were saved.

Debugging
No matter how proficient a coder you are, you will eventually make mistakes, even if you use
symfony. Detecting and understanding errors is one of the keys of fast application development.
Fortunately, symfony provides several debug tools for the developer.

Symfony Debug Mode
Symfony has a debug mode that facilitates application development and debugging. When it is
on, the following happens:

• The configuration is checked at each request, so a change in any of the configuration
files has an immediate effect, without any need to clear the configuration cache.

• The error messages display the full stack trace in a clear and useful way, so that you can
more efficiently find the faulty element.

• More debug tools are available (such as the detail of database queries).

• The Propel debug mode is also activated, so any error in a call to a Propel object will
display a detailed chain of calls through the Propel architecture.

On the other hand, when the debug mode is off, processing is handled as follows:

• The YAML configuration files are parsed only once, then transformed into PHP files
stored in the cache/config/ folder. Every request after the first one ignores the YAML
files and uses the cached configuration instead. As a consequence, the processing of
requests is much faster.

• To allow a reprocessing of the configuration, you must manually clear the configuration
cache.

• An error during the processing of the request returns a response with code 500 (Internal
Server Error), without any explanation of the internal cause of the problem.

Zaninotto_786-9 C16.fm Page 349 Tuesday, December 26, 2006 4:06 PM

350 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

The debug mode is activated per application in the front controller. It is controlled by the
value of the SF_DEBUG constant, as shown in Listing 16-7.

Listing 16-7. Sample Front Controller with Debug Mode On, in web/myapp_dev.php

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'myapp');
define('SF_ENVIRONMENT', 'dev');
define('SF_DEBUG', true);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR ➥

.SF_APP.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

sfContext::getInstance()->getController()->dispatch();

■Caution In your production server, you should not activate the debug mode nor leave any front controller
with debug mode on available. Not only will the debug mode slow down the page delivery, but it may also
reveal the internals of your application. Even though the debug tools never reveal database connection infor-
mation, the stack trace of exceptions is full of dangerous information for any ill-intentioned visitor.

Symfony Exceptions
When an exception occurs in the debug mode, symfony displays a useful exception notice that
contains everything you need to find the cause of the problem.

The exception messages are clearly written and refer to the most probable cause of
the problem. They often provide possible solutions to fix the problem, and for most common
problems, the exception pages even contain a link to a symfony website page with more details
about the exception. The exception page shows where the error occurred in the PHP code (with
syntax highlighting), together with the full stack of method calls, as shown in Figure 16-1. You
can follow the trace to the first call that caused the problem. The arguments that were passed
to the methods are also shown.

■Note Symfony really relies on PHP exceptions for error reporting, which is much better than the way
PHP 4 applications work. For instance, the 404 error can be triggered by an sfError404Exception.

Zaninotto_786-9 C16.fm Page 350 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 351

Figure 16-1. Sample exception message for a symfony application

During the development phase, the symfony exceptions will be of great use as you debug
your application.

Xdebug Extension
The Xdebug PHP extension (http://xdebug.org/) allows you to extend the amount of informa-
tion that is logged by the web server. Symfony integrates the Xdebug messages in its own debug
feedback, so it is a good idea to activate this extension when you debug the application. The
extension installation depends very much on your platform; refer to the Xdebug website for
detailed installation guidelines. Once Xdebug is installed, you need to activate it manually in
your php.ini file after installation. For *nix platforms, this is done by adding the following line:

zend_extension="/usr/local/lib/php/extensions/no-debug-non-zts-20041030/xdebug.so"

For Windows platforms, the Xdebug activation is triggered by this line:

extension=php_xdebug.dll

Listing 16-8 gives an example of Xdebug configuration, which must also be added to the
php.ini file.

Zaninotto_786-9 C16.fm Page 351 Tuesday, December 26, 2006 4:06 PM

352 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

Listing 16-8. Sample Xdebug Configuration

;xdebug.profiler_enable=1
;xdebug.profiler_output_dir="/tmp/xdebug"
xdebug.auto_trace=1 ; enable tracing
xdebug.trace_format=0
;xdebug.show_mem_delta=0 ; memory difference
;xdebug.show_local_vars=1
;xdebug.max_nesting_level=100

You must restart your web server for the Xdebug mode to be activated.

■Caution Don’t forget to deactivate Xdebug mode in your production platform. Not doing so will slow down
the execution of every page a lot.

Web Debug Toolbar
The log files contain interesting information, but they are not very easy to read. The most basic
task, which is to find the lines logged for a particular request, can be quite tricky if you have
several users simultaneously using an application and a long history of events. That’s when
you start to need a web debug toolbar.

This toolbar appears as a semitransparent box superimposed over the normal content in
the browser, in the top-right corner of the window, as shown in Figure 16-2. It gives access to the
symfony log events, the current configuration, the properties of the request and response
objects, the details of the database queries issued by the request, and a chart of processing
times related to the request.

Figure 16-2. The web debug toolbar appears in the top-right corner of the window.

The color of the debug toolbar background depends on the highest level of log message
issued during the request. If no message passes the debug level, the toolbar has a gray back-
ground. If a single message reaches the err level, the toolbar has a red background.

Zaninotto_786-9 C16.fm Page 352 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 353

■Note Don’t confuse the debug mode with the web debug toolbar. The debug toolbar can be displayed
even when the debug mode if off, although, in that case, it displays much less information.

To activate the web debug toolbar for an application, open the settings.yml file and look
for the web_debug key. In the prod and test environments, the default value for web_debug is off,
so you need to activate it manually if you want it. In the dev environment, the default configu-
ration has it set to on, as shown in Listing 16-9.

Listing 16-9. Web Debug Toolbar Activation, in myapp/config/settings.yml

dev:
 .settings:
 web_debug: on

When displayed, the web debug toolbar offers a lot of information/interaction:

• Click the symfony logo to toggle the visibility of the toolbar. When reduced, the toolbar
doesn’t hide the elements located at the top of the page.

• Click the vars & config section to show the details of the request, response, settings,
globals, and PHP properties, as shown in Figure 16-3. The top line sums up the important
configuration settings, such as the debug mode, the cache, and the presence of a PHP
accelerator (they appear in red if they are deactivated and in green if they are activated).

Figure 16-3. The vars & config section shows all the variables and constants of the request.

• When the cache is enabled, a green arrow appears in the toolbar. Click this arrow to
reprocess the page, regardless of what is stored in the cache (but the cache is not cleared).

Zaninotto_786-9 C16.fm Page 353 Tuesday, December 26, 2006 4:06 PM

354 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

• Click the logs & msgs section to reveal the log messages for the current request, as shown
in Figure 16-4. According to the importance of the events, they are displayed in gray,
yellow, or red lines. You can filter the events that are displayed by category using the
links displayed at the top of the list.

Figure 16-4. The logs & msgs section shows the log messages for the current request.

■Note When the current action results from a redirect, only the logs of the latest request are present in the
logs & msgs pane, so the log files are still indispensable for good debugging.

• For requests executing SQL queries, a database icon appears in the toolbar. Click it to see
the detail of the queries, as shown in Figure 16-5.

• To the right of a clock icon is the total time necessary to process the request. Be aware
that the web debug toolbar and the debug mode slow down the request execution, so try
to refrain from considering the timings per se, and pay attention to only the differences
between the execution time of two pages. Click the clock icon to see details of the processing
time category by category, as shown in Figure 16-6. Symfony displays the time spent on
specific parts of the request processing. Only the times related to the current request
make sense for an optimization, so the time spent in the symfony core is not displayed.
That’s why these times don’t sum up to the total time.

• Click the red x at the right end of the toolbar to hide the toolbar.

Zaninotto_786-9 C16.fm Page 354 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 355

Figure 16-5. The database queries section shows queries executed for the current request.

Figure 16-6. The clock icon shows execution time by category.

ADDING YOUR OWN TIMER

Symfony uses the sfTimer class to calculate the time spent on the configuration, the model, the action, and
the view. Using the same object, you can time a custom process and display the result with the other timers
in the web debug toolbar. This can be very useful when you work on performance optimizations.

To initialize timing on a specific fragment of code, call the getTimer() method. It will return an sfTimer
object and start the timing. Call the addTime() method on this object to stop the timing. The elapsed time is
available through the getElapsedTime() method, and displayed in the web debug toolbar with the others.

Zaninotto_786-9 C16.fm Page 355 Tuesday, December 26, 2006 4:06 PM

356 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

// Initialize the timer and start timing
$timer = sfTimerManager::getTimer('myTimer');

// Do things
...

// Stop the timer and add the elapsed time
$timer->addTime();

// Get the result (and stop the timer if not already stopped)
$elapsedTime = $timer->getElapsedTime();

The benefit of giving a name to each timer is that you can call it several times to accumulate timings. For
instance, if the myTimer timer is used in a utility method that is called twice per request, the second call to
the getTimer('myTimer') method will restart the timing from the point calculated when addTime() was
last called, so the timing will add up to the previous one. Calling getCalls() on the timer object will give you
the number of times the timer was launched, and this data is also displayed in the web debug toolbar.

// Get the number of calls to the timer
$nbCalls = $timer->getCalls();

In Xdebug mode, the log messages are much richer. All the PHP script files and the functions
that are called are logged, and symfony knows how to link this information with its internal log.
Each line of the log messages table has a double-arrow button, which you can click to see further
details about the related request. If something goes wrong, the Xdebug mode gives you the
maximum amount of detail to find out why.

■Note The web debug toolbar is not included by default in Ajax responses and documents that have a
non-HTML content-type. For the other pages, you can disable the web debug toolbar manually from within
an action by simply calling sfConfig::set('sf_web_debug', false).

Manual Debugging
Getting access to the framework debug messages is nice, but being able to log your own messages
is better. Symfony provides shortcuts, accessible from both actions and templates, to help you
trace events and/or values during request execution.

Your custom log messages appear in the symfony log file as well as in the web debug toolbar,
just like regular events. (Listing 16-4 gave an example of the custom log message syntax.) A
custom message is a good way to check the value of a variable from a template, for instance.
Listing 16-10 shows how to use the web debug toolbar for developer’s feedback from a template
(you can also use $this->logMessage() from an action).

Zaninotto_786-9 C16.fm Page 356 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 357

Listing 16-10. Inserting a Message in the Log for Debugging Purposes

<?php use_helper('Debug') ?>
...
<?php if ($problem): ?>
 <?php log_message('{sfAction} been there', 'err') ?>
 ...
<?php endif ?>

The use of the err level guarantees that the event will be clearly visible in the list of
messages, as shown in Figure 16-7.

Figure 16-7. A custom log message appears in the logs & msgs section of the web debug toolbar.

If you don’t want to add a line to the log, but just trace a short message or a value, you
should use debug_message instead of log_message. This action method (a helper with the same
name also exists) displays a message in the web debug toolbar, on top of the logs & msgs section.
Check Listing 16-11 for an example of using the debug message writer.

Listing 16-11. Inserting a Message in the Debug Toolbar

// From an action
$this->debugMessage($message);

// From a template
<?php use_helper('Debug') ?>
<?php debug_message($message) ?>

Zaninotto_786-9 C16.fm Page 357 Tuesday, December 26, 2006 4:06 PM

358 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

Populating a Database
In the process of application development, developers are often faced with the problem of
database population. A few specific solutions exist for some database systems, but none can be
used on top of the object-relational mapping. Thanks to YAML and the sfPropelData object,
symfony can automatically transfer data from a text source to a database. Although writing a
text file source for data may seem like more work than entering the records by hand using a
CRUD interface, it will save you time in the long run. You will find this feature very useful for
automatically storing and populating the test data for your application.

Fixture File Syntax
Symfony can read data files that follow a very simple YAML syntax, provided that they are located
under the data/fixtures/ directory. Fixture files are organized by class, each class section
being introduced by the class name as a header. For each class, records labeled with a unique
string are defined by a set of fieldname: value pairs. Listing 16-12 shows an example of a data
file for database population.

Listing 16-12. Sample Fixture File, in data/fixtures/import_data.yml

Article: ## Insert records in the blog_article table
 first_post: ## First record label
 title: My first memories
 content: |
 For a long time I used to go to bed early. Sometimes, when I had put
 out my candle, my eyes would close so quickly that I had not even time
 to say "I'm going to sleep."

 second_post: ## Second record label
 title: Things got worse
 content: |
 Sometimes he hoped that she would die, painlessly, in some accident,
 she who was out of doors in the streets, crossing busy thoroughfares,
 from morning to night.

Symfony translates the column keys into setter methods by using a camelCase converter
(setTitle(), setContent()). This means that you can define a password key even if the actual
table doesn’t have a password field—just define a setPassword() method in the User object, and
you can populate other columns based on the password (for instance, a hashed version of the
password).

The primary key column doesn’t need to be defined. Since it is an auto-increment field,
the database layer knows how to determine it.

The created_at columns don’t need to be set either, because symfony knows that fields
named that way must be set to the current system time when created.

Zaninotto_786-9 C16.fm Page 358 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 359

Launching the Import
The propel-load-data task imports data from a YAML file to a database. The connection
settings come from the databases.yml file, and therefore need an application name to run.
Optionally, you can specify an environment name (dev by default).

> symfony propel-load-data frontend

This command reads all the YAML fixture files from the data/fixtures/ directory and
inserts the records into the database. By default, it replaces the existing database content, but
if the last argument call is append, the command will not erase the current data.

> symfony propel-load-data frontend append

You can specify another fixture file or directory in the call. In this case, add a path relative
to the project data/ directory.

> symfony propel-load-data frontend myfixtures/myfile.yml

Using Linked Tables
You now know how to add records to a single table, but how do you add records with foreign
keys to another table? Since the primary key is not included in the fixtures data, you need an
alternative way to relate records to one another.

Let’s return to the example in Chapter 8, where a blog_article table is linked to a
blog_comment table, as shown in Figure 16-8.

Figure 16-8. A sample database relational model

This is where the labels given to the records become really useful. To add a Comment field
to the first_post article, you simply need to append the lines shown in Listing 16-13 to the
import_data.yml data file.

Listing 16-13. Adding a Record to a Related Table, in data/fixtures/import_data.yml

Comment:
 first_comment:
 article_id: first_post
 author: Anonymous
 content: Your prose is too verbose. Write shorter sentences.

Zaninotto_786-9 C16.fm Page 359 Tuesday, December 26, 2006 4:06 PM

360 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

The propel-load-data task will recognize the label that you gave to an article previously in
import_data.yml, and grab the primary key of the corresponding Article record to set the
article_id field. You don’t even see the IDs of the records; you just link them by their labels—
it couldn’t be simpler.

The only constraint for linked records is that the objects called in a foreign key must be
defined earlier in the file; that is, as you would do if you defined them one by one. The data files
are parsed from the top to the bottom, and the order in which the records are written is
important.

One data file can contain declarations of several classes. But if you need to insert a lot of
data for many different tables, your fixture file might get too long to be easily manipulated.

The propel-load-data task parses all the files it finds in the fixtures/ directory, so nothing
prevents you from splitting a YAML fixture file into smaller pieces. The important thing to keep
in mind is that foreign keys impose a processing order for the tables. To make sure that they are
parsed in the correct order, prefix the files with an ordinal number.

100_article_import_data.yml
200_comment_import_data.yml
300_rating_import_data.yml

Deploying Applications
Symfony offers shorthand commands to synchronize two versions of a website. These commands
are mostly used to deploy a website from a development server to a final host, connected to the
Internet.

Freezing a Project for FTP Transfer
The most common way to deploy a project to production is to transfer all its files by FTP (or
SFTP). However, symfony projects use the symfony libraries, and unless you develop in a
sandbox (which is not recommended), or if the symfony lib/ and data/ directories are linked
by svn:externals, these libraries are not in the project directory. Whether you use a PEAR
installation or symbolic links, reproducing the same file structure in production can be time-
consuming and tricky.

That’s why symfony provides a utility to “freeze” a project—to copy all the necessary
symfony libraries into the project data/, lib/, and web/ directories. The project then becomes
a kind of sandbox, an independent, stand-alone application.

> symfony freeze

Once a project is frozen, you can transfer the project directory into production, and it will
work without any need for PEAR, symbolic links, or whatever else.

■Tip Various frozen projects can work on the same server with different versions of symfony without
any problems.

Zaninotto_786-9 C16.fm Page 360 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 361

To revert a project to its initial state, use the unfreeze task. It erases the data/symfony/,
lib/symfony/, and web/sf/ directories.

> symfony unfreeze

Note that if you had symbolic links to a symfony installation prior to the freeze, symfony
will remember them and re-create the symbolic links in the original location.

Using rsync for Incremental File Transfer
Sending the root project directory by FTP is fine for the first transfer, but when you need to
upload an update of your application, where only a few files have changed, FTP is not ideal.
You need to either transfer the whole project again, which is a waste of time and bandwidth, or
browse to the directories where you know that some files changed, and transfer only the ones
with different modification dates. That’s a time-consuming job, and it is prone to error. In
addition, the website can be unavailable or buggy during the time of the transfer.

The solution that is supported by symfony is rsync synchronization through an SSH layer.
Rsync (http://samba.anu.edu.au/rsync/) is a command-line utility that provides fast incre-
mental file transfer, and it’s open source. With incremental transfer, only the modified data will
be sent. If a file didn’t change, it won’t be sent to the host. If a file changed only partially, just
the differential will be sent. The major advantage is that rsync synchronizations transfer only a
small amount of data and are very fast.

Symfony adds SSH on top of rsync to secure the data transfer. More and more commercial
hosts support an SSH tunnel to secure file uploads on their servers, and that’s a good practice
to avoid security breaches.

The SSH client called by symfony uses connection settings from the config/properties.ini
file. Listing 16-14 gives an example of connection settings for a production server. Write the
settings of your own production server in this file before any synchronization. You can also
define a single parameters setting to provide your own rsync command line parameters.

Listing 16-14. Sample Connection Settings for a Server Synchronization, in myproject/config/
properties.ini

[symfony]
 name=myproject

[production]
 host=myapp.example.com
 port=22
 user=myuser
 dir=/home/myaccount/myproject/

■Note Don’t confuse the production server (the host server, as defined in the properties.ini file of the
project) with the production environment (the front controller and configuration used in production, as referred
to in the configuration files of an application).

Zaninotto_786-9 C16.fm Page 361 Tuesday, December 26, 2006 4:06 PM

362 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

Doing an rsync over SSH requires several commands, and synchronization can occur a lot
of times in the life of an application. Fortunately, symfony automates this process with just one
command:

> symfony sync production

This command launches the rsync command in dry mode; that is, it shows which files
must be synchronized but doesn’t actually synchronize them. If you want the synchronization
to be done, you need to request it explicitly by adding go.

> symfony sync production go

Don’t forget to clear the cache in the production server after synchronization.

■Tip Sometimes bugs appear in production that didn’t exist in development. In 90% of the cases, this is
due to differences in versions (of PHP, web server, or database) or in configurations. To avoid unpleasant
surprises, you should define the target PHP configuration in the php.yml file of your application, so that it
checks that the development environment applies the same settings. Refer to Chapter 19 for more informa-
tion about this configuration file.

IS YOUR APPLICATION FINISHED?

Before sending your application to production, you should make sure that it is ready for a public use. Check
that the following items are done before actually deciding to deploy the application:

• The error pages should be customized to the look and feel of your application. Refer to Chapter 19 to
see how to customize the error 500, error 404, and security pages, and to the “Managing a Production
Application” section in this chapter to see how to customize the pages displayed when your site is
not available.

• The session-handling mechanism uses a cookie on the client side, and this cookie is called symfony
by default. Before deploying your application, you should probably rename it to avoid disclosing the fact
that your application uses symfony. Refer to Chapter 6 to see how to customize the cookie name in the
factories.yml file.

• The robots.txt file, located in the project’s web/ directory, is empty by default. You should customize
it to inform web spiders and other web robots about which parts of a website they can browse and
which they should avoid. Most of the time, this file is used to exclude certain URL spaces from being
indexed—for instance, resource-intensive pages, pages that don’t need indexing (such as bug archives), or
infinite URL spaces in which robots could get trapped.

• Modern browsers request a favicon.ico file when a user first browses to your application, to repre-
sent the application with an icon in the address bar and bookmarks folder. Providing such a file will not
only make your application’s look and feel complete, but it will also prevent a lot of 404 errors from
appearing in your server logs.

Zaninotto_786-9 C16.fm Page 362 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 363

Ignoring Irrelevant Files
If you synchronize your symfony project with a production host, a few files and directories
should not be transferred:

• All the version control directories (.svn/, CVS/, and so on) and their content are necessary
only for development and integration.

• The front controller for the development environment must not be available to the final
users. The debugging and logging tools available when using the application through
this front controller slow down the application and give information about the core variables
of your actions. It is something to keep away from the public.

• The cache/ and log/ directories of a project must not be erased in the host server each
time you do a synchronization. These directories must be ignored as well. If you have a
stats/ directory, it should probably be treated the same way.

• The files uploaded by users should not be transferred. One of the good practices of
symfony projects is to store the uploaded files in the web/uploads/ directory. This allows
you to exclude all these files from the synchronization by pointing to only one directory.

To exclude files from rsync synchronizations, open and edit the rsync_exclude.txt file
under the myproject/config/ directory. Each line can contain a file, a directory, or a pattern.
The symfony file structure is organized logically, and designed to minimize the number of files
or directories to exclude manually from the synchronization. See Listing 16-15 for an example.

Listing 16-15. Sample rsync Exclusion Settings, in myproject/config/rsync_exclude.txt

.svn
/cache/*
/log/*
/stats/*
/web/uploads/*
/web/myapp_dev.php

■Note The cache/ and log/ directories must not be synchronized with the development server, but they
must at least exist in the production server. Create them by hand if the myproject/ project tree structure
doesn’t contain them.

Managing a Production Application
The command that is used most often in production servers is clear-cache. You must run it
every time you upgrade symfony or your project (for instance, after calling the sync task), and
every time you change the configuration in production.

> symfony clear-cache

Zaninotto_786-9 C16.fm Page 363 Tuesday, December 26, 2006 4:06 PM

364 C H A P T E R 1 6 ■ AP P L I C A T I O N M A N A G E M E N T T O O L S

■Tip If the command-line interface is not available in your production server, you can still clear the cache
manually by erasing the contents of the cache/ folder.

You can temporarily disable your application—for instance, when you need to upgrade a
library or a large amount of data.

> symfony disable APPLICATION_NAME ENVIRONMENT_NAME

By default, a disabled application displays the default/unavailable action (stored in
the framework), but you can customize the module and action to be used in this case in the
settings.yml file. Listing 16-16 shows an example.

Listing 16-16. Setting the Action to Execute for an Unavailable Application, in myapp/config/
settings.yml

all:
 .settings:
 unavailable_module: mymodule
 unavailable_action: maintenance

The enable task reenables the application and clears the cache.

> symfony enable APPLICATION_NAME ENVIRONMENT_NAME

DISPLAYING AN UNAVAILABLE PAGE WHEN CLEARING THE CACHE

If you set the check_lock parameter to on in the settings.yml file, symfony will lock the application when
the cache is being cleared, and all the requests arriving before the cache is finally cleared are then redirected
to a page saying that the application is temporarily available. If the cache is large, the delay to clear it may be
longer than a few milliseconds, and if your site’s traffic is high, this is a recommended setting.

This unavailable page is not the same as the one displayed when you call symfony disable (because while
the cache is being cleared, symfony cannot work normally). It is located in the $sf_symfony_data_dir/
web/errors/ directory, but if you create your own unavailable.php file in your project’s web/errors/
directory, symfony will use it instead. The check_lock parameter is deactivated by default because it has a
very slight negative impact on performance.

The clear-controllers task clears the web/ directory of all controllers other than the ones
running in a production environment. If you do not include the development front controllers
in the rsync_exclude.txt file, this command guarantees that a backdoor will not reveal the
internals of your application.

> symfony clear-controllers

Zaninotto_786-9 C16.fm Page 364 Tuesday, December 26, 2006 4:06 PM

C H A P T E R 1 6 ■ A P P L I C A T I O N M A N A G E M E N T T O O L S 365

The permissions of the project files and directories can be broken if you use a checkout
from an SVN repository. The fix-perms task fixes directory permissions, to change the log/ and
cache/ permissions to 0777, for example (these directories need to be writable for the frame-
work to work correctly).

> symfony fix-perms

ACCESS TO THE SYMFONY COMMANDS IN PRODUCTION

If your production server has a PEAR installation of symfony, then the symfony command line is available from
every directory and will work just as it does in development. For frozen projects, however, you need to add php
before the symfony command to be able to launch tasks:

// With symfony installed via PEAR
> symfony [options] <TASK> [parameters]

// With symfony frozen in the project or symlinked
> php symfony [options] <TASK> [parameters]

Summary
By combining PHP logs and symfony logs, you can monitor and debug your application easily.
During development, the debug mode, the exceptions, and the web debug toolbar help you
locate problems. You can even insert custom messages in the log files or in the toolbar for easier
debugging.

The command-line interface provides a large number of tools that facilitate the manage-
ment of your applications, during development and production phases. Among others, the
data population, freeze, and synchronization tasks are great time-savers.

Zaninotto_786-9 C16.fm Page 365 Tuesday, December 26, 2006 4:06 PM

Zaninotto_786-9 C16.fm Page 366 Tuesday, December 26, 2006 4:06 PM

367

■ ■ ■

C H A P T E R 1 7

Extending Symfony

Eventually, you will need to alter symfony’s behavior. Whether you need to modify the way a
certain class behaves or add your own custom features, the moment will inevitably happen—
all clients have specific requirements that no framework can forecast. As a matter of fact, this
situation is so common that symfony provides a mechanism to extend existing classes, called a
mixin. You can even replace the core symfony classes on your own, using the factories settings.
Once you have built an extension, you can easily package it as a plug-in, so that it can be reused
in other applications—or by other symfony users.

Mixins
Among the current limitations of PHP, one of the most annoying is you can’t have a class
extend more than one class. Another limitation is you can’t add new methods to an existing
class or override existing methods. To palliate these two limitations and to make the frame-
work truly extendable, symfony introduces a class called sfMixer. It is in no way related to
cooking devices, but to the concept of mixins found in object-oriented programming. A mixin
is a group of methods or functions that can be mixed into a class to extend it.

Understanding Multiple Inheritance
Multiple inheritance is the ability for a class to extend more than one class and inherit these
class properties and methods. Let’s consider an example. Imagine a Story and a Book class,
each with its own properties and methods—just like in Listing 17-1.

Listing 17-1. Two Example Classes

class Story
{
 protected $title = '';
 protected $topic = '';
 protected $characters = array();

 public function __construct($title = '', $topic = '', $characters = array())
 {
 $this->title = $title;
 $this->topic = $topic;

Zaninotto_786-9 C17.fm Page 367 Friday, December 22, 2006 5:48 AM

368 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

 $this->characters = $characters;
 }

 public function getSummary()
 {
 return $this->title.', a story about '.$this->topic;
 }
}

class Book
{
 protected $isbn = 0;

 function setISBN($isbn = 0)
 {
 $this->isbn = $isbn;
 }

 public function getISBN()
 {
 return $this->isbn;
 }
}

A ShortStory class extends Story, a ComputerBook class extends Book, and logically, a Novel
should extend both Story and Book and take advantage of all their methods. Unfortunately, this
is not possible in PHP. You cannot write the Novel declaration as in Listing 17-2.

Listing 17-2. Multiple Inheritance Is Not Possible in PHP

class Novel extends Story, Book
{
}

$myNovel = new Novel();
$myNovel->getISBN();

One possibility would be to have Novel implements two interfaces instead of having it
extend two classes, but this would prevent you from having the methods actually written in the
parent classes.

Mixing Classes
The sfMixer class takes another approach to the problem, taking an existing class and extending
it a posteriori, provided that the class contains the proper hooks. The process involves two steps:

Zaninotto_786-9 C17.fm Page 368 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 369

• Declaring a class as extendable

• Registering extensions (or mixins), after the class declaration

Listing 17-3 shows how you would implement the Novel class with sfMixer.

Listing 17-3. Multiple Inheritance Is Possible via sfMixer

class Novel extends Story
{
 public function __call($method, $arguments)
 {
 return sfMixer::callMixins();
 }
}

sfMixer::register('Novel', array('Book', 'getISBN'));
$myNovel = new Novel();
$myNovel->getISBN();

One of the classes (Story) is chosen as the main parent, in line with PHP’s ability to only
inherit from one class. The Novel class is declared as extendable by the code located in the
__call() method. The method of the other class (Book) is added afterwards to the Novel class by
a call to sfMixer::register(). The next sections will explicitly explain this process.

When the getISBN() method of the Novel class is called, everything happens as if the class
had been defined as in Listing 17-2—except it’s the magic of the __call() method and of the
sfMixer static methods that simulate it. The getISBN() method is mixed in the Novel class.

WHEN TO USE MIXINS

The symfony mixin mechanism is useful in many cases. Simulating multiple inheritance, as described previously, is
just one of them.

You can use mixins to alter a method after its declaration. For example, when building a graphic library,
you will probably implement a Line object—representing a line. It will have four attributes (the coordinates
for both ends) and a draw() method to render itself. A ColoredLine should have the same properties and
methods, but with an additional attribute, color, to specify its color. Furthermore, the draw() method of a
ColoredLine is a little different from the one of a simple Line, to use the object’s color. You could package
the abilities of a graphical element to deal with color into a ColoredElement class. This would allow you to
reuse the color methods for other graphical elements (Dot, Polygon, and so on). In this case, the ideal imple-
mentation of the ColoredLine class would be an extension of the Line class, with methods from the
ColoredElement class mixed in. The final draw() method would be a mix between the original one from
Line and the one from ColoredElement.

Mixins can also be seen as a way to add new methods to an existing class. For instance, the symfony
action class, called sfActions, is defined in the framework. One of the constraints of PHP is that you cannot
change the sfActions definition after its initial declaration. You may want to add a custom method to sfActions
in one of your applications only—for instance, to forward a request to a special web service. For that purpose,
PHP alone falls short, but the mixin mechanism provides a perfect solution.

Zaninotto_786-9 C17.fm Page 369 Friday, December 22, 2006 5:48 AM

370 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

Declaring a Class As Extendable
To declare a class as extendable, you must insert one or several “hooks” into the code, which
the sfMixer class can later identify. These hooks are calls to the sfMixer::callMixins() method.
Many of the symfony classes already contain such hooks, including sfRequest, sfResponse,
sfController, sfUser, sfAction, and others.

The hook can be placed in different parts of the class, according to the desired degree of
extensibility:

• To be able to add new methods to a class, you must insert the hook in the __call()
method and return its result, as demonstrated in Listing 17-4.

Listing 17-4. Giving a Class the Ability to Get New Methods

class SomeClass
{
 public function __call($method, $arguments)
 {
 return sfMixer::callMixins();
 }
}

• To be able to alter the way an existing method works, you must insert the hook inside the
method, as demonstrated in Listing 17-5. The code added by the mixin class will be
executed where the hook is placed.

Listing 17-5. Giving a Method the Ability to Be Altered

class SomeOtherClass
{
 public function doThings()
 {
 echo "I'm working...";
 sfMixer::callMixins();
 }
}

You may want to place more than one hook in a method. In this case, you must name the
hooks, so that you can define which hook is to be extended afterwards, as demonstrated in
Listing 17-6. A named hook is a call to callMixins() with a hook name as a parameter. This
name will be used afterwards, when registering a mixin, to tell where in the method the mixin
code must be executed.

Zaninotto_786-9 C17.fm Page 370 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 371

Listing 17-6. A Method Can Contain More Than One Hook, In Which Case They Must Be Named

class AgainAnotherClass
{
 public function doMoreThings()
 {
 echo "I'm ready.";
 sfMixer::callMixins('beginning');
 echo "I'm working...";
 sfMixer::callMixins('end');
 echo "I'm done.";
 }
}

Of course, you can combine these techniques to create classes with the ability to be
assigned new and extendable methods, as Listing 17-7 demonstrates.

Listing 17-7. A Class Can Be Extendable in Various Ways

class BicycleRider
{
 protected $name = 'John';

 public function getName()
 {
 return $this->name;
 }

 public function sprint($distance)
 {
 echo $this->name." sprints ".$distance." meters\n";
 sfMixer::callMixins(); // The sprint() method is extendable
 }

 public function climb()
 {
 echo $this->name.' climbs';
 sfMixer::callMixins('slope'); // The climb() method is extendable here
 echo $this->name.' gets to the top';
 sfMixer::callMixins('top'); // And also here
 }

 public function __call($method, $arguments)
 {
 return sfMixer::callMixins(); // The BicyleRider class is extendable
 }
}

Zaninotto_786-9 C17.fm Page 371 Friday, December 22, 2006 5:48 AM

372 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

■Caution Only the classes that are declared as extendable can be extended by sfMixer. This means that
you cannot use this mechanism to extend a class that didn’t “subscribe” to this service.

Registering Extensions
To register an extension to an existing hook, use the sfMixer::register() method. Its first
argument is the element to extend, and the second argument is a PHP callable and represents
the mixin.

The format of the first argument depends on what you try to extend:

• If you extend a class, use the class name.

• If you extend a method with an anonymous hook, use the class:method pattern.

• If you extend a method with a named hook, use the class:method:hook pattern.

Listing 17-8 illustrates this principle by extending the class defined in Listing 17-7. The
extended object is automatically passed as first parameter to the mixin methods (except, of
course, if the extended method is static). The mixin method also gets access to the parameters
of the original method call.

Listing 17-8. Registering Extensions

class Steroids
{
 protected $brand = 'foobar';

 public function partyAllNight($bicycleRider)
 {
 echo $bicycleRider->getName()." spends the night dancing.\n";
 echo "Thanks ".$brand."!\n";
 }

 public function breakRecord($bicycleRider, $distance)
 {
 echo "Nobody ever made ".$distance." meters that fast before!\n";
 }

 static function pass()
 {
 echo " and passes half the peloton.\n";
 }
}

Zaninotto_786-9 C17.fm Page 372 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 373

sfMixer::register('BicycleRider', array('Steroids', 'partyAllNight'));
sfMixer::register('BicycleRider:sprint', array('Steroids', 'breakRecord'));
sfMixer::register('BicycleRider:climb:slope', array('Steroids', 'pass'));
sfMixer::register('BicycleRider:climb:top', array('Steroids', 'pass'));

$superRider = new BicycleRider();
$superRider->climb();
=> John climbs and passes half the peloton
=> John gets to the top and passes half the peloton
$superRider->sprint(2000);
=> John sprints 2000 meters
=> Nobody ever made 2000 meters that fast before!
$superRider->partyAllNight();
=> John spends the night dancing.
=> Thanks foobar!

The extension mechanism is not only about adding methods. The partyAllNight() method
uses an attribute of the Steroids class. This means that when you extend the BicycleRider
class with a method of the Steroids class, you actually create a new Steroids instance inside
the BicycleRider object.

■Caution You cannot add two methods with the same name to an existing class. This is because the
callMixins() call in the __call() methods uses the mixin method name as a key. Also, you cannot add
a method to a class that already has a method with the same name, because the mixin mechanism relies on
the magic __call() method and, in that particular case, it would never be called.

The second argument of the register() call is a PHP callable, so it can be a class::method
array, or an object->method array, or even a function name. See examples in Listing 17-9.

Listing 17-9. Any Callable Can Be Registered As a Mixer Extension

// Use a class method as a callable
sfMixer::register('BicycleRider', array('Steroids', 'partyAllNight'));

// Use an object method as a callable
$mySteroids = new Steroids();
sfMixer::register('BicycleRider', array($mySteroids, 'partyAllNight'));

// Use a function as a callable
sfMixer::register('BicycleRider', 'die');

The extension mechanism is dynamic, which means that even if you already instantiated
an object, it can take advantage of further extensions in its class. See an example in Listing 17-10.

Zaninotto_786-9 C17.fm Page 373 Friday, December 22, 2006 5:48 AM

374 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

Listing 17-10. The Extension Mechanism Is Dynamic and Can Occur Even After Instantiation

$simpleRider = new BicycleRider();
$simpleRider->sprint(500);
=> John sprints 500 meters
sfMixer::register('BicycleRider:sprint', array('Steroids', 'breakRecord'));
$simpleRider->sprint(500);
=> John sprints 500 meters
=> Nobody ever made 500 meters that fast before!

Extending with More Precision
The sfMixer::callMixins() instruction is actually a shortcut to something a little bit more
elaborate. It automatically loops over the list of registered mixins and calls them one by one,
passing to it the current object and the current method parameters. In short, an sfMixer::
callMixins() call behaves more or less like Listing 17-11.

Listing 17-11. callMixin() Loops Over the Registered Mixins and Executes Them

foreach (sfMixer::getCallables($class.':'.$method.':'.$hookName) as $callable)
{
 call_user_func_array($callable, $parameters);
}

If you want to pass other parameters or to do something special with the return value, you
can write the foreach loop explicitly instead of using the shortcut method. Look at Listing 17-12
for an example of a mixin more integrated into a class.

Listing 17-12. Replacing callMixin() by a Custom Loop

class Income
{
 protected $amout = 0;

 public function calculateTaxes($rate = 0)
 {
 $taxes = $this->amount * $rate;
 foreach (sfMixer::getCallables('Income:calculateTaxes') as $callable)
 {
 $taxes += call_user_func($callable, $this->amount, $rate);
 }

 return $taxes;
 }
}

Zaninotto_786-9 C17.fm Page 374 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 375

class FixedTax
{
 protected $minIncome = 10000;
 protected $taxAmount = 500;

 public function calculateTaxes($amount)
 {
 return ($amount > $this->minIncome) ? $this->taxAmount : 0;
 }
}

sfMixer::register('Income:calculateTaxes', array('FixedTax', 'calculateTaxes'));

PROPEL BEHAVIORS

Propel behaviors, discussed previously in Chapter 8, are a special kind of mixin: They extend Propel-generated
objects. Let’s look at an example.

The Propel objects corresponding to the tables of the database all have a delete() method, which deletes
the related record from the database. But for an Invoice class, for which you can’t delete a record, you may
want to alter the delete() method to be able to keep the record in the database and change the value of an
is_deleted attribute to true instead. Usual object retrieval methods (doSelect(), retrieveByPk())
would only consider the records for which is_deleted is false. You would also need to add another method
called forceDelete(), which would allow you to really delete the record. In fact, all these modifications can
be packaged into a new class, called ParanoidBehavior. The final Invoice class extends the Propel
BaseInvoice class and has methods of the ParanoidBehavior mixed in.

So a behavior is a mixin on a Propel object. Actually, the term “behavior” in symfony covers one more
thing: the fact that the mixin is packaged as a plug-in. The ParanoidBehavior class just mentioned corre-
sponds to a real symfony plug-in called sfPropelParanoidBehaviorPlugin. Refer to the symfony wiki
(http://www.symfony-project.com/trac/wiki/sfPropelParanoidBehaviorPlugin) for details
on installation and use of this plug-in.

One last word about behaviors: To be able to support them, the generated Propel objects must contain
quite a number of hooks. These may slow down execution a little and penalize performance if you don’t use
behaviors. That’s why the hooks are not enabled by default. In order to add them and enable behavior support,
you must first set the propel.builder.addBehaviors property to true in the propel.ini file and
rebuild the model.

Factories
A factory is the definition of a class for a certain task. Symfony relies on factories for its core
features such as the controller and session capabilities. For instance, when the framework
needs to create a new request object, it searches in the factory definition for the name of the
class to use for that purpose. The default factory definition for requests is sfWebRequest, so
symfony creates an object of this class in order to deal with requests. The great advantage of
using a factory definition is that it is very easy to alter the core features of the framework: Just

Zaninotto_786-9 C17.fm Page 375 Friday, December 22, 2006 5:48 AM

376 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

change the factory definition, and symfony will use your custom request class instead of its
own.

The factory definitions are stored in the factories.yml configuration file. Listing 17-13
shows the default factory definition file. Each definition is made of the name of an autoloaded
class and (optionally) a set of parameters. For instance, the session storage factory (set under
the storage: key) uses a session_name parameter to name the cookie created on the client
computer to allow persistent sessions.

Listing 17-13. Default Factories File, in myapp/config/factories.yml

cli:
 controller:
 class: sfConsoleController
 request:
 class: sfConsoleRequest

test:
 storage:
 class: sfSessionTestStorage

#all:
controller:
class: sfFrontWebController
#
request:
class: sfWebRequest
#
response:
class: sfWebResponse
#
user:
class: myUser
#
storage:
class: sfSessionStorage
param:
session_name: symfony
#
view_cache:
class: sfFileCache
param:
automaticCleaningFactor: 0
cacheDir: %SF_TEMPLATE_CACHE_DIR%

The best way to change a factory is to create a new class inheriting from the default factory
and to add new methods to it. For instance, the user session factory is set to the myUser class
(located in myapp/lib/) and inherits from sfUser. Use the same mechanism to take advantage
of the existing factories. Listing 17-14 shows an example of a new factory for the request object.

Zaninotto_786-9 C17.fm Page 376 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 377

Listing 17-14. Overriding Factories

// Create a myRequest.class.php in an autoloaded directory,
// For instance in myapp/lib/
<?php

class myRequest extends sfRequest
{
 // Your code here
}

// Declare this class as the request factory in factories.yml
all:
 request:
 class: myRequest

Bridges to Other Framework Components
If you need capabilities provided by a third-party class, and if you don’t want to copy this class
in one of the symfony lib/ dirs, you will probably install it outside of the usual places where
symfony looks for files. In that case, using this class will imply a manual require in your code,
unless you use the symfony bridge to take advantage of the autoloading.

Symfony doesn’t (yet) provide tools for everything. If you need a PDF generator, an API to
Google Maps, or a PHP implementation of the Lucene search engine, you will probably need a
few libraries from the Zend Framework. If you want to manipulate images directly in PHP, connect
to a POP3 account to read e-mails, or design a console interface, you might choose the libraries
from eZcomponents. Fortunately, if you define the right settings, the components from both
these libraries will work out of the box in symfony.

The first thing that you need to declare (unless you installed the third-party libraries via
PEAR) is the path to the root directory of the libraries. This is to be done in the application
settings.yml:

.settings:
 zend_lib_dir: /usr/local/zend/library/
 ez_lib_dir: /usr/local/ezcomponents/

Then, extend the autoload routine by specifying which library to consider when the auto-
loading fails with symfony:

.settings:
 autoloading_functions:
 - [sfZendFrameworkBridge, autoload]
 - [sfEzComponentsBridge, autoload]

Note that this setting is distinct from the rules defined in autoload.yml (see Chapter 19 for
more information about this file). The autoloading_functions setting specifies bridge classes,
and autoload.yml specifies paths and rules for searching. The following describes what will
happen when you create a new object of an unloaded class:

Zaninotto_786-9 C17.fm Page 377 Friday, December 22, 2006 5:48 AM

378 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

1. The symfony autoloading function (sfCore::splAutoload()) first looks for a class in the
paths declared in the autoload.yml file.

2. If none is found, the callback methods declared in the sf_autoloading_functions
setting will be called one after the other, until one of them returns true:

• sfZendFrameworkBridge::autoload()

• sfEzComponentsBridge::autoload()

3. If these also return false, if you use PHP 5.0.X, symfony will throw an exception
saying that the class doesn’t exist. Starting with PHP 5.1, the error will be generated
by PHP itself.

This means that the other framework components benefit from the autoload mechanism,
and you can use them even more easily than within their own environment. For instance, if you
want to use the Zend_Search component in the Zend Framework to implement an equivalent of
the Lucene search engine in PHP, you have to write this:

require_once 'Zend/Search/Lucene.php';
$doc = new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search_Lucene_Field::Text('url', $docUrl));
...

With symfony and the Zend Framework bridge, it is simpler. Just write this:

$doc = new Zend_Search_Lucene_Document(); // The class is autoloaded
$doc->addField(Zend_Search_Lucene_Field::Text('url', $docUrl));
...

The available bridges are stored in the $sf_symfony_lib_dir/addon/bridge/ directory.

Plug-Ins
You will probably need to reuse a piece of code that you developed for one of your symfony
applications. If you can package this piece of code into a single class, no problem: Drop the
class in one of the lib/ folders of another application and the autoloader will take care of the
rest. But if the code is spread across more than one file, such as a complete new theme for the
administration generator or a combination of JavaScript files and helpers to automate your
favorite visual effect, just copying the files is not the best solution.

Plug-ins offer a way to package code disseminated in several files and to reuse this code
across several projects. Into a plug-in, you can package classes, filters, mixins, helpers, config-
uration, tasks, modules, schemas and model extensions, fixtures, web assets, etc. Plug-ins are
easy to install, upgrade, and uninstall. They can be distributed as a .tgz archive, a PEAR package, or
a simple checkout of a code repository. The PEAR packaged plug-ins have the advantage of
managing dependencies, being easier to upgrade and automatically discovered. The symfony
loading mechanisms take plug-ins into account, and the features offered by a plug-in are avail-
able in the project as if the plug-in code was part of the framework.

So, basically, a plug-in is a packaged extension for a symfony project. With plug-ins, not
only can you reuse your own code across applications, but you can also reuse developments
made by other contributors and add third-party extensions to the symfony core.

Zaninotto_786-9 C17.fm Page 378 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 379

Finding Symfony Plug-Ins
The symfony project website contains a page dedicated to symfony plug-ins. It is in the symfony
wiki and accessible with the following URL:

http://www.symfony-project.com/trac/wiki/SymfonyPlugins

Each plug-in listed there has its own page, with detailed installation instructions and
documentation.

Some of these plug-ins are contributions from the community, and some come from the
core symfony developers. Among the latter, you will find the following:

• sfFeedPlugin: Automates the manipulation of RSS and Atom feeds

• sfThumbnailPlugin: Creates thumbnails—for instance, for uploaded images

• sfMediaLibraryPlugin: Allows media upload and management, including an extension
for rich text editors to allow authoring of images inside rich text

• sfShoppingCartPlugin: Allows shopping cart management

• sfPagerNavigationPlugin: Provides classical and Ajax pager controls, based on an
sfPager object

• sfGuardPlugin: Provides authentication, authorization, and other user management
features above the standard security feature of symfony

• sfPrototypePlugin: Provides prototype and script.aculo.us JavaScript files as a standalone
library

• sfSuperCachePlugin: Writes pages in cache directory under the web root to allow the
web server to serve them as fast as possible

• sfOptimizerPlugin: Optimizes your application’s code to make it execute faster in the
production environment (see the next chapter for details)

• sfErrorLoggerPlugin: Logs every 404 and 500 error in a database and provides an
administration module to browse these errors

• sfSslRequirementPlugin: Provides SSL encryption support for actions

The wiki also proposes plug-ins designed to extend your Propel objects, also called behaviors.
Among them, you will find the following:

• sfPropelParanoidBehaviorPlugin: Disables object deletion and replaces it with the
updating of a deleted_at column

• sfPropelOptimisticLockBehaviorPlugin: Implements optimistic locking for Propel objects

You should regularly check out the symfony wiki, because new plug-ins are added all the
time, and they bring very useful shortcuts to many aspects of web application programming.

Apart from the symfony wiki, the other ways to distribute plug-ins are to propose a plug-
ins archive for download, to host them in a PEAR channel, or to store them in a public version
control repository.

Zaninotto_786-9 C17.fm Page 379 Friday, December 22, 2006 5:48 AM

380 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

Installing a Plug-In
The plug-in installation process differs according to the way it’s packaged. Always refer to the
included README file and/or installation instructions on the plug-in download page. Also, always
clear the symfony cache after installing a plug-in.

Plug-ins are installed applications on a per-project basis. All the methods described in
the following sections result in putting all the files of a plug-in into a myproject/plugins/
pluginName/ directory.

PEAR Plug-Ins

Plug-ins listed on the symfony wiki are bundled as PEAR packages attached to a wiki page. To
install such a plug-in, use the plugin-install task with a full URL, as shown in Listing 17-15.

Listing 17-15. Installing a Plug-In from the Symfony Wiki

> cd myproject
> php symfony plugin-install http://plugins.symfony-project.com/pluginName
> php symfony cc

Alternatively, you can download the plug-in and install it from the disk. In this case, replace
the channel name with the absolute path to the package archive, as shown in Listing 17-16.

Listing 17-16. Installing a Plug-In from a Downloaded PEAR Package

> cd myproject
> php symfony plugin-install /home/path/to/downloads/pluginName.tgz
> php symfony cc

Some plug-ins are hosted on PEAR channels. Install them with the plugin-install task,
and don’t forget to mention the channel name, as shown in Listing 17-17.

Listing 17-17. Installing a Plug-In from a PEAR Channel

> cd myproject
> php symfony plugin-install channelName/pluginName
> php symfony cc

These three types of installation all use a PEAR package, so the term “PEAR plug-in” will be
used indiscriminately to talk about plug-ins installed from the symfony wiki, a PEAR channel,
or a downloaded PEAR package.

Archive Plug-Ins

Some plug-ins come as a simple archive of files. To install those, just unpack the archive into
your project’s plugins/ directory. If the plug-in contains a web/ subdirectory, make a copy or a
symlink of this directory into the project’s web/ directory, as demonstrated in Listing 17-18. Finally,
don’t forget to clear the cache.

Zaninotto_786-9 C17.fm Page 380 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 381

Listing 17-18. Installing a Plug-In from an Archive

> cd plugins
> tar –zxpf myPlugin.tgz
> cd ..
> ln –sf plugins/myPlugin/web web/myPlugin
> php symfony cc

Installing Plug-Ins from a Version Control Repository

Plug-ins sometimes have their own source code repository for version control. You can install
them by doing a simple checkout in the plugins/ directory, but this can be problematic if your
project itself is under version control.

Alternatively, you can declare the plug-in as an external dependency so that every update
of your project source code also updates the plug-in source code. For instance, Subversion
stores external dependencies in the svn:externals property. So you can add a plug-in by
editing this property and updating your source code afterwards, as Listing 17-19 demonstrates.

Listing 17-19. Installing a Plug-In from a Source Version Repository

> cd myproject
> svn propedit svn:externals plugins
 pluginName http://svn.example.com/pluginName/trunk
> svn up
> php symfony cc

■Note If the plug-in contains a web/ directory, you must create a symlink to it the same way as for an
archive plug-in.

Activating a Plug-In Module

Some plug-ins contain whole modules. The only difference between module plug-ins and
classical modules is that module plug-ins don’t appear in the myproject/apps/myapp/modules/
directory (to keep them easily upgradeable). They also need to be activated in the settings.yml
file, as shown in Listing 17-20.

Listing 17-20. Activating a Plug-In Module, in myapp/config/settings.yml

all:
 .settings:
 enabled_modules: [default, sfMyPluginModule]

This is to avoid a situation where the plug-in module is mistakenly made available for an
application that doesn’t require it, which could open a security breach. Think about a plug-in
that provides frontend and backend modules. You will need to enable the frontend modules
only in your frontend application, and the backend ones only in the backend application. This is
why plug-in modules are not activated by default.

Zaninotto_786-9 C17.fm Page 381 Friday, December 22, 2006 5:48 AM

382 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

■Tip The default module is the only enabled module by default. That’s not really a plug-in module, because
it resides in the framework, in $sf_symfony_data_dir/modules/default/. This is the module that
provides the congratulations pages, and the default error pages for 404 and credentials required errors. If you
don’t want to use the symfony default pages, just remove this module from the enabled_modules setting.

Listing the Installed Plug-Ins

If a glance at your project’s plugins/ directory can tell you which plug-ins are installed, the
plugin-list task tells you even more: the version number and the channel name of each
installed plug-in (see Listing 17-21).

Listing 17-21. Listing Installed Plug-Ins

> cd myproject
> php symfony plugin-list

Installed plugins:
sfPrototypePlugin 1.0.0-stable # pear.symfony-project.com (symfony)
sfSuperCachePlugin 1.0.0-stable # pear.symfony-project.com (symfony)
sfThumbnail 1.1.0-stable # pear.symfony-project.com (symfony)

Upgrading and Uninstalling Plug-Ins

To uninstall a PEAR plug-in, call the plugin-uninstall task from the root project directory, as
shown in Listing 17-22. You must prefix the plug-in name with its installation channel (use the
plugin-list task to determine this channel).

Listing 17-22. Uninstalling a Plug-In

> cd myproject
> php symfony plugin-uninstall pear.symfony-project.com/sfPrototypePlugin
> php symfony cc

■Tip Some channels have an alias. For instance, the pear.symfony-project.com channel can also be
seen as symfony, which means that you can uninstall the sfPrototypePlugin as in Listing 17-22 by
calling simply php symfony plugin-uninstall symfony/sfPrototypePlugin.

To uninstall an archive plug-in or an SVN plug-in, remove manually the plug-in files from
the project plugins/ and web/ directories, and clear the cache.

Zaninotto_786-9 C17.fm Page 382 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 383

To upgrade a plug-in, either use the plugin-upgrade task (for a PEAR plug-in) or do an svn
update (if you grabbed the plug-in from a version control repository). Archive plug-ins can’t be
upgraded easily.

Anatomy of a Plug-In
Plug-ins are written using the PHP language. If you can understand how an application is orga-
nized, you can understand the structure of the plug-ins.

Plug-In File Structure

A plug-in directory is organized more or less like a project directory. The plug-in files have to
be in the right directories in order to be loaded automatically by symfony when needed. Have
a look at the plug-in file structure description in Listing 17-23.

Listing 17-23. File Structure of a Plug-In

pluginName/
 config/
 *schema.yml // Data schema
 *schema.xml
 config.php // Specific plug-in configuration
 data/
 generator/
 sfPropelAdmin
 */ // Administration generator themes
 templates/
 skeleton/
 fixtures/
 *.yml // Fixtures files
 tasks/
 *.php // Pake tasks
 lib/
 *.php // Classes
 helper/
 *.php // Helpers
 model/
 *.php // Model classes
 modules/
 */ // Modules
 actions/
 actions.class.php
 config/
 module.yml
 view.yml
 security.yml

Zaninotto_786-9 C17.fm Page 383 Friday, December 22, 2006 5:48 AM

384 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

 templates/
 *.php
 validate/
 *.yml
 web/
 * // Assets

Plug-In Abilities

Plug-ins can contain a lot of things. Their content is automatically taken into account by your
application at runtime and when calling tasks with the command line. But for plug-ins to work
properly, you must respect a few conventions:

Database schemas are detected by the propel- tasks. When you call propel-build-model in
your project, you rebuild the project model and all the plug-in models with it. Note that a
plug-in schema must always have a package attribute under the shape plugins.pluginName.
lib.model, as shown in Listing 17-24.

Listing 17-24. Example Schema Declaration in a Plug-In, in myPlugin/config/schema.yml

propel:
 _attributes: { package: plugins.myPlugin.lib.model }
 my_plugin_foobar:
 _attributes: { phpName: myPluginFoobar }
 id:
 name: { type: varchar, size: 255, index: unique }
 ...

The plug-in configuration is to be included in the plug-in bootstrap script (config.php).
This file is executed after the application and project configuration, so symfony is already
bootstrapped at that time. You can use this file, for instance, to add directories to the PHP
include path or to extend existing classes with mixins.

Fixtures files located in the plug-in data/fixtures/ directory are processed by the
propel-load-data task.

Tasks are immediately available to the symfony command line as soon as the plug-in is
installed. It is a best practice to prefix the task by something meaningful—for instance, the
plug-in name. Type symfony to see the list of available tasks, including the ones added by
plug-ins.

Custom classes are autoloaded just like the ones you put in your project lib/ folders.

Helpers are automatically found when you call use_helper() in templates. They must be in
a helper/ subdirectory of one of the plug-in’s lib/ directory.

Model classes in myplugin/lib/model/ specialize the model classes generated by the Propel
builder (in myplugin/lib/model/om/ and myplugin/lib/model/map/). They are, of course,
autoloaded. Be aware that you cannot override the generated model classes of a plug-in in
your own project directories.

Zaninotto_786-9 C17.fm Page 384 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 385

Modules provide new actions accessible from the outside, provided that you declare them
in the enabled_modules setting in your application.

Web assets (images, scripts, style sheets, etc.) are made available to the server. When you
install a plug-in via the command line, symfony creates a symlink to the project web/ direc-
tory if the system allows it, or copies the content of the module web/ directory into the
project one. If the plug-in is installed from an archive or a version control repository, you
have to copy the plug-in web/ directory by hand (as the README bundled with the plug-in
should mention).

Manual Plug-In Setup

There are some elements that the plugin-install task cannot handle on its own, and which
require manual setup during installation:

Custom application configuration can be used in the plug-in code (for instance, by using
sfConfig::get('app_myplugin_foo')), but you can’t put the default values in an app.yml
file located in the plug-in config/ directory. To handle default values, use the second argu-
ment of the sfConfig::get() method. The settings can still be overridden at the application
level (see Listing 17-25 for an example).

Custom routing rules have to be added manually to the application routing.yml.

Custom filters have to be added manually to the application filters.yml.

Custom factories have to be added manually to the application factories.yml.

Generally speaking, all the configuration that should end up in one of the application
configuration files has to be added manually. Plug-ins with such manual setup should embed
a README file describing installation in detail.

Customizing a Plug-In for an Application

Whenever you want to customize a plug-in, never alter the code found in the plugins/ directory.
If you do so, you will lose all your modifications when you upgrade the plug-in. For customiza-
tion needs, plug-ins provide custom settings, and they support overriding.

Well-designed plug-ins use settings that can be changed in the application app.yml, as
Listing 17-25 demonstrates.

Listing 17-25. Customizing a Plug-In That Uses the Application Configuration

// example plug-in code
$foo = sfConfig::get('app_my_plugin_foo', 'bar');

// Change the 'foo' default value ('bar') in the application app.yml
all:
 my_plugin:
 foo: barbar

The module settings and their default values are often described in the plug-in’s README
file.

Zaninotto_786-9 C17.fm Page 385 Friday, December 22, 2006 5:48 AM

386 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

You can replace the default contents of a plug-in module by creating a module of the same
name in your own application. It is not really overriding, since the elements in your application
are used instead of the ones of the plug-in. It works fine if you create templates and configuration
files of the same name as the ones of the plug-ins.

On the other hand, if a plug-in wants to offer a module with the ability to override its
actions, the actions.class.php in the plug-in module must be empty and inherit from an auto-
loading class, so that the method of this class can be inherited as well by the actions.class.php
of the application module. See Listing 17-26 for an example.

Listing 17-26. Customizing a Plug-In Action

// In myPlugin/modules/mymodule/lib/myPluginmymoduleActions.class.php
class myPluginmymoduleActions extends sfActions
{
 public function executeIndex()
 {
 // Some code there
 }
}

// In myPlugin/modules/mymodule/actions/actions.class.php
class mymoduleActions extends myPluginmymoduleActions
{
 // Nothing
}

// In myapp/modules/mymodule/actions/actions.class.php
class mymoduleActions extends myPluginmymoduleActions
{
 public function executeIndex()
 {
 // Override the plug-in code there
 }
}

How to Write a Plug-In
Only plug-ins packaged as PEAR packages can be installed with the plugin-install task.
Remember that such plug-ins can be distributed via the symfony wiki, a PEAR channel, or a
simple file download. So if you want to author a plug-in, it is better to publish it as a PEAR
package than as a simple archive. In addition, PEAR packaged plug-ins are easier to upgrade,
can declare dependencies, and automatically deploy assets in the web/ directory.

File Organization

Suppose you have developed a new feature and want to package it as a plug-in. The first step
is to organize the files logically so that the symfony loading mechanisms can find them when

Zaninotto_786-9 C17.fm Page 386 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 387

needed. For that purpose, you have to follow the structure given in Listing 17-23. Listing 17-27
shows an example of file structure for an sfSamplePlugin plug-in.

Listing 17-27. Example List of Files to Package As a Plug-In

sfSamplePlugin/
 README
 LICENSE
 config/
 schema.yml
 data/
 fixtures/
 fixtures.yml
 tasks/
 sfSampleTask.php
 lib/
 model/
 sfSampleFooBar.php
 sfSampleFooBarPeer.php
 validator/
 sfSampleValidator.class.php
 modules/
 sfSampleModule/
 actions/
 actions.class.php
 config/
 security.yml
 lib/
 BasesfSampleModuleActions.class.php
 templates/
 indexSuccess.php
 web/
 css/
 sfSampleStyle.css
 images/
 sfSampleImage.png

For authoring, the location of the plug-in directory (sfSamplePlugin/ in Listing 17-27) is
not important. It can be anywhere on the disk.

■Tip Take examples of the existing plug-ins and, for your first attempts at creating a plug-in, try to repro-
duce their naming conventions and file structure.

Zaninotto_786-9 C17.fm Page 387 Friday, December 22, 2006 5:48 AM

388 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

Creating the package.xml File

The next step of plug-in authoring is to add a package.xml file at the root of the plug-in directory.
The package.xml follows the PEAR syntax. Have a look at a typical symfony plug-in package.xml
in Listing 17-28.

Listing 17-28. Example package.xml for a Symfony Plug-In

<?xml version="1.0" encoding="UTF-8"?>
<package packagerversion="1.4.6" version="2.0" xmlns="http://pear.php.net/dtd/ ➥

 package-2.0" xmlns:tasks="http://pear.php.net/dtd/tasks-1.0" xmlns:xsi="http ➥

 ://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://pear.php.n ➥

 et/dtd/tasks-1.0 http://pear.php.net/dtd/tasks-1.0.xsd http://pear.php.net/d ➥

 td/package-2.0 http://pear.php.net/dtd/package-2.0.xsd">
 <name>sfSamplePlugin</name>
 <channel>pear.symfony-project.com</channel>
 <summary>symfony sample plugin</summary>
 <description>Just a sample plugin to illustrate PEAR packaging</description>
 <lead>
 <name>Fabien POTENCIER</name>
 <user>fabpot</user>
 <email>fabien.potencier@symfony-project.com</email>
 <active>yes</active>
 </lead>
 <date>2006-01-18</date>
 <time>15:54:35</time>
 <version>
 <release>1.0.0</release>
 <api>1.0.0</api>
 </version>
 <stability>
 <release>stable</release>
 <api>stable</api>
 </stability>
 <license uri="http://www.symfony-project.com/license">MIT license</license>
 <notes>-</notes>
 <contents>
 <dir name="/">
 <file role="data" name="README" />
 <file role="data" name="LICENSE" />
 <dir name="config">
 <!-- model -->
 <file role="data" name="schema.yml" />
 </dir>
 <dir name="data">
 <dir name="fixtures">
 <!-- fixtures -->
 <file role="data" name="fixtures.yml" />

Zaninotto_786-9 C17.fm Page 388 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 389

 </dir>
 <dir name="tasks">
 <!-- tasks -->
 <file role="data" name="sfSampleTask.php" />
 </dir>
 </dir>
 <dir name="lib">
 <dir name="model">
 <!-- model classes -->
 <file role="data" name="sfSampleFooBar.php" />
 <file role="data" name="sfSampleFooBarPeer.php" />
 </dir>
 <dir name="validator">
 <!-- validators ->>
 <file role="data" name="sfSampleValidator.class.php" />
 </dir>
 </dir>
 <dir name="modules">
 <dir name="sfSampleModule">
 <file role="data" name="actions/actions.class.php" />
 <file role="data" name="config/security.yml" />
 <file role="data" name="lib/BasesfSampleModuleActions.class.php" />
 <file role="data" name="templates/indexSuccess.php" />
 </dir>
 </dir>
 <dir name="web">
 <dir name="css">
 <!-- stylesheets -->
 <file role="data" name="sfSampleStyle.css" />
 </dir>
 <dir name="images">
 <!-- images -->
 <file role="data" name="sfSampleImage.png" />
 </dir>
 </dir>
 </dir>
 </contents>
 <dependencies>
 <required>
 <php>
 <min>5.0.0</min>
 </php>
 <pearinstaller>
 <min>1.4.1</min>
 </pearinstaller>
 <package>
 <name>symfony</name>

Zaninotto_786-9 C17.fm Page 389 Friday, December 22, 2006 5:48 AM

390 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

 <channel>pear.symfony-project.com</channel>
 <min>1.0.0</min>
 <max>1.1.0</max>
 <exclude>1.1.0</exclude>
 </package>
 </required>
 </dependencies>
 <phprelease />
 <changelog />
</package>

The interesting parts here are the <contents> and the <dependencies> tags, described next.
For the rest of the tags, there is nothing specific to symfony, so you can refer to the PEAR online
manual (http://pear.php.net/manual/en/) for more details about the package.xml format.

Contents

The <contents> tag is the place where you must describe the plug-in file structure. This will tell
PEAR which files to copy and where. Describe the file structure with <dir> and <file> tags. All
<file> tags must have a role="data" attribute. The <contents> part of Listing 17-28 describes
the exact directory structure of Listing 17-27.

■Note The use of <dir> tags is not compulsory, since you can use relative paths as name values in the
<file> tags. However, it is recommended so that the package.xml file remains readable.

Plug-In Dependencies

Plug-ins are designed to work with a given set of versions of PHP, PEAR, symfony, PEAR pack-
ages, or other plug-ins. Declaring these dependencies in the <dependencies> tag tells PEAR to
check that the required packages are already installed, and to raise an exception if not.

You should always declare dependencies on PHP, PEAR, and symfony, at least the ones
corresponding to your own installation, as a minimum requirement. If you don’t know what to
put, add a requirement for PHP 5.0, PEAR 1.4, and symfony 1.0.

It is also recommended to add a maximum version number of symfony for each plug-in.
This will cause an error message when trying to use a plug-in with a more advanced version of
the framework, and this will oblige the plug-in author to make sure that the plug-in works
correctly with this version before releasing it again. It is better to have an alert and to download
an upgrade rather than have a plug-in fail silently.

Building the Plug-In

The PEAR component has a command (pear package) that creates the .tgz archive of the
package, provided you call the command shown in Listing 17-29 from a directory containing a
package.xml.

Zaninotto_786-9 C17.fm Page 390 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 391

Listing 17-29. Packaging a Plug-In As a PEAR Package

> cd sfSamplePlugin
> pear package

Package sfSamplePlugin-1.0.0.tgz done

Once your plug-in is built, check that it works by installing it yourself, as shown in
Listing 17-30.

Listing 17-30. Installing the Plug-In

> cp sfSamplePlugin-1.0.0.tgz /home/production/myproject/
> cd /home/production/myproject/
> php symfony plugin-install sfSamplePlugin-1.0.0.tgz

According to their description in the <contents> tag, the packaged files will end up in
different directories of your project. Listing 17-31 shows where the files of the sfSamplePlugin
should end up after installation.

Listing 17-31. The Plug-In Files Are Installed on the plugins/ and web/ Directories

plugins/
 sfSamplePlugin/
 README
 LICENSE
 config/
 schema.yml
 data/
 fixtures/
 fixtures.yml
 tasks/
 sfSampleTask.php
 lib/
 model/
 sfSampleFooBar.php
 sfSampleFooBarPeer.php
 validator/
 sfSampleValidator.class.php
 modules/
 sfSampleModule/
 actions/
 actions.class.php
 config/
 security.yml
 lib/

Zaninotto_786-9 C17.fm Page 391 Friday, December 22, 2006 5:48 AM

392 C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y

 BasesfSampleModuleActions.class.php
 templates/
 indexSuccess.php
web/
 sfSamplePlugin/ ## Copy or symlink, depending on system
 css/
 sfSampleStyle.css
 images/
 sfSampleImage.png

Test the way the plug-in behaves in your application. If it works well, you are ready to
distribute it across projects—or to contribute it to the symfony community.

Hosting Your Plug-In in the Symfony Project Website

A symfony plug-in gets the broadest audience when distributed by the symfony-project.com
website. Even your own plug-ins can be distributed this way, provided that you follow these steps:

1. Make sure the README file describes the way to install and use your plug-in, and that the
LICENSE file gives the license details. Format your README with the Wiki Formatting
syntax (http://www.symfony-project.com/trac/wiki/WikiFormatting).

2. Create a PEAR package for your plug-in by calling the pear package command, and test
it. The PEAR package must be named sfSamplePlugin-1.0.0.tgz (1.0.0 is the plug-in
version).

3. Create a new page on the symfony wiki named sfSamplePlugin (Plugin is a mandatory
suffix). In this page, describe the plug-in usage, the license, the dependencies, and the
installation procedure. You can reuse the contents of the plug-in README file. Check the
existing plug-ins’ wiki pages and use them as an example.

4. Attach your PEAR package to the wiki page (sfSamplePlugin-1.0.0.tgz).

5. Add the new plug-in wiki page ([wiki:sfSamplePlugin]) to the list of available plug-ins,
which is also a wiki page (http://www.symfony-project.com/trac/wiki/SymfonyPlugins).

If you follow this procedure, users will be able to install your plug-in by simply typing the
following command in a project directory:

> php symfony plugin-install http://plugins.symfony-project.com/sfSamplePlugin

Naming Conventions

To keep the plugins/ directory clean, ensure all the plug-in names are in camelCase and end
with Plugin (for example, shoppingCartPlugin, feedPlugin, and so on). Before naming your
plug-in, check that there is no existing plug-in with the same name.

Zaninotto_786-9 C17.fm Page 392 Friday, December 22, 2006 5:48 AM

C H A P T E R 1 7 ■ E X T E N D I N G S Y M F O N Y 393

■Note Plug-ins relying on Propel should contain Propel in the name. For instance, an authentication plug-
in using the Propel data access objects should be called sfPropelAuth.

Plug-ins should always include a LICENSE file describing the conditions of use and the
chosen license. You are also advised to add a README file to explain the version changes,
purpose of the plug-in, its effect, installation and configuration instructions, etc.

Summary
The symfony classes contain sfMixer hooks that give them the ability to be modified at the
application level. The mixins mechanism allows multiple inheritance and class overriding at
runtime even if the PHP limitations forbid it. So you can easily extend the symfony features,
even if you have to modify the core classes for that—the factories configuration is here for that.

Many such extensions already exist; they are packaged as plug-ins, to be easily installed,
upgraded, and uninstalled through the symfony command line. Creating a plug-in is as easy as
creating a PEAR package, and provides reusability across applications.

The symfony wiki contains many plug-ins, and you can even add your own. So now that
you know how to do it, we hope that you will enhance the symfony core with a lot of useful
extensions!

Zaninotto_786-9 C17.fm Page 393 Friday, December 22, 2006 5:48 AM

Zaninotto_786-9 C17.fm Page 394 Friday, December 22, 2006 5:48 AM

■ ■ ■

P A R T 5

Becoming a
Symfony Expert

Zaninotto_786-9 C18.fm Page 395 Tuesday, December 26, 2006 4:05 PM

Zaninotto_786-9 C18.fm Page 396 Tuesday, December 26, 2006 4:05 PM

397

■ ■ ■

C H A P T E R 1 8

Performance

If you expect your website will attract a crowd, performance and optimization issues should
be a major factor during the development phase. Rest assured, performance has always been a
chief concern among the core symfony developers.

While the advantages gained by accelerating the development process result in some over-
head, the core symfony developers have always been cognizant of performance requirements.
Accordingly, every class and every method have been closely inspected and optimized to be as
fast as possible. The basic overhead, which you can measure by comparing the time to display
a “hello, world” message with and without symfony, is minimal. As a result, the framework is
scalable and reacts well to stress tests. And as the ultimate proof, some websites with extremely
high traffic (that is, websites with millions of active subscribers and a lot of server-pressuring
Ajax interactions) use symfony and are very satisfied with its performance. Check the list of
websites developed with symfony in the wiki (http://www.symfony-project.com/trac/wiki/
ApplicationsDevelopedWithSymfony) for names.

But, of course, high-traffic websites often have the means to expand the server farm and
upgrade hardware as they see fit. If you don’t have the resources to do this, or if you want to be
sure the full power of the framework is always at your disposal, there are a few tweaks that you
can use to further speed up your symfony application. This chapter lists some of the recommended
performance optimizations at all levels of the framework and they are mostly for advanced
users. Some of them were already mentioned throughout the previous chapters, but you will
find it useful to have them all in one place.

Tweaking the Server
A well-optimized application should rely on a well-optimized server. You should know the
basics of server performance to make sure there is no bottleneck outside symfony. Here are a
few things to check to make sure that your server isn’t unnecessarily slow.

Having magic_quotes_gpc turned on in the php.ini slows down an application, because it
tells PHP to escape all quotes in request parameters, but symfony will systematically unescape
them afterwards, and the only consequence will be a loss of time—and quotes-escaping problems
on some platforms. Therefore, turn this setting off if you have access to the PHP configuration.

The more recent PHP release you use, the better. PHP 5.2 is faster than PHP 5.1, and PHP
5.1 is a lot faster than PHP 5.0. So make sure you upgrade your PHP version to benefit from the
latest performance improvements.

Zaninotto_786-9 C18.fm Page 397 Tuesday, December 26, 2006 4:05 PM

398 C H A P T E R 1 8 ■ P E R F O R M A N C E

The use of a PHP accelerator (such as APC, XCache, or eAccelerator) is almost compulsory
for a production server, because it can make PHP run an average 50% faster, with no tradeoff.
Make sure you install one of the accelerator extensions to feel the real speed of PHP.

On the other hand, make sure you deactivate any debug utility, such as the Xdebug or APD
extension, in your production server.

■Note You might be wondering about the overhead caused by the mod_rewrite extension: it is negligible.
Of course, loading an image with rewriting rules is slower than loading an image without, but the slowdown
is orders of magnitude below the execution of any PHP statement.

Some symfony developers like to use syck, which is a YAML parser packaged as a PHP
extension, as an alternative to the symfony internal parser. It is faster, but symfony’s caching
system already minimizes the overhead of YAML parsing, so the benefit is nonexistent in a
production environment. You should also be aware that syck isn’t completely mature yet, and
that it may cause errors when you use it. However, if you are interested, install the extension
(http://whytheluckystiff.net/syck/), and symfony will use it automatically.

■Tip When one server is not enough, you can still add another and use load balancing. As long as the
uploads/ directory is shared and you use database storage for sessions, a symfony project will react seam-
lessly in a load-balanced architecture.

Tweaking the Model
In symfony, the model layer has the reputation of being the slowest part. If benchmarks show
that you have to optimize this layer, here are a few possible improvements.

Optimizing Propel Integration
Initializing the model layer (the core Propel classes) takes some time, because of the need to
load a few classes and construct various objects. However, because of the way symfony integrates
Propel, these initialization tasks occur only when an action actually needs the model—and as
late as possible. The Propel classes will be initialized only when an object of your generated
model is autoloaded. This means pages that don’t use the model are not penalized by the model
layer.

If your entire application doesn’t require the use of the model layer, you can also save the
initialization of the sfDatabaseManager by switching the whole layer off in your settings.yml:

all:
 .settings:
 use_database: off

Zaninotto_786-9 C18.fm Page 398 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 399

The generated model classes (in lib/model/om/) are already optimized—they don’t contain
comments, and they benefit from the autoloading system. Relying on autoloading instead of
manually including files means that classes are loaded only if it is really necessary. So in case
one model class is not needed, having classes autoloaded will save execution time, while the
alternative method of using include statements won’t. As for the comments, they document
the use of the generated methods but lengthen the model files—resulting in a minor overhead
on slow disks. As the generated method names are pretty explicit, the comments are turned off
by default.

These two enhancements are symfony-specific, but you can revert to the Propel defaults
by changing two settings in your propel.ini file, as follows:

propel.builder.addIncludes = true # Add include statements in generated classes
 # Instead of relying on the autoloading system
propel.builder.addComments = true # Add comments to generated classes

Limiting the Number of Objects to Hydrate
When you use a method of a peer class to retrieve objects, your query goes through the hydrating
process (creating and populating objects based on the rows of the result of the query). For
instance, to retrieve all the rows of the article table with Propel, you usually do the following:

$articles = ArticlePeer::doSelect(new Criteria());

The resulting $articles variable is an array of objects of class Article. Each object has to
be created and initialized, which takes time. This has one major consequence: Contrary to
direct database queries, the speed of a Propel query is directly proportional to the number of
results it returns. This means your model methods should be optimized to return only a given
number of results. When you don’t need all the results returned by a Criteria, you should limit
it with the setLimit() and setOffset() methods. For instance, if you need only the rows 10 to
20 of a particular query, refine the Criteria as in Listing 18-1.

Listing 18-1. Limiting the Number of Results Returned by a Criteria

$c = new Criteria();
$c->setOffset(10); // Offset of the first record returned
$c->setLimit(10); // Number of records returned
$articles = ArticlePeer::doSelect($c);

This can be automated by the use of a pager. The sfPropelPager object automatically
handles the offset and the limit of a Propel query to hydrate only the objects required for a
given page. Refer to the API documentation for more information on this class.

Minimizing the Number of Queries with Joins
During application development, you should keep an eye on the number of database queries
issued by each request. The web debug toolbar shows the number of queries for each page, and
clicking the little database icon reveals the SQL code of these queries. If you see the number of
queries rising abnormally, it is time to consider using a Join.

Zaninotto_786-9 C18.fm Page 399 Tuesday, December 26, 2006 4:05 PM

400 C H A P T E R 1 8 ■ P E R F O R M A N C E

Before explaining the Join methods, let’s review what happens when you loop over an
array of objects and use a Propel getter to retrieve details about a related class, as in Listing 18-2.
This example supposes that your schema describes an article table with a foreign key to an
author table.

Listing 18-2. Retrieving Details About a Related Class in a Loop

// In the action
$this->articles = ArticlePeer::doSelect(new Criteria());

// Database query issued by doSelect()
SELECT article.id, article.title, article.author_id, ...
FROM article

// In the template

<?php foreach ($articles as $article): ?>
 <?php echo $article->getTitle() ?>,
 written by <?php echo $article->getAuthor()->getName() ?>
<?php endforeach; ?>

If the $articles array contains ten objects, the getAuthor() method will be called ten times,
which in turn executes one database query each time it is called to hydrate one object of class
Author, as in Listing 18-3.

Listing 18-3. Foreign Key Getters Issue One Database Query

// In the template
$article->getAuthor()

// Database query issued by getAuthor()
SELECT author.id, author.name, ...
FROM author
WHERE author.id = ? // ? is article.author_id

So the page of Listing 18-2 will require a total of 11 queries: the one necessary to build the
array of Article objects, plus the 10 queries to build one Author object at a time. This is a lot of
queries to display only a list of articles and their author.

If you were using plain SQL, you would know how to reduce the number of queries to only
one by retrieving the columns of the article table and those of the author table in the same
query. That’s exactly what the doSelectJoinAuthor() method of the ArticlePeer class does. It
issues a slightly more complex query than a simple doSelect() call, but the additional columns
in the result set allow Propel to hydrate both Article objects and the related Author objects.
The code of Listing 18-4 displays exactly the same result as Listing 18-2, but it requires only one
database query to do so rather than 11 and therefore is faster.

Zaninotto_786-9 C18.fm Page 400 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 401

Listing 18-4. Retrieving Details About Articles and Their Author in the Same Query

// In the action
$this->articles = ArticlePeer::doSelectJoinAuthor(new Criteria());

// Database query issued by doSelectJoinAuthor()
SELECT article.id, article.title, article.author_id, ...
 author.id, author.name, ...
FROM article, author
WHERE article.author_id = author.id

// In the template (unchanged)

<?php foreach ($articles as $article): ?>
 <?php echo $article->getTitle() ?>,
 written by <?php echo $article->getAuthor()->getName() ?>
<?php endforeach; ?>

There is no difference in the result returned by a doSelect() call and a doSelectJoinXXX()
method; they both return the same array of objects (of class Article in the example). The difference
appears when a foreign key getter is used on these objects afterwards. In the case of doSelect(),
it issues a query, and one object is hydrated with the result; in the case of doSelectJoinXXX(),
the foreign object already exists and no query is required, and the process is much faster. So if
you know that you will need related objects, call a doSelectJoinXXX() method to reduce the
number of database queries—and improve the page performance.

The doSelectJoinAuthor() method is automatically generated when you call a propel-
build-model because of the relationship between the article and author tables. If there were
other foreign keys in the article table structure—for instance, to a category table—the generated
BaseArticlePeer class would have other Join methods, as shown in Listing 18-5.

Listing 18-5. Example of Available doSelect Methods for an ArticlePeer Class

// Retrieve Article objects
doSelect()

// Retrieve Article objects and hydrate related Author objects
doSelectJoinAuthor()

// Retrieve Article objects and hydrate related Category objects
doSelectJoinCategory()

// Retrieve Article objects and hydrate related Author and Category objects
doSelectJoinAuthorAndCategory()

// Synonym of
doSelectJoinAll()

Zaninotto_786-9 C18.fm Page 401 Tuesday, December 26, 2006 4:05 PM

402 C H A P T E R 1 8 ■ P E R F O R M A N C E

The peer classes also contain Join methods for doCount(). The classes with an i18n coun-
terpart (see Chapter 13) provide a doSelectWithI18n() method, which behaves the same as Join
methods but for i18n objects. To discover the available Join methods in your model classes, you
should inspect the generated peer classes in lib/model/om/. If you don’t find the Join method
needed for your query (for instance, there is no automatically generated Join method for many-
to-many relationships), you can build it yourself and extend your model.

■Tip Of course, a doSelectJoinXXX() call is a bit slower than a call to doSelect(), so it only improves
the overall performance if you use the hydrated objects afterwards.

Avoid Using Temporary Arrays
When using Propel, objects are already hydrated, so there is no need to prepare a temporary
array for the template. Developers not used to ORMs usually fall into this trap. They want to
prepare an array of strings or integers, whereas the template can rely directly on an existing
array of objects. For instance, imagine that a template displays the list of all the titles of the articles
present in the database. A developer who doesn’t use OOP would probably write code similar
to what is shown in Listing 18-6.

Listing 18-6. Preparing an Array in the Action Is Useless If You Already Have One

// In the action
$articles = ArticlePeer::doSelect(new Criteria());
$titles = array();
foreach ($articles as $article)
{
 $titles[] = $article->getTitle();
}
$this->titles = $titles;

// In the template

<?php foreach ($titles as $title): ?>
 <?php echo $title ?>
<?php endforeach; ?>

The problem with this code is that the hydrating is already done by the doSelect() call
(which takes time), making the $titles array superfluous, since you can write the same code
as in Listing 18-7. So the time spent to build the $titles array could be gained to improve the
application performance.

Zaninotto_786-9 C18.fm Page 402 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 403

Listing 18-7. Using an Array of Objects Exempts You from Creating a Temporary Array

// In the action
$this->articles = ArticlePeer::doSelect(new Criteria());

// In the template

<?php foreach ($articles as $article): ?>
 <?php echo $article->getTitle() ?>
<?php endforeach; ?>

If you feel that you really need to prepare a temporary array because some processing is
necessary on objects, the right way to do so is to create a new method in your model class that
directly returns this array. For instance, if you need an array of article titles and the number of
comments for each article, the action and the template should look like Listing 18-8.

Listing 18-8. Using a Custom Method to Prepare a Temporary Array

// In the action
$this->articles = ArticlePeer::getArticleTitlesWithNbComments();

// In the template

<?php foreach ($articles as $article): ?>
 <?php echo $article[0] ?> (<?php echo $article[1] ?> comments)
<?php endforeach; ?>

It’s up to you to build a fast-processing getArticleTitlesWithNbComments() method in
the model—for instance, by bypassing the whole object-relational mapping and database
abstraction layers.

Bypassing the ORM
When you don’t really need objects but only a few columns from various tables, as in the
previous example, you can create specific methods in your model that bypass completely the
ORM layer. You can directly call the database with Creole, for instance, and return a custom-
built array. Listing 18-9 illustrates this idea.

Listing 18-9. Using Direct Creole Access for Optimized Model Methods, in lib/model/
ArticlePeer.php

class ArticlePeer extends BaseArticlePeer
{
 public static function getArticleTitlesWithNbComments()
 {
 $connection = Propel::getConnection();
 $query = 'SELECT %s as title, COUNT(%s) AS nb FROM %s LEFT JOIN %s ON %s = %s ➥

Zaninotto_786-9 C18.fm Page 403 Tuesday, December 26, 2006 4:05 PM

404 C H A P T E R 1 8 ■ P E R F O R M A N C E

 GROUP BY %s';
 $query = sprintf($query,
 ArticlePeer::TITLE, CommentPeer::ID,
 ArticlePeer::TABLE_NAME, CommentPeer::TABLE_NAME,
 ArticlePeer::ID, CommentPeer::ARTICLE_ID,
 ArticlePeer::ID
);
 $statement = $connnection->prepareStatement($query);
 $resultset = $statement->executeQuery();
 $results = array();
 while ($resultset->next())
 {
 $results[] = array($resultset->getString('title'), $resultset->getInt('nb'));
 }

 return $results;
 }
}

When you start building these sorts of methods, you may end up writing one custom method
for each action, and lose the benefit of the layer separation—not to mention the fact that you
lose database-independence.

■Tip If Propel doesn’t suit you as a model layer, consider using other ORMs before writing your queries by
hand. For instance, check the sfDoctrine plug-in for an interface with the PhpDoctrine ORM. In addition,
you can use another database abstraction layer than Creole to access your database directly. As of PHP 5.1,
PDO is bundled with PHP and provides a faster alternative to Creole.

Speeding Up the Database
There are many database-specific optimization techniques that can be applied regardless of
whether you’re using symfony. This section briefly outlines the most common database optimiza-
tion strategies, but a good knowledge of database engines and administration is required to get
the most out of your model layer.

■Tip Remember that the web debug toolbar displays the time taken by each query in a page, and that every
tweak should be monitored to determine whether it really improves performance.

Zaninotto_786-9 C18.fm Page 404 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 405

Table queries are often based on non–primary key columns. To improve the speed of such
queries, you should define indexes in your database schema. To add a single column index, add
the index: true property to the column definition, as in Listing 18-10.

Listing 18-10. Adding a Single Column Index, in config/schema.yml

propel:
 article:
 id:
 author_id:
 title: { type: varchar(100), index: true }

You can use the alternative index: unique syntax to define a unique index instead of a
classic one. You can also define multiple column indices in schema.yml (refer to Chapter 8 for
more details about the indexing syntax). You should strongly consider doing this, because it is
often a good way to speed up a complex query.

After adding an index to a schema, you should do the same in the database itself, either by
issuing an ADD INDEX query directly in the database or by calling the propel-build-all command
(which will not only rebuild the table structure, but also erase all the existing data).

■Tip Indexing tends to make SELECT queries faster, but INSERT, UPDATE, and DELETE queries are
slower. Also, database engines use only one index per query, and they infer the index to be used for each
query based on internal heuristics. Adding an index can sometimes be disappointing in terms of performance
boost, so make sure you measure the improvements.

Unless specified otherwise, each request uses a single database connection in symfony,
and the connection is closed at the end of the request. You can enable persistent database
connections to use a pool of database connections that remain open between queries, by
setting persistent: true in the databases.yml file, as shown in Listing 18-11.

Listing 18-11. Enabling Persistent Database Connection Support, in config/databases.yml

prod:
 propel:
 class: sfPropelDatabase
 param:
 persistent: true
 dsn: mysql://login:passwd@localhost/blog

This may or may not improve the overall database performance, depending on numerous
factors. The documentation on the subject is abundant on the Internet. Make sure you bench-
mark your application performance before and after changing this setting to validate its
interest.

Zaninotto_786-9 C18.fm Page 405 Tuesday, December 26, 2006 4:05 PM

406 C H A P T E R 1 8 ■ P E R F O R M A N C E

MYSQL-SPECIFIC TIPS

Many settings of the MySQL configuration, found in the my.cnf file, may alter database performance. Make sure
you read the online documentation (http://dev.mysql.com/doc/refman/5.0/en/option-files.html)
on this subject.

One of the tools provided by MySQL is the slow queries log. All SQL statements that take more than
long_query_time seconds to execute (this is a setting that can be changed in the my.cnf) are logged in a
file that is quite difficult to construe by hand, but that the mysqldumpslow command summarizes usefully.
This is a great tool to detect the queries that require optimizations.

Tweaking the View
According to how you design and implement the view layer, you may notice small slowdowns
or speedups. This section describes the alternatives and their tradeoffs.

Using the Fastest Code Fragment
If you don’t use the caching system, you have to be aware that an include_component() is slightly
slower than an include_partial(), which itself is slightly slower than a simple PHP include.
This is because symfony instantiates a view to include a partial and an object of class sfComponent
to include a component, which collectively add some minor overhead beyond what’s required
to include the file.

However, this overhead is insignificant, unless you include a lot of partials or components
in a template. This may happen in lists or tables, and every time you call an include_partial()
helper inside a foreach statement. When you notice that a large number of partial or compo-
nent inclusions have a significant impact on your performance, you may consider caching (see
Chapter 12), and if caching is not an option, then switch to simple include statements.

As for slots and component slots, the difference in performance is perceptible. The process
time necessary to set and include a slot is negligible—it is equivalent to a variable instantiation.
But component slots rely on a view configuration, and they require a few objects to be initiated
to work. However, component slots can be cached independently from the calling templates,
while slots are always cached within the template that includes them.

Speeding Up the Routing Process
As explained in Chapter 9, every call to a link helper in a template asks the routing system to
process an internal URI into an external URL. This is done by finding a match between the URI
and the patterns of the routing.yml file. Symfony does it quite simply: It tries to match the first
rule with the given URI, and if it doesn’t work, it tries with the following, and so on. As every test
involves regular expressions, this is quite time consuming.

There is a simple workaround: Use the rule name instead of the module/action couple.
This will tell symfony which rule to use, and the routing system won’t lose time trying to match
all previous rules.

In concrete terms, consider the following routing rule, defined in your routing.yml file:

Zaninotto_786-9 C18.fm Page 406 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 407

article_by_id:
 url: /article/:id
 param: { module: article, action: read }

Then instead of outputting a hyperlink this way:

<?php echo link_to('my article', 'article/read?id='.$article->getId()) ?>

you should use the fastest version:

<?php echo link_to('my article', '@article_by_id?id='.$article->getId()) ?>

The difference starts being noticeable when a page includes a few dozen routed
hyperlinks.

Skipping the Template
Usually, a response is composed of a set of headers and content. But some responses don’t
need content. For instance, some Ajax interactions need only a few pieces of data from the
server in order to feed a JavaScript program that will update different parts of the page. For this
kind of short response, a set of headers alone is faster to transmit. As discussed in Chapter 11,
an action can return only a JSON header. Listing 18-12 reproduces an example from Chapter 11.

Listing 18-12. Example Action Returning a JSON Header

public function executeRefresh()
{
 $output = '[["title", "My basic letter"], ["name", "Mr Brown"]]';
 $this->getResponse()->setHttpHeader("X-JSON", '('.$output.')');

 return sfView::HEADER_ONLY;
}

This skips the template and the layout, and the response can be sent at once. As it contains
only headers, it is more lightweight and will take less time to transmit to the user.

Chapter 6 explained another way to skip the template by returning content text directly
from the action. This breaks the MVC separation, but it can increase the responsiveness of an
action greatly. Check Listing 18-13 for an example.

Listing 18-13. Example Action Returning Content Text Directly

public function executeFastAction()
{
 return $this->renderText("<html><body>Hello, World!</body></html>");
}

Restricting the Default Helpers
The standard helper groups (Partial, Cache, and Form) are loaded for every request. If you are
sure that you won’t use some of them, removing a helper group from the list of standard ones

Zaninotto_786-9 C18.fm Page 407 Tuesday, December 26, 2006 4:05 PM

408 C H A P T E R 1 8 ■ P E R F O R M A N C E

will save you the parsing of the helper file. In particular, the Form helper group, although included
by default, is quite heavy and slows down pages with no forms just because of its size. So it
might be a good idea to edit the standard_helpers setting in the settings.yml file to remove it:

all:
 .settings:
 standard_helpers: [Partial, Cache] # Form is removed

The tradeoff is that you must declare the Form helper group on each template using it with
use_helper('Form').

Compressing the Response
Symfony compresses the response before sending it to the user. This feature is based on the
PHP zlib module. You can save a little CPU time for each request by deactivating it in the
settings.yml file:

all:
 .settings:
 compressed: off

Be aware that the CPU gain will be balanced by the bandwidth loss, so the performance
won’t increase in all configurations with this change.

■Tip If you deactivate zip compression in PHP, you can enable it at the server level. Apache has a compression
extension of its own.

Tweaking the Cache
Chapter 12 already described how to cache parts of a response or all of it. The response cache
results in a major performance improvement, and it should be one of your first optimization
considerations. If you want to make the most out of the cache system, read further, for this
section unveils a few tricks you might not have thought of.

Clearing Selective Parts of the Cache
During application development, you have to clear the cache in various situations:

• When you create a new class: Adding a class to an autoloading directory (one of the project’s
lib/ folders) is not enough to have symfony find it automatically. You must clear the
autoloading configuration cache so that symfony browses again all the directories of the
autoload.yml file and references the location of autoloadable classes—including the
new ones.

• When you change the configuration in production: The configuration is parsed only
during the first request in production. Further requests use the cached version instead.
So a change in the configuration in the production environment (or any environment
where SF_DEBUG is turned off) doesn’t take effect until you clear the cached version of the file.

Zaninotto_786-9 C18.fm Page 408 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 409

• When you modify a template in an environment where the template cache is enabled: The
valid cached templates are always used instead of existing templates in production, so a
template change is ignored until the template cache is cleared or outdated.

• When you update an application with the sync command: This case usually covers the
three previous modifications.

The problem with clearing the whole cache is that the next request will take quite long to
process, because the configuration cache needs to be regenerated. Besides, the templates that
were not modified will be cleared from the cache as well, losing the benefit of previous
requests.

That means it’s a good idea to clear only the cache files that really need to be regenerated.
Use the options of the clear-cache task to define a subset of cache files to clear, as demonstrated in
Listing 18-14.

Listing 18-14. Clearing Only Selective Parts of the Cache

// Clear only the cache of the myapp application
> symfony clear-cache myapp

// Clear only the HTML cache of the myapp application
> symfony clear-cache myapp template

// Clear only the configuration cache of the myapp application
> symfony clear-cache myapp config

You can also remove files by hand in the cache/ directory, or clear template cache files
selectively from the action with the $cacheManager->remove() method, as described in Chapter 12.

All these techniques will minimize the negative performance impact of any of the changes
listed previously.

■Tip When you upgrade symfony, the cache is automatically cleared, without manual intervention (if you
set the check_symfony_version parameter to true in settings.yml).

Generating Cached Pages
When you deploy a new application to production, the template cache is empty. You must wait
for users to visit a page once for this page to be put in the cache. In critical deployments, the
overhead of page processing is not acceptable, and the benefits of caching must be available as
soon as the first request is issued.

The solution is to automatically browse the pages of your application in the staging envi-
ronment (where the configuration is similar to the one in production) to have the template
cache generated, then to transfer the application with the cache to production.

To browse the pages automatically, one option is to create a shell script that looks through
a list of external URLs with a browser (curl for instance). But there is a better and faster solution:

Zaninotto_786-9 C18.fm Page 409 Tuesday, December 26, 2006 4:05 PM

410 C H A P T E R 1 8 ■ P E R F O R M A N C E

a symfony batch using the sfBrowser object, already discussed in Chapter 15. That’s an internal
browser written in PHP (and used by sfTestBrowser for functional tests). It takes an external
URL and returns a response, but the interesting thing is that it triggers the template cache just
like a regular browser. As it only initializes symfony once and doesn’t pass by the HTTP trans-
port layer, this method is a lot faster.

Listing 18-15 shows an example batch script used to generate template cache files in a
staging environment. Launch it by calling php batch/generate_cache.php.

Listing 18-15. Generating the Template Cache, in batch/generate_cache.php

<?php

define('SF_ROOT_DIR', realpath(dirname(__FILE__).'/..'));
define('SF_APP', 'myapp');
define('SF_ENVIRONMENT', 'staging');
define('SF_DEBUG', false);

require_once(SF_ROOT_DIR.DIRECTORY_SEPARATOR.'apps'.DIRECTORY_SEPARATOR.SF_APP ➥

.DIRECTORY_SEPARATOR.'config'.DIRECTORY_SEPARATOR.'config.php');

// Array of URLs to browse
$uris = array(
 '/foo/index',
 '/foo/bar/id/1',
 '/foo/bar/id/2',
 ...
);

$b = new sfBrowser();
foreach ($uris as $uri)
{
 $b->get($uri);
}

Using a Database Storage System for Caching
The default storage system for the template cache in symfony is the file system: Fragments of
HTML or serialized response objects are stored under the cache/ directory of a project. Symfony
proposes an alternative way to store cache: a SQLite database. Such a database is a simple file
that PHP natively knows how to query very efficiently.

To tell symfony to use SQLite storage instead of file system storage for the template cache,
open the factories.yml file and edit the view_cache entry as follows:

view_cache:
 class: sfSQLiteCache
 param:
 database: %SF_TEMPLATE_CACHE_DIR%/cache.db

Zaninotto_786-9 C18.fm Page 410 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 411

The benefits of using SQLite storage for the template cache are faster read and write oper-
ations when the number of cache elements is important. If your application makes heavy use
of caching, the template cache files end up scattered in a deep file structure; in this case, switching
to SQLite storage will increase performance. In addition, clearing the cache on file system
storage may require a lot of files to be removed from the disk; this operation may last a few
seconds, during which your application is unavailable. With a SQLite storage system, the cache
clearing process results in a single file operation: the deletion of the SQLite database file. What-
ever the number of cache elements currently stored, the operation is instantaneous.

Bypassing Symfony
Perhaps the best way to speed symfony up is to bypass it completely . . . this is said only partly
in jest. Some pages don’t change and don’t need to be reprocessed by the framework at each
request. The template cache is already here to speed up the delivery of such pages, but it still
relies on symfony.

A couple of tricks described in Chapter 12 allow you to bypass symfony completely for
some pages. The first one involves the use of HTTP 1.1 headers for asking the proxies and client
browsers to cache the page themselves, so that they don’t request it again the next time the
page is needed. The second one is the super fast cache (automated by the sfSuperCachePlugin
plug-in), which consists of storing a copy of the response in the web/ directory and modifying
the rewriting rules so that Apache first looks for a cached version before handing a request to
symfony.

Both these methods are very effective, and even if they only apply to static pages, they will
take the burden of handling these pages off from symfony, and the server will then be fully
available to deal with complex requests.

Caching the Result of a Function Call
If a function doesn’t rely on context-sensitive values nor on randomness, calling it twice with
the same parameters should return the same result. That means the second call could very well
be avoided if the result had been stored the first time. That’s exactly what the sfFunctionCache
class does. This class has a call() method, which expects a callable and a set of parameters.
When called, this method creates an md5 hash with all its arguments and looks in the cache
directory for a file named by this hash. If such a file is found, the function returns the result
stored in the file. If not, the sfFunctionCache executes the function, stores the result in the cache,
and returns it. So the second execution of Listing 18-16 will be faster than the first one.

Listing 18-16. Caching the Result of a Function

$function_cache_dir = sfConfig::get('sf_cache_dir').'/function';
$fc = new sfFunctionCache($function_cache_dir);
$result1 = $fc->call('cos', M_PI);
$result2 = $fc->call('preg_replace', '/\s\s+/', ' ', $input);

The sfFunctionCache constructor expects an absolute directory path as argument (the
directory must exist prior to the object instantiation). The first argument of the call() method
must be a callable, so it can be a function name, an array of a class name and static method
name, or an array of an object name and public method name. As for the other arguments of
the call() method, you can include as many as you need—they are all handed to the callable.

Zaninotto_786-9 C18.fm Page 411 Tuesday, December 26, 2006 4:05 PM

412 C H A P T E R 1 8 ■ P E R F O R M A N C E

This object is especially useful for CPU-intensive functions, because the file I/O overhead
exceeds the time required to process a simple function. It relies on the sfFileCache class, which
is the component also used by the symfony template cache engine. Refer to the API documen-
tation for more details.

■Caution The clear-cache task erases only the contents of the cache/ file. If you store the function
cache somewhere else, it will not be cleared automatically when you clear the cache through the command line.

Caching Data in the Server
PHP accelerators provide special functions to store data in memory so that you can reuse it
across requests. The problem is that they all have a different syntax, and each has its own
specific way of performing this task. Symfony provides a class called sfProcessCache, which
abstracts all these differences and works with whatever accelerator you are using. See its syntax
in Listing 18-17.

Listing 18-17. Syntax of the sfProcessCache Methods

// Storing data in the process cache
sfProcessCache::set($name, $value, $lifetime);

// Retrieving data
$value = sfProcessCache::get($name);

// Checking if a piece of data exists in the process cache
$value_exists = sfProcessCache::has($name);

// Clear the process cache
sfProcessCache::clear();

The set() method returns false if the caching didn’t work. The cached value can be
anything (a string, an array, an object); the sfProcessCache class will deal with the serialization.
The get() method returns null if the required variable doesn’t exist in the cache.

The methods of the sfProcessCache class work even if no accelerator is installed. There-
fore, there is no risk in trying to retrieve data from the process cache, as long as you provide a
fallback value. For instance, Listing 18-18 shows how to retrieve a configuration setting in the
process cache.

Zaninotto_786-9 C18.fm Page 412 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 413

Listing 18-18. Using the Process Cache Safely

if (sfProcessCache::has('myapp_parameters'))
{
 $params = sfProcessCache::get('myapp_parameters');
}
else
{
 $params = retrieve_parameters();
}

■Tip If you want to go further into memory caching, make sure you take a look at the memcache extension
for PHP. It can help decrease the database load on load-balanced applications, and PHP 5 provides an OO
interface to it (http://www.php.net/memcache/).

Deactivating the Unused Features
The default symfony configuration activates the most common features of a web application.
However, if you happen to not need all of them, you should deactivate them to save the time
their initialization takes on each request.

For instance, if your application doesn’t use the session mechanism, or if you want to start
the session handling by hand, you should turn the auto_start setting to false in the storage
key of the factories.yml file, as in Listing 18-19.

Listing 18-19. Turning Sessions Off, in myapp/config/factories.yml

all:
 storage:
 class: sfSessionStorage
 param:
 auto_start: false

The same applies for the database (as explained in the “Tweaking the Model” section
earlier in this chapter) and output escaping feature (see Chapter 7). If your application makes
no use of them, deactivate them for a small performance gain, this time in the settings.yml file
(see Listing 18-20).

Listing 18-20. Turning Features Off, in myapp/config/settings.yml

all:
 .settings:
 use_database: off # Database and model features
 escaping_strategy: off # Output escaping feature

As for the security and the flash attribute features (see Chapter 6), you can deactivate them
in the filters.yml file, as shown in Listing 18-21.

Zaninotto_786-9 C18.fm Page 413 Tuesday, December 26, 2006 4:05 PM

414 C H A P T E R 1 8 ■ P E R F O R M A N C E

Listing 18-21. Turning Features Off, in myapp/config/filters.yml

rendering: ~
web_debug: ~
security:
 enabled: off

generally, you will want to insert your own filters here

cache: ~
common: ~
flash:
 enabled: off

execution: ~

Some features are useful only in development, so you should not activate them in produc-
tion. This is already the case by default, since the production environment in symfony is really
optimized for performance. Among the performance-impacting development features, the
SF_DEBUG mode is the most severe. As for the symfony logs, the feature is also turned off in
production by default.

You may wonder how to get information about failed requests in production if logging is
disabled, and argue that problems arise not only in development. Fortunately, symfony can
use the sfErrorLoggerPlugin plug-in, which runs in the background in production and logs the
details of 404 and 500 errors in a database. It is much faster than the file logging feature, because
the plug-in methods are called only when a request fails, while the logging mechanism, once
turned on, adds a nonnegligible overhead whatever the level. Check the installation instructions
and manual at http://www.symfony-project.com/trac/wiki/sfErrorLoggerPlugin.

■Tip Make sure you regularly check the server error logs—they also contain very valuable information
about 404 and 500 errors.

Optimizing Your Code
It’s also possible to speed up your application by optimizing the code itself. This section offers
some insight regarding how to do that.

Core Compilation
Loading ten files requires more I/O operations than loading one long file, especially on slow
disks. Loading a very long file requires more resources than loading a smaller file—especially if
a large share of the file content is of no use for the PHP parser, which is the case for comments.

So merging a large number of files and stripping out the comments they contain is an
operation that improves performance. Symfony already does that optimization; it’s called the
core compilation. At the beginning of the first request (or after the cache is cleared), a symfony

Zaninotto_786-9 C18.fm Page 414 Tuesday, December 26, 2006 4:05 PM

C H A P T E R 1 8 ■ P E R F O R M A N C E 415

application concatenates all the core framework classes (sfActions, sfRequest, sfView, and so
on) into one file, optimizes the file size by removing comments and double blanks, and saves it
in the cache, in a file called config_core_compile.yml.php. Each subsequent request only loads
this single optimized file instead of the 30 files that compose it.

If your application has classes that must always be loaded, and especially if they are big
classes with lots of comments, it may be beneficial to add them to the core compile file. To do
so, just add a core_compile.yml file in your application config/ directory, and list in it the classes
that you want to add, as in Listing 18-22.

Listing 18-22. Adding Your Classes to the Core Compile File, in myapp/config/core_compile.yml

- %SF_ROOT_DIR%/lib/myClass.class.php
- %SF_ROOT_DIR%/apps/myapp/lib/myToolkit.class.php
- %SF_ROOT_DIR%/plugins/myPlugin/lib/myPluginCore.class.php
...

The sfOptimizer Plug-In
Symfony also offers another optimization tool, called sfOptimizer. It applies various optimiza-
tion strategies to the symfony and application code, which may further speed up the execution.

The symfony code counts many tests that rely on configuration parameters—and your
application may also do so. For instance, if you take a look at the symfony classes, you will often
see a test on the value of the sf_logging_enabled parameter before a call to the sfLogger object:

if (sfConfig::get('sf_logging_enabled'))
{
 $this->getContext()->getLogger()->info('Been there');
}

Even if the sfConfig registry is very well optimized, the number of calls to its get() method
during the processing of each request is important—and it counts in the final performance.
One of the sfOptimizer optimization strategies is to replace configuration constants by their
value—as long as these constants are not subject to change at runtime. That’s the case, for
instance, with the sf_logging_enabled parameter; when it is defined as false, the sfOptimizer
transforms the previous code into the following:

if (0)
{
 $this->getContext()->getLogger()->info('Been there');
}

And that’s not all, because an evident test like the preceding one also gets optimized to an
empty string.

To apply the optimizations, you must first install the plug-in from http://www.symfony-
project.com/trac/wiki/sfOptimizerPlugin and then call the optimize task, specifying an
application and an environment:

> symfony optimize myapp prod

Zaninotto_786-9 C18.fm Page 415 Tuesday, December 26, 2006 4:05 PM

416 C H A P T E R 1 8 ■ P E R F O R M A N C E

If you want to apply other optimization strategies to your code, the sfOptimizer plug-in
might be a good starting place.

Summary
Symfony is already a very optimized framework and is able to handle high-traffic websites
without a problem. But if you really need to optimize your application’s performance, tweaking
the configuration (whether the server configuration, the PHP configuration, or the application
settings) will gain you a small boost. You should also follow good practices to write efficient
model methods; and since the database is often a bottleneck in web applications, this point
should require all your attention. Templates can also benefit from a few tricks, but the best
boost will always come from caching. Finally, don’t hesitate to look at existing plug-ins, since
some of them provide innovative techniques to further speed up the delivery of web pages
(sfSuperCache, sfOptimizer).

Zaninotto_786-9 C18.fm Page 416 Tuesday, December 26, 2006 4:05 PM

417

■ ■ ■

C H A P T E R 1 9

Mastering Symfony’s
Configuration Files

Now that you know symfony very well, you are already able to dig into its code to understand
its core design and discover new hidden abilities. But before extending the symfony classes to
match your own requirements, you should take a closer look at some of the configuration files.
Many features are already built into symfony and can be activated by just changing configura-
tion settings. This means that you can tweak the symfony core behavior without overriding its
classes. This chapter takes you deep into the configuration files and their powerful capabilities.

Symfony Settings
The myapp/config/settings.yml file contains the main symfony configuration for the myapp
application. You have already seen the function of many settings from this file in the previous
chapters, but let’s revisit them.

As explained in Chapter 5, this file is environment-dependent, which means that each
setting can take a different value for each environment. Remember that each parameter defined
in this file is accessible from inside the PHP code via the sfConfig class. The parameter name is
the setting name prefixed with sf_. For instance, if you want to get the value of the cache param-
eter, you just need to call sfConfig::get('sf_cache').

Default Modules and Actions
When a routing rule doesn’t define the module or the action parameter, values from the
settings.yml file are used instead:

default_module: Default module request parameter. Defaults to the default module.

default_action: Default action request parameter. Defaults to the index action.

Symfony provides default pages for special situations. In the case of a routing error, symfony
executes an action of the default module, which is stored in the $sf_symfony_data_dir/
modules/default/ directory. The settings.yml file defines which action is executed depending
on the error:

Zaninotto_786-9 C19.fm Page 417 Friday, December 22, 2006 5:59 AM

418 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

error_404_module and error_404_action: Action called when the URL entered by the user
doesn’t match any route or when an sfError404Exception occurs. The default value is
default/error404.

login_module and login_action: Action called when a nonauthenticated user tries to
access a page defined as secure in security.yml (see Chapter 6 for details). The default
value is default/login.

secure_module and secure_action: Action called when a user doesn’t have the credentials
required for an action. The default value is default/secure.

module_disabled_module and module_disabled_action: Action called when a user requests
a module declared as disabled in module.yml. The default value is default/disabled.

unavailable_module and unavailable_action: Action called when a user requests a page
from a disabled application. The default value is default/unavailable. To disable an
application, set the available parameter to off in settings.yml.

Before deploying an application to production, you should customize these actions, because
the default module templates include the symfony logo on the page. See Figure 19-1 for a
screenshot of one of these pages, the error 404 page.

Figure 19-1. Default 404 error page

Zaninotto_786-9 C19.fm Page 418 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 419

You can override the default pages in two ways:

• You can create your own default module in the application’s modules/ directory, override
all the actions defined in the settings.yml file (index, error404, login, secure, disabled,
and unavailable) and all the related templates (indexSuccess.php, error404Success.php,
loginSuccess.php, secureSuccess.php, disabledSuccess.php, and unavailableSuccess.php).

• You can change the default module and action settings of the settings.yml file to use
pages of your application.

Two other pages bear a symfony look and feel, and they also need to be customized before
deployment to production. These pages are not in the default module, because they are called
when symfony cannot run properly. Instead, you will find these default pages in the $sf_symfony_
data_dir/web/errors/ directory:

error500.php: Page called when an internal server error occurs in the production environ-
ment. In other environments (where SF_DEBUG is set to true), when an error occurs, symfony
displays the full execution stack and an explicit error message (see Chapter 16 for details).

unavailable.php: Page called when a user requests a page while the cache is being cleared
(that is, between a call to the symfony clear-cache task and the end of this task execution).
On systems with a very large cache, the cache-clearing process can take several seconds.
Symfony cannot execute a request with a partially cleared cache, so requests received
before the end of the process are redirected to this page. The unavailable.php page is also
used when an application is disabled via the symfony disable command (see Chapter 16
for details).

To customize these pages, simply create error500.php and unavailable.php pages in your
application’s web/errors/ directory. Symfony will use these instead of its own.

■Note To have requests redirected to the unavailable.php page when needed, you need to set the
check_lock setting to on in the application settings.yml. The check is deactivated by default, because
it adds a very slight overhead for every request.

Optional Feature Activation
Some parameters of the settings.yml file control optional framework features that can be
enabled or disabled. Deactivating unused features boosts performances a bit, so make sure to
review the settings listed in Table 19-1 before deploying your application.

Zaninotto_786-9 C19.fm Page 419 Friday, December 22, 2006 5:59 AM

420 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

Table 19-1. Optional Features Set Through settings.yml

Parameter Description Default Value

use_database Enables the database manager. Set it to off if
you don’t use a database.

on

use_security Enables security features (secure actions and
credentials; see Chapter 6). The default secu-
rity filter (sfBasicSecurityFilter) is enabled
only if it is on.

on

use_flash Enables the flash parameter feature (see
Chapter 6). Set it to off if you never use the
set_flash() method in your actions. The
flash filter (sfFlashFilter) is enabled only if
it is on.

on

i18n Enables interface translation (see Chapter 13).
Set it to on for multilingual applications.

off

logging_enabled Enables logging of symfony events. Set it
to off when you want to ignore the
logging.yml settings and turn symfony
logging off completely.

on

escaping_strategy Enables and defines the policy of the
output escaping feature (see Chapter 7).
Set it to off if you don’t use the $sf_data
container in your templates.

bc

cache Enables template caching (see Chapter 12).
Set it to on if one of your modules
includes cache.yml file. The cache
filter (sfCacheFilter) is enabled only if it
is on.

off in development,
on in production

web_debug Enables the web debug toolbar for easy
debugging (see Chapter 16). Set it to on to
display the toolbar on every page. The
web debug filter (sfWebDebugFilter)
is enabled ony if it is on.

on in development,
off in production

check_symfony_version Enables the check of the symfony version for
every request. Set it to on for automatic cache
clearing after a framework upgrade. Leave it
set to off if you always clear the cache after
an upgrade.

off

check_lock Enables the application lock system,
triggered by the clear-cache and disable
tasks (see the previous section). Set it to on
to have all requests to disabled applications
redirected to the $sf_symfony_data_dir/
web/errors/unavailable.php page.

off

compressed Enables PHP response compression. Set it to
on to compress the outgoing HTML via the
PHP compression handler.

off

Zaninotto_786-9 C19.fm Page 420 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 421

Feature Configuration
Symfony uses some parameters of settings.yml to alter the behavior of built-in features such
as form validation, cache, and third-party modules.

Output Escaping Settings

Output escaping settings control the way the variables are accessible in the template (see
Chapter 7). The settings.yml file includes two settings for this feature:

• The escaping_strategy setting can take the value bc, both, on, or off.

• The escaping_method setting can be set to ESC_RAW, ESC_ENTITIES, ESC_JS, or
ESC_JS_NO_ENTITIES.

Routing Settings

Two routing settings (see Chapter 9) are stored in settings.yml:

• The suffix parameter sets the default suffix for generated URLs. The default value is a
period (.), and it corresponds to no suffix. Set it to .html, for instance, to have all gener-
ated URLs look like static pages.

• The no_script_name parameter enables the front controller name in generated URLs. The
no_script_name setting can be on only for a single application in a project, unless you store
the front controllers in various directories and alter the default URL rewriting rules. It is
usually on for the production environment of your main application and off for the others.

Form Validation Settings

Form validation settings control the way error messages output by the Validation helpers look
(see Chapter 10). These errors are included in <div> tags, and they use the validation_error_
class setting as a class attribute and the validation_error_id_prefix setting to build up the
id attribute. The default values are form_error and error_for_, so the attributes output by
a call to the form_error() helper for an input named foobar will be class="form_error"
id="error_for_foobar".

use_process_cache Enables symfony optimizations based on PHP
accelerators. When such an accelerator (for
instance, APC, XCache, or eAccelerator)
is installed, symfony takes advantage of its
features to keep objects and configuration in
memory between requests. Set the parameter
to off in development or when you don’t
want PHP accelerator optimizations. Note
that even if you don’t have any accelerator
installed, leaving it set to on will not harm
performance.

on

Table 19-1. Optional Features Set Through settings.yml

Parameter Description Default Value

Zaninotto_786-9 C19.fm Page 421 Friday, December 22, 2006 5:59 AM

422 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

Two settings determine which characters precede and follow each error message:
validation_error_prefix and validation_error_suffix. You can change them to customize
all error messages at once.

Cache Settings

Cache settings are defined in cache.yml for the most part, except for two in settings.yml: cache
enables the template cache mechanism, and etag enables ETag handling on the server side
(see Chapter 15).

Logging Settings

Two logging settings (see Chapter 16) are stored in settings.yml:

• error_reporting specifies which events are logged in the PHP logs. By default, it is set to
341 for the production environment (so the logged events are E_PARSE, E_COMPILE_ERROR,
E_ERROR, E_CORE_ERROR, and E_USER_ERROR) and to 4095 for the development environment
(E_ALL and E_STRICT).

• The web_debug setting activates the web debug toolbar. Set it to on only in the development
and test environments.

Paths to Assets

The settings.yml file also stores paths to assets. If you want to use another version of the asset
than the one bundled with symfony, you can change these path settings:

• Rich text editor JavaScript files stored in rich_text_js_dir (by default, js/tiny_mce)

• Prototype libraries stored in prototype_web_dir (by default, /sf/prototype)

• Files needed by the administration generator stored in admin_web_dir

• Files needed by the web debug toolbar stored in web_debug_web_dir

• Files needed by the javascript calendar stored in calendar_web_dir

Default Helpers

Default helpers, loaded for every template, are declared in the standard_helpers setting (see
Chapter 7). By default, these are the Partial, Cache, and Form helper groups. If you use a helper
group in all templates of an application, adding its name to the standard_helpers setting saves
you the hassle of declaring it with use_helper() on each template.

Activated Modules

Activated modules from plug-ins or from the symfony core are declared in the enabled_modules
parameter. Even if a plug-in bundles a module, users can’t request this module unless it is
declared in enabled_modules. The default module, which provides the default symfony pages
(congratulations, page not found, and so on), is the only enabled module by default.

Zaninotto_786-9 C19.fm Page 422 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 423

Character Set

The character set of the responses is a general setting of the application, because it is used by
many components of the framework (templates, output escaper, helpers, and so on). Defined
in the charset setting, its default (and advised) value is utf-8.

Miscellaneous Configuration

The settings.yml file contains a few more parameters, used internally by symfony for core
behaviors. Listing 19-1 lists them as they appear in the configuration file.

Listing 19-1. Miscellaneous Configuration Settings, in myapp/config/settings.yml

Remove comments in core framework classes as defined in the core_compile.yml
strip_comments: on
Functions called when a class is requested and not already loaded
Expects an array of callables. Used by the framework bridges.
autoloading_functions: ~
Session timeout, in seconds
timeout: 1800
Maximum number of forwards followed by the action before raising an exception
max_forwards: 5
Global constants
path_info_array: SERVER
path_info_key: PATH_INFO
url_format: PATH

ADDING YOUR APPLICATION SETTINGS

The settings.yml file defines symfony settings for an application. As discussed in Chapter 5, when you
want to add new parameters, the best place to do so is in the myapp/config/app.yml file. This file is also
environment-dependent, and the settings it defines are available through the sfConfig class with the app_ prefix.

all:
 creditcards:
 fake: off # app_creditcards_fake
 visa: on # app_creditcards_visa
 americanexpress: on # app_creditcards_americanexpress

You can also write an app.yml file in the project configuration directory, and this provides a way to
define custom project settings. The configuration cascade also applies to this file, so the settings defined in
the application app.yml file override the ones defined at the project level.

Zaninotto_786-9 C19.fm Page 423 Friday, December 22, 2006 5:59 AM

424 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

Extending the Autoloading Feature
The autoloading feature, briefly explained in Chapter 2, exempts you from requiring classes in
your code if they are located in specific directories. This means that you can just let the frame-
work do the job for you, allowing it to load only the necessary classes at the appropriate time,
and only when needed.

The autoload.yml file lists the paths in which autoloaded classes are stored. The first time
this configuration file is processed, symfony parses all the directories referenced in the file.
Each time a file ending with .php is found in one of these directories, the file path and the class
names found in this file are added to an internal list of autoloading classes. This list is saved in
the cache, in a file called config/config_autoload.yml.php. Then, at runtime, when a class is
used, symfony looks in this list for the class path and includes the .php file automatically.

Autoloading works for all .php files containing classes and/or interfaces.
By default, classes stored in the following directories in your projects benefit from the

autoloading automatically:

• myproject/lib/

• myproject/lib/model

• myproject/apps/myapp/lib/

• myproject/apps/myapp/modules/mymodule/lib

There is no autoload.yml file in the default application configuration directory. If you want
to modify the framework settings—for instance, to autoload classes stored somewhere else in
your file structure—create an empty autoload.yml file and override the settings of $sf_symfony_
data_dir/config/autoload.yml or add your own.

The autoload.yml file must start with an autoload: key and list the locations where symfony
should look for classes. Each location requires a label; this gives you the ability to override
symfony’s entries. For each location, provide a name (it will appear as a comment in config_
autoload.yml.php) and an absolute path. Then define if the search must be recursive, which
directs symfony to look in all the subdirectories for .php files, and exclude the subdirectories
you want. Listing 19-2 shows the locations used by default and the file syntax.

Listing 19-2. Default Autoloading Configuration, in $sf_symfony_data_dir/config/
autoload.yml

autoload:

 # symfony core
 symfony:
 name: symfony
 path: %SF_SYMFONY_LIB_DIR%
 recursive: on
 exclude: [vendor]

Zaninotto_786-9 C19.fm Page 424 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 425

 propel:
 name: propel
 path: %SF_SYMFONY_LIB_DIR%/vendor/propel
 recursive: on

 creole:
 name: creole
 path: %SF_SYMFONY_LIB_DIR%/vendor/creole
 recursive: on

 propel_addon:
 name: propel addon
 files:
 Propel: %SF_SYMFONY_LIB_DIR%/addon/propel/sfPropelAutoload.php

 # plugins
 plugins_lib:
 name: plugins lib
 path: %SF_PLUGINS_DIR%/*/lib
 recursive: on

 plugins_module_lib:
 name: plugins module lib
 path: %SF_PLUGINS_DIR%/*/modules/*/lib
 prefix: 2
 recursive: on

 # project
 project:
 name: project
 path: %SF_LIB_DIR%
 recursive: on
 exclude: [model, symfony]

 project_model:
 name: project model
 path: %SF_MODEL_LIB_DIR%
 recursive: on

 # application
 application:
 name: application
 path: %SF_APP_LIB_DIR%
 recursive: on

Zaninotto_786-9 C19.fm Page 425 Friday, December 22, 2006 5:59 AM

426 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

 modules:
 name: module
 path: %SF_APP_DIR%/modules/*/lib
 prefix: 1
 recursive: on

A rule path can contain wildcards and use the file path parameters from the constants.php
file (see the next section). If you use these parameters in the configuration file, they must
appear in uppercase and begin and end with %.

Editing your own autoload.yml will add new locations to symfony’s autoloading, but you
may want to extend this mechanism and add your own autoloading handler to symfony’s
handler. This is possible through the autoloading_functions parameter in the settings.yml
file. It expects an array of callables as a value, as follows:

.settings:
 autoloading_functions:
 - [myToolkit, autoload]

When symfony encounters a new class, it will first try its own autoloading system (and use
the locations defined in autoload.yml). If it doesn’t find a class definition, it will then try the
other autoloading functions from settings.yml, until the class is found. So you can add as
many autoloading mechanisms as you want—for instance, to provide a bridge to other frame-
work components (see Chapter 17).

Custom File Structure
Each time the framework uses a path to look for something (from core classes to templates,
plug-ins, configurations, and so on), it uses a path variable instead of an actual path. By changing
these variables, you can completely alter the directory structure of a symfony project, and
adapt to the file organization requirements of any client.

■Caution Customizing the directory structure of a symfony project is possible but not necessarily a good
idea. One of the strengths of a framework like symfony is that any web developer can look at a project built
with it and feel at home, because of the respect for conventions. Make sure you consider this issue before
deciding to use your own directory structure.

The Basic File Structure
The path variables are defined in the $sf_symfony_data_dir/config/constants.php file, included
when the application bootstraps. These variables are stored in the sfConfig object, and so they
are easy to override. Listing 19-3 shows a listing of the path variables and the directory they
reference.

Zaninotto_786-9 C19.fm Page 426 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 427

Listing 19-3. Default File Structure Variables, from $sf_symfony_data_dir/config/
constants.php

sf_root_dir # myproject/
 # apps/
sf_app_dir # myapp/
sf_app_config_dir # config/
sf_app_i18n_dir # i18n/
sf_app_lib_dir # lib/
sf_app_module_dir # modules/
sf_app_template_dir # templates/
sf_bin_dir # batch/
 # cache/
sf_base_cache_dir # myapp/
sf_cache_dir # prod/
sf_template_cache_dir # templates/
sf_i18n_cache_dir # i18n/
sf_config_cache_dir # config/
sf_test_cache_dir # test/
sf_module_cache_dir # modules/
sf_config_dir # config/
sf_data_dir # data/
sf_doc_dir # doc/
sf_lib_dir # lib/
sf_model_lib_dir # model/
sf_log_dir # log/
sf_test_dir # test/
sf_plugins_dir # plugins/
sf_web_dir # web/
sf_upload_dir # uploads/

Every path to a key directory is determined by a parameter ending with _dir. Always use
the path variables instead of real (relative or absolute) file paths, so that you will be able to
change them later, if necessary. For instance, when you want to move a file to the uploads/
directory in an application, you should use sfConfig::get('sf_upload_dir') for the path
instead of SF_ROOT_DIR.'/web/uploads/'.

The module directory structure is defined at runtime, when the routing system determines
the module name ($module_name). It is automatically built according to the path names defined
in the constants.php file, as shown in Listing 19-4.

Listing 19-4. Default Module File Structure Variables

sf_app_module_dir # modules/
module_name # mymodule/
sf_app_module_action_dir_name # actions/
sf_app_module_template_dir_name # templates/
sf_app_module_lib_dir_name # lib/
sf_app_module_view_dir_name # views/

Zaninotto_786-9 C19.fm Page 427 Friday, December 22, 2006 5:59 AM

428 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

sf_app_module_validate_dir_name # validate/
sf_app_module_config_dir_name # config/
sf_app_module_i18n_dir_name # i18n/

So, for instance, the path to the validate/ directory of the current module is built dynam-
ically at runtime:

sfConfig::get('sf_app_module_dir').'/'.$module_name.'/'.sfConfig::get('sf_app_ ➥

module_validate_dir_name')

Customizing the File Structure
You will probably need to modify the default project file structure if you develop an application
for a client who already has a defined directory structure and who is not willing to change it to
comply with the symfony logic. By overriding the sf_XXX_dir and sf_XXX_dir_name variables
with sfConfig, you can make symfony work for a totally different directory structure than the
default structure. The best place to do this is in the application config.php file.

■Caution Use the application config.php and not the project one to override the sf_XXX_dir and
sf_XXX_dir_name variables with sfConfig. The project config/config.php file is loaded very early in
the life of a request, at a time when the sfConfig class doesn’t exist yet, and when the constants.php
file is not yet loaded.

For instance, if you want all applications to share a common directory for the template
layouts, add this line to the myapp/config/config.php file to override the sf_app_template_dir
settings:

sfConfig::set('sf_app_template_dir', sfConfig::get('sf_root_dir'). ➥

DIRECTORY_SEPARATOR.'templates');

Note that the application config.php file is not empty, so if you need to include file structure
definitions there, do it at the end of the file.

Modifying the Project Web Root
All the paths built in constants.php rely on the project root directory, which is a constant
defined in the front controller (SF_ROOT_DIR). Usually, the root directory is one level above the
web/ directory, but you can use a different structure. Suppose that your main directory structure
is made of two directories, one public and one private, as shown in Listing 19-5. This typically
happens when hosting a project on a shared host.

Zaninotto_786-9 C19.fm Page 428 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 429

Listing 19-5. Example of Custom Directory Structure for a Shared Host

symfony/ # Private area
 apps/
 batch/
 cache/
 ...
www/ # Public area
 images/
 css/
 js/
 index.php

In this case, the root directory is the symfony/ directory. So the index.php front controller
simply needs to define the SF_ROOT_DIR as follows for the application to work:

define('SF_ROOT_DIR', dirname(__FILE__).'/../symfony');

In addition, since the public area is www/ instead of the usual web/, you must override two
file paths in the application config.php file, as follows:

sfConfig::add(array(
 'sf_web_dir' => SF_ROOT_DIR.DIRECTORY_SEPARATOR.'www',
 'sf_upload_dir' => SF_ROOT_DIR.DIRECTORY_SEPARATOR.'www'.DIRECTORY_SEPARATOR ➥

 .sfConfig::get('sf_upload_dir_name'),
));

Linking to Symfony Libraries
The paths to the framework files are defined in the project config.php file, as you can see in
Listing 19-6.

Listing 19-6. The Paths to the Framework Files, in myproject/config/config.php

<?php

// symfony directories
$sf_symfony_lib_dir = '/path/to/symfony/lib';
$sf_symfony_data_dir = '/path/to/symfony/data';

These paths are initialized when you call a symfony init-project from the command
line, and refer to the symfony installation used to build the project. They are used both by
the command line and by the MVC architecture.

This means that you can switch to another installation of symfony by changing the paths
to the framework files.

These paths should be absolute, but by using dirname(__FILE__), you can refer to files
inside the project structure and preserve independence of the chosen directory for the project
installation. For instance, many projects choose to have the symfony lib/ directory appear as
a symbolic link in the project lib/symfony/ directory, and do the same for the symfony data/
directory, as follows:

Zaninotto_786-9 C19.fm Page 429 Friday, December 22, 2006 5:59 AM

430 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

myproject/
 lib/
 symfony/ => /path/to/symfony/lib
 data/
 symfony/ => /path/to/symfony/data

In this case, the project config.php file just needs to define the symfony directories as follows:

$sf_symfony_lib_dir = dirname(__FILE__).'/../lib/symfony';
$sf_symfony_data_dir = dirname(__FILE__).'/../data/symfony';

The same principle also applies if you choose to include the symfony files as a
svn:externals in the project lib/vendor/ directory:

myproject/
 lib/
 vendor/
 svn:externals symfony http://svn.symfony-project.com/trunk/

In this case, the config.php file should look like this:

$sf_symfony_lib_dir = dirname(__FILE__).'/../lib/vendor/symfony/lib';
$sf_symfony_data_dir = dirname(__FILE__).'/../lib/vendor/symfony/data';

■Tip Sometimes, the different servers running an application don’t have the same path to the symfony
libraries. One way to enable that is to exclude the project config.php file from the synchronization (by
adding it to rsync_exclude.txt). Another method is to keep the same paths in the development and
production versions of config.php, but to have these paths point to symbolic links that can vary according
to the server.

Understanding Configuration Handlers
Each configuration file has a handler. The job of configuration handlers is to manage the
configuration cascade, and to do the translation between the configuration files and the
optimized PHP code executable at runtime.

Default Configuration Handlers
The default handler configuration is stored in $sf_symfony_data_dir/config/config_
handlers.yml. This file links the handlers to the configuration files according to a file path.
Listing 19-7 shows an extract of this file.

Zaninotto_786-9 C19.fm Page 430 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 431

Listing 19-7. Extract of $sf_symfony_data_dir/config/config_handlers.yml

config/settings.yml:
 class: sfDefineEnvironmentConfigHandler
 param:
 prefix: sf_

config/app.yml:
 class: sfDefineEnvironmentConfigHandler
 param:
 prefix: app_

config/filters.yml:
 class: sfFilterConfigHandler

modules/*/config/module.yml:
 class: sfDefineEnvironmentConfigHandler
 param:
 prefix: mod_
 module: yes

For each configuration file (config_handlers.yml identifies each file by a file path with
wildcards), the handler class is specified under the class key.

The settings of configuration files handled by sfDefineEnvironmentConfigHandler can be
made available directly in the code via the sfConfig class, and the param key contains a prefix value.

You can add or modify the handlers used to process each configuration file—for instance,
to use INI or XML files instead of YAML files.

■Note The configuration handler for the config_handlers.yml file is sfRootConfigHandler and,
obviously, it cannot be changed.

If you ever need to modify the way the configuration is parsed, create an empty config_
handlers.yml file in your application’s config/ folder and override the class lines with the
classes you wrote.

Adding Your Own Handler
Using a handler to deal with a configuration file provides two important benefits:

• The configuration file is transformed into executable PHP code, and this code is stored
in the cache. This means that the configuration is parsed only once in production, and
the performance is optimal.

• The configuration file can be defined at different levels (project and application) and the
final parameter values will result from a cascade. So you can define parameters at a
project level and override them on a per-application basis.

Zaninotto_786-9 C19.fm Page 431 Friday, December 22, 2006 5:59 AM

432 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

If you feel like writing your own configuration handler, follow the example of the structure
used by the framework in the $sf_symfony_lib_dir/config/ directory.

Let’s suppose that your application contains a myMapAPI class, which provides an interface
to a third-party web service delivering maps. This class needs to be initialized with a URL and
a user name, as shown in Listing 19-8.

Listing 19-8. Example of Initialization of the myMapAPI Class

$mapApi = new myMapAPI();
$mapApi->setUrl($url);
$mapApi->setUser($user);

You may want to store these two parameters in a custom configuration file called map.yml,
located in the application config/ directory. This configuration file might contain the following:

api:
 url: map.api.example.com
 user: foobar

In order to transform these settings into code equivalent to Listing 19-8, you must build a
configuration handler. Each configuration handler must extend sfConfigHandler and provide
an execute() method, which expects an array of file paths to configuration files as a parameter,
and must return data to be written in a cache file. Handlers for YAML files should extend the
sfYamlConfigHandler class, which provides additional facilities for YAML parsing. For the
map.yml file, a typical configuration handler could be written as shown in Listing 19-9.

Listing 19-9. A Custom Configuration Handler, in myapp/lib/myMapConfigHandler.class.php

<?php

class myMapConfigHandler extends sfYamlConfigHandler
{
 public function execute($configFiles)
 {
 $this->initialize();

 // Parse the yaml
 $config = $this->parseYamls($configFiles);

 $data = "<?php\n";
 $data. = "\$mapApi = new myMapAPI();\n";

 if (isset($config['api']['url'])
 {
 $data. = sprintf("\$mapApi->setUrl('%s');\n", $config['api']['url']);
 }

Zaninotto_786-9 C19.fm Page 432 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 433

 if (isset($config['api']['user'])
 {
 $data. = sprintf("\$mapApi->setUser('%s');\n", $config['api']['user']);
 }

 return $data;
 }
}

The $configFiles array that symfony passes to the execute() method will contain a path
to all the map.yml files found in the config/ folders. The parseYamls() method will handle the
configuration cascade.

In order to associate this new handler with the map.yml file, you must create a config_
handlers.yml configuration file with the following content:

config/map.yml:
 class: myMapConfigHandler

■Note The class must either be autoloaded (that’s the case here) or defined in the file whose path is
written in a file parameter under the param key.

When you need the code based on the map.yml file and generated by the
myMapConfigHandler handler in your application, call the following line:

include(sfConfigCache::getInstance()->checkConfig(sfConfig::get(➥

'sf_app_config_dir_name').'/map.yml'));

When calling the checkConfig() method, symfony looks for existing map.yml files in the
configuration directories and processes them with the handler specified in the
config_handlers.yml file, if a map.yml.php does not already exist in the cache or if the map.yml
file is more recent than the cache.

■Tip If you want to handle environments in a YAML configuration file, the handler can extend the
sfDefineEnvironmentConfigHandler class instead of sfYamlConfigHandler. After calling the
parseYaml() method to retrieve configuration, you should call the mergeEnvironment() method.
You can do it all in one line by calling $config = $this->mergeEnvironment($this->parseYamls
($configFiles));.

Zaninotto_786-9 C19.fm Page 433 Friday, December 22, 2006 5:59 AM

434 C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R A T I O N F I L E S

USING EXISTING CONFIGURATION HANDLERS

If you just need to allow users to retrieve values from the code via sfConfig, you can use the
sfDefineEnvironmentConfigHandler configuration handler class. For instance, to have the url and
user parameters available as sfConfig::get('map_url') and sfConfig::get('map_user'), define
your handler as follows:

config/map.yml:
 class: sfDefineEnvironmentConfigHandler
 param:
 prefix: map_

Be careful not to choose a prefix already used by another handler. Existing prefixes are sf_, app_, and mod_.

Controlling PHP Settings
In order to have a PHP environment compatible with the rules and best practices of agile devel-
opment, symfony checks and overrides a few settings of the php.ini configuration. This is the
purpose of the php.yml file. Listing 19-10 shows the default php.yml file.

Listing 19-10. Default PHP Settings for Symfony, in $sf_symfony_data_dir/config/php.yml

set:
 magic_quotes_runtime: off
 log_errors: on
 arg_separator.output: |
 &

check:
 zend.ze1_compatibility_mode: off

warn:
 magic_quotes_gpc: off
 register_globals: off
 session.auto_start: off

The main purpose of this file is to check that the PHP configuration is compatible with
your application. It is also very useful to check that your development server configuration is as
similar as possible to the production server. That’s why you should inspect the production
server configuration at the beginning of a project, and report its PHP settings in a php.yml file
in your project. You can then develop and test with confidence that you will not encounter any
compatibility errors once you deploy your project to the production platform.

The variables defined under the set header are modified (despite how they were defined
in the server php.ini file). The variables defined under the warn category cannot be modified on
the fly, but symfony can run even if they are not properly set. It is just considered bad practice
to have these settings set to on, and symfony will log a warning in this case. The variables defined

Zaninotto_786-9 C19.fm Page 434 Friday, December 22, 2006 5:59 AM

C H A P T E R 1 9 ■ M A S T E R I N G S Y M F O N Y ’ S C O N F I G U R AT I O N F I L E S 435

under the check category cannot be modified on the fly either, but they must have a certain
value for symfony to run. So, in this case, an exception is raised if the php.ini file is not correct.

The default php.yml file sets log_errors to on so that you can trace errors in symfony projects.
It also recommends that the register_globals be set to off to prevent security breaches.

If you don’t want symfony to apply these settings, or if you want to run a project with
magic_quotes_gpc and register_globals set to on without warning, then create a php.yml file in
your application config/ directory, and override the settings you want to change.

Additionally, if your project requires an extension, you can specify it under the extensions
category. It expects an array of extension names, as follows:

extensions: [gd, mysql, mbstring]

Summary
The configuration files can heavily modify the way the framework works. Because symfony
relies on configuration even for its core features and file loading, it can adapt to many more
environments than just the standard dedicated host. This great configurability is one of the
main strengths of symfony. Even if it sometimes frightens newcomers, who see in configura-
tion files a lot of conventions to learn, it allows symfony applications to be compatible with a
very large number of platforms and environments. Once you become a master of symfony’s
configuration, no server will ever refuse to run your applications!

Zaninotto_786-9 C19.fm Page 435 Friday, December 22, 2006 5:59 AM

Zaninotto_786-9 C19.fm Page 436 Friday, December 22, 2006 5:59 AM

437

■ ■ ■

A P P E N D I X

GNU Free
Documentation License

Version 1.2, November 2002

Copyright © 2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Second-
arily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a worldwide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The “Document”, below, refers to any such manual or work.

Zaninotto_786-9 AppA.fm Page 437 Wednesday, January 3, 2007 4:09 PM

438 A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E

Any member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant Sections. If the Docu-
ment does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is
not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to
this definition.

Zaninotto_786-9 AppA.fm Page 438 Wednesday, January 3, 2007 4:09 PM

A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E 439

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other condi-
tions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

Zaninotto_786-9 AppA.fm Page 439 Wednesday, January 3, 2007 4:09 PM

440 A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the con-
tributor acknowledgements and/or dedications given therein.

Zaninotto_786-9 AppA.fm Page 440 Wednesday, January 3, 2007 4:09 PM

A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E 441

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version's license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various orig-
inal documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

Zaninotto_786-9 AppA.fm Page 441 Wednesday, January 3, 2007 4:09 PM

442 A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the compi-
lation's users beyond what the individual works permit. When the Document is included in an
aggregate, this License does not apply to the other works in the aggregate which are not them-
selves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

Zaninotto_786-9 AppA.fm Page 442 Wednesday, January 3, 2007 4:09 PM

A P P E N D I X ■ G N U F R E E D O C U M E N T A T I O N L I C E N S E 443

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

Zaninotto_786-9 AppA.fm Page 443 Wednesday, January 3, 2007 4:09 PM

Zaninotto_786-9 AppA.fm Page 444 Wednesday, January 3, 2007 4:09 PM

445

Index

■Symbols
$$(), 226

$(), 225, 231

$_GET variable, 180

$_REQUEST variable, 180

$filterChain object, 106

$sf_context variable, 54, 119

$sf_data, 137–138, 140

$sf_flash object, 98

$sf_params variable, 54, 58, 119

$sf_request variable, 54, 119

$sf_user variable, 54, 97, 119

$this object, 124

__() helper, 274–275, 277

■A
absolute paths, using, 181

Accept-Language header, 267

action

accessing controller information and core
symfony objects, 88

action method names, case-sensitivity
of, 87

adding, 51

adding execute methods to the sfActions
object, 87

Ajax and, 227

alternative action class syntax, 88

behavior triggered by empty actions, 89

caching, 246

calling the front controller script to
request an action, 87

choosing between a redirect or a
forward, 91

context singleton, 89

custom view, calling, 90

decoupling an action name and calling
URL, 56

default action behavior, 89

default view, calling, 89

default/unavailable, 364

defining headers via the sfResponse
object, 90

describing with a verb, 26

error view, calling, 90

extracting statements into the
preExecute() method, 93

forward404(), 91, 93

forward404If(), 92

forward404Unless(), 92

forwardIf(), 92

forwarding or redirecting an action, 91

forwardUnless(), 92

getCharsets(), 95

getCookie(), 94

getHost(), 94

getHttpHeader(), 94

getLanguages(), 95

getMethod(), 94

getMethodName(), 94

getParameter(), 94

getParameterHolder(), 94

getPathInfo(), 94

getReferer(), 94

getRequest(), 94

getRequestParameter(), 58

getScriptName(), 95

getUri(), 94

handling a form submission in a POST
request, 91

hasParameter(), 94

Zaninotto_786-9 INDEX.fm Page 445 Wednesday, January 3, 2007 2:25 PM

446 ■I N D E X

isSecure(), 94

isXmlHttpRequest(), 94

keeping actions short, 87

locating the error 404 action and
template, 92

making an action cacheable, 251

mixing components and actions in a
single module, 122

multipart requests with user-attached
files, 95

naming conventions for actions and
components, 122

naming of, 51

no view to call, 90

“page not found” action, 91

passing information from an action to a
template, 54

proxies for accessing request methods
more quickly, 95

redirectIf(), 92

redirectUnless(), 92

rendering by a specific template using
setTemplate(), 91

renderText(), 90

retrieving the value of a request parameter
by its name, 94

routing.yml configuration file, 52

save, 309

save_and_add, 309

setting an action attribute, 54

sfAction, extending, 88

sfActions, 92, 95

sfController, 89

sfDatabaseConnection, 89

sfError404Exception, 93

sfI18N, 89

sfLogger, 89

sfRequest, 89

sfResponse, 89–90

sfStopException, 91

sfUser, 89

sfView, constants of, 89

sfWebRequest, 94

storing the action class of a module in
actions.class.php, 86

termination of, 89

using explanative names for, 52

using the link_to() helper to create
hyperlinks to actions, 56

using the model and define variables for
the view, 86

wrapping statements in the postExecute()
method, 93

writing functional tests for, 318

action security

actions as not secure by default, 100

authenticating users and granting
access, 101

authentication and secure actions, 100

building a user privilege management
system, 103

creating complex credential
combinations, 103

credentials, definition of, 100

customizing the default login and secure
pages, 101

dealing with user credentials in a
template, 103

extending a user’s privileges, 101

handling user credentials, 102

redirecting identified and unidentified
users, 100

restricting access to an action, 100

securing an application, 100

security.yml, 100, 103

setAuthenticated(), 101

setting access restrictions for, 70

settings.yml, 101

sfGuardPlugin, 103

sfUser, 102–103

actions.class.php, 50, 86

actions/ module subdirectory, 30

addCache(), sfViewCacheManager
object, 252

addHttpMeta(), 130

addMeta(), 130

addTime(), 355

Zaninotto_786-9 INDEX.fm Page 446 Wednesday, January 3, 2007 2:25 PM

447■I N D E X

Find it faster at http://superindex.apress.com

admin_check_list, 308

admin_double_list, 308

admin_select_list, 308

admin_web_dir, 422

administration

$filters variable, 302

$type variable, 297

action settings in a list view, 309

adding a custom header and footer, 313

adding tooltips in the list and edit
views, 298

admin_check_list, 308

admin_double_list, 308

admin_select_list, 308

administration generator cheat sheet, 290

calling administration actions with
custom parameters, 314

changing layouts, 299

choosing the fields to display, 292

column type and symfony filters, 301

compilation phase, 315

configurability of, 288

creating a reusable theme, 314

creating partial filters, 302

credentials parameter, 312

customizing pagination, 304

customizing the parameters of a partial
field, 297

customizing views, 297

default module configuration in
generator.yml, 289

default type-to-field conversion rules, 305

defining a component field, 297

defining a custom interaction, 310

defining a default sort order for list
view, 303

defining interactions for each view, 309

display key, 292, 301

edit partial, 313

edit view, 289, 304

field settings, in schema.yml, 291

fields, in generator.yml, 291

filtering of empty field values, 302

filters key, 301

generator.yml, 286, 289

handling a partial field in the edit
view, 306

handling foreign keys, 307

handling templates of templates, 315

how to use the display setting, 294

implementing an addComment
action, 310

init-app task, calling, 286

initiating an administration module, 287

interaction names, 309

lack of a show action, 289

list partial, 313

list view, 289, 299

many-to-many (n-n) table
relationships, 307

max_per_page parameter, 304

modifying the date format, 299

modifying the presentation of generated
modules, 312

module view.yml, 313

object_checkbox_tag(), 305

object_input_date_tag(), 305

object_input_tag(), 305

object_select_tag(), 305

object_textarea_tag(), 305

one-to-many (1-n) table relationships, 307

overriding view-specific field settings, 292

packaging a generator theme in a
plug-in, 315

param key, 289

params key, 301

params parameter, 305

peer_method parameter, 304

propel-init-admin task, 287, 290

respecting the principle of layer
separation, 296

returning HTML code in custom
fields, 295

reviewing the generated module code, 288

save action, 309

save_and_add action, 309

Find it faster at http://superindex.apress.com

Zaninotto_786-9 INDEX.fm Page 447 Wednesday, January 3, 2007 2:25 PM

448 ■I N D E X

setting a custom label for a column, 291

setting a custom page title for each
view, 297

setting filters in the list view, 301

sort parameter, 303

sorting a list in list view, 303

specifying a custom input type for a
field, 305

stacked layout, using, 300

suppressing the actions for one
category, 311

syntax of generated input names, 311

tabular layout, using, 300

text in generated templates as
internationalized, 299

through_class parameter, 308

using a custom style sheet, 313

using a Join to speed up page delivery, 304

using credentials to restrict user
actions, 312

using custom fields, 294

using partial fields, 296

using the date_format param, 299

validator file syntax for
administration-generated forms, 311

XML Localization Interchange File Format
(XLIFF), 299

administration, definition of, 282

agile software development, 9–10

Ajax

actions in, 227

adding an autocompletion
component, 239

Ajax helpers outputting HTML, not
JavaScript, 227

Ajax requests and the POST method, 233

authorizing script execution in remote
responses, 233

building complex interactions with a
single call, 238

callbacks and the request object, 234

caller component, 227

calling a remote function when a field
value changes, 230

calling remote functions periodically, 231

changing the request method, 233

concatenating visual effects in a
callback, 236

creating mouse-sortable lists, 241

decorating a view in, 227

definition of, 226

draggable element, definition of, 240

draggable_element() helper, 240

drop_receiving_element() helper, 240

editing text inside a text area, 242

form_remote_tag() helper, 229

forms combining regular and Ajax
submissions, 229

handling a conditional update, 231

input_auto_complete_tag() helper,
239–240

input_in_place_editor_tag() helper, 242

interaction, three components of, 227

JavaScript Object Notation (JSON),
benefits of, 236

link_to_remote() helper, 228

links in, 228

making an action return an Ajax
failure, 232

method option, using in requests, 233

multipart forms not supported, 229

notifying the user of interaction events,
234

observe_field() helper, 230

observe_form() helper, 231

passing parameters to a remote
action, 230

periodically_call_remote() helper, 231

position parameter values, 232

Prototype's Ajax object, 227

receiving element, definition of, 240

remote call parameters, 231

remote requests as asynchronous by
default, 234

remote_function() helper, 226

renderText(), 227

script option, 233

Zaninotto_786-9 INDEX.fm Page 448 Wednesday, January 3, 2007 2:25 PM

449■I N D E X

Find it faster at http://superindex.apress.com

server action component, 227

setting the loading and complete visual
effects, 240

sortable_element() helper, 241

splitting the update parameter value into
an associative array, 231

submit_to_remote(), 229

triggering a remote update with a
hyperlink, 228

updating a page element with a
server-executed PHP script, 226

updating an element according to a
condition or position, 232

using Ajax callbacks to show and hide an
activity indicator, 235

using the autocomplete tag helper in a
template, 239

using the position parameter to change
response location, 232

visual effects in Ajax callbacks, 236

XMLHttpRequest object, 227, 229, 232

zone component, 227

Ajax object (Prototype), 227

Apache Bench, 260

Apache server

activating the mod_rewrite extension, 176

compiling with the mod_rewrite
module, 42

Dynamic Shared Object (DSO), 42

sample configuration, 41

APC, 398

app.yml, 68, 77, 110

configuration cascade, 423

as environment-dependent, 423

sfConfig class, 423

using in the project configuration
directory, 423

application configuration files

autoload.yml, 70

bootstrap_compile.yml, 70

config_handlers.yml, 70

constants.php, 70

core_compile.yml, 70

front controller configuration files, 67

internationalization configuration files, 69

main application configuration files, 68

php.ini, 70

php.yml, 70

applications

accessing methods or attributes in project
applications, 29

accessing symfony commands in
production, 365

activating the check_lock parameter in
settings.yml, 364

adding a favicon.ico file, 362

checklist for deploying an application to
production, 362

clear-controllers task, 364

clearing the cache manually, 364

config.php, 84

config/ subdirectory, 29

creating, 40

customizing a cookie name in
factories.yml, 362

customizing the robots.txt file, 362

default/unavailable action, 364

defining the target PHP configuration, 362

deploying a project to production, 360

directory tree structure, 28

editing the rsync_exclude.txt file, 363–364

enable task, 364

excluding irrelevant files from rsync
synchronization, 363

fixing directory permissions with the
fix-perms task, 365

freezing a project for FTP transfer, 360

front-office and back-office, 25

hyperlinks between, in absolute form,
25, 29

i18n/ subdirectory, 29

launching the rsync command, 362

lib/ subdirectory, 29

locking an application when the cache is
being cleared, 364

managing a production application, 363

Zaninotto_786-9 INDEX.fm Page 449 Wednesday, January 3, 2007 2:25 PM

450 ■I N D E X

module, definition of, 26

modules/ subdirectory, 29

reverting (unfreezing) a project to its
initial state, 361

running the clear-cache command, 363

sample connection settings for a server
synchronization, 361

sample rsync exclusion settings, 363

storing application settings in app.yml, 77

sync task, 363

templates/ subdirectory, 29

temporarily disabling an application, 364

unfreeze task, 361

using an SSH tunnel to secure file
uploads, 361

apps/ project directory, 28

arrays (YAML), 63

Article.php, 146

ArticlePeer.php, 146

askeet tutorial, 10

assertions

evaluating in automated tests, 318

using, 332

Asset group (helper), 115

associative arrays (YAML), 63

attributes, 144

_attributes key, 160

auto_link_text(), 115

__autoload(), 33

autoload.yml, 70, 377

adding an autoloading handler to
symfony’s handler, 426

autoload key, use of, 424

autoloaded classes and stored
directories, 424

constants.php, 426

default autoloading configuration and file
syntax, 424

defining a recursive search, 424

overriding the settings of, 424

rule paths, 426

autoloading

extending, 424

function of, 424

operation on .php files, 424

autoloading_functions parameter, 426

automated tests

adding a test file to the global test
suite, 343

benefits of, 317

evaluating assertions, 318

executing tests using a test harness, 339

Firefox Selenium extension, 343

functional tests, definition of, 317

initializing a test database connection, 340

keeping test cases simple, 318

launching all project tests using the
test-all task, 340

lime testing framework, advantages of, 319

not using unit and functional tests in
production, 319

PhpUnit, 319

populating a database from a test file, 340

regression testing, 319

as a replacement for developer
documentation, 317, 339

reproducing a user's mouse and keyboard
input, 342

sample Selenium test, 342

sfPropelData object, 340

sfSimpleAutoloading(), 341

SimpleTest, 319

Test Anything Protocol, 319

test-driven development (TDD), 318

testing Ajax interactions, 318, 342

testing the cache, 341

unit tests, definition of, 317

using getConnection(), 340

using Selenium to test browser
inconsistencies, 343

using the isCached() test method, 341

Zaninotto_786-9 INDEX.fm Page 450 Wednesday, January 3, 2007 2:25 PM

451■I N D E X

Find it faster at http://superindex.apress.com

■B
Base and custom classes, 146

BaseArticle.php, 145

BaseArticlePeer.php, 145

BaseComment.php, 145

BaseCommentPeer.php, 145

batch script, executing, 85

batch/ project directory, 28

behaviors, definition of, 159

Boolean value syntax, 64

bootstrap_compile.yml, 70

button_to() helper, 177

button_to_function() helper, 223

■C
cache acceleration, 71

Cache group (helper), 115

cache keys, 262

cache management, 4

cache system, 119

cache() helper, 250

cache, optimizing

bypassing symfony completely for some
pages, 411

caching data in the server, 412

caching the result of a function call, 411

clear-cache task, 409

generating a template cache, 409

removing files by hand from the cache/
directory, 409

selectively clearing parts of the cache, 408

sfFileCache class, 412

sfFunctionCache class, 411

sfProcessCache class, 412

sfSuperCachePlugin plug-in, 411

transferring an application with cache to
production, 409

using a SQLite storage system for
caching, 410

using HTTP 1.1 headers, 411

using the super fast cache, 411

cache.yml, 246–247, 249, 422

cache/ directory, 28, 245, 257

caching

304: Not modified header, 261

actions called with a POST method or GET
parameters, 247

activating, 246

addCache(), sfViewCacheManager
object, 252

Apache Bench, 260

building a new staging environment, 258

cache as a filter in symfony, 251

cache clearing during a symfony
upgrade, 409

cache keys, 262

cache setting of settings.yml, 246

cache with and without a layout, 248

cache() helper, 250

cache.yml, invariancy of, 251

cache.yml, organizing, 247

cache/ directory, 245, 257

Cache-Control header, adding, 262

caching a partial, component, or
component slot, 248–249

caching a template fragment, 249

caching an action, 246

caching data in the server, 412

changing symfony's default cache storage
system, 253

clear-cache task, 254, 409

clearing (erasing) the cache, 254

clearing partials from the cache, 256

clearing template fragments from the
cache, 256

clearing the cache manually, 258

configuring dynamically, 251

creating a conditionalCacheFilter, 251

defining cache activation and settings in
cache.yml, 246

definition of, 245

enabling or disabling, 246

ETag header, adding, 261

Expires header, adding, 262

factories.yml, 253

filters.yml, 252

Zaninotto_786-9 INDEX.fm Page 451 Wednesday, January 3, 2007 2:25 PM

452 ■I N D E X

global components, 249

HTML caching, types of, 245

HTTP 1.1 cache features, 260

identifying a cached partial, 255

identifying cache parts, 260

ignore cache button, 259

include_partial() helper, 255

JMeter, 260

Last-Modified header, adding, 261

making an action cacheable, 251

opcode caching modules, 254

PHP accelerators, 254

PHP code execution and, 253

placing HTML code directly into the web/
folder, 253

remove(), sfViewCacheManager
object, 255

removing a cached partial, component, or
component slot, 255

removing files by hand in the cache/
directory, 409

selectively clearing parts of the cache,
255, 408

server-side caching, 245

settings.yml, 259, 261

sf_cache_key parameter, 255

sf_cache_partial, 255

sfCacheFilter, 251–252

sfFileCache class, 253

sfFunctionCache class, 254

sfProcessCache class, 254

sfResponse object, 261–262

sfSuperCache plug-in, 253

sfToolkit::clearGlob(), 258

slots and, 247

speed boost enabled by, 245, 251

symfony's view cache manager, 253

testing and monitoring, 247, 258–260

using benchmarking tools for load
testing, 260

using file path constants, 257

using memcache for memory caching, 253

using super fast cache, 253

using the cache information link, 260

Vary header, adding, 262

web debug toolbar, 259

when to clear the cache, 408

with_layout setting, 247–248, 260

YAML configuration files and, 245

__call(), 369

callMixins(), 370

camelCase convention, 144, 148

category headers, 64

channels in PEAR, 8

charsets, 277, 423

check_lock parameter, 364

check_lock setting, 419

checkConfig(), 433

checkResponseElement() proxy method, 335

class autoloading, 33

class:method pattern, 372

class:method:hook pattern, 372

classes

adding a parameter holder to, 32

declaring a class as extendable, 370

clear-cache task, 75, 254, 363, 409, 412, 419

clear-controllers task, 364

click(), 331

code 500 (Internal Server Error), 349

code comments, explicit function names
and, 18

code fragments

component slots, 120

myFragment.php, 119

Partial group helpers, 120

three alternative types of, 119

using include() to avoid code
repetition, 119

code generation

administration generator cheat sheet, 290

administration, definition of, 282

building a generator, 316

configurability of an administration, 288

CRUD, definition of, 281

Zaninotto_786-9 INDEX.fm Page 452 Wednesday, January 3, 2007 2:25 PM

453■I N D E X

Find it faster at http://superindex.apress.com

default module configuration in
generator.yml, 289

edit view, 284, 289

generate(), sfGeneratorManager class, 316

generated action class, 285

generated CRUD elements of a new
module, 284

generating a scaffolding, 284

generating the code of actions and
templates, 282

generator.yml, 286, 289

inheritance (init) vs. code generation
(generate), 282

init-app task, calling, 286

initiating a module, 282

initiating a scaffolding, 286

initiating an administration module, 287

list view, 284, 289

param key, 289

PHPmyadmin, 286

primary tasks, 281

propel-generate- tasks, 282

propel-generate-crud task, 281

propel-init- tasks, 282

propel-init-admin task, 281, 287, 290

propel-init-crud task, 281

reviewing the generated module code, 288

scaffolding, definition of, 282

show view, 284

three views of a generated module, 284

two methods of, 282

using the create link in the list view, 284

code, optimizing

adding classes to the core compile file, 415

calling the optimize task, 415

config_core_compile.yml.php, 415

core compilation, 414

sfOptimizer plug-in, 415

code-generation tools, 4

coding mistakes in YAML, 65

coding standards in symfony, 87

columns

phpName attribute, 145

setting the date and timestamp types, 145

types of, 145

values and attributes, defining, 144

writing attributes as key-value pairs, 145

command-line interface (CLI), 5, 7

executing a batch script from, 85

init-batch task, using, 86

Comment.php, 146

CommentPeer.php, 146

Common Gateway Interface (CGI) and PHP
scripts, 6

compilation phase, 315

component slots, 113, 120

code resulting from the execution of a
component, 135

comparison to slots, 135

component definitions used by the
sidebar slot, 136

defining the component slot label and
component name, 135

defining the default sidebar slot
component, 135

executeDefault(), barComponents
class, 135

include_component_slot() helper, 135

as named placeholders declared in the
view elements, 135

partials used by the sidebar slot
components, 136

specializing the sidebar slot component in
view.yml, 135

suspending for a particular module, 136

using in the global layout and regular
templates, 136

components, 113

$this object, 124

accepting additional parameters through
an associative array, 124

components.class.php file, 122

execute methods that pass variables, 124

Zaninotto_786-9 INDEX.fm Page 453 Wednesday, January 3, 2007 2:25 PM

454 ■I N D E X

as faster to execute than an action,
122, 124

include_component(), 126

including components within
components, 124

lack of security or validation in, 124

mixing with actions in a single
module, 122

naming conventions for actions and
components, 122

partials that serve as presentation for, 122

passing parameters to a component and
its template, 124

presentation as kept in a partial, 122

sfComponents and methods, 122

using in templates, 122

components.class.php file, 122

config.php, 39, 43, 66, 68, 84

config.php (application)

overriding file paths in, 429

overriding the sf_XXX_dir and
sf_XXX_dir_name variables, 428

config.php (project)

changing the paths to the framework files,
429–430

defining the symfony directories in, 430

loading of, 428

config/ application subdirectory, 29

config/ module subdirectory, 30

config/ project directory, 28

config_core_compile.yml.php, 415

config_handlers.yml, 70, 430, 433

configuration cache, 65

handlers, 75

keeping the configuration overhead low, 75

storage of processed PHP code in, 75

YAML files and, 75

configuration cascade, 73, 128, 130, 132, 135,
423, 430

configuration files

accessing configuration settings from PHP
code, 75–76

application configuration files, 67

clear-cache command, 75

config.php, 66

configuration cascade, 73

configuration levels in symfony, 73

databases.yml, 66

default configuration, 74

define statements, adding, 66

development (dev) environment, 71

environment and configuration as
synonymous, 71

global configuration for a project, 73

keeping several sets of configuration in
parallel, 71

local configuration for an application, 73

module configuration files, 70

overview of, 66

parameter definitions (settings), 66

parameter names and concatenated
elements, 76

prefixes for configuration file names, 76

priority list for parameter definitions, 74

production (prod) environment, 71

project configuration files, 66

propel.ini, 66

properties.ini, 66

redefining configuration at several
levels, 71

rsync_exclude.txt, 66

schema.yml, 66

sfConfig class, 76

structure of, 73

test (test) environment, 71

YAML configuration files, 73, 78

configuration handlers

adding or modifying the default
handlers, 431

benefits of using handlers with
configuration files, 431

class key, 431

config_handlers.yml, extract of, 430

custom configuration handler, code
example, 432

default handler configuration, 430

Zaninotto_786-9 INDEX.fm Page 454 Wednesday, January 3, 2007 2:25 PM

455■I N D E X

Find it faster at http://superindex.apress.com

extending sfConfigHandler, 432

extending sfYamlConfigHandler, 432

managing the configuration cascade, 430

parseYamls(), 433

sfDefineEnvironmentConfigHandler,
431, 434

sfRootConfigHandler, 431

writing your own configuration
handler, 432

configuration system, functions of, 61

connection name, definition of, 144

constants, 33

constants.php, 70, 426–427

<contents> tag, 390

context singleton, 25

control statements and alternative syntax, 53

controller

actions, 83

definition of, 13

development front controller, 72

dispatch(), 84

ensuring there is no HTML within, 17

filters, 83

front controller, 83

getting data from the model and passing it
to the view, 18

index.php, 83–84

placing application (business) logic
within, 18

production front controller, 72

request parameters and, 18

request, response, and session objects, 83

subdividing into a front controller and
actions, 21

using explicit function names, 18

using only pure PHP to place business
logic within, 15

convention over configuration, 3

converters key, using before fillin, 210

core classes in symfony, 25

core compilation, 414

core_compile.yml, 70

credentials parameter, 312

credentials, definition of, 100

Creole, 37

database abstraction and, 22

providing database abstraction for
Propel, 142

queries containing parameters from an
untrusted source, 154

query string, building, 154

querying a database with, 154

Criteria object, 151

cron table, 85

cross-site scripting (XSS) attacks, 113,
137–138

CRUD, definition of, 281

CSS selectors, 226, 334

css/ web subdirectory, 30

culture

__() helper, 274–275, 277

Accept-Language header, 267

activating the template translation feature
in settings.yml, 272

adding the sf_culture parameter to
application routing.yml, 267

changing a localized charset, 277

changing the default_culture setting in
i18n.yml, 266

changing the user culture during a
browsing session, 266

converting standards and formats, 268

creating a multiple-language-ready
template, 273

creating localized schema, 270

creating tables in schema.yml, 270

culture-dependent helpers, 268–269

database text information and, 270

elements requiring translation, 275

example of an XLIFF dictionary, 273

format_number() helper, 268

format_number_choice() helper, 276

getting data from a localized input, 269

messages.XX.xml translation file, 274–275

plural forms in translation, 276

saving templates in UTF-8, 277

Zaninotto_786-9 INDEX.fm Page 455 Wednesday, January 3, 2007 2:25 PM

456 ■I N D E X

setting the culture automatically, 267

setting the default culture, 266

sfI18N class, 269

sfUser class, 266

splitting translations into dictionary
files, 274

translating sentences containing
code, 275

translating the phrases of a template, 273

trans-unit tag, 274

as a user session parameter, 265

using dictionary files, 272–273

XML Localization Interchange File Format
(XLIFF), 273, 299

■D
data access layer, 19

data source name (DSN), 157

data validation files (YAML), 70

data/ project directory, 28

database abstraction layer, 19

database connections

data source name (DSN), 157

entering connection settings in
databases.yml, 156

phptype parameter, permitted values, 156

sample connection settings, 156

database data, accessing

$comments variable, 149

Base classes with default constructors,
accessors, and mutators, 148

bypassing the ORM (Propel), not the
database abstraction (Creole), 154

calling isDeleted() for objects, 150

calling isModified() for objects, 150

calling isNew() for objects, 150

class constants passed as parameters to
add(), 152

comparing relational and object data
model terminology, 147

comparing SQL and Criteria object
syntax, 152

Criteria object, complex object selection,
151, 153

doCount(), 153

doDelete(), 153

doInsert(), 153

doSelectOne(), 153

doUpdate(), 153

learning to understand the Criteria
object, 153

not storing queries and model
manipulation in the controller
layer, 155

preventing SQL injection risks through
escaping data, 151, 154

primary keys with more than one
column, 150

querying a database with Creole, 154

recognizing created_at and updated_at
columns, 155

removing database records with
delete(), 150

retrieveByPk(), 150

retrieveByPKs(), 151

retrieving a new primary key, 150

retrieving column values, 148

retrieving records by primary key, 150

retrieving records with Criteria, 151

retrieving related records, 148

retrieving several fields at once using
fromArray(), 148

saving and deleting data, 150

translating foreign keys into special setters
and getters, 149

using a singular name convention for
objects, 149

using doSelect() to retrieve more than one
record, 151, 153

using raw SQL queries, 154

using save(), 150

using special date columns, 155

databases

abstraction layer, advantages of, 142

achieving database independence, 20

adding a single column index, 405

adding records with foreign keys to a
related table, 359

Zaninotto_786-9 INDEX.fm Page 456 Wednesday, January 3, 2007 2:25 PM

457■I N D E X

Find it faster at http://superindex.apress.com

basic schema syntax, 144

code generation tasks, 281

column type and schema.yml, 145

column values and attributes,
defining, 144

columns as having a phpName
attribute, 145

combining object and peer classes, 147

connection name, definition of, 144

content internationalization in related
tables, 164

creating localized schema, 270

creating tables in schema.yml, 270

CRUD, definition of, 281

data access operations categorized, 281

databases.yml, 359

defining indexes in database schema, 405

defining multiple column indices in
schema.yml, 405

enabling persistent database
connections, 405

generated XML schemas, difficulties in
reading, 167

generating a SQL query from a YAML data
model, 166

id column, 145

importing data from a YAML file to a
database, 359

introspection, definition of, 167

issuing an ADD INDEX query, 405

keys and YAML syntax, 144

MySQL optimization tips, 406

phpName of a table, 144

populating, 358–360

portability and, 142

primary and foreign keys, 145

propel-load-data task, 359–360

sample fixture file for database
population, 358

schema.yml, 143

setPassword(), 358

setting the date and timestamp types, 145

specifying the connection settings in
databases.yml, 144

switching in the middle of a project, 8

switching to another database
management system (DBMS), 142

syntax for schemas in YAML format, 143

table as having special attributes, 144

timestamp type, 145

transferring data from a text source to a
database, 358

translating a database structure into a
schema, 143

using a SQLite storage system for
caching, 410

using database-specific optimization
techniques, 404

using linked tables, 359

using ORM to add accessors to tables,
8, 141

using schema.sql, 166

writing column attributes as key-value
pairs, 145

databases.yml, 66, 99, 359

debug panel, 4

debugging

code 500 (Internal Server Error), 349

custom log messages, value of, 356

deactivating Xdebug mode on a
production server, 352

exception messages in symfony's debug
mode, 350

initializing timing on a specific code
fragment, 355

inserting a message in a log, 356

not activating debug mode on a
production server, 350

sample front controller with debug mode
turned on, 350

sample Xdebug configuration, 351

SF_DEBUG constant, 350

SF_DEBUG mode, 414

sfErrorLoggerPlugin plug-in, 414

symfony's debug mode, features of, 349

Zaninotto_786-9 INDEX.fm Page 457 Wednesday, January 3, 2007 2:25 PM

458 ■I N D E X

tracing events and/or values during
requests, 356

using debug_message instead of
log_message, 357

using the err level, 357

web debug toolbar, features of, 352–354

web_debug key in settings.yml, 353

Xdebug mode, log messages in, 356

Xdebug PHP extension, activating, 351

decorator design pattern, 117

default login action, 100

default module, 417

default secure action, 100

default/unavailable action, 364

default_cache_lifetime, 251

default_culture setting, 266

defaultIdMethod attribute, 160

define statements, adding, 66

definition cascade, 74

delete(), 150

<dependencies> tag, 390

development (dev) environment

enabling of logging and debugging
settings, 71

myapp_dev.php, 85

diag(), 324, 338

dictionary files, 272–273

_dir variables, 38

dirname(__FILE__), 429

disable command, 419

dispatch(), 84

display key, 292, 301

doc/ project directory, 28

doCount(), 153, 402

Document Object Model (DOM)

updating a DOM page element, 223

document.getElementById(), 225

doDelete(), 153

doInsert(), 153

dollar function, 225, 231

Don’t Repeat Yourself (DRY) principle, 10

doSelect(), 151, 153, 400–402

doSelectJoinXXX(), 400–401

doSelectOne(), 153

doSelectWithI18n(), 272, 402

double dollar function, 226

doUpdate(), 153

draggable element, definition of, 240

draggable_element() helper, 240

drop_receiving_element() helper, 240

Dynamic Shared Object (DSO), 42

■E
eAccelerator, 398

each array iterator, 226

echo statement, 15, 17

enable task, 364

enabled_modules parameter, 422

end_if_javascript() helper, 224

end_slot() helper, 125

environments

changing or adding an environment, 72

changing the front controller, 72

configuration settings and environment
levels, 73

creating a new front controller, 85

definition of, 61

not confusing with servers, 72

parameter definition cascade, 74

settings for creating a staging
environment, 85

SF_ENVIRONMENT constant, 85

YAML configuration files divided by
environment, 73

error messages, displaying after failed form
submissions, 207

error_404_action, 418

error_404_module, 418

error_reporting, 422

error_reporting parameter, 345

error500.php, 419

ESC_ENTITIES helper, 139

ESC_JS helper, 139

ESC_JS_NO_ENTITIES helper, 139

ESC_RAW helper, 139–140

Zaninotto_786-9 INDEX.fm Page 458 Wednesday, January 3, 2007 2:25 PM

459■I N D E X

Find it faster at http://superindex.apress.com

escaping_method setting, 421

escaping_strategy parameter, 137, 421

etag, 422

ETag header, adding, 261

execute(), 203–204, 215

executeDefault(), 135

executeIndex action method, 50

extending classes, code example, 367

Extreme Programming (XP), 10, 318

eZcomponents, 377

■F
factories

default factories file, code example, 376

definition of, 375

overriding, 376

sfWebRequest, 375

storing factory definitions in factories.
yml, 376

factories.yml, 68, 98, 253, 376

favicon.ico, 362

FCKEditor widget, 197

fillin feature, 209

filters, 83

$filterChain object, 106

activating, 109–110

adding a custom filter, 108

app.yml, 110

applicatioin plug-ins and, 111

creating one's own, 108

deactivating the default filters, 108

declaring the filter class in filters.yml, 109

disabling, 108

filter chain, 106–108

filter class struture, 106

filtering requests at the application
level, 105

filters.yml, leaving empty values in, 107

forwarding to a specific action at the end
of a filter, 109

getParameter(), 110

Google analytics filter, code example, 110

implementing a “remember me” login
feature, 108

isFirstCall(), sfFilter class, 108

not removing an entry from filters.
yml, 108

overriding the default filters, 108

param key, 110

parameter definitions in the filter
configuration file, 110

rendering filter, default parameters, 107

restricting the execution of, 108

sample filters, 110

secure communication filter, code
example, 111

sfExecutionFilter, 106

sfFilter, 106, 109

sfRenderingFilter, 106

two parts of, 106

using the autoloading feature, 108

filters key, 301

filters, definition of, 69

filters.yml, 69, 107

declaring the filter class in, 109

not removing an entry from, 108

registering a custom filter in, 252

Firefox Selenium extension, 343

fix-perms task, 365

fixtures, definition of, 326

flash attribute, defining, 98

followRedirect(), 331

foreach/endforeach statement, 17

Form group (helper), 115

form helpers

date formats accepted in date helpers, 197

form_tag() helper, 229

input_date_tag() helper, 195, 197

purpose of, 191

radio buttons and the id=name
convention, 194

rich text editing in a <textarea> tag, 197

select_country_tag() helper, 198

select_day_tag() helper, 196

select_language_tag() helper, 198

select_month_tag() helper, 196

select_year_tag() helper, 196

Zaninotto_786-9 INDEX.fm Page 459 Wednesday, January 3, 2007 2:25 PM

460 ■I N D E X

standard form helpers and options, list
of, 192

syntax of, 192

using the form_tag() helper to create a
form, 191

form validation

activating the fillin feature to repopulate a
form, 209

allowing a different validation for different
methods, 214

client-side validation as optional, 203

complete validation file for the sample
contact form, 214

creating a custom validator, 215

defining valid data and validation
rules, 203

error messages and, 203, 207

executing a validator on an empty
field, 217

form_error() helper, 208

forward(), 209

getError(), 207–208

group parameter, 218

handleErrorSend(), 206

hasError(), 207

hasErrors(), 207

informing the user of a failed
validation, 206

initialize() validator method, 210

main principle of, 203

named validators, using, 213

overriding the handleErrorSend()
method, 206

performing password checks, 211

redisplaying a form with an error
message, 206

repopulating a form after a failed
validation, 209

sample contact form, 203

sendError.php, 206

server-side validation as compulsory, 203

sfCallbackValidator, 213

sfCompareValidator, 211

sfEmailValidator, 211

sfFileValidator, 212

sfNumberValidator, 211

sfPropelUniqueValidator, 212

sfRegexValidator, 211

sfStringValidator, 204, 210

sfUrlValidator, 211

sfValidator, 215

standard symfony validators, list of, 210

using the converters key on input before
fillin, 210

validation file for a form with array
 syntax, 217

Validation helper group, 208

validators, definition of, 203

YAML validation files, 205

form_error() helper, 208, 421

form_remote_tag() helper, 229

form_tag() helper, 229

changing the default method and default
enctype, 191

specifying attributes for, 191

format_number() helper, 268

format_number_choice() helper, 276

forms

Ajax and, 228

automated validation and repopulation, 4

combining regular and Ajax submissions
in, 229

creating a drop-down list from a foreign
key column, 201

creating an option list from an array of
objects, 200

creating with helpers, 54

date formats accepted in date helpers, 197

form helpers for objects, 199

form helpers, syntax of, 192

form_remote_tag() helper, 229

handling a form submission based on
object form helpers, 202

input date helpers, 195

internationalizing country names, 198

options_for_select() helper, 200

Zaninotto_786-9 INDEX.fm Page 460 Wednesday, January 3, 2007 2:25 PM

461■I N D E X

Find it faster at http://superindex.apress.com

populating drop-down lists with
objects, 200

providing an object form helper for each
form helper, 199

radio buttons and the id=name
convention, 194

retrieving user-submitted data, 195

rich text editing in a <textarea> tag, 197

select_country_tag() helper, 198

select_language_tag() helper, 198

selecting country names and
languages, 198

standard form helpers and options, list
of, 192

traditionally poor design of, 191

transforming a PHP associative array into
an options list, 200

updating objects, 202

using an array syntax for form fields, 217

using ISO country codes, 198

using request parameters, 195

using the same action to display and
handle a form, 195

forward(), 209

forward404(), 91, 93

forward404If(), 92

forward404Unless(), 92

forwardIf(), 92

forwardUnless(), 92

framework

benefits of, 3

function of, 61

fromArray(), 148

front controller, 21, 83

batch script, executing, 85

cache/ directory, 245

default available when creating an
application, 85

environment and, 85

executing a batch script, 85

functions of, 83

as automatically generated by symfony, 22

index.php, 83–84

as a pure MVC logic component, 22

SF_ENVIRONMENT constant, 85

showing the front controller name in
URLs, 176

URLs and, 172

front controller configuration files

SF_APP, 67

SF_DEBUG, 67

SF_ENVIRONMENT, 67

SF_ROOT_DIR, 67–68

frozen projects, 360

functional tests

autoloading feature as activated in, 329

back() and forward() in the test
browser, 330

batch scripts and the sfBrowser object, 332

behavior of the checkResponseElement()
proxy method, 335

click(), 331

CSS selectors accepted by
checkResponseElement(), 336

default functional test for a new
module, 328

default test environment
configuration, 336

definition of, 317

fluid interface to the object, 329

followRedirect(), 331

getElements(), 335

getResponseDom(), 334

getTexts(), 335

giving access to the request, context, and
response objects, 332

grouping by page and starting with a
request, 338

isStatusCode(), 334

libXML2 DOM object, 334

naming guidelines for, 338

proxy methods, 333

purpose of, 328

redirect(), 331

restart(), 332

Zaninotto_786-9 INDEX.fm Page 461 Wednesday, January 3, 2007 2:25 PM

462 ■I N D E X

retrieving elements from an HTML
document, 335

running the test-functional task, 337

sfBrowser object, 328

sfDomCssSelector object, 335

sfTestBrowser object, 328–334

testing the cache, 341

using assertions, 332

using CSS selectors, 334

using responseContains() to validate a
page, 334

using the isCached() test method, 341

■G
generate(), sfGeneratorManager class, 316

generator.yml, 70, 286, 289

$filters variable, 302

$type variable, 297

accessing a field value, 298

action settings in a list view, 309

adding a custom header and footer, 313

adding tooltips in the list and edit
views, 298

admin_check_list, 308

admin_double_list, 308

admin_select_list, 308

changing layouts, 299

choosing the fields to display, 292

column type and symfony filters, 301

compilation phase, 315

creating a reusable theme, 314

creating partial filters, 302

credentials parameter, 312

customizing pagination, 304

customizing the parameters of a partial
field, 297

customizing views, 297

default type-to-field conversion rules, 305

defining a component field, 297

defining a custom interaction, 310

defining a default sort order for list
view, 303

defining interactions for each view, 309

display key, 292, 301

edit partial, 313

edit view, customizing, 304

fields, 291

filtering of empty field values, 302

filters key, 301

handling a partial field in the edit
view, 306

handling foreign keys, 307

handling templates of templates, 315

how to use the display setting, 294

implementing an addComment
action, 310

interaction names, 309

list partial, 313

list view, customizing, 299

many-to-many (n-n) table
relationships, 307

max_per_page parameter, 304

modifying the date format, 299

modifying the presentation of generated
modules, 312

object_checkbox_tag(), 305

object_input_date_tag(), 305

object_input_tag(), 305

object_select_tag(), 305

object_textarea_tag(), 305

one-to-many (1-n) table relationships, 307

overriding view-specific field settings, 292

packaging a generator theme in a
plug-in, 315

params key, 301

params parameter, 305

peer_method parameter, 304

respecting the principle of layer
separation, 296

returning HTML code in custom
fields, 295

save action, 309

save_and_add action, 309

setting a custom label for a column, 291

setting a custom page title for each
view, 297

Zaninotto_786-9 INDEX.fm Page 462 Wednesday, January 3, 2007 2:25 PM

463■I N D E X

Find it faster at http://superindex.apress.com

setting filters in the list view, 301

sort parameter, 303

specifying a custom input type for a
field, 305

stacked layout, using, 300

suppressing the actions for one
 category, 311

syntax of the generated input names, 311

tabular layout, using, 300

through_class parameter, 308

typical example of, 289

using a custom style sheet, 313

using a Join to speed up page delivery, 304

using credentials to restrict user
actions, 312

using custom fields, 294

using partial fields, 296

using the date_format param, 299

validator file syntax for
administration-generated forms, 311

get_partial(), 121

getAttribute(), 97

getAttributeHolder(), 97

getCalls(), 356

getCharsets(), 95

getConnection(), 340

getCookie(), 94

getCurrentInternalUri(), 189

getElapsedTime(), 355

getElements(), 335

getError(), 207–208

getHost(), 94

getHttpHeader(), 94

getLanguages(), 95

getMethod(), 94

getMethodName(), 94

getParameter(), 94, 110

getParameterHolder(), 31, 94

getPathInfo(), 94

getRaw(), 138

getReferer(), 94

getRequest(), 94

getRequestParameter(), 58

getResponse(), 129

getResponseDom(), 334

getScriptName(), 95

getTexts(), 335

getTimer(), 355

getUri(), 94

getUser(), 96

global template (layout.php), 117

GNU Lesser Public General License
(LGPL), 37

group parameter, 218

■H
handleError(), 104

handleErrorSend(), 206

handlers, 75

has_layout, 134

has_slot() helper, 125

hasAttribute(), 97

hasError(), 207

hasErrors(), 207

hash mark, 64

hasParameter(), 94

headers

304: Not modified, 261

Accept-Language, 267

Cache-Control, 262

Expires, 262

Last-Modified, 261

Vary, 262

helpers, 113

__(), 274–275, 277

Asset group, 115

auto_link_text(), 115

benefits of, 114

benefits of, in templates, 56

button_to() helper, 177

button_to_function(), 223

Cache group, 115

cache(), 250

configurable list of standard helpers in
settings.yml, 115

creating and storing, 117

Zaninotto_786-9 INDEX.fm Page 463 Wednesday, January 3, 2007 2:25 PM

464 ■I N D E X

culture-dependent helpers, 268–269

declaring more than one helper group, 115

declaring with use_helper(), 115

default helpers frequently used, 116

definition of, 55, 114

draggable_element(), 240

drop_receiving_element(), 240

end_slot(), 125

ESC_ENTITIES, 139

ESC_JS, 139

ESC_JS_NO_ENTITIES, 139

ESC_RAW, 139

escaping, 139

as faster to write than HTML, 114

file inclusion definitions and, 132

Form group, 115

form helpers, 191

form_error() helper, 208, 421

form_remote_tag(), 229

form_tag() helper, 191, 229

format_number(), 268

format_number_choice(), 276

grouping by purpose, 115

has_slot(), 125

Helper group, 115

if_javascript() and end_if_javascript(), 224

include_component_slot(), 135

include_http_metas(), 131

include_metas(), 131

include_partial(), 120–121, 248, 255

include_slot(), 125

include_title(), 131

input_auto_complete_tag(), 239–240

input_date_tag() helper, 195, 197

input_in_place_editor_tag(), 242

JavaScript helpers, 115, 221

javascript_tag(), 222

link_to() helper, 177

link_to_function(), 222, 228

link_to_remote(), 228

list of groups, 115

loading a helper group from
anywhere, 116

loading a related helper group, 115

mail_to() helper, 182

not autoloaded in symfony, 115

object_input_tag() helper, 199

object_select_tag() helper, 199, 201

object_tag(), 305

objects_for_select() helper, 199–200

observe_field(), 230

observe_form(), 231

online API documentation for, 116

options_for_select() helper, 200

overriding the existing symfony
helpers, 117

Partial group, 115

periodically_call_remote(), 231

remote_function(), 226

role as functions, 114

select_country_tag() helper, 198

select_day_tag() helper, 196

select_language_tag() helper, 198

select_month_tag() helper, 196

select_year_tag() helper, 196

settings.yml, 115

slot(), 125

sortable_element(), 241

submit_image_tag() helper, 194

Tag group, 115

Text helper group, 115

TextHelper.php, 115

update_element_function(), 223, 232

Url group, 115

use of underscore syntax, 114

use_helper(), 115, 422

use_javascript() helper, 181

use_stylesheet() helper, 181

using in templates, 114

Validation helper group, 208

visual_effect(), 235

hook, 368, 370

hostspec parameter, in SQLite, 157

Zaninotto_786-9 INDEX.fm Page 464 Wednesday, January 3, 2007 2:25 PM

465■I N D E X

Find it faster at http://superindex.apress.com

.htaccess, 41–43, 72

mod_rewrite extension, 176

HTML, 53–57, 70, 113–120, 125–127, 131–132,
137–138

HTML caching, types of, 245

htmlentities(), 137, 139

HTTP 1.1

304: Not modified header, 261

Cache-Control header, adding, 262

client-side caching and, 260

ETag header, adding, 261

Expires header, adding, 262

headers and the browser’s cache
system, 260

Last-Modified header, adding, 261

Vary header, adding, 262

HTTP error codes, 232

HTTP response status codes, 129

hydrate(), overriding, 271

hydrating, 151, 153–154, 399

■I
i18N

__() helper, 274–275, 277

Accept-Language header, 267

activating template translation in
settings.yml, 272

adapting the user interface for, 272

adding the sf_culture parameter to
application routing.yml, 267

changing a localized charset, 277

changing the default_culture setting in
i18n.yml, 266

content internationalization in related
database tables, 164

converting standards and formats, 268

creating a multiple-language-ready
template, 273

creating localized schema, 270

creating tables in schema.yml, 270

culture, as a user session parameter, 265

culture-dependent helpers, 268–269

database text information and, 270

doSelectWithI18n(), 272, 402

elements requiring translation, 275

example of an XLIFF dictionary, 273

format_number() helper, 268

format_number_choice() helper, 276

getting data from a localized input, 269

handling generated i18n objects, 271

hydrate(), overriding, 271

i18n.yml, 266

internationalized application, definition
of, 265

ISO 639-1 language standard, 266

ISO 3166-1 country standard, 266

messages.XX.xml translation file, 274–275

plural forms in translation, 276

saving templates in UTF-8, 277

setting the culture automatically, 267

setting the default culture, 266

sfI18N class, 269

sfUser class, 266

splitting translations into several
dictionary files, 274

strtr(), 276

translating sentences containing
code, 275

translating the phrases of a template, 273

trans-unit tag, 274

using dictionary files, 272–273

XML Localization Interchange File Format
(XLIFF), 273, 299

i18n.yml, 69, 266

i18n/ application subdirectory, 29

if/endif statement, 17

if_javascript() helper, 224

ignore cache button, 259

images/ web subdirectory, 30

include statement, 33, 321, 325

include(), 119, 121

include_component(), 126

include_component_slot() helper, 135

include_http_metas() helper, 131

include_metas() helper, 131

include_partial() helper, 120–121, 248, 255

include_slot() helper, 125

Zaninotto_786-9 INDEX.fm Page 465 Wednesday, January 3, 2007 2:25 PM

466 ■I N D E X

include_title() helper, 131

index action, 417

index.php, 68, 83–85, 429

indexSuccess.php, 50

INI format, 62

init-app task, calling, 286

init-batch task, using, 86

initialize(), 204, 210, 216

init-module task, 49

init-project task, 40

initSimpleAutoload(), sfCore class, 325

input filtering, 58

input_auto_complete_tag() helper, 239–240

input_date_tag() helper, 197

setting the rich option to true, 195

input_in_place_editor_tag() helper, 242

input_tag(), 114

installation forum (symfony), 45

interface translation files, 29

internationalization, 69

Internet Information Services (IIS)

isapi/rewrite installation requirement, 42

introspection, definition of, 167

IRC channel (symfony), 45

isapi/rewrite, 42

isDeleted(), 150

isModified(), 150

isNew(), 150

ISO 639-1 language standard, 266

ISO 3166-1 country standard, 266

ISO country codes, 198

isSecure(), 94

isStatusCode(), 334

isXmlHttpRequest(), 94

■J
JavaScript, 69–70

script.aculo.us library, 235

JavaScript helpers

button_to_function() helper, 223

creating a hyperlink that triggers a
script, 222

if_javascript() and end_if_javascript()
helpers, 224

javascript_tag() helper, 222

link_to_function() helper, 222, 228

<noscript> tag, 224

outputting either HTML or JavaScript
code, 222

<script> tag, 221–222

triggering JavaScript from a button, 223

update_element_function() helper,
223, 232

updating a DOM page element, 223

visual_effect() helper, 235

XHTML and JavaScript code blocks, 222

JavaScript Object Notation (JSON)

benefits of, for Ajax interactions, 236

json_encode() and json_decode(), 238

sample template for multiple Ajax
updates, 237

updateJSON(), 237

updating several elements with one Ajax
call, 237

web services and, 238

javascript_tag() helper, 222

JMeter, 260

js/ web subdirectory, 30

json_encode() and json_decode(), 238

■K
KISS principle, 10

■L
l10N

__() helper, 274–275, 277

adding the sf_culture parameter to
application routing.yml, 267

changing a localized charset, 277

changing the user culture during a
browsing session, 266

converting standards and formats, 268

creating localized schema, 270

creating tables in schema.yml, 270

culture-dependent helpers, 268–269

Zaninotto_786-9 INDEX.fm Page 466 Wednesday, January 3, 2007 2:25 PM

467■I N D E X

Find it faster at http://superindex.apress.com

database text information and, 270

format_number() helper, 268

getting data from a localized input, 269

ISO 639-1 language standard, 266

ISO 3166-1 country standard, 266

localized application, definition of, 265

saving templates in UTF-8, 277

setting the culture automatically, 267

sfI18N class, 269

XML Localization Interchange File Format
(XLIFF), 273, 299

layout.php, 29, 117

lib/ application subdirectory, 29

lib/ module subdirectory, 30

lib/ project directory, 28

libXML2 DOM object, 334

lime testing framework

advantages of, 319

comparing is() to ok(), 323

launching test files in a sandbox, 319

lime.php, 319

lime_harness, 339

lime_output_color object, 324

methods of the lime_test object, 321

support for unit and functional
testing, 319

testing the methods of the lime_test
object, 322–323

lime.php, 319

lime_harness, 339

lime_output_color object, 324

link helpers

accepting additional options, 178

accepting internal URIs and absolute
URLs, 178

adding a post=true option, 180

building internal URIs with dynamic
parameters, 178

button_to() helper, 177

confirm and popup options, 179

examples of, 177

fake GET and POST options, 179

forcing GET variables with the
query_string option, 180

forcing the output to absolute paths, 181

generating relative paths by default, 181

mail_to() helper, 182

query_string option, 180

search engines and, 179

stopping address-harvesting
spambots, 182

turning a link call into a POST request, 180

using when writing hyperlinks instead of
<a> tags, 177

link_to() helper, 56, 114

formatting all links with, 175

outputting an XHTML-compliant
hyperlink, 177

required parameters, 177

link_to_function() helper, 222, 228

link_to_remote() helper, 228

links, in Ajax, 228

load balancing, 398

log files, 28

log/ project directory, 28

log_errors, 435

logging.yml, 69, 346, 348

login_action, 418

login_module, 418

log-purge task, 348

log-rotate task, 349

logs

configuring symfony's logging level in
logging.yml, 346

eight levels of symfony log messages, 346

error_reporting parameter, 345

manually adding a custom log message in
symfony, 347

PHP and, 345

setting the error reporting level in
settings.yml, 345

sfLogger methods, 348

storage strategy for log files, 348

symfony log files, 346

Zaninotto_786-9 INDEX.fm Page 467 Wednesday, January 3, 2007 2:25 PM

468 ■I N D E X

■M
magic methods

definition of, 7

object capabilities of PHP 5, 7

two underscores (__) naming convention, 7

magic_quotes_gpc, 45, 397

mail_to() helper, 182

main application configuration files

app.yml, 68

config.php, 68

factories.yml, 68

filters.yml, 69

logging.yml, 69

routing.yml, 69

settings.yml, 69

view.yml, 69

main directory structure, defining, 68

memcache, 253, 413

meta declarations, 126

Microsoft SQL Server, 3

mixins

__call(), 369

altering the way an existing method
works, 370

class:method pattern, 372

class:method:hook pattern, 372

definition of, 367

extension mechanism as dynamic, 373

implementing multiple inheritance
through sfMixer, 368

inserting a hook in the __call()
method, 370

named hook as a call to callMixins(), 370

placing a hook in different parts of a
class, 370

Propel behaviors as a special kind of
mixin, 375

registering, 370

registering an extension to an existing
hook, 372–373

registering any callable as a mixer
extension, 373

replacing callMixin() by a custom loop, 374

sfMixer, 367

sfMixer::callMixins(), 370, 374

sfMixer::register(), 369, 372

using to add new methods to an existing
class, 369

using to alter a method after its
declaration, 369

when to use, 369

mod_rewrite, 42, 72, 85, 253, 398

activating for Apache servers, 176

specifying only one default script
 name, 177

model, 281

accessing a database in an object-oriented
context, 141

adding new accessors to objects, 141

building queries using a
database-independent syntax, 142

classes as automatically generated by
symfony, 22

data access layer, 19

database abstraction layer, 19, 142

definition of, 13

integration of Propel in symfony, 141

keeping repeated data-access functions
and business logic in objects, 142

making the data access layer
database-independent, 20

MySQL-specific data access layer, code
example, 19

never addressing a database explicitly, 141

object/relational mapping and the Propel
project, 141

placing data logic code within, 18

placing data-manipulation code in the
model, not the controller, 17

portability, 142

request parameters and, 18

switching to another database
management system (DBMS), 142

using classes instead of tables, 141

using objects instead of records, 141

writing a custom method to encapsulate a
calculation, 142

Zaninotto_786-9 INDEX.fm Page 468 Wednesday, January 3, 2007 2:25 PM

469■I N D E X

Find it faster at http://superindex.apress.com

model classes

adding custom methods and properties
 to, 146

adding new methods to empty model
classes, 157

Article.php, 146

ArticlePeer.php, 146

Base and custom classes, 146

BaseArticle.php, 145

BaseArticlePeer.php, 145

BaseComment.php, 145

BaseCommentPeer.php, 145

behaviors, definition of, 159

combining object and peer classes in a
Base and a custom version, 147

Comment.php, 146

CommentPeer.php, 146

creating a custom model class, 146

custom object classes as inheriting from
Base classes, 146, 157

enabling behaviors by modifying
propel.ini, 159

extending, 157

generating with the propel-build-model
command-line task, 145

getters for record columns, 146

never modifying the Base classes, 146

object classes as representing a database
record, 146

overriding existing methods in custom
classes, 158

packaging extensions into behaviors, 159

peer classes, definition of, 147

peer classes, extending, 158

regenerating the object model classes by
calling propel-build-model, 146

static methods for retrieving records, 147

using model behaviors, 159

model, optimizing

adding a single column index, 405

autoloading classes, 399

avoiding temporary arrays, 402

bypassing the ORM layer, 403

defining indexes in database schema, 405

directly calling the database with
Creole, 403

doSelect(), 400–402

doSelectJoinXXX(), 400–401

enabling persistent database
connections, 405

issuing an ADD INDEX query in a
database, 405

Join methods for doCount(), 402

keeping comments turned off, 399

limiting Criteria with setLimit() and
setOffset(), 399

limiting the number of objects to
hydrate, 399

monitoring tweaks for performance
improvements, 404

MySQL optimization tips, 406

not using include statements, 399

optimizing Propel integration, 398

propel-build-all command, 405

reducing the number of database queries
with Joins, 399

returning only a given number of query
results, 399

saving the initialization of the
sfDatabaseManager, 398

sfPropelPager object, 399

using a custom method to prepare a
temporary array, 403

using an array of objects, 403

using database-specific optimization
techniques, 404

model/ directory, 28

module configuration files

generator.yml, 70

module.yml, 70, 111, 418

security.yml, 70

view.yml, 70

YAML data validation files, 70

module.yml, 70, 111, 418

module_disabled_action, 418

module_disabled_module, 418

Zaninotto_786-9 INDEX.fm Page 469 Wednesday, January 3, 2007 2:25 PM

470 ■I N D E X

modules

actions within, 26

actions.class.php file, 50

actions/ subdirectory, 30

calling the init-module task, 49

config/ subdirectory, 30

configuring, 111

creating a module skeleton, 49

creating a module.yml file, 111

default index action, creation of, 50

definition of, 26, 49

directory tree structure, 29

disabling all actions of a module, 112

each module having one view.yml file, 127

enabled parameter, 112

executeIndex action method, 50

grouping all actions into one module for
simplification, 26

indexSuccess.php, 50

is_internal parameter, 112

lib/ subdirectory, 30

other ways to initiate a module, 50

sfView, 112

templates/ subdirectory, 30

validate/ subdirectory, 30

view_name parameter, 112

modules/ application subdirectory, 29

multiple inheritance, 367–368

MVC (Model-View-Controller) architecture

achieving full database abstraction, 20

controller layer, definition of, 13

converting a basic PHP application to, 14

data access layer, 19

database abstraction layer, 19

flat PHP script, code example, 14

making the data access layer
database-independent, 20

model layer, definition of, 13

MySQL-specific data access layer, code
example, 19

object-oriented programming (OOP),
benefits of, 21

placing data-manipulation code in the
model, not the controller, 17

placing HTML code in a view script, 16

problems implementing in a
non-object-oriented language, 21

separating business logic (model) from
presentation (view), 13

subdividing the model, view, and
controller layers, 18

three layers of, 13, 18

using pure PHP to place business logic in a
controller script, 15

view layer, definition of, 13

my.cnf configuration file, 406

myapp_dev.php, 85

myFragment.php, 119

MySQL, 3, 8, 142

■N
named validators, 213

namespaces and parameter holders, 32

no_script_name parameter, 421

setting to “on” in production
environments, 176

<noscript> tag, 224

noXSD attribute, 160

null, in YAML, 107

■O
object and peer classes, 146

object form helpers

creating a drop-down list from a foreign
key column, 201

creating an option list from an array of
objects, 200

functions of, 199

list of, 199

object_input_tag() helper, 199

object_select_tag() helper, 199, 201

objects_for_select() helper, 199–200

options_for_select() helper, 200

populating drop-down lists with
objects, 200

providing for each form helper, 199

Zaninotto_786-9 INDEX.fm Page 470 Wednesday, January 3, 2007 2:25 PM

471■I N D E X

Find it faster at http://superindex.apress.com

syntax of, 199

transforming a PHP associative array into
an options list, 200

updating objects, 202

using to handle a form submission, 202

object/relational abstraction layer, 8

object_checkbox_tag(), 305

object_input_date_tag(), 305

object_input_tag() helper, 199, 305

object_select_tag() helper, 199, 201, 301, 305

object_tag() helper, 305

object_textarea_tag(), 305

object-oriented programming (OOP), 21

PHP 5 and, 7

object-relational mapping (ORM)

adding accessors to tables, 8

benefits of, 8, 141

definition of, 8

detecting relationships between
objects, 150

encapsulating the data logic, 141

hydrating, definition of, 151

keeping repeated data-access functions
and business logic in objects, 142

object/relational abstraction layer, 8

reusability, definition of, 141

schema, definition of, 143

switching database systems in the middle
of a project, 8

translating model object calls to SQL
queries, 8

using classes instead of tables, 141

using objects instead of records, 141

objects_for_select() helper, 199–200

observe_field() helper, 230

observe_form() helper, 231

opcode caching modules, 254

options_for_select() helper, 200

Oracle, 3, 8, 142

output escaping, 4, 113

accessing a $sf_data variable in every
template, 137

accessing unescaped (raw) data, 138

activating, 137

adding htmlentities() to all variable
output, 137

automatically escaping every variable
output in a template, 137

calling htmlentities() to escape output
manually, 137, 139

configuring globally for an application in
settings.yml, 137

cross-site scripting (XSS) attacks, 137–138

default escaping_method in
settings.yml, 139

ESC_ENTITIES helper, 139

ESC_JS helper, 139

ESC_JS_NO_ENTITIES helper, 139

ESC_RAW helper, 139

escape HTML output data, 137

escaping arrays and objects, 139

escaping cascade, code example, 139

escaping helpers, 139

escaping_strategy parameter, possible
values, 138

getRaw(), 138

parameters controlling, 137

rendering malicious scripts harmless, 137

retrieving raw data through the $sf_data
object, 140

setting the escaping_strategy parameter to
both, 137

some PHP functions not working on
escaped arrays, 140

using the ESC_RAW helper to deactivate
escaping, 140

■P
package attribute, 160

package.xml, 388

page, components of, 52

page title, 126

pake, 37

param array, 186

param key, 174, 183

parameter definition cascade, 74

Zaninotto_786-9 INDEX.fm Page 471 Wednesday, January 3, 2007 2:25 PM

472 ■I N D E X

parameter holders, 31, 96

accepting a default value as a second
argument, 31

defining a class with, 32

encapsulating attributes with clean getter
and setter methods, 31

proxy methods, 31

specifying a third argument to a setter or a
getter, 32

support for namespaces, 32

parameter names and concatenated
elements, 76

params key, 301

params parameter, 305

parseYamls(), 433

parsing the routing.yml file, 183

Partial group (helper), 115

partials, 113

definition of, 120

get_partial(), 121

include_partial() helper, 120–121

including in a template, 120

naming conventions, 120

passing variables to as an argument, 121

splitting into logic and presentation
parts, 122

pattern constraints

adding, 184

hiding primary keys as a security
guideline, 185

performance and optimization
strategies, 397

periodically_call_remote() helper, 231

permalink action, 175, 185

Phing, 37

PHP 4, 7

PHP 5

accessing configuration settings in, 75–76

avoiding PHP code that echoes HTML
tags, 17

checking that version 5.0 or higher is
installed, 35

constants, 77

defining routing rules in, 188

development of symfony in, 3, 7

documentation for, 7

echo statement, 15, 17

error logging in development and
production environments, 346

error_reporting parameter, 345

flat PHP script, code example, 14

foreach/endforeach statement, 17

if/endif statement, 17

json_encode() and json_decode(), 238

limitations of, 367

logs in, 345

multiple inheritance not allowed in, 367

object-oriented programming (OOP), 7

PHP accelerator, 70

PHP log files, directory location of, 346

php.ini, 345

placing PHP code in YAML files, 79

printf, 15

Propel, 9

requests and processing time, 61

strtotime(), 197

turning a YAML file into a PHP associative
array, 79

upgrading your PHP version, 397

using a PHP accelerator, 398

using an array syntax for form fields, 217

using include() to avoid code
repetition, 119

using PHP alternative syntax, 53, 114

PHP accelerators, 70, 254

PHP Data Objects (PDO), 37

PHP extension and application
repository (PEAR)

adding the symfony channel to PEAR, 37

channels, 8

checking the version number of an
installation, 8

<contents> tag, 390

definition of, 7

<dependencies> tag, 390

installing the symfony PEAR package, 37

Zaninotto_786-9 INDEX.fm Page 472 Wednesday, January 3, 2007 2:25 PM

473■I N D E X

Find it faster at http://superindex.apress.com

installing vendor libraries in PHP, 8

plug-ins, installing, 380

upgrading, 8

PHP zlib module, 408

php.ini, 44–45, 70, 99, 345, 434

php.yml, 70

check category, 435

default PHP settings in, 434

extensions category, 435

inspecting a production server's
configuration, 434

main purpose of, 434

setting log_errors to on, 435

setting register_globals to off, 435

warn category, 434

PhpDoctrine ORM, 404

phpDocumentor, 4, 50

PHPmyadmin, 286

phpName, 144, 148, 160

PhpUnit, 319

plugin-install task, 385–386

plugin-list task, 382

plug-ins

activating a plug-in module in
settings.yml, 381

adding a maximum version number of
symfony, 390

adding a package.xml file, 388

anatomy of, 383

archive plug-ins, installing, 380

authoring, 386

bootstrap script (config.php), 384

building, 390

capabilities and conventions, 384

<contents> tag, 390

creating the sfSamplePlugin wiki page, 392

customizing an application plug-in, 385

database schemas and, 384

declaring as an external dependency, 381

declaring dependencies, 390

definition of, 378

<dependencies> tag, 390

distributing, 386, 392

elements requiring manual setup during
installation, 385

examples of community-contributed
plug-ins, 379

features of, 378

file structure of, 383, 387

finding symfony plug-ins online, 379

including a LICENSE file, 393

installing, 380–381

listing installed plug-ins, 382

naming conventions, 392

packaging and reusing code disseminated
across several files, 378

packaging as a PEAR package, 390

PEAR plug-ins, installing, 380

plugin-install task, 385–386

plugin-list task, 382

plugin-uninstall task, 382

replacing the default contents of a plug-in
module, 386

testing after installing, 391

upgrading and uninstalling, 382

plugins/ project directory, 28

plugin-uninstall task, 382

populating a database, 358–360

position parameter, values accepted, 232

postExecute(), 93

PostgreSQL, 3, 8, 142

Potencier, Fabien, 5

preExecute(), 93

prependRoute(), 188

primary and foreign keys, 145

printf, 15

procedural programming, 21

production (prod) environment

default settings optimized for
performance, 71

index.php, 85

production front controller, 41

Zaninotto_786-9 INDEX.fm Page 473 Wednesday, January 3, 2007 2:25 PM

474 ■I N D E X

project configuration files

config.php, 66

databases.yml, 66

propel.ini, 66

properties.ini, 66

rsync_exclude.txt, 66

schema.yml, 66

YAML and, 67

projects

creating, 39

definition of, 25

front-office and back-office
applications, 25

grouping logically into applications, 25

predefined directory structure of, 39

root tree directory structure, 27

as usually containing two applications, 25

Propel, 37, 66, 97, 141

behaviors as a special kind of mixin, 375

benefits of using, 166

debug mode, 349

extending Propel-generated objects, 375

generating model classes with the
propel-build-model task, 145

integrating into symfony, 141

native XML schema format, 143

as an object/relational abstraction layer
for PHP 5, 9

optimizing Propel integration, 398

as the ORM for symfony, 142

propel.ini, 375

rebuilding the model after modifying
propel.ini settings, 168

sfPropelPager object, 399

use of Creole for database abstraction, 142

website, 9

Propel library

functions of, 22

providing class skeletons and code
generation, 22

propel.ini, 66, 159, 167, 399

propel-build-all command, 405

propel-build-model task, 145–146, 271

propel-build-schema task, 167

propel-build-sql task, 167

propel-generate-crud task, 281

propel-init-admin task, 281, 287, 290

propel-init-crud task, 281

propel-load-data task, 167, 359–360

properties.ini, 66, 361

Prototype library

$$(), 226

Ajax object, 227

code for adding to an action, 225

code for adding to view.yml, 225

CSS selectors, 226

document.getElementById(), 225

dollar function, 225, 231

double dollar function, 226

each array iterator, 226

functions of, 224

JavaScript syntax enhancements, 224

online documentation for, 225

returning an array of all DOM
elements, 225

template calling a _remote helper, 225

using $() to get a JavaScript element by
ID, 225

website of, 224

prototype_web_dir, 422

proxy methods, 31, 333

public and non-public project files, 68

■Q
query string, building, 154

query_string option, 180

■R
rapid application development (RAD)

Don’t Repeat Yourself (DRY) principle, 10

KISS principle, 10

methodologies underlying, 9

refactoring, 10

symfony and, 10

Rational Unified Process, 9

raw URLs, dangers of, 172

Zaninotto_786-9 INDEX.fm Page 474 Wednesday, January 3, 2007 2:25 PM

475■I N D E X

Find it faster at http://superindex.apress.com

receiving element, definition of, 240

redirect(), 331

redirectIf(), 92

redirectUnless(), 92

refactoring, 26

definition of, 10

when to perform on the data layer, 155

register_globals, 45, 435

regression testing, 319

remote_function() helper, 226

remove(), sfViewCacheManager object, 255

renderText(), 90, 227

request object, 83

request parameters, 195

response object, 83, 113, 118, 125

responseContains(), 334

restart(), 332

retrieveByPk(), 150

retrieveByPKs(), 151

rich text editing, 197

rich_text_js_dir, 422

robots.txt, 362

routing, 42, 52, 56

allowing bookmarking on dynamic
pages, 173

considering the URL as part of the
interface, 172

definition of, 171

developing first, then formatting the URLs
afterwards, 173

formatting a URL to bring information to
users, 172

formatting all links with the link_to()
helper, 175

keeping script names and parameters
hidden, 173

making dynamic pages look like static
ones, 175

making URLs easier to type and
remember, 173

making URLs persistent, 173

providing better indexing of application
pages, 173

safely redirecting unrecognized URLs, 173

as a two-way mechanism, 175

URLs and dynamic assets, 174

URLs and search engine results, 173

using URLs to access application
resources, 172–173

routing rules

adding a new rule above the default
one, 183

array of request parameter values (param
key), 183

components of, 183

defining, 174

defining in PHP 5, 188

defining the sf_routing_default
configuration parameter, 186

definition of, 183

example of, 174

list of symfony's default rules, 182

matched named wildcards and request
parameter values, 183

pattern to be matched (url key), 183

refining rules by adding pattern
constraints, 184

requirements line, 184–185

setting a default value for a request
parameter, 186

setting named wildcards to a default value
in the param array, 186

speeding up routing using rule labels, 186

unique label, 183

routing system

adding an .html extension to external
URLs, 187

avoiding mixing PHP with HTML, 175

changing the suffix value in the
application settings.yml, 187

correspondence between external URL
and internal URI, 174

creating rules without routing.yml, 188

default routing rules, list of, 182

defining routing rules in routing.yml, 174

formatting all links with the link_to()
helper, 175

Zaninotto_786-9 INDEX.fm Page 475 Wednesday, January 3, 2007 2:25 PM

476 ■I N D E X

formatting an internal URI into an
external URL, 175

ignoring the .html extension in external
URLs, 175

making dynamic pages look like static
ones, 175

matching the request URL and patterns in
the routing rules, 174

never having the front controller name in
internal URIs, 176

no_script_name parameter in
settings.yml, 176

not writing hyperlinks using <a> tags,
175, 177

param key, 174

parsing of routing.yml from top to
bottom, 183

passing a request to the permalink
action, 175

primary functions of, 182

refining routing rules by adding pattern
constraints, 184

retrieving information about the current
route, 189

routing rules, components of, 183

sample routing rule, 174

sfRouting object, 189

showing the front controller name in
URLs, 176

specifying a suffix for a unique routing rule
in routing.yml, 187

turning named wildcards into request
parameters, 174

url_for() helper, 175

writing hyperlinks using a special
helper, 175

routing.yml, 52, 69, 180, 406

adding a new rule above the default
one, 183

defining routing rules in, 174

not using to create routing rules, 188

parsing of, from top to bottom, 183

specifying a suffix for a unique routing
rule, 187

RSS feed, adding, 126

rsync_exclude.txt, 66

editing, 363–364

Ruby on Rails, 5

rule labels, advantages and disadvantages
of, 186

■S
sandbox

contents of, 35

downloading and unpacking, 35

installing and testing, 35

purpose of, 36

uninstalling, 36

save(), 150

scaffolding, 50

definition of, 282

generating, 284

initiating, 286

three views of a generated module, 284

schema

basic syntax of, 144

column values and attributes,
defining, 144

combining object and peer classes, 147

connection as containing tables, 144

definition of, 143

having different schemas that use
different connections, 161

having more than one schema per
application, 160

keys and YAML syntax, 144

never modifying the Base classes, 146

phpName of a table, 144

table as having special attributes, 144

schema syntax

adding foreign keys, 162

adding indexes, 163

attributes for i18n tables, 160

calling the propel-build-schema task, 167

column parameters, list of, 162

content internationalization in related
tables, 164

Zaninotto_786-9 INDEX.fm Page 476 Wednesday, January 3, 2007 2:25 PM

477■I N D E X

Find it faster at http://superindex.apress.com

deactivating the noXSD attribute for a
connection, 160

deducing column details from the column
name, 164

defaultIdMethod attribute, 160

defining basic column attributes, 161

defining unique indexes, 163

generating a schema.yml file from an
existing database, 167

handling empty columns, 164

i18n mechanisms, implied and
explicit, 164

i18n tables, support for, 164

multiple-reference foreign keys, 163

naming foreign keys, 163

package attribute, changing, 160

rebuilding the model after modifying
propel.ini settings, 168

setting connections and tables under an
_attributes key, 160

translating schema.yml into
schema.xml, 165

using schema.sql, 166

using the XML format for full schema
description, 165

validating schema before generating
code, 160

schema.sql, 166

schema.xml, 165, 167

schema.yml, 66, 143, 286

field settings, 291

<script> tag, 221–222

script.aculo.us library, creating complex
visual effects, 235

secure_action, 418

secure_module, 418

securing an application, 100

security, using raw URLs to hack an
application, 172

security.yml, 70, 100, 103

select_country_tag() helper, 198

select_day_tag() helper, 196

select_language_tag() helper, 198

select_month_tag() helper, 196

select_year_tag() helper, 196

Selenium test framework, 342

sendError.php, 206

Sensio, 5

server optimization

deactivating any debug utility in a
production server, 398

load balancing, 398

syck extension, 398

turning off magic_quotes_gpc in
php.ini, 397

upgrading your PHP version, 397

using a PHP accelerator, 398

server web root, 68

session object, 83

serializing, 97

setAuthenticated(), 101

setContentType(), 129

setHttpHeader(), 130

setPassword(), 358

setStatusCode(), 129

setTemplate(), 91

settings.yml, 69, 77, 99, 101, 115, 129, 261,
277, 345, 408

accessing parameters via the sfConfig
class, 417

activated modules, 422

activating the template translation feature
in, 272

admin_web_dir, 422

autoloading_functions parameter, 426

available parameter, 418

cache settings, 246, 422

changing the default module and action
settings, 419

charset setting, 423

creating your own default module, 419

default action request parameter, 417

default helpers, 422

default module request parameter, 417

enabled_modules parameter, 422

enabling the template cache
mechanism, 422

Zaninotto_786-9 INDEX.fm Page 477 Wednesday, January 3, 2007 2:25 PM

478 ■I N D E X

as environment-dependent, 417

error_404_action, 418

error_404_module, 418

error_reporting, 422

error500.php, 419

escaping_method setting, 421

escaping_strategy setting, 421

etag, 422

form validation settings, 421

index action, 417

logging settings, 422

login_action, 418

login_module, 418

miscellaneous configuration settings, 423

module_disabled_action, 418

module_disabled_module, 418

no_script_name parameter, 176, 421

optional parameters, table of, 419

output escaping settings, 421

overriding the default modules and
actions, 419

paths to assets, 422

prototype_web_dir, 422

rich_text_js_dir, 422

routing settings, 421

secure_action, 418

secure_module, 418

setting the check_lock setting to on, 419

settings for a new staging environment, 259

sfError404Exception, 418

standard_helpers, 273, 422

suffix parameter, 421

unavailable.php, 419

unavailable_action, 418

unavailable_module, 418

use_helper(), 422

validation_error_class, 421

validation_error_id_prefix, 421

validation_error_prefix, 422

validation_error_suffix, 422

web_debug, 422

web_debug_web_dir, 422

SF_APP, 67

sf_autoloading_functions setting, 378

sf_cache_key parameter, 255

sf_cache_partial, 255

sf_culture parameter, 267

SF_DEBUG, 67, 350, 414

SF_ENVIRONMENT, 67, 85

SF_ROOT_DIR, 67–68

sf_routing_default configuration
parameter, 186

sfAction, extending, 88

sfActions object, 58, 87, 92, 95, 105, 369

sfBrowser object, 328

sfCacheFilter, 251–252

sfCallbackValidator, 213

sfCommonFilter, 132

sfCompareValidator, 211

sfComponents, 122

sfConfig class, 76–77, 417, 423, 426

sfConfig methods, 33

sfConfigHandler, 432

sfController class, 25, 89, 189

sfDatabaseConnection, 89

sfDatabaseManager, 398

sfDefineEnvironmentConfigHandler,
431, 434

sfDoctrine plug-in, 404

sfDomCssSelector object, 335

sfEmailValidator, 211

sfError404Exception, 93, 418

sfErrorLoggerPlugin plug-in, 414

sfExecutionFilter, 106

sfFileCache class, 253, 412

sfFileValidator, 212

sfFilter, 106, 109

sfFunctionCache class, 254, 411

sfGuardPlugin, 103

sfI18N class, 89, 269

sfLogger methods, 89, 348

sfMixer, 159, 367–368

sfMixer::callMixins(), 370, 374

sfMixer::register(), 369, 372

Zaninotto_786-9 INDEX.fm Page 478 Wednesday, January 3, 2007 2:25 PM

479■I N D E X

Find it faster at http://superindex.apress.com

sfMySQLSessionStorage, 99

sfNumberValidator, 211

sfOptimizer plug-in, 415

sfPDOSessionStorage, 99

sfPostgreSQLSessionStorage, 99

sfProcessCache class, 254, 412

sfPropelData object, 340, 358

sfPropelPager object, 154, 399

sfPropelUniqueValidator, 212

sfRegexValidator, 211

sfRenderingFilter, 106, 129

sfRequest class, 25, 89, 98, 119, 267

getError(), 207

hasError(), 207

sfResponse class, 25, 31, 89, 127, 129, 261–262

sfRootConfigHandler, 431

sfRouting object, 189

sfRouting singleton, 188

sfSimpleAutoloading(), 341

sfStopException, 91

sfStringValidator, 204, 210

sfSuperCachePlugin plug-in, 411

sfTestBrowser object, 328–334

sfTimer class, 355

sfToolkit::clearGlob(), 258

sfUrlValidator, 211

sfUser class, 89, 96, 103, 119, 266

sfValidator, 215

sfView, 89, 112

sfWebRequest, 94, 375

sfYaml class, 79

sfYAML::load(), 326

sfYamlConfigHandler, 432

SimpleTest, 319

skip(), 324

slot() helper, 125

slots, 113

adding HTML code to a layout, 125

defining a slot before including it, 124

definition of, 124

end_slot() helper, 125

has_slot() helper, 125

include_slot() helper, 125

including a sidebar slot in a layout, 125

inserting code between slot() and
end_slot() helpers, 125

layouts as executed after templates
(decoration process), 124

slot() helper, 125

uses for, in layouts and templates, 124

using to define zones for displaying
contextual content, 125

“smart URLs”, 42, 52

sortable_element() helper, 241

source versioning, 45

spaces, using in YAML, 62

spl_autoload_register(), 33

SQL, 399–400

comparing SQL and Criteria object
syntax, 152

DELETE command, 153

generating a SQL query from a YAML data
model, 166

INSERT command, 150, 153

optimizing SQL code, 142

syntax variants and database vendors, 142

UPDATE command, 150, 153

using raw SQL queries, 154

using schema.sql, 166

SQLite, 8, 142

hostspec parameter, 157

SSH, 361

stacked layout, 300

standard_helpers, 422

strings (YAML), 62

strtotime(), 197

strtr(), 276

stubs, definition of, 326

submit_image_tag() helper, 194

submit_to_remote(), 229

Subversion (SVN), 37

defining the $SVNREP_DIR environment
variable, 46

erasing the myproject.origin/ directory, 46

setting a preferred text editor, 47

Zaninotto_786-9 INDEX.fm Page 479 Wednesday, January 3, 2007 2:25 PM

480 ■I N D E X

setting up a Subversion repository, 45

specifying an ignore list to SVN, 46

TortoiseSVN client for Windows, 46

suffix parameter, 421

syck extension, 398

symfony

accessing symfony commands in
production, 365

adding a page, 51

adding an action, 51

advantages of, 3, 25

application structure, 13

applications, front-office and
back-office, 25

autoloading, 70

basic concepts underlying, 6

cache clearing during a symfony
upgrade, 409

case-sensitivity of, 52

checking that PHP 5.0 or higher is
installed, 35

checking the installation version, 38

clear-cache command, 33

command-line interface (CLI), 5, 39

compatibility with major databases
engines, 3

configuration files, overview of, 66

configuration files, structure of, 73

configuring the web server, 41

configuring with other servers, 44

core classes, 25

creating a project, 39

creating an application, 40

creating forms, 54

Creole, 22, 37

default configuration, 74

default helpers frequently used, 116

developer community, role of, 6

development of, in PHP 5, 3, 7

directories of installed libraries, 38

early development of, 5

eight levels of log messages, 346

features of, 3

finding symfony plug-ins online, 379

framework, function of, 61

information resources on, 45

installing and testing the sandbox, 35

installing the most recent beta, 38

installing the symfony libraries, 37

installing the symfony PEAR package, 37

integration of Propel in, 141

list of websites developed with, 397

localization and internationalization
features, 69, 265, 267

main directory structure, defining, 68

obtaining capabilities provided by a
third-party class, 377

online API documentation, 114, 116, 188

optimizing by deactivating unused
features, 413

performance and optimization
strategies, 397

plug-ins, information resources on, 159

Potencier, Fabien, 5

Propel as the preferred object/relational
abstraction layer for, 166

rapid application development (RAD), 10

recommended use of PEAR, 8

session-handling features, 98

Subversion (SVN) installation, 37

troubleshooting an installation, 44

website for, 5

who should use, 6

wiki, 44, 111, 379

YAML as symfony's default configuration
language, 62

Zaninotto, François, 5

sync task, 363

■T
tabular layout, 300

Tag group (helper), 115

tags

<noscript>, 224

<script>, 221–222

Zaninotto_786-9 INDEX.fm Page 480 Wednesday, January 3, 2007 2:25 PM

481■I N D E X

Find it faster at http://superindex.apress.com

templates

$sf_context variable, 119

$sf_params variable, 58, 119

$sf_request variable, 119

$sf_user variable, 119

accessing flash attributes from, 98

benefits of helpers in, 56

caching, 249

components of, 113

dealing with user credentials in, 103

decorator design pattern, 117

default action termination as a
“success”, 53

default availability of helpers in, 115

default page layout, code example, 117

definition of, 53

global template (layout.php), 117

guidelines for finding template
 fragments, 126

having several templates for a single
action, 114

helpers, 113

including form elements in, 54

including partials in, 120

indexSuccess.php, 50

keeping PHP code to a minimum in,
53, 114

layout as “decorating” a template, 117

layout, view configuration, and template
assembled, 118

layout.php, 29, 117

myFragment.php, 119

naming of, 53

optimizing the global template for
applications, 119

page layout in, 117

passing information from an action to a
template, 54

placing the variables from the
controller, 20

symfony variables, availability of, 119

using helpers to package code snippets
in, 114

using include() to avoid code
repetition, 119

using PHP alternative syntax, 114

using underscore-separated syntax for
template variables, 25

variables and cross-site scripting (XSS)
attacks, 113

templates/ application subdirectory, 29

templates/ module subdirectory, 30

test (test) environment, 71

functional testing and batch scripting, 72

as not accessible through a web
browser, 72

Test Anything Protocol, 319

test harness, using, 339

test(), sfTestBrowser object, 332

test/ project directory, 28

Test::More Perl library, 319

test-all task, 340

test-driven development (TDD), 10

keeping test cases simple, 318

writing tests before the code, 318

test-functional task, 329, 337, 339

test-unit task, 320, 324, 339

Text helper group, 115

<textarea> tag, 197

TextHelper.php, 115

theme, definition of, 314

through_class parameter, 308

timestamp type, 145

TinyMCE widget, installing and setting
up, 197

todo(), 324

tooltips, 298

TortoiseSVN, 46

translation files, i18n/ directory, 69

trans-unit tag, 274

troubleshooting

changing settings on all php.ini files on a
server, 45

include path to the php command, 45

information resources, 45

PHP 4 command line errors, 44

Zaninotto_786-9 INDEX.fm Page 481 Wednesday, January 3, 2007 2:25 PM

482 ■I N D E X

setting magic_quotes_gpc and
register_globals to off, 45

setting the memory limit in php.ini, 44

setting writable permissions on the log/
and cache/ directories, 45

setting zend.ze1_compatibility_mode to
off in php.ini, 44

symfony installation forum, 45

symfony IRC channel, 45

symfony users mailing-list, 45

symfony wiki, 45

■U
unavailable.php, 419

unavailable_action, 418

unavailable_module, 418

unfreeze task, 361

Unified Modeling Language (UML), 9

unit tests, 10

autoloading feature not active by
default, 325

command-line output, 320

comparing is() to ok(), 323

counting the number of test runs, 323

definition of, 317

diag(), 324

example unit test file, 320

fixtures, definition of, 326

grouping tests by function or method, 338

importance of speed in, 325

include statement, 321, 325

including classes in, 325

initSimpleAutoload(), sfCore class, 325

instantiating the lime_test object, 320

lime_output_color object, 324

methods of the lime_test object, 321

naming guidelines for, 338

as PHP files ending in Test.php, 319

sfYAML::load(), 326

skip(), 324

starting each test group with a diag()
call, 338

stubs, definition of, 326

testing the methods of the lime_test
object, 322–323

todo(), 324

using fixture files in, 327

using stubs in, 326

using the test-unit task to launch a test set,
320, 324

validating test files, 324

update_element_function() helper, 223, 232

updateJSON(), 237

uploads/ web subdirectory, 30

UpperCamelCase, using for class and
variable naming, 25

URIs

building with dynamic parameters, 178

formatting an internal URI into an
external URL, 175

getCurrentInternalUri(), 189

never having the front controller name
in, 176

syntax for, 174

Url group (helper), 115

url key, 183

URL rewriting, 42

configuring a web server to call a
script, 176

default rewriting rules for Apache, 176

handing a request to index.php, 177

having four front controller scripts in the
web/ directory, 177

having only one application with one
environment for a project, 177

url_for() helper, 226

avoiding mixing PHP with HTML, 175

formatting an internal URI into an
external URL, 175

URLs

allowing bookmarking on dynamic
pages, 173

carrying server instructions, 171

confusing nature of, 172

considering as part of the interface, 172

containing user information about the
resource returned, 173

Zaninotto_786-9 INDEX.fm Page 482 Wednesday, January 3, 2007 2:25 PM

483■I N D E X

Find it faster at http://superindex.apress.com

conveying information about application
and database architecture, 171

creating potential security breaches, 172

developing first, then formatting
afterwards, 173

dynamic assets and, 174

file path and, 171

formatting a URL to bring information to
users, 172

front controller paradigm and, 172

functions of, 171

genUrl(), sfController object, 189

keeping script names and parameters
hidden, 173

maintenance problems in modifying links
to changed URLs, 172

making URLs easier to type and
remember, 173

making URLs persistent, 173

multiple appearances of, 172

necessity for meaning something on their
own, 173

no script names in generated URLs, 176

problems in matching the URL and file
structure, 172

providing benefits as a command-line
tool, 173

providing better indexing of application
pages, 173

as related to the resource requested, 172

safely redirecting unrecognized URLs, 173

search engine results and, 173

using raw URLs to hack an
application, 172

using to access application resources, 172

use_helper(), 115, 422

use_javascript() helper, 181

use_stylesheet() helper, 181

user interface, adapting for i18n
applications, 272

user session

$sf_flash object, 98

$sf_user variable, 97

accessing a flash attribute from a
template, 98

accessing the session object for the
current user, 96

automatic expiration of, after sf_timeout
seconds, 99

changing the server session storage in
factories.yml, 99

changing the use_trans_sid setting in
php.ini, 99

checking whether an attribute has been
defined, 97

editing the factories.yml configuration
file, 98

flash attribute, defining, 98

getAttribute(), 97

getAttributeHolder(), 97

getUser(), 96

handling by cookies, 98

hasAttribute(), 97

passing information from one action to
the next, 98

removing data from a user session, 97

renaming the symfony session cookie, 98

session object, serializing of, 97

sfRequest, 98

sfUser, 96

storing information for the duration of the
current request, 98

storing user attributes in a parameter
holder, 96

symfony's session-handling features, 98

UTF-8, 277

■V
validate(), 105

validate/ module subdirectory, 30

validation

error-handling methods, 104

handleError(), 104

implementing form validation, 105

respecting the naming conventions of the
action methods, 105

sample validation methods, 105

Zaninotto_786-9 INDEX.fm Page 483 Wednesday, January 3, 2007 2:25 PM

484 ■I N D E X

sfActions, 105

symfony's built-in request validation
system, 104

validate(), 105

validation files

directory location of, 205

example of, 205

use of YAML, 205

Validation helper group, 208

validation_error_class, 421

validation_error_id_prefix, 421

validation_error_prefix, 422

validation_error_suffix, 422

validators

allowing a different validation for different
methods, 214

creating a custom validator, 215

defining the format of e-mail addresses
with RFC822, 211

definition of, 203

execute(), 203–204, 215

executeSend(), 204, 207

executing a validator on an empty
field, 217

handleErrorSend(), 204, 207

initialize(), 204, 210, 216

min_error and max_error initialization
parameters, 205

named validators, using, 213

repeating a validator class and its
settings, 213

sfCallbackValidator, 213

sfCompareValidator, 211

sfEmailValidator, 211

sfFileValidator, 212

sfNumberValidator, 211

sfPropelUniqueValidator, 212

sfRegexValidator, 211

sfStringValidator, 204, 210

sfUrlValidator, 211

sfValidator, 215

standard symfony validators, list of, 210

validateSend(), 204

version control, 45

view

addHttpMeta(), 130

adding a style sheet or JavaScript file
to, 132

adding additional layouts to the global
templates/ directory, 134

addMeta(), 130

application view.yml, 132

applying the configuration cascade
principle, 128, 132

changing the default style sheet tag
options, 133

default application settings in the
application view.yml, 128

default application-level view
configuration, 128

default module settings in the module
view.yml, 128

definition of, 13

each module having one view.yml file, 127

file inclusions, 127, 132

function of, 113

getResponse(), 129

helpers, 113

HTML presentation of the action
result, 126

include_http_metas() helper, 131

include_metas() helper, 131

include_title() helper, 131

keeping only a minimum amount of PHP
code within, 17

layout, 127

layout definition in view.yml, 134

meta declarations, 126

meta tag configuration, defining in
view.yml, 130

module-level view.yml files, creating, 128

output escaping, 113

packaging template fragments into
partials or components, 113

page title, 126

parts of, 113

placing HTML code in a view script, 16

Zaninotto_786-9 INDEX.fm Page 484 Wednesday, January 3, 2007 2:25 PM

485■I N D E X

Find it faster at http://superindex.apress.com

placing presentation code within, 18

precedence of the sfResponse object over
view.yml, 127

response object, 113, 129

sample module-level view.yml, 127

search engine indexing of the page title, 131

separating into a layout and a template, 20

setStatusCode(), 129

setting dynamic values via the sfResponse
object, 127

setting has_layout to false for views
without layouts, 134

sfCommonFilter, 132

sfResponse and object methods, 129

syntax for removing style sheets or
JavaScript files, 133

templates and layouts, 113

title configuration, 131

title definition in view.yml, 131

two distinct parts of, 126

unique and multiple configuration
settings, 130

using slots and component slots to affect
layout zones, 113

view configuration settings, 113, 127, 130

view names as the main keys in
view.yml, 127

view.yml configuration file, 127

view, optimizing

deactivating response compression, 408

editing the standard_helpers setting in
settings.yml, 408

include_component() as slower than
include_partial(), 406

restricting the default helpers, 407

skipping the template in favor of
headers, 407

speeding up the routing process, 406

using the fastest code fragment, 406

using the rule name instead of the
module/action couple, 406

view.yml, 69–70, 127, 132

visual_effect() helper, 235

■W
web application development

framework, benefits of, 3

refactoring, 10

symfony, advantages of using, 3

web applications

common characteristics of, 61

multilingual, 265

not using short opening tags for, 56

web debug mode, 187

web debug toolbar, 227, 352–354, 399, 404

monitoring cached elements, 259

web directory

containing publicly accessible files, 30

css/ subdirectory, 30

images/ subdirectory, 30

js/ subdirectory, 30

tree structure, 30

uploads/ subdirectory, 30

web server

changing the default directory structure
settings, 43

configuring, 41–42

.htaccess file, 42–43

mod_rewrite enabled, 72

routing, 42

setting up a virtual host, 41

using URL rewriting to display “smart
URLs”, 42

web/ project directory, 28, 68

web_debug, 422

web_debug key in settings.yml, 353

web_debug_web_dir, 422

weblog application

blog_article and a blog_comment
table, 283

schema.yml, 283

websites, indexing of, 173

widgets

FCKEditor, 197

TinyMCE, 197

wiki (symfony), 44–45, 111

Zaninotto_786-9 INDEX.fm Page 485 Wednesday, January 3, 2007 2:25 PM

486 ■I N D E X

■X
XCache, 398

Xdebug PHP extension, activating, 351

XHTML, 54, 57, 117

enclosing JavaScript blocks within CDATA
declarations, 222

XML, 61–62

compared to YAML, 11

generated XML schemas, difficulties in
reading, 167

Propel native XML schema format, 143

Propel XML syntax, 166

schema.xml, code example, 165

XML Localization Interchange File Format
(XLIFF), 273, 299

XMLHttpRequest object, 227, 229, 232

■Y
YAML

adding comments to, 64

array and associative array syntax, 63

arrays and hashes in, 11

Boolean value syntax, 64

caching and configuration files, 245

category headers, 64

common coding mistakes, 65

compared to XML, 11

configuration cache, 75

configuration files, 29, 73

data validation files, 70

defining long strings and multiple-line
strings, 63

definition of, 10

entering a double blank for indentation, 62

grouping parameter definitions into
categories, 64

handling environments in a YAML
configuration file, 433

hash, 63

importing data from a YAML file to a
database, 359

as an interface to define settings in
PHP, 65

key and value pairs, 63–65

null, 107

parsing into PHP hashes and arrays, 65

placing PHP code in YAML files, 61, 79

project configuration files and, 67

repeating the default configuration in
commented lines, 64

sequence items and key/value pairs, 11

shorthand syntax of, 11

showing structure through indentation,
11, 62

special string headers, 63

starting category headers with a dot, 64

string parameters and starting or ending
spaces, 62

symfony configuration files, 61

symfony conventions, 62

as symfony's default configuration
language, 62

syntax, 62

tilde character in, 107

turning a YAML file into a PHP associative
array, 79

unconverted number as still a string, 66

using constants in YAML configuration
files, 78

using curly brackets for associative arrays, 63

using expanded syntax with dashes for
arrays, 63

using reserved characters without string
delimiters, 65

using sfYaml class to read a YAML file
directly, 79

using single quotes in, 62

using spaces instead of tabs, 62

using square brackets for arrays, 63

using the hash mark for comments, 64

using to create form validation files, 205

view configuration file, 113

website, 10

■Z
Zaninotto, François, 5

Zend Framework, 377

zend.ze1_compatibility_mode setting, 44

Zaninotto_786-9 INDEX.fm Page 486 Wednesday, January 3, 2007 2:25 PM

Zaninotto_786-9 INDEX.fm Page 487 Wednesday, January 3, 2007 2:25 PM

Zaninotto_786-9 INDEX.fm Page 488 Wednesday, January 3, 2007 2:25 PM

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

Leading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

Zaninotto_786-9 INDEX.fm Page 490 Wednesday, January 3, 2007 2:25 PM

	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Appendix Af
	Index

