
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Using Drupal

Angela Byron, Addison Berry, Nathan Haug, Jeff Eaton,
James Walker, and Jeff Robbins

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Using Drupal
by Angela Byron, Addison Berry, Nathan Haug, Jeff Eaton, James Walker, and Jeff Robbins

Copyright © 2009 Angela Byron, Heather Berry, Nathan Haug, Jeff Eaton, James Walker, and Jeff Rob-
bins. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editor: Loranah Dimant
Copyeditor: Nancy Kotary
Proofreader: Sada Preisch

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
December 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Using Drupal, the image of a dormouse, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51580-5

[M] [3/09]

1235668217

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

Table of Contents

Foreword . xi

Preface . xiii

1. Drupal Overview . 1
What Is Drupal? 1

Who Uses It? 2
What Features Does Drupal Offer? 3

A Brief History of Content Management 4
A Historical Look at Website Creation 4
The Age of Scripts and Databases 6
The Content Revolution 7

How Does Drupal Work? 8
Modules 10
Users 10
Content (Nodes) 11
Ways of Organizing Content 13
Types of Supporting Content 14

Getting Help 15
Conclusion 16

2. Drupal Jumpstart . 17
Case Study 18

Implementation Notes 19
Spotlight: Content Management 20

Content 20
Comments 24
Navigation 25
Blocks 27

Hands-On: Content Management 28
Creating Content 29
Managing Site Navigation 32

iii

www.allitebooks.com

http://www.allitebooks.org

Configuring Blocks 34
Spotlight: Modules 36

Module Administration Page 37
Finding and Installing Modules 38
Removing Modules 40

Hands-On: Working with Modules 40
Path Module 41
Administration Menu Module 42

Spotlight: Access Control 45
Configuring User Access 46
User Profiles 48
User Settings 49
Handling Abusive Users 50

Hands-On: Creating Roles 50
Hands-On: Configuring Permissions 52
Hands-On: Contact Form 56
Spotlight: Taxonomy 59
Hands-On: Blog 61
Spotlight: Content Moderation Tools 67

Automated Spam Detection Tools 67
Manual Content Moderation Tools 69

Spotlight: Themes 69
Finding a Theme 69
Theme Installation 70
Theme Configuration 70
Blocks and Regions 73
Administration Theme Setting 74

Hands-On: Branding the Site 74
Spotlight: Content Editing and Image Handling 76

Content Editing 76
Image Handling 77

Spotlight: Input Formats and Filters 79
Hands-On: Setting Up FCKeditor 82
Summary 89

3. Job Posting Board . 91
Case Study 92

Implementation Notes 92
Spotlight: CCK 94

Fields 95
Widgets 96
Formatters 97

Hands-On: CCK 98

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Hands-On: Job Content Type 100
Hands-On: Customizing Field Display 105
Hands-On: Job Application Type 108
Spotlight: Views Module 112

Displays 114
Pieces of a View 118

Hands-On: The Views Module 120
Jobs View 121
Job Applications View 134

Taking It Further 147
Summary 147

4. Product Reviews . 149
Case Study 150

Implementation Notes 151
First Steps: Basic Product Reviews 153

Creating the Product Review Content Type 153
Spotlight: Amazon Module 156

What’s Included? 156
Locale 157
Referral Settings 158

Hands-On: Adding an Amazon Field 158
Adding the Product Field 158
Finding Product IDs 160

Spotlight: Voting API and Fivestar 161
Hands-On: Adding Ratings 162

Adding the Rating Field 163
Turning on Visitor Ratings 164

Hands-On: Building a Product List 166
Spotlight: The Search Module 170

The Importance of Cron 170
Searching with Views 172

Hands-On: Make the Product List Searchable 172
Spotlight: CSS Injector 175
Hands-On: Polishing the Presentation 175

Setting CCK Display Fields Options 176
Configuring CSS Injector 177

Taking It Further 177
Summary 179

5. Wiki . 181
Case Study 182
Implementation Notes 183

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Wiki Functionality 183
Easy Text Formatting 183
Easy Linking 184
Tracking Changes 184
Human-Readable URLs 185
Listing Changes 185

Hands-On: First Steps 185
Creating a Wiki Content Type 185
Removing the Author Information Display 187
Configuring Access Permissions 187

Hands-On: Wiki Input Format 187
Configuring the Filters 188
Creating the Wiki Input Format 189
Setting Up Format Permissions 191
Adding Content 191

Spotlight: Pathauto 194
Hands-On: Pathauto 196

Configuring Settings 197
Spotlight: Drupal’s Revision Tracking 199
Hands-On: Revisions and Diff 200

Make Revisions the Default 200
Setting Permissions 200
Viewing Revisions and Reverting 200
Using Diff 201

Hands-On: New Pages and Recent Edits with Views 202
Recent Posts Listing 203
Recent Edits Listing 205

Taking It Further 207
Summary 208

6. Managing Publishing Workflow . 211
Case Study 212

Implementation Notes 213
Hands-On: First Steps 214
Spotlight: Actions and Triggers 215
Hands-On: Actions and Triggers 217

Configure Actions 217
Assign Triggers 219

Spotlight: Workflow Module 220
Hands-On: Creating a Workflow 222
Spotlight: The Workspace Module 226
Hands-On: Create Workspaces 227
Spotlight: Views Bulk Operations 228

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Hands-On: Building an Administration Page 229
Create Workflow Actions 230
Configure the View 230

Taking It Further 232
Summary 233

7. Photo Gallery . 235
Case Study 236
Implementation Notes 236

Photo Uploads 237
Thumbnail Generation 237
Photo Galleries 237

Spotlight: ImageField 237
Configuration 238

Hands-On: Uploading Photos 240
Photo Content Type 240
Image Galleries 243

Spotlight: ImageCache 246
Presets and Actions 246
Using a Preset 251
Troubleshooting ImageCache 253

Hands-On: ImageCache 255
Create ImageCache Presets 255
Configure Photo Field Display 257
Improve Image Quality 258

Hands-On: Gallery View 259
Hands-On: Latest Photos Block 264
Hands-On: Custom Pagers 266
Taking It Further 269
Summary 270

8. Multilingual Sites . 271
Case Study 272
Implementation Notes 273

Forum Discussions 273
Knowledge Base 273
Translating User Interface Text 273
Translating User-Generated Content 274

Spotlight: Core Internationalization Features 274
Locale 275
Content Translation 279

Hands-On: Installing a Translation 280
Hands-On: Configuring Locale Features 284

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Language Negotiation Settings 284
Language Switcher 285

Hands-On: Translatable Content 286
Spotlight: Localization Client 287
Hands-On: Translating the Interface 288

Using the Locale Module 288
Using the Localization Client 291

Hands-On: Translating Content 293
Translation 293

Spotlight: Internationalization 296
Content Selection 297
Strings 298
Site-Wide Language-Dependent Variables 298
Module Helpers 299
Synchronization 300

Hands-On: Internationalization Features 300
Content Selection 300
Site-Wide Variables 301
Content Types 304
Taxonomy 307

Taking It Further 309
Summary 310

9. Event Management . 313
Case Study 314
Implementation Notes 314

Event Management 314
Attendance Tracking 315

Hands-On: First Steps 316
Creating an Event Content Type 316
Access Control 317

Spotlight: Date Module 318
Date API Module 318
Date Timezone 318
Date Field Types 319
Date Widgets 319
Date Settings 320

Hands-On: Adding Dates 325
Set Up the Date Module 325
Add the Date Field 325

Hands-On: Upcoming Events View 327
Spotlight: Calendar Module 330

Calendar View Type 331

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Hands-On: Calendar View 331
Spotlight: Flag Module 334
Hands-On: Flag Configuration 335
Hands-On: Attendee View 336
Taking It Further 338
Summary 339

10. Online Store . 341
Case Study 342

Implementation Notes 342
Spotlight: Ubercart Packages 343

Ubercart—core 344
Ubercart—core (optional) 346
Ubercart—extra 350

Spotlight: Ubercart’s Administration Panel 350
Hands-On: Setting Up the Store 353

Initial Setup Tasks 353
Spotlight: Products, Product Classes, and Attributes 354
Hands-On: Creating Products 357

Initial Setup Tasks 357
Configuring Product Classes 358
Configuring Product Attributes 359
Configuring Product Settings 362
Configuring the Catalog 362

Spotlight: The Ordering Process 366
Hands-On: Processing Orders 368

Shopping Cart 369
Taxes 370
Shipping 370
Payment 371
Placing a Test Order 372
Fulfilling an Order 375
Access Control 377

Taking It Further 378
Summary 379

11. Theming Your Site . 381
Spotlight: The Theme System 382

.info Files 384
Regions 385
Features 386
CSS 387
JavaScript 387

Table of Contents | ix

Template Files 388
The template.php File 390

Hands-On: Creating a Custom Theme 393
Make a Copy of the Theme 394
Changing CSS 396

Spotlight: Template Files 397
Hands-On: Working with Template Files 398

Modifying a Template File 398
Theming Specific Content Types 403
Overriding a Module’s Template File 404
Creating a New Region 407

Spotlight: Advanced Overrides 408
Template Variables 408
Theme Functions 409

Hands-On: Using template.php for Overrides 411
Overriding a Template Variable 411
Overriding a Theme Function 412

Taking It Further 414
Summary 415
References 416

A. Installing and Upgrading Drupal . 417

B. Choosing the Right Modules . 437

C. Modules and Themes Used in This Book . 453

Index . 457

x | Table of Contents

Foreword

Drupal’s modular architecture and open source nature make it a popular PHP appli-
cation framework and content management system for hundreds of thousands of web
developers around the world. More than 900 people contributed code and ideas to the
Drupal 6 release and even more are responsible for developing and maintaining more
than 2,000 contributed modules that can be used to extend Drupal’s functionality.

The size, passion, and velocity of the Drupal community, combined with Drupal’s
strength as a platform, allow incredible things to happen. Every day new modules are
contributed and existing modules are improved upon. Whether these modules are cre-
ated to catch up with the latest trends on the Web or to invent completely new para-
digms, the Drupal project continues to expand in many different directions.

The beauty of all these modules is that they empower website builders to assemble rich
and powerful websites quickly and easily without having to be a programmer. Millions
of people are using Drupal to build personal blogs, corporate websites, intranets, online
photo galleries, wikis, job posting boards, conference websites, and more.

Unfortunately, the challenge for many of these site administrators, and even seasoned
Drupal developers, is to try and make sense of all these modules and the ever-expanding
Drupal universe. What modules should you use to build a newspaper website? What
modules should you use to build an intranet? What modules are best avoided because
they are being deprecated by better ones? What modules can be used on really big
websites that serve millions of pages a day? Navigating your way through the Drupal
world can be daunting.

This book cuts out a lot of the research time and helps you dive headfirst into Drupal.
It does an excellent job explaining how to rapidly assemble a wide variety of websites
using some of Drupal’s most commonly used modules. Whether you’re new to building
websites or an experienced programmer, this book is full of useful information. I prom-
ise that by the end of this book, you’ll be much more prepared to build the Drupal site
of your dreams.

—Dries Buytaert
Drupal founder and project lead

July 2008

xi

Preface

Audience
Who is this book written for?

• If your lead developer can’t seem to shut up about this weird “Drupal” thing, and
you want to figure out what on earth she’s talking about, this book is for you.

• If your boss has approached you and said, “We need to build a site that has X, and
fast!” and “X” is a photo gallery, or a product review website, or an e-commerce
site, or any of the other projects covered in this book, this book is for you.

• If you know your way around Drupal, but have found yourself paralyzed by the
sheer volume of contributed modules, and need help figuring out which ones are
worth looking at, this book is for you.

• If you consider yourself well versed in Drupal already, but want to broaden your
horizons by learning about some of its more esoteric modules, and learn best prac-
tices for building powerful Drupal websites, this book is for you.

If you’re completely new to creating websites and installing web-based scripts, this
book probably isn’t for you, yet. We assume that goofy acronyms like PHP, FTP, URL,
ZIP, and HTML are in your working vocabulary. Likewise, if you’re interested in hard-
core, nitty-gritty details about Drupal’s API functions, this book isn’t for you: our focus
here is on combining existing modules to build out functionality, rather than creating
new ones.

If you’re one of the rest of us, who fall somewhere between total newbie and computer
science professor, we hope that this book provides you with an invaluable reference to
building practical websites with Drupal.

Assumptions This Book Makes
You’ll need access to a computer or server running PHP, along with a web server
(Apache preferred) and database (MySQL recommended). For local development,
there are several all-in-one Apache/MySQL/PHP packages available such as WAMP for
Windows (http://www.wampserver.com) or MAMP for Macs (http://www.mamp.info).

xiii

http://www.wampserver.com
http://www.mamp.info

Visit http://drupal.org/hosting for a list of Drupal-friendly web hosting companies, and
visit http://drupal.org/requirements to read more about Drupal’s system requirements.

You will also need to install Drupal, and the hands-on chapters assume that you’re
using the book’s source code. Appendix A provides some basic instructions, but if you
run into trouble or want to read more detailed instructions, see the Drupal 6 installation
guide at http://drupal.org/getting-started/6/install. If you are not using the source code
provided with the book, Appendix C contains a list of all of the modules and themes
that are used for each chapter so you can re-create them.

A Note About the Modules Used in This Book
Drupal is constantly moving and its community-contributed module world is con-
stantly shifting. The source code for the book provides the versions that the chapters
were written with, and as time moves on, the versions available on Drupal.org (http://
drupal.org) will most likely change. Sometimes changes don’t dramatically affect how
things work, but other times they do. For many chapters, the hands-on sections will
apply for a very long time or change so little that they will still be quite easy to follow.
Even if the user interface for a module changes, after using this book and walking
through various configurations, you should be equipped to explore modules on your
own. In addition to the specific hands-on “recipes,” you will also learn tips and best
practices for how to “cook” generally, that is, how to learn about modules on your own.

Also keep in mind that the Spotlight sections, which discuss module features and com-
paring modules, along with Appendix B, which discusses how to evaluate modules,
provide a good foundation for you to make these evaluations on your own. You can
do your own comparisons as newer modules come out and make the best decisions for
your use. This book is intended to not only be a guide but also a springboard for your
own mastery of the Drupal contributed project world.

Contents of This Book
Beyond the initial chapters that set the stage, this book is organized as a series of recipes,
each of which consists of the following structure:

Introduction
The introduction gives an overview of what modules are covered, as well as the
overall goal of the chapter.

Case study
The case study describes the needs of a fictitious client who requires a website that
can be a wiki, or have product reviews, or an image gallery. We describe some
background information about the client, and go into more detail about their spe-
cific requirements.

xiv | Preface

http://drupal.org/hosting
http://drupal.org/requirements
http://drupal.org/getting-started/6/install
http://drupal.org
http://drupal.org
http://drupal.org

Implementation notes
Here we discuss various solutions within Drupal to solve the client’s requirements,
and go into detail about which modules we’ve selected and why. This section
compares and contrasts modules and when it’s appropriate to use module A or
why module B is a dead end.

Spotlight
Each chapter introduces one or more major modules or Drupal concepts, and the
Spotlight sections provide a “bird’s-eye view” of what each specializes in and how
it works. Think of this section as a miniature “product sheet” that highlights fea-
tures of a given module and what it can do.

Hands-on
After describing what a module can do in the general case, the hands-on sections
will show you how to configure them by providing step-by-step “recipes” to build
out the precise functionality the client requires.

Taking it further
There are a lot of helpful add-on modules that can be introduced to a particular
use case to make it even more powerful. This section provides references to addi-
tional modules that enhance the functionality built out in the hands-on sections.

Summary
This section wraps up what we’ve learned over the course of the chapter, and
provides links to the modules used, and other resources that provide more
information.

Here is a list of the chapters this book covers. The first three chapters are considered
“required reading” if you haven’t used Drupal before. The rest of the chapters will
assume knowledge of the basics of Drupal, and the Views and CCK modules. If you’ve
used Drupal 5 but haven’t yet used Drupal 6, you may also want to skim these chapters
(particularly Chapter 3, as Views has changed significantly in Drupal 6).

Chapter 1, Drupal Overview
This chapter answers the main “need to know” questions about Drupal: what’s
Drupal, who’s using it, why are they using it, and how does it work? It also provides
some historical context to Drupal, introduces essential terminology, and every-
thing else you need to get up to speed.

Chapter 2, Drupal Jumpstart
The first hands-on chapter hits the ground running, and will show you how to use
Drupal’s core functionality, as well as a few contributed modules, in order to build
a basic business website. By the end of this chapter, you should feel comfortable
in Drupal’s administrative section, and also know how to create basic content
through a WYSIWYG interface with the FCKeditor and IMCE modules. We’ll also
discuss Drupal modules that can help handle inevitable abuse, including Mollom.

Preface | xv

Chapter 3, Job Posting Board
This chapter introduces the Content Construction Kit (CCK) and Views modules
by walking through the construction of a job-posting website. By the end of this
chapter, you’ll understand how to create custom content types and add form fields,
as well as how to click together lists of any type of website content, which are the
basis of all the other chapters in the book.

Chapter 4, Product Reviews
In this chapter, you will build a community product review website, with the
Amazon module providing the product data, and the Voting API and Fivestar
modules providing a rating widget.

Chapter 5, Wiki
This chapter covers several tools that can be used to create a wiki in Drupal, among
other uses. The node revisions system (coupled with the useful Diff module), the
Markdown filter for easy HTML entry, the Freelinking module to automatically
create and link wiki pages, and the Pathauto module for automatically creating
search engine-friendly URLs are all discussed in detail.

Chapter 6, Managing Publishing Workflow
This chapter talks all about implementing custom publishing workflows with
Drupal’s Actions system combined with the Workflow module, and the Views Bulk
Operations and Workspace modules for creating custom administration screens.

Chapter 7, Photo Gallery
This chapter helps you build a family photo gallery using the ImageField module,
along with ImageCache to automatically generate sized thumbnails.

Chapter 8, Multilingual Sites
This chapter describes how to build a multilingual site using the Locale, Content
Translation, and Internationalization suite of modules.

Chapter 9, Event Management
This chapter’s all about how to do event management in Drupal, featuring the Date
and Calendar modules for storing and displaying event information, and the Flag
module for keeping track of who’s coming.

Chapter 10, Online Store
Use the powerful Ubercart suite of modules to build a T-shirt store that includes
such features as a product catalog, shopping cart, and payment processing.

Chapter 11, Theming Your Site
This chapter provides some overview information about Drupal’s theming system,
and some basic tricks you can use to override the look and feel of Drupal. By reading
this chapter, you can start modifying template files and start to give Drupal your
own look and feel!

Appendix A, Installing and Upgrading Drupal
If you’re new to Drupal, this appendix will get you up to speed on how to install
it, as well as how to do upgrades down the road.

xvi | Preface

Appendix B, Choosing the Right Modules
Evaluating modules is often the biggest hurdle to building a Drupal site. This ap-
pendix is a breakdown of strategies and tips for figuring out which module will
work for your site.

Appendix C, Modules and Themes Used in This Book
This appendix lists the modules and themes used in each chapter to re-create the
hands-on sections.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates filenames, directories, new terms, URLs, and emphasized text.

Constant width
Indicates parts of code, contents of files, commands, and output from commands.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Any navigation around Drupal pages is displayed as follows:

Administer→Site building→Modules (admin/build/modules).

This is an instruction to click the Administer link in the navigation block, then Site
building, then Modules. As a shortcut, you can also enter the path indicated in paren-
theses into your browser: http://www.example.com/admin/build/modules.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation.

All Drupal code, including the Drupal 6 code that you can access through the O’Reilly
website (as described shortly) is subject to the GNU General Public License, version 2.
Your use of Drupal code, including copying, modification, and distribution, is subject
to the license. Also, “Drupal” is a registered trademark of the founder of the Drupal
project, Dries Buytaert. Information about permitted uses of the code and the

Preface | xvii

http://www.example.com/admin/build/modules

trademark can be found at the Drupal website (http://drupal.org), where you can also
find information about how the GNU General Public License affects your use of the
code. More information about the license is available at http://www.gnu.org/licenses/
old-licenses/gpl-2.0.html#SEC3.

With respect to other code examples in this book, you do not need to contact us for
permission unless you’re reproducing a significant portion of the non-Drupal code. For
example, writing a program that uses several chunks does not require permission. Sell-
ing or distributing a CD-ROM of examples from O’Reilly books does require permis-
sion. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Using Drupal by Angela Byron, Heather
Berry, Nathan Haug, Jeff Eaton, James Walker, and Jeff Robbins. Copyright 2009
Angela Byron, Heather Berry, Nathan Haug, Jeff Eaton, James Walker, and Jeff Rob-
bins, 978-0-596-51580-5.”

If you think that your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Downloading Drupal 6
This book’s website contains a link to a downloadable copy of of Drupal 6, along with
all of the modules covered in the book, and the themes used in the example websites
for each hands-on chapter at http://usingdrupal.com/source_code. Each hands-on chap-
ter also has an “installation profile” (a set of starter scripts that configure default op-
tions) that bootstraps a starter site for each hands-on chapter. These installation profiles
may be selected at the beginning of the Drupal installation process; for example,
“Chapter 4: Job Posting.”

Switching between one chapter’s hands-on examples and another’s requires making a
new site while using the same source code. You can do so with minimal fuss using the
following steps:

1. Either create a new database for the chapter’s installation of Drupal, or delete and
re-create the existing database.

2. Copy sites/default/default.settings.php to sites/default/settings.php, overwriting the
existing settings.php file.

3. Change the permissions on sites/default/settings.php so that the file is writable.

4. Rerun the installation at http://www.example.com/install.php.

More information on how to install Drupal is available in Appendix A.

xviii | Preface

www.allitebooks.com

http://drupal.org
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html#SEC3
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html#SEC3
http://usingdrupal.com/source_code
http://www.example.com/install.php
http://www.allitebooks.org

In addition to configuring some basic settings such as the site name, the theme, and so
on, for each chapter, the installation profiles (with the exception of Chapter 2) also set
up the following users:

username: admin, password: oreilly
The first user, who is in the “site administrator” role; can do everything on the site

username: editor, password: oreilly
A user in the “editor” role; used for chapters that require users with elevated
permissions

username: user, password: oreilly
A normal user in only the “authenticated user” role

It is these users the chapters refer to when the instructions reference logging in as the
“editor” user, or similar. Unless otherwise specified, it is assumed that steps are com-
pleted as the “admin” user.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596515805

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Preface | xix

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596515805

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website:

http://www.oreilly.com

Acknowledgments
Team Lullabot would like to thank the book's technical reviewers, including Robert
Douglass, Ajay Gallewale, Jeffrey MacGuire, David Moore, and Matt Westgate. Thanks
to Tatiana Apandi and Julie Steele from O’Reilly, who helped guide us through our
first collective book authoring adventure. We’d also like to thank our business folks,
Liza Kindred, Haley Scarpino, and Tim McDorman, for helping juggle schedules so
that we could get this book completed. Jeff Eaton gets thanks for supplying photos for
the image gallery chapter. Also, thanks to Lullabot’s Kent Bye for working his visuali-
zation mojo on the Views module, and John VanDyk for his extremely helpful feedback
on some of the biggest chapters in the book. And a special thanks goes out to Ivan
Zugec, who graciously transferred ownership of the http://usingdrupal.com domain to
us. And of course thanks to Dries Buytaert for inventing and open-sourcing Drupal;
without him, none of this would have happened.

Angela Byron would first like to give a huge shout-out to her wife, Marci McKay, who
was tremendously patient and understanding with all the late nights, and is in general
extremely tolerant, even supportive, of Angie’s insatiable Drupal obsession. A huge
thanks also to her family—in particular, her mom and dad, Jeanne and Mike, and her
siblings, Keith and Sara, for their support through the authoring process. John Wait
and Debra Williams-Cauley also deserve thanks for their part in helping Angie realize
her dream of authoring a book. Michelle Cox and Matthew Harrison helped provide
early “sanity checks” for the book outline. Moshe Weitzman, Brandon Bergren, and
Dries Buytaert provided technical review of some early versions of chapters, and Dries
in particular offered thoughtful input and support throughout.

Addison Berry would like to thank her partner, Colleen McGraw, who was extremely
patient about the lost weekends and neglected house chores, for pushing Addi onward
when mired, and being an inspiration through all the ups and downs of life. Richard
Burford, Alex Dergachev, Joel Farris, Jay McDonald, Don Palmer, Jose Reyero, and
Brian Vuyk graciously gave feedback on her chapters, and Wim Leers supplied an
emergency Dutch translation. The entire Drupal community has been amazingly sup-
portive in her Drupal journey and of this book. None of this would have happened
were it not for them. Lastly, thanks to my parents, Joan and Merlin Berry, for supporting
all of the crazy things she’s done in her life and never failing to believe in her.

Nathan Haug would like to thank his amazing parents, James and Aleda Haug, as well
as his inspirational grandfather, Tom Arnberg. Thanks go to his technical reviewers,
David Moore and John VanDyk. Extra thanks go to all of the authors of the Drupal
platform and add-on modules. Nate thanks Earl Miles for Views and Jonathan Chaffer,

xx | Preface

http://www.oreilly.com
http://usingdrupal.com

Karen Stevenson, and Yves Chedemois for CCK. The Drupal platform would never be
what it is without the amazing cooperation between so many individuals.

Jeff Eaton would like to thank his wife, Catherine, for her deep well of patience and
encouragement. Romantic dinners should not include module testing and trouble-
shooting, and Catherine’s good humor when technology intruded was instrumental in
seeing this project through. Doug Green, Earl Miles, and countless other members of
the Drupal community gave excellent feedback and pointed out complexities that could
easily trip up new users. Jason Scott and Jeff Benson provided endless late-night and
early-morning commiseration, and Jeff’s parents, Doug and Cindi, spent the better part
of two decades encouraging his geeky adventuring.

James Walker would like to thank his two children, Andrew and Camryn, for their
love, patience, and trips to the park. Karen Stevenson, Ryan Szrama, Earl Miles, and
Nate Haug provided code that made his chapters possible and were extremely helpful
in answering questions and providing insight. Thanks to his mom, Linda, who has
always believed in him and who has always provided excellent housing for Lullabot
retreats.

Jeff Robbins would like to thank his wife, Jennifer Niederst Robbins, for her love,
support, and copyediting prowess, and his son, Arlo, for reminding him to keep things
fun. Thanks to O’Reilly Media, which has felt like an extended family since the early
1990s, when he and Jennifer worked and met there. Jeff would like to thank Matt
Westgate for being the best business partner he could imagine and for providing the
stable, serene, and happy atmosphere in which Lullabot, the company, and Lullabot,
the individuals, have thrived. Jeff also sends thanks and appreciation to Liza Kindred,
for keeping the company running; to the rest of the team, for keeping him constantly
amazed; and to the Drupal community at large, for all of the generous and astounding
code that we call Drupal.

Preface | xxi

CHAPTER 1

Drupal Overview

This book will show you how to build many different types of websites using the Drupal
web publishing platform. Whether you’re promoting your rock band or building your
company’s intranet, some of your needs will be the same. From a foundational per-
spective, your site will have content; be it audio or text or animated GIF images, a
website communicates its content to the world. You will also need to manage this
content. Although it’s possible to roll your own system with enough knowledge of the
underlying web technologies, Drupal makes creating your website; adding new fea-
tures; and day-to-day adding, editing, and deleting of content quick and easy. And
finally, your website will have visitors, and this book will show you many different ways
in which you can engage and interact with your community using Drupal.

This chapter will begin by providing the hard facts about Drupal: what it is, who uses
it, and why they chose it. It will then dive into a conceptual overview, starting with
what this ambiguous term “content management” actually means, and how we arrived
at building websites this way. And finally, we’ll define and explain the core Drupal
concepts that are necessary to understand how Drupal handles its content.

What Is Drupal?
Drupal is an open source content management system (CMS) being used by hundreds
of thousands of organizations and individuals to build engaging, content-rich web-
sites.* Building a website in Drupal is a matter of combining together various “building
blocks,” which are described later in this chapter, in order to customize your website’s
functionality to your precise needs. Once built, a Drupal website can be maintained
with online forms, and without having to change code manually. Drupal is free to use;
it has an enormous library of constantly evolving tools that you can use to make your
website shine.

* For more on the open source software movement, please see http://opensource.org—which, incidentally, is
also a Drupal site.

1

http://opensource.org

Drupal is also a content management framework (CMF). In addition to providing site-
building tools for webmasters, it offers ways for programmers and developers to cus-
tomize Drupal using plug-in modules. Almost every aspect of Drupal’s behavior can
be customized using these modules, and thousands of them exist that add features from
photo galleries to shopping carts to talk-like-a-pirate translators. Most modules have
been contributed to the Drupal community and are available for download and use on
your Drupal-based website, too. All of the functionality that we’ll be discussing in this
book is built using a combination of “core” Drupal and these community-created
modules.

It’s noteworthy to acknowledge Drupal’s community; the wetware element of Drupal
is often cited as one of Drupal’s biggest assets. When Drupal 6 was released in February
2008, more than 700 members of the community contributed code to the core com-
ponent of the software. More than 2,000 developers maintain contributed modules,
with countless more helping with testing, documentation, user support, translations,
and other important areas of the project. Those familiar with evaluating open source
platforms will attest to the importance of a thriving community base.

Who Uses It?
Over the last couple of years, the popularity of Drupal has exploded, to the point where
some pretty big names have taken notice. Media companies such as MTV UK, Lifetime,
and Sony BMG Records are using Drupal as a means of building loyal communities
around their products. Print publishers such as the New York Observer, The Onion,
Popular Science magazine, and Fast Company magazine use Drupal to provide inter-
active online content to their readers. Amnesty International, the United Nations, and
the Electronic Frontier Foundation use Drupal to coordinate activism on important
issues. Ubuntu Linux, Eclipse, Firefox, and jQuery are open source projects that em-
ploy Drupal to nurture their contributor communities. Bloggers such as Tim Berners-
Lee, Heather B. Armstrong (a.k.a. Dooce), the BlogHer community, and Merlin Mann
use Drupal as their publishing platform. Figure 1-1 shows some of these high-profile
Drupal websites.

What these websites have in common is a need for powerful publishing options and
rich community features.

There are several places to obtain more information online about who is using Drupal
out there today. Dries Buytaert, the Drupal project founder, maintains a list of high-
profile Drupal websites on his blog at http://buytaert.net/tag/drupal-sites. The Drupal
website has a section containing detailed case studies and success stories (http://drupal
.org/cases). Additionally, http://www.drupalsites.net is a directory containing thousands
of Drupal websites found across the Internet, from small hobby websites to large social
networks with millions of active users.

2 | Chapter 1: Drupal Overview

http://buytaert.net/tag/drupal-sites
http://drupal.org/cases
http://drupal.org/cases
http://www.drupalsites.net

What Features Does Drupal Offer?
Drupal provides a number of features, which are explained in greater detail in Chap-
ter 2. These include:

Flexible module system
Modules are plug-ins that can modify and add features to a Drupal site. For almost
any functional need, chances are good that either an existing module fits the need
exactly or can be combined with other modules to fit the need, or that whatever
existing code there is can get you a good chunk of the way there.

Customizable theming system
All output in Drupal is fully customizable, so you can bend the look and feel of
your site to your will (or, more precisely, to your designer’s will).

Extensible content creation
You can define new types of content (blog, event, word of the day) on the fly.
Contributed modules can take this one step further and allow administrators to
create custom fields within your newly created content types.

Figure 1-1. Screenshots of several high-profile Drupal websites

What Is Drupal? | 3

Innate search engine optimization
Drupal offers out-of-the-box support for human-readable system URLs, and all of
Drupal’s output is standards-compliant; both of these features make for search-
engine friendly websites.

Role-based access permissions
Custom roles and a plethora of permissions allow for fine-grained control over who
can access what within the system. And existing modules can take this level of
access control even further—down to the individual user level.

Social publishing and collaboration tools
Drupal has built-in support for tools such as group blogging, comments, forums,
and customized user profiles. The addition of almost any other feature you can
imagine—for instance, ratings, user groups, or moderation tools—is only a down-
load away.

A Brief History of Content Management
Before looking any closer at Drupal, let’s take a brief trip back in time to the days before
content management systems. To understand how Drupal and other CMS packages
simplify your work, we’ll take a look at how things worked when the Web was young.

A Historical Look at Website Creation
Back in the dim recesses of time (the 1990s, for those who remember zeppelins and
Model T cars), web pages were nothing more than simple text files nestled comfortably
into folders on a server somewhere on the Internet. With names like index.html,
news.html, about_us.html, and so on, these files were viewable by anyone with a web
browser. Using the HTML markup language, these files could link back and forth to
each other, include images and other media, and generally make themselves presenta-
ble. A website, as the hipsters of that day would explain, was just a collection of those
files in a particular folder, as pictured in Figure 1-2.

This system worked pretty well, and it made sense. Every URL that a user on the Internet
could visit corresponded to a unique .html file on the web server. If you wanted to
organize them into sections, you made a folder and moved the files into that folder; for
example, http://www.example.com/news/ would be the address to the “News” section
of the site, and the 1997 newsletter would be located at http://www.example.com/news/
fall_1997_products.html. When the webmaster (or the intern) needed to fix a problem,
they could look at the page in their web browser and open up the matching file on the
web server to tweak it.

Unfortunately, as websites grew in size, it was obvious that this approach didn’t scale
well. After a year or so of adding pages and shuffling directories around, many sites
had dozens, hundreds, or sometimes even thousands of pages to manage. And that,
friends, caused some serious problems:

4 | Chapter 1: Drupal Overview

http://www.example.com/news/
http://www.example.com/news/fall_1997_products.html
http://www.example.com/news/fall_1997_products.html

Changing the site’s design required an enormous amount of work
Formatting information, layout, and other site design was done individually on
every single page. Cascading Style Sheets (CSS) hadn’t yet taken the web world by
storm, so tasks as simple as changing the site’s default font required (that’s right)
editing every single file.

The site structure resulted in massive duplication of content
Most designs for websites included a standard footer at the bottom of the page
with copyright and contact information, a header image or some kind of recurring
navigation menu, and so on. If anything changed, every file had to be updated. If
you were very, very lucky, all the webmasters before you had been very conscien-
tious about making sure that there were no layout variations and this would be a
scriptable change. Most webmasters weren’t lucky, and to this day mutter darkly
about sites built using FrontPage, PageMill, Dreamweaver, and Notepad—all at
once.

Websites were impossible to keep consistent and up-to-date
Most complex sites were already organized into directories and subdirectories to
keep things reasonably tidy. Adding a news story in the news directory meant that
you also had to update the “overview” page that listed all news stories, perhaps
post a quick notice on the front page of the website, and (horror!) remember to
take the notice down when the news was no longer “fresh.” A large site with mul-
tiple sections and a fair amount of content could keep a full-time webmaster busy
just juggling these updates.

�������	
�

���	

���	�����	
� ���	��	��	
� ������������
������	���	
�

����������
������	���	
�

����

Figure 1-2. A historical look at website structure

A Brief History of Content Management | 5

The Age of Scripts and Databases
The search for solutions to these problems prompted the first real revolution in web
design: the use of scripts and Common Gateway Interface (CGI) programs. The first
step was the use of special tags called Server-Side Includes (SSI) in each HTML file.
These tags let web designers tell the web server to suck in the contents of another file
(say, a standard copyright message or a list of the latest news stories) and include it in
the current web page as if it were part of the HTML file itself. It made updating those
bits much easier, as they were stored in only one place.

The second change was the use of simple databases to store pieces of similar content.
All the news stories on CNN.com (http://www.cnn.com) are similar in structure, even
if their content differs. The same is true of all the product pages on Apple.com (http://
www.apple.com), all the blog entries on Blogger.com (http://www.blogger.com), and so
on. Rather than storing each one as a separate HTML file, webmasters used a program
running on the web server to look up the content of each article from the database and
display it with all the HTML markup for the site’s layout wrapped around it. URLs
such as http://www.example.com/news/1997/big_sale.html were replaced by something
more like http://www.example.com/news.cgi?id=10. Rather than looking in the news
directory, then in the 1997 directory, and returning the big_sale.html file to a user’s
web browser, the web server would run the news.cgi program, let it retrieve article
number 10 from the database, and send back whatever text that program printed out.

All these differences required changes in the way that designers and developers ap-
proached the building of websites. But the benefits were more than worth it: dozens or
even hundreds of files could be replaced with a database of content and a single script,
as shown in Figure 1-3.

�������	
�

���	���	
� �����������	��	���

��	���� ��	����

��������

������	������� ���	����������������

Figure 1-3. The move from individual files to database-driven scripts

6 | Chapter 1: Drupal Overview

www.allitebooks.com

http://www.cnn.com
http://www.cnn.com
http://www.apple.com
http://www.apple.com
http://www.apple.com
http://www.blogger.com
http://www.blogger.com
http://www.example.com/news/1997/big_sale.html
http://www.example.com/news.cgi?id=10
http://www.allitebooks.org

Even with those improvements, however, there were still serious challenges:

Where do I change that setting again?
Large sites with many different kinds of content (product information, employee
bios, press releases, free downloads, and so on) were still juggling an assortment
of scripts, separate databases, and other elements to keep everything running.
Webmasters updating content had to figure out whether they needed to change an
HTML file, an entry in a database, or the program code of the script.

Too many little pieces were cobbled together
Dynamic content—such as discussion forums or guestbooks where visitors could
interact—required their own infrastructure, and often each of these systems was
designed separately. Stitching them together into a unified website was no simple
task.

The Content Revolution
Slowly but surely, programs emerged to manage these different kinds of content and
features using a single, consistent user interface. The older generation of software fo-
cused on a particular task or application, but newer CMS implementations offered
generalized tools for creating, editing, and organizing the information on a website.
Most systems also provided mechanisms for developers to build add-ons and new
features without reinventing the wheel. Figure 1-4 illustrates how a content manage-
ment system uses a single database and script to integrate all of these features.

Drupal is one of these next-generation content management systems. It allows you to
create and organize many kinds of content, provides user management tools for both
the maintainers of and the visitors to your site, and gives you access to thousands of
third-party plug-ins that add new features. Dries Buytaert, the founder of the Drupal

�������	�

�
�
�
�

����� ���������� ����
�������

Figure 1-4. The structure of an integrated, database-driven website

A Brief History of Content Management | 7

project, said in a speech to the 2007 Open Source CMS Summit that his goal for Drupal
was to “eliminate the webmaster.” That might sound a bit scary if you are the web-
master, but after that first thought, the implications are exciting. Using Drupal, the
grunt work of keeping thousands of pages organized and up-to-date vanishes: you can
focus on building the features that your site needs and the experience that your users
want.

How Does Drupal Work?
At a conceptual level, the Drupal stack looks like Figure 1-5. Drupal is a sort of middle
layer between the backend (the stuff that keeps the Internet ticking) and the frontend
(what visitors see in their web browsers).

In the bottom layers, things like your operating system, web server, database, and PHP
are running the show. The operating system handles the “plumbing” that keeps your
website running: low-level tasks such as handling network connections, files, and file
permissions. Your web server enables that computer to be accessible over the Internet,
and serves up the correct stuff when you go to http://www.example.com. A database
stores, well, data: all of the website’s content, user accounts, and configuration settings,
in a central place for later retrieval. And PHP is a programming language that generates
pages dynamically and shuffles information from the database to the web server.

Drupal itself is composed of many layers as well. At its lowest layer, it provides addi-
tional functionality on top of PHP by adding several subsystems, such as user session
handling and authentication, security filtering, and template rendering. This section is
built upon by a layer of customizable add-on functionality called modules, which will
be discussed in the next section. Modules add features to Drupal and generate the
contents of any given page. But before the page is displayed to the user, it’s run through
the theme system, which allows modification and precise tweaking for even the pickiest
designers’ needs. The theme system is covered in detail in Chapter 11.

The theme system outputs page content, usually as XHTML, although other types of
rendering are supported. CSS is used to control the layout, colors, and fonts of a given
page, and JavaScript is thrown in for dynamic elements, such as collapsible fieldsets on
forms and drag-and-drop table rows in Drupal’s administrative interface.

We’ve talked about the “old” way of building websites using static HTML files, the
transition to collections of scripts, and the “new” way: full-featured web applications
that manage the entire website. This third way—Drupal’s way—requires a new set of
conceptual building blocks. Every website you build with Drupal will use them!

8 | Chapter 1: Drupal Overview

http://www.example.com

��� �������	
�

���

�����������

�����������������	�������� �!��	��"���
�����������#$

%��
��

��������������&�����'�����(���)#$

�������*�������

+�+ %���*��������,���+���!���,�$

-�*����������
�������	!����..�#$

����	�!����������	��/��-	���0������#$

Figure 1-5. How Drupal and its conceptual layers fit with other layers of a website

How Does Drupal Work? | 9

Modules
Just about everything in Drupal revolves around the concept of modules, which are files
that contain PHP code and a set of functionalities that Drupal knows how to use. All
of the administrative- and end-user-facing functionality in Drupal, from fundamental
features such as ability to log in or create content to dynamic photo galleries and com-
plex voting systems, all come from modules. Some examples of modules are the Contact
module, which enables a site-wide contact form, and the User module, which handles
user authentication and permission checking. In other CMS applications, modules are
also referred to as plug-ins or extensions.

There are two types of modules: “core” modules, which are included with Drupal itself,
and “contributed” modules, which are provided by the Drupal community and can be
separately downloaded and enabled. Apart from a few required core modules, all mod-
ules can be turned on or off depending on your website’s precise needs.

Though there are contributed modules that offer “drop in and go” functionality, over
the years the Drupal community has generally focused on modules that do one thing
well, in a way that can be combined with other modules. This approach means that
you have almost limitless control over what your website looks like and how it behaves.
Your image gallery isn’t limited by what the original developer thought an image gallery
ought to look and act like. You can drop in ratings or comments and sort the pictures
by camera type rather than date if you’d like. In order to have this flexibility, however,
you have to “build” the functionality in Drupal by snapping together various modules
and twiddling their options, rather than just checking off a checkbox for “image gallery”
and leaving it at that. Drupal’s power brings with it a learning curve not encountered
in many other CMS packages, and with the plethora of available modules, it can be
daunting trying to determine which to use. Appendix B is dedicated to tips and tricks
on how to determine module quality and suitability for your projects.

Users
The next building block of a Drupal website is the concept of users. On a simple
brochure-ware website that will be updated by a single administrator and visited only
by potential customers, you might create just a single user account for the
administrator. On a community discussion site, you would set up Drupal to allow all
of the individuals who use the site to sign up for the site and create their own user
accounts as well.

10 | Chapter 1: Drupal Overview

The first user you create when you build a new Drupal site—User 1—
is special. Similar to the root user on a UNIX server, User 1 has permis-
sion to perform any action on the Drupal site. Because User 1 bypasses
these normal safety checks, it’s easy to accidentally delete content or
otherwise break the site if you use this account for day-to-day editing.
It’s a good idea to reserve this account for special administrative tasks
and configuration, and create an additional account for posting content.

Every additional user can be assigned to configurable roles, like “editor,” “paying cus-
tomer,” or “VIP.” Each role can be given permissions to do different things on the
website: visiting specific URLs, viewing particular kinds of content, posting comments
on existing content, filling out a user profile, even creating more users and controlling
their permissions. By default, Drupal comes with two predefined roles: authenticated
user and anonymous user. Anyone who creates a user account on the site is automati-
cally assigned the “authenticated user” role, and any visitors who haven’t yet created
user accounts (or haven’t yet logged in with their username and password) have the
“anonymous user” role.

Content (Nodes)
Nodes are Drupal’s next building block, and one of the most important. An important
part of planning any Drupal site is looking at your plans and deciding what specific
kinds of content (referred to by Drupal as “content types”) you’ll be working with. In
almost every case, each one will be a different kind of node.

All nodes, regardless of the type of content they store, share a handful of basic
properties:

• An author (the user on your site who created the content)

• A creation date

• A title

• Body content

Do you want to create a page containing your company’s privacy policy? That’s a node.
Do you want users to be able to post blog entries on the site? Each one is a node. Will
users be posting links to interesting stories elsewhere on the Web? Each of those links
is stored as—you guessed it—a node.

In addition to nodes’ basic, common properties, all nodes can take advantage of certain
built-in Drupal features, like flags that indicate whether they’re published or unpub-
lished and settings to control how each type of node is displayed. Permissions to create
and edit each type of node can also be assigned to different user roles; for example,
users with the “blogger” role could create “Blog entry” nodes, but only “administrator”
or “editor” users could create “News” nodes.

How Does Drupal Work? | 11

Nodes can also store revision information detailing each change that’s
been made since they were created. If you make a mistake (deleting an
important paragraph of the “About Us” page, for example), this makes
it easy to restore a previous version.

Drupal comes preconfigured with two types of nodes: “Page” and “Story.” There’s
nothing special about them—they offer the standard features all nodes share and
nothing more. The only differences between those two types of nodes are their default
configuration settings. “Page” nodes don’t display any information about the author
or the date on which they were posted. They’re well suited to content like “About Us”
and “Terms of Service,” where the original author is irrelevant. “Story” nodes do display
that information, and are also set to appear on the front page of the site whenever they’re
posted. The result is a blog-like list of the latest stories on the site.

You can use Drupal’s content administration tools to create other “simple” node types
yourself. Many administrators create a “news” or “announcement” node type to post
official announcements, while other contributors can post story nodes. What happens,
though, if you need to store more information than “title” and “body content?”
Plug-in modules can add to Drupal’s content system new kinds of nodes that offer more
features. One example (which comes with Drupal) is the “Poll” module. When users
create new “Poll” nodes, they create a list of poll questions rather than the usual “body”
content. Poll nodes, when they’re displayed to visitors, appear as voting forms and
automatically tally the number of votes for each question.

Additionally, other modules can add to nodes’ properties such as comments, ratings,
file upload fields, and more. From the control panel, you can specify which types of
nodes receive these features. Figure 1-6 illustrates this concept.

����
�����
��	

�����
������	�	���
�

����
������
�������

�	
����
���
����

�������� ��������

���������������

����
������

������������

Figure 1-6. All nodes in the system share a basic set of properties; nodes may define additional, specific
fields, and modules can add extra features to nodes as well

12 | Chapter 1: Drupal Overview

The idea that new modules add properties and build on top of the node system means
that all content in Drupal is built on the same underlying framework, and therein lies
one of Drupal’s greatest strengths. Features like searching, rating, and comments all
become plug-and-play components for any new type of node you may define, because
under the hood, Drupal knows how to interface with their base elements—nodes.

Using plug-in modules to add new types of nodes—or to add additional fields to ex-
isting node types—is a common task in Drupal. Throughout the book, we’ll be covering
a handful of the hundreds of plug-in modules and you’ll learn how to build complex
content types using these basic tools.

Ways of Organizing Content
Another important building block is really an entire toolbox of techniques for organ-
izing the nodes that make up your site’s content. First-generation websites grouped
pages using folders and directories. Second-generation sites use separate scripts to
manage and display different kinds of content. Drupal, though, maintains almost
everything as a node. How can you break your site up into separate topical sections,
user-specific blogs, or some other organizational scheme?

First, each individual node on your site gets its own URL. By default, this URL is some-
thing like http://www.example.com/node/1. These URLs can be turned into user-
friendly paths like http://www.example.com/about using Drupal’s built-in Path module.
For organizational purposes, all of these nodes are treated as a single “pool” of content.
Every other content page on your site—topical overviews, recent news, and so on—is
created by pulling up lists of nodes that match certain criteria and displaying them in
different ways. Here are a few examples:

The front page
By default, the front page of a Drupal site is a blog-like overview of the 10 most
recently posted stories. To build this, Drupal searches the pool of content for nodes
with the “Published” flag set to true, and the “Promote to front page” flag set to
true. In addition, it sorts the list so that nodes with the “Sticky” flag are always at
the top; this feature is useful for hot news or announcements that every user should
see.

The Taxonomy module
We mentioned earlier that plug-in modules can add new pieces of information to
nodes, and that’s exactly what Taxonomy does. It allows the administrator of a
site to set up categories of topics that nodes can be associated with when they’re
created, as well as blog-style free-tagging keywords. You might use this module to
create a predefined set of “Regions” for news stories to be filed under, as well as
“Tags” for bloggers to enter manually when they post. The Taxonomy module calls
all of these things “terms,” and provides a page for each descriptive term that’s
used on the site. When a visitor views one of these pages, Drupal pulls up a list of
all the nodes that were tagged with the term.

How Does Drupal Work? | 13

http://www.example.com/node/1
http://www.example.com/about

The Blog module
Drupal’s built-in Blog module implements a multiuser blogging system by doing
just three things. First, it adds a new node type called “Blog post.” Second, it pro-
vides a listing page at http://www.example.com/blog that displays any nodes of type
“Blog” that also have their “Published” flag set to true. (If a blog post has its
“Published to front page” flag set to true, it will show up on the front page as well;
Drupal never hides content on one page just because it appears on another.) Third,
it provides a custom page for each user on the site that displays only blog posts
written by that user. http://www.example.com/blog/1, for example, would display
all blog post nodes that are published and were written by User 1—the
administrator.

Drupal comes with several other modules that provide different ways of organizing
nodes, and hundreds of plug-in modules can be downloaded to organize your site in a
variety of ways. The important thing to remember is that almost all “pages” in Drupal
are one of two things: a specific content node, or a list of nodes that share a particular
set of properties.

Types of Supporting Content
In addition to content and listings of content, there are also various ways to supplement
the content on the page. Two such types of supporting content included with Drupal
core are comments and blocks.

Comments are merely responses by a user to a piece of content, and exist only in relation
to that content. Users may post comments to add their thoughts to the subject matter
within a node, as they often do when a particularly controversial subject comes up on
a blog entry or forum topic. Like nodes, but to a lesser extent, comments can be ex-
panded with contributed modules to have additional features such as ratings or file
upload fields.

Comments provide a large number of options to tweak: comments can be displayed in
a threaded or flat list, comments can be sorted with the newest or oldest on top, anon-
ymous users can be allowed to or prevented from leaving comments, and if anonymous
comments are enabled, contact details can be required or optional.

Blocks are widgets that fit into areas such as the sidebars, footers, and headers of a
Drupal site. They’re generally used to display helpful links or dynamic lists such as
“Most popular content” or “Latest comments” and similar items. The users building
block controls information about and access for your site’s visitors; nodes take center
stage displaying content; and blocks help give a single piece of content some context
in the structure of your site.

Many times, blocks will display different content, depending on which user is currently
logged in: a “Comments by your buddies” block, for example, might display a list of
posts by users that the current visitor has added to their Buddies list. Each user who

14 | Chapter 1: Drupal Overview

http://www.example.com/blog
http://www.example.com/blog/1

logs in will obviously see a different list. Additionally, blocks may be configured to
show up only on certain pages, or to be hidden only on certain pages.

Getting Help
It’s easy to focus only on the functionality you get for free with an open source appli-
cation. But it would be a mistake to forget that the Drupal community itself is another
vital building block for your website!

As you go through the hands-on examples in this book, you might run into some issues
particular to your installation. Or, issues might be created as new versions of modules
are released. Fortunately, the Drupal community has a wealth of resources available to
help troubleshoot even the nastiest error you might encounter:

• The Drupal handbooks at http://drupal.org/handbooks contain a wealth of
information on everything from community philosophies to nitty-gritty Drupal
development information.

• The Getting Started guide at http://drupal.org/getting-started contains some par-
ticularly useful information to help get you through your first couple of hours with
Drupal.

• The Troubleshooting FAQ at http://drupal.org/Troubleshooting-FAQ has useful
tips and tricks for deciphering error messages that you might encounter.

• For more one-on-one help, try the Support forums at http://drupal.org/forum/18
for everything from preinstallation questions to upgrade issues.

• If your question is about a specific module, you can post a “support request” issue
(or a “bug report” if it’s a blatant problem) to the module’s issue queue, which
reaches the module’s maintainer. A helpful video on how to maneuver around the
Drupal.org issue queues is available from http://drupal.org/node/273658, and issue
queues are also discussed in Appendix B.

• There’s a #drupal-support IRC channel on irc.freenode.net if you’re more of the
chatty type.

Unlike #drupal-support, the #drupal channel on irc.freenode.net
is not a support channel. This channel is a place for developers to
get coding help and for other contributors to actively brainstorm
and discuss improving the Drupal project as a whole. By all means,
participate here to get involved in the community, and ask your
coding-related questions, but remember that questions like,
“Where is the option I toggle to do this?” and “What module
should I use for that?” will make people a bit cranky.

When asking for help, it’s always best to do as much research as you can first, and then
politely ask direct, to-the-point questions. “Foo module is giving me the error ‘Invalid
input’ when I attempt to submit ‘Steve’ in the name field. I tried searching for existing

Getting Help | 15

http://drupal.org/handbooks
http://drupal.org/getting-started
http://drupal.org/Troubleshooting-FAQ
http://drupal.org/forum/18
http://drupal.org/node/273658

solutions, and found an issue at http://drupal.org/node/1234 filed about it, but the sol-
ution there didn’t fix it for me. Could anyone give me some pointers?” will get far better,
faster, and more meaningful responses than, “Why doesn’t Foo module work? You
developers are useless!” or “How can I build a website with Drupal?” Oftentimes, you’ll
probably find that during the process of typing out your question in enough detail for
someone else to answer it, you come up with the solution yourself!

Conclusion
In this chapter, you’ve learned what Drupal is. You have seen the history of websites
and content management to better understand the challenges inherent in keeping a
growing site healthy. We’ve examined the conceptual building blocks that Drupal uses
when building next-generation sites, as well as how they fit together. We’ve also seen
numerous ways to get help if you’re stuck. In the following chapter, we’ll put these
pieces together to make your first Drupal website!

16 | Chapter 1: Drupal Overview

www.allitebooks.com

http://drupal.org/node/1234
http://www.allitebooks.org

CHAPTER 2

Drupal Jumpstart

This chapter, intended for readers who are new to Drupal, provides a tour of its capa-
bilities, as well as definitions for its sometimes obscure terminology, by demonstrating
how Drupal can be used to build a simple website. Readers who are familiar with Drupal
already may still want to skim this chapter, as later chapters will assume knowledge of
all content covered here. By the end, you’ll understand how to perform administrative
tasks in Drupal, such as configuring modules, working with content types, and setting
up site navigation.

This chapter assumes that you already have Drupal up and running. For assistance,
check out Appendix A, as well as the helpful online Getting Started guide at http://
drupal.org/getting-started.

This chapter introduces the following modules:

Node (core)
Allows you to post content and create your own content types

User (core)
Handles allowing users to log in, as well as Drupal’s robust roles and permissions
systems

Block (core)
Adds dynamic sidebars and other supplementary content

Menu (core)
Handles management of a Drupal website’s navigation

Path (core)
Allows entry of friendly URLs such as http://www.example.com/about rather than
http://www.example.com/node/1.

Administration Menu (http://drupal.org/project/admin_menu)
Provides a dynamic drop-down navigation menu to speed administrative tasks

17

http://drupal.org/getting-started
http://drupal.org/getting-started
http://www.example.com/about
http://drupal.org/project/admin_menu

Contact (core)
A simple form that site visitors may use to send inquiries to website owners

Blog (core)
Provides quick and easy multiuser blog functionality

Taxonomy (core)
A powerful classification and categorization system

Filter (core)
An important and often misunderstood module that is key to Drupal security

FCKeditor (http://drupal.org/project/fckeditor)
A “What You See Is What You Get” (WYSIWYG) editor that allows people without
HTML knowledge to create rich website content

IMCE (http://drupal.org/project/imce)
An add-on module that can work with editors such as FCKEditor to make it easy
to add images to website content

The completed website will look as pictured in Figure 2-1 and at http://jumpstart.using
drupal.com.

Figure 2-1. The completed Mom and Pop, Inc., website

Case Study
Mom and Pop, Inc., is a small organic grocery store in the midwestern United States
run by its co-owners, Jeanne and Mike. Their current web presence is a long, endlessly
scrolling static HTML page that lists general information such as the background of
the company, its hours and location, and what promotions are currently running.

Neither Mike nor Jeanne is comfortable editing the code in the page by hand, so in
order to update the web page content each week, they currently pay their next-door
neighbor Goldie to hand-edit the page. Because this sort of manual labor is tedious, it
usually takes a long time for her to get around to doing it. As a result, the site is fre-
quently out of date and not doing much other than costing money to keep it online.

18 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/fckeditor
http://drupal.org/project/imce
http://jumpstart.usingdrupal.com
http://jumpstart.usingdrupal.com

Mike and Jeanne would like to have a new, fresh site that they can manage themselves
by filling out web forms rather than editing code. They need some static pages, such
as a Home and an About page, along with a place to showcase special weekly deals.
They would also like a contact form to receive inquiries from customers.

Mike and Jeanne also would like a blog where they can talk about things like in-store
events or general goings-on in the community. Visitors to the site should be able to
comment on blog entries, with anonymous visitors’ comments going into an approval
queue first.

Neither Mike nor Jeanne is a coder, so it’s important that the content be easy to edit
for someone without knowledge of HTML. And finally, the site should have some basic
branding—site logo and colors—so that the site “feels” like their own.

Goldie’s been hearing a lot about this “Drupal” thing lately, so she decides to give it a
shot for this project.

Implementation Notes
The “Implementation Notes” section of each chapter will discuss, compare, and con-
trast various options for fulfilling the client’s needs in Drupal, and how the authors
came to decide on the solutions selected in the chapter.

Basics

Almost all of the functionality required by Mom and Pop, Inc., is provided by the bundle
of features that comes as part of the main Drupal software download, called the Drupal
“core.” Drupal’s Node module has the built-in ability to create various types of content
on the site, including static pages, which work great for the Home and About pages.
We’ll use the core Path module to give these pages nice and descriptive URLs such as
http://www.example.com/about.

Drupal also provides a robust roles and permissions system, which we can use to sep-
arate Goldie’s tasks (website maintenance) from Mike and Jeanne’s tasks (managing
the daily website content) and from the customers on the site (who can do only things
such as leave comments).

Drupal provides a built-in Blog module, which will be perfect for Jeanne and Mike to
use for talking about cool new things happening in the store. And the Comment module
will allow visitors to enter into discussions.

Drupal also comes with a module called Contact, which can be used to build a simple
contact form for any website. Different categories may be set up, and each one can
optionally send mail to a different email address. This feature is useful if you have
different support personnel for different departments, for example.

Case Study | 19

http://www.example.com/about

Easy content editing and image handling

Out of the box, all content in Drupal is entered as HTML, with some security filtering
provided courtesy of the built-in Filter module. Although entering HTML tags by hand
is fine for a typical webmaster who’s fluent in HTML, most “normal” users (particularly
nontechnical users) usually don’t want to enter a bunch of strange-looking code in
order to do things like make a simple list.

It’s also only natural that in addition to posting content on their site, Mike and Jeanne
will want to post images: of the store, of coupons for a given weekly promotion, or of
their kids. Drupal core has no built-in image handling, so how will we solve this
problem?

The fix for both issues is Drupal’s rich library of contributed add-on modules. Later in
this chapter in “Spotlight: Content Editing and Image Handling,” we’ll discuss solu-
tions in depth. But first, let’s get started with some basics.

Spotlight: Content Management
Drupal’s primary function is to enable website administrators to manage their own
content. This section offers a tour of some of the most basic tools for content manage-
ment in Drupal.

Content

Figure 2-2. A list of available content types

20 | Chapter 2: Drupal Jumpstart

As discussed in Chapter 1, each piece of content in Drupal, from a static page to a blog
entry or a poll, is called a node. Drupal comes with two content types by default: Page,
intended for static content such as an “About Us” page, and Story, intended for content
that will be frequently posted, such as news articles. But like most things in Drupal,
content types are fully configurable. Figure 2-2 shows the “Create content” page on a
typical Drupal site with several content types available. This page is found under the
path “node/add” (http://www.example.com/node/add).

As mentioned in the Preface, future navigation instructions within Dru-
pal will use the shorthand “Create content” (node/add).

Figure 2-3 shows an example of a typical node form, which is used to add or edit a piece
of content. Each node has a Title, which identifies the node in content listings and
controls the title of the web page it’s on, and most nodes also have a Body field, which
holds its primary content. Although the extensive options at the bottom of this form
may seem daunting, don’t worry. A general site visitor won’t have permissions to
change Menu settings, Authoring information, or other settings, so they simply do not
show up on the form for these users.

Figure 2-3. A typical node form in Drupal

Spotlight: Content Management | 21

http://www.example.com/node/add

People coming to Drupal with web development experience with a tool
such as Dreamweaver often get confused by Drupal’s notion of a “Page.”
Web development tools refer to the contents of an entire browser win-
dow from the logo in the upper-left corner down to the copyright notice
in the lower-right as a “page,” but in Drupal creating a new “Page” node
only affects the content of a given web page: its title, its body, and any
additional properties such as a byline or rating.

The Body field on a node can be split into a summary or teaser, which is a short blurb
that entices people to read further, and the full view, which contains the full content.
Teasers are displayed in most content listings, in RSS feeds, and in other places. The
full body is only displayed when looking at a piece of content directly. You may specify
whether to include the teaser as part of the full view with the “Show summary in full
view” checkbox.

Nodes can have a variety of options applied to them, including the ability to track and
revert revisions (this is covered in Chapter 5), and the ability to default to “Unpub-
lished” so they’re not immediately visible on the site. These options may be set on a
per-node basis, or you may specify the defaults for these options for all nodes of this
type in the Administration section for content types at Administer→Content manage-
ment→Content types (admin/content/types) and pictured in Figure 2-4.

Figure 2-4. The content type administration form

22 | Chapter 2: Drupal Jumpstart

Figure 2-5. The default front page view

When default options for content types are switched, these settings are
not retroactively applied to content that’s already been created. It pays
to spend some time thinking about what settings you’d like on each
content type before you begin creating lots of content on your site.

Nodes that have the “Promoted to front page” publishing option checked appear on
the default front page listing, available via the path http://www.example.com/node, as
pictured in Figure 2-5. Nodes are displayed one after another, with “Sticky at top of
lists” nodes on top, and the rest of the list ordered chronologically starting with the
most recent.

“Front page” is a bit of a misnomer; the listing at /node is the front page
only by default; you can change the home page to whatever page you’d
like, which we’ll be doing later this chapter in the “Hands-On: Content
Management” section.

Although this default view of content is very basic, you can create almost
any type of content listing imaginable with the Views module (http://
drupal.org/project/views), discussed in depth in the next chapter and
used extensively throughout the rest of the book.

Spotlight: Content Management | 23

http://www.example.com/node
http://drupal.org/project/views
http://drupal.org/project/views

Making changes to content workflow once it’s created is done either on the node itself,
by editing it directly, or in bulk through the Administer→Content manage-
ment→Content (admin/content/node) page, pictured in Figure 2-6, where content may
be deleted, published, or unpublished, or have various workflow options set.

Comments
The core Comment module allows website visitors to post replies to the content within
a node, which allows a discussion on the topic at hand directly with the author as well
as with one another. Figure 2-7 shows commenting in action.

Most content types have comments enabled by default, although the Page type has
commenting turned off initially (as it doesn’t make much sense for users to discuss your
“About Us” page). A veritable smorgasbord of comment settings may be configured
per content type at Administer→Content management→Content types (admin/
content/types), ranging from how and where comments are displayed to whether
anonymous users may/must leave their contact details along with their comments.
We’ll cover a few of these settings later in the chapter.

Comments may also optionally be placed in a moderation queue rather than being
immediately posted on the site, which can be useful as a basic spam deterrent.

Figure 2-6. Content administration page

24 | Chapter 2: Drupal Jumpstart

Drupal offers a number of modules that help ease the burden of dealing
with spam and abusive content. We’ll discuss some of the options later
in this chapter in the “Spotlight: Content Moderation Tools” section.

Navigation
Hand-in-hand with creating content is being able to find it on the site. Drupal provides
a built-in module called Menu for this purpose. Menus hold the navigation links to
various web pages on a Drupal site. Drupal comes with three default menus:

Navigation
The main system menu. In practice, this menu is the default “dumping ground” of
links offered by modules, including administrative tasks.

Primary links
An empty menu provided for custom navigation needs, typically displayed very
prominently in the site’s design. Major sections of the site such as “Home” and
“Blog” tend to be placed in the Primary links menu.

Secondary links
Another empty menu provided for custom navigation needs, but more subdued in
presentation. As a general rule, more supplementary pages such as “Terms of Serv-
ice” or “FAQ” are placed in the Secondary links menu.

Figure 2-7. The Comment module allows visitors to discuss a piece of content

Spotlight: Content Management | 25

As with the Page and Story content types, you don’t have to use the
premade Primary and Secondary link menus. They are merely a poten-
tial starting point that can help you get your site up and running quickly.

Figure 2-8 shows an example of all three menus in the default core “Garland” theme.
Themes will be discussed in more detail later in the “Spotlight: Themes” section of this
chapter. Also note that you can easily rearrange menu items by dragging them with the
gray cross-handles.

Although under normal conditions, Primary and Secondary links are
two different menus, there’s also a setting under Administer→Site build-
ing→Menus→Settings tab (admin/build/menu/settings) to make the
same menu contain both the primary and secondary links. This creates
a sort of “drill-down” effect in which the top-level items are displayed
as the primary links, and any subitems are displayed as secondary once
the main section is clicked on.

���������	
��	�
�����
��	���	�
��	��
��
�������

����
��	����
��
��������
��	���

�������
��	���
����
���	
����
	��������	� ����	����
��	���
����
�������	����
����
	��������	�

Figure 2-8. Menu administration page showing Navigation, Primary, and Secondary link menus

26 | Chapter 2: Drupal Jumpstart

www.allitebooks.com

http://www.allitebooks.org

Blocks
Blocks are smaller chunks of content that you can place in your pages. Examples of
some default blocks provided are “Who’s online,” which shows a listing of users cur-
rently logged in; the “User login” block, which displays a login form to anonymous
users; and “Recent comments,” which shows a list of the newest comments on the site.
Even the Navigation menu and “Powered by Drupal” button in the footer shown in
Figure 2-8 are blocks! You can also make your own custom blocks: for example, you
might create a block to display an announcement about an upcoming event.

Figure 2-9 shows the block administration page at Administer→Site building→Blocks
(admin/build/block). Blocks are placed within a region of a page. Examples of regions
are “left sidebar,” “footer,” and “content.” Region names, and exactly where they ap-
pear on a page, can vary from theme to theme; some may define additional regions such
as “Banner ad” or remove or change some of the default regions. Therefore, blocks
must be configured on a per-theme basis. We’ll discuss more about regions later in the
“Spotlight: Themes“ part of this chapter when we talk about themes. As with menus,
the handles here may be used to drag blocks to different regions.

Figure 2-9. Block administration page

Spotlight: Content Management | 27

Be careful with using and giving access to use PHP on a Drupal site.
Although an extremely powerful tool, the ability to work with PHP
within a web application like Drupal opens the door for security prob-
lems and site crashes. We’ll harp on this point again later in the “Hands-
On: Configuring Permissions” section when we talk about access
permissions.

You can customize the visibility of blocks, as well: for example, to show blocks on only
certain pages or only to users with certain roles. You may also optionally use PHP to
specify complex visibility settings—for example, to display a “Help” block to any users
who have been members for less than a week. There is also an option to let users control
the visibility of certain blocks themselves, so they have more control over their browsing
experience.

One frequently asked question is how blocks and nodes differ, as both
display content. One general rule of thumb is that blocks are typically
supplementary information to the actual content on the page. Blocks’
content is also usually either constantly changing (in the case of the
“Who’s online” block), or consists of temporary information such as a
blurb that’s displayed on the front page for a few days. Block content is
not searchable, so if the content needs to be referenced permanently, a
node is a much better choice.

Hands-On: Content Management
Out of the box, our wonderful Drupal site, pictured in Figure 2-10, looks pretty bare.
Adding some content with information about Mom and Pop, Inc., will do wonders to
make this actually start looking like a website. In this section, we’ll create a couple of
simple pages—the About Us page and the Home page—and begin to build our web-
site’s navigation. We’ll also add a few blocks, for extra pizzazz.

28 | Chapter 2: Drupal Jumpstart

Figure 2-10. Drupal, after a fresh install

Creating Content
1. First, we’ll create the site’s Welcome page, which we’d like to use as the home page

of the site. Go to Create content→Page (node/add/page).

2. Enter the settings provided here in Table 2-1 and Figure 2-11. Because this is a
static page, we’ll also place it into our primary navigation menu using the settings
provided by the Menu module.

Table 2-1. Home page values

Setting Value

Title Welcome to Mom and Pop, Inc.

Menu settings

• Menu link title Home

• Parent item <Primary links> (default)

• Weight 0 (default)

Body Welcome to our website! We hope you enjoy your stay!

Hands-On: Content Management | 29

Figure 2-11. Creating the site’s home page

3. Click Save to create the page. Once the page is created, make note of the path in
your browser’s address bar. It should look like http://example.com/node/1. Write
down the part that comes after the http://www.example.com/, which should be
node/1. This is the node ID of our page—we’ll need it later.

4. Next, we’ll make our About Us page, which uses the same steps. Go to Create
content→Page (node/add/page).

5. As with any node we create in Drupal, we’ll enter a title and a body. Enter the
settings from Table 2-2 and then click Save.

Table 2-2. About page values

Setting Value

Title About Us

Menu settings

• Menu link title About Us

• Parent item <Primary links> (default)

• Weight 0 (default)

Body Our store has been providing organic food to the community since 1978. Come and see us at:

123 Main Street
Home Town, MN
Store hours: 12pm–12am

30 | Chapter 2: Drupal Jumpstart

http://example.com/node/1
http://www.example.com/

6. When completed, you should see the new page appear. Note that we have two
menu items in the upper-right corner now, as shown in Figure 2-12.

If you forgot to enter a menu item and navigate away from a page,
it can be tricky to find it again without manually going to a path
like http://www.example.com/node/1. The Content administration
page at Administer→Content management→Content (admin/con-
tent/node) can help you track down straggler pages.

Now you’ll see that our two new pages both appear in the menu. However, if you
click on the site’s title at the top of the screen, you’ll be back at that old “Welcome
to your new Drupal website” page, which is not quite what we want. We want the
Welcome page to be the page that people are forwarded to when they initially hit
the site. So let’s fix that.

Figure 2-12. The completed About Us page

7. Head to Administer→Site configuration→Site information (admin/settings/site-
information).

8. Scroll to the bottom and find the “Default front page” setting. Pull out that node
ID that you wrote down earlier when we created the Home page. Replace the con-
tents of the field with that text, which should be node/1. Click “Save configuration.”

9. Now, if you click on the site’s title once more, you should arrive at your new Home
page, as pictured in Figure 2-13.

Hands-On: Content Management | 31

http://www.example.com/node/1

10. There’s one other minor content-related thing we should do before we move on.
As you know, Drupal comes with both a Page and Story type. However, we’re not
planning to use Stories on this website. Removing the content type will reduce
clutter and lessen potential confusion for Mike and Jeanne. Go to Adminis-
ter→Content management→Content types (admin/content/types) to reach the con-
tent type administration page pictured in Figure 2-14.

11. Click the Delete link next to Story and click the Delete button when prompted to
confirm.

Figure 2-14. Content type administration page

Managing Site Navigation
Great! We now have a couple pages on the site and our navigation menu is starting to
come together. However, there’s something a little funny going on: our menu items in
the top righthand corner are displayed in alphabetical order, which puts “About Us”
before “Home.” It would make a lot more sense for “Home” to come first, so let’s fix
that by reordering the items listed in the menu.

Figure 2-13. Completed Home page

32 | Chapter 2: Drupal Jumpstart

1. Go to Administer→Site building→Menus (admin/build/menu) and click Primary
links (admin/build/menu-customize/primary-links).

2. Using the handles on the left side, drag the Home item above the About Us item,
as shown in Figure 2-15.

3. Make sure to click “Save configuration” to save your menu settings.

Figure 2-15. Menu administration

Now our menu should look like Figure 2-16, with Home listed first. That’s more like it!

Figure 2-16. Reordered navigation menu

Hands-On: Content Management | 33

Configuring Blocks
Now, let’s start to play around a bit with blocks on the site. Mike and Jeanne don’t
know what Drupal is, which is going to result in all sorts of awkward questions about
that “Powered by Drupal” block in the footer. So let’s remove it. Additionally, they
want to be able to show off the latest weekly deal prominently on the home page, which
is the perfect use for a custom block:

1. Begin by navigating to the block administration page at Administer→Site build-
ing→Blocks (admin/build/block).

2. Let’s start by adding that weekly deals block. For this, we’ll add our own custom
block. Click the “Add block” tab (admin/build/block/add).

3. Enter the settings from Table 2-3 as shown in Figure 2-17. The “Page-specific vis-
ibility settings” ensure that the block shows up only on the home page.

Table 2-3. Settings for weekly deals block

Field Value

Block-specific settings

Block description Weekly deals

Block title This week’s deals!

Block body New this week: Oranges! Only 42 cents each. Yum!

User-specific visbility settings

None (default)

Role-specific visibility settings

None (default)

Page-specific visibility settings

Show block on specific pages Show on only the listed pages.

Pages <front>

34 | Chapter 2: Drupal Jumpstart

Figure 2-17. Block configuration forms

4. After saving this form with the “Save block” button, you’ll return to the main block
administration page.

5. Let’s get our new block on the page. Click the handle next to the “Weekly deals”
block and drag the table row up to the Header region. As we saw with menus, the
block’s table row will be highlighted in yellow, indicating that it was the most
recently moved item, and it will receive an asterisk next to it to indicate that it has
changed and needs to be saved.

In addition to being able to drag and drop the blocks into the region
of your choice, you can also use the drop-down select list in the
Region column to choose the region.

6. While we’re in here, let’s remove that Powered by Drupal block, too. Click the
handle next to the block and drag it from the Footer region to the Disabled region
at the bottom. Now this block becomes the highlighted row, and the asterisk re-
mains on both modified blocks. When finished with these steps, your page should
look as pictured in Figure 2-18.

Hands-On: Content Management | 35

Figure 2-18. Block administration page after reordering blocks

7. Finally, click “Save blocks” to save the form, and navigate back to the home page
to see your block changes in actions, as shown in Figure 2-19.

Figure 2-19. “Weekly deals” block

Spotlight: Modules
As discussed in Chapter 1, modules allow you to turn on and off functionality within
your Drupal website. There are two types of modules: “core” modules, which come
with Drupal itself, and “contributed” modules, which are provided for free by the

36 | Chapter 2: Drupal Jumpstart

www.allitebooks.com

http://www.allitebooks.org

Drupal community and available for download from Drupal.org. This section discusses
everything you need to know about modules.

Module Administration Page
The module administration page, available from Administer→Site building→Modules
(admin/build/modules) and depicted in Figure 2-20, is where Drupal provides config-
uration options for your website’s functionality. Related modules are grouped together
within fieldsets, and each module entry contains a description and an indication of
which version is currently running on the site. This version information can be ex-
tremely useful when troubleshooting problems.

Figure 2-20. Module administration page

Modules may be switched on and off by toggling their Enabled checkboxes, which
allows you to custom-tailor the functionality of any Drupal site to its unique needs,
without bogging it down with needless overhead.

A module might also have dependencies. That is, it might require one or more other
modules in order to work properly. For example, the Forum module requires both the
Comment and Taxonomy modules to be enabled before it can be enabled. If you forget
to do this, a confirmation screen will appear asking you whether to enable the required
modules in order to proceed.

Nearly all modules also have one or more administration pages associated with them
for configuring various settings. Most often, these are found under Administer→Site
configuration (admin/settings) or Administer→Site building (admin/build). Because
modules can easily add additional administration pages, we recommend navigating to
the Administration (admin) main page and clicking the “By module” tab (admin/
by-module), as pictured in Figure 2-21, to view all administrative options broken down
module by module. This is a best practice to follow after installing a new module.

Spotlight: Modules | 37

Finding and Installing Modules
Although core modules can provide the basics for your site, and can in some cases get
you pretty far, the real power in Drupal comes from its vast array of community-
contributed modules. You can browse and download all contributed modules from
http://drupal.org/project/Modules, pictured in Figure 2-22.

Figure 2-22. The contributed modules browsing page at Drupal.org

Figure 2-21. Viewing administrative tasks by module

38 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/Modules

Note that Drupal 5.x modules are not compatible with Drupal 6.x, and
vice versa. It’s very important to use the “Filter by Drupal Core com-
patibility” selection at the top of this screen to display modules only for
the Drupal version that you are using. To display modules compatible
with Drupal 6, change the drop-down to 6.x, and for Drupal 5-
compatible modules, select 5.x. You can use the filter only if you are
logged in to Drupal.org. An account is free, and can be handy in a num-
ber of ways, so creating one is highly recommended.

Each module has its own project page on Drupal.org, as indicated in Figure 2-23. Here
you’ll find the name of the chief maintainer of the project; a description; and often a
screenshot showing what the module does, a table containing releases that you may
download, and links to other areas below, such as a module’s issue queue or
documentation. The version of the module you should download is the one that says
“Recommended for 6.x” next to it and whose version starts with “6.x-” (unless you’re
using Drupal 7, in which case you’d look for “Recommended for 7.x,” and so on). Visit
http://drupal.org/handbook/version-info for much more information on Drupal’s ver-
sion naming conventions.

Figure 2-23. The project page for the World Clock module

One of the most challenging aspects of using Drupal is determining
which modules to use for a given task at hand. There are many modules
that appear to cover similar ground, and the quality of modules can vary
greatly. Appendix B is devoted entirely to the topic of tips and tricks for
selecting the right modules for your project. But it’s not enough to find
the modules you’re looking for; you also have to keep them up-to-date.
We talk more about upgrading modules in Appendix A.

Spotlight: Modules | 39

http://drupal.org/handbook/version-info

Once you’ve found your module, download it to your local drive. Like Drupal, modules
downloaded from Drupal.org come with the suffix .tar.gz, which means that this file
has been archived using tar (these files are commonly referred to as “tarball” files) and
compressed using gzip. Most drag-and-drop file extraction applications, such as the
free StuffIt Expander (http://my.smithmicro.com/) for Mac and Windows, can expand
the archive and create a directory containing the original files.

Once you’ve extracted the module directory, place it into the sites/all/modules/ directory
and your new module should appear on the Module administration page, discussed
previously.

Detailed instructions on how to install modules are available in the Getting Started
handbook at http://drupal.org/node/258.

Removing Modules
If you decide that you no longer want to use a module, you have two choices:

Disable
Disable a module by unchecking the Enabled checkbox and saving the form. This
action switches the module off temporarily, which can be useful when trouble-
shooting. You can re-enable the module at any time and your website will function
exactly the same, as disabling a module does not remove the module’s data from
your database. You may disable a module only if no other enabled modules require
it.

Uninstall
Uninstalling a module removes the module permanently. In order to uninstall a
module, it first must be disabled, and then may be checked off from the Uninstall
tab (admin/build/modules/uninstall). Note that many but not all modules have an
uninstall function.

Uninstalling a module will delete all data associated with that module,
possibly including content on your website. Be very careful when using
this option, and be sure to back up your database first. Note that unin-
stalling a module does not remove it from the filesystem; you still have
to do this manually.

Hands-On: Working with Modules
The easiest way to wrap your head around how modules work is to try installing and
configuring a couple of them. This section will cover how to install, enable, and con-
figure two modules: Path, a module that’s built into Drupal core, and Administration
Menu, which is a contributed module that may be downloaded from Drupal.org.

40 | Chapter 2: Drupal Jumpstart

http://my.smithmicro.com/
http://drupal.org/node/258

Path Module
In the earlier hands-on section (“Hands-On: Content Management”), we created an
“About Us” page and a “Home” page and added them to our site’s menu. But if you
return to those pages, you’ll see that the URL is something like http://www.example
.com/node/1. Wouldn’t it be great if we could instead give these pages nice search
engine–friendly URLs like http://www.example.com/about? We can, with Drupal core’s
Path module.

The Path module allows us to specify human-readable URLs, referred to as URL
aliases, which mask Drupal’s default way of naming paths:

1. Begin by navigating to the modules administration page at Administer→Site build-
ing→Modules (admin/build/modules).

2. Under the Core – optional package, check the Enabled checkbox next to the Path
module, as pictured in Figure 2-24, and click the “Save configuration” button at
the bottom of the form.

Figure 2-24. Enabling the Path module

3. Click on the About Us page in the menu, and click the Edit tab.

4. Toward the bottom of the form, you’ll see a new fieldset called “URL path settings,”
as pictured in Figure 2-25. Enter about as the path, and click Save.

Figure 2-25. Entering a path alias for a node

5. Now, if you click on the About link in the menu once more, you should see the
URL change to http://www.example.com/about.

6. Repeat the previous steps to add a URL alias for the Home page as well, using
home for the “URL path settings.”

Hands-On: Working with Modules | 41

http://www.example.com/node/1
http://www.example.com/node/1
http://www.example.com/about
http://www.example.com/about

Setting URL aliases by hand can be tedious. The Pathauto module (go
to http://drupal.org/project/pathauto), covered in Chapter 5, allows you
to set up customized rules that automatically generate friendly URLs for
all of your website content (http://example.com/content/about), users
(http://example.com/user/admin), and more.

Administration Menu Module
You’ve probably noticed that moving around in the Drupal administration pages gets
a little tedious. For example, getting to the modules administration page requires click-
ing on Administer, then Site building, then Modules. Wouldn’t it be nice if there were
a faster way to move around? Luckily, there is: the Administration Menu module (http:
//drupal.org/project/admin_menu), pictured in Figure 2-26. This module places a dy-
namic drop-down menu bar for administrative users at the top of all pages, allowing
quick and easy navigation around the site. This module does not come with the core,
so we will need to download it first.

Figure 2-26. Administration Menu module

1. Go to the Administration Menu module’s project page at http://drupal.org/project/
admin_menu. Look for its table of releases, pictured in Figure 2-27.

2. Look for the release marked as “Recommended for 6.x” (in Figure 2-27, this would
be 6.x-1.0) and click its Download link.

42 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/pathauto
http://example.com/content/about
http://example.com/user/admin
http://drupal.org/project/admin_menu
http://drupal.org/project/admin_menu
http://drupal.org/project/admin_menu
http://drupal.org/project/admin_menu

Figure 2-27. Administration Menu module’s releases

3. Once downloaded, the file name will be something like ad
min_menu-6.x-1.0.tar.gz. Extract this file using your tool of choice, such as WinZip
or StuffIt Expander. When finished, the module's files should appear in a folder
called admin_menu.

4. Within your operating system, navigate to Drupal’s sites/all folder. If it’s not al-
ready there, create a modules subdirectory so that your path looks like sites/all/
modules.

5. Move the admin_menu folder into Drupal’s sites/all/modules folder. When finished,
your site’s directory should look as pictured in Figure 2-28.

Figure 2-28. Administration Menu module files in the sites directory

Hands-On: Working with Modules | 43

��������	
����������	�������
��	��������������
	�
���������������	��
����
���
�����

�����������
����������
����
������
�����������
��
�����������������������
����������
�����
���

Figure 2-29. Effects of the Administration Menu module

6. With the module files in place, we can now begin the next step: installing them
from the Drupal side.

From here on out, any hands-on sections that require contributed
modules will assume that these steps have been taken, and that the
module files are already in place in Drupal’s sites/all/modules di-
rectory. The book’s source code comes with all of the modules
necessary to build the websites in future chapters already in place.
If you want to follow along with the other chapters on your own
Drupal website, you’ll need to download and extract each required
module in this same fashion. A quick reference list of the modules
and themes used in each chapter is supplied in Appendix C.

7. In Drupal, return to the modules administration page at Administer→Site build-
ing→Modules (admin/build/modules).

8. Find the Administration package fieldset and check the Enabled checkbox next to
the Administration Menu module.

9. Click the “Save configuration” button at the bottom of the form.

10. Immediately, you’ll see the effects of this module, as pictured in Figure 2-29. There
is now a navigation bar across the top of the page that contains administration
tasks.

11. Almost any module that you install will expose configuration settings that can be
used to modify the way a module behaves or how your visitors can interact with
it, and Administration Menu is no exception. Go to Administer (admin) and click

44 | Chapter 2: Drupal Jumpstart

the “By module” tab (admin/by-module) to view a list of all enabled modules and
the administrative features they expose to Drupal. As you can see in Figure 2-30,
the Administration Menu module exposes a few different options: we can configure
permissions for the module (which we will do in the next hands-on section), we
can read help information, or we can go to the Administration Menu module set-
tings page.

Figure 2-30. Administration options exposed by the Administration Menu module

12. Click on Administration Menu’s “Get help” link (admin/help/admin_menu) to be
taken to a help page about the module. Here are some additional details about the
module and a link to its settings page.

13. Click the “Administration menu” link (admin/settings/admin_menu) and take a
look at the options offered there. Among other things, you can choose to collapse
all module package fieldsets on the module administration form, which can help
save space after you are familiar with the packages in which all the various modules
live.

Now that we’ve seen how to install, enable, and configure a module, let’s delve into
detail about how to control who has access to use it.

Spotlight: Access Control
One of the most powerful features of Drupal is its rich, fine-grained access control
system, based around the concept of users, roles, and permissions.

User
A visitor to the website. A user can be anyone: a casual visitor to the website, your
company’s president who’s blogging on the site every day, your system
administrator, or someone who doesn’t work for your company at all but is still
adding content (as with a social networking site).

Role
A group to which users can be assigned. Roles can be something like “administra-
tor” or “sales team member.” Drupal comes with two roles by default—“anony-

Spotlight: Access Control | 45

mous user” (for all users who have not logged in) and “authenticated user” (for all
logged-in users)—but you can create as many different roles as you want.

Permission
Something that users within a role can (or can’t!) do on the website. Each module
can specify its own list of permissions that may be assigned. Examples of permis-
sions are “access site content” and “edit own blog.” If a user does not have proper
permissions to do something on the website, he’ll receive an “Access denied” error
page when trying to access the given functionality.

You can customize the “Access denied” and “Page not found” error
pages at Administer→Site configuration→Error reporting (admin/set-
tings/error-reporting).

It’s worth sitting down at the beginning of each project and really thinking through
what types of users will visit the site and what they’re going to want to do. Those will
correspond to roles and permissions in the system. Try to think of your users in terms
as broad as possible. Particularly on small sites and at small organizations, you might
be tempted to create a role for each person (e.g., “Greg’s role”). But this gets extremely
cumbersome, not to mention confusing, when Susan later replaces Greg. Rather, think
of what Greg will be doing on the website, such as site configuration, upgrades, and
backups, and name the role after those tasks (e.g., “site administrator”) instead.

Configuring User Access
Controlling user access consists of two parts: (optionally) creating one or more roles
to match the types of visitors your website needs to support, and assigning permissions
to those roles.

Under Administer→User management→Roles (admin/user/roles), pictured in Fig-
ure 2-31, you may create, edit, or remove roles. At this stage, there’s nothing more to
a role than a name. Individual users may be assigned to roles either via their user profiles
or from the user administration page at Administer→User management→Users (admin/
user/user). Both creating and assigning roles requires the “administer users”
permission.

Clicking the “edit permissions” link next to a role on this screen will
display the matrix of permissions for only that role. This feature can be
useful if you need to set several permissions for only a single role.

46 | Chapter 2: Drupal Jumpstart

www.allitebooks.com

http://www.allitebooks.org

Figure 2-31. The Roles administration page

When you first create a role, it won’t be assigned any permissions. Site
administrators are initially responsible for defining permissions and as-
signing users to the new role.

At Administer→User management→Permissions (admin/user/permissions), individual
permissions may be assigned to roles, as shown in Figure 2-32. Access to this screen is
controlled by the “administer user permissions” permission, so different users can take
care of day-to-day user-related administrative tasks without requiring an escalation of
their privileges in the system.

All roles apart from “anonymous user” receive the permissions of “au-
thenticated user” plus any other roles they’re assigned. In Figure 2-32,
editors and site administrators inherit the “access comments” permis-
sion because they are by nature logged in (authenticated users) in order
to use the site. However, because “administer comments” is an elevated
permission not given to authenticated users, it needs to be checked for
both editors and site administrators so that both roles receive the
permission.

Spotlight: Access Control | 47

Figure 2-32. The Permissions administration page

The Importance of Testing Access Control
Make sure that you create at least one “test” user for each role that you’ve defined and
click through the site as those users as you complete sections of it. The account created
during installation, also known as “User 1,” bypasses all permission checks in the sys-
tem. Though this feature is very handy when initially building the site, testing as User
1 will mask situations that will yield “Access denied” errors for your “mere mortal”
visitors.

To test as a new user, log out and log back in as a different user with the role you wish
to test. You can also keep multiple browsers open, logged in as a different test user in
each. To switch between several accounts without having to log out between, the Devel
module’s (http://drupal.org/project/devel) “Switch user” block is very helpful.

Also note that each time you enable or disable a module, the available user permissions
will most likely change, so always revisit the permissions page after installing or up-
dating a module. In addition, you want to make sure that someone doesn’t have more
permissions than they should!

User Profiles
Each user has a special page in Drupal called their user profile. This is the page that you
see when clicking the “My account” link after you have logged in. Other users might
visit your user profile page by clicking your name next to a blog entry or comment you

48 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/devel

have authored on the site. By default, the user profile page lists some simple information
about the account, such as the username and the length of time that the user has been
registered on the site. However, using add-on modules, including the core Profile mod-
ule, you can add additional fields such as those in Figure 2-33, or even change the way
this page looks entirely. Users may change basic settings in their user profile, such as
their password and their time zone, and other modules can add additional features here
as well, such as a language selection or a field to upload a picture to be displayed along
with each of your user’s posts.

User Settings
Under Administer→User management→User settings (admin/user/settings), there are
many customizable user options, including:

• Various registration options, including whether users may create accounts them-
selves or this function is restricted to administrators only

Figure 2-33. A sample user profile

Spotlight: Access Control | 49

• The exact text of various system emails sent from Drupal when, for example, a user
registers, or when a user account is blocked

• Signature support, which allows users to enter in a small bit of text to be included
at the end of any of their comments

• Picture support, which allows users to upload an image or avatar that will be dis-
played next to any of their posts and comments

Handling Abusive Users
A community site of any reasonable size and popularity may eventually attract visitors
with less-than-honorable intentions.

Administrators with the “administer users” permission may change a user’s status to
Blocked, which will prevent them from logging in. The blocked user then has only the
rights of an anonymous user. Users may also be deleted entirely, although it’s generally
preferable to block users instead of deleting them, so that their name stays attached to
any content that they have posted.

For more automated blocking, Drupal provides the ability to configure access rules,
available at Administer→User management→Access rules (admin/user/rules), to help
keep out (or specifically allow) users by username, email, or hostname. A couple of
common examples are blocking any usernames that contain profanity, or preventing
registration from free email services such as Hotmail.

Hands-On: Creating Roles
Earlier, we talked about Drupal’s access control system, and how it’s composed of
users, roles, and permissions that map to who is going to use the site and what they’re
going to want to do on it. Let’s spend a moment brainstorming about Mom and Pop,
Inc.’s needs in this area.

This site will have four types of users:

• Passing visitors, who will basically only be able to read and search content, com-
ment on news items once their content has been approved, and send mail with the
contact form. This will map to the built-in “anonymous user” role in Drupal.

• Customers, who will log into the site and can comment on content, but aren’t able
to actually post news items themselves. Because they will be logged in, we’ll use
the built-in “authenticated user” role for customers.

• The store owners Mike and Jeanne themselves, who will handle writing content
and some of the smaller day-to-day administration of the website. They’ll need to
be able to create and manage content, view logs and statistics, and change certain
website settings when required. However, because they’re not extremely

50 | Chapter 2: Drupal Jumpstart

technically savvy, the more advanced options should be hidden. We’re going to
call this role “editor,” as they will be largely adding and editing content on the site.

• Finally, Goldie is the webmaster, who will actually build the site, as well as look
after the more technical details for Jeanne and Mike. This will entail things like
installing and upgrading modules, and configuring advanced website settings. Al-
though she could just do everything as User 1, at some point she might want to
bring on another family member to take over her duties, so it pays to be forward-
thinking and make a role for this purpose. We’ll call this role “site administrator.”

These standard four roles are the same ones we’ll use in all future chap-
ters. On your own Drupal site, you can have as many or as few roles as
you’d like.

With that, we can begin setting up our access control:

1. Begin by creating the two additional roles—the ones for Mike and Jeanne and for
Goldie, who will build the site. Go to Administer→User management→Roles
(admin/user/roles).

2. Enter editor as a role name and click “Add role.”

3. Enter site administrator as a role name and click “Add role.” Your roles page
should now look like Figure 2-31, shown earlier.

4. After setting up roles, it’s always a good idea to set up some test users as well. Go
to Administer→User management→Users, and click the “Add user” tab (admin/
user/user/create).

5. Enter in the settings from Table 2-4 and Figure 2-34 and click “Create new
account.”

Table 2-4. Values for initial website users

Setting Value

Username Jeanne

Email address jeanne@example.com

Password Your choice, but try to pick something secure; perhaps “Mom-0-Rama”

Status Active (default)

Roles authenticated user (default) editor

6. Repeat the above step for Mike, and repeat it again for Goldie, but add her to both
the editor and site administrator roles.

7. Also create a user called Random Customer, but note that Random Customer
should not be assigned any special roles.

Hands-On: Creating Roles | 51

Hands-On: Configuring Permissions
Now that we have roles in place, let’s assign some permissions to control who can do
what on the site:

1. Head to Administer→User management→Permissions (admin/user/permissions).

2. This screen, as seen earlier in Figure 2-32, is massive, and there’s a lot to do here.
We’ll break this enormous table down one module at a time.

3. Remember when we enabled the Administration Menu module in the previous
section? Right now, User 1 is the only person who can see the useful drop-down
navigation bar at the top. Let’s enable this feature for both site administrators and
editors, using the settings in Table 2-5. The “access administration menu” per-
mission controls visibility of the admin bar, and the “display drupal links”
permission specifies whether resources on Drupal.org should also be part of the
menu. This is a useful permission for Goldie, but not so much for Mike and Jeanne,
as they won’t be troubleshooting site administration issues.

Figure 2-34. New user account form

52 | Chapter 2: Drupal Jumpstart

Table 2-5. Permissions for the Administration Menu module

Permission: admin_menu module anonymous user authenticated user editor site administrator

access administration menu Checked Checked

display drupal links Checked

4. Table 2-6 shows the permissions for the Block module, which defines two permis-
sions: “administer blocks” and “use PHP for block visibility.” The administer
blocks permission allows the users within a role to select which blocks are enabled
and where they appear on the page, as well as to create new blocks. As this would
be a useful thing for Mom and Pop to do, we’ll assign that permission to the editor
role. We’ll also assign it to the site administrator role, because it is an administrative
task. However, we are not going to assign the use of PHP block visibility to any
role. This is an advanced feature with security implications and only User 1 should
be able to access it.

Table 2-6. Permissions for the Block module

Permission: block module anonymous user authenticated user editor site administrator

administer blocks Checked Checked

use PHP for block visibility

Whenever you see “PHP” in a permission name, think very care-
fully about whether you trust each and every one of the people
within a given role before you check it. A malicious user with PHP
access can wreak all sorts of havoc, from deleting all of the content
on your website to spamming all of your users, or potentially in-
terfering with other applications outside of Drupal. Beware.

5. The Comment module’s permissions, listed in Table 2-7, are more straightforward.
We want all users to be able to access comments, so we check that permission for
both anonymous and authenticated users. Only site administrators and editors
should be able to administer comments, however. This permission gives them ac-
cess to an administration panel where comments may be published, unpublished,
approved, deleted, and so on. Both anonymous and authenticated users should be
able to post comments; however, we want anonymous users’ comments to go into
a moderation queue first, so we only give “post comments without approval” per-
mission to authenticated users.

Table 2-7. Permissions for the Comment module

Permission: comment module anonymous user authenticated user editor site administrator

access comments Checked Checked

administer comments Checked Checked

post comments Checked Checked

post comments without approval Checked

Hands-On: Configuring Permissions | 53

6. Filters are another place with security implications, so we’ll only give out “admin-
ister filters” permissions to the site administrator role, as indicated in Table 2-8.

Table 2-8. Permissions for the Filter module

Permission: filter module anonymous user authenticated user editor site administrator

administer filters Checked

7. The Menu module allows you to customize your site’s navigation menus. This
would be a handy thing for Mike and Jeanne to be able to do, so we’ll enable
“administer menu” permissions for both editor and site administrator, as shown
in Table 2-9.

Table 2-9. Permissions for the Menu module

Permission: menu module anonymous user authenticated user editor site administrator

administer menu Checked Checked

8. With the Node module’s permissions, shown in Table 2-10, we’re going to do
something a little different. The Node module exposes lots of permissions for each
content type in the system: create, edit own, edit any, delete own, and delete any.
Normally, you would assign these per-node-type permissions for your users to only
have access to their own content or limited number of content types. Node module
also exposes a “special” permission called “administer nodes.” This permission
gives users rights to bypass permissions around creating, editing, deleting, and
viewing any content on the site. As such, it should only be given out to trusted
users. We are going to give this permission to Jeanne and Mike’s editor role, as
well as the site administrator role. This will not only let them create, edit, and delete
all of the content on the site, but will also give them access to the main content
administration page at Administer→Content management→Content (admin/con-
tent/node). All users should be able to access content, however, so we’ll give that
permission to both anonymous user and authenticated user. As content types are
relatively advanced to configure, we’ll assign the “administer content types” per-
mission only to the site administrator role. Also check “revert revisions” and “view
revisions” permissions for editor and site administrator. We’ll talk more about
revisions in Chapter 5.

Table 2-10. Permissions for the Node module

Permission: node module anonymous user authenticated user editor site administrator

access content Checked Checked

administer content types Checked

administer nodes Checked Checked

revert revisions Checked Checked

view revisions Checked Checked

54 | Chapter 2: Drupal Jumpstart

By default, the “access content” permission enables access to all
content on the entire site. However, Drupal can also be extended
by numerous contributed modules to provide more fine-grained
control over exactly who can access a particular node. Examples
include the Node Privacy By Role module (http://drupal.org/
project/node_privacy_byrole), which can limit access based on a
user’s role, and the Organic Groups module (http://drupal.org/
project/og), which can limit access based on collections of related
content. A complete list of access control modules is available from
http://drupal.org/project/Modules/category/74.

9. Remember the Path module from the previous section? It’d be nice if Jeanne and
Mike could also add aliases to pages that they create. We’ll enable the ability to
create and administer URL aliases for both editor and site administrator, as shown
in Table 2-11.

Table 2-11. Permissions for the Path module

Permission: path module anonymous user authenticated user editor site administrator

administer url aliases Checked Checked

create url aliases Checked Checked

10. The System module primarily controls access to the administration section of the
site. As indicated in Table 2-12, we’ll give the site administrator role access to do
everything on the site, but limit the editor role to accessing the administration pages
without delving deeper.

Table 2-12. Permissions for the System module

Permission: system module anonymous user authenticated user editor site administrator

access administration pages Checked Checked

access site reports Checked Checked

administer actions Checked

administer files Checked

administer site configuration Checked

select different theme Checked

11. Although we haven’t covered the Taxonomy module yet—we’ll do so in the
“Spotlight: Taxonomy“ section—it counts as content; therefore, we’ll give access
to both editors and site administrators, as demonstrated in Table 2-13.

Table 2-13. Permissions for the Taxonomy module

Permission: taxonomy module anonymous user authenticated user editor site administrator

administer taxonomy Checked Checked

Hands-On: Configuring Permissions | 55

http://drupal.org/project/node_privacy_byrole
http://drupal.org/project/node_privacy_byrole
http://drupal.org/project/og
http://drupal.org/project/og
http://drupal.org/project/Modules/category/74

12. Finally, we come to the User module’s permissions, shown in Table 2-14. We want
everyone to access user profiles, and editors to be able to manage accounts, but
we’ll leave the ability to change usernames and administer the permissions to site
administrators only.

Table 2-14. Permissions for the User module

Permission: user module anonymous user authenticated user editor site administrator

access user profiles Checked Checked

administer permissions Checked

administer users Checked Checked

change own username Checked

13. After double-checking the permissions one more time, click the “Save permissions”
button to save your work.

14. Now it’s time for the final step: testing! Click “Log out” and notice that there is no
navigation menu in the sidebar at all, and while you can view the contents of the
site, if you try to go to a page like http://example.com/admin, you’ll receive an “Ac-
cess denied” error.

15. Log in as “Jeanne.” You should have the ability to create content or administer the
site.

16. Log out and then log in as “Random Customer.” You should be able to see the
“My account” and “Log out” links, but that’s about it.

17. When finished experimenting, log back in as the first user account you created
when you installed Drupal.

Future chapters (and the book’s source code) will call the users for each
role user, editor, and admin, respectively, and give each account the
password “oreilly.”

Hands-On: Contact Form
Let’s put together everything we’ve learned so far and get that contact form, pictured
in Figure 2-35, set up.

56 | Chapter 2: Drupal Jumpstart

http://example.com/admin

Figure 2-35. A contact form for the website

1. First, enable the Contact module. Go to Administer→Site building→Modules
(admin/build/modules), check the box next to “Contact module” under the
“Core – optional” package, and click “Save configuration.”

2. Next, we need to set up the contact form’s settings. Go to Administer→Site build-
ing→Contact form (admin/build/contact).

3. Click “Add category” (admin/build/contact/add), enter the settings from Ta-
ble 2-15 as pictured in Figure 2-36, and click Save.

Table 2-15. Contact category settings

Setting Value

Category Website feedback

Recipients (enter your email address)

Auto-reply Thanks for sending feedback about our website! We will respond to your inquiry shortly.

Hands-On: Contact Form | 57

Figure 2-36. Settings for the website feedback contact form category

4. Repeat the previous steps to enter another category for “Sales opportunities.” You
can set this category to go to a different email address, if you’d like.

5. Next, we’ll want to add a link in the website navigation to the contact form for
visitors. This module happens to conveniently provide us with a menu item all
ready to use, but it is not enabled by default. Anytime a module provides a menu
item for you, it will always appear in the Navigation menu by default. We can easily
move it to wherever we want, though. Go to Administer→Site build-
ing→Menus→Navigation (admin/build/menu-customize/navigation).

6. Find the “Contact (disabled)” menu item in the list (it will be grayed out). Click
the “edit” link for it.

7. Enter the settings from Table 2-16, and click Save.

Table 2-16. Contact menu item settings

Setting Value

Menu link title Contact (default)

Description Get in touch with us

Enabled Checked

Expanded Unchecked (default)

Parent item <Primary links>

Weight 10

58 | Chapter 2: Drupal Jumpstart

8. Finally, we need to configure permissions on the contact form so that visitors may
use it. Head to Administer→User management→Permissions (admin/user/permis-
sion) and enable the permissions listed in Table 2-17. Click “Save permissions”
when finished.

Table 2-17. Permissions for the Contact module

Permission: contact module anonymous user authenticated user editor site administrator

access site-wide contact form Checked Checked

administer site-wide contact form Checked Checked

9. Finally, visit http://www.example.com/contact to view your shiny new contact form!

The Contact module also provides each user on the site with her
own private contact form, which is accessible from her user profile.
This is a useful means of allowing users to talk to one another
without exposing their email addresses.

Spotlight: Taxonomy
We have now played around with almost all of Drupal’s basic site-building tools.
There’s just one more concept to cover in order for us to complete the functionality of
Mom and Pop, Inc.: Taxonomy.

If you’re new to Drupal, you’ve probably wondered what “Taxonomy” is—the word
pops up all over the place, and it can sound a bit mysterious. Have no fear! It’s just a
technical term for a way of organizing and classifying things. If you’ve sorted your family
photo album, filed your email in folders, or argued with a friend about whether a band
is punk or ska, you’ve already worked with taxonomies!

Creating a taxonomy for your site starts when you identify what kinds of content you’ll
have, and how it can be described. Photographs, for example, might be classified by
the subject matter, the location in which they were taken, or even the predominant
color in the picture. In Drupal, these categories are called vocabularies. Each vocabulary
contains specific terms (like Mountains or Automobiles or Pets) that can be used to
describe content. Whenever you post a photograph, a music review, or a blog entry,
you can select the terms that match it.

Drupal supports three kinds of vocabularies: simple lists of terms, organized hierarchies
of terms, and “free tagging” vocabularies that allow you to define new terms as you
post new content. Each is useful in different situations. Figure 2-37 shows an example
of how each type of vocabulary might be used on a product content type.

Spotlight: Taxonomy | 59

http://www.example.com/contact

For the librarians in the house, Drupal’s taxonomy system also supports
more advanced features of taxonomies such as synonyms, related terms,
and multiple parent hierarchies. Whew!

After submitting a piece of content, any terms it has attached will appear as links on
the node page, as displayed in Figure 2-38. Each of these links displays a page listing
all content to which that term has been applied, along with an RSS feed that visitors
can subscribe to in order to receive notifications whenever new content with that term
attached is posted.

The taxonomy system is incredibly powerful, and is one of Drupal’s greatest assets as
a content management system. In addition to the features provided out of the box,
several contributed modules also make use of taxonomy in interesting ways, such as
Taxonomy Menu module (http://drupal.org/project/taxonomy_menu), which turns a
vocabulary into a Drupal menu that can be placed in Primary or Secondary links.

���������	
�

�	�����	��

�	�������

Figure 2-37. Examples of taxonomy types

60 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/taxonomy_menu

Each term has a unique ID that maps to its own dedicated URL in the
system, such as http://example.com/taxonomy/term/3. These term list-
ings can also be combined; for example if “political” were term 3, and
“humor” were term 4, the URL http://example.com/taxonomy/term/3,4
would display all content that was both political and humorous, and
http://example.com/taxonomy/term/3+4 would display content that was
either political or humorous. A book that was tagged only “humor, ro-
mance” would not show up in the first listing but would in the second.

Hands-On: Blog
It’s time to put the last piece of site functionality in place: setting up blogs for Jeanne
and Mike. We want blog posts to be categorized according to broad topics: is the blog
post about in-store events, special deals, or general community information? But blogs
should also allow “tagging”—attaching free-form keywords that don’t fit in well with
the major topics.

Figure 2-38. An example of taxonomy assigned to a node

Hands-On: Blog | 61

http://example.com/taxonomy/term/3
http://example.com/taxonomy/term/3,4
http://example.com/taxonomy/term/3+4

To Blog or Not to Blog?
When new site builders want to set up a personal journal or blogging site, they often
turn to the Blog module that comes with Drupal. However, sometimes that’s not the
best choice. To understand whether the module is right for your needs, we’ll take a
quick look at what features it adds:

• A new content type, called “Blog”

• An overview page of all the blog posts on the site, at http://www.example.com/blog

• An overview page of all the blog posts by each user, at http://www.example.com/
blog/1, where 1 is the user’s account ID

• Links at the bottom of each blog post to the author’s list of posts

• A filtered RSS feed for each user’s blog list of blog posts

• A private “My Blog” link in the navigation menu for each user who has permission
to create blog posts

If you’re building a site where one user’s posts will be the primary content, all the
extra pages and links from the Blog module are a distraction. It’s simpler and less
cluttered to create a custom content type called “Blog post” and leave the module
turned off. If you’re setting up a site where those posts are just one of several kinds
of content, and multiple users will be posting entries, it’s a great choice. That’s
why we’ll be using it on Mom and Pop, Inc.’s site!

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
core Blog module. Click “Save configuration” when finished. This will add a new
content type called “Blog entry” for Mike and Jeanne to post.

2. As a general best practice, anytime we enable a new module, we should go to the
Administer→User management→Permissions (admin/user/permissions) screen to
configure the module’s access control. We can take a look to see what permissions
have been added to the list, but in our case we don’t need to set any of the new
permissions here. Both Jeanne and Mike already have the “administer nodes” per-
mission, which automatically grants them the rights provided by the Blog module,
so we can leave it alone.

3. Before creating any blog entries, let’s set up our site’s taxonomy. Go to Adminis-
ter→Content management→Taxonomy (admin/content/taxonomy).

4. First, let’s create a vocabulary for classifying the type of news item that’s being
posted. Click Add vocabulary (admin/content/taxonomy/add/vocabulary), enter
the settings from Table 2-18 as shown in Figure 2-39, and click Save.

62 | Chapter 2: Drupal Jumpstart

http://www.example.com/blog
http://www.example.com/blog/1
http://www.example.com/blog/1

Table 2-18. “Category” vocabulary settings

Setting Value

Identification

Vocabulary name Category

Description (blank; default)

Help text (blank; default)

Content types

Content types Blog entry

Settings

Tags Unchecked (default)

Multiple select Unchecked (default)

Required Checked

Figure 2-39. Taxonomy settings for the Category vocabulary

5. After saving the vocabulary form, you will be taken back to the main Taxonomy
administration page. Click the “add terms” link next to Category, and add a few
terms such as “In-Store Event,” “Special Deals,” “Community,” and “Website
Information.”

Hands-On: Blog | 63

6. Next, let’s add vocabulary for “Tags,” to add additional, ad hoc information, such
as what specific products are featured. Just as before, return to Administer→Con-
tent management→Taxonomy (admin/content/taxonomy) and click the “Add
vocabulary” tab (admin/content/taxonomy/add/vocabulary). Enter the settings in
Table 2-19, and click Save.

Table 2-19. “Tags” vocabulary settings

Setting Value

Identification

Vocabulary name Tags

Description (blank; default)

Help text (blank; default)

Content types

Content types Blog entry

Settings

Tags Checked

Multiple select Unchecked (default)

Required Unchecked (default)

7. Click Create content→Blog entry (node/add/blog) to see the blog form with the
taxonomy added, as pictured in Figure 2-40. Go ahead and create a blog entry.

Figure 2-40. Blog entry form with taxonomy

64 | Chapter 2: Drupal Jumpstart

8. The completed blog entry will look something like Figure 2-41. You’ll see links
there to post a comment, and to view a list of all blog entries, only those written
by admin, or any post on the site assigned to a given term.

��������	
�	���	
	�����	�����	�����	�
�	�
	�	����	
	���
�
���	
�	���	����	��������	�
	���	����	������	����	
	���	��
�	�������	
�	���	�����

�����	���	��
�	�
���
�������	��	��������

�����	�
	�
�����

�	���	������

���	��
�	�������	����� ���	��
�	�������	�����
���

Figure 2-41. A completed blog entry

9. Now that we have a blog going, let’s set up a link to the blog in the primary navi-
gation. Just like the Contact module, the Blog module provides a default menu
item for us. Go to Administer→Site building→Menus→Navigation (admin/build/
menu-customize/navigation), locate the “Blogs (disabled)” item and click the
“edit” link.

10. Enter the settings in Table 2-20 and click Save.

Table 2-20. Settings for the Blog menu item

Field Value

Menu link title Blog

Description View our blog

Enabled Checked

Expanded Unchecked (default)

Parent item <Primary links>

Weight 0 (default)

11. There are a couple minor changes we can make so that the commenting experience
is improved for site visitors. To change the comment options, go to Adminis-
ter→Content management→Content types (admin/content/types) and click “edit”
next to “Blog entry” (admin/content/node-type/blog/edit).

12. Expand the “Comment settings” fieldset. Yowza! Lots of options. Although most
of these are extraneous options having to do with comment display, a couple are
more useful. For example, we can allow anonymous users to leave a name and
website with their comments, we can make previewing comments optional (just
as it is with nodes), and we can display the comment form directly on each blog

Hands-On: Blog | 65

entry rather than on a separate page. Enter the settings from Table 2-21 to do so,
and then click “Save content type.”

Table 2-21. Comment settings for Blog entry

Field Value

Anonymous commenting Anonymous posters may leave their contact information

Preview comment Optional

Location of comment submission form Display below post or comments

13. Return to the blog listing by clicking the Blog link in the site navigation that we
created earlier.

14. Click the “Log out” link to become anonymous, then click on Blog in the menu,
and then click the post title to go into your full Welcome blog post. The comment
form should be immediately visible, along with fields for name, email address, and
website, as pictured in Figure 2-42. When submitting the comment, you will re-
ceive a notice that the comment has been queued for approval.

15. Log back in as the admin user when you’re finished experimenting, and you can
publish the comment from Administer→Content management→Comments under
the “Approval queue” tab (admin/content/comment/approval).

Figure 2-42. Comment form for anonymous users, after configuration

66 | Chapter 2: Drupal Jumpstart

Spotlight: Content Moderation Tools
When opening the floodgates for your users to become active participants in content
creation, one of the inevitable things that comes up is how to handle the issue of content
moderation, that is, ensuring that abusive, vulgar content and unsolicited advertising
or spam is kept off the site and stays off.

You can help prevent this type of content using a two-tiered approach: automated spam
detection and manual spam prevention.

Automated Spam Detection Tools
There are multiple tools that specialize in automated spam detection, but two in par-
ticular are worthy of mention in a Drupal site context: Akismet and Mollom. Each of
these tools is a web service and requires an “API key,” a specific random string of
characters, to communicate between a website and the central reporting server.

Akismet (http://akismet.com) is a service created by Matt Mullenweg, creator and
project lead of the blogging platform WordPress. It scans through the content of your
site’s comments and “trackbacks” (excerpts of posts on other blogs that link to yours),
and based on its analysis of millions of other blogs’ content, will either delete the con-
tent if it’s spam, or send it on through if it’s clean (or “ham”). Installing the Akismet
module allows you to tap into the collective intelligence of millions of other blogs using
the service. Chances are good that by the time a spammer trains its automated posting
scripts on your website, Akismet already knows how to fingerprint the attacker and
will delete the comment before it’s seen by anyone on your site. And if not, Akismet
provides the ability to manually mark the content as spam, and uses that data to learn
from its mistakes. Akismet has been around since 2005 and has captured over seven
billion spam comments, making it a tried and tested solution. The Akismet module is
available from http://drupal.org/project/akismet, and an API key for the service may be
obtained from http://wordpress.com/api-keys/.

Mollom (http://mollom.com) is a newer service started by Benjamin Schrauwen and
Dries Buytaert, creator and project lead of Drupal. It performs a very similar service to
Akismet by automatically scanning the content of comments and preventing obvious
spam from even being posted to the website. Like Akismet, your website benefits from
the collective intelligence of every other website that has a Mollom plug-in installed,
and Mollom is also compatible with many different content management systems and
programming languages.

However, Mollom attempts to overcome some of Akismet’s shortcomings in the
following ways:

• Supports blocking not just comment spam, but also spam from the contact form,
node forms (blog entries, forum topics, and so on), user registration and password
request form, and others. This is a unique feature to Mollom not found in

Spotlight: Content Moderation Tools | 67

http://akismet.com
http://drupal.org/project/akismet
http://wordpress.com/api-keys/
http://mollom.com

competing solutions, which makes it a “one-stop solution” rather than having to
use one tool for handling comments and another for handling registration forms.

• Discerns between “spam” and “ham,” and displays a CAPTCHA (Completely Au-
tomated Public Turing test to tell Computers and Humans Apart), a scrambled
image of letters that the user must manually enter, for those posts that are on the
“borderline.” This test allows humans to proceed while blocking spam robots.
CAPTCHAs are displayed as both an image and an audio file for maximum acces-
sibility. Unlike Akismet, Mollom removes the need for moderation queues and
thus reduces the moderation burden for site administrators; spam is blocked before
it hits the site at all.

• Allows deletion not only of spam, but also of low-quality and off-topic content or
violent and abusive content. Mollom also returns a quality score for each post,
based on spelling, language, and punctuation, which can be used to maintain a
minimal level of professionalism on your site.

• Leverages the power of OpenID by assigning a “reputation score” to OpenID ac-
counts across all websites. This ensures that humans’ posts are let through in-
stantly, while spammers’ posts are blocked across any site they attempt to post to
via an OpenID account.

• Generates graphs showing overall spam content, as pictured in Figure 2-43.

Figure 2-43. Example spam reporting from Mollom module

Mollom’s goal is to eliminate the need to do any manual intervention of content mod-
eration, by passing the “gray area” validation to the posters themselves via the condi-
tional CAPTCHA. And, unlike the CAPTCHA provided by most websites, users are
only confronted by the scrambled character challenge if their post is “borderline”—not
for every single form submission, unlike other solutions such as the CAPTCHA module
(http://drupal.org/project/captcha).

68 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/captcha

The Mollom module is available from http://drupal.org/project/mollom and an API key
may be obtained by creating an account on http://mollom.com.

Manual Content Moderation Tools
Automated tools are perfect for blocking obvious spam and robots, but what do you
do to prevent trolls on your site from posting pornography or other offensive content?
Mollom has the ability to flag content this way, but some websites prefer a more “hands-
on” approach, particularly if there are legal ramifications to offensive content appearing
on the website even for a second.

Drupal core includes some basic content moderation tools, such as the ability to set
any content type as “unpublished” by default (hiding it entirely from everyone but the
original author and administrators), and revision control so that further edits can be
“rolled back” to one that was approved. But many Drupal sites employ the one-two
punch of the modr8 module (http://drupal.org/project/modr8), which adds a “modera-
tion queue” status to content and some nice previewing options, as well as the Revision
Moderation module (http://drupal.org/project/revision_moderation), a simple utility
module that ensures that the approved version of a node stays published when subse-
quent edits are made.

Spotlight: Themes
Themes control the look of your Drupal site. It’s not enough to get a site functionally
working—it also has to feel like your own, and has to be distinguished from other sites
out there.

Finding a Theme
Drupal.org has a large repository of free themes that have been uploaded by contrib-
utors. You can find a listing of these themes at http://drupal.org/project/Themes, or you
can try them out “live” at http://themegarden.org.

The quality of the themes in the Drupal repository varies greatly. These themes have
been created for a wide variety of purposes and needs by contributors with a broad
range of programming and design skills. Download several themes and be sure to read
their README.txt files to determine how to best use them. Many of these themes can
be used as a starting point from which site administrators can customize their own site-
specialized presentation.

Several companies offering for-purchase themes have also emerged in the Drupal eco-
system. These themes tend to be higher quality, a bit more “bullet-proof,” and may
allow for easier customization by administrators.

Spotlight: Themes | 69

http://drupal.org/project/mollom
http://mollom.com.
http://drupal.org/project/modr8
http://drupal.org/project/revision_moderation
http://drupal.org/project/Themes
http://themegarden.org

Theme Installation
Installing a theme requires almost exactly the same process as installing a module.
Download the theme’s .tar.gz file from its project page and extract it. Place the theme’s
directory into the sites/all/themes directory, and your new theme should appear on the
Themes administration page in your Drupal installation, as shown in Figure 2-44.

As with modules, themes written for Drupal 5 are not compatible with
Drupal 6 and vice versa. Drupal 5 themes will not appear on this page
if you are running Drupal 6.

Theme Configuration
Themes can be switched on from the Themes page at Administer→Site build-
ing→Themes (admin/build/themes), shown in Figure 2-44.

Figure 2-44. The Themes administration page

Most administrators can just ignore the “Enabled” column—the “Default” column is
what actually defines the theme that all users without permission to select themes will
see. Enabling our new theme is as simple as selecting it in the Default column and

70 | Chapter 2: Drupal Jumpstart

hitting the “Save configuration” button at the bottom of the form. The new default
theme should affect the site design immediately.

The Enabled column allows the administrator to select multiple themes to be available
for users with the “select different theme” permission enabled to choose from. Fig-
ure 2-45 shows a user account page for such a user when multiple themes are marked
as enabled. Without this permission, which is not enabled by default, users will not
actually see any of these choices. Not many sites enable this permission for users be-
cause, after all, your theme usually reflects your branding and hard design work.

Figure 2-45. A user account with multiple themes to choose from

The “select different theme” permission can be a useful debugging tool.
A site administrator can enable both the site’s normal theme and a core
theme such as Garland, and switch between them if the site encounters
errors. If the error happens only in the site’s normal theme, then the
theme is the first place to look for the problem. If it happens in both
themes, it’s a deeper problem, such as a database problem or configu-
ration issue.

Spotlight: Themes | 71

Drupal offers a number of configuration features that themes can take advantage of.
There are two ways to configure themes. For “global” options that you want to apply
across all themes, select the “Global settings” tab at Administer→Site build-
ing→Themes→Configure (admin/build/themes/settings). For settings specific to a sin-
gle theme, or to configure settings that are only offered on a per-theme basis, select the
“configure” link from the Operations column next to an enabled theme. The settings
shown will vary from theme to theme.

On the settings pages, you can toggle the display of many theme elements, including
the logo image, site name, site slogan, mission statement, and others, as shown in
Figure 2-46. Some of the checkboxes may be disabled by settings elsewhere in your
installation. Drupal doesn’t give you many clues in this area, but in our example “User
pictures in posts” and “User pictures in comments” are disabled because “Picture sup-
port” has not been enabled on the Administer→User management→User settings
(admin/user/settings) page. “Search box” is disabled because the Search module has
not been enabled.

Settings such as site name, site slogan, and mission statement are con-
figurable at Administer→Site configuration→Site information (admin/
settings/site-information).

Figure 2-46. The theme configuration page allows customization of which page elements are displayed

72 | Chapter 2: Drupal Jumpstart

The theme configuration page also allows administrators to upload their own site logo
image and shortcut icon (also known as the favicon or bookmark icon, which appears
in the browser’s address bar) or simply point to one elsewhere on their server.

Some themes, such as the core Garland theme, also take advantage of the Color module,
which allows site administrators to configure its color scheme using a handy JavaScript-
based color picker. Figure 2-47 shows the Color module in action.

Blocks and Regions
It’s important to remember that block regions are defined by the theme, and different
themes may offer different regions. If you have blocks assigned to a region in one theme
and you switch to another theme that does not offer a region with the same name, these
blocks will disappear from your site. After enabling a new theme, visit the blocks
administration page at Administer→Site building→Blocks (admin/build/block) and see
what regions are available in your theme. You may need to reassign blocks to another
region to take full advantage of the new theme.

Figure 2-47. The Color module, supported in some themes, offers customization of the site’s colors

Spotlight: Themes | 73

Administration Theme Setting
Unlike some other content management systems and blogging software, Drupal does
not have a separate design for its administration pages by default. Site configuration
and editing of content use the same presentation as the remainder of the site. However,
the large forms and tables needed to configure a Drupal site are often quite incompatible
with the design and layout elements appropriate for the rest of the site—resulting in
“broken” administration pages. Furthermore, many site administrators would prefer
to make it clear when a user is in a nonpublic administrative area of the site. For these
reasons, Drupal allows for an administration theme to be chosen by visiting Adminis-
ter→Site configuration→Administration theme (admin/settings/admin). This theme
will be used for all administration pages (those starting with “admin” in the URL path),
and optionally for content creation and editing pages. Figure 2-48 shows the Admin-
istration theme settings page.

Figure 2-48. Administration theme settings page

Hands-On: Branding the Site
Now, it’s time to make the site look less like Drupal and more like Mom and Pop, Inc.
This section will walk through configuring a theme in order to customize the look and
feel of a site.

1. Head to Administer→Site building→Themes (admin/build/themes), and ensure
that the Default radio button is selected for the Garland theme. Click the “Save
configuration” button. You should see your site switch to the Garland theme, if it
wasn’t using it already.

74 | Chapter 2: Drupal Jumpstart

If the newly selected theme does not appear immediately, here are
a couple of things to check:

• Is the site using an administration theme? If so, all administra-
tion pages will show up in the administration theme. You’ll
need to click to something like your site’s home page to see the
changed theme.

• Are there multiple themes enabled on the site, and does your
user account have “select different theme” permissions? If so,
either uncheck the “Enabled” checkboxes for unused themes
on the Themes page or visit the “Edit” tab on the “My account”
page and select the new theme.

2. Click the Configure tab (admin/build/themes/settings) to configure the Global
settings, which apply to all themes.

3. Under “Logo image settings,” upload the mom_and_pop_logo.png image in the
assets/ch02-basic folder in the book’s source code. Upon saving the form with the
“Save configuration” button, you should see the new logo appear in the upper-left
corner. But it looks absolutely horrendous on that blue background!

4. Click the Garland tab (admin/build/themes/settings/garland) to access the Gar-
land-specific theme settings, which include an integrated color-picker from the
Color module.

5. Choose a color scheme that is pleasing to the eye and complements the logo. Be
creative! When you’re happy with the results, click “Save configuration.”

6. The page looks a little cluttered now with both the site logo and the “Mom & Pop,
Inc.” site name at the top. Let’s turn off the visibility of that feature. Uncheck “Site
name” in the “Toggle display” fieldset, and click “Save configuration” again.

When finished, you should have a site that now boasts Mom and Pop, Inc.’s slick Web
2.0 logo, along with a color scheme that’s all their own, as shown in Figure 2-49.

Figure 2-49. Website bearing new logo and colors

Hands-On: Branding the Site | 75

Spotlight: Content Editing and Image Handling
We now have a site with all the functionality that Jeanne and Mike asked for, access
control configured properly, and a slick new look, complete with a custom color scheme
and fancy new logo. However, one final piece remains: streamlining the content editing
process, and allowing easy image uploads.

Content Editing
As mentioned previously in the chapter, by default Drupal’s content entry is done with
HTML. Like most earthlings, Mike and Jeanne aren’t fluent in code, so it’s important
that they be able to format their content and add images without it. Not surprisingly,
a number of community solutions to this issue have cropped up over the years:

Toolbars
Some users can use HTML fine if they’re given a toolbar that inserts the tags on
their behalf. The BUEditor module (http://drupal.org/project/bueditor), pictured in
Figure 2-50, is an example of a module that provides such a toolbar.

Figure 2-50. The BUEditor module provides a toolbar to assist with HTML

Text-to-HTML translators
Modules such as Textile (http://drupal.org/project/textile) or Markdown Filter
(http://drupal.org/project/markdown), covered in Chapter 5, provide the ability to
take simple text such as **bold** and transform it into its HTML equivalent
(bold). This syntax, once learned, is much easier and faster to
type in than raw HTML.

What You See Is What You Get (WYSIWYG) editors
WYSIWYG editors not only provide a toolbar, but also display the formatting
directly in the text area, looking similar to a word processor, as pictured in Fig-
ure 2-51. There are several Drupal modules that offer integration with WYSIWYG
editors, but the most popular are TinyMCE (http://drupal.org/project/tinymce) and
FCKeditor (http://drupal.org/project/fckeditor).

76 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/bueditor
http://drupal.org/project/textile
http://drupal.org/project/markdown
http://drupal.org/project/tinymce
http://drupal.org/project/fckeditor

Figure 2-51. FCKeditor module displaying an editing form

The further away from raw HTML entry you go, the greater chance there
is that the “smart” WYSIWYG editing plug-in will get confused and
choke on complex formatting. Subtle differences between web brows-
ers, incompatibilities with the CSS that you’re using to customize your
site, and other problems are all possible—if not common. Many times,
the trade-off is still worth it, because the users of your site aren’t inter-
ested in learning the subtleties of HTML to make something bold or
italic. But due to the pitfalls, it’s often best to ask, “Does my site need
this?” before dropping in a “pretty” HTML editor module.

For Mike and Jeanne, we’ll be using the WYSIWYG editor option. Although TinyMCE
and FCKeditor are nearly functionally equivalent, the FCKeditor module has an edge,
in that more Drupal 6 sites use it and the developers are much more active in
maintaining it. We’ve therefore chosen FCKeditor for this site, although there are many
other modules to choose from. The Filters/editors module category at http://drupal.org/
project/Modules/category/63 has a list of all filter modules, including WYSIWYG
editors.

It’s worth keeping an eye on the WYSIWYG API module (http://drupal
.org/project/wysiwyg). The goal of this module is to provide a single
module that can support any number of WYSIWYG editors and is a
likely place for future innovation for Drupal in this space.

Image Handling
One of the biggest criticisms of Drupal, apart from the fact that it does not come with
a WYSIWYG editor built in, is that it has no built-in image handling. Out of the box,
Drupal’s built-in Upload module allows anyone with “upload files” permissions to
attach image files to content they create. It’s then possible for them to manually insert
 tags linking those image files into the content they’re writing. However, that’s a
pretty cumbersome process for many users, especially those attaching many images to
a long post, like a magazine article.

The good news (and bad, actually), is that contributed modules provide a plethora of
available options, the full extent of which is apparent in the list of Media modules at
http://drupal.org/project/Modules/category/67. Over the past several years, quite a few

Spotlight: Content Editing and Image Handling | 77

http://drupal.org/project/Modules/category/63
http://drupal.org/project/Modules/category/63
http://drupal.org/project/wysiwyg
http://drupal.org/project/wysiwyg
http://drupal.org/project/Modules/category/67

solutions to this problem have been proposed and several have been around long
enough to become popular.

The Image Assist module (http://drupal.org/project/img_assist), pictured in Fig-
ure 2-52, takes Drupal’s ability to manage different kinds of content to the extreme: it
forces every image attached to a piece of content to be its very own “image” node. That
makes it easier to leverage other Drupal features, like posting comments on each image
or assembling galleries of images used in other posts. And before the ImageAPI module
(http://drupal.org/project/imageapi) and the ImageCache module (http://drupal.org/
project/imagecache) emerged (as covered in Chapter 7), this approach was also the only
easy way to automatically generate thumbnails of large images.

A more recent solution—the one that we’ll be looking at in this chapter—is the IMCE
module (http://drupal.org/project/imce), pictured in Figure 2-53. It works together with
our WYSIWYG editor, giving people the opportunity to upload images in a pop-up
window while they write their post. Once it’s uploaded, users can insert an image into
their post using the WYSIWYG editor’s normal tools. IMCE also keeps track of all the
images a user has uploaded in the past. It can be configured to keep each user’s images
in his own directory or put them all in one location. Giving each user his own directory
lets each user accumulate his own library and keeps him out of other users’ files. IMCE
also lets you restrict things like file size and resolution, and set quotas on total space a
user may take up on the server.

Figure 2-52. The Image Assist module

78 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/img_assist
http://drupal.org/project/imageapi
http://drupal.org/project/imagecache
http://drupal.org/project/imagecache
http://drupal.org/project/imce

Figure 2-53. The IMCE module

Spotlight: Input Formats and Filters
You may have noticed this funny fieldset on node and block body fields that we keep
ignoring called “Input formats,” pictured in Figure 2-54. The input format that is se-
lected for the content will affect how that content is displayed on the site. Input formats
are an important security feature of Drupal, so it pays to understand them. An input
format will “scan” your content and make HTML formatting changes to it before
sending it to the browser for display. Each piece of content will be associated with an
input format so that Drupal always knows what it is looking for and modifying, on a
case-by-case basis.

Figure 2-54. Input formats attached to a node body

Spotlight: Input Formats and Filters | 79

Note that whichever input format is marked as “Default” on the ad-
ministration screen will be accessible to all users, including anonymous
visitors. As a general rule, the default input format should always be
Filtered HTML.

In Figure 2-54, there are only two choices, Filtered HTML and Full HTML. These are
the two default input formats that come with Drupal core. Sites can have several input
formats to choose from; some can be provided by modules, like PHP filter, and you
can also create your own custom formats. Input formats are restricted by roles so that
you can allow everyone to use one input format, like Filtered HTML, but also make an
advanced input format, like Full HTML, available only to your most trusted users, like
the site administrator role.

If a user reports a node’s edit tab as mysteriously gone, check its input
format. Drupal will disallow editing on content if the user’s role does
not have access to the input format of the content. This behavior can be
used to your advantage if you want to protect certain pages from editing
by users who would otherwise have access to do so.

Input formats are composed of filters. Figure 2-55 shows the list of filters that are used
in the Filtered HTML input format. The filters are doing the real work; the input format
is simply a group of filters. A filter modifies content and outputs the proper HTML for
display. Examples of filters include “Line break converter,” which transforms new lines
(carriage returns) into
 and <p> tags, and “URL filter,” which transforms a text
URL such as http://www.example.com into a clickable link, like <a href="http://
www.example.com">http://www.example.com. Filters can be used to do useful or fun
things with your content (like the Pirate module [http://drupal.org/project/pirate],
which transforms your text into pirate talk), but they are really important when talking
about security on your site. People can do all kinds of malicious things when given a
text entry box in a web browser. Using the filters that are specifically designed to help
strip out malicious content, like the HTML filter, can save your site from being hacked.

The most important filter of all is “HTML filter,” which strips out dan-
gerous HTML tags and protects your site from various sneaky attacks
that could trick a browser into embedding malicious JavaScript or other
executable code. This filter is enabled by default only on the Filtered
HTML input format. Make sure that you implicitly trust anyone who
has access to a format without this filter included, such as Full HTML.

Filters are ordered within input formats by assigning them “weights,” and the filter
modifications happen in that sequence. You can see the default order for the Filtered
HTML format in Figure 2-56. Many contributed modules let you add more filters to
your site, and you can mix and match them as you like, either adding them to the

80 | Chapter 2: Drupal Jumpstart

http://www.example.com
http://drupal.org/project/pirate

existing input formats or making your own. This feature will be covered in more detail
in Chapter 5 when we discuss adding filters.

Figure 2-56. Reordering filters for the Filtered HTML input format

A very important point to understand about formats is that they are applied only when
the content is leaving the database and about to be displayed on the page. When a user
enters content into a form and saves it, that content is stored in the database exactly
the way it was written. When someone visits the page to view it, Drupal retrieves the
raw information from the database, applies the format that is associated with it, running
through each filter in turn, and then displays the final result to the browser. You can
see a visual representation of this workflow in Figure 2-57. You should note that each
filter is applying its own rules, in turn, to get to the finished display. If we had set this
particular piece of content to use the Full HTML input format, instead of Filtered
HTML, then the end result would be a bit different. With Filtered HTML, the text
“alert(‘I cAn pwn U’);” is printed out to the screen because the “script” tags are removed
prior to display. With Full HTML, these tags would not be stripped and the script in
the text would be executed rather than displayed as plain text. In this example that
script would cause a harmless JavaScript window to pop up that says “I cAn pwn U”
in it, but it could just as easily be a malicious script that could wreak havoc.

Figure 2-55. Filters for the filtered HTML input format

Spotlight: Input Formats and Filters | 81

Because Drupal strips only on output, if you are using something in your
content that is not allowed, you will still see it there when you go to edit
it; it is just stripped on display. If you notice this happening and think
you are going crazy, you should check the input format for the content
and make sure it is not set to one that is designed to strip what you want
to display. The most common instance of this behavior is when trying
to display an image using the Filtered HTML input format. You can
extend the tags that the HTML Filter will allow at Administer→Site
configuration→Input formats (admin/settings/filters) to accommodate
your tags.

Hands-On: Setting Up FCKeditor
Before we dig into the editor’s setup, we will need all of the modules and requirements.
You should download the latest versions of the FCKeditor and IMCE modules as you
did earlier for the Administration Menu module in the “Hands-On: Working with
Modules” section. The project page for FCKeditor is located at http://drupal.org/project/
fckeditor and the project page for IMCE is at http://drupal.org/project/imce. Once you
have the modules in place, we still aren’t quite done yet, because the FCKeditor module
doesn’t actually contain the FCKeditor software itself. This is because the FCKeditor
software comes from its own, external open source website and community that de-
velops and maintains it, outside of the Drupal community.

1. Go to http://www.fckeditor.net and click the Download link in the upper-right nav-
igation area on the site, as shown in Figure 2-58.

2. The first version listed in the Download section will be the latest version of
FCKeditor. In Figure 2-59, this is FCKeditor 2.6.3. Under the version listed are two
links that you can use to download. The only difference is in the type of compres-
sion used, zip or tar, so you can use either. Click the link listed for the version you
want. In Figure 2-59, this would be FCKeditor_2.6.3.zip or FCKeditor_2.6.3.tar.gz.

3. Once you have the file downloaded, go ahead and extract it. You should be pre-
sented with a folder named fckeditor.

4. You need to copy this folder into your FCKeditor module folder. There is already
an empty folder with this name in there, so you want to replace that folder with
the new one you just extracted. All of the similar names can get quite confusing,
so make sure that your finished result has the following directory structure leading
down to the FCKeditor software’s main PHP file (also shown in Figure 2-60): sites/
all/modules/fckeditor/fckeditor/fckeditor.php.

82 | Chapter 2: Drupal Jumpstart

http://drupal.org/project/fckeditor
http://drupal.org/project/fckeditor
http://drupal.org/project/imce
http://www.fckeditor.net

�������	�
�������
��������������
��������������������
���

�������	
�����
��������������
�����

������������������������
�����
�
�
����
�����

���
��������������������������������
����	��������������
�������

�������������������������
��������������
���

������
�����
�
���������
����������
������

Figure 2-57. Input format workflow from page creation to display

Hands-On: Setting Up FCKeditor | 83

Figure 2-58. The Download link on the FCKeditor website

Figure 2-59. File download links for FCKeditor

84 | Chapter 2: Drupal Jumpstart

Now that we have our modules and the FCKeditor package itself, we can continue with
installation and configuration.

1. Head to Administer→Site building→Modules (admin/build/modules), and enable
the following modules:

• Other package

— FCKeditor

— IMCE

2. Go to Administer→User management→Permissions (admin/user/permissions) and
check off the permissions shown in Table 2-22. Click the “Save permissions” but-
ton when done.

Figure 2-60. Directory structure for the FCKeditor website

Hands-On: Setting Up FCKeditor | 85

Table 2-22. FCKeditor module permissions

Permission: fckeditor module anonymous user authenticated user editor site administrator

access fckeditor Checked Checked Checked Checked

administer editor Checked

allow fckeditor file uploads Checked Checked

Normally, we could get away with just checking off anonymous
and authenticated users, as all roles are also authenticated users.
However, FCKeditor profiles are based only on the roles with the
“access fckeditor” permission explicitly checked.

3. Because User 1 is initially not assigned to any roles beyond authenticated user, click
“My account,” and then the Edit tab (user/1/edit), and check the site administrator
role.

4. Go to Administer→Site configuration→FCKeditor (admin/settings/fckeditor) to
bring up the FCKeditor settings screen.

5. There are two profiles already created for us, but they don’t quite line up with what
we need. Let’s repurpose those and change a few settings to match our needs. Click
the “edit” link for the Default profile and make the changes indicated in Ta-
ble 2-23. When you’re done, click the “Update profile” button to save your new
profile. This step will provide some nice, simple formatting options for most users.

Table 2-23. Settings for the Default FCKeditor profile

Field Value

Basic setup

Roles allowed to use this profile anonymous user

authenticated user

File browser settings

File browser type IMCE

6. We are returned to the FCkeditor settings page at Administer→Site configura-
tion→FCKeditor (admin/settings/fckeditor). Our editors, Mike and Jeanne, will
need more formatting options when creating their content, so we will use the Ad-
vanced profile for them along with Goldie. Click the “edit” link for the Advanced
profile and match the settings shown in Table 2-24. Click the “Update profile”
button when you are finished.

86 | Chapter 2: Drupal Jumpstart

Table 2-24. Settings for the Advanced FCKeditor profile

Basic setup

Roles allowed to use this profile editor

site administrator

(Note: you should uncheck the authenticated user checkbox.)

File browser settings

File browser type IMCE

FCKeditor provides a selection of toolbars from which you can
choose. If you want to modify which buttons appear on the toolbar
or create a new toolbar, you can do so by editing a configuration
file that comes with the module. You can find the fckeditor.con
fig.js file inside the sites/all/modules/fckeditor directory. Once you
open it, you will see the toolbars with the buttons listed underneath
them. Make sure that you make a copy of the original file before
making any edits, so you can go back to it if you need to.

We now have some nice toolbars, but we have a small problem with our input formats.
FCKeditor will add the HTML we want behind the scenes, but Drupal will strip quite
a lot of it out using our default Filtered HTML format. We are using two different
toolbars and they have different format needs.

The editor toolbar has many buttons and will be using all kinds of HTML. It is also
used by only our most trusted users: the site administrator and the owners. Because
this toolbar is used by trusted users only, the easiest thing to do is to simply give them
access to the Full HTML filter so they have the freedom to use what they need to make
their posts look good.

The toolbar for regular and anonymous users has only a few options on it, and these
users are definitely not trusted. We need to let them use a few more HTML tags than
the default Filtered HTML format will give them, but we most certainly don’t want
them to have Full HTML access. To get that toolbar working smoothly, we will need
to modify the Filtered HTML format to accommodate the extra tags we need.

1. Go to Administer→Site configuration→Input formats (admin/settings/filters),
where you will see our two default formats listed.

2. Click the configure link for the Full HTML format (admin/settings/filters/2).

3. We see a list of roles that may use this format; currently none are selected. Check
off the editor and site administrator roles and then click “Save configuration” to
finish.

4. Our Advanced profile will work properly now. Let’s turn our attention to the De-
fault profile. Click the configure link for the Filtered HTML format (admin/
settings/filters/1).

Hands-On: Setting Up FCKeditor | 87

5. To actually edit the HTML filter that is determining which tags we can and cannot
use, click the Configure tab (admin/settings/filters/1/configure).

6. You will see a list of HTML tags under the “HTML filter” section in the “Allowed
HTML tags” field. We need to add the following list of tags to the end of the existing
list: <div> <pre> <address> <h1> <h2> <h3> <h4> <h5> <h6> (note the spaces
between each tag). These tags will allow the image button and the list of formats
in the Format drop-down to display properly. Click the “Save configuration” but-
ton when done.

We now have a nice toolbar for our users that will format things and play nicely with
Drupal’s formats, as pictured in Figure 2-61.

Figure 2-61. Advanced toolbar for the editor and site administrator roles

However, if you play with the toolbar a bit, you will notice that although it is nice to
have the image button, it requires us to insert a URL for the image. Well, Mike and
Jeanne don’t know much about that. They need to be able to browse, upload, and insert
images from their computers. To make that image button provide us with a way to
upload, let’s set up the IMCE module.

1. Go to Administer→Site configuration→IMCE (admin/settings/imce).

2. We see two premade profiles that we can use. The User-1 profile is obviously de-
signed for User 1, but will also nicely suit our needs for the editors and the site
administrator. We can use the Sample profile for the regular site users. Click the
Edit link for the User-1 profile.

3. We want to tweak a few settings here. Change the Profile name to Advanced to
match the FCKeditor profile name. This is a way for us to know that these are
related in terms of how we are setting up our site, but isn’t necessary for any of this
work.

88 | Chapter 2: Drupal Jumpstart

4. We should also change the Maximum image resolution size to 800x600, as that is
sufficiently large for their needs and 1200×1200 has the potential to break the
layout of our site.

5. Click the “Save configuration” button.

6. To be consistent with naming, we’ll rename the other profile too. Return to
Administer→Site configuration→IMCE (admin/settings/imce) and this time click
the Edit link for the Sample profile.

7. Change the “Profile name” to Default. The rest of the default settings should be
fine, so click “Save configuration” to finish.

8. The last thing we need to do is make sure that we assign the correct profiles to the
correct roles. Return to Administer→Site configuration→IMCE (admin/settings/
imce) and under the “Role-profile assignments” section, set the assignments in
Table 2-25. (Note that we don’t need to change the weights.) We aren’t going to
use any profile for anonymous users, so they will be able to link to images but not
upload images to the Mom and Pop server.

Table 2-25. Role-profile assignments for IMCE

User role Assigned profile

site administrator Advanced

editor Advanced

authenticated user Default

9. Click “Save configuration” and we are done!

Now, if you go to create new content, you will see a nice toolbar on your screen that
looks like Figure 2-61.

Summary
This chapter provided an overview of the major functionality of Drupal by building a
small website. We installed Drupal, we created some simple content and content types,
we got a taste of the taxonomy system, we set up a contact form, we worked on how
to configure Drupal’s theme settings to customize a site to a particular look and feel,
and we set our editors up with a WYSIWYG editor and image handling so that they
can make their posts look just the way they want without knowing HTML.

Here is a list of modules we referenced in this chapter:

• Administration menu: http://drupal.org/project/admin_menu

• FCKeditor: http://drupal.org/project/fckeditor

• IMCE: http://drupal.org/project/imce

Summary | 89

http://drupal.org/project/admin_menu
http://drupal.org/project/fckeditor
http://drupal.org/project/imce

Here is a list of links that we referenced in this chapter:

• Drupal core download: http://drupal.org/download

• Module downloads: http://drupal.org/project/Modules

• Theme downloads: http://drupal.org/project/Themes

• FCKeditor website: http://fckeditor.net

• Drupal system requirements: http://drupal.org/node/270

• Drupal version information: http://drupal.org/handbook/version-info

• Drupal.org handbooks: http://drupal.org/handbooks

• Getting Started guide: http://drupal.org/node/258

• Troubleshooting FAQ: http://drupal.org/Troubleshooting-FAQ

• Support forum: http://drupal.org/forum/18

• XAMPP (local web server): http://www.apachefriends.org/en/xampp.html

• MAMP (local web server): http://mamp.info/en/download.html

• StuffIt Expander: http://my.smithmicro.com/mac/stuffitexpander

90 | Chapter 2: Drupal Jumpstart

http://drupal.org/download
http://drupal.org/project/Modules
http://drupal.org/project/Themes
http://fckeditor.net
http://drupal.org/node/270
http://drupal.org/handbook/version-info
http://drupal.org/handbooks
http://drupal.org/node/258
http://drupal.org/Troubleshooting-FAQ
http://drupal.org/forum/18
http://www.apachefriends.org/en/xampp.html
http://mamp.info/en/download.html
http://my.smithmicro.com/mac/stuffitexpander

CHAPTER 3

Job Posting Board

This chapter outlines the two most powerful features in Drupal. Yes, we’re saying out-
right that the two most powerful features are the Content Construction Kit and Views.
The Content Construction Kit (commonly abbreviated CCK) allows you to create forms
containing a variety of fields—such as checkboxes, select lists, image uploads, and
many others—all without writing a line of code. The Views module is the natural
counterpart to CCK, letting you get data out of your site rather than into it. Views
allows you to create pages and blocks that pull data back out and display it to your
visitors. Want a paged table showing product details that can be sorted by price or
manufacturer? You can build it with CCK and Views. Want to display a block that lists
the albums of a particular artist in a grid as a set of album cover thumbnails? You can
build it with CCK and Views. Anywhere there’s a list of content on your website (and
most websites are almost all just lists of content in one form or another), CCK and
Views are the two key modules you need.

CCK and Views form the foundation of nearly every other project in this book and most
of the Drupal-powered websites on the Internet. We’ll cover how to set up a new con-
tent type and customize the node form so that you can add any type of field for inputting
data. We’ll configure a site that allows the creating of job openings, and then we’ll build
an interface for browsing though available jobs.

This chapter introduces the following modules:

CCK (http://drupal.org/project/cck)
Adds fields to content types

Views (http://drupal.org/project/views)
Creates lists of content and users

FileField (http://drupal.org/project/filefield)
Adds a field for uploading files to content types

91

http://drupal.org/project/cck
http://drupal.org/project/views
http://drupal.org/project/filefield

If you would like to participate in the hands-on exercises in this chapter, you should
install Drupal using the Job Posting installation profile from the book’s sample code.
Doing this will create the example website on your web server. The website will look
as pictured in Figure 3-1 and at http://jobs.usingdrupal.com. For more information on
using the book’s installation profiles, see the Preface.

Case Study
Several students on work-study at Epic University have been tasked with building a job
posting website for their school. The university needs to have the site built in a short
amount of time on their internal servers. Because students are building the site, it’s also
obviously on a tight budget. Because of its flexible node system, user management, and
low cost, the students chose to download Drupal and get started building a site.

The Human Resources department requires that university faculty be able to post job
openings, which include a description, department, contact person, and salary infor-
mation. Users should be able to sign into the site and view both lists of all available
openings and lists of openings within a single specific department. Additionally, users
should be able to apply for a specific position, and to view a record of all positions to
which they’ve applied.

Implementation Notes
Drupal core provides this site with a good starting point. It provides the needed user
authentication and allows the creation of several different types of content, such as
“job” and “application” types. Drupal’s out-of-box functionality gives each one of these
new types only a “Title” and “Body” field. We’ll need quite a few more fields so that

Figure 3-1. The Epic University site after installation

92 | Chapter 3: Job Posting Board

http://jobs.usingdrupal.com

users can enter data into different fields, and so that we can pull out information from
certain fields to make listings of content.

Custom input forms

At the heart of the requirements for this website, textual data will need to be inserted
through a variety of forms. CCK provides the means to enter data into the site. CCK
can provide several different kinds of fields needed, like a drop-down select list for the
university department, or simple text fields for phone numbers and addresses.

Listings

Besides entering data into the website, job applicants and employers will want to view
lists of potential jobs and applicants. For nearly any purpose of displaying content, the
Views module can provide a listing of content in a variety of ways: a table, a list of full
nodes or teasers, an RSS feed, a list of individual fields, and more. We’ll build all the
necessary lists for this chapter as views, including special views that can take a user ID
or department and filter down to include only relevant content.

File uploads

Although Drupal core provides the Upload module for attaching files to content, it
suffers from the following drawbacks:

• Upload functionality gets turned on by default for all content types. Most of the
time, you want files attached to only one or two content types.

• All files get uploaded into the “root” of your files directory, which can become
messy when you have several hundred files.

• The Upload module provides the ability to upload an unlimited number of files
per node. Sometimes you want to allow users to upload only a single file per node,
or a maximum of three (for example).

• Uploading a file with the Upload module requires expanding a “File attachments”
fieldset, but often a file is a prominent part of a piece of content, so this “digging
down” requirement is not desirable.

• The Upload module enforces a site-wide size quota and list of allowed file exten-
sions for all users in a particular role; often, you need more flexibility in assigning
these types of settings.

• The Upload module does not allow you to have more than one file browse field or
to name it something specific.

Fortunately for us, the FileField contributed module for CCK helps get around each of
these drawbacks. File fields may be added and configured on a per-content-type basis,
and offer much more fine-grained configuration.

Case Study | 93

Spotlight: CCK
CCK is an extremely flexible framework for creating forms to enter content. Although
the Drupal core provides the ability to create different content types (such as a Job
Opening or Application), it does not yet provide a mechanism for adding fields to the
newly created types. Until CCK fields become integrated into Drupal core (which is
expected in future releases), installing CCK should be the first step in nearly any Drupal
website.

Upon installing a new copy of Drupal, there are two content types provided: Story and
Page. Both are fundamentally the same thing—a form that contains a Title field and a
Body field. Any additional content types that are created will also contain a Title field
and (optionally) a Body field; it takes an add-on module like CCK to add additional
fields to a content type. Figure 3-2 depicts the Story content type as it appears prior to
adding fields with CCK.

After enabling the CCK module, any number of custom fields may be added to any
content type. Combined with Drupal core’s ability to create any number of custom
content types, CCK lets you create any number of completely customized forms for
adding content. Figure 3-3 shows the same form after adding a few custom fields, such
as an additional text field, an image field, and a set of radio buttons.

After adding the fields, CCK can automatically handle saving information to the data-
base, and after data is submitted, presenting this information in a variety of ways.

Figure 3-2. The Story content form, as presented to an authenticated user on a new Drupal site

94 | Chapter 3: Job Posting Board

Fields
Functionally, CCK is set up into two end-user pieces. The first of these are fields, which
allow a user to save data into your site. Fields represent the type of data that needs to
be saved, such as integer, decimal, or text. When choosing a field to add to a content
type, the first decision you need to make is what kind of data is being stored “behind
the scenes” in the form. Will the information entered into the form be something basic
like text or numbers, or something more special like a relationship to another node or
user? The field types included in CCK “core” are displayed in Table 3-1. Other modules,
such as Fivestar (http://drupal.org/project/fivestar), ImageField (http://drupal.org/
project/imagefield), and Date (http://drupal.org/project/date), add more field types to
CCK. These CCK field modules are covered later in the book, in Chapters 4, 7, and
9, respectively. A full list of available CCK field types is available at http://drupal.org/
project/Modules/category/88.

Figure 3-3. The Story content type form, after adding custom fields

Spotlight: CCK | 95

http://drupal.org/project/fivestar
http://drupal.org/project/imagefield
http://drupal.org/project/imagefield
http://drupal.org/project/date
http://drupal.org/project/Modules/category/88
http://drupal.org/project/Modules/category/88

Table 3-1. Built-in CCK field types

Field type Common uses

Integer The most efficient way of storing a number. Use for product numbers, identifiers, or whenever you’ll have
an exact number of something, like track numbers on an album or number of attendees at an event.

Decimal An efficient way of storing numbers to a certain decimal point. Useful for currency amounts.

Float The most accurate way of storing numbers that need a high level of precision, such as scientific measurements.

Text Can store any string of text. Useful for names and descriptions, and also for longer full-text content such as
biographies.

Node
Reference

Can reference any node on the site in a field. Useful when one piece of content is related to another piece of
content.

User Reference Can reference any user on the site in a field. Useful when associating a user with a certain piece of content,
such as a coordinator or contact person for an event.

CCK or Taxonomy?
Both the Taxonomy module and CCK allow you to create select lists on the form for
creating content. Here are a few guidelines to help you choose one or the other:

• The primary purpose of Taxonomy is to create categories, so if you’re putting
things into categories, you should generally use the Taxonomy module. If you ever
make a CCK field called “Category,” think twice. The Taxonomy module was
made for that exact purpose, and many existing modules provide integration di-
rectly with the Taxonomy module.

• Taxonomy provides hierarchies of categorization that are very easy to order and
organize. If your categories need to be put into a tree, Taxonomy is a good choice.

• Taxonomy provides only a “Title” and “Description” for categories. Situations
that require more information to be attached to categories would benefit by cre-
ating a content type for the category, then creating a CCK node reference field to
select nodes in that category.

• A general rule of thumb is that if you can remove the field and the content type
still makes sense, use Taxonomy. An article filed under a “Technology” category
is still an article if you remove the category association, so Taxonomy is a good fit.
If the field is part of a piece of content, such as an album’s recording artist, then
CCK is generally a better choice.

Widgets
Once the type of data is determined, then it’s time to think about how it should look
in the form. In CCK lingo, the form elements are called widgets. Do you want a drop-
down select list, or a group of radio buttons? Checkboxes or an autocomplete text field?
Choose the widget that makes the most sense for the user entering the data. Note that
the widgets available will vary based on the field type chosen.

96 | Chapter 3: Job Posting Board

The widget types included in CCK core are displayed in Table 3-2. As with fields, add-
on modules often expose additional widget choices.

Table 3-2. Built-in CCK widget types

Widget type Common uses

Text field This widget allows a single line of text to be entered, such as a name or phone number. Either plain text
or formatted text entry is supported.

Text area (multiple
rows)

Use this widget for entering a larger paragraph of text, such as a biography or a product description.
Either plain text or formatted text entry is supported.

Single on/off
checkbox

Use when something can only be answered “yes” or “no”; for example, a field that asks whether a user
would like to be added to a mailing list.

Checkboxes/Radio
buttons

Use when there are multiple options to select from; checkboxes will be used for fields that support selecting
multiple values, radios for a single value only. In most cases, a “Gender” field makes sense as a radio
button selection, whereas a “Favorite colors” field makes sense as a collection of checkboxes.

Select list An alternative to checkboxes and radio buttons is a drop-down select list. Useful when there are many
different options to choose from and it would be cumbersome to display each inline as a separate choice.

Autocomplete text
field

This widget displays a text field that, as it’s typed into, displays results that start with the letters entered.
Typing “st” would bring up terms like “Stewart,” “Studebaker,” and “Style.” Useful when there are a huge
number of options to choose from and displaying them all in a select list would be too much to sort
through. However, it requires users to have an idea of what they’re searching for.

Formatters
Complementing the configuration of field input, formatters allow you to adjust how
the data will be output when it is displayed to the users of your site. For example,
decimals could be displayed with or without commas to indicate thousands, such as
in Figure 3-4.

Figure 3-4. Configuring the display of a field formatter

Other modules may add additional formatters, giving you a plethora of ways of dis-
playing information. The ImageCache module, covered in Chapter 7, is an example of
such a module; it allows the display of resized images.

Keep in mind that the formatters available depend on the type of the data, making it
very important to set up a field as an integer, decimal, or float if you’ll be displaying

Spotlight: CCK | 97

numbers. CCK won’t let you change the data type after the field has been set up, so if
you need to change the type of field from text to integer (or any other conversion),
you’ll need to delete the field and add a new one with the desired type.

Hands-On: CCK
To get started with our Job Posting website, let’s think about the different content types
needed to build all the functionality that we require. The site requires two different
types:

Job Type
Description and details of a particular job opening.

Job Application Type
An application ties together an individual and a particular job.

We will need to relate job applications back to the appropriate job openings, as well
as relate jobs back to the appropriate contact person. The node reference and user
reference fields mentioned earlier in the chapter will be an essential tool.

������������	�
�������������

������������	�
������������

Figure 3-5. A mock-up of the forms required for the job website

98 | Chapter 3: Job Posting Board

Figure 3-6. Enabling CCK modules

When building out content types in Drupal, it’s best to start with a mental picture of
what the form looks like that you’re trying to build. Figure 3-5 shows a sketch of both
the job and job application forms that we’re shooting for.

1. To enable CCK, go to Administer→Site building→Modules (admin/build/mod-
ules). Enabling CCK involves two parts: enabling the Content module, which is
the “core” of CCK, and enabling one or more “field” or “widget” modules.

The FileField module is a separate module that is not included as
part of the default CCK installation. It may be downloaded from
http://drupal.org/project/filefield, and is also included in the book’s
source code.

2. Enable the following modules and click “Save configuration.” After the modules
are enabled the page should look like Figure 3-6:

• CCK package:

— Content

— FileField

Hands-On: CCK | 99

http://drupal.org/project/filefield

— Node Reference

— Number

— Option Widgets

— Text

— User Reference

Hands-On: Job Content Type
In order to build this site, we’ll need to go beyond the default Page and Story content
types offered by Drupal core. This section will cover how to add your own custom
content type, as well as add custom fields to it with CCK.

The Job content type will contain all the information we need to store about a particular
position that’s available at Epic University. It will need the following fields:

• Job Title (the normal node title)

• Description (the normal node body)

• Department (a text select field)

• Contact (a user reference field)

• Salary (an integer field)

Let’s walk through the steps to create this new content type:

1. Start by visiting the main content type settings page under Administer→Content
management→Content types (admin/content/types). Click the “Add content type”
tab at the top of the page (admin/content/types/add).

2. Using the settings indicated in Table 3-3, create a new content type called Job. We
repurpose the Title and Body fields for Job title and Description, respectively, sim-
ply by changing their labels. Be sure to expand the fieldset for “Submission form
settings” to enter the title and body field labels. When completed, your screen
should look similar to Figure 3-7.

Table 3-3. Settings for the Job content type

Field Value

Identification

Name Job

Type job

Description A currently available job position

Submission form settings

Title field label Job title

Body field label Description

100 | Chapter 3: Job Posting Board

Figure 3-7. Adding a new “Job” content type

3. After submitting the form with the “Save content type” button, the new content
type will be created. Click the “manage fields” link for the Job content type (admin/
content/node-type/job/fields) to add our first custom field.

4. Use the settings from Table 3-4 and pictured in Figure 3-8 to complete the New
field form to add a new select list for the Department field. Choose Text as the field
type, as the field will be used to store text values. Once you’ve selected the field
type, the widget type selection will appear.

Table 3-4. “New field” settings for Department option

Field Value

Label Department

Field name department

Select a field type Text

Select a widget Select list

Hands-On: Job Content Type | 101

It’s worth spending a couple of minutes thinking about what type
of data a field will store before selecting the field type. Once selec-
ted, the field type can’t be changed. If you make a mistake, you
must delete the field and create a new one with the correct field
type.

Figure 3-8. The “Add field” form for the Department field

5. After clicking the Save button, on the next page, you’ll be able to fine-tune the new
select list. Use the values from Table 3-5 and pictured in Figure 3-9 to give this
select list a description and populate the options a user may select.

Table 3-5. Configuration for the Department field

Field Value

Job settings

Help text Select the department in which this job belongs.

Global settings

Allowed values list Administration

Arts

Athletics

Business

Education

Health Sciences

Sciences

102 | Chapter 3: Job Posting Board

If you’ve accidentally made a mistake on the CCK field configura-
tion form, don’t worry. Click the “configure” link from the “Man-
age fields” tab (admin/content/node-type/job/fields) at any time,
and you can alter the field’s settings.

6. After the new field is saved by clicking the “Save field settings” button, you should
be returned to the “Manage fields” tab (admin/content/node-type/job/fields). We
can now add the Salary field. Fill in the settings for the new field from Table 3-6.
We’ll add the salary as an integer, but if you want to include cents in the salary,
you can use a decimal field instead.

Table 3-6. Settings to create the Salary field

Field Value

Label Salary

Field name salary

�������	
���	��	������	�����
����	�����	�������
��	���
���
	�������	���	����
�
��		��

��	��
�����������������	����	����
�������	�����	������	
���	�����

������
��	��
	���	�����	
�������������
����	������	�������
���
�����	������	������

��	
	�
	�����
����	�		���������
��
����	
�����	��	�����	�����	

������������	������	���
���	��
����

� 	!���	�"������#���	���
����	
"���	���	
	�����������	��
��������	�����	
�
$��	��
	�����
�������	�	��������
��	�
	�	��	���	�����������	�
���	����	
	���	���	�
	�����
���
�	%���	��
��
������
	�	�������	��
$��	���	��
������
������	�	��

	�����
��	�	�

Figure 3-9. CCK field configuration form

Hands-On: Job Content Type | 103

Field Value

Select a field type Integer

Select a widget Text field

7. Click Save to create the Salary field. Finish setting up the content type with the
options from Table 3-7 to prefix the salary with a $ sign and give it a description.
Click “Save field settings” when finished.

Table 3-7. Configuration for the Salary field

Field Value

Job settings

Help text Enter a yearly salary for this position.

Global settings

Prefix $

8. Add a primary Contact for this job position. This will usually be the person creating
the entry, but we’ll allow the user to enter any of the possible faculty members on
the site. This will be done as a “User reference” field, which can be displayed as a
link to another user on the site. If the site grew to include hundreds of faculty
members, switching the field type from a Select List to an Autocomplete Text Field
might be a good idea. Enter the values from Table 3-8 into the “New field” form,
and then click Save.

Table 3-8. Settings to create the Contact field

Field Value

Label Contact

Field name contact

Select a field type User reference

Select a widget Select list

9. Configure the user reference field so that only users of the “editor” role (to which
faculty members are assigned) can be referenced as indicated in Table 3-9. We’ll
also leave the “Reverse link” setting unchecked. A reverse link will display a link
from the contact’s user profile back to each of the jobs for which she’s a contact.
Leaving this setting unchecked will help reduce the likelihood that she is spammed
by people applying for multiple jobs at once. This narrows down the list of potential
users that can be selected. Click “Save field settings” when you are done.

The “editor” user role was set up for you in the Job Website install
profile, along with the “editor” user and several other sample fac-
ulty members. You can assign the “editor” role to additional users
via Administer→User management→Roles (admin/user/roles).

104 | Chapter 3: Job Posting Board

Table 3-9. Configuration for the Contact field

Field Value

Job settings

Reverse Link Unchecked

Help text Select the faculty member who is the primary contact responsible for hiring this
position.

Global settings

User roles that can be referenced editor

User status that can be referenced Active

10. Finally, before any users can actually create pieces of Job content, they’ll need to
have permission to create and edit this new content type. Add permissions for the
new content type at Administer→User management→Permissions (admin/user/
permissions). Check the options shown in Table 3-10 and click the “Save permis-
sions” button.

Table 3-10. Permissions for the Job content type

Permission: node module anonymous user authenticated user editor site administrator

create job content Checked Checked

delete any job content Checked

delete own job content Checked Checked

edit any job content Checked

edit own job content Checked Checked

Hands-On: Customizing Field Display
For usability, it’s often important to display forms and page contents in a specific order,
and to add formatting so that it’s more clear what data is being presented. The following
take you through some minor customizations to the way fields are displayed:

Before testing our form out, we should reorder the fields on the form so that they make
more logical sense. Click through Administer→Content management→Content types
and click “manage fields” next to the Job type (admin/content/node-type/job/fields),
where you can arrange the fields however you like. Drag the handle on the left side of
each row and arrange the table so that it is in the order shown in Figure 3-10, and click
the Save button when finished:

• Job title

• Department

• Description

• Salary

Hands-On: Customizing Field Display | 105

• Contact

• Menu settings

Figure 3-10. Field order for the Job content type

The Job content type is now nearly complete. Let’s take a look at what our form cur-
rently looks like. Log in as editor, password oreilly, and create a new Job piece of content
at Create content→Job (node/add/job). The form should look similar to Figure 3-11
(as admin user, you’ll see several more options that are hidden from other users). Click
Save when you’re finished filling in the fields.

Figure 3-11. The Job form as seen by a user in the “editor” role

106 | Chapter 3: Job Posting Board

Taking a look at content after it’s created, we’ll see that it’s not entirely pretty. Fig-
ure 3-12 shows the default output of our Job type when viewing the content. The labels
are included above each of the fields, making the page longer than it needs to be, and
the salary could really use a comma.

Figure 3-12. Default output of the Job content type

Fortunately, CCK provides several different ways of changing the default content, the
easiest of which is CCK Formatters. Any module in Drupal is allowed to create
formatters for displaying various fields, and CCK provides a few that will work in most
situations. Follow these steps to change the display of the Job content to be a bit more
appealing:

1. Log back in as user admin, password oreilly, go to Administer→Content manage-
ment→Content types and click “edit” on the “Job type” (admin/content/node-
type/job). Clicking on the “Display fields” tab will take you to the display options
for the fields in the Job type. Update the form to use the values presented in
Table 3-11.

Table 3-11. Display field settings for the Job content type

Field Label value Teaser value Full node value

Department Inline Default Default

Salary Inline 9,999 9,999

Contact Inline <Hidden> Default

2. After making the changes, your form should appear similar to the one shown in
Figure 3-13.

3. After saving the changes, take a look at the Job piece of content a second time. The
new, cleaner look is shown in Figure 3-14.

Now you can see that our labels are displayed next to the values, rather than on a
separate line. Commas are automatically placed in the correct location for the Salary
field.

Hands-On: Customizing Field Display | 107

Figure 3-13. Display field settings for the Job content type

Figure 3-14. Job content after configuring the field display

If PHP doesn’t scare you (too much), and you want much more fine-
grained control over the look of your website’s content types, check out
the Content Templates (Contemplate) module (http://drupal.org/
project/contemplate). Contemplate is an alternative to theming (see
Chapter 11 for an introduction) that provides a web-based interface for
editing the display code for content types, so you can control exactly
what appears, how, and where.

Hands-On: Job Application Type
Now that the university is able to create job positions, it would be helpful if users could
submit résumés to the positions in which they’re interested. We’ll create another con-
tent type called “Job Application” or just “application” for short, using the following
fields:

• Title (the normal node title)

• Introductory message (the normal node body)

• Job (node reference field)

• Résumé (file field)

1. Return to the main content type settings page under Administer→Content man-
agement→Content types (admin/content/types). Add another content type by
clicking on the “Add content type” tab at the top of the page.

108 | Chapter 3: Job Posting Board

http://drupal.org/project/contemplate
http://drupal.org/project/contemplate

2. On the “Add content type” page, fill in the form with the values from Table 3-12.
Again, we’ll easily create the first two fields (Title and Introductory message) by
reusing the Title and Body fields provided by Drupal core.

Table 3-12. Settings for the Job content type

Field Value

Identification

Name Job Application

Type application

Description An application for a job position

Submission form settings

Title field label Title

Body field label Introductory message

3. After submitting the form with the “Save content type” button, the new content
type will be created. Click the “manage fields” link for the “Job application” type
(admin/content/node-type/application/fields). Use the settings from Table 3-13 to
add a node reference field for the job type. This will connect a particular “Job
application” node with the Job node.

Table 3-13. Add field settings for Job node reference

Field Value

Label Job

Field name job

Select a field type Node reference

Select a widget Select list

4. Click Save and configure the Job node reference field with the values from Ta-
ble 3-14.

Table 3-14. Settings for the Job node reference field

Field Value

Global settings

Required Checked

Content types that can be referenced Job

5. The last thing required for our job application type is to allow users to upload a
résumé or some other file with their application. We could potentially use the core
Upload module, but to gain the configuration flexibility of CCK, we’ll use a file
field, provided by the FileField module. Click “manage fields” (admin/content/
node-type/application/fields) to add the file field using the settings from Ta-
ble 3-15 and then click Continue.

Hands-On: Job Application Type | 109

Table 3-15. Add field settings for the Résumé file field

Field Value

Label Résumé

Field name resume

Select a field type File

Select a widget type File Upload

6. On the next screen, continue to fill in the details with the settings from Ta-
ble 3-16 and click the “Save field settings” button. We want to restrict the types of
file extensions that may be uploaded to just document files, and also specify that
all files uploaded through the widget reside in a “files” subdirectory. FileField also
allows control over the visibility of the file on the application node. The provided
settings will force the file to always be listed, without the possibility to override
that setting. However, the options here allow for cases that require that sort of
flexibility.

Table 3-16. Field settings for the Résumé file field

Field Value

Job Application settings

Permitted upload file extensions pdf doc txt rtf pages odf

Path settings > File path Resumes

Global settings

Required Checked

Default list value Listed

How should the list value be handled? Enforce Default

Description Field Disabled

The list of supported file extensions is included automatically be-
low the file field when it is displayed, so there’s no need to duplicate
that information in the field help text.

7. Now we’ve added all the fields needed. Order the fields on the “Manage fields” tab
as follows:

• Title

• Job

• Introductory message

• Résumé

• Menu settings

110 | Chapter 3: Job Posting Board

8. Finally, add permissions for the new content type at Administer→User manage-
ment→Permissions (admin/user/permissions). We want logged-in users to be able
to manage their own job applications, and for editors to be able to manage any of
the applications. Check the options shown in Table 3-17 and then click “Save
permissions.”

Table 3-17. Permissions for the Job Applications content type

Permission: node module anonymous user authenticated user editor site administration

create application content Checked

delete any application content Checked Checked

delete own application content Checked

edit any application content Checked Checked

edit own application content Checked

That finishes the configuration of the form for the Job Application content type. Let’s
take a look at the finished form as a user in the “authenticated user” role. After logging
in with the username user and password oreilly, the form at Create content→Job Ap-
plication (node/add/job) should look as shown in Figure 3-15.

The user user was created for you automatically when you ran the Job
Posting install profile.

Because job applications won’t be as important visually as job listings, we’ll skip con-
figuring of the display options for this content type. You can still make these changes
at Administer→Content management→Content types→Job Application→Fields
(admin/content/node-type/application/fields). After a user creates a new job applica-
tion, it should look something like Figure 3-16.

An important thing to note in this figure is how our node reference field (Job) appears
when given a value. The default behavior is a link to the original piece of content that
is referenced. Clicking on the Alumni Director link from this application will take us
back to the Alumni Director job. There are other ways to display node reference fields
as well, which can be explored in the "Display Fields" tab on the Job Application type
(admin/content/node-type/application/display).

At this point, it’d be a good idea to populate your site with some content.
Log in as either admin or editor with the password oreilly and create
several pieces of Job content at Create content→Job (node/add/job). It’s
also a good idea to create a few posts as user applying for a few different
positions. Having several pieces of content will help with the next
section.

Hands-On: Job Application Type | 111

Spotlight: Views Module
The Views module provides listings of data on your site: users, comments, nodes, and
more. Any listing of data provided by the Views module is called a view, which we’ll
always refer to in all lowercase to distinguish it from the Views module, which is
capitalized. Figure 3-17 shows examples of some of the listings that can be built with
the Views module.

Figure 3-15. The job application form, as seen by any authenticated user

Figure 3-16. A job application piece of content

112 | Chapter 3: Job Posting Board

Creating a basic view entails selecting the fields you would like displayed (node title,
author name, and images, etc.), how you would like that list to be filtered (only display
“story” node types that are published), how you would like the listing to be sorted
(newest stories on top), and what you would like the list to look like when it’s dis-
played (a block showing a bulleted list of headlines).

In more technical terms, Views is a visual SQL query builder. When you build a view,
you are essentially constructing a query that Views will pull from your site database.
The Views module has significant advantages over a handcoded query. Some examples:

• You don’t have to write any code just to make a listing of content.

• Modules will tell Views about their fields; you don’t need to know anything about
the underlying database structure, and you are insulated in case this structure
should change behind the scenes between module updates.

• The same view can be used in several places on the site, as both blocks and pages.

• Results can be split into multiple-page listings, use sortable table columns, AJAX
pagers, or filtering drop-downs to allow visitors to “drill down” to the content they
want.

Figure 3-17. Examples of views created by the Views module

Spotlight: Views Module | 113

More than anything else, Views can significantly speed up the development of your
site, without your having to learn module development or a single line of PHP. Views
can form the backbone of outputting content on your site.

SQL and Views
SQL is a computer database language that allows for retrieval of data from a database.
SQL is made up of simple commands such as:

SELECT title FROM node WHERE nid = 10

Each of these commands is called a query. These queries can get quite a bit longer in
order to retrieve the necessary information from the database, but that’s one of the
reasons Views is so helpful: it can build the queries for you.

Because a view is based upon a SQL query, many of the concepts in Views map directly
to SQL. Consider the basic parts of a query: the select statement, where clause, and
order by clause. These map directly to fields, filters, sort criteria, and other views com-
ponents covered later in this chapter.

SELECT [fields]
FROM [view type and any relationships]
WHERE [filters or arguments]
ORDER BY [sort criteria]

Although you don’t need to know SQL to use Views, the correlation is very strong and
might help you to understand Views more easily if you’re familiar with SQL or are
converting existing code to views.

Unlike the configuration of a new content type, the creation of a view is done entirely
on a single page. Figure 3-18 depicts the main portion of the view-building interface.

Displays
A display determines how a view will be presented to the user. A view can have multiple
displays, and can even create several pages listing the same content in different ways.
The leftmost portion of the Views interface lets you choose which display you are ed-
iting. Figure 3-19 shows adding a new display to a view.

114 | Chapter 3: Job Posting Board

Figure 3-18. The interface for building a view

Figure 3-19. Adding a new display

Spotlight: Views Module | 115

By default, there are four different kinds of displays, each serving a particular purpose.
Other modules may also add additional display types:

Attachment
A supplementary display that can be attached above and/or below other types of
displays. This can be helpful when giving a view context or adding a glossary when
your view is being filtered.

Block
Creates a compact list display that can be positioned in sidebars or any region from
the Blocks configuration page at Administer→Site building→Blocks (admin/build/
block).

Feed
Creates a customizable RSS feed to which users may subscribe using an RSS reader.
Feeds can both receive their own URL and be attached to any block or page display.

Page
Makes a page with its own URL in which the view occupies the main content.

Views provides many exciting options to easily configure the display of your content.
The settings for each view display can be configured all at once using the Defaults tab,
or each display can have its own settings that override the view defaults. To change any
value within the Views interface, click the option represented as a link, and the con-
figuration for that option will appear below. Besides changing individual values, some
settings may require additional configuration. In that case, a small (gear) icon is
displayed next to the setting; it will display further configuration options. The concept
of defaults and configuration options is depicted in Figure 3-20.

Pay very close attention to whether the font is italicized, as lack of italic
indicates that a setting is being overridden. You must specifically over-
ride settings on displays; otherwise, they will affect the defaults, regard-
less of which display is currently selected.

It’s important to pay attention to the particular display you are editing, as the settings
change slightly between display types. Some of the most important configuration op-
tions for a view are available only when you are configuring a particular display. For
example, to set a URL for a view, you have to be configuring a Page display. The URL
is presented as an option within the Page settings, displayed in the lower left of the
interface. The available options for each of the different display types are shown in
Figure 3-21.

116 | Chapter 3: Job Posting Board

���������	
�	���	���
�������	�����	
��	
�	�����
�
�����
�����	��������	��
����������

���	
�����	���	��������	���	���������	
���	����	�
���������	���	��������

Figure 3-21. The available settings may change, depending on the display type that is being edited

��������	
��	��������
�
�����	�
�����	������������	�	��
���
��

�������

	������������	�����

�	���	������

���������������	�	��
����������
��
���������
�������
�	������	����������
���
������� ���	
	�������	����
	������
�	����

	��

 �	���
�������
������
��
�����

	�
�����	�
���������
��	������

 �	���!���
��
����
	�����	
	���
�������
�
���
����	�����
���"��	����������

#
��	���	�	��
��
��
�
�	�
������	����	��	���	
��
���"�
���������
���

	���

Figure 3-20. Configuration when overriding a default value

Spotlight: Views Module | 117

�������	
��������
�
�����������
��������������

��
�����	�����
�������������

��
		
�������
������������������

�������
������
�	�������������

Figure 3-22. Configuration of the pieces to be included in a view

Pieces of a View
The actual meat-and-potatoes of view configuration is determining what content needs
to be displayed. This configuration includes fields, filters, arguments, sort criteria, and
relationships. Each piece is covered in more detail in the next section. These options
are all displayed on the right side of the Views interface, as shown in Figure 3-22.

If the Fields set of options isn’t shown, it’s because the “Row style” for
the display needs to be set to Fields instead of Node.

Fields

A field represents a piece of data that needs to be displayed. Some examples of fields
are the node title, a user’s email address, a CCK field value, a taxonomy term, or pretty
much any piece of data within Drupal. An alternative to selecting individual fields is to
use the Node row style for a view, which will display the view’s selected nodes in a
listing much like Drupal’s default home page.

118 | Chapter 3: Job Posting Board

Building Efficient Views
A view that uses the Node row style is usually less efficient than a view that uses Fields.
This is because Views is able to collect all the needed data directly when using fields,
but a node listing loads every field for every node that is displayed. For example, a view
that needs to display only the title and author of a node should be displayed using
Fields, preventing the unnecessary loading of taxonomy terms, CCK fields, or any other
data added by additional modules.

Even when loading a large number of fields, using the Fields display type will often be
more efficient, because Views can pull in all the data at once in a single query, rather
than individually loading nodes (loading a single node will usually take at least 10
queries, or more depending on how many modules you have enabled).

The Views module includes some handy developer information at the bottom of the
interface, including the SQL query that it is generating and how long the view takes to
generate. The Analyze button will also alert you to any obvious things you’ve missed.
You can use this information to make adjustments and see how they affect performance.

Filters

By default, the Views module will show all of the available users, comments, or nodes
on your website. Filters are used to restrict the content list by various criteria. Some
common filters include showing only nodes that have their Published flag turned on,
or only nodes of a particular type, such as our Job or Job Application nodes.

Arguments

Arguments are a dynamic version of filters. In a scenario where you want to make a
listing of content that is owned by a specific user, you wouldn’t want to make a separate
view for every user on your site. The Views module instead allows you to create a single
view, and filter the results based on the user ID that is specified through an argument.

Arguments usually come from the URL. If your view is displayed at the URL http://
example.com/my_view, directories after my_view would be taken as arguments. In the
URL http://example.com/my_view/10, the number 10 would be the first argument. You
can have as many arguments as you want in your view.

In addition to arguments that are at the end of the URL, you can also place arguments
in the middle of a URL by using the % symbol in the argument configuration. This
feature can be helpful when you want to utilize some of the existing paths in Drupal,
such as user paths that might look like http://example.com/user/10/my_view. We still
want 10 to be the first argument, but it’s now in the middle of the URL. By specifying
a URL path for the view as user/%/my_view, the symbol is swapped with the contents
of the URL and passed into the view as the first argument. If this is over your head right
now, don’t worry—we’re going to walk you through an example of this kind of argu-
ment next in the section, “Hands-On: The Views Module.”

Spotlight: Views Module | 119

http://example.com/my_view
http://example.com/my_view
http://example.com/my_view/10
http://example.com/user/10/my_view

Sort criteria

Once you’ve narrowed down results from your database and have the fields you want
to display, you can use sort criteria to determine the order in which those results show
up. Some examples are sorting by the created date, author username, or by taxonomy
terms.

Relationships

Relationships are new in the Drupal 6 version of Views. When you need to include data
from an object that’s not directly available (like a user’s information) inside a listing of
content (which is based on nodes), a relationship lets you retrieve the object
information that is related to the listed content. In relational databases, a view rela-
tionship could be considered the equivalent of doing a JOIN in SQL.

We’ll set up an example of a relationship where a job application is related to a par-
ticular piece of job content. The user creates a piece of content (an application) that is
related to another piece of content (the job). Using a Views relationship, we can create
a listing of content that includes information from both the application and the job
itself.

Hands-On: The Views Module
The requirements of our site include two particular views. One view is frontend-facing,
showing all the available jobs to users of the site. Faculty users (more specifically, users
in the “editor” role) will use the second view to review the list of applicants who have
applied to various jobs.

The first step to using the Views module is to enable it. The Views module has two
parts: the Views module itself, which handles the low-level “plumbing,” and the Views
UI module, which presents the screens used to configure them. Additionally, the Ad-
vanced Help module is an optional module that provides useful inline help for modules
such as Views.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• Other package

— Advanced Help

• Views package

— Views

— Views UI

2. Configure the module permissions at Administer→User management→Permissions
(admin/user/permissions), using the values listed in Table 3-18. As administrators

120 | Chapter 3: Job Posting Board

will be the only people configuring the Views module, the Advanced Help features
need to be enabled for them only.

Table 3-18. Permissions for the Views module

Permission anonymous user authenticated user editor site administrator

advanced_help module

view advanced help index Checked

view advanced help pop-up Checked

view advanced help topic Checked

views module

administer views Checked

views_ui module

access all views Checked

Be very cautious with the “access all views” permission; users with
this permission will bypass any access restrictions you place on
views, so all views are visible.

Jobs View
The “jobs” view will provide a listing of jobs at Epic University, categorized by depart-
ment. The completed view will be similar to the one pictured in Figure 3-23.

Figure 3-23. A sample page from the jobs view, listing jobs in the Administration department

Hands-On: The Views Module | 121

1. Get started by visiting the Views configuration page at Administer→Site build-
ing→Views (admin/build/views).

2. Click the Add tab at the top of the page and populate the form with the values from
Table 3-19. This is the basic information we need to enter for any view: a name,
description, and type. The tag is optional; it helps us filter the list of views on the
main listing page, which can be useful to show a list of custom views quickly. Your
screen should look as pictured in Figure 3-24.

Table 3-19. Settings for adding the jobs view

View setting Value

View name jobs

View description A list of available positions at Epic University

View tag jobs

View type Node

Figure 3-24. Initial view information

122 | Chapter 3: Job Posting Board

3. After clicking the Next button, Views takes you to the main view-building interface,
where we will set up how this view is to be displayed by default. Ensure that the
Basic Settings table is configured with the values from Table 3-20, as pictured in
Figure 3-25. For each field, scroll down for the interface to configure each setting,
and click Update to save.

The indicated settings create a view that shows its information in a table, with a
pager to move from one page of results to another. If no jobs are found, it displays
a message to that effect.

Table 3-20. The basic settings for the jobs view

Defaults: Basic settings Value

Title Available Positions

Style Table

Use pager Yes

 Full pager

Empty text There are currently no positions available.

Figure 3-25. Basic settings for the Available Positions view

Hands-On: The Views Module | 123

4. At this point, you may receive the error message “Display Defaults uses fields but
there are none defined for it or all are excluded.” Let’s correct this problem by
adding a few fields to the view. We’ll want to display the Title, Post date, Salary,
and Contact for each job.

Click the + (plus) icon within the Fields area to start adding new fields. Include the
fields from Table 3-21, as pictured in Figure 3-26. To speed up entry, you can select
“Node” and “Content” from the Groups selection to filter the list of available fields
by only those pertaining to that group.

Figure 3-26. Fields for the Available Positions view

124 | Chapter 3: Job Posting Board

Table 3-21. Defaults view for the job view

Defaults: Add Fields Value

Node:Title Checked

Node: Post date Checked

Content: Integer: Salary Checked

Content: User Reference: Contact Checked

Fields in the Node group are those properties that are common to
all types of nodes, such as the node’s author or its creation date.
Fields in the Content group are additional fields that were added
with CCK.

5. After you click the Add button, Views will display the configuration form for each
field, one by one, to allow you to configure each field’s options. When you’re
finished entering each of the values from Table 3-22 and pictured in Figure 3-27,
click the Update button.

Table 3-22. Individual field configuration for the job view

Defaults: Configure field setting Value

Content: Integer: Salary Format: 9,999

Content: User Reference: Contact (leave default settings)

Node: Post date Date format: Time ago

Node: Title Link this field to its node: Checked

6. Click the rearrange icon in the Fields section and put the fields in the following
order:

• Node: Title

• Node: Post date

• Content: Integer

• Content: User reference

7. Now that our view has fields, you should save the view by clicking the Save button.
If this button is grayed out, be sure to finish editing whatever field you’re editing;
then the button will be activated again.

Hands-On: The Views Module | 125

Figure 3-28. Our view so far, with no filtering in place

Figure 3-27. Field configuration for the Available Positions view

126 | Chapter 3: Job Posting Board

8. Our view is now displaying the data we want, but it doesn’t have any restrictions
as to what kinds of content are being displayed, and it is not in any kind of order.
Scroll down below the view configuration area and you’ll see a “Live preview” of
the view as it is currently configured; it should be similar to Figure 3-28.

As you can see, the view isn’t being filtered to include only “job” content. It also
includes our welcome post (which is a piece of Page content) and any application
content on the site.

No problem! Click the + (plus) icon within the Filters area to start adding some
new filters to the view. As with fields, you can use the Groups select list to filter
the list down by a particular group, and after checking the correct options and
clicking Add, configuration pages for each will appear below, and may be cycled
through with the Update button. Add the filters and settings contained in Ta-
ble 3-23 and pictured in Figure 3-29.

Table 3-23. Default filters for the jobs view

Defaults: Add filters Value

Node: Published Published: Checked

Node: Type Operator: Is one of

Node type: Job

9. Returning to the preview will show the irrelevant results now removed from the
view.

Unless you are building an administrative view purely for the pur-
pose of viewing and moderating unpublished content, you nearly
always want the Node: Published filter in place so that the view
shows only content that is intended to be seen by site visitors.
Clicking the Analyze button when you’re finished with your view
“live” is a best practice; it will warn you of this and other common
issues.

10. Additionally, we’ll want to set up sort criteria to put these items in some sort of
logical order. Click the + (plus) icon within the “Sort criteria” area to add a sort
like the one in Table 3-24, as pictured in Figure 3-30, and click Update to save the
settings.

Table 3-24. Default sort criteria for the jobs view

Defaults: Sort criteria Value

Node: Post date Sort order: Descending

 Granularity: Second

Hands-On: The Views Module | 127

The Granularity settings are a convenient way to make all items
posted within a single time frame be sorted equally. This feature
could allow you to sort new jobs by the day they were posted, then
alphabetically by node title within that day. However, we leave the
granularity at the Second value, simply because it is the most effi-
cient method, as post dates are stored as seconds in the database.

Figure 3-29. Filter configuration for the Available Positions view

11. Our view is nearly usable. It’s displaying the information we want in a nice table,
sorted by the time the job was posted. However, to actually make this view visible
by any users, we need to add a new Display. On the left side of the interface, select
Page from the list of display options, and click “Add display.”

128 | Chapter 3: Job Posting Board

12. Upon adding the new display, the “Basic settings” area changes to settings specific
to that display. Any settings that we specify here are added to or replace the default
settings that we’ve already created.

In the “Page settings” area, configure the settings to those used in Table 3-25 and
pictured in Figure 3-31.

Figure 3-30. Sort criteria configuration for the Available Positions view

Hands-On: The Views Module | 129

Table 3-25. Page settings for the jobs view

Page: Page settings Value

Path jobs

Menu Type: Normal menu entry

Title: Available positions

If you don’t see “Page settings” as an option, you are probably still
looking at the Defaults display. Click the Page display instead.

13. After clicking Save for the View, you should have a convenient link in your Navi-
gation menu that links to the Available Positions on your site. It should be similar
to Figure 3-32.

Figure 3-31. Page settings for the Available Positions view

Figure 3-32. The new jobs view, with a link in the Navigation menu

14. You’ll notice that we didn’t include a Department field in this listing, because our
requirements actually call for a directory-type listing. That is, the first page of our
jobs view should display a list of departments, and then clicking on the department

130 | Chapter 3: Job Posting Board

should provide a list of jobs inside. Because it would be tedious to create a view
like this for each department, we’ll accomplish this requirement with an argu-
ment, a very powerful Views feature.

To get started implementing this directory-type listing, head back to your view
configuration screen at Administer→Site building→Views (admin/build/views) and
click the “edit” link for the jobs view. Click the + (plus) icon in the Arguments area
to add a new argument to the Page display. As before, click Add to add the De-
partment argument, and enter the settings from Table 3-26 and Figure 3-33.

Table 3-26. Page arguments for the jobs view

Page: Arguments Values

Content: Text: Department Title: Jobs in the %1 Department

 Action to take if argument is not present: Summary, sorted ascending

Case: Capitalize each word

Case in path: Lowercase

Transform spaces to dashes in URL: checked

Summary style (after clicking Update): List

The “%1” in the Title looks a bit funny; this will be replaced by the name of the
Department dynamically when the page is viewed. The “Action to take if argument
not present” indicates what the view should do when the URL http://www.example
.com/jobs is accessed, rather than http://www.example.com/jobs/athletics. Here, we
are asking it to display a list of department names in ascending order. The “Sum-
mary” style will display the titles of the various departments, along with the number
of jobs within that department next to it. This type of view can be very useful for
directory listings. The Views module also allows you to control how the dynamic
URL and title is displayed.

15. Click “Update” and you will be presented with a series of options to configure the
argument options. Accept the default options for each by clicking the Update
button.

Be sure to save the view when you’re done.

We add only one argument in our jobs view. But you can add as
many arguments as you like. They don’t even have to be the same
type. This way you can get multipage structures, each drilling down
additionally on the items that should appear in a list.

We’re now complete with the jobs view! The final view screen should look as pictured
in Figure 3-34. Take a look at our view, either by clicking the new “Available positions”
link in the Navigation sidebar block, or by clicking the View “Page” link from the Views
interface. After adding this argument, our view contains a nice hierarchical structure!
It should be similar to Figure 3-35.

Hands-On: The Views Module | 131

http://www.example.com/jobs
http://www.example.com/jobs
http://www.example.com/jobs/athletics

Figure 3-33. Argument configuration for Available Positions view

132 | Chapter 3: Job Posting Board

Clicking on any of the options will take you to a filtered listing within that category,
such as in Figure 3-36. Pay attention to the URL also as you move between pages. It
should be similar to http://www.example.com/jobs/administration or http://www.exam
ple.com/jobs/athletics. This is the way arguments work in Views: the path we specify
displays the summary view, then any “directories” (such as administration) under that
URL are taken as arguments.

This concludes our introductory view, where we’ve used several of the features of
Views. This example included only a single display (of type Page), and we used
arguments in a simple manner. In our next example, we’ll create a view that uses mul-
tiple displays, and gets a little trickier with arguments.

Figure 3-34. Completed Available Jobs view configuration

Figure 3-35. The root level of the Jobs view, after adding an argument

Hands-On: The Views Module | 133

http://www.example.com/jobs/administration
http://www.example.com/jobs/athletics
http://www.example.com/jobs/athletics

Job Applications View
The Job Applications view will serve both as a tool for administrators and as a reference
for users. It will provide the following displays:

• A listing of all job applications in the entire system as a single page

• A listing of all applications for a particular job, displayed as a tab on the job page

• A listing of applications filled out by the currently logged-in user, displayed as a
block in the sidebar

Taking all these pieces together, the final view should display something similar to
Figure 3-37.

Figure 3-36. Inside the Filtered view, when the argument “athletics” is passed in

Create the View and Defaults displays

In this view, we’ll be setting up several displays and then overriding the defaults within
each display. By setting up a large amount of the configuration in the Defaults display,
we’ll save work when we need to change properties that are common to all displays.

1. Start by getting to the Views administration area at Administer→Site build-
ing→Views (admin/build/views). Click the Add tab to add a new view, using the
settings from Table 3-27, then click Next.

Table 3-27. Add view settings for the applications view

Field Value

View name applications

View description A list of submitted applications for a job or by a user

View tag jobs

View type Node

2. Once the view has been created, set the Defaults for the view settings to be the
same as Table 3-28. After configuring each setting, click Update.

134 | Chapter 3: Job Posting Board

Table 3-28. View basic settings for the applications view

Defaults: Basic settings Value

Style Table

Use pager Yes

Full pager

Empty text No applications yet.

3. Now we’ll set up each of the default fields, sort criteria, and filters. Click the +
(plus) icon in the Fields area. Check off the fields described in Table 3-29 and click
Add, then configure each of their settings, clicking Update after each one.

Table 3-29. Default fields for the applications view

Defaults: Fields Values

Content: Node reference: Job Link this field to its node: Checked

Node: Post date Date format: Sunday, May 4, 1978 – 05:00

Node: Title Label: Application

Link this field to its node: Checked

User: Name Label: Applicant

4. Click the ↑↓ (rearrange) icon in the Fields section to put the fields in the following
order:

• Node: Post date

• Node: Title

• User: Name

• Content: Node Reference: Job

5. Click the + (plus) icon in the “Sort criteria” area and add the Post date sort. Con-
figure using the criteria from Table 3-30 and click Update.

Table 3-30. Default sort criteria for the applications view

Defaults: Sort Criteria Values

Node: Post date Sort order: Descending

6. Click the + (plus) icon in the Filters area and check the Node: Published and Node:
Type filters and click Add. Configure each filter with the criteria from Ta-
ble 3-31, clicking Update after each filter.

Table 3-31. Default filters for the applications view

Defaults: Filters Values

Node: Published Published: Checked

Node: Type Operator: Is one of

Node type: Job Application

Hands-On: The Views Module | 135

7. Save the progress on the applications view, pictured in Figure 3-38, by clicking the
Save button.

�������	
	�����	�
��
����	�	�
��������
�����������
��
�
����	�������	���	�
������	�	�������	������

����������������������	
�����	���������	������	���	�
�
��������������	��������������
�����	���

���	
���������	
	�������������	������	��
�����������	���	�
��������������
�	����	���

Figure 3-37. The multiple displays of the Job Applications view

This concludes the default configuration of the applications view. It isn’t yet displayed
anywhere on the site, but next we’ll configure a simple page display to go with these
defaults.

Figure 3-38. The Job Applications view so far

136 | Chapter 3: Job Posting Board

Create the page display

The first display that we’ll create will simply use the default configuration to print out
a list of all applications that have been submitted to the entire site. We’ll make this
page accessible only by users in the “editor” role, and give it a menu item so that it
displays in the main navigation. The finished page will be similar to Figure 3-39.

If you’ve left the view configuration screen, return to it at Administer→Site build-
ing→Views→Applications→Edit (admin/build/views/edit/applications).

1. Select Page from the display select list and click “Add display.”

2. Now we’ll override our first setting. The default access to this view is set to Unre-
stricted, but we want to allow only “editor” members on the site to have access to
review all the applications. Click on the Access: Unrestricted setting under Basic
Settings.

You’ll see a notice that this setting is currently using the defaults. Click the Override
button in the setting configuration, then use the settings from Table 3-32 to restrict
access to this display and click Update. When finished, the settings should look as
pictured in Figure 3-40.

Table 3-32. Page display access restrictions for the applications view

Basic settings Values

Title Click “Override”

Applications

Access Click “Override”

Type: By role

If by role: editor

Restricting access to the view only prevents unprivileged users from
accessing the view display at http://www.example.com/applica
tions; it does not prevent an unprivileged user from typing in http:
//www.example.com/node/4, where node 4 is a job application that
is not theirs. Protecting this kind of node-level access control re-
quires the use of a node access module, such as Taxonomy Access
Control (http://drupal.org/project/taxonomy_access) or Organic
Groups (http://drupal.org/project/og).

Hands-On: The Views Module | 137

http://www.example.com/applications
http://www.example.com/applications
http://www.example.com/node/4
http://www.example.com/node/4
http://drupal.org/project/taxonomy_access
http://drupal.org/project/og

Figure 3-39. The applications view page display in action

3. Now we’ll set up the display-specific settings to give this page a URL path and a
menu item. Within the “Page settings” area, use the settings from Table 3-33 and
click Update.

Table 3-33. Page display settings for the applications view

Page settings Values

Path applications

Menu Type: Normal menu entry

Title: Applications

4. Click the Save button to update your changes. Your view should now look as pic-
tured in Figure 3-41. An Applications link will appear in the main site navigation,
linking to the new page display.

Figure 3-40. Overriding an individual basic setting within a view

138 | Chapter 3: Job Posting Board

Create the Job tab display

We’ve created a page containing all the applications on the entire site. Although this
might be helpful for watching incoming applications, it’s not entirely helpful for a user
who is interested in only the applications posted to one specific job. To fill this need,
we’ll make a display that limits the applications to just one job, using an argument. To
make this page easy to find, we’ll add it as a tab on job node pages (see Figure 3-42).

Figure 3-41. Job Applications view with the Page display

Accomplishing this is going to require a new Views module trick that we haven’t used
yet: Relationships. Pulling up lists of job applications is simple to do, but in this case
we want to use a piece of data from the Job type that the tab is being shown on; namely,
we need its node ID, so we know which applications to display. We can use a rela-
tionship to pull in data from the job type so it’s usable with applications. Figure 3-43
shows a diagram of how relationships work.

Figure 3-42. The applications view displayed as a tab on a job node

Hands-On: The Views Module | 139

If you’ve left the Views administration area, return to at Administer→Site build-
ing→Views→Applications→Edit (admin/build/views/edit/applications).

1. Select Page from the display select list and click “Add display.”

2. The new display gets the name Page by default. To help distinguish it from the
Page display, we’ll rename it to Job Tab, because this page will be displayed as a
tab on job nodes. We’ll also override the access again to limit it to users in the
“editor” role. Change the “Basic settings” for this display to those in Table 3-34.

Table 3-34. Job Tab basic settings for the applications view

Job tab: Basic settings Value

Name Job Tab

Access Click Override

Type: By role

Role: editor

3. Add the relationship by clicking the + (plus) icon in the Relationships area, then
add the settings from Table 3-35 (shown in Figure 3-44) and click “Update default
display.”

Table 3-35. Default relationships for the applications view

Defaults: Relationships Values

Content: Node reference: Job Require this relationship: Checked

Applications

���������	
������

��	��������

������

Jobs

�	�������
��������
�
���������	

������
�	
�����

Applications

���������	
������

��	��������

������

Jobs

�	�������
��������
�
���������	

������
�	
�����

Job
Node

ID

��������	
����
����
������
���
��
�����
����
��
����
��

������
����
����
������������
��
�����

�����	
��
��
����
����
�
������
����	

��������
���
�
�����
��
����
��
���

��
��
�����

Figure 3-43. If two objects share a bond, Relationships can pull in data from one to another

4. Similar to the “jobs” view that we configured earlier, we can filter down the listing
of applications by adding an argument to the display. This is the first time that

140 | Chapter 3: Job Posting Board

we’ll be overriding a particular portion of a view, other than settings. In this case,
overriding works a little bit differently. Click on the Arguments section title, which
will allow you to override all the arguments of the view at once. It’s not possible
to override only an individual argument (or an individual relationship, field, sort
criterion, or filters). When overriding a portion of a view, the font will become
unitalicized, indicating an override, as in Figure 3-45.

After choosing to override the arguments of the Job Tab display, we’ll add an
argument that filters the list of applications to a single job node. Click the + (plus)
icon in the Arguments area and use the values from Table 3-36. The Node ID
argument allows us to filter by one particular job’s ID. Here we’re using another
feature of Views arguments: a validator. Views will check the node ID passed in to
the URL and verify that it belongs to a job node. Click Update when finished.

Table 3-36. The Job Tab display arguments of the applications view

Job Tab: Argument settings Values

Node: Nid Relationship: field_job_nid

Title: Job Applications for %1

Action to take if argument is not present: Display empty text

Validator: Node

Types: Job

Validate user has access to the node: Checked

5. Now that we’ve set up an argument for this display, we need to give it a URL. Use
the settings from Table 3-37 to set up the Page settings and click Update.

Table 3-37. Job Tab display page settings

Job Tab: Page settings Values

Path node/%/applications

Menu Type: Menu tab

Title: Applications

Similar to using %1 in the title, we’re using the percent symbol to specify that the
first argument will be in the middle of the URL. You can use this approach to add
tabs to user pages also, such as user/%/my_display, or any other page in Drupal
with a dynamic path.

6. And finally, we no longer need the Job listed on this display; it will be redundant,
as we’ll be looking at the job directly. Click the Fields section title, and click Over-
ride. Then, click Content: Node reference: Job and click Remove.

Hands-On: The Views Module | 141

If you want behavior specific to one display and not others, be sure
to click Override. The Views module’s settings default to affecting
the global Defaults display, which affects all displays within that
view. You can end up accidentally deleting this field from more
than one display if you’re not in override mode.

7. Click the Save button to save the view, which should now look like Figure 3-46.

Figure 3-44. Relationship configuration for the Job Tab

142 | Chapter 3: Job Posting Board

��������	
��	���	�	��
���
��
�������
��������	�������	����	�
�	���	������

Figure 3-45. Overriding the Arguments portion of a view

We’ve now added a tab to all job nodes (for users in the “editor” role). Visiting a node
that has applications should look similar to Figure 3-41, shown earlier.

Create the Applications block display

The last display that we’re going assemble will be available to all users of the site. It
will be a block that will show all the job applications that the currently logged-in user
has submitted on the site. We’ll also change the style of this display from a table to a
list layout, because it will need to be displayed in the narrower sidebar column. The
final display will look similar to Figure 3-47.

Return to the view configuration for the applications view at Administer→Site build-
ing→Views→Applications→Edit (admin/build/views/edit/applications). We’ll start by
adding a new display to this view:

Hands-On: The Views Module | 143

1. Select Block from the display list and click “Add display.”

2. Override the display Basic settings with the values from Table 3-38, again clicking
Update to save each setting.

Table 3-38. Applications Block basic settings for the applications view

Block: Basic settings Values

Title Click Override

My applications

Style Click Override

Style: List

Type: Unordered list

Row style Fields

Figure 3-46. Applications view with new Job tab

144 | Chapter 3: Job Posting Board

Figure 3-47. The Applications view with the User Applications display as a block in the right sidebar

3. Now configure a description on the block that will show up in the block adminis-
tration area. Under “Block settings,” enter Admin text of User Applications and
click Update.

We’ve now set essentially three names or titles for this block. Here’s a rundown of
where each title will be displayed:

Basic settings: Name
Used within the views interface as the name of the display. Shown as a tab on the
left side of the interface.

Basic settings: Title
Used as the block title when it is displayed to the end user.

Block settings: Admin
Used when referring to the block when arranging blocks at Administer→Site build-
ing→Blocks (admin/build/block).

1. Because this is a block that will live in the sidebar, we’ll want to display far fewer
fields so that it fits nicely in the narrower region of the page. To do this, we’ll need
to override the Fields area of this view. Click on the Fields section header, and click
the Override button in the configuration area.

2. Now that the fields for the Applications Block are being overridden, delete the
Node: Post date and User: Name fields from the section (click each field link, then
use the Remove button).

You can quickly delete multiple fields by clicking the ↑↓ (rearrange
icon), and then clicking the (remove) icon next to the unwanted
fields.

Hands-On: The Views Module | 145

3. Configure the remaining fields as indicated in Table 3-39.

Table 3-39. Applications Block fields in the applications view

Block: Fields Values

Node: Title Label: (blank)

Content: Node Reference: Job Format: Title (no link)

Link this field to its node: Unchecked

Label: None

4. Reorder the fields using the ↑↓ (reorder) button so that the job comes first, then
the title of the application.

5. Finally, because we need to limit this display to job applications by the current
user, we need to add a filter to the display. Like the Fields, all filters will need to
be overridden to add a new option. Click the Filters section header and click the
Override button in the configuration area.

6. We’ll leave the two existing filters in place (Node: Published and Node: Type) and
add a single new filter for User: Current. Check off this filter, click Add, check “Is
the logged-in user” and click Update. This step will allow the block’s contents to
change dynamically depending on who the currently logged-in user is.

7. Save the view, which should now look like Figure 3-48. Your configuration for the
User Applications block display is now complete.

Figure 3-48. The completed Block display for the Applications view

146 | Chapter 3: Job Posting Board

8. By adding a new Block display, we’ve added a block to the Drupal installation.
Before it is visible anywhere though, we need to enable the block. Visit Adminis-
ter→Site building→Blocks (admin/build/block) and enable the new block. Place it
in the Right sidebar region and save your changes.

Taking It Further
The basic job website that we’ve built only touches on the surface of the capability of
CCK and Views. There are a lot of possibilities for extending the functionality of this
job site by adding more fields to both the Job and Job Application content types. Here
are a few modules that could be used to extend the abilities of CCK:

Automatic Node Titles, http://drupal.org/project/auto_nodetitle
This module provides support for creating title templates for nodes. For example,
rather than having users manually enter a title for their applications (which may
result in nonsensical things such as “Hire me!”), this module could ensure that all
application titles follow a standard format automatically, such as [author-name] –
[job-title].

Custom Links, http://drupal.org/project/custom_links
This handy module can be used to add your own links to any node in addition to
the usual suspects, such as “Add new comment.” We could use this to add a link
for users to apply for a job directly from the job post itself, so users did not need
to select it from a drop-down box from the application form.

Content Permissions (included with CCK)
If you need to protect certain private application information from displaying to
unprivileged users, the Content Permissions module can hide fields depending on
the viewing user’s role. As it’s included with CCK, no additional download is
necessary.

Summary
This chapter taught you how to use two of Drupal’s fundamental “building block”
modules: CCK and Views. These modules constitute the cornerstone of Drupal’s power
and are used extensively throughout the rest of the book. CCK is used to model your
website’s content by adding additional fields to hold different properties, and Views is
used to display lists of your website’s data.

Besides the basic features of these modules, this chapter also introduced you to the
methodology for Drupal site building. Rather than installing monolithic packages, in
Drupal each module provides specific functionality, and works together with other
modules to enhance their functionality. As we created fields for our different content
types, CCK was working together with the core Node module. While making listings
of content, Views retrieved information provided by both core modules and CCK. This

Summary | 147

http://drupal.org/project/auto_nodetitle
http://drupal.org/project/custom_links

sort of cooperation between modules serves as the foundation for the rest of the book,
as more modules join the party and give new shape to our sites.

Here are the modules that we referenced in this chapter:

• Automatic Nodetitle module: http://drupal.org/project/auto_nodetitle

• Content Construction Kit (CCK) package: http://drupal.org/project/cck

• Custom Links module: http://drupal.org/project/custom_links

• FileField module: http://drupal.org/project/filefield

• Link module: http://drupal.org/project/link

• Token module: http://drupal.org/project/token

• Views module: http://drupal.org/project/views

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• CCK Developers Drupal group: http://groups.drupal.org/cck

• CCK Field modules: http://drupal.org/project/Modules/category/88

• Views Developers Drupal group: http://groups.drupal.org/views-developers

148 | Chapter 3: Job Posting Board

http://drupal.org/project/auto_nodetitle
http://drupal.org/project/cck
http://drupal.org/project/custom_links
http://drupal.org/project/filefield
http://drupal.org/project/link
http://drupal.org/project/token
http://drupal.org/project/views
http://groups.drupal.org/cck
http://drupal.org/project/Modules/category/88
http://groups.drupal.org/views-developers

CHAPTER 4

Product Reviews

With more and more options for shoppers arriving on the Internet every day, finding
the right products can be a challenge. Special interest websites that feature specific
kinds of products and reviews by dedicated hobbyists are a popular way to help con-
sumers sort through all of the options and find the right products. In this chapter, we’re
going to use a handful of Drupal modules to build a product review website that lets
community members give their opinions on every product that’s featured.

This chapter introduces the following modules:

Amazon (http://drupal.org/project/amazon)
Gathers product information from Amazon.com (http://www.amazon.com)

Voting API (http://drupal.org/project/votingapi)
Provides a framework for standardizing voting data

Fivestar (http://drupal.org/project/fivestar)
Allows rating of content

Search (core)
Indexes content and allows searching within a site

CSS Injector (http://drupal.org/project/css_injector)
Allows administrators to easily add CSS styling to the site

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Reviews installation profile from the book’s sample code. This will create the
example website on your web server. The completed website will look as pictured in
Figure 4-1 and found at http://reviews.usingdrupal.com. For more information on using
the book’s sample code, see the Preface.

149

http://drupal.org/project/amazon
http://www.amazon.com
http://www.amazon.com
http://drupal.org/project/votingapi
http://drupal.org/project/fivestar
http://drupal.org/project/css_injector
http://reviews.usingdrupal.com

Figure 4-1. The completed Super Duper Chefs website

Case Study
Bob and Sarah are coworkers and food lovers who’ve both built up impressive kitchens
full of gadgets, pots and pans, and other cooking tools. Supporting a culinary habit can
be expensive, though, and they usually turn to fellow foodies for advice before pur-
chasing new gear. They’ve decided to set up Super Duper Chefs, a website where they
and their friends can write recommendations about the cooking equipment they use,
share tips, and brag about their latest culinary achievements. They’d like it to be the
kind of site they wanted when they were getting started: a fun place that highlights the
most useful products and advice.

After talking things over with their friends, Bob and Sarah think they have a handle on
what the site should offer. The most important feature is that kitchen products reviewed
by the site’s official contributors should be listed with ratings and quick summaries of
their best and worst features. Each review should also provide up-to-date pricing in-
formation. In addition to the official reviews, visitors to the site should be able to offer
their opinions on the products and compare the official ratings with the opinions of
other visitors who’ve read the reviews. Everyone that uses the site should also be able
to search for reviews that match certain criteria. For example, it should be easy to find
reviews of products by a particular manufacturer, or products that mention waffles.

150 | Chapter 4: Product Reviews

Implementation Notes
The next step is figuring out how to translate that set of features into a shopping list of
Drupal functionality. Bob and Sarah are fortunate: the core Drupal software can provide
most of what they’re looking for without any additions. We’ll set up special permissions
for contributors, and use Drupal’s administrative tools to create a custom Product Re-
view content type. Those Product Reviews will be the meat of the site’s content.

We’ll use the CCK module to add custom fields to the Product Review content type
for the various bits of information we want to record. We’ll also use the Views module
to build a listing page of products for quick scanning. Three requirements for Bob and
Sarah’s website, though, will require functionality that we haven’t seen yet: importing
product information from another website, allowing users to rate and review content,
and building a custom search page.

Product information

First, the site will need to display information about the products that are being re-
viewed. Who manufactured it? How much does it cost? Where can a visitor to the
website purchase it? Although it’s possible to set up custom fields for each of these
pieces of information with the CCK module, it’s a real hassle for the site’s editors to
fill out all of them for every review. In addition, keeping the pricing information up-to-
date can be a chore as the site grows older.

The easiest solution is to let someone else do the work! Amazon.com provides access
to its full database of product information, including kitchen gadgets (shown in Fig-
ure 4-2), using the Amazon Associates Web Services API. The Amazon Module (see
http://drupal.org/project/amazon) lets sites access that product information. That
means that writers on the site can fill out one field about the product, and the rest will
be handled behind the scenes.

In addition to saving time and energy entering in the product details, using the Amazon
API means that Bob and Sarah can get referral fees whenever someone clicks from their
website and purchases an item on Amazon.com. It’s a simple way of earning revenue,
and for high-traffic sites, the commissions can add up quickly.

Product ratings

The second challenge is product ratings. The site will need every product to have an
official review by an editor, but visitors reading the site need to be able to rate the
products as well. Displaying the official rating and the users’ ratings separately will give
a more trustworthy representation of how the products perform, reassuring new visitors
that the site’s ratings aren’t dominated by a one-sided editor.

The Drupal community has built dozens of plug-in modules that add rating and voting
capabilities to sites. A full list is available at http://drupal.org/project/Modules/category/
60. Some, such as the NodeReview module (http://drupal.org/project/nodereview),

Case Study | 151

http://drupal.org/project/amazon
http://drupal.org/project/Modules/category/60
http://drupal.org/project/Modules/category/60
http://drupal.org/project/nodereview

allow visitors to evaluate pieces of content on multiple criteria. Others, such as the
Plus1 module (http://drupal.org/project/plus1) add the ability to vote items up in a
queue, like the popular sites Reddit (http://www.reddit.com) and Digg (http://digg
.com). Still others allow each reader to rate content on a scale, then display the average
to new visitors. Because it is this average rating capability that we’re interested in, we’re
going to use the Fivestar module (http://drupal.org/project/fivestar).

In addition to letting users vote on content, Fivestar provides a CCK field to separate
“official ratings” by a site editor from the normal ratings given by visitors. We can use
the Views module to list the two kinds of ratings side by side for comparison. The
Fivestar module, like most rating and evaluation modules, is based on Voting API (http:
//drupal.org/project/votingapi), another Drupal module that handles storage and pre-
sentation of voting and rating information for content. We’ll need to install it to use
Fivestar.

Custom searching

The third piece of the puzzle is the custom search page that will let visitors to the site
find the product reviews they’re looking for. Drupal’s built-in Search module can index
the contents of each post, and give visitors a general “Search” page to find posts that
contain specific keywords. However, it’s difficult to customize how search results are
presented to users, and difficult to control exactly what kinds of content are searched.
For example, finding reviews of kitchen appliances written by Bob and sorting them
by price would be tricky. Fortunately, the Views module allows us to tie into that search
index as well, giving full control over how the results are displayed. We’ll use it to build
our custom product search page.

Figure 4-2. The Amazon.com website, displaying kitchen products

152 | Chapter 4: Product Reviews

http://drupal.org/project/plus1
http://www.reddit.com
http://digg.com
http://digg.com
http://drupal.org/project/fivestar
http://drupal.org/project/votingapi
http://drupal.org/project/votingapi

First Steps: Basic Product Reviews
Before we get started, log in to the site with the username admin and password
oreilly if you are using the installation profile. We’ll get started with a few things that
we are going to need.

One thing we will need is a new content type for the product reviews. Based on the
Super Duper Chefs requirements, we’ll need the following for each review:

• A Pros field and a Cons field to list quick summaries of each product’s strengths
and weaknesses

• An Amazon Product field to hold detailed product information

• A Rating field, so that visitors can quickly find the cream of the crop

• A Field Group that combines the rating, as well as the pros and cons, for a more
attractive presentation

• Comments so that visitors can weigh in with their own opinions

Creating the Product Review Content Type
We’ll start by creating the base content type and adding the simplest pieces: the basic
text fields needed for the Pros and Cons, grouping those fields together, and allowing
comments:

1. First, go to Administer→Site building→Modules (admin/build/modules) and ena-
ble the following modules:

• CCK package

— Content

— Fieldgroup

— Text

2. Next, go to Administer→Content management→Content types (admin/content/
types) and add a new content type called “Product review,” using the settings in-
dicated in Table 4-1.

Table 4-1. Settings for the Product Review content type

Setting Value

Identification

Name Product review

Type review

Description A featured product review by a contributing editor

Submission form settings

Title field label Headline

First Steps: Basic Product Reviews | 153

Setting Value

Body field label Review

Comment settings

Default comment setting Read/Write

Comment subject field Disabled

Location of comment submission form Display below post or comments

3. Save the changes you’ve made by clicking the “Save content type” button and you’ll
be returned to the listing of available content types. Click the “manage fields” link
(admin/content/node-type/review/fields) for our new Product review content type
to begin setting up the custom fields.

4. Because we want to group several of the fields in this content type together (the
Pros and Cons, ratings, and so on), we’ll first create a Field group to organize them.
Under “New group,” create a new group with a label of “Summary“ and a group
name of “summary” and save the form.

5. Click the “configure” link next to the Summary group (admin/content/node-type/
review/groups/group_summary), set its style to collapsible, and then save the form.

6. Back at the “manage fields” tab (admin/content/node-type/review/fields), create
a new field using the settings indicated in Table 4-2.

Table 4-2. Settings for the Pros field

Setting Value

Label Pros

Field name pros

Field type Text

Widget type Text area (multiple rows)

7. On the next screen, all of the additional settings for the new field can be left at their
default values; click the “Save field settings” button. Next, repeat the process to
create a second field using the same settings, but using the label “Cons” and the
field name “cons.”

8. We have added the fields and a group to the content type. Now let’s group the Pros
and Cons together in the Summary group and move them to the top of the form.
Drag the fields into the following order (make sure to drag Pros and Cons under
Summary and indent them). When you’re finished, click the “Save” button.

• Headline

• Menu settings

• Summary

— Pros

— Cons

154 | Chapter 4: Product Reviews

• Review

Now that we have the Product Reviews content type started, we need to add permis-
sions to allow the right people to create them. Bob and Sarah’s friends will each have
their own account and be able to post and edit their own reviews as editors of the site.
Bob and Sarah themselves will be the administrators of the site and will therefore be
able to edit or delete anyone’s posts so that they can keep the site tidy, if needed. Go
to Administer→User management→Permissions (admin/user/permissions) and fill in
the values shown in Table 4-3. Click “Save permissions” when you are done.

Table 4-3. Permissions for the Product Review content type

Permission anonymous user authenticated user editor site administrator

node module

create review content Checked Checked

delete any review content Checked

delete own review content Checked Checked

edit any review content Checked

edit own review content Checked Checked

Once you have everything set up, go to Create Content→Product Review (node/add/
review) and enter a simple review. Your new review creation form should look like
Figure 4-3.

Figure 4-3. Creating a product review

First Steps: Basic Product Reviews | 155

The Product review content type is well on its way—it’s now possible to create a new
review, fill out the pros and cons, and display the results on the front page of the site.
The finished review should look something like Figure 4-4. In the next section, we’ll
be adding more complete product information, straight from Amazon.com.

Figure 4-4. A completed review with basic information

Spotlight: Amazon Module
Amazon.com is one of a large number of web-based businesses that have opened up
their product information databases for other sites to access. In the case of Super Duper
Chefs, we want to retrieve useful data like product photos, pricing, and manufacturer
information for display on our own website. The Amazon module for Drupal allows
us to do just that.

What’s Included?
The Amazon module is actually an entire collection of modules, each with its own
purpose:

• The core Amazon API module handles communication with the Amazon.com
website and ensures that pricing information on products stays up-to-date. All of
the other modules included in the package require this one.

• The Amazon Media module stores extra information about certain types of prod-
ucts. For example, it’s responsible for storing and displaying the MPAA rating for
movies and the console that video games run on.

• The Amazon Search module adds the ability to search for Amazon.com products
from Drupal’s default Search page.

• The Amazon Field module allows administrators to add a field to any content type
that stores an Amazon product ID, and displays a photo of the product straight
from Amazon.com. This module is the one that we’ll be using to enhance our
Product Review content type.

156 | Chapter 4: Product Reviews

• The Amazon Filter module allows writers to insert product images and information
into any piece of content using the [amazon] tag. It’s useful for bloggers or writers
who want to link to products occasionally but don’t need the structure of an explicit
field just for product links.

The Amazon module doesn’t require much configuration, but there are several impor-
tant settings that most site administrators will want to change on its configuration page,
at Administer→Site configuration→Amazon API (admin/settings/amazon) and pictured
in Figure 4-5.

Figure 4-5. The Amazon module’s settings page

Locale
Because each country that Amazon operates in has a separate database of products,
prices, and availability information, you’ll want to choose the Locale that your website’s
users reside in. This setting will determine which Amazon website (http://www.amazon
.com, http://www.amazon.jp, and so on) will be used to look up the information for a
given product. In addition, whenever links from your site to Amazon.com are gener-
ated, they’ll point to the local Amazon site for the locale you’ve chosen. If you don’t
choose a specific locale, the Amazon module will assume that your site is operating in
the United States.

Spotlight: Amazon Module | 157

http://www.amazon.com
http://www.amazon.com
http://www.amazon.jp

Referral Settings
Although it’s not required, setting up an Associate ID at http://affiliate-program.amazon
.com/gp/associates/join allows Amazon to credit your site when your visitors click on
an Amazon.com link and purchase a product. If you’re feeling generous, the Amazon
module also allows you to use the Drupal Association’s ID, automatically donating any
commissions from purchases to support the Drupal project.

Web Service Tools
The Amazon module is what’s known as an “API” module—it uses an “Application
Programming Interface” to give Drupal developers access to another website’s data or
another program’s functionality. Similar modules allow Drupal sites to retrieve maps
from the Google Maps web service, post messages to the Twitter microblogging service,
synchronize dates and events with the Upcoming.org calendar site, and more.

Hundreds of these API modules are available in the “Third-party integration” category
of the http://drupal.org downloads section (http://drupal.org/project/modules/category/
52). If you’d like to connect your Drupal site to a popular website, it’s worth checking
that page out.

Hands-On: Adding an Amazon Field
In the previous section of this chapter, we set up a content type for our product reviews.
Now, we’re ready to add an additional field to store a link to the product on
Amazon.com. We need to do a few things to get set up before we add the field to our
content type:

1. First, go to Administer→Site building→Modules (admin/build/modules) and ena-
ble the following modules:

• Amazon package

— Amazon API

— Amazon Field

2. Next, go to Administer→Site configuration→Amazon API (admin/settings/ama-
zon). Select your locale and add your Amazon Associate ID, if you have one. If you
are in the United States and do not have an Amazon Associate ID, you can use the
default settings.

Adding the Product Field
Having set up the Amazon module, we’re ready to continue customizing the Product
Review content type:

158 | Chapter 4: Product Reviews

http://affiliate-program.amazon.com/gp/associates/join
http://affiliate-program.amazon.com/gp/associates/join
http://drupal.org
http://drupal.org/project/modules/category/52
http://drupal.org/project/modules/category/52

1. Go to Administer→Content management→Content types (admin/content/types)
and click the “manage fields” link (admin/content/node-type/review/fields) for the
Product Review content type and create a new field using the settings indicated in
Table 4-4.

Table 4-4. Settings for the Product ID field

Setting Value

Label Amazon Product ID

Name product_id

Field type Amazon item

Widget Text field

2. Click the Save button to create the field, and you’ll be taken to the next screen to
fill out the field settings as shown in Table 4-5.

Table 4-5. Settings for the Product ID field

Setting Value

Product review settings

Help text Enter the Amazon product ID of the item you’re reviewing.

Global settings

Required Checked

1. Click the “Save field settings” button to complete the process, and you’ll be re-
turned to the “Manage fields” page for the Product review content type.

2. On the “Manage fields” page (admin/content/node-type/review/fields), rearrange
the new Amazon field so that it is listed under the Pros and Cons fields, like so:

• Headline

• Menu settings

• Summary

— Pros

— Cons

• Amazon product ID

• Review

Go to Create content→Product review (node/add/types/review) and add a new review.
This time, fill out the Amazon Product field as well as the normal Headline, Pros and
Cons, and Review fields. Your new review should look something like Figure 4-6.

Hands-On: Adding an Amazon Field | 159

Figure 4-6. A review with Amazon.com product details

Later, we’ll use CCK’s Display Fields settings to control what information is output by
Amazon on these nodes.

For even more fine-grained control over the display of Amazon product data, particu-
larly on more standard “media” products such as books and software, the Amazon
Media module touched on in the Spotlight section includes a series of template files
that can be customized to grab the specific fields you’re looking for. We’ll talk about
template files when we discuss theming in Chapter 11.

Our product reviews now contain fields for product pros and cons, and a link to Am-
azon.com for each product. What’s left? We need some way to capture the editorial
rating for each product that’s reviewed, and a way for visitors to the site to add their
own ratings as well. For that, we’ll take a look at the Voting API and Fivestar modules.

Finding Product IDs
Our Amazon field will automatically load product photos and pricing information
whenever we enter a product ID. That’s great—but how will the site’s reviewers find
those product IDs in the first place?

The simplest way is to find the product on the Amazon.com website using its own
search function. Each product has its own page on Amazon.com, and the product ID
usually appears there in two locations: the URL of the page itself, and the “Product
details” section of the page, listed as the ASIN (short for Amazon Standard Identifica-
tion Number). See Figures 4-7 and 4-8 for examples.

160 | Chapter 4: Product Reviews

Figure 4-7. An Amazon product page’s URL, with the product ID highlighted

Figure 4-8. An Amazon product page’s details section

The Amazon module will ensure that any product IDs entered into Super Duper Chefs
reviews point to real products on Amazon.com.

Spotlight: Voting API and Fivestar
Giving visitors a chance to evaluate and rate content is an extremely common pattern
on content-rich websites. In addition to giving visitors a way to jump to the best content,
it can give you—the site’s administrator—a way to determine what content on your
site is most effective.

Almost all rating and evaluation modules for Drupal rely on a shared module called
Voting API. Though it offers no features for your site on its own, it gives developers a
set of tools for building rating systems and provides a common format for storing votes
and calculating the results. This allows developers to focus on what makes their work
unique (presenting vote results in a novel way, for example) while Voting API handles
the grunt work.

One of the other advantages of this system is that modules based on Voting API can
often share the same data. For example, the jRating (http://drupal.org/project/jrating),
Criteria Rating (http://drupal.org/project/criteria_rating), and Fivestar (http://drupal
.org/project/fivestar) modules all offer slightly different features, but they accomplish
the same thing: rating content on a scale, and displaying the current average as an
Amazon-style star rating. Although they look different and give administrators different
options for presenting and using the results of the voting, they can be used

Spotlight: Voting API and Fivestar | 161

http://drupal.org/project/jrating
http://drupal.org/project/criteria_rating
http://drupal.org/project/fivestar
http://drupal.org/project/fivestar

interchangeably. Votes cast by one of these modules can be used by any of the others,
as they’re stored and maintained by the shared Voting API.

The Fivestar module offers numerous configuration options, from the style and color
of stars that it uses to display ratings to how results are presented when visitors look
at a new piece of content. Figure 4-9 shows the Fivestar module’s selection of rating
widgets. The widget visitors use to rate each post can be displayed in the post itself, in
a floating sidebar block, or even in the commenting form when visitors submit a reply.

Despite what its name suggests, Fivestar can display any number of stars: 10 stars, 3
stars—even 1-star scales can be used. In addition, it provides a custom field type for
the CCK module: a simple numeric field on any piece of content can be displayed using
Fivestar’s custom widget, separate from the ratings cast with Voting API.

Hands-On: Adding Ratings
For the Super Duper Chefs site, we’ll be using both of Fivestar module’s unique fea-
tures: adding a static Rating field to the Review content type, and attaching a voting
widget to the comment form on each review. That approach will keep the official rating
on each review separate from the reader ratings.

First, go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

Figure 4-9. The Fivestar module’s selection of rating widgets

162 | Chapter 4: Product Reviews

• Voting package

— Fivestar

— Fivestar Comments

— Voting API

Adding the Rating Field
Go to Administer→Content management→Content types (admin/content/types), click
the “manage fields” link for the Product Review content type (admin/content/node-
type/review/fields), and create a new field using the settings indicated in Table 4-6.

Table 4-6. Creating the “Rating” field

Setting Value

Label Rating

Name rating

Field type Fivestar Rating

Widget Stars

Click the Save button to create the field, and you’ll be taken to the detailed settings
page. Choose the settings indicated in Table 4-7, and click “Save field settings” to add
the field. Because these are editorial reviews, it doesn’t make sense for users to be able
to remove their vote, so we’re going to remove the ability to do so. We’ll also add this
field to the Summary group so that it’s displayed along with the pros and cons.

Table 4-7. Detailed settings for the “Rating” field

Setting Value

Product review settings

Allow user to clear value Unchecked

Global settings

Required Checked

Number of Stars 5

When you return to the “Manage fields” tab (admin/content/node-type/review/fields),
rearrange the new Rating field above the Pros and Cons inside the Summary group.
After you click the Save button, the list should look like this:

• Headline

• Menu settings

• Summary

— Rating

Hands-On: Adding Ratings | 163

— Pros

— Cons

• Amazon product ID

• Review

Turning on Visitor Ratings
Click the “edit” tab for the Product review content type (admin/content/node-type/
review) and open the “Fivestar ratings” section of the page. Once you’ve checked “En-
able Fivestar rating” for the content type, a preview of the rating widget based on the
settings you’ve selected will appear on the page. Feel free to experiment with different
settings: the Fivestar module will offer a preview that reflects your choices. Fill out the
settings with the values in Table 4-8, as shown in Figure 4-10. This setup will show the
user’s own vote if available; otherwise, it shows the average vote across all users.

Table 4-8. Fivestar rating settings for the Product Review content type

Field Value

Direct rating widget

Star Display Style User vote if available, average otherwise

Text Display Style Current average in text

Full node display <Hidden>

Comment widget

Fivestar comment settings Optional rating

Click the “Save content type” button to save your changes.

Remember that you can play with the settings at Administer→Site con-
figuration→Fivestar (admin/settings/fivestar) to choose fun icons such
as hearts or flames that users can use to rate content. If you choose a
widget listed under “Custom color widgets,” you can even choose a
color scheme that matches your site.

With the ratings in place, we need to allow the site users to actually rate things. Go to
Administer→User management→Permissions (admin/user/permissions) and set the
permissions shown in Table 4-9. Click the “Save permissions” button to finish up.

Table 4-9. Permissions for Fivestar ratings

Permission anonymous user authenticated user editor site administrator

fivestar module

rate content Checked Checked Checked

164 | Chapter 4: Product Reviews

All of the essentials for the reviews are now in place. Writers on the site can write reviews
that include pros and cons about the product, rate the product using an intuitive five-
star scale, and pull in full pricing and manufacturer information from Amazon.com. In
addition, users can post their own comments about the product and rate it themselves.
Figure 4-11 shows our new Fivestar ratings in action.

Figure 4-10. Widget settings for the Fivestar module

Hands-On: Adding Ratings | 165

Hands-On: Building a Product List
Now that we have a few products, we really ought to add a listing page that lets visitors
look over all of the products that have been reviewed, comparing official ratings with
visitor ratings and sorting by various criteria, as pictured in Figure 4-12. This page will
be simple to build with the Views module.

Figure 4-12. Product finder view

Figure 4-11. A product with an editorial rating, along with a user review in progress

166 | Chapter 4: Product Reviews

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• Other package

— Advanced help

• Views package

— Views

— Views UI

2. Go to Administer→Site building→Views and click on the Add tab (admin/build/
views/add) and fill in the new view settings using Table 4-10.

Table 4-10. Settings for creating the Products view

View setting Value

View name products

View description List of reviewed products

View tag products

View type Node

3. After clicking the Next button, configure the “Basic settings” section of the view,
using Table 4-11.

Table 4-11. Basic settings for the Product finder view

Defaults: Basic settings Value

Title Product Finder

Style Table

4. After setting those Basic settings, you will see a message that states “You need at
least one field before you can configure your table settings.” We are going to go
ahead and do that in a minute, but first we need to create a relationship for our
fields so that we can use Amazon-specific fields in the view and display the average
rating given to each product by visitors to the site.

Click the + (plus) icon in the Relationships section and check both the “Content:
Amazon item: Amazon product ID (field_product_id)” and “Node: Voting results”
relationships. Click the Add button to add the relationship and then fill out the
settings in Table 4-12 when prompted. Press Update after each form is presented.

Hands-On: Building a Product List | 167

Table 4-12. Voting Results relationship settings for the Product finder view

Defaults: Relationships Value

Content: Amazon item: Amazon product ID (field_product_id) (No changes required)

Node: Voting results Value type: Percent

Vote tag: Default vote

Aggregate function: Average

5. In the Fields section of the View, click the + (plus) icon, check the following fields,
and click Add. This will give us the product title, price, official rating, and reader
rating:

• Amazon: List price

• Amazon: Title

• Content: Fivestar Rating: Rating (field_rating)

• Voting API results: Value

6. Configure the settings for each new field as shown in Table 4-13. Click Update
when you’re finished configuring each field’s settings.

Table 4-13. Field configuration settings for the Product finder view

Defaults: Field configure setting Value

Amazon: List price Label: Price

Amazon: Title Link behavior: A link to the node the product is associated with

Content: Fivestar Rating: Rating (field_rating) Label: Custom

Custom label: Official rating

Voting API results: Value fields Appearance: Fivestar Stars (display only)

Relationship: Voting results

Label: Reader rating

7. Let’s rearrange the fields into a different order. Click the ↑↓ (rearrange) icon in
the Fields section. Drag the “(field_product_id_asin) Amazon: Title” field to the
top of the list so that the product title is listed first.

8. Now that we have the fields, click the (gear) icon next to Style to configure the
table settings, and use the values listed in Table 4-14 for a sortable table. Click
Update when finished.

Table 4-14. Table style options for the Product finder view

Defaults: Table style option Value

Sortable All checked

Default sort Official rating

9. In the Filters section, click the + (plus) icon and check the Node: Published or
admin and Node: Type filters. This setup shows only published review nodes,

168 | Chapter 4: Product Reviews

unless the logged-in user has the ability to see unpublished nodes (administer nodes
permissions), which can be handy. After clicking the Add button, configure the
new fields according to Table 4-15, clicking Update after each form.

Table 4-15. Filter settings for the Product finder view

Defaults: Filter setting Value

Node: Published or admin No settings required

Node: Type Node type: Product review

10. Finally, use the links on the left side of the View page to add a new Page display to
the view. Configure the display’s Page settings to match the values in Table 4-16.

Table 4-16. Page settings for the Product finder view

Page: Page setting Value

Path products

Menu

Type Normal menu entry

Title Product finder

When all those steps have been completed, save the view, which should look like
Figure 4-13.

Figure 4-13. Completed Product Finder view settings

Hands-On: Building a Product List | 169

With the settings we’ve used, you should now see a “Product finder” link (products)
in the site’s navigation menu. Upon clicking it, you should see a tidy listing of all the
reviews on the site, with official and reader ratings compared side by side, as shown
earlier in Figure 4-12.

Only one feature remains from our to-do list: build searching capabilities into our
product list so visitors can easily filter it down to find products that interest them.

Spotlight: The Search Module
Drupal’s built-in Search module offers powerful, flexible searching features and intel-
ligent ranking of results. Behind the scenes, it’s silently building an index of all the
words used in the site’s content. When users search for a phrase on the site, content is
ranked using customizable rules and displayed in order of relevance. On any Drupal
site, you can refine these rules by going to Administer→Site Configuration→Search Set-
tings (admin/settings/search) and changing the Content Ranking weights, pictured in
Figure 4-14.

The Search module also offers more detailed options for sites with large amounts of
content. The Advanced Search screen, pictured in Figure 4-15, allows users to choose
exactly what content they want to search, filtering based on content type, free tagging
terms, and other criteria.

The Importance of Cron
The indexing process used by Drupal’s Search module only works when the “cron”
utility has been properly configured. cron is a utility used to run various commands at
scheduled intervals on your web server. It is responsible for performing maintenance
tasks on a Drupal site, such as clearing old log entries, as well as scheduling bulk email
and other tasks that happen with regular frequency.

Each time cron runs, Drupal will catalog some of the site’s content; by default, it indexes
200 posts each time. If your site has a large number of posts already, the speed of the
indexing will depend on how frequently cron is configured to run on your server.

If you’re not sure whether cron has been set up, or if you’re running on your local
computer to test the site out, you can tell Drupal to perform its cron tasks by visiting
Administer→Reports→Status report (admin/logs/status) and clicking the “run cron
manually” link. For more information on setting up cron for your site, see http://drupal
.org/cron.

170 | Chapter 4: Product Reviews

http://drupal.org/cron
http://drupal.org/cron

An alternative to setting up cron is to install the Poormanscron mod-
ule (http://drupal.org/project/poormanscron). This module passes along
the task of checking to see whether scheduled events need to happen to
your website’s visitors, transparently. Each time a visitor hits the web-
site, Poormanscron will check to see whether it needs to do anything
new since the last time it ran and, if so, will perform the cron actions.
This check triggers events after the page is loaded, so the visitor doesn’t
know the difference.

Of course, this works only if your site gets regular traffic. But then again,
if it doesn’t, it probably doesn’t matter how often your search index is
updated.

Figure 4-14. The Search module’s configuration page

Spotlight: The Search Module | 171

http://drupal.org/project/poormanscron

Searching with Views
Although the Advanced Search form allows quite a bit of control for users, it’s very
difficult for us to change how that page appears and control how the results are dis-
played. It also can present a daunting array of options, especially when a site has lots
of taxonomy terms.

The Views module is one way to exercise more control over searching: its filters can
narrow down lists of content based on words indexed by the search system. A view
might list only blog posts mentioning kittens, for example. For the Super Duper Chefs
site, we’ll be using this module to add custom filtering to our Product finder page.

Hands-On: Make the Product List Searchable
To transform the Product finder page into a searchable index, we’ll be adding two new
filters to the view: one that restricts the results by manufacturer and another that re-
stricts results to reviews that mention specific words.

Normally, these filters are locked in place and can’t be modified, except by the site’s
administrator. We need users to enter their own criteria, however. Fortunately, Views
allows us to “expose” any of its normal filters. Doing so adds a small form to the heading
of the view’s display page. Visitors to the site can use it to change how Views filters its
results, turning any view into a simple search tool, as pictured in Figure 4-16.

Figure 4-15. The Advanced Search page in action

172 | Chapter 4: Product Reviews

Figure 4-16. Searchable Product Listing view

Here are the steps to get your searchable list:

1. Enable searching on the site: go to Administer→Site building→Modules (admin/
build/modules) and enable the Core - optional: Search Module.

2. Go to Administer→Site building→Views (admin/build/views) and click the Edit
link for our Product view.

3. Click the + (plus) icon in the Filters section to check the Amazon: Manufacturer
and Search: Search Terms filters.

4. On the settings form for each of the filters, click the Expose button, which will
present the filter as a form field that a site visitor can interact with. Configure the
Exposed Filter settings for each filter using the values in Table 4-17. As usual, click
Update to move between the configuration forms.

Table 4-17. Settings for the Search Terms filter

Defaults: Configure filter setting Value

Amazon: Manufacturer Operator: Contains

Case sensitive: Unchecked

Label: Manufacturer:

Search: Search Terms On Empty Input: Show All

Label: Keywords:

5. Click the ↑↓ (rearrange) icon on the Filters section and move Search: Search Terms
above Amazon: Manufacturer so that its box will appear first.

6. Save the view, which should now look like Figure 4-17.

Hands-On: Make the Product List Searchable | 173

Figure 4-17. Completed Product Listings view settings

Before we test our new search feature, we need to make sure that we give search per-
missions to the users. We want everyone who visits the site to be able to search. Go to
Administer→User management→Permissions (admin/user/permissions) and set the
permissions as indicated in Table 4-18, which will give the option to all users, both
logged in and anonymous. Save the permissions.

Table 4-18. Permissions for searching

Permission anonymous user authenticated user editor site administrator

search module

search content Checked Checked

The last thing we need to do is make sure that our site has been indexed, so that when
we do a search the keywords will be accessible. Although you definitely want to set up
an automated cron job to handle this, we will manually update our site so we can see
that our search is working properly. Go to Administer→Reports→Status report (admin/
reports/status), and in the table you will see a row for “Cron maintenance tasks.” Click
the “run cron manually” link.

Now go to our Product finder page (http://example.com/products). You should see the
normal page full of products, this time with filter fields above the list. Enter a phrase

174 | Chapter 4: Product Reviews

http://example.com/products

that appears in one of your reviews, and click the Apply button. You should see an
attractive list of the top results that contain the phrase, as we saw earlier in Figure 4-16.

Spotlight: CSS Injector
Drupal’s theming system, which is introduced in Chapter 11, gives designers complete
control over how a site’s content is rendered for a web browser, and custom themes
(like the Nitobe theme that we’re using for the Super Duper Chefs site) can give any
site a distinctive look. But sometimes it’s useful to make minor tweaks to a site’s ap-
pearance using nothing but CSS rules. They allow designers to tweak font sizes, colors,
and so on without altering the underlying HTML that defines the site’s structure.

The CSS Injector module (http://drupal.org/project/css_injector) gives administrators
the ability to add those snippets in an administration screen within your site, without
having to make changes to the current theme’s files. This feature can be useful when a
new version of your site’s theme is released on Drupal.org—if you change the theme
to add your own CSS, it’s easy to lose those modifications when you download the new
version. Keeping them in CSS Injector will preserve them even if you change themes.

CSS Injector offers a number of advanced options, including the ability to add the CSS
rules conditionally on certain pages. If your CSS tweaks only apply to the front page,
for example, you can ensure that it won’t add the unnecessary rules to the entire site.
You can also specify a media type for your CSS, which makes it possible to add styling
information that applies only when a page is being printed. Finally, each rule can use
the Preprocess CSS checkbox to control whether Drupal should merge its rules with
the current theme’s CSS. In most cases, this step saves time, because a visitor’s web
browser makes only a single trip to your site’s web server to download all the style-
sheets. If you’re adding extremely large amounts of CSS code that only apply to one or
two pages, it can be more efficient to keep that code separate by turning preprocessing
off. Otherwise, leave it enabled.

If you’re mystified by CSS, http://w3schools.com/css/default.asp provides
interactive work areas for learning all types of web technologies, in-
cluding CSS. It’s a great resource to keep bookmarked.

Hands-On: Polishing the Presentation
In this section, we’ll do some final tweaking to make the review display look nice and
tidy, as pictured in Figure 4-18.

Hands-On: Polishing the Presentation | 175

http://drupal.org/project/css_injector
http://w3schools.com/css/default.asp

Setting CCK Display Fields Options
Although our Product Reviews content type has all of its data in order, and our product
listing pages are looking great, the individual reviews still look a bit untidy. Fortunately,
we can use the CCK module’s display settings to tweak how each type of field is dis-
played in the reviews.

Go to Administer→Content management→Content types (admin/content/types), click
the "edit" link for the Product review type, and then click the “Display fields” tab (ad-
min/content/node-type/review/display). Fill out the fields using the settings in Ta-
ble 4-19, which will help streamline the display of review information. Click the Save
button when you are done.

Table 4-19. Display settings for the Product Review content type

Field Label Teaser Full

Summary <Hidden> Simple Simple

Rating Inline As Stars As Stars

Pros Inline Default Default

Cons Inline Default Default

Amazon Product ID <Hidden> Small image and full info Small image and full info

Figure 4-18. Completed review display

176 | Chapter 4: Product Reviews

Configuring CSS Injector
Changing the CCK Display settings for our reviews cleans things up quite a bit, but the
Summary information still seems awkward. In Chapter 11, we cover some of the basics
of theming the HTML that Drupal outputs, but for now we can improve things quite
a bit by adding some CSS rules using CSS Injector. We’ll use it to reduce the width of
the Summary box and float it to the side of each review, turning it into a floating sidebar
rather than a header at the top of each review. Here’s how:

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
Other: CSS Injector module.

2. Go to Administer→Site configuration→CSS Injector (admin/settings/css_injector)
and click the “Create a new rule” link to add a new CSS rule.

3. Name the rule “Floating Amazon fields,” and enter the following text into the CSS
code field. You can see the completed form in Figure 4-19.

div.fieldgroup {
 border: 1px solid lightgrey;
 float: right;
 padding: 10px 2px;
 width: 200px;
 font-size: .9em;
}

div.field-label-inline-first {
 float: left;
}

Not a fan of typing? Not to worry. This code is also available in the
assets/ch04-reviews/amazon.css file in the book’s source code for
easy copying and pasting.

4. Click the Save button to add the new rule.

Depending on your web browser’s settings, you may need to clear the browser’s cache
to see the changes to the stylesheet. Once you’ve done that, returning to one of the
product reviews added earlier should look quite a bit more attractive, as shown earlier
in Figure 4-18. What a difference a dash of CSS makes!

Taking It Further
Congratulations! All of the major features for the site are in place. If you’re interested
in experimenting further, there are quite a few opportunities for additional enhance-
ments using other Drupal modules.

Taking It Further | 177

Notifications (http://drupal.org/project/notifications)
This module gives visitors to the site the ability to request email notifications each
time a new review is posted. It also allows official site contributors to receive email
when visitors post comments to their reviews.

AdSense (http://drupal.org/project/adsense)
This module allows Bob and Sarah to place ads in the sidebar to offset the costs of
hosting the site.

Blog (core)
This module allows the site’s writers to each have their own blog on which to
discuss their cooking tips, latest recipes, and other culinary exploits, even when
they’re not reviewing products.

Figure 4-19. Adding a new CSS injector rule

178 | Chapter 4: Product Reviews

http://drupal.org/project/notifications
http://drupal.org/project/adsense

Summary
After all that work, where have we arrived? We’ve hit all of the major pieces of func-
tionality that Bob and Sarah wanted. Using CCK, Amazon, and Fivestar, writers can
post their reviews of cool kitchen products to the site. With Fivestar and Voting API,
visitors to the site can offer their opinions on those same products and participate in
the reviewing process. And with Views’ Search module integration, it’s easy for them
to find the exact products that they’re interested in. Finally, the CSS Injector module
allowed us to sprinkle on those finishing touches that make the site really shine.

Here are the modules that we referenced in this chapter:

• AdSense: http://drupal.org/project/adsense

• Amazon: http://drupal.org/project/amazon

• CCK: http://drupal.org/project/cck

• CSS Injector: http://drupal.org/project/css_injector

• Fivestar: http://drupal.org/project/fivestar

• Poormanscron: http://drupal.org/project/poormanscron

• Views: http://drupal.org/project/views

• Voting API: http://drupal.org/project/votingapi

Here are some other resources we referenced:

• Amazon Associates program: http://affiliate-program.amazon.com/

• Configuring cron jobs: http://drupal.org/cron

• Evaluation and rating modules: http://drupal.org/project/Modules/category/60

• Third-party integration modules: http://drupal.org/project/modules/category/52

• Voting Systems Drupal group: http://groups.drupal.org/voting-systems

• W3Schools CSS Tutorial: http://w3schools.com/css/default.asp

Summary | 179

http://drupal.org/project/adsense
http://drupal.org/project/amazon
http://drupal.org/project/cck
http://drupal.org/project/css_injector
http://drupal.org/project/fivestar
http://drupal.org/project/poormanscron
http://drupal.org/project/views
http://drupal.org/project/votingapi
http://affiliate-program.amazon.com/
http://drupal.org/cron
http://drupal.org/project/Modules/category/60
http://drupal.org/project/modules/category/52
http://groups.drupal.org/voting-systems
http://w3schools.com/css/default.asp

CHAPTER 5

Wiki

The collaborative nature of wikis has given rise to new and exciting methods of online
knowledge management. Wikipedia, the most famous example of a wiki, is an online
encyclopedia consisting of millions of articles, constantly written and updated by thou-
sands of volunteers from around the world. By combining a few add-on modules,
Drupal can also harness this sort of power and combine it with the other great features
that Drupal already provides.

But what is a wiki? A wiki is a collection of web pages that visitors may contribute to
by adding and editing content through their browser. Wikis keep track of changes made
and have the ability to revert to earlier versions when needed. Wikis often use a sim-
plified text markup to allow quick and easy formatting. A key technical feature is the
ability to create links to pages that don’t yet exist, allowing the structure of the site to
grow organically. What all of that means is that a wiki is a great tool for a group to use
to collaborate when writing documents. Many people can work together on a “living”
document that gets changed and updated as needed.

In this chapter, we will build a wiki with Drupal and cover some really cool things that
Drupal can do—wiki or not.

This chapter introduces the following modules:

Freelinking (http://drupal.org/project/freelinking)
Provides the ability to easily link between pages

Markdown filter (http://drupal.org/project/markdown)
Provides an easy, human-readable way to enter HTML formatting

Diff (http://drupal.org/project/diff)
Shows color-coded list of changes between two revisions of content

Pathauto (http://drupal.org/project/pathauto)
Automatically creates clean, search-engine-friendly URLs

Token (http://drupal.org/project/token)
A utility module to provide variables that are later replaced with dynamic bits, such
as [user-name]

181

http://drupal.org/project/freelinking
http://drupal.org/project/markdown
http://drupal.org/project/diff
http://drupal.org/project/pathauto
http://drupal.org/project/token

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Wiki installation profile from the book’s sample code, which will create the
example website on your web server. The completed website will look as pictured in
Figure 5-1 and at http://wiki.usingdrupal.com. For more information on using the book’s
sample code, see the Preface.

Figure 5-1. The finished Berchem University SGA wiki site

Case Study
The Berchem University Student Government Association (SGA) needs an internal site
that all of its members can use to collaborate on the SGA’s business, which is accessible
only to members of the SGA. Because they are all very busy students on different
schedules, it is hard to find time to actually meet in person to get work done. They need
a place to create and update information for such things as internal policies and pro-
cedures, meeting notes, and event planning. The SGA is formed by a number of groups
around the campus and they would like everyone to be able to use the site to collaborate,
but they also have some specific information to be made available that should be ed-
itable only by the executive officers.

Most of the members do not know HTML, but need to be able to add basic formatting
to their text and easily create links to both existing pages and pages that don’t exist yet.
They also need to be able to see changes that are made to the pages over time and revert
back to earlier versions. They would also like to make the URLs be easily remembered
words rather than random numbers (for example, http://example.com/annual-blood
-drive as opposed to http://example.com/node/123).

182 | Chapter 5: Wiki

http://wiki.usingdrupal.com
http://example.com/annual-blood-drive
http://example.com/annual-blood-drive
http://example.com/node/123

Finally, they need a way to track the activity of the wiki, which will entail two listing
pages: one to show newly added pages, and another to show pages that were recently
edited.

Implementation Notes
In the following subsections, we’ll discuss the modules used and their implementation.

Wiki Functionality
There is a long list of modules to help us satisfy the requirements for this site. When
looking for wiki solutions, the obvious place to start looking would be wiki modules.
There are three modules with “wiki” in their names, Wiki (http://drupal.org/project/
wiki), Liquid Wiki (http://drupal.org/project/liquid), and Wikitools (http://drupal.org/
project/wikitools). Wiki was developed as a means to centralize the various wiki solu-
tions in Drupal in a single package, but has been abandoned since 2006 and therefore
is of no interest. Both Liquid Wiki and Wikitools are not “complete” wiki packages.
They both group together some common needs in wikis, but rely on other modules for
much functionality. Unfortunately, at the time of this writing, it appears that the Liquid
Wiki module is also not being maintained, as there are no official releases and no de-
velopment has occurred since February 2007. That leaves us with Wikitools as the only
viable one in the group.

At the time of this book’s writing, the Wikitools module was under development and
was not yet ready for production use. It adds some nice features, like automatically
redirecting links if a wiki post path changes and protection against moving pages (reg-
ular users can’t retitle a wiki post, which would change the post’s path). These are nice
but certainly not needed in our scenario. Check back for updates on the status of the
module; as with all other tools in the Drupal world, things can evolve quickly if enough
interest is focused on them.

However, we can build a wiki without any of those modules, which is what we’ll be
doing in this chapter. There are many modules that will give us the functionality we
need, just not under the banner of “a wiki module.” We can use all the tools that Drupal
provides, not just the obvious or obviously named ones. Drupal core already has many
“wiki” features built in, so we just need to provide a few extra touches to make our site
like what people expect from a wiki.

Easy Text Formatting
One of the most recognizable features in a wiki site is easy text formatting without using
HTML markup. Formatting in the wiki world is generally achieved through “wiki
markup,” which is a way of marking plain text that is similar to HTML, but much
simpler. One example of a popular text-to-HTML conversion tool is Markdown (visit

Implementation Notes | 183

http://drupal.org/project/wiki
http://drupal.org/project/wiki
http://drupal.org/project/liquid
http://drupal.org/project/wikitools
http://drupal.org/project/wikitools

http://daringfireball.net/projects/markdown/ for more), which turns simple text into its
HTML equivalent.

To illustrate, here is an example of a sentence written in HTML and in the Markdown
syntax:

I am a sentence with bold text and a link to another page.

Both of the following examples create bolded text and a hyperlink with the visible text
of “link to another page” with the target path being “page2”:

HTML

I am a sentence with bold text and a
link to another page.

Markdown syntax

I am a sentence with **bold** text and a [link to another page](/page2).

As you can see from the two examples, the simplified syntax is not as intimidating to
people who have never used HTML before. Another advantage is that if you need to
read the source text of the page, the syntax is closer to normal text; therefore, it tends
to be easier to read.

We can use a specific markup by adding modules that expand the built-in filtering
system, which was covered in Chapter 2. There is a wide variety of markup styles
available—your best choice largely depends on personal preference and familiarity. We
will be using the Markdown filter module for our site, but there are many others avail-
able, including BBcode (http://drupal.org/project/bbcode), Textile (http://drupal.org/
project/textile), and more. You can find a list of all filters at http://drupal.org/project/
Modules/category/63.

Easy Linking
We can also use the filter system to provide us with a simple markup for creating links
automatically, that is, without needing to know and type in the destination page’s URL.

The Freelinking filter lets us quickly and easily make links to other pages in the site,
even if they have not been created yet. If you make a link to a nonexistent page, clicking
the link will take you directly to the node creation form with the title of the page already
filled in, making it very easy to add the new page without clicking around in the menus.

Tracking Changes
We also need a way to track all of the changes to our content, so we’ll add to our list
of needed modules. Drupal has a built-in system that does the grunt work of tracking
and restoring from changes to the text: the revision system. We will use the Diff module
to enhance that system and give us a snapshot of the changes between iterations.

184 | Chapter 5: Wiki

http://daringfireball.net/projects/markdown/
http://drupal.org/project/bbcode
http://drupal.org/project/textile
http://drupal.org/project/textile
http://drupal.org/project/Modules/category/63
http://drupal.org/project/Modules/category/63

Human-Readable URLs
The core Path module provides human-readable URLs, but it requires you to manually
insert and update the URLs yourself. Automating this process is neatly solved with the
Pathauto module, which allows you to define standard word patterns to replace all of
your URLs automatically when you create or update content. Pathauto can be config-
ured to automatically give all of your blog entries paths such as http://www.example
.com/2009/04/23/this-is-my-blog-entry-title, and all of your user profile pages paths
such as http://www.example.com/members/admin.

Listing Changes
Our final requirement, providing a list of changes throughout the site, is a great match
for the Views module, which we discussed in Chapter 3. We will create a customized
list of content that has changed, which allows the members to easily see what others
have been working on.

Hands-On: First Steps
This section will cover the foundation that is required in order to complete the hands-
on exercises in the rest of the chapter.

Creating a Wiki Content Type
The first thing to do is make sure that we have the content types that we need for our
site. The student government needs pages that are only editable by the moderators, as
well as the main content that everyone will edit. To easily distinguish between these
use cases and to control access, we’ll have two content types: Page and Wiki page.

Drupal comes with two premade content types, Page and Story, as mentioned in Chap-
ter 2, so Page content is already done for us. We don’t need the Story type, so instead
of making a new content type for the wiki, we can edit the Story type to fit our needs.

It is equally acceptable to delete the Story type and create a new Wiki
page type. You can even keep the Story type, if you have a use for it.

Go to Administer→Content management→Content types (admin/content/types) and
you will see the existing page and story types. Click the “edit” link for the Story type
and make the changes listed in Table 5-1, as seen in Figure 5-2. Click the “Save content
type” button to make your new content type.

Hands-On: First Steps | 185

http://www.example.com/2009/04/23/this-is-my-blog-entry-title
http://www.example.com/2009/04/23/this-is-my-blog-entry-title
http://www.example.com/members/admin

Table 5-1. Settings for the Wiki content type

Field Value

Name Wiki page

Type wiki

Description A page that any authenticated user may edit and view changes

Workflow settings: Default options Uncheck “Promoted to front page”; check “Create new revision.”

Figure 5-2. The settings for the new Wiki page content type

186 | Chapter 5: Wiki

Removing the Author Information Display
Because all of the content on the site will be group content, we don’t want to have the
default “submitted by username” information to display (inevitably, it won’t be just
that person’s work). To remove that information from our new Wiki page content type,
we need to take a short trip over to the theme section:

1. Go to Administer→Site building→Themes (admin/build/themes).

2. Click the Configure tab (admin/build/themes/settings).

3. Uncheck the “Wiki page” box in the “Display post information on” section.

4. Click the “Save configuration” button to save your changes.

Configuring Access Permissions
We want anyone with an account to be able to create and edit the wiki content, but
only the executive officers to be able to create or edit regular pages on the site.

Go to Administer→User management→Permissions (admin/user/permissions) and fill
in the values listed in Table 5-2. Note that we are not setting the “edit own X content”
permission here, because we want our users to be able to edit any content, not just the
ones that they have created. Click “Save permissions” when finished.

Table 5-2. Content type permissions

Permission: node module anonymous user authenticated user editor site administrator

create page content Checked Checked

create wiki content Checked

edit any page content Checked Checked

edit any wiki content Checked

Hands-On: Wiki Input Format
As you may remember from Chapter 2, where input formats and filters were introduced,
all of our content is passed through the filters included in the designated input format
before being displayed. The users enter whatever crazy text they want on input, and
then Drupal filters and modifies that text on output.

One of the requirements for our site is to allow easy formatting and linking when writing
content. The Markdown and Freelinking filters allow us to do just that. We are going
to create a new input format for our wiki that uses a few core filters along with our
contributed ones. The steps described in the following sections include:

1. Configuring the filters

Hands-On: Wiki Input Format | 187

2. Creating the wiki input format

3. Setting up format permissions

4. Adding content

Configuring the Filters
1. Go to Administer→Site building→Modules (admin/build/modules) and enable the

following modules:

• Input filters

— Markdown filter

• Other

— Freelinking

2. Go to Administer→Site configuration→Freelinking settings (admin/settings/free-
linking) and change the “Default for new content” to “Wiki page” so that links to
nonexistent content will create new Wiki pages for us automatically. You can see
these settings in Figure 5-3. We are doing this because not all users have permission
to create new Pages (as opposed to Wiki pages). (Note that the Markdown filter
doesn’t require any additional configuration.)

3. Click the “Save configuration” button.

4. Go to Administer→User management→Permissions (admin/user/permissions) and
set the permissions as shown in Table 5-3. Click the “Save permissions” button.

Table 5-3. Permissions for the Freelinking module

Permission: freelinking module anonymous user authenticated user editor site administrator

access freelinking list checked

What Is CamelCase Linking?
The Freelinking filter uses a common default markup for link creation that requires
putting double square brackets around your link: [[link name]]. An older method for
creating links in wiki markup is to simply write a word in CamelCase style, where the
words are run together and the first letter of each word is capitalized (for example,
LinkName), requiring no additional markup. Freelinking with brackets was introduced
to alleviate some problems with CamelCase, notably that you couldn’t have a one-word
link name without inserting capital letters in odd places in the word (WiKi) and that
having words run together makes the links harder to read. You can use both styles with
the Freelinking module if you wish. If you want to allow CamelCase linking on your
site, check the box for it on the Freelinking configuration page.

188 | Chapter 5: Wiki

Figure 5-3. Settings for the Freelinking filter

You will notice that the Freelinking module has added a new item to our Navigation
menu called Freelinks. There is nothing listed on that page right now, but as we add
links to our content using the filter, each new link will be listed here. As we can make
links to nonexistent pages, this list will give us a quick overview of links that still need
their pages to be created. This feature will be helpful to our SGA members as they review
and edit the site.

Creating the Wiki Input Format
The two modules that we enabled have now added some new filters we can use. We
can add them to existing input formats (like Filtered HTML) or we can use them to
create a whole new input format. We are going to create a new format so that if we
want to go back to the original Filtered HTML, then that option will still be available
to us. An input format is simply an ordered collection of filters (filters take the text
that’s passed in and transform it before it’s displayed).

First, we need to select which filters we want, and then we need to order them. The
content will pass through each filter in the order that it is listed. If we are not careful

Hands-On: Wiki Input Format | 189

about the order, we can end up having one filter override another and not end up with
the result we are aiming for. Here are the steps involved:

1. Go to Administer→Site configuration→Input formats (admin/settings/filters), click
“Add input format,” and fill in the following settings:

• Set the name to Wiki.

• Check the following filters: HTML corrector, HTML filter, Line break con-
verter, Markdown, URL filter, and freelinking filter, and save your settings.

2. You will be returned to the “Input formats” page. Click the “configure” link next
to our new Wiki format.

3. Click the Rearrange tab and drag both the freelinking filter and Markdown to the
top, as shown in Figure 5-4.

4. Click the “Save configuration” button when finished.

Figure 5-4. The Wiki format filters in order

The order of filters is very important. Markdown and freelinking need
to go first, because they are both transforming regular text into HTML
markup. The HTML filter, next in the list, is important for security,
because it limits the kind of HTML tags that a user may add. By putting
our new filters first, we are allowing the HTML filter to check them out
and strip anything that we don’t want before it is actually displayed.

If you ever find yourself in a weird situation where text that you expected
to have been transformed wasn’t, try rearranging the filters in a given
input format in order to find the best order, as certain ones may override
or change others.

190 | Chapter 5: Wiki

Setting Up Format Permissions
Because we want everyone to be able to easily use this new format, we will set this as
the default format on the site.

Go to Administer→Site configuration→Input formats (admin/settings/filters), select the
radio button next to the Wiki format, and click the “Set default format” button.

Filtered HTML is no longer the default, and the new Wiki format incorporates every-
thing that Filtered HTML does. Presenting them both is unnecessary and is likely to
just confuse people, so let’s change the permissions to remove Filtered HTML from the
available options.

From the Input formats page, click the “configure” link next to Filtered HTML and
uncheck the anonymous user and authenticated user boxes in the Roles section. Then
click the “Save configuration” button.

When completed, your filter screen should look like Figure 5-5.

Figure 5-5. List of input formats with Wiki set as the default

Adding Content
Now let’s add some content that uses the new input format and see our handiwork so
far. We already have a home page with some basic welcome information on it. The first
thing that many new users will probably want is a little direction. Let’s add a little
formatting to the page and create a link to a new Help page, which doesn’t exist yet.
One thing we need to be aware of here is that the home page is a Page content type and
not a Wiki page. The significance of that is in the fact that only the admin (user 1) and
users with the roles of “editor” or “administrator” may edit this page.

1. Go to the front page and click the Edit tab.

2. Let’s edit the text to look like this:

Welcome to the **SGA wiki site**. This wiki is a central place for all members
to work together on internal documentation and planning.

Hands-On: Wiki Input Format | 191

There is a [[Help]] page that explains how to create a new page and add
formatting and links.

3. Because we created our Wiki input format and made that the default after this page
was created, we also need to set this to the Wiki format. Expand the “Input format”
fieldset and select Wiki, as shown in Figure 5-6.

After we save the page, we will be looking at our new content as you can see in
Figure 5-7. You will notice that our site name is now in bold (thanks to the Mark-
down filter) and that Help is a link (thanks to the freelinking filter).

Figure 5-6. Setting the Wiki format on the home page

4. Click the Help link in the text and you will be taken to a new Wiki page submission
form with the name “Help” already in the title. You can see this in Figure 5-8.

192 | Chapter 5: Wiki

Remember that in our Freelinking settings we decided that all new content created
from freelinks should be Wiki pages. This makes all new pages created by freelinks
immediately editable by all users with an account on the site.

5. Let’s add some help information for our users with the following Body text, and
click the Save button to save it:

You can quickly create a new Wiki page by clicking Create content >
Wiki page from the navigation menu.

You can read more about this site's purpose on the [[About the SGA Wiki]] page.

You will see that we have a new “Help” page and that the link text we put inside
the double brackets created a nice link back to the “About” page for us.

Figure 5-7. The new About page using the Wiki input format

Figure 5-8. Our blank Help page with the Title prefilled

Hands-On: Wiki Input Format | 193

Spotlight: Pathauto
In Chapter 2, you learned about the Drupal path and how to use clean URLs. One
reason to use clean URLs is so that they don’t look so ugly. (To review, clean URLs
remove the “?q=” from the URL.) That helps, but still leaves the URLs lacking a bit.
Having a URL with “node/123” in it doesn’t really tell either humans or search engines
much about the page itself. Isn’t it much better to instead have a URL with something
like “about-us” in it? That is going to be much more memorable for a person, and the
addition of pertinent keywords in the URL makes for better search engine optimization.
So, even without clean URLs, you can still benefit from good pathnames.

We’ll quickly review the core Path module that we mentioned in Chapter 2. When
enabled, it will add a new fieldset to the node creation/editing form called “URL path
settings,” as shown in Figure 5-9. When you expand that fieldset, you will have a field
in which to enter an alternative name for that node’s path (called a path alias). The
name that you enter here will be used in place of the Drupal path, the part of the URL
that comes after http://example.com/ (or http://example.com/?q= if you don’t have clean
URLs enabled).

Figure 5-9. The Path module’s settings fieldset on a node edit form

This field is a huge help, but it can be somewhat tedious to enter all of those names by
hand if you are creating a lot of content. Also, if you have many users making content,
you need to make sure that they all understand this and use consistent naming through-
out the site, which can be an administrative headache. Another limitation of the Path
module is that we get that handy alias box only on nodes. What about things like user
profiles or vocabulary paths?

As often occurs in Drupal, contributed projects provide us with a module that deals
with this issue. Enter the Pathauto module. As its name implies, it creates automatic
path aliases for nodes, taxonomy, and user paths. Pathauto is dependent upon the core
Path module and another module called Token, discussed in the sidebar.

194 | Chapter 5: Wiki

http://example.com/
http://example.com/?q=

What Is a Token?
Tokens are placeholders. For example, [yyyy] represents a four-digit year, and [author-
name] represents the username of a node author. These are made available to Drupal
through the Token module. The Token module is different from most modules that
you use on a site in that it provides functionality that is not directly visible to admin-
istrators or site users. It needs other modules, like Pathauto, to provide an interface.
The Token module creates a central repository of placeholders. Modules that have data
(like the core Node module, which knows the date a node was created) can let Token
know they have something to share. You can think of these as “suppliers.” Modules
that want to use that data, like Pathauto, can tap into the list of what is available. These
are more like “consumers.” Token acts like a storefront that can sell various things that
the suppliers bring in to the customers who want to consume them.

The Token module itself provides some basic placeholders that are available by default
on behalf of Drupal core modules, notably for content types (the Node module), vo-
cabularies (the Taxonomy module), and users (the User module). Contributed modules
can become “suppliers” as well by providing new placeholders that represent data that
they know about. They just need to speak Token’s language and say “Hey, I have this
xyz bit of data in the database and you can tell others about it by telling them to use
the [xyz] placeholder.”

Pathauto uses a combination of plain text and “tokens” to set up URL naming patterns
for the module to follow. For instance, you can set up a pattern for naming the path of
all new blog pages to be “blog/[yyyy]/[month]/[date]/[title-raw]” so that you auto-
matically get something like “blog/2007/june/08/my-first-blog-post,” as shown in Fig-
ure 5-10.

Figure 5-10. Pathauto’s version of the path settings on a node edit form with a path automatically
prefilled

The parts of the pattern in square brackets are placeholders for the Token module
mentioned earlier. You can create these patterns for each unique content type or vo-
cabulary if you choose. Pathauto also has configurable default patterns that will be
applied if you don’t make specific ones. Pathauto lets you decide things like how long
your alias is allowed to be, what kind of separator you would like to use in the place of

Spotlight: Pathauto | 195

spaces or punctuation, and which common, short words you want to remove (e.g., a,
and, in, etc., and so on). In addition to making these automatic aliases upon creation
of new content, Pathauto can also update all of your existing content so that your entire
site uses the same pattern, even if it was created prior to using Pathauto.

One important thing to consider when using Pathauto is how you want to manage
changing your aliases. Because the alias is created based on information that Pathauto
is getting about that content, if you update the content you can change your alias. You
can decide what you want to do when you make updates. You can:

• Do nothing. Leave the old alias intact.

• Create a new alias. Leave the existing alias functioning.

• Create a new alias. Delete the old alias. (This is the default.)

Different sites may have different reasons for choosing which option they want to use.
The default is to make a new one and delete the old so that your aliases always match
your content. This option can be problematic in that it can cause link rot. Link rot
happens like this: you have a certain URL on your site, such as http://example.com/
about, and other sites on the web create links pointing to that URL. If you change that
URL to http://example.com/about-us and delete the old one, all of those outside links
will stop working. That’s link rot.

The second option, making a new alias and keeping the old one, may sound ideal,
because you then access the content from either path and the problem of link rot is
eliminated. But, while addressing the issue of link rot, the disadvantage of this option
is that some search engines will penalize you for having many paths that point to the
same page because they think you may be trying to game the search results. One way
to get around this issue is to use the Path Redirect module (http://drupal.org/project/
path_redirect) with Pathauto. When you use the Path Redirect module, you will see a
fourth option for setting your alias: “Create a new alias. Redirect from old alias.” Using
this option automatically redirects incoming links that are using the old URL to the
new URL.

Look over the Pathauto settings and play around with them while your site is under
development to determine the best fit for your site’s needs. Once the site has been
launched and people are using it, avoid making any major change to your Pathauto
settings, as users may come to depend on the URLs behaving in a particular way.

Hands-On: Pathauto
To get those handy human-readable URLs on our site, we are going to use the Pathauto
module and, as you saw in the previous section, this relies on the Token module as well
as the core Path module.

Go to Administer→Site building→Modules (admin/build/modules) and enable the fol-
lowing modules:

196 | Chapter 5: Wiki

http://example.com/about
http://example.com/about
http://example.com/about-us
http://drupal.org/project/path_redirect
http://drupal.org/project/path_redirect

• Core—optional

— Path

• Other

— Pathauto

— Token

Configuring Settings
The Pathauto settings page is quite large and can be intimidating. Luckily, most of the
defaults are what most sites will want to use anyway, so that makes our job with con-
figuration a lot simpler than it may first appear.

Pathauto’s “-raw” Tokens
When you review the tokens that Pathauto has available to it, you will notice that there
are a few with both a plain name and another with “-raw” appended to it, as with [title]
and [title-raw]. You will also note that there is a warning in the help text for the -raw
tokens. The plain tokens have been filtered to strip out potentially harmful input. The
-raw tokens have not yet gone through that process, so typically you would avoid using
them, but Drupal’s core Path module will run its own filters, making the tokens safe
for use.

So when using Pathauto, not only is it safe to use -raw tokens, but it is actually recom-
mended. Pathauto needs to have all of the unfiltered information in order for the punc-
tuation replacement to work properly when creating the new alias.

1. Go to Administer→Site building→URL aliases (admin/build/path) and click the
Automated alias settings tab (admin/build/path/pathauto). Add the following
settings:

• Expand the “Node path settings” fieldset and in the “Pattern for all Wiki page
paths,” enter “wiki/[title-raw]” as shown in Figure 5-11.

• Expand the “User path settings” fieldset and change “users/[user-raw]” to
“members/[user-raw].”

These settings will now take care of all new content that we create, but another thing
that we want to account for is the content that we have already created. Currently, our
new Help page that we created has a URL like http://example.com/node/2. We want to
apply the same pattern to that page, as we will to all new pages. To do this, ask Pathauto
to bulk-update the existing paths as well:

1. Expand the “Node path settings” fieldset again, and at the bottom, check the box
labeled “Bulk generate aliases for nodes that are not aliased.”

Hands-On: Pathauto | 197

http://example.com/node/2

2. Do the same for our users by expanding the “User path settings” fieldset and
checking the same box. You can see this in Figure 5-12.

Figure 5-12. Bulk generation of new aliases for user paths

Figure 5-11. The Pathauto settings on the “Automated alias settings” tab under the URL aliases
administration section

198 | Chapter 5: Wiki

Once you have saved these settings with the “Save configuration” button, you will see
that the Help page we made previously now has a URL such as http://example.com/wiki/
help, and if you go to My Account, you will see that the URL now says http://example
.com/members/admin.

Spotlight: Drupal’s Revision Tracking
Be it online or in your local word processor, everyone has had that moment, right after
you hit Submit or Save…where you wish you hadn’t. Or sometimes you lovingly craft
something, hand it off to someone else for review, and they go a bit crazy changing
everything. What you want at that moment is the previous version of your document.
Luckily for us, Drupal includes that ability right in core. As you make changes to your
content over time, Drupal can keep track of each version of the content, so you can go
back to when your work was just the way you wanted it. In Drupal, each recorded
change is called a revision.

Drupal revisions store a new copy of a node rather than overwriting it each time you
save. However, this doesn’t happen by default; you need to tell Drupal you want to
keep a copy. A user with “administer nodes” permission can enable revisions on a case-
by-case basis by checking the “Create new revision” checkbox on the node edit form
in the Publishing options. This is fine if you don’t want to keep every copy in your
database and if the proper permissions are assigned to those who will need them. If
you’d rather, you can also enable the option per content type. This way you don’t need
to remember to check the box every time you edit something and you don’t need to
give out more permissions to your users than you would otherwise like to.

In addition to tracking the different versions of the text, you can also
make notes pertaining to each revision using the “Log message” box.
This is very useful for explaining what changes you made and why.
Reasons for changes may seem obvious to you at the time you make
them, but that doesn’t mean they will be apparent to others working on
the same document with you, and they may not even make sense to you
six months down the line. It is always a good idea to make notes about
your changes so you and others can easily follow along.

Once you have created a revision of a node, you will see a new tab appear next to your
standard “View” and “Edit” tabs called “Revisions.” Within the “Revisions” tab you
have a handy place to review old versions, each listed with a link to the revision, the
date and author information, as well as the log message, if any, that was entered when
it was saved. You can even tell Drupal to revert to a particular revision, replacing the
content in the View tab. It does not actually delete the content, but creates yet another
revision that you could revert to later if you change your mind. If you do want to actually
delete a revision permanently from the database, there is a handy link for that as well.

Spotlight: Drupal’s Revision Tracking | 199

http://example.com/wiki/help
http://example.com/wiki/help
http://example.com/members/admin
http://example.com/members/admin

Hands-On: Revisions and Diff
So now let’s examine how the revision system works. To do that, we need to check
some settings and then make some changes to our content. Once you have learned how
the core Drupal revisions work, we’ll enhance them using the Diff module to make
them even more informative.

Make Revisions the Default
We want to keep track of all changes to all content, whether it’s on a Wiki or Page type.
As mentioned previously, revisions are not created by default, but we can change that.
The node publishing option defaults can be configured per content type. We already
set this up for the Wiki page content type when we created it, but our Page content is
not configured for this. Let’s go turn it on so we make sure we get every revision:

1. Go to Administer→Content management→Content types (admin/content/types)
and click the “edit” link for the page type.

2. Scroll to the bottom. Under “Workflow settings: Default options,” check the “Cre-
ate new revision” checkbox.

3. Click “Save content type” to submit the form.

Setting Permissions
For the SGA site, we want all users to be able to keep track of what others have done
and see these revisions. They also know that they are working with a relatively trusted
group of users, so they want to allow anyone to undo changes if needed. A quick trip
to “User management” will take care of that:

1. Go to Administer→User management→Permissions (admin/user/permissions),
and configure the permissions as shown in Table 5-4.

Table 5-4. Configuring revision permissions

Permission: node module anonymous user authenticated user editor administrator

revert revisions Checked

view revisions Checked

2. Click the “Save permissions” button to save them.

Viewing Revisions and Reverting
Let’s make some content changes and see how we can use the revisions:

1. Go to the Help page we created earlier and click the Edit tab.

200 | Chapter 5: Wiki

2. Change the text in the Body field by putting quotes around the path to create new
wiki pages and removing the word “Wiki,” so that it reads like this:

You can quickly create a new page by clicking "Create content >
Wiki page" from the navigation menu.

3. In the “Log message” field under the expanded “Revision information” fieldset,
enter “Edited page creation sentence for clarity.” We can see that “Create new
revision” is checked by default.

4. After you save your changes, you will see a new Revisions tab next to the View and
Edit tabs for your page. Click the Revisions tab.

5. Click the earliest timestamp link at the bottom of the Revision column and you
will see the very first version of the page. You know that you are viewing a revision,
because the title has changed to state that it is a revision, and it includes the revision
timestamp, as seen in Figure 5-13.

Figure 5-13. Viewing a revision of the Help page

6. Click “back” in your browser, and return to the revision list.

7. Click the revert link next to that earliest entry and then the Revert button to con-
firm.

8. You will see that we have a new entry in our revision list that indicates which one
we have copied over. Figure 5-14 shows this list for the changes we have made. If
you click the View tab, you will see that the original text has returned.

Using Diff
We can already see the revisions list for our content and go back to view the revisions,
but what the SGA really wants to be able to do is see the difference between them. Small
changes on large pages will be nearly impossible to see if all we get is the whole text for
each revision. Enter the Diff module. This module plugs neatly into the existing revision

Hands-On: Revisions and Diff | 201

system to give us an additional view that narrows in to only the specific lines of text
that have changed and helpfully highlights changed words. Anyone with the “view
revisions” permission will be able to use Diff.

Go to Administer→Site building→Modules (admin/build/modules) and enable the Diff
module under the Other package.

Now, return to our revision page by clicking the Revisions tab on our Help Page, and
you will see a new button named Show Diff as well as a set of radio buttons for each
revision. To see the changes between two versions, select a radio button for each revi-
sion you wish to compare and click the Show Diff button. Figure 5-15 shows the revision
comparison screen.

Hands-On: New Pages and Recent Edits with Views
Drupal core comes with a module called Tracker, which makes a handy page of recently
updated posts. What that page offers, though, is not quite what our SGA needs. The
tracker module lists all new content, including edits, and counts new comments added
to a post as an “update.” This means that the most recent post listed here may not have
actually had any content changed within it. It also mixes newly created content with
updated content. The SGA specifically would like to have two lists: one that just shows

Figure 5-14. A list of all revisions for the Help page

202 | Chapter 5: Wiki

newly created content and another that shows only when the content itself has been
edited.

As the core Tracker module does not provide us this flexibility, we are going to use the
Views module, introduced in Chapter 3, to create some custom lists. The Views module
comes with a default view that replicates the Tracker listing. We will use that as a base
for the two lists we need to make: the “Recent posts” and the “Recent edits” listings.

Recent Posts Listing
1. Go to Administer→Site building→Modules (admin/build/modules) and enable the

following modules:

• Views package

— Views

— Views UI

2. Go to Administer→Site building→Views (admin/build/views) and click the Enable
link for “Default Node view: tracker.” Then click the Edit link (admin/build/views/
edit/tracker).

3. Ensure that the Defaults display is highlighted.

Figure 5-15. Diff module highlighting the changes between two revisions of the Help page

Hands-On: New Pages and Recent Edits with Views | 203

4. Limit the visibility of this view to authenticated users by entering the Basic settings
shown in Table 5-5, and clicking Update. Select the authenticated user role in the
following configuration screen and click Update once more.

Table 5-5. View Basic settings for the “Recent posts” view

Defaults: Basic settings Value

Access Type: By role

5. As this view is only concerned with updates to content, under Fields, click on the
“Node: Last comment time” field and click the Remove button to remove it from
the view.

6. Replace the last comment time with the post date by clicking the (+) (plus) icon
in the Fields group and adding the “Node: Post date” field. Give it a Label of “Post
date.”

7. Because the recent content should be listed across the whole site and not limited
per user, under Arguments, click on the User: Uid argument and click the Remove
button.

8. As we did with fields, let’s sort the list of content by post date rather than last
comment time. Under “Sort criteria,” click the “Node: Last comment time” field
and click the Remove button to remove it from the view.

9. Click the (+) (plus) icon under “Sort criteria” and check the “Node: Post date”
field. Switch its sort order to Descending.

10. When finished with these steps, your view should like Figure 5-16. Click the Save
button.

11. Click the View “Page” link to take a look at your handiwork. You should see
something similar to Figure 5-17.

Figure 5-16. Completed recent posts view settings

204 | Chapter 5: Wiki

Recent Edits Listing
With the “Recent posts” view completed, we’ll finish by creating the Recent edits view.

1. In Administer→Site building→Views (admin/build/views), click the Clone link for
the “Recent posts” view that we created in the previous section, as it’s very similar
to the “Recent edits” view.

We used the Views Clone tool to make the Recent edits list so that
we have two distinct views. You could, alternatively, use only one
view and just add another page display for the Recent Edits list,
overriding the settings that make them distinct. Both ways are
equally acceptable approaches and which direction you take is
largely driven by how you like to organize your views and the sim-
ilarity of the content.

2. On the initial “View settings” page, enter the values shown in Table 5-6, then click
Next.

Table 5-6. View settings for the “Recent edits” view

View settings Value

Name tracker_edits

Description Shows all newly edited content

3. Ensure that the Defaults display is selected.

4. Under Basic settings, change the Title of the view to “Recent edits” to reflect its
new contents.

5. Under Fields, click the (+) (plus) icon and check the “Node: Updated date” field.
Give it a Label of “Last edited.”

6. Under “Sort criteria,” remove the existing sort criteria by clicking the “Node: Post
date” link and clicking the Remove button.

Figure 5-17. A view showing recent posts on the site

Hands-On: New Pages and Recent Edits with Views | 205

7. Click the (+) (plus) icon and check “Node: Updated date.” Change its “Sort order”
to Descending.

8. Change the menu link to this page so that it does not collide with our previous
view. Click the Page display, and under Page settings, fill in the values shown in
Table 5-7.

Table 5-7. Page settings for the “Recent edits” view

Page: Page settings Value

Path tracker-edits

Menu Type: Normal menu entry

Title: Recent edits

9. When finished, you should see something similar to Figure 5-18. Click Save when
your changes are complete.

Figure 5-18. Completed recent edits view settings

10. After clicking on the View “Page” link, you should see the results pictured in
Figure 5-19.

206 | Chapter 5: Wiki

Figure 5-19. A view showing recent edits on the site

Taking It Further
We have satisfied the needs of our group and managed to pull together a pretty nice
collection of modules to create a good, basic wiki. However, there are even more avail-
able modules that you can use to add all kinds of bells and whistles. Here are some
additional modules that would add some extra special wiki sauce to our site:

PEAR Wiki Filter (http://drupal.org/project/pearwiki_filter)
The nice thing about the PEAR Wiki Filter is that with one module you can choose
from several popular wiki markup syntaxes like MediaWiki, TikiWiki, and Creole.
The downside to this module is that it is a little more involved to install. You need
to separately download the PHP PEAR package for each syntax you wish to use as
well as the base Text Wiki package.

Table of Contents (http://drupal.org/project/tableofcontents)
Often, when you have long pages that are used as reference documents, you can
end up with a long page that is somewhat hard to navigate. The Table of Contents
module will look through the page to find HTML headers and use those to build
a small clickable table of contents for just that page. This table of contents can be
added to the page in a block.

Talk (http://drupal.org/project/talk)
The Talk module moves the comments on a wiki page to a separate “Talk” page,
to emulate the “Discussions” separation found in many wiki packages.

The Views module’s “Backlinks” view (included with http://drupal.org/project/views)
The Views module comes with a default view named “Backlinks,” which you can
easily enable in the Views administration page. “Backlinks” will give you a list of
all the other pages on the site that are referring to the page you are viewing at the
moment.

Taking It Further | 207

http://drupal.org/project/pearwiki_filter
http://drupal.org/project/tableofcontents
http://drupal.org/project/talk
http://drupal.org/project/views

Taxonomy (core)
Another nice touch we can add to the site is built right into core Drupal—
Taxonomy. Taxonomy can allow you to group your wiki content together. For
instance, our SGA may want to have a vocabulary of “Document category” that
has the following terms: policy, meeting notes, and event planning. This way they
can quickly get lists of all content according to its category. Another sometimes
useful way to use taxonomy is to create a free-tagging vocabulary so that the mem-
bers can add keywords to the content as they are creating and editing. For more
information on using taxonomy, please refer to Chapter 2.

Summary
In this chapter, we introduced several new modules: the Markdown and Freelinking
filter modules, plus Pathauto, Token, and Diff. With the Markdown and Freelinking
modules, we reviewed some information about Drupal’s filters and input formats and
saw how to actually build a new input format with some contributed filters. Using
Pathauto and Token, we learned about Drupal’s paths and how to make them more
user- and search engine–friendly. We talked about Drupal’s core revision tracking and
then saw how to enhance that even further using the Diff module. Lastly, we put your
new Views knowledge from Chapter 3 to use by creating some custom Views that do
exactly what the SGA needed. We created a nice, solid wiki site that will allow users
to work together to create and edit the content they need.

For more information about wikis in Drupal and to see how others are creating them,
check out the Wiki working group at http://groups.drupal.org/wiki.

Here are the modules that we referenced in this chapter:

• BBCode: http://drupal.org/project/bbcode

• Diff: http://drupal.org/project/diff

• Freelinking: http://drupal.org/project/freelinking

• Liquid Wiki: http://drupal.org/project/liquid

• Markdown filter: http://drupal.org/project/markdown

• Path redirect: http://drupal.org/project/path_redirect

• Pathauto: http://drupal.org/project/pathauto

• PEAR Wiki Filter: http://drupal.org/project/pearwiki_filter

• Table of Contents: http://drupal.org/project/tableofcontents

• Talk: http://drupal.org/project/talk

• Textile: http://drupal.org/project/textile

• Token: http://drupal.org/project/token

• Views: http://drupal.org/project/views

• Wiki: http://drupal.org/project/wiki

208 | Chapter 5: Wiki

http://groups.drupal.org/wiki
http://drupal.org/project/bbcode
http://drupal.org/project/diff
http://drupal.org/project/freelinking
http://drupal.org/project/liquid
http://drupal.org/project/markdown
http://drupal.org/project/path_redirect
http://drupal.org/project/pathauto
http://drupal.org/project/pearwiki_filter
http://drupal.org/project/tableofcontents
http://drupal.org/project/talk
http://drupal.org/project/textile
http://drupal.org/project/token
http://drupal.org/project/views
http://drupal.org/project/wiki

• Wikitools: http://drupal.org/project/wikitools

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• Filter-related modules: http://drupal.org/project/Modules/category/63

• Markdown text-to-HTML converter: http://daringfireball.net/projects/markdown/

• Wiki working group: http://groups.drupal.org/wiki

Summary | 209

http://drupal.org/project/wikitools
http://drupal.org/project/Modules/category/63
http://daringfireball.net/projects/markdown/
http://groups.drupal.org/wiki

CHAPTER 6

Managing Publishing Workflow

For large, content-driven web projects, building the initial site structure and getting the
design “just so” is only the beginning of the work. If more than a small handful of people
are writing content for the site, the process of reviewing, revising, and publishing in-
dividual articles can be a Herculean task. Newspapers, online magazines, and even
many large blogs with multiple contributors need tools to ensure that editors can
effectively manage the review process. In this chapter, we’ll be using Drupal’s built-in
workflow management options and automation tools, as well as a number of admin-
istrative modules, to build “workflow management tools” for a news site.

This chapter introduces the following modules:

Trigger (core)
Performs common tasks when specific events occur on the site

Workflow (http://drupal.org/project/workflow)
Allows administrators to define custom publishing states for content, like “In re-
view” and “Ready for publication”

Workspace (http://drupal.org/project/workspace)
Gives contributors quick access to all of their own content

Views Bulk Operations (http://drupal.org/project/views_bulk_operations)
Allows administrators to perform common actions (like publishing or rejecting
content) on multiple pieces of content at a time

If you would like to participate in the hands-on exercises in this chapter, you should
install Drupal using the Newspaper installation profile from the book’s sample code,
which creates the example website on your web server. The completed website’s ad-
ministration tools will look like the image pictured in Figure 6-1 and found at http://
newspaper.usingdrupal.com. For more information on using the book’s sample code,
see the Preface.

211

http://drupal.org/project/workflow
http://drupal.org/project/workspace
http://drupal.org/project/views_bulk_operations
http://newspaper.usingdrupal.com
http://newspaper.usingdrupal.com

Case Study
Jo and Catherine have spent the past year building an online news site for artists, writ-
ers, and creative types living in Minnesota: Twin Cities Arts. It’s a great combination
of volunteer reporting on developments in the art scene, creative writing, and interviews
with area personalities. As the site grows, though, it’s become obvious that the “honor
system” approach to managing site content won’t work for much longer. Low-quality
stories and inaccurate news posts have started hitting the front page, and Jo and Cath-
erine want to build a bit more structure into the publishing process before things get
out of hand.

After a few conversations with the two editors and several of their writers, we’ve got a
good idea of the essentials that are needed for the site. Their writers should be able to
create news stories whenever they want to, but as editors, Jo or Catherine should review
and approve stories before they’re accessible to visitors. When a writer is finished with
a draft, the editors should be notified via email so they can quickly review and approve
the story for publication on the site. Jo and Catherine want to be able to send an article
back to a writer with suggested changes, and the writer should be notified of the sug-
gestions via email.

As there are multiple stages in the process of getting an article published, all of the
people involved need overview screens where they can review the list of items that need
their attention. The editors in particular should be able to approve or reject multiple
articles at once to save time on busy news days.

Figure 6-1. The Twin City Arts website

212 | Chapter 6: Managing Publishing Workflow

Implementation Notes
Drupal core allows administrators to change the default publishing settings for each
content type, ensuring that stories posted by contributors won’t immediately show up
until an editor publishes them manually. However, the grunt work of checking for new
unpublished posts, reviewing them, editing them, publishing them, and then saving
the changes is cumbersome for sites with a lot of activity. We’ll be using a collection
of useful modules to streamline that process and match the requirements.

Editorial workflow

Out of the box, Drupal allows any piece of content to be marked as “published” or
“unpublished.” The Twin Cities Arts site needs something a bit more precise, though:
they need to track the difference between an article that’s an in-progress draft, one
that’s submitted to the editors for review, and one that’s been approved and published.
That’s exactly what the Workflow module can do for us, so we’ll be using it to set up
custom “states” for our stories and to control who has permission to move them from
one state to another. We’ll be using the Views Bulk Operations module to let editors
approve or reject articles in batches as well.

Email notifications

Drupal has a built-in mechanism for sending out emails, displaying messages on the
current page, or performing other small tasks when events occur. This feature, called
actions, can be paired with the built-in Trigger module to send out emails to editors
whenever new stories are posted.

Some modules, like the Flag module (http://drupal.org/project/flag), also discussed in
Chapter 9, allow you to choose actions that should run when very specific things occur,
like a particular node being flagged more than five times by different users, for example.
The Trigger module is designed to be more generic, and can’t easily offer that level of
customization.

Another module, called Rules (http://drupal.org/project/rules), is designed to duplicate
the functionality of the Trigger module, with the addition of conditional rules that are
checked before any actions fire. Using Rules, Jo and Catherine might set up a trigger
that sends an editor an email when Story nodes are published, but does nothing when
Blog nodes are published. Rules can be used to build very complex conditional work-
flows, but Trigger meets our needs and as it is part of the core, that lets us avoid having
to install another module on the site.

Overview pages

Drupal core has a way of keeping track of each user’s content on the site with the
Tracker module. But, if new stories are not published automatically, only users with
the “administer nodes” permission will be able to see them. That means that most

Case Study | 213

http://drupal.org/project/flag
http://drupal.org/project/rules

contributors—the people actually writing the content—will be unable to see their own
writing or make corrections once they submit their first draft. The Workspace module
will give users their own landing page with an overview of every article they’ve created,
even those that haven’t been published yet.

Hands-On: First Steps
Our first step will be to change the default workflow settings for the Story content type
that we are using for our articles:

1. Go to Administer→Content management→Content types (admin/content/node-
type) and click the “edit” link for the Story content type.

2. Scroll down to the “Workflow settings” section of the form and expand that
fieldset.

3. Uncheck the Published checkbox.

4. Click the “Save content type” button to save the changes.

5. Go to Administer→User management→Permissions (admin/user/permissions) and
we’ll make sure that all users can create stories, that editors have full access to all
of the submitted content, and that site administrators can administer actions,
which will be covered later in the chapter. Set the permissions as indicated in
Table 6-1.

Table 6-1. Content permissions

Permission anonymous user authenticated user editor site administrator

node module

administer nodes Checked Checked

create story content Checked

edit own story content Checked

system module

access administration pages Checked Checked

administer actions Checked

6. Click “Save permissions.”

Now, if you log on as user, you can submit stories, but they won’t appear on the front
page and “normal” users can’t see them. Logging in as editor and visiting Adminis-
ter→Content management→Content (admin/content/node) will show you those arti-
cles and allow you to read and publish them.

214 | Chapter 6: Managing Publishing Workflow

Spotlight: Actions and Triggers
With the changes we’ve made, writers can submit stories whenever they want to, but
they’ll stay hidden until Jo or Catherine publishes them manually. A new problem
arises, however: how do the editors know when a new article is ready for review? Right
now, they need to check the site every few hours just to be sure they haven’t missed
anything.

That’s where one of Drupal’s powerful but little-known features comes in: Actions. In
Drupal parlance, an action is a single, easily encapsulated task like publishing a node,
displaying a message to the currently logged-in user, or sending a prewritten email to
a particular address. Third-party modules can quickly trigger these actions when spe-
cific conditions are met or certain events occur.

How is this useful? Many modules focus on providing useful management tools to
users: for example, clicking on a link below a node to unpublish it, or automatically
banning users if they post offensive content. What happens, though, if your site needs
to send email to an administrator when offensive content is posted, rather than auto-
matically banning the user? What if you need that link below a node to promote it to
the front page, rather than unpublishing it? Instead of hardcoding those behaviors,
module developers can allow administrators to pick from the list of available actions,
like those shown in Figure 6-2, and then customize the specifics themselves. This fea-
ture gives administrators and other site builders much more flexibility—without re-
quiring module developers to anticipate and account for every possible task.

Figure 6-2. Available default Drupal actions

Spotlight: Actions and Triggers | 215

Figure 6-3. The Trigger module allows actions to be assigned to system events

There are two types of actions: basic actions, which perform a simple task, and ad-
vanced actions, which are configurable. Many Drupal administration tasks can be per-
formed using actions. Banning users, promoting content to the front page, adding
taxonomy terms to content, unpublishing comments that contain offensive language,
sending email, and so on, are all possible. In addition, contributed modules can add
new actions to Drupal. “Send a text message to a phone number” or “Add the currently
logged-in user to a new security role” are all examples of useful actions. Some, like the
built-in “Send an email” action, are also configurable. They allow you to create multiple
copies of the action, each with different settings. For example, one email action could
notify the site administrator that a new user has been created, while another email
action notifies the author of a node when a comment is posted to it.

Drupal core ships with a simple module called Trigger, pictured in Figure 6-3, which
allows administrators to attach actions to various events that occur on their site. For
example, the “User account created” trigger can be associated with the “Send email”
action, automatically notifying administrators when new users register on the site.
Trigger comes with built-in support for basic content-related events, like the posting,
editing, or deleting of nodes and comments. It also supports events related to user
accounts and taxonomy terms—if you’d like to be notified when bloggers on your site
add new free-tagging terms to articles, it’s possible! Third-party modules can also
expose their own events to Trigger, giving users a single consistent interface through
which to wire actions up to important events.

216 | Chapter 6: Managing Publishing Workflow

In the case of the Twin City Arts website, we’ll be using actions and the Trigger module
to notify the site’s editors whenever new content is ready for review, and to notify the
writer if his article is kicked back to him after review for further work, rather than being
published.

Hands-On: Actions and Triggers
As mentioned earlier, some actions need to be configured before we can assign them
to specific events. We need to set up the customized email message that will be sent
whenever content is posted on the site, as well as a message that the writers will see
when they submit their stories, like the one shown in Figure 6-4.

Figure 6-4. Message displayed to the author

Configure Actions
1. Go to Administer→Site configuration→Actions (admin/settings/actions) and click

the select list under “Make a new advanced action available,” as shown earlier in
Figure 6-2. You will see a number of actions we can set up. Select the “Send e-
mail...” action and click the Create button.

2. Enter the information shown in Table 6-2 into your form.

Table 6-2. Settings for the editor notification email action

Field Value

Description Notify editor

Recipient [your email address]

Subject New article submitted by %username

Message %username submitted a new %node_type titled “%title” for approval at %site_name.

Hands-On: Actions and Triggers | 217

Field Value
%teaser

To review the full article and publish or delete it, visit %node_url.

It’s important to note that certain special placeholders are being
used in our messages. Whenever the action is triggered, %user-
name, %title, and %node_url are all automatically replaced with
information from the node that was submitted. These are similar
to the tokens used in Token module in the previous chapter. You
can see the full list of available placeholders in the help text under
the Message text area.

3. Click the Save button and you will be returned to the main Actions screen, where
you will see our new action listed under the “system” Action type, as seen in
Figure 6-5.

Figure 6-5. The Notify editor action in the actions list

4. We also want to display a message to the author of the article, so that the authors
know that their articles haven’t simply vanished. We’ll set up a new kind of action
for this. Select “Display a message to the user...” from the “Make a new advanced
action available” action select list and then click the Create button.

5. Fill out the form for this action following Table 6-3.

218 | Chapter 6: Managing Publishing Workflow

Table 6-3. Settings for the writer message action

Field Value

Description Placate author

Message %title has been submitted and is being reviewed by the editors. Thanks!

6. Click the Save button to finish.

7. The last action that we need is one to notify authors when their article is turned
down for publication and sent back to them for more work. Just as for the editor
email, select “Send e-mail...” from the “Make a new advanced action available”
action select list and then click the Create button.

8. Fill out the action form with the information from Table 6-4 and click Save when
you are done.

Table 6-4. Settings for the writer notification email action

Setting Value

Description Agitate author

Recipient %author

Subject %title needs more work

Message Hello %username,

 The editors have reviewed your article, %title, submitted to %site_name, and have determined that it
needs a bit more work before publication. Feel free to resubmit the article for another review.

Assign Triggers
Now that we have the actions set up with the information that we want, the next step
is to use the Trigger module to associate a particular event with the actions we’ve
created.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following module:

• Core—optional package

— Trigger

2. Go to Administer→Site building→Triggers (admin/build/trigger/node). You will be
on the Content tab of the Trigger administration screen.

3. Under “Trigger: After saving a new post,” select the “Notify editor” action and
click the Assign button. You can see the selection list in Figure 6-6.

4. In the same “Trigger: After saving a new post” area, follow the same process to add
the “Placate author” action. Click the Assign button to add it to our list.

That’s all we have to do to get our actions up and running. Now, whenever users add
new content, it will remain unpublished, but the editors will be notified and given a

Hands-On: Actions and Triggers | 219

direct link to the article so they can review it and decide whether it’s ready for prime
time. We are also giving the writer of the article a note about what is happening so she
doesn’t get confused when her content doesn’t immediately appear.

Spotlight: Workflow Module
So far, we’ve been relying on the built-in “published” flag that Drupal provides for every
piece of content. When it’s unchecked on the node editing form, only users with the
“administer nodes” permission are allowed to view the content. That’s enough for some
sites, but it doesn’t give our writers and editors as much control as they need. For
example, there’s no way for a writer to mark a story as an in-progress draft and come
back to it later. In addition, there’s no easy way for an editor to tell a writer that an
article needs more work—the editor must contact the author manually.

This problem is exactly what the Workflow module (http://drupal.org/project/work
flow) was designed to solve. It allows site administrators to set up predefined steps,
called states, through which every piece of content must pass before publication. A
complex site with strict legal requirements might need “Editorial review,” “Legal re-
view,” “Executive approval,” and “Ready to publish” states. When a node is in one of
those states, only users in specific roles are allowed to move it to the next state, ensuring
that the right people give the content their stamp of approval before it goes live.

Figure 6-6. Assigning an action to a trigger

220 | Chapter 6: Managing Publishing Workflow

http://drupal.org/project/workflow
http://drupal.org/project/workflow

The selection of workflow states can be done directly during node creation and editing
through a new fieldset added to the node form, as seen in Figure 6-7. Along with
changing the state, a user can also leave a comment in the workflow log. This way others
can see reasons or notes about a change. Workflow also allows users to schedule a state-
change for a specific time. Moving a page from “Executive approval” to “Ready to
publish,” for example, can be scheduled for 8:00 a.m., even if the VP made the decision
at 11:00 p.m. the previous night.

In addition to the node form controls, Workflow provides a tab to the node form next
to the View and Edit tabs. This tab shows the same state and scheduling controls, along
with the Workflow History log that tracks every state change and displays any com-
ments that were left. An example of the log is shown in Figure 6-8.

Figure 6-8. Workflow history log

Figure 6-7. Workflow states selection

Spotlight: Workflow Module | 221

Even more important, the Workflow module can leverage Drupal’s actions. Every time
a node moves from one state to another, specific actions can be fired. For example, the
legal department could be notified via email when an editor moves a node from “Edi-
torial review” to “Legal review.” When the vice president signs off on a new piece of
content, moving it from “Executive review” to “Ready to publish,” actions can auto-
matically publish the node and promote it to the front page.

This combination of tools (Actions, Trigger, and Workflow) allows sites to use complex
editorial processes and intricate approval mechanisms. Each type of content can even
have a separate workflow. A streamlined process might make sense for blog posts, and
a more rigorous approval system might be needed for official content like a site’s “About
us” and “Privacy policy” pages.

In addition to Workflow, the Workflow Access module is also included with the
Workflow package. It can hide posts from users based on their roles and the current
state of the content. In our complex example, only users with the “legal team” role
might be given access to nodes in the “Legal review” state.

Hands-On: Creating a Workflow
For the Twin City Arts site, we are going to need a few states for stories to pass through.
We will need a “Draft” state for writers to save in-progress work that isn’t ready to be
reviewed yet, and we will need a “Review” state once a piece is submitted. Finally, we
will need an “Approved” state where the story is published for all to see on the site.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following module:

• Workflow package

— Workflow

2. Then go to Administer→Site building→Workflow (admin/build/workflow). You
will see a message that says, “No workflows have been added. Would you like to
add a workflow?” To create one, click the “Add workflow” tab (admin/build/
workflow/add).

3. Enter a Workflow Name of “Article publication” and click the “Add workflow”
button.

4. We are brought to the main workflow listing page shown in Figure 6-9, and we
can see that our new “Article publication” workflow has been added to the list. At
the bottom of the page is a list of content types. We want our workflow to apply
to the Story content type, since that is what we use for articles. Click the select list
in the Workflow column for the Story content type and select “Article publication.”
Click “Save workflow mapping” to save the changes.

222 | Chapter 6: Managing Publishing Workflow

Figure 6-9. Article publication workflow settings

5. We now have a workflow assigned to Story content, but it doesn’t do anything yet.
We need to add the various states we want for our articles. Click the “Add state”
link. Enter “Draft” as the “State name” and click Save.

6. Follow the same process, clicking “Add state,” and adding each of the other two
states: Review and Approved. Your Workflow list should look like Figure 6-10
when you are done.

Figure 6-10. List of workflow states for the Article publication workflow

Hands-On: Creating a Workflow | 223

7. Fill out the workflow transitions by checking off the roles, following Table 6-5, as
shown in Figure 6-11. Note that we are intentionally not setting anything in the
“Approved” row, because once it is approved and published it won’t go “back-
ward” to either the “Draft” or “Review” states.

Table 6-5. Transition settings for the “Article publication” workflow

From / To Draft Review Approved

(creation) author author

Draft author

Review editor editor

Approved

8. On this screen, the last thing we need to do is determine who will see the Workflow
tab when looking at nodes. Everyone will already see the regular workflow fieldset
on the node form itself. Those that have the tab as well will get the added benefit
of reviewing the Workflow History log. We’ll set our editors up for that by checking
the “editor” role under “Workflow tab” permissions. Click the Save button when
you are done.

9. One final piece still remains: the action that sends email to the editors is still set
up to fire whenever a node is saved. We want it to notify editors whenever a node
is submitted for review, not necessarily when it is created. Again, make sure you
are on Administer→Site building→Workflow (admin/build/workflow) and click
the Actions link for the “Article publishing” workflow. This will take you to the
Trigger module’s configuration page again, but this time you will notice you are
on the Workflow tab.

10. We are presented with a list of the transitions that we have defined for our work-
flow. Set the actions for them according to Table 6-6, clicking Assign for each action
you add to a trigger. When finished, your screen should look like Figure 6-11. It's
also a good idea to remove the actions we assigned on the Node Triggers page
(admin/build/trigger/node). Now that actions are triggered by workflow states, we
don't need the old ones.

Table 6-6. Assigning actions to workflow triggers

Trigger Value

When story moves from (creation) to Review system: Notify editor

system: Placate author

When story moves from Draft to Review system: Notify editor

system: Placate author

When story moves from Review to Draft system: Agitate author

When story moves from Review to Approved node: Publish post

224 | Chapter 6: Managing Publishing Workflow

When you add the “Publish post” action, Drupal will automatically
add the “Save post” action, too, along with a message explaining
why: “You have added an action that changes the property of a
post. A Save post action has been added so that the property change
will be saved.” Because we are making a change to the node’s status,
that change needs to be saved as well.

11. Now, if we go to Create content→Story (node/add/story) and create a new Story,
under the “Article publication” fieldset we can see that writers have the ability to
set the status to either the Draft or Review states, but not the Approved state, as
shown in Figure 6-12.

Figure 6-11. Action assignments for workflow states

Hands-On: Creating a Workflow | 225

Go ahead and create a story or two. Set at least one story to the Review state and you
should see a message that your story has been submitted for review.

Now if you are logged in as the administrator and visit the workflow tab on a story in
the Review state, you can see that you have the additional option to move the story into
the “Approved” state, which regular users can’t.

Spotlight: The Workspace Module
We’re definitely getting closer to the functionality that Jo and Catherine need, but
there’s one glaring problem that still remains. Writers can post new content and leave
it in the “Draft” state if they don’t want it to be reviewed yet. What happens when they
want to come back and finish the work, though? Because it’s still unpublished, the story
won’t be included on any of Drupal’s normal listing pages! Our writers will be able to
return to the drafts only if they remember the numeric ID of their articles, and that’s
asking a bit much of volunteers.

Figure 6-12. Article publication workflow in action

226 | Chapter 6: Managing Publishing Workflow

Using the Views module, we could build a custom listing page that shows all nodes—
including unpublished ones—by the current logged-in user. However, the Workspace
module (http://drupal.org/project/workspace) can also handle this feature and is much
easier and faster to set up. It gives each user his own personal page that lists the nodes,
comments, and files that he’s posted to the site, as shown in Figure 6-13. By default,
Workspace will add a new menu item, “My workspace,” to the navigation to access
the page. You can also configure it to add a link to each user’s workspace directly on
his user page.

In addition to the view-like page, Workspace also provides a quick shortcut to create
new content. A list of content types that the user is allowed to create will appear in a
drop-down select list on his workspace page with a handy “Add new item” button that
will take him immediately to the content creation screen, such as Create content→Story
(node/add/story). That makes it an easy one-stop dashboard for frequent contributors.

Hands-On: Create Workspaces
The Workspace module is a snap to set up. When we are done with a few short steps,
we’ll have something like Figure 6-13 for all of our users.

1. First, go to Administer→Site building→Modules (admin/build/modules) and ena-
ble the following module:

• Other package

— Workspace

2. That’s it! You should now see a “My workspace” link in the navigation menu, and
each user on the site will have her own workspace as well.

Figure 6-13. The “My Workspace” page, listing a user’s content

Hands-On: Create Workspaces | 227

http://drupal.org/project/workspace

3. At Administer→User management→Permissions (admin/user/permissions), you’ll
see that the Workspace module also defines some permissions. If users are given
“administer own workspace” permission, they’ll be able to configure settings such
as how many items are displayed. Use the permission assignments shown in Ta-
ble 6-7 and click “Save permissions” when done.

Table 6-7. Settings for workspace permissions

Permission: workspace module anonymous user authenticated user editor site administrator

administer own workspace Checked Checked Checked

administer workspaces Checked

view all workspaces Checked

Spotlight: Views Bulk Operations
We’ve accomplished quite a bit for the editors of our website. Now they can move
articles from one state to another, send them back to writers for revisions, receive no-
tices when stories are ready for review, and automatically publish them when they’re
ready for consumption. However, editors still have to work with the articles one by
one, a troublesome limitation when the site has been swamped with me-too news sto-
ries or low-quality poetry.

Drupal provides a built-in content administration page at Administer→Content man-
agement→Content (admin/content/node). It allows administrators to list 20 pieces of
content at a time, and to perform bulk operations on them, like publishing and un-
publishing, which you can see in Figure 6-14. However, this screen doesn’t take ad-
vantage of the actions system, and it’s impossible to customize what information is
listed in the table.

The Views Bulk Operations module (http://drupal.org/project/views_bulk_operations)
is designed to overcome that limitation. It provides a new style of view called “Bulk
Operations.” It displays the contents of the view much like a standard table-style view,
with columns and rows and headers. However, it puts a checkbox next to each node
and places a drop-down list of actions at the top of the view. The result is an easy-to-
customize management form with all the capabilities of Drupal’s content administra-
tion screen, but with far more flexibility. You can see an example of the bulk operation
view in Figure 6-15.

In addition, it’s possible to customize the actions that appear in the drop-down. Using
that capability, you can give users in different roles access to more powerful adminis-
tration screens. A moderator for a message board, for example, might see an adminis-
tration screen with the “Unpublish content” and “Email administrator” actions. An
administrator could be given access to another view that includes the “Ban user” and
“Delete content” actions in its list of options.

228 | Chapter 6: Managing Publishing Workflow

http://drupal.org/project/views_bulk_operations

Hands-On: Building an Administration Page
First, before we get to the view, we need to set up specific actions to reject and approve
content using our workflow states. This will allow the Views Bulk Operations module
to list the Reject and Approve options easily.

Figure 6-14. The Drupal core default content administration view

Figure 6-15. The “Workflow summary” view using Views Bulk Operations

Hands-On: Building an Administration Page | 229

Create Workflow Actions
1. Go to Administer→Site configuration→Actions (admin/settings/actions).

2. Select “Change workflow state of post to new state...” from the “Make a new ad-
vanced action available” drop-down and click Create.

3. Fill out the new action’s form as shown in Table 6-8 and save it.

Table 6-8. Settings for the Approve post action

Setting Value

Description Approve post

Target state Approved

4. Do the same thing again, only this time use “Reject post” for the Description field,
and select Draft as the “Target state.” Click Save to complete it.

We’ve now set up specific, reusable actions to reject and approve nodes. Thanks to the
work we did earlier, whenever these actions are triggered, all the appropriate emails
will be sent and content will be published as soon as it’s approved, based on the work-
flow and trigger rules we set up.

The Workflow module already provides a simple view listing all of the site’s content,
and what state each piece of content is currently in. Now, we need to alter this view to
take advantage of the Views Bulk Operations module.

Configure the View

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• Other package

— Advanced Help

• Views package

— Views

— Views Bulk Operations

— Views UI

2. Now, when we go to Administer→Site building→Views (admin/build/views), we
will see the “Default Node view: workflow_summary” view listed. Click the Edit
link for that view (admin/build/views/edit/workflow_summary).

3. In the “Basic settings” section, click Style: Table, change it to Bulk Operations, and
click Update.

230 | Chapter 6: Managing Publishing Workflow

Figure 6-16. Views Bulk Operations settings

Hands-On: Building an Administration Page | 231

4. In the “Defaults: Style options” configuration screen that appears below, in the
“Selected operations” section, check the following options, and click Update:

• Delete

• Approve post

• Reject post

5. Click the Save button to save the changes to the view, which should look like
Figure 6-16.

You will see a new item, “Workflow summary,” in your navigation menu. If you visit
the page, shown in Figure 6-15, you will see a list of all the content on the site, with
drop-down boxes to filter by workflow state and content type. There is also a new drop-
down list for you to choose an operation, which will trigger our actions. Selecting any
of the pieces of content using the checkboxes in this form and choosing an action will
perform that action on the selected node(s).

Taking It Further
We now have our new editorial workflow in place. We’ve met the needs of our client,
but there are some other modules that are also worth checking out:

Flag (http://drupal.org/project/flag)
Flag, which is covered in more detail in Chapter 9, could be used to allow quick
in-place approval of articles without going to the edit page or the overview page.

Workflow Fields (http://drupal.org/project/workflow_fields)
You can change specific CCK fields based on a node’s state, making them read-
only or hiding them entirely, depending on what stage of the publishing process
the content is in. For example, although it might make sense for the legal team to
read the content of a new article and reject or approve it, they should probably not
be allowed to make their own edits.

Workflow Graph (http://drupal.org/project/workflow_graph)
This module can present the history of one piece of content as a visual graph,
mapping out which contributors to the site have changed its states at what time.
Though this isn’t necessary for simple sites, it can make keeping track of complex
editing processes much easier.

Nodequeue (http://drupal.org/project/nodequeue)
This module is often used on online news sites, as it allows for displaying arbitrary
articles in a list with a user-specified order, such as maybe an Editor’s Picks list of
articles. Nodequeue also has actions integration, which allows you to do things
like automatically add new articles to queues on a per-topic basis.

232 | Chapter 6: Managing Publishing Workflow

http://drupal.org/project/flag
http://drupal.org/project/workflow_fields
http://drupal.org/project/workflow_graph
http://drupal.org/project/nodequeue

Summary
Congratulations! The Twin City Arts website now includes all the major features that
the staff wanted. We’ve used the Workflow module to create a richer set of “states” for
content to exist in, preventing collisions when editors review rough drafts that writers
haven’t finished. We’ve used actions and triggers to handle notifying editors and writers
when articles need their attention, and we’ve used the Views Bulk Operations module
to give editors a way to manage large groups of articles at a time. Finally, we used the
Workspace module to give writers a simple, one-stop location to view their rough
drafts, their in-review articles, and their previously published pieces.

Here are the modules that we referenced in this chapter:

• Flag: http://drupal.org/project/flag

• Nodequeue: http://drupal.org/project/nodequeue

• Rules: http://drupal.org/project/rules

• Trigger: core

• Views: http://drupal.org/project/views

• Views Bulk Operations: http://drupal.org/project/views_bulk_operations

• Workflow: http://drupal.org/project/workflow

• Workflow Fields: http://drupal.org/project/workflow_fields

• Workflow Graph: http://drupal.org/project/workflow_graph

• Workspace: http://drupal.org/project/workspace

Summary | 233

http://drupal.org/project/flag
http://drupal.org/project/nodequeue
http://drupal.org/project/rules
http://drupal.org/project/views
http://drupal.org/project/views_bulk_operations
http://drupal.org/project/workflow
http://drupal.org/project/workflow_fields
http://drupal.org/project/workflow_graph
http://drupal.org/project/workspace

CHAPTER 7

Photo Gallery

If a picture says a thousand words, it’s important that a site have a strong foundation
for managing images. The flexibility of Drupal allows for the management of images
in a variety of ways and can scale from a one-person portfolio to millions of users
uploading photos on a fansite.

This chapter introduces the following modules:

ImageField (http://drupal.org/project/imagefield)
A CCK field that allows image uploads

ImageCache (http://drupal.org/project/imagecache)
Automatically resizes images to predefined dimensions and caches them for later
retrieval

Custom Pagers (http://drupal.org/project/custom_pagers)
Creates custom previous/next pagers

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Photo Gallery installation profile from the book’s sample code. This will
create the example website on your web server. The completed website will look as
pictured in Figure 7-1 and at http://gallery.usingdrupal.com. For more information on
using the book’s sample code, see the Preface.

In order to complete this chapter, you must have the Clean URLs feature
working, and your version of PHP must have the GD Library installed.
See the “Troubleshooting ImageCache“ section, later in this chapter,
for more information.

235

http://drupal.org/project/imagefield
http://drupal.org/project/imagecache
http://drupal.org/project/custom_pagers
http://gallery.usingdrupal.com

Case Study
The Robinsons have a large extended family with whom they have trouble keeping in
touch. The family has long been pestering their web-savvy son Fritz to build a website
where they could share family stories and full-resolution photos. Finding himself with
a weekend and no homework, Fritz decides to set up the family photo-sharing site using
Drupal.

The Robinsons want the ability to let family members submit photos. When uploaded,
photos should automatically resize down to a thumbnail view, but also allow for the
download of a full-resolution version. They want to be able to put the photos into
different galleries and tag the photos with keywords. And finally, they want their family
members to be able to comment on the photos!

Implementation Notes
You probably expect the task of building a photo gallery to be easy, but given the wide
array of options available in Drupal, it can quickly turn confusing. The good news is
that a site built with CCK and Views, such as the job website in Chapter 3, can quickly
be extended to create a highly customized image gallery.

Figure 7-1. The Robinsons’ photo gallery website

236 | Chapter 7: Photo Gallery

Photo Uploads
Image handling in Drupal has long been a distributed effort between several cooper-
ating (or competing) modules. The Image module (http://drupal.org/project/image) was
the universal solution in Drupal 4.6 and 4.7, but with the advent of CCK, several new
modules appeared that leveraged this new, more flexible system. Because the Drupal
community’s development trends are headed toward websites built around CCK and
Views, we’re going to build our site around this newer approach, building on the basic
functionality of CCK and Views.

ImageField (http://drupal.org/project/imagefield) is a module that provides a reusable
image upload field to CCK, which we’ll be able to use to upload our photos.

Thumbnail Generation
Despite its name, the ImageCache module (http://drupal.org/project/imagecache) does
much more than simply cache images. It is often paired with ImageField, because al-
though ImageField handles the upload and storage of images, it does not provide any
way of creating thumbnails. ImageCache can not only create thumbnails, but also chain
together several image manipulations such as crop, rotate, scale, desaturate, and
sharpen to create completely customized displays of images.

Photo Galleries
The display of images in a gallery can be made from a few pages created by the Views
module. Because ImageCache and ImageField provide Views integration, you’ll be able
to select any desired images created with ImageField, and then ImageCache will scale
those images down for display in the view.

Spotlight: ImageField
Building on the flexibility of CCK, any module in Drupal can provide a reusable field
that can be used to extend your content types. Fields that handle things like text or
numbers are bundled with CCK, but you can just as easily add fields that allow you to
upload audio and video files, click web links, and more. These other field types are
separate projects on the Drupal.org website, available under the “CCK” category (http:
//drupal.org/project/Modules/category/88).

The ImageField Module, available from http://drupal.org/project/imagefield, is one such
specialty field that provides a reusable field for image handling, as shown in Fig-
ure 7-2. Like other CCK fields, you can configure an image field to allow multiple
values, so any number of images can be uploaded to a single node. You can even add
multiple fields to a single content type, in case a piece of content has the need for
multiple images, each with specialty uses.

Spotlight: ImageField | 237

http://drupal.org/project/image
http://drupal.org/project/imagefield
http://drupal.org/project/imagecache
http://drupal.org/project/Modules/category/88
http://drupal.org/project/Modules/category/88
http://drupal.org/project/imagefield

Configuration
After enabling the module, ImageField puts a new field on the fields form for setting
up a new or existing content type. Like other CCK fields, an image field is added to a
content type at Administer→Content management→Content types (admin/content/
types). The form for configuring an image field is displayed in Figure 7-3.

A few of the options on this form are common among all CCK fields, such as Label,
Widget type, Required, and Number of values. These fields behave the same for an
image field as they do for other fields, as described in the introduction to CCK in
Chapter 3. The other options listed here are unique to ImageField:

Maximum resolution
If a user uploads an image that is too large, the image is scaled down proportionally
to fit within the maximum resolution.

Minimum resolution
If a user uploads an image that is too small, ImageField prompts the user for a larger
one.

File path
The file path lets you put your images into a specific directory within your files
directory. The files directory is configured at Administer→Site Configuration→File
System (admin/site configuration/file-system). To prevent your images from being
dumped directly into the top level of the files directory, this option should always
be filled in with some value. Often, you’ll want to use a separate directory for each
content type you set up. If you have two content types such as “Article” and “Blog
post,” you might set up the image path to images/article and images/blog, respec-
tively.

Figure 7-2. An image field with options enabled for “Alternate text” and “Title”

238 | Chapter 7: Photo Gallery

Figure 7-3. The widget configuration options for an image field

Spotlight: ImageField | 239

If the Token module (http://drupal.org/project/token) is installed,
the Image Path option can be made dynamic. See Chapter 5 for a
description of the Token module’s use with Pathauto as an
example.

Title/ALT text
If enabled, each one of these options will present the user with an additional field
for the value of the alt and title attributes of the image when it is displayed. The
values provided by the user would populate the emphasized text in the code
sample:

<img src="/files/images/sample.png" alt="Alternate text displayed here"
title="Title text displayed here" width="200" height="100" />

The alt text will usually never be displayed to the end user, but is important for
accessibility, as screen readers and other assistive software use it. The title attribute
should be displayed as a tool tip when a user hovers the mouse over the uploaded
image.

Default list value/How should the list value be handled?
When displaying images using the “Generic file display” formatter, images are
displayed in a list. If the listed option is used as the default, the uploaded images
will be included in the list. This setting has no effect unless the “Generic file display”
formatter is used when displaying the image.

If the list value is “User configurable,” users will be given the choice of listing the
file when they upload the image. The default listing of images is displayed in
Figure 7-4.

Hands-On: Uploading Photos
To begin, we need to handle some basics: creating a form with which to upload photos,
and some taxonomy terms that we will use to create a browsable photo gallery.

Photo Content Type
The first thing that we’ll need for our photo gallery is a new content type for photos,
called Photo. This new type will let users upload full-resolution photos through
ImageField.

240 | Chapter 7: Photo Gallery

http://drupal.org/project/token

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• CCK package

— Content

— FileField

— ImageField

• Core – optional package

— Taxonomy

2. Go to Administer→Content management→Content types (admin/content/types)
and add a new content type by clicking on the “Add content type” tab. Create a
content type called Photo, using the settings indicated in Table 7-1.

�������	
����	�	����������
	�������������������	���

�����	
��

Figure 7-4. If listing is user-configurable, users may specify whether the image is listed

Hands-On: Uploading Photos | 241

Table 7-1. Settings for the new Photo content type

Field Value

Identification

Name Photo

Type photo

Description A photo containing a Robinson family member or friend

Submission form settings

Title field label Title

Body field label Caption

3. After creating the Photo type, you’ll be redirected back to the list of content types.
We’ll now add an image field to the new Photo content type. Click the “manage
fields” link next to the Photo type (admin/content/node-type/photo/add_field).
Enter the values as in Table 7-2.

Table 7-2. Settings for adding a photo field to the Photo content type

Field Value

Label Photo

Field name photo

Select a field type Image

Select a widget type Image

4. After creating the new field, you’re presented with the form to configure it (admin/
content/node-type/photo/fields/field_photo). Enter the values as in Table 7-3.
Though most of these settings are self-explanatory, the maximum resolution for
images has a special meaning for a value of 0, meaning that there is no limit to the
resolution of the uploaded image. As one of the family goals was for full-size image
swapping, we’ll leave this at the default value of 0. We’ll also upload all pictures
to a subdirectory called photos, for organization.

Table 7-3. Settings for the photo field within the Photo content type

Field Value

Photo settings

Permitted upload file extensions jpg jpeg png gif

Maximum resolution for images 0

Minimum resolution for images 0

Path settings: File path photos

Global settings

Required Checked

Number of values 1

242 | Chapter 7: Photo Gallery

Field Value

Default list value Listed

How should the list value be handled? Enforce Default

Description field Disabled

If the Token module is enabled, the path that images are uploaded
to can be based on something dynamic, such as the logged-in user’s
username or the date.

5. After submitting the form, you’ll be returned to the list of all the fields in the Photo
content type. Order the fields as follows and click Save:

• Title

• Photo

• Caption

• Menu settings

6. This concludes the setup of the new content types, but we need to make it so that
users can upload a picture to the site. Go to Administer→User manage-
ment→Permissions (admin/user/permissions), where you can add permissions for
each user role. Give each role the permissions indicated in Table 7-4.

Table 7-4. User permissions for the new Photo content type

Permission anonymous user authenticated user editor site administrator

node module

create photo content Checked

delete any photo content Checked Checked

delete own photo content Checked

edit any photo content Checked Checked

edit own photo content Checked

After completing the Photo content type, try out uploading a new photo by visiting
Create content→Photo (node/add/photo). A basic user should see a form similar to that
in Figure 7-5.

Image Galleries
Although being able to upload photos is a good start for the Robinson family, Fritz
knows that every photo-sharing site needs something like galleries, where users can
group photos. In our photo gallery, Fritz identified that a gallery is no more than a
grouping of photos under a single name or category. This concept maps directly to

Hands-On: Uploading Photos | 243

Drupal’s core Taxonomy module, introduced in Chapter 2. We can set up several pre-
defined galleries by creating a vocabulary with a term for each gallery.

In addition, many photo-sharing sites have the ability to let users freely categorize pho-
tos with whatever words they like (called free tagging). This sort of categorization is
also supported by Drupal’s core taxonomy module.

1. Go to Administer→Content management→Taxonomy (admin/content/
taxonomy).

2. Click the “Add vocabulary” tab and enter the values from Table 7-5 into the new
vocabulary form.

Table 7-5. Values for the new vocabulary for Gallery

Setting Value

Identification

Vocabulary name Gallery

Content types

Photo Checked

Settings

Required Checked

Weight −1

The weight value of the Gallery vocabulary must be lower than that
of the Tags vocabulary, to make Gallery terms appear before Tag
terms, which is important for the Custom Pager that we’ll add later.

Figure 7-5. Our new photo submission form when logged in as an authenticated user

244 | Chapter 7: Photo Gallery

3. After being returned to the main Taxonomy page, click the “Add vocabulary” tab
a second time to set up the free tagging vocabulary with the values in Table 7-6.

Table 7-6. Values for the new vocabulary for Tags

Setting Value

Identification

Vocabulary name Tags

Content types

Photo Checked

Settings

Tags Checked

Weight 0

4. The new Tags vocabulary can have new tags added directly on the node form, but
our Gallery vocabulary will only display galleries defined by a site administrator.
Click the “add terms” link on the Gallery row to populate your site with several
starter galleries. The only required field is the Term name; create several terms such
as those in Table 7-7 (though you can use any terms you want).

Table 7-7. Sample terms (galleries) for the Gallery vocabulary

Term name

Sunnyvale family picnic

Barcelona vacation

Boston road trip

Charlie’s distraction

The Robinsons can now choose a gallery when they upload or edit a photo. The node
edit form for photos at Create Content→Photo (node/add/photo) should now contain
a drop-down list of galleries and a text field for tags such as shown in Figure 7-6.

Figure 7-6. The fields for selecting a gallery and adding tags

Hands-On: Uploading Photos | 245

Spotlight: ImageCache
If you uploaded an exceptionally large image during the previous hands-on steps,
chances are good that you managed to break your site’s layout. To prevent this, you’ll
want to scale these images so that they’re a consistent size, and create thumbnails for
use in listing pages. To help with this task, the ImageCache module will provide these
options and many more for displaying images.

When it comes to file handling, ImageCache is one of the most exciting modules for
Drupal. Despite the name, ImageCache does much more than cache images. It is in fact
a full image manipulation tool, which will likely serve as the basis for image handling
in a future release of the Drupal core.

The image manipulation provided by ImageCache allows a series of actions such as
cropping, scaling, or resizing to be combined into what is called an image preset. By
combining actions, you can create a customized display of your images. Figure 7-7
shows the result of a preset that combines a crop action with rotate to make a square
image that is rotated 90 degrees.

��������	�
��
�������

����������
�������

Figure 7-7. An image preset using two actions: scale and crop, then rotate

The “cache” part of ImageCache comes after the image has been manipulated. The
image is generated on the fly, then saved in a directory with the same name as the
ImageCache preset. This way, images are only manipulated once, then saved to the
disk. Figure 7-8 illustrates the ImageCache workflow when an image is requested.

Presets and Actions
The main ImageCache administration panel at Administer→Site building→ImageCache
(admin/build/imagecache), shown in Figure 7-9, displays a list of the presets available
on the site. An image preset starts as nothing but a name, describing the actions that
are performed on this style of image. You can add, edit, or delete presets, as well as

246 | Chapter 7: Photo Gallery

“flush” them. The Flush option lets you clear out all created images for a preset. Because
images are generated on the fly, you can delete all the thumbnails on your site at any
time and they’ll be re-created the first time they’re requested. You might try flushing
the cache for a preset if images somehow become out of date with the original.

Figure 7-9. The ImageCache module preset administration screen

�������

��	
�������� ��	
�������� ��	
��������

�

������������	��������������	�	����������	
���	
��������

�������
�����

���������

 ������!���
"������ �����	�	��#	�	��$%

 ����
��

��������

����������
���

������&��'

()

�������������������

)�
��
�
��������
�����

����������&���
�
���*

+����	�	��
,	
�����-������

�����

�������	

)�����
���.���
/�
���
	�	���������������������&��

012

 ���
�����

�������	

����
'

012

343�5����(�

������1����

()

)�������
��	
��������6��������

��	
��������

Figure 7-8. ImageCache workflow for creating a thumbnail

Spotlight: ImageCache | 247

The preset name will be part of the URL of all generated images, so it’s
good to keep it short, all lowercase, and use only alphanumeric char-
acters, underscores, and dashes. If building a site where standard image
sizes will be used in a variety of places, a name that describes the final
output is also a good idea, such as “160_square,” “200_width,” or
“300x200_resize.” For our examples, we’ll use names like “thumbnail”
and “preview,” which are semantic in their use.

The real fun comes in when adding new actions to a preset. Multiple actions may be
added to a single preset, and the actions will be performed from top to bottom. When-
ever you edit a preset, the cached files will all be flushed so that they can be regenerated.
This makes it easy to change all the images on the site from using a 100-pixel thumbnail
to 120-pixel thumbnail (or any other possible changes). The configuration form for
adding a new preset to an action is shown in Figure 7-10.

Figure 7-10. Actions on an ImageCache preset

Because each action has unique settings beyond weight, we’ll describe only the most
basic actions: crop, resize, scale, and scale and crop.

Crop

Crop allows you to trim off edges of the image that are not wanted. Crop also can take
pixel values, but the most common usage of crop values are the keywords top, right,
bottom, left, and center. The end result of a cropping action will be similar to Fig-
ure 7-11.

248 | Chapter 7: Photo Gallery

���������	
��
�����
���

���������
�����

Figure 7-11. Cropping will trim off edges of an image

Resize

Resize can be used to force an image to a particular dimension. Width and height values
can be integers to scale to a specific pixel size, or include the percent symbol to scale
to a percentage.

Usually, you’ll want to use the scale action instead of resize, as resizing will make your
image look squished or stretched. Rather than maintain proportions, resize forces an
image to be exactly those dimensions, as shown in Figure 7-12.

��������		

�������

�����
�		��

Figure 7-12. Resizing can change the aspect ratio of an image

Scale

Scale is used to size images proportionally. Unlike resize, you need to enter either a
width or height. The dimension without a value will be determined by scaling the image
to the given dimension. If both dimensions are entered, the image will be scaled to fit
within both values.

Spotlight: ImageCache | 249

If your site absolutely needs images to be no smaller than a certain size, you can use
the Allow Upscaling option to enlarge images to the entered dimensions.

Scaling will always maintain the original aspect ratio of the original image. The end
result of a scaling action is shown in Figure 7-13.

Scale and crop

As the name might imply, the scale and crop action is a single-action combination of
the scale and crop actions. In this action, the image is scaled until one dimension fits
within the given size, then the larger dimension is cropped off (also called a zoom
crop). This action is most helpful for making square thumbnails while maintaining the
aspect ratio of the original image. An example of the result of the scale and crop action
is shown in Figure 7-14.

��������	��
��
������������	

��	���
����

Figure 7-14. The scale and crop action trims off the larger side while maintaining the aspect ratio

�������		

���
� �		��

Figure 7-13. Scaling an image maintains the aspect ratio

250 | Chapter 7: Photo Gallery

More actions are available in ImageCache than those listed here, and
more are being added all the time. Some other actions you may use
include: rotate, watermark, border, text placement, brightness, and
transparency. For a complete list, see the ImageCache project page at
http://drupal.org/project/imagecache. For an expanded set of actions,
you can install the ImageCache Actions module, available at http://dru
pal.org/project/imagecache_actions.

Using a Preset
After setting up presets in the ImageCache administration area, you need to tell Drupal
where these presets should be used. ImageField and FileField provide options to display
the images full-size or in a generic file list. After configuring ImageCache presets, ad-
ditional options for displaying images become available.

CCK formatters

The typical display of images is configured using CCK formatters, as shown in Fig-
ure 7-15. For every ImageCache preset setup on your site, ImageCache adds four new
formatters:

[preset name] image linked to node
Displays the image in the given preset size, linked to its “parent” node.

[preset name] image linked to image
Displays the image in the given preset size, linked to the unaltered version of the
image.

[preset name] file path
Displays the path to the given preset image only. Used for debugging.

[preset name] URL
Displays the URL to the given preset image only. Used for debugging.

The CCK formatters exposed by ImageCache are also available to
the Views module, which allows you to create displays such as a
grid list of image thumbnails. We’ll cover this more in the “Hands-
On: ImageCache” section, later in this chapter.

Spotlight: ImageCache | 251

http://drupal.org/project/imagecache
http://drupal.org/project/imagecache_actions
http://drupal.org/project/imagecache_actions

��������	
����
��
�
���
��
�
��������������
��

Figure 7-15. Configuring an image field to use an ImageCache preset

Manually viewing a preset image

You may view a preset at any time by manually assembling the URL to the image and
preset. Assembling a URL is illustrated in Figure 7-16.

��������	
����
���������	
�������������
�����������
�����	���������

���������	
��� �������
�

���������	
����
���������	
�������������
�����������
�	
	���������	
���
�����	���������

���������	
��� �����
����� �������
�

Figure 7-16. Assembling a URL to an ImageCache preset

After configuring an ImageCache preset, it’s easy to test what an image will look like
by manually visiting the URL of an image.

252 | Chapter 7: Photo Gallery

Displaying ImageCache Images in PHP
When wanting to display an image in a theme or module, the best and easiest way to
display an ImageCache image is by using one of the following functions:

• imagecache_create_url(): Retrieve the full URL to an image

print imagecache_create_url('my_preset', $path)

• theme_imagecache(): Print out the HTML for displaying a full image

print theme('imagecache', 'my_preset', $path, $alt, $title, $attributes);

See Chapter 11 for a full explanation of theme functions and how they are used.

Troubleshooting ImageCache
ImageCache makes use of several advanced PHP and Apache features, such as URL
rewriting and the GD image library. Because its software requirements are steep, any
misconfiguration in your server or Drupal setup may cause ImageCache to break. The
following sections describe common problems when getting ImageCache to work.

Check Clean URLs

The most common problem is that Clean URLs are not enabled (or not supported by
the software on the web server). Visit Administer→Site configuration→Clean URLs
(admin/settings/clean-urls), as shown in Figure 7-17. If you receive an error on the
configuration form, see the handbook page for setting up Clean URLs (http://drupal
.org/node/15365) for help configuring your server.

Drupal’s Clean URLs feature requires the Apache extension
mod_rewrite. If running Drupal on a Microsoft IIS webserver, a third-
party solution for rewriting URLs will be necessary to use ImageCache.

Figure 7-17. Clean URLs cannot be enabled until the Clean URL test has successfully run

Spotlight: ImageCache | 253

http://drupal.org/node/15365
http://drupal.org/node/15365

Check GD library

Another common problem is a lack of the GD image library on the server. This could
be the problem if no image is being generated at all when manually visiting an
ImageCache URL. GD is a software package that is enabled by default with installations
of PHP, but sometimes it is missing from the installation when doing custom installs
of PHP. You can check the status of GD in your installation by visiting Adminis-
ter→Reports→Status report (admin/reports/status). You should see a message similar
to Figure 7-18, confirming GD is enabled.

Figure 7-18. The message you should see for GD on the Status report

If GD looks OK but you’re still not having images generated, try checking the full
configuration of your PHP installation by creating an info.php file on your server con-
taining only the following line of code:

<?php phpinfo(); ?>

You can also view an abbreviated list of PHP info right from Drupal by going to Ad-
minister→Reports→Status report and clicking on the version number link next to PHP
(admin/reports/status/php). While not as complete as the full info.php file, it can be
useful for checking overall details of how PHP is configured on your server.

�������	
�������������
������������������������
���������������
���������

Figure 7-19. Checking for GD in a PHP install

254 | Chapter 7: Photo Gallery

Check for the GD settings section, which should be similar to Figure 7-19. Check that
all the needed libraries are available for the kinds of images being uploaded. If the entire
section is missing from this page, then GD is not installed at all.

When finished with info.php, you should delete it from your server. It
gives away lots of details about how your server is configured, which
could give ideas to someone with less-than-honorable intentions if he
happens across it.

Hands-On: ImageCache
Thanks to the previous section, we can now upload and categorize photos, but listings
of photos are displaying several full-resolution images—surely not what the Robinson
family wants! We need to create scaled-down versions of the images while leaving the
original images intact. First, we’ll set up ImageCache to provide us with thumbnails,
and then configure our Photo type to use these thumbnails:

1. Check that Clean URLs are enabled at Administer→Site configuration→Clean
URLs (admin/settings/clean-urls).

2. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• ImageCache

— ImageAPI

— ImageAPI GD2

— ImageCache

— ImageCache UI

Create ImageCache Presets
Let’s set up a few presets to scale down the images: the first one a “thumbnail” size
that’s a small 120-pixel-wide square, and the second a “preview” size that maxes out
the image for display on photo node pages (which maxes out the image widths at 480
pixels to prevent our layout from breaking):

1. Go to the ImageCache settings page at Administer→Site building→ImageCache
(admin/build/imagecache). Click the “Add new preset” tab.

2. Enter the preset name “thumbnail” in the “Preset namespace” field and click the
Create New Preset button. This will take you to the preset configuration screen
pictured in Figure 7-20.

Hands-On: ImageCache | 255

3. On the next page, configure the thumbnail preset. In the New Actions fieldset,
click Add Scale and Crop. Enter the values from Table 7-8 and shown in Fig-
ure 7-21 for the scale and crop action, to create image thumbnails as 120-pixel-
wide squares. Click Add Action when finished.

Table 7-8. Settings for the “thumbnail” scale and crop action

Setting Value

Weight 0

Width 120

Height 120

Figure 7-21. Settings for the ImageCache actions

Figure 7-20. ImageCache preset configuration screen

256 | Chapter 7: Photo Gallery

4. That completes the configuration of the thumbnail preset. Return to the main
ImageCache page at Administer→Site building→ImageCache (admin/build/
imagecache) and click the “Add new preset” tab. Enter “preview” into the Preset
Namespace text field and click the Create New Preset button.

5. In the new preview preset, click the Add Scale link from the New Actions fieldset.
Use the values in Table 7-9 for the scale action, to limit preview images to a max-
imum of 480 pixels wide. Click Add Action after finishing the values from the table.

Table 7-9. Settings for the “preview” scale action

Setting Value

Weight 0

Width 480

Height Leave blank

Allow Upscaling Unchecked

Now our two presets are complete! We’ve set up two presets, the first one “thumbnail”
for use in listing of many images, and the other “preview” for the display of the image
on the photo node page.

Configure Photo Field Display
Even though we’ve set up two presets in ImageCache, our photos are still displaying at
full resolution. We need to configure the Photo content type to use our new display
options:

1. Go to the Display settings page for the Photo content type at Administer→Content
management→Content types (admin/content/types) and click “edit” for the Photo
content type. Once inside the page for the content type, click the “Display fields”
tab (admin/content/node-type/photo/display).

2. Change the settings for the Photo field to those from Table 7-10.

Table 7-10. Display settings for the Photo field

Image Setting Value

Label <Hidden>

Teaser thumbnail image linked to node

Full node preview image linked to image

Now that we’ve set up a Photo content type and set its display options to using Im-
ageCache presets, it’s a good time to take a break and try out uploading photos. After
uploading several images to the gallery, you’ll have a home page similar to that in
Figure 7-22.

Hands-On: ImageCache | 257

Figure 7-22. Front page of the photo-swap site after creating a thumbnail preset for images

Improve Image Quality
If you were to look at a sample thumbnail generated by ImageCache at this point, you
might notice the quality of the image is a bit low and over-compressed. ImageCache
uses the ImageAPI module’s setting for image quality when processing JPEG images,
which defaults to 75%. Increasing this level will generate much higher-quality images.

The steps are:

1. Go to the ImageAPI configuration for Drupal at Administer→Site configura-
tion→ImageAPI (admin/settings/imageapi). Click the Configure Tab.

2. Set the JPEG quality to 90% or higher and click “Save configuration.”

3. To see this effect on existing thumbnails, visit the ImageCache administration page
at Administer→Site building→ImageCache (admin/build/imagecache).

4. For each preset, click Flush link to clear out the old, low-quality images. The new
images will be regenerated the next time they are displayed.

Besides the images created by ImageCache, Drupal also creates
thumbnails in a few other places, such as user pictures. These
thumbnails use a different JPEG quality setting, configured at Ad-
minister→Site Configuration→Image toolkit (admin/site configu-
ration/image-toolkit).

258 | Chapter 7: Photo Gallery

Hands-On: Gallery View
We now have the process for uploading an image pretty much finished, and display of
individual photos isn’t looking too bad either. The shortcoming of our site right now
is the display of thumbnailed images on a single page. It would be preferable if the
images were laid out in a grid-like fashion, allowing many images to be displayed in a
small area. To accomplish this task, we can set up a view using the Views module.
When complete, this section will look as pictured in Figure 7-23.

Figure 7-23. Completed gallery view

1. Go to at Administer→Site building→Modules (admin/build/modules) and enable
the following:

• Other

— Advanced Help

• Views

— Views

— Views UI

2. Go to the Views administration page at Administer→Site building→Views (admin/
build/views). Click the Add tab at the top of the page to make a new view. Create
a new view using the settings from Table 7-11.

Table 7-11. Basic Information for the gallery view

Field Value

View name gallery

View description A gallery display of images

Hands-On: Gallery View | 259

Field Value

View type Node

3. Configure the Basic settings of the new view using the information from Table 7-12.

Table 7-12. Page settings for the gallery view

Defaults: Basic settings Value

Title Galleries

Style Style: Grid

Number of columns: 4

Alignment: Vertical

Use pager Full pager

Items per page 20

More link Create more link: Checked

Empty Text No photos yet!

4. Find the Fields section of the view, click the + (plus) icon, check the “Content:
Image: Image (field_photo)” field and click Add. Configure the field with the set-
tings in Table 7-13 and click Update.

Table 7-13. Default fields for the gallery view

Defaults: Fields Values

Content: Image: Image (field_photo) Format: thumbnail image linked to node

Label: None

5. Because we want only published photos to show up in our listings, we’ll add a few
filters to the view. Click the + (plus) icon in the Filters sections, check the following
filters, and click Add:

• Node: Published

• Node: Type

• Taxonomy: Vocabulary

6. Configure the fields using the information from Table 7-14, clicking Update to
move between configuration forms.

Table 7-14. Default filters for the gallery view

Defaults: Filters Value

Node: Published Check “Published”

Node: Type Is one of “Photo”

Taxonomy: Vocabulary Is one of “Gallery”

260 | Chapter 7: Photo Gallery

7. To put the photos in some kind of order, we’ll list the newest photos first. Click
the + (plus) icon in the “Sort criteria” section and add “Node: Post date.”

8. When finished, the View should look as pictured in Figure 7-24. Click the Save
button to save your view.

Figure 7-24. Gallery view settings

This completes the setup of the default display for our gallery view. Click the Live
Preview at the bottom of the view configuration page—your view should appear similar
to Figure 7-25.

Figure 7-25. A preview of the grid-style image gallery

Hands-On: Gallery View | 261

However, this view is currently not visible anywhere on the site, and none of the photos
are categorized by their gallery names. To correct both of these problems, we’ll add a
new page display to the view:

1. If you’ve left the configuration for the view, return to Administer→Site build-
ing→Views (admin/build/views) and click Edit on the “gallery” view.

2. Select Page from the list of display types on the left side of the interface and click
the “Add display” button.

3. Give our new page a URL and menu item by configuring the page settings for the
new display. Find the “Page settings” area and enter the settings from Table 7-15.

Table 7-15. Page settings for the gallery view

Page: Page settings Values

Path gallery

Menu Type: Normal menu entry

Title: Galleries

4. To display the photos in a particular gallery, our page view is going to use an
argument. Click the + (plus) icon in the Argument section, check Taxonomy Term
ID, and click Save. Use the configuration from Table 7-16 to configure the new
argument, and click Update.

Table 7-16. Argument settings for the gallery view

Page: Arguments Values

Taxonomy: Term ID Title: %1

Action to take if argument is not present: Summary, sorted ascending

Validator: Taxonomy term

Vocabularies: Gallery

Set the breadcrumb for the term parents: Checked

5. You will be prompted to configure the various options. Click Update to choose the
default settings.

6. When finished, the view configuration screen should look as pictured in Fig-
ure 7-26. Notice that the settings inherited from the Defaults display are italicized
and grayed out. The overridden values for the Page display show unitalicized.

7. Click the Save button at the bottom of the form to save your view.

After building your view, you should notice a new item in your navigation for “Galler-
ies.” Go to this page (Galleries) to see your new Photo gallery! Make sure there are at
least a few photos uploaded, and you’ll have a page like that shown in Figure 7-27.

262 | Chapter 7: Photo Gallery

Figure 7-27. The summary view of our gallery

Figure 7-26. The Page display of the gallery view

Hands-On: Gallery View | 263

This is the “Summary” version of our gallery. This is displayed when we visit the
gallery URL directly, with no further arguments in the URL. Clicking on one of the
galleries in the list will take you to a URL at gallery/(term id), where (term id) is the
term for a gallery that we set up in our Gallery vocabulary.

Once a given gallery is chosen, you should see a page much like Figure 7-23 at the
beginning of this section. The title on the page “Barcelona vacation” is pulled from the
taxonomy term we’re currently viewing, courtesy of the %1 value we set up in Ta-
ble 7-16 for the Arguments section of the gallery view.

Hands-On: Latest Photos Block
So even though we have a pretty convincing gallery view setup, our home page is still
less than desirable with the default listing of images. Let’s spice it up with another
special view that shows the latest images uploaded anywhere on the site. To speed up
the process, we can clone the gallery view and then just make a few tweaks. When
completed, the site’s front page will look as pictured in Figure 7-28.

Figure 7-28. Front page with the Latest Photos block

Another option besides cloning the view is to make another display
within the existing gallery view. However, because we’ll need to remove
a filter and we could possibly change the image field to use a different
ImageCache preset, we’ll need to override a lot of the view defaults.
When in a situation like this, if you’re doing more overriding than in-
heriting, it’s a good idea to start with a new view rather than building
more displays into an existing one.

264 | Chapter 7: Photo Gallery

1. Go to the views administration page at Administer→Site building→Views (admin/
build/views).

2. In the row for our gallery view, click the Clone link. This makes a copy of the gallery
view, where we can just make a few changes.

3. Give the new view the basic information from Table 7-17.

Table 7-17. Basic information for the latest_photos view

Field Value

View name latest_photos

View description A list of the latest photos on the site

4. Click Next to begin editing the cloned view. We no longer need the Page display.
So click the Page display tab on the left, then click the “Remove display” button.
Click Save to remove the display entirely.

5. We also no longer need the Taxonomy: Vocabulary filter. Click on the Taxonomy:
Vocabulary link in the Filters area. In the configuration for the filter, click the
Remove button.

6. In the Basic settings for the view, change the Title to Latest Photos.

7. Add a new block display to the view. Select Block from the list of display types on
the left side of the Views interface and click the “Add display” button.

8. Find the “Block settings” area for our new display, and change the Admin descrip-
tion to Latest Photos. This will give the block an appropriate label in the blocks
administration page.

9. Click the Save button to update the new latest_photos view, which should now
look as pictured in Figure 7-29.

Figure 7-29. The block display of the Latest Photos view.

Hands-On: Latest Photos Block | 265

This new view provides a block that we can reuse anywhere on our site. We’ll specifi-
cally set it up to display only on the front page below our welcome message:

1. Go to the site information settings at Administer→Site configuration→Site
information (admin/settings/site-information).

2. Change the “Default front page” setting from node to node/1 and click “Save con-
figuration.” This step sets the front page to be only the contents of node 1 (the
“Welcome to the Robinson Family Photo-Swap” page). The front page will no
longer include the listing of nodes that it had previously.

3. Go to the blocks administration page at Administer→Site building→Blocks (admin/
build/block).

4. Drag the Latest Photos block up to the “Content bottom” region. Click “Save
blocks” to save the changes.

5. You’ll notice that the Latest Photos block is now at the bottom of every page on
the site, including the blocks configuration page we’re currently visiting. We’ll
change this to only appear on the front page. Click the “configure” link next to the
Latest Photos block and configure the block according to Table 7-18. Click “Save
block” when finished.

Table 7-18. Latest Photos block configuration

Field Value

Page-specific visibility settings

Show block on specific pages Show on only the listed pages.

Pages <front>

The Robinson Family Photo-Swap is now looking pretty good. We have photos scaled
down to two different sizes, displayed in a nice gallery format, and we can pull out
photos into blocks to be displayed anywhere we want on the site, such as the Latest
Photos on the home page.

Hands-On: Custom Pagers
What’s still showing a lack of tender love and care, however, is the photo asset page.
To view a list of photos, a user has to click the photo, return to the previous page, and
then click the next photo. This process could be simplified quite a bit if there were
previous and next buttons on the photo asset page. The Custom Pagers module (see
http://drupal.org/project/custom_pagers) can take any view (such as our gallery view)
and create a simple pager on node pages for the previous and next items in the view.

Figure 7-30 shows what the photo pages will look like when completed with this
section.

266 | Chapter 7: Photo Gallery

http://drupal.org/project/custom_pagers

��������	
�����
���������������������	��������������
����
�����

Figure 7-30. Photo pages, now with paging

Figure 7-31. Custom Pagers configuration for gallery pager

Hands-On: Custom Pagers | 267

1. Go to Administer→Site building→Modules (admin/build/modules), enable the fol-
lowing modules, and click “Save configuration”:

• Other package

— Custom Pagers

— Token

2. Go to the administration page for Custom pagers at Administer→Site build-
ing→Custom pagers (admin/build/custom_pagers).

3. Click the “Add a new custom pager” link at the bottom of the page.

4. Populate the form with the values from Table 7-19, as shown in Figure 7-31, and
click Submit.

Table 7-19. Custom Pager settings for navigating photos

Custom Pager Setting Value

Title Other photos in [term]

Pager position In a sidebar block

Pager visibility

By node type Photo

Pager node list

Use a view gallery

View arguments [term-id]

The [term] and [term-id] tokens will always use the top term as-
signed to the node. Because we set the Gallery vocabulary to a −1
weight (and the Tags vocabulary to a 0 weight), the term name and
ID for the current gallery will populate this value dynamically.

5. Now that we have a custom pager set up and ready to display as a block on the
page, make a visit to the blocks administration page at Administer→Site build-
ing→Blocks (admin/build/blocks).

6. Find the “Other photos in [term]” block and move it to the bottom of the “Left
sidebar” region.

7. Click “Save blocks” to save your changes.

Now take a look at a photo node page. You should have a helpful pager in the left
sidebar for the previous and next photo in the same gallery as the image you are viewing.

268 | Chapter 7: Photo Gallery

Taking It Further
If you’ve completed the gallery to this point, you’ve built an entire Drupal-based image
gallery! However, there’s no need to stop here. One of the great things about building
a site with Drupal is that you can continuously refine it, adding new features to any
part of your site. This section details a few additional pieces of functionality that are
common in photo-sharing websites:

Community Tags (http://drupal.org/project/community_tags)
Community tagging is just like the normal free tagging, except that it allows any
guest (with permissions) to add tags to content, not just the original author. Ena-
bling community tagging is very simple with the Community Tags module.

Tagadelic (http://drupal.org/project/tagadelic)
Community tagging and tag clouds are two things that go nicely together. Creating
tag clouds in Drupal is very simple using the Tagadelic module. Tagadelic provides
blocks that can display popular terms from various vocabularies in a weighted
manner. More popular terms will appear as larger text in the cloud, such as in
Figure 7-32.

Figure 7-32. A sample tag cloud provided by the Tagadelic module

Taxonomy Redirect (http://drupal.org/project/taxonomy_redirect)
In the current Robinson Family Photo-Swap, the gallery pages are nicely set up in
a flowing set of thumbnails, but the taxonomy term pages still show the plain listing
of nodes. This means that all the work we put into the gallery view won’t show up
when a user clicks a taxonomy term underneath a photo or in a tag cloud.

The best approach to fix this is to use the Taxonomy Redirect module to make
these links point to the new location at the path gallery instead of taxonomy/
term. This way, all the taxonomy term links for these two vocabularies will go to
the thumbnail view instead of the default listing provided by Taxonomy module.

Taking It Further | 269

http://drupal.org/project/community_tags
http://drupal.org/project/tagadelic
http://drupal.org/project/taxonomy_redirect

Summary
In this chapter, we introduced the modules ImageCache, ImageField, and Custom
Pagers. We set up a Photo content type and customized its output through a combi-
nation of ImageCache presets, views, and a custom pager. We have the option to enable
community tagging, tag clouds, and make all taxonomy links use the gallery view in-
stead of the default taxonomy listing.

Here are the modules that we referenced in this chapter:

• Community Tags module: http://drupal.org/project/community_tags

• Content Construction Kit (CCK) module: http://drupal.org/project/cck

• Custom Pagers module: http://drupal.org/project/custom_pagers

• ImageCache module: http://drupal.org/project/imagecache

• ImageCache Actions module: http://drupal.org/project/imagecache_actions

• ImageField module: http://drupal.org/project/imagefield

• Tagadelic module: http://drupal.org/project/tagadelic

• Taxonomy Redirect module: http://drupal.org/project/taxonomy_redirect

• Token module: http://drupal.org/project/token

• Views module: http://drupal.org/project/views

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• All CCK-related modules: http://drupal.org/project/Modules/category/88

• Clean URL support: http://drupal.org/node/15365

• Image working group: http://groups.drupal.org/image

270 | Chapter 7: Photo Gallery

http://drupal.org/project/community_tags
http://drupal.org/project/cck
http://drupal.org/project/custom_pagers
http://drupal.org/project/imagecache
http://drupal.org/project/imagecache_actions
http://drupal.org/project/imagefield
http://drupal.org/project/tagadelic
http://drupal.org/project/taxonomy_redirect
http://drupal.org/project/token
http://drupal.org/project/views
http://drupal.org/project/Modules/category/88
http://drupal.org/node/15365
http://groups.drupal.org/image

CHAPTER 8

Multilingual Sites

Creating a website with community content is great, but what if some or all of your
community doesn’t read or write English? It’s a big world, and only about 6% of it
speaks English as a native language. Multilingual sites allow you to reach out to your
community and let them feel comfortable contributing. Having multiple languages is
not as simple as having users post content in whichever language they like. There are
other things to consider, like navigation, date formatting, and help text. And what
about having the same post available in multiple languages, and easily navigating be-
tween them? Once you start thinking about it in detail, there is a lot of ground to cover.
Luckily, Drupal core and a few contributed modules have done a lot of that hard work
for us so we can concentrate on building our community and content.

Two big concepts for multilingual sites are internationalization, often abbreviated i18n,
and localization, often abbreviated l10n. Internationalization is the underlying structure
that allows software to be adapted to different languages and localization is the process
of actually translating the software for use by a specific locale. Localization is not nec-
essarily limited to just translating text, but also encompasses changing things like date
formats and currency.

Drupal 6 has made great strides toward building a better internationalization system
inside Drupal core that makes localization much easier. Core does not quite provide
us with all of the tools we need to completely localize a site, but there are contributed
modules ready to fill the gaps.

This chapter introduces the following modules:

Locale (core)
Provides interface for translating and importing translations for user interface text

Content Translation (core)
Handles translation of user-generated content

Internationalization (http://drupal.org/project/i18n)
Allows other elements to be translated, such as menus, blocks, and taxonomy terms

Localization Client (http://drupal.org/project/l10n_client)
An easy-to-use frontend for Locale module

271

http://drupal.org/project/i18n
http://drupal.org/project/l10n_client

Book (core)
A module that allows multiple users to collaborate on documentation

Forum (core)
A simple discussion system, grouped by topic

If you would like to participate in the hands-on exercises in this chapter, install Drupal
using the Multilingual installation profile from the book’s sample code. This will create
the example website on your web server. The completed website will look as pictured
in Figure 8-1 and at http://multilingual.usingdrupal.com. For more information on using
the book’s sample code, see the Preface.

Figure 8-1. The finished Migratory Patterns website

Case Study
Our client, Migratory Patterns, is an international group that reports on and discusses
migratory birds. They need a website that will allow everyone to have forums to discuss
their shared passion as well as keep a repository of shared knowledge. They would like
the site to provide language-specific forums for discussion, and allow members to nav-
igate the site in their preferred language. They will also need an online knowledge base
where members can share useful information, and a way to post news about the site.
Additionally, they want to allow nonforum content to be translated by group members
who know more than one language, so they can all share the accumulated knowledge.

272 | Chapter 8: Multilingual Sites

http://multilingual.usingdrupal.com

They currently have members who speak three different languages—English, Dutch,
and French—but they would like the ability to add more languages later as the group
grows.

Implementation Notes
Though Drupal core’s default Story content type can easily be used to post news to the
front page, other features of the client warrant some further discussion.

Forum Discussions
There are contributed modules available that add integration between Drupal and other
forum systems, such as phpBB, but Drupal itself comes with its own simple forum using
the built-in Forum module. The Forum module uses regular Drupal core concepts such
as taxonomy (for forum containers and forums themselves), nodes (for posts inside a
forum), and comments (for replies), which makes it integrate seamlessly with the rest
of the website, including Drupal’s translation features.

Knowledge Base
Another core Drupal module, the Book module, provides the ability for multiple users
to collaborate together in order to create a collection of documentation. Book pages
are structured into one or more hierarchies, with previous, next, and up links generated
automatically on each page. Each page also provides a “printer-friendly version,” which
will create an unformatted page consisting of the content of the current page and any
subpages for easy printing or downloading for offline reading.

Translating User Interface Text
User interface is the text that is provided by Drupal, both in core and contributed
modules. This includes things like form labels, help text, and navigation. Drupal core’s
Locale module provides the framework that allows user interface translations. To get
the bulk of our localization, we will download translation projects that will supply us
with translations of the core user interface. As we add contributed modules, we’ll need
to check whether they supply a module-specific translation. If not, we are not out of
luck, because core also gives us the framework to add and update translations as needed
within our site. The “Localization client” module uses this framework to add a nice,
user-friendly frontend to make translating interface text a breeze.

Locale does not cover every single aspect of user interface text though, so we will be
using the excellent Internationalization (i18n) module to fill in the gaps. The Interna-
tionalization module provides us the tools to translate taxonomy, blocks, and certain
site variables like the site name and mission statement. In addition to providing extra
translation, it also helps us manage our multilingual content.

Implementation Notes | 273

Translating User-Generated Content
The final missing piece is translation for all of the user-generated content on the site:
forum posts, pages, and so on. Core provides the “Content translation” module to do
the heavy lifting. This will allow us to decide which content is translatable, and lets us
create multiple versions of each node, each in a different language. It also provides a
simple way for users to switch between languages. Again, the Internationalization
module will fill out some of the content features.

Spotlight: Core Internationalization Features
Drupal core comes with two modules to handle languages: Locale and Content trans-
lation. Locale works with the user interface text and gives you a nice set of tools that
let you import existing translations, create or edit your own, or export your site’s trans-
lations for use on other sites. Content translation lets you create multiple versions of
the same content in different languages and associates the translated versions together.

Another really nice feature in Drupal 6 core is support for right-to-left (RTL) lan-
guages, such as Arabic or Hebrew. If a language is set as an RTL language, Drupal will
automatically flip all of the text so that it reads in the proper direction, as seen with
Hebrew in Figure 8-2.

Figure 8-2. A right-to-left language page

274 | Chapter 8: Multilingual Sites

Locale
Locale handles the translation files and language switching options on the site. Let’s
break it down and look at what that means.

Translations

A “translation” is simply a file or collection of files that follow a standardized format.
Translation files that follow this format have a special file extension, .po, which stands
for Portable Object. A .po file is a simple text file that identifies strings of text and a
particular language’s translation of the strings. In Drupal, translations contain a list of
all user interface strings in Drupal, along with their translated versions.

Drupal translation projects that you can download from http://drupal.org/project/trans
lations are specially organized and packed groups of .po files that will match the Drupal
directory structure when uncompressed. These projects cover only Drupal core’s
strings, meaning any user interface text that is contained in the core Drupal download.
An important thing to note about the translation projects is that they may be in various
states of completion and sometimes you may not agree with the way something was
translated. Not to worry; we’ll show you how to deal with that, too.

In addition to the core translation projects, contributed modules may have translation
files available as well. These would be contained in the module download, if they exist.
The coverage for module translations is not very thorough, and as modules can be
updated much more frequently than Drupal’s core translations, can become outdated
quickly.

We will be looking at how Drupal can automatically import translation files for you,
and this is typically how you will work them. It is also possible to manually import
individual .po files if needed.

Interface translation

Many volunteers have worked hard to translate the Drupal interface into as many lan-
guages as possible. You may find that you need to add to or modify the translation you
are using. If this happens, Drupal has tools built in to assist you.

When you visit the interface translation page at Administer→Site building→Translate
interface (admin/build/translate), you will see that there is a list of the languages you
have enabled along with a count and percentage of the number of strings that have
already been translated, as shown in Figure 8-3. As you move through your site, Drupal
will keep track of all the interface strings that you encounter. It can do this because
translatable strings are identified in the code itself whenever a developer uses a trans-
lation function (the t() function). Once you visit a page, all of the translatable strings
will be available for searching and translation. Visiting the page is an important step
that is easy to forget. If you start searching for words that you know exist on the site
but you haven’t actually visited the page where they are, your interface search will come

Spotlight: Core Internationalization Features | 275

http://drupal.org/project/translations
http://drupal.org/project/translations

back empty. We’ll look more into translating in the “Hands-On: Translating the In-
terface” section, later in this chapter.

One thing to understand is that any translations you make through the Drupal interface,
rather than by importing a .po file, will be stored in the database, not in a file. Drupal
has an export feature that will put your translations back into a file format that you can
then import into other sites.

If you do end up doing translation work on your site, you should defi-
nitely look at giving your work back to the community. By giving trans-
lations back, you not only help the larger Drupal community, but also
yourself, as you will have a larger number of people to test your work
and help maintain it.

Language switching

Every site must have a default language, but how do we get the other languages to
display? There are two main core mechanisms for this: the language negotiation setting
and the language switcher block. After you have installed and enabled at least one other
language, the first thing you should do is tell Drupal how to automatically handle
multilingual display by configuring the language negotiation. By default, Drupal will
do nothing and users will need to manually choose their language. You can select from
several options, seen in Figure 8-4, which will automatically choose the language based
on information in the URL.

Drupal can set the language based on the domain name of the site or by a path prefix.
If you choose to use a separate domain name for each language you will offer, you can
assign the domain name to a language in the language settings. For example, you can
configure the Dutch language to use the domain name http://nl.example.com or even
http://foo.example.com. Whenever someone accesses the site using one of these domain
names, the language you have set will always be used.

Figure 8-3. String count with percentage translated

276 | Chapter 8: Multilingual Sites

http://nl.example.com
http://foo.example.com

The more common negotiation method is using the path prefix. Again, you can con-
figure the prefix you wish to use. By default, a translation that you install will set its
language code as the path prefix identifier. With this setting, Drupal will check the path
for a language code directly after the domain name, for example, http://example.com/
nl/forum. If Drupal finds a valid code, it will display the language associated with it.
You don’t need a prefix for your default language, so that language will be used for all
of your “plain” paths, as in http://example.com/forum. There are two settings to pick
from when using path prefixing that let you determine what to do if the prefix is not
found. The “Path prefix only” setting will look for the prefix and if not found, the
default language will be displayed. The “Path prefix with language fallback” setting
will send Drupal to check for clues in a few more places. The fallback checking will see
whether the user has specified a preferred language in her My Account page and then,
if nothing is found there, it will check the browser language setting and try to match
that to the available languages. If all of these checks fail to find an appropriate language,
then the site’s default language will be used.

Negotiation settings determine how Drupal automatically changes the language dis-
played, but your users can also set this for themselves. Once you have more than one
language enabled, a new Language settings section will appear on the My Account page
with a simple radio button select list of the available languages, as you can see in
Figure 8-5. However, this allows only authorized users to pick a language. To give all
users a choice, including anonymous users, you can enable a core language switcher
block that lists the available languages and will switch the site language as needed.

Localized installer

You can add new translations at any time, but if you add them prior to installing Drupal,
the installation process can be run in the language of your choice. By default, the very
first screen of the installer presents the option to “Install Drupal in English” or “Learn
how to install Drupal in other languages.” If one or more translations are present, you
will instead be provided with a radio button list of the languages that you may choose
from, as pictured in Figure 8-6. The rest of the installation screens will then be presented
in the selected language. Once you complete the installation of Drupal, the language

Figure 8-4. Automatic language switching options

Spotlight: Core Internationalization Features | 277

http://example.com/nl/forum
http://example.com/nl/forum
http://example.com/forum

you selected will be set as the default language for your site and Drupal will have already
enabled the Locale module for you.

Figure 8-6. Installation presenting available translations for selection

Figure 8-5. Personal language settings under the My Account page

278 | Chapter 8: Multilingual Sites

Content Translation
When it comes to content translation, Drupal treats each translation as its own piece
of content. You can choose to enable multilingual support per content type and you
have two uses you can choose from, depending on whether you wish to identify the
different languages or create related “versions” for each piece of content.

The Locale module will give you the option to enable multilingual support for your
content types. Enabling multilingual support will give you a drop-down select box,
shown in Figure 8-7, to choose the language that each post is written in. All this will
do is identify the language being used for that content.

Figure 8-7. Selecting a language for a new piece of content

When you use the Content translation module, you get an additional option under
multilingual support: “Enabled, with translation.” Using this setting not only identifies
the language for the post as written, but also allows you to associate other nodes as
translated versions of the same content. For example, you may want to have an About
page on the site that has the same content translated into French and Dutch. With
translations enabled, you would create the original About page and then, from that,
create a brand-new node each for the French and Dutch versions. Drupal will keep
track of these three nodes and know that they are related to each other, each one simply
a version of the same page. On each of the pages, a link for each of the other translations
will appear at the bottom of the post as indicated in Figure 8-8.

Spotlight: Core Internationalization Features | 279

Hands-On: Installing a Translation
The first step to using any of Drupal’s multilingual features is installing a translation,
so that Drupal has more than one language to choose from. This involves two parts:
downloading a translation and extracting it correctly, and configuring the Locale mod-
ule to recognize it:

1. Begin by downloading a translation from http://drupal.org/project/translations,
such as http://drupal.org/project/nl. As with modules and themes, ensure that you
are downloading versions that match your version of Drupal.

Figure 8-8. Language links on content to view other translations

Figure 8-9. Translation download in the Drupal root directory

280 | Chapter 8: Multilingual Sites

http://drupal.org/project/translations
http://drupal.org/project/nl

If you’re an advanced user accustomed to checking out Drupal
code from CVS, you should be aware that for translations, you
must download the translation and not use a checkout from CVS
directly. The correct file structure for the translation files is created
in the packaging process, and a CVS checkout won’t work without
recreating that structure manually.

2. Uncompress (unzip) the translation file in your Drupal root directory (that is,
where index.php lives), as seen in Figure 8-9.

After uncompressing the file, the only change you should see in
your root directory is the addition of new files that have the lan-
guage code added (such as LICENSE.nl.txt.) If you see a new
folder in your Drupal root with the language code (such as
nl-6.x-1.0), then it did not install correctly. To double-check that
the translation files were placed properly, you can look in the
profiles/default directory—you should see a new translations folder
with a language file inside (like nl.po), as seen in Figure 8-10.

3. Go to Administer→Site building→Modules (admin/build/modules), enable the Lo-
cale module and click the “Save configuration” button. Note that if you installed
Drupal in a language other than English, this step will already be done for you.

4. Go to Administer→User management→Permissions (admin/user/permissions),
and configure the permissions as shown in Table 8-1. Save your changes with the
“Save permissions” button.

Table 8-1. Locale module permissions

Permission: locale module anonymous user authenticated user editor administrator

administer languages Checked

translate interface Checked

5. Go to Administer→Site configuration→Languages (admin/settings/language) and
click the “Add language” tab (admin/settings/language/add) to be taken to the
screen shown in Figure 8-11.

6. Select your language from the “Language name” drop-down list and click the “Add
language” button.

7. The translation files will be imported into Drupal and you will see an “Importing
interface translations” message with a progress bar.

If you add the translation files after you have added the language
through the “Add language” tab, your files will not be imported.
You will need to delete the language from the “List” tab at Admin-
ister→Site configuration→Languages (admin/settings/language)
and then add it again once your translation files are in place.

Hands-On: Installing a Translation | 281

Figure 8-10. Expanded translation with new profile .po file

Figure 8-11. Add language screen with drop-down select list

Repeat the language selection for each language that you wish to have available on your
site. When done, the Languages setting page will list all of the site languages in a table
that lets you take various actions, such as disabling, changing the site default language,
affecting the order in which the languages are displayed in lists, and deleting them
altogether. Figure 8-12 shows this table with our site’s three languages: English, Dutch,
and French. English is marked as the Default language, which means it will be used as
the fallback language when there is no language specified either through the language

282 | Chapter 8: Multilingual Sites

negotiation settings we saw under the Language switching section or a logged-in user’s
personal settings under his My account page. The Weight option for each of these
languages lets you set a particular order in which the languages will appear when listed
together, in form select lists for example. Weight here functions the same as it does in
other areas of Drupal, with negative numbers being considered “lighter” and therefore
floating to the top (or to the beginning in a horizontal list).

Figure 8-12. The installed languages table

You can also choose to edit the language name, negotiation identifiers, and direction
as seen in Figure 8-13, by clicking the “edit” link. Normally, you won’t want to change
these settings unless you have a very good reason, and we are going to leave all of our
settings at their comfortable defaults.

Hands-On: Installing a Translation | 283

Figure 8-13. Screen for editing an installed language

Hands-On: Configuring Locale Features
Now we need to make a choice about how and when Drupal will use our new languages.
To make it easy to see our site in different languages and allow our users to pick as they
like, we will also add a simple language switcher to the site.

Language Negotiation Settings
As discussed earlier in the “Language switching” section, we have several options to
choose from. We don’t want our users to have to manually switch their language in the
account settings (the None option), and our client does not have separate domain
names for each language (the “Domain name only” option). That leaves us with the
two “Path prefix” choices. We are going to use the “Path prefix with language” fallback
rather than the “Path prefix only” option, because our client wants to make sure that
if a registered user has chosen a language in her account settings, she gets returned to
that rather than the site default, should the prefix method not return a usable result:

284 | Chapter 8: Multilingual Sites

1. Click the Configure tab on the Languages page (admin/settings/language/
configure).

2. Select the radio button for “Path prefix with language fallback” and then click the
“Save settings” button.

Language Switcher
The Locale module provides a block to switch languages, which can be configured just
like any other block to have a different (or no) title, and have various display options set.

1. Go to Administer→Site building→Blocks (admin/build/block) and find the “Lan-
guage switcher” block in the list.

2. Drag the block into the “Rightt sidebar” region, and then click the “Save blocks”
button.

3. You should now see a new block called “Languages,” which contains a list of each
installed language on the site, as shown in Figure 8-14.

Figure 8-14. Site with the language switcher block enabled

Hands-On: Configuring Locale Features | 285

Hands-On: Translatable Content
Now we can configure multilingual support for each content type (including any cus-
tom content types) that we have. We have three content types on our site: book pages,
forum topics, and stories. We want stories and books to be translatable, but for forum
topics we only need to identify the language, we don’t need translations created. We
also want to make sure that all of our authenticated users have the permissions needed
to add translations.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• Core – optional package

— Book

— Content translation

2. Then go to Administer→Content management→Content types (admin/content/
types) and click the “edit” link for the Book page type.

3. Scroll down the screen and expand the Workflow settings section. You will see
several options for Multilingual support. Select the “Enabled, with translation”
radio button, as seen in Figure 8-15, and click the “Save content type” button. This
lets us identify the language for each piece of content, and in addition will let us
create translated versions of the content that will be linked together automatically.

Figure 8-15. Multilingual support options for content types

286 | Chapter 8: Multilingual Sites

4. Repeat for the Story content type.

5. For the Forum type, select the plain Enabled option.

6. We want all users to be able to translate content for us, so we need to make sure
we set the permissions for everyone but anonymous users. Because all users are
authenticated, we can do this by enabling the permission for all authenticated
users. Go to Administer→User management→Permissions (admin/user/permis-
sions), configure the permissions shown in Table 8-2, and click “Save permissions.”

Table 8-2. Content translation module permissions

Permission: translation module anonymous user authenticated user editor administrator

translate content Checked

Spotlight: Localization Client
You may notice that even though you are using a translation that you have installed,
there might still be some untranslated text peeking out here and there. This will become
more likely as you add contributed modules. Almost no site will have absolutely 100%
language coverage out of the box, so you will probably need to translate a few items
yourself. Drupal has a built-in system to do this using the Locale module, but using it
can be clunky and tedious. This is where the contributed “Localization client” module
really shines. It makes quick fixes to text easy and intuitive.

The Localization client adds a translation editor right on the bottom of your screen that
stays with you as you move through the site. You can minimize it when you don’t need
it and then expand it when you have translations to do. Figure 8-16 shows the editor
expanded on a page. It provides a nice, easy-to-use interface to see which strings on the
page have been translated and, more importantly, which have not. It allows you to
browse or search through the list; you can simply select the string you wish and add
the translation right there on the screen.

Some important caveats should be kept in mind, however. The Localization client is a
great tool but it does depend on JavaScript and, at the time of this writing, it does not
assist with translating strings that are added by the Internationalization module (which
we’ll discuss later). Additionally, it can only translate text that can be seen by the person
running the Localization client; for example, if the text is visible only under certain
conditions, it may not be translatable with the Localization client.

Spotlight: Localization Client | 287

Hands-On: Translating the Interface
Not everyone wants or needs to install yet another module, and due to the caveats we
mentioned about the Localization client, it is still a good idea to be familiar with how
core translation works, so let’s start there.

Using the Locale Module
Interface translation depends on the Locale module, which should already be enabled
on your site once you have installed a translation.

1. Go to Administer→Site building→Translate interface (admin/build/translate) to get
started.

2. You will be presented with a table of your languages and the percentage of strings
that have been translated so far. Click on the Search tab (admin/build/translate/
search).

3. The string search screen, pictured in Figure 8-17, allows you to search for a specific
piece of text somewhere in Drupal’s interface and translate it on the spot.

4. Enter the string multilingual support in the search box, leave the rest of the settings
at their defaults, and click Search.

Figure 8-16. The Localization client interface

288 | Chapter 8: Multilingual Sites

There are two caveats to successfully finding a string to translate.
First, the search interface is case-sensitive. Searching for “User” will
return different results than searching for “user.” Second, the page
with a given string on it must have been visited after the Locale
module was enabled, or Search will be unable to find any of its
interface text.

5. On the search results page, pictured in Figure 8-18, you will see a list of all the
places on the site where that string is seen. The translation status is in the Languages
column, which lists the language codes. A strike through a language code means
it is not translated yet. Here, searching returned several results, which are all
translated.

6. Click the “edit” link next to one of the strings, which will bring you to the trans-
lation page, as shown in Figure 8-19. You will be presented with a text area for
each language, where you can add or edit the text as appropriate. When you click
the “Save translations” button, the strings will be updated.

Figure 8-17. Translate interface string search screen

Hands-On: Translating the Interface | 289

Figure 8-18. Search results for the string “multilingual support”

Figure 8-19. String translation page showing original string and translations for each language

290 | Chapter 8: Multilingual Sites

Using the Localization Client
As you can see from the previous section, it is hard to see the strings that need to be
translated on your site, remember them, go to the Translate interface, search for them,
and only then actually be able to translate. It is a cumbersome, tedious process. Luckily,
there’s an easier way: the Localization client module.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable:

• Other package

— Localization client

2. Go to Administer→User management→Permissions (admin/user/permissions),
configure the permissions shown in Table 8-3, and click “Save permissions.”

Table 8-3. Localization client module permissions

Permission: l10n_client module anonymous user authenticated user editor administrator

use on-page translation Checked Checked

3. Now switch your site into a language other than English by clicking the language
name in the Language block. You will see a small blue bar appear at the bottom of
your screen with a black Translate Text button in the right side. Figure 8-20 points
this out.

Figure 8-20. The Localization client’s Translate Text button

Hands-On: Translating the Interface | 291

4. Click the Translate Text box, and a translation area will open up at the bottom of
your browser window, as shown in Figure 8-21. All of the items listed under Page
Text that are green have already been translated. Ones in white still need work.

Figure 8-21. The Localization client translation interface showing both translated and untranslated
strings

5. You can limit the list by searching in the text box at the bottom of the list. Go to
Administer→Site building→Modules (admin/build/modules), if you are not already
there, and type in the word localization. The list will update as you type, and should
bring up the string “Provides on-page localization,” which is provided by the Lo-
calization client module as its description. Unless someone has provided a trans-
lation file for the module in your language, the English should show up as white
(untranslated) in the search results.

6. When you click an item in the Page Text list, it will be placed in the Source box so
that you know which text you are working with. If it already has a translation, that
text will appear in the “Translation to language” box.

7. You can add or edit the translation as needed and click the “Save translation”
button. For example, “Maakt lokalisatie op de pagina zelf mogelijk” is the trans-
lation of this string into Dutch. Figure 8-22 shows the Localization client screen
with the English string selected and the Dutch translation ready to be saved.

292 | Chapter 8: Multilingual Sites

Figure 8-22. Using the Localization client to translate a string to Dutch

8. When finished, click the black X in the top bar of the translation area to close the
client.

9. When you reload the page, you will see the changes you made, if any.

Hands-On: Translating Content
Now we need to set up our Knowledge Base section of the site. We’ll create some new
content and then show you how to translate it.

Translation
Earlier, we enabled translation for our pages, so let’s walk through the translation
process itself:

1. Make the Introduction to the Knowledge Base in English. Go to Create
content→Book page, fill in the fields as shown in Table 8-4, and click Save.

Hands-On: Translating Content | 293

Table 8-4. Book page content

Field Value

Title Introduction

Menu settings

• Menu link Knowledge Base

• Parent item <Primary Links>

• Language English

Body This knowledge base is a place to organize useful information. Anyone with a Migratory Patterns
account can add to this book! You may create a new page by clicking the “Add child page” link at the
bottom of any existing KB page or by going to Create content→Book page in your navigation block.

Book outline

- Book <create a new book>

2. After you save the content, you will see that there is a Translate tab next to the
normal View, Edit, and Outline (for book content) tabs. Click the Translate tab
and you will be presented with a table listing all of your site’s enabled languages,
which you can see in Figure 8-23.

Figure 8-23. The Translate tab on a book page, showing available languages and translation status

3. Click “Add translation” for a language, and you will be presented with a screen
containing the form values that were previously submitted. You may now edit the
text for the Title, Menu, and Body. Notice the language is already selected for you.
Translate the text into the selected language, and remember to again choose
“<create a new book>” in the “Book outline” section as well so that this translated

294 | Chapter 8: Multilingual Sites

introduction page will also be a top-level book entry for those viewing the site in
this language.

4. When you click Save for this new translation page, you will see that there is now
a link at the bottom that will take you to the other language’s version of the page.

You should do the same for the Welcome post on the front page (if you are using the
Multilingual profile) or any other content that was created prior to enabling content
translation. Just edit the existing post to select the language and use the Translate tab
to add versions for other languages as we did previously.

Keep in mind that the default language setting for all content is “Lan-
guage neutral.” You must identify the content with a language in order
to see the “Translate” tab and proceed with creating translations. If you
do not set a language when initially creating the content or if you have
enabled the Content translation module after already creating content,
that content will be set to “Language neutral.”

When you create a translation for any content that is on the front page of the site (like
the Welcome post in the profile), you will notice that both translations appear. The
same thing is happening for our Knowledge Base menu items, as you can see in Fig-
ure 8-24. We’re going to address that issue in the next section.

�������	
�

Figure 8-24. Duplicate items—one for each language

Hands-On: Translating Content | 295

Spotlight: Internationalization
So far we’ve got a nice start with getting our site translated, but everything is not quite
smooth yet. We have translations for some of our content and menu items, but they
are all appearing at the same time. There are multiple posts on the front page, and all
the language menu items are showing regardless of which language we are viewing the
site in. You will also see some stray text still in English. For example, under the “Create
content” menu item, the content type descriptions are translated but the name of the
content type is not. To take our multilingual site further and really make it shine, we
are going to turn to a package of modules called Internationalization (i18n). There is a
central Internationalization module, which comes packaged with a handful of other
modules designed to work together to extend core’s multilingual features.

One important thing that these modules do is help us get various strings of text into
core’s translation interface that are otherwise not available. Drupal’s core interface tools
can detect only strings that are hardcoded directly into the code (using Drupal’s t()
function); that is to say, that are code-generated. All of the user-generated strings are
not accessible. It is important to realize that these strings that are added by the Inter-
nationalization modules will not be available to you through the Localization Client’s
“Translate Text” interface. To translate these, you must use the core interface, covered
earlier in this chapter in the “Hands-On: Translating the Interface” section, found at
Administer→Site building→Translate interface (admin/build/translate).

A second feature of many of these modules is adding a way to select a language for an
item, such as for menus, blocks, or taxonomy terms, like the one shown in Fig-
ure 8-25. Being able to discretely identify the language being used for an item allows
the Internationalization module to filter the display based on the languages we want
to see, leading to less duplication and confusion.

Figure 8-25. A language selector

The Internationalization package of modules provides a lot of tools; we will not need
all of them for the Migratory Patterns site. We will discuss what these tools are and
then see some of them in action as we proceed with building our site.

296 | Chapter 8: Multilingual Sites

Content Selection
One of the first things you probably noted after making your first piece of translated
content was that all of the translations were showing on the front page, regardless of
the language in which you were viewing the site. The Internationalization module helps
us get this under control by giving us a choice about how we want our multilingual
content displayed. It looks at three ways of identifying the content’s language:

No language
The content has not been specifically identified as belonging to any language,
which can be seen as “Language neutral” or “All languages” in the language select
lists for various kinds of site content.

Current language
The current language is determined either automatically, by the language negotia-
tion setting (for example, by the language code included in the path, such as “en”),
or manually, when a user selects a language using a switcher.

Default language
This is a central setting for the website under the language administration at
Administer→Site configuration→Languages (admin/settings/language). There is
only one default and it is the language used on the site when no language negotia-
tion is being used.

There are five different selection modes that you can use to set the criteria for which
content to display. Figure 8-26 shows the mode settings that are listed in the following
examples.

Figure 8-26. The Internationalization module’s content selection mode options

Spotlight: Internationalization | 297

The content selection mode that is chosen will filter the content to display based on
the language. We’ll use an example to illustrate the results for the various settings. Our
site is using three languages: English, Dutch, and French. The default language is Eng-
lish. For this simplified example, we will assume we have “three” pieces of content in
four nodes on the front page titled as follows: Drupal, Welcome, Welkom, and Les
mots. Drupal is language-neutral, the second is available in English (Welcome) and
Dutch (Welkom), and Les mots is in French only.

The content that will display when selecting French in the language switcher block
based on the following settings is:

• Only current language and no language: Drupal (none) and Les mots (French)

• Only current and default languages and no language: Drupal (none), Welcome
(English), and Les mots (French)

• Only default language and no language: Drupal (none) and Welcome (English)

• Only current language: Les mots (French)

• All content: No language conditions apply: All four nodes

If we switch the selected language to Dutch in the switcher block:

• Only current language and no language: Drupal (none) and Welkom (Dutch)

• Only current and default languages and no language: Drupal (none), Welcome
(English), and Welkom (Dutch)

• Only default language and no language: Drupal (none) and Welcome (English)

• Only current language: Welkom (Dutch)

• All content: No language conditions apply: All four nodes

This example used nodes as a simple way to illustrate, but these settings will apply to
any item on the site, including menu items, blocks, and so on.

Strings
The Strings module is required for most of the Internationalization modules. It doesn’t
do anything on its own, but when used in conjunction with other Internationalization
modules, it turns various pieces of text on the site into translatable strings that are
added to the core translation interface.

Site-Wide Language-Dependent Variables
A Drupal site can have many bits and pieces of text that are not associated with any
particular node. These site-wide settings are stored in the database and referred to as
variables. Some examples are the site name and slogan, found on the Site Information
screen, or the registration email templates found under User settings. There is no simple
way to get these particular kinds of text into the regular translatable string interface.

298 | Chapter 8: Multilingual Sites

The Internationalization module adds the ability to tell Drupal specifically that you
wish to provide translations for these variables. Unfortunately, to set this up, you need
to edit your site’s settings.php file. Once you add the needed information to the settings,
you can continue translating using the regular translation interface. We’ll cover this in
more detail in the next section, “Hands-On: Internationalization Features.”

Module Helpers
The Internationalization module also works with a number of core modules to aid with
translations:

Menu
The Multilingual Menu module adds any custom menu items you create to the
translate interface string list. You can also specify which language a particular menu
item is for and its display will follow the rule you selected for content display. You
should note that, independently of this module, you can create a menu item in a
language for each node, which will also follow the display rules. So if you are only
creating menu items based on nodes, you do not need to enable this module. If
you wish to have menu items that don’t point to specific nodes, then this module
will let you create the translations you need.

Taxonomy
Multilingual taxonomy gives you a few options for keeping track of your taxonomy
translations. When creating a new vocabulary, you can choose whether you want
to localize the terms using the regular translate interface method, set up independ-
ent terms per language, or set one language for the entire vocabulary. When you
choose to create terms per language, you will be able to select a language for each
term. Once you have created the terms and assigned a language for each, you can
then create associations between them. For example, the terms “cat” (assigned to
English) and “le chat” (assigned to French) can be marked as equivalent terms.

Block
The Multilingual Blocks module will let you pick a language for each block. As-
signing a language to a block will determine when it is displayed according to the
main content display settings. For custom blocks that you create, you can also
decide whether you wish the block text to be translatable by adding the strings to
the translation interface.

Profile
The core Profile module allows you to add fields for users to fill out under their
account. The Multilingual Profile module will make sure the field attributes, like
name, description, and so on, that you add are translatable. Note that it won’t
make the values, the user-entered content, translatable.

Poll
As each translation of a poll is a new node, Drupal will natively keep track of the
poll numbers separately for each node. The Multilingual Poll module makes sure

Spotlight: Internationalization | 299

that the results from all translations of a poll are aggregated together so that you
get an accurate poll result regardless of which translation you are viewing.

Synchronization
The final Internationalization module in the package is Translation Synchronization.
This module will keep your taxonomy and node fields synchronized between several
translations of a node. For instance, if you have a piece of content like a blog post that
is in three languages and has a term selected, this module will make sure that the term
changes on the other two nodes when you change it on one.

If your vocabulary language setting is set to “None” or “Localize terms,” the term will
simply be copied over from the original node. If you have chosen “Per language terms,”
the term will be changed as appropriate across your translations.

Hands-On: Internationalization Features

Content Selection
Translated content is all shown by default. The main Internationalization module will
let you display only content that is relevant to the language currently in use:

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following module:

• Multilanguage – i18n package

— Internationalization

2. Go to Administer→User management→Roles (admin/user/roles).

3. Next to site administrator user, click “edit permissions,” and under i18n module,
check the “administer all languages” permission, and save the form.

4. Go to Administer→Site configuration→Multilingual system (admin/settings/i18n),
where you will see the options for “Content selection.” By default it is set to “Only
current language and no language.” Make sure that this option is selected and save
the configuration.

If you go to the front page of the site, you will see that we now only get one “Welcome”
post and one “Knowledge Base” menu item. If we choose Nederlands from the Lan-
guage switcher block, you will see that the Dutch “Welkom” post appears, and the
menu items change to the Dutch versions.

Now the content we see is more streamlined, as shown in Figure 8-27. Let’s move on
to translating other items in the site that are being stubborn, such as the site name,
Migratory Patterns.

300 | Chapter 8: Multilingual Sites

Site-Wide Variables
Before we can translate the various site-wide variables, we need to let Drupal know
which ones we want to make translatable. To do this, we’ll need to edit the
settings.php file:

1. In your Drupal installation, go to the sites/default folder.

2. The settings.php file is currently read-only, so first change the permissions to make
it writable. (This will vary by operating system. For example, on Linux systems,
you set the permissions to 666 or a+w, and on Windows systems, you need to
make sure that the Read-only checkbox is unchecked under the file properties.)

3. Open settings.php in a text editor and scroll to the end of the file. We will add a
new configuration option for Internationalization variables and add just the vari-
able for the site’s name as an example. You can find this information and a list of
common variables in the Internationalization module’s INSTALL.txt file. Type the
following into settings.php:

$conf['i18n_variables'] = array(
 'site_name',
);

��������	
���
�����	

Figure 8-27. With content selection mode enabled, we no longer see duplicate items

Hands-On: Internationalization Features | 301

4. You can see what the bottom of the file should look like in Figure 8-28.

Figure 8-28. The “Site name” variable added to the settings.php file

5. Save the file and change the file permissions back to read-only. (Again, this will
depend on your operating system. Linux systems can be set back to 444 or a-w,
and on Windows, check the Read-only box under the file properties.)

6. Now, to translate, go to Administer→Site configuration→Site information (admin/
settings/site-information) and you will see, as in Figure 8-29, that the help text
under the Name field states that “This is a multilingual variable.”

7. Switch to another language using the switcher block.

8. Change the site name in the Name field, and click the “Save configuration” button.

Simple String Overrides
You may have noticed when you went to add the internationalization variables to your
settings.php file that there was a commented-out section at the bottom for “String over-
rides.” You can set these configuration options to override any of the hardcoded English
strings on the site. It isn’t practical to use this set of options for a fully localized or
multilingual site, because it requires listing each string individually in the settings.php
file. It is great to use this if you have a handful of strings that you want to change quickly
and you don’t want to necessarily turn on the extra overhead of “yet another module”
or go through the core string translation process.

A great example of its use that many people ask for is given right there in the sample
in settings.php: changing the word “forum” to another word that you or your users
would prefer, like “discussion board.”

You can also use the String Overrides module to change these values from Drupal’s
interface.

302 | Chapter 8: Multilingual Sites

Figure 8-29. The Site name is now indicating that it is a multilingual variable

You will now see that the site name has changed to what we just entered. If you switch
back to English or another language, you will see that the site name reverts to the
original name.

What Variables Are Available?
The first question that may come to mind when dealing with the site-wide variables is
how you know what is even available. The Internationalization module’s
INSTALL.txt file and the handbook for the module on Drupal.org (http://drupal.org/
node/134002) list the most common ones, but not all of them. One way to see which
variables you have is to install the Devel module, which provides the Development
block (along with lots of other handy development tools). In that block will be a “Var-
iable editor” link, which will list all of your currently set variables.

Keep in mind that this won’t list every single possible variable, only the ones that have
been set so far. Many core variables are not set in the database until you have visited
and saved the page for those settings, so to see the variable for something you wish to
translate, visit and save its settings page first. For example, to see the user email message
variables, you first need to go to the settings page at Administer→User manage-
ment→User settings (admin/user/settings) and click the “Save configuration” button.

Hands-On: Internationalization Features | 303

http://drupal.org/node/134002
http://drupal.org/node/134002

Now, when you return to the Development block’s “Variable editor” link, you will see
all of the newly added user email variables.

Content Types
Our content types for the site are still using English for the content type name on the
“Create content” page, and for field names when making new content.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
Strings and Content Types modules. You should see a message upon enabling that
indicates a number of new strings were created.

2. Go to Administer→Site building→Translate interface (admin/build/translate) and
you will see a new column, “Content type,” added to the Language table. It shows
the number of new strings that the Internationalization module has created. You
can see the new column in Figure 8-30 and compare that to the table as shown in
Figure 8-3 from earlier in the chapter. The percent translated should still be 0,
because we haven’t translated any content types yet.

Figure 8-30. “Book page” string editing screen showing two translations

3. Click the Search tab and search for “Book page.” You should see two results, just
like Figure 8-31: one that is already translated from the “Built-in” interface group
and another, not translated, in the “Content type” group.

304 | Chapter 8: Multilingual Sites

Figure 8-31. String search results for “Book page”

4. Click the “edit” link for the “Content type” string and translate it to Boekpagina.
(you can also add the French Page de livre if you like), as shown in Figure 8-32.

Figure 8-32. A “Content type” strings column has been added to the Translate interface table

Hands-On: Internationalization Features | 305

5. After saving the new translation, if you go to “Create content” and switch to Dutch,
you will see that the content type name for the Book page is now displayed in
Dutch. Click the Boekpagina link as if to create a new book page. You will see that
the Title field is still in English. You should also see a message that more strings
were created.

6. Let’s go back to Administer→Site building→Translate interface (admin/build/
translate) and change the Title field name.

7. Go to the Search tab and enter Title. We also know that we only want to look for
Content type changes right now, so select the “Content type” radio button under
the “Limit search to:” section of the search form as shown in Figure 8-33. Then
click Search.

Figure 8-33. Limiting a string search by content type

8. We get one result for this. Click the edit link for it, translate it to the Dutch
Titel (Titre for French), and save it.

9. Go back to “Create content” and switch to Dutch.

10. Click on Boekpagina to make a Book page and you will see that the “Title” field
now says “Titel.”

306 | Chapter 8: Multilingual Sites

Taxonomy
Drupal’s forums are built on taxonomy, so we need to find a way to sync the terms that
we create to keep the taxonomy selection limited to just the terms for a given language.
We already have a Forums vocabulary on the site, so we’ll configure translations for it.

Forums

The forums on the site will display the threads that follow the same content selection
rule as the rest of the content on the site. The site will have preset forum containers
and threads and then users may post to them using whichever language they choose to
use.

Using the install profile, we currently have a container for “Types of Birds” with two
forums under it: Raptors and Waterbirds. Let’s turn on multilingual options for the
forums:

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
“Multilingual taxonomy” module.

2. Go to Administer→Content management→Taxonomy (admin/content/taxonomy)
and click the “edit vocabulary” link for Forums. You will see in Figure 8-34 that
we now have a “Multilingual options” section on the page.

Figure 8-34. Taxonomy multilingual options

3. Select the radio button for “Localize terms” and save your changes.

Hands-On: Internationalization Features | 307

4. Go to Administer→Site building→Translate Interface (admin/build/translate) and
you will see another column added to the table for “Taxonomy.” Note that we
have three terms (each with a description) for forums (from the install profile), but
right now the table is showing only one string available to translate. That’s not
right. We need to get all of our strings recognized before we can translate them.

5. Remember that you must visit a page with the string(s) that you want to translate
before it will register for the string search. Go back to the taxonomy administration
at Administer→Content management→Taxonomy (admin/content/taxonomy).

6. Click the “list terms” link for the Forums vocabulary and then click on the Edit
link for each term, where you can change the name and description. You should
notice in the help text that they are localizable (for instance, “This name will be
localizable”), as shown in Figure 8-35. You can simply look at the edit page and
then return to the previous page using your browser’s back function.

Figure 8-35. Term name indicating that it is now localizable

7. Once you have done that for each of the terms listed, go back to the translation
interface at Administer→Site building→Translate Interface (admin/build/trans-
late.) You may notice that it still shows that only one string is translatable. This
can happen when you have some content—in our case, taxonomy terms from the
install profile—that was created prior to enabling the Internationalization module.
Let’s force Drupal to double-check.

308 | Chapter 8: Multilingual Sites

8. Click the Refresh tab (admin/build/translate/refresh), then check off the Taxon-
omy checkbox and click the “Refresh strings” button. The refresh page is shown
in Figure 8-36.

9. Return to the Overview tab (admin/build/translate)—we finally have all seven
strings available. (Why seven? Four terms—Forums plus the three terms them-
selves—and three descriptions, one for each term.)

10. You can now search and translate the strings as we have done before, and when
you switch languages, the correct localized forum name and description will
appear.

Figure 8-36. The Refresh strings page

Taking It Further
We’ve covered quite a bit of ground for setting up a site with multiple languages. There
are a lot of tools available and therefore there is a lot of flexibility when it comes to
handling languages. We have delivered to our clients a site that has the community
features they need and allows their users to both participate in and manage the site in
the language of their choice. They can easily add new languages to the mix in the future
and everyone can help with translating their knowledge base. Here are some additional
modules that can add some nice touches to your site:

Taking It Further | 309

Language icons (http://drupal.org/project/languageicons)
This module will add a default set of flag icons to the language switching links on
the site (in the Language switcher block and language links on the content). You
can replace the included icons with ones of your choosing.

Translation Overview (http://drupal.org/project/translation_overview)
This module creates a page with a table that tracks the translation status of all the
content on your site. It supplies basic information like the title and a link to the
content, content type, and creation date. Then, for each piece of content, it uses a
legend so you can see the translation status (original language, current translation,
out-of-date translation or untranslated) at a glance.

Auto Timezone (http://drupal.org/project/autotimezone)
Users can set their preferred time zone under My Account so that dates and times
of content on the site are displayed in their local time. This module will enable this
feature automatically for them based on the browser settings.

Summary
We built a nice, simple, easy-to-use site for our client that gave them the tools they
needed for discussions and a knowledge base. We set up a forum that displays only
posts that are in the user’s language and a knowledge base book that all of the site
members can create translations for. The major need for this community was being
able to use multiple languages and easily extend those languages in the future. Using
Drupal’s core internationalization features with a handful of contributed modules, we
have given them a very flexible multilingual solution.

For more information and discussion about internationalization in Drupal, see the In-
ternationalization group at http://groups.drupal.org/i18n. To get more information
about core Drupal translations and how you can help, check out the Translations group
at http://groups.drupal.org/translations. If you’d like to help the project by providing
your own translations for Drupal core or contributed modules, the translator’s guide
at http://drupal.org/contribute/translations has all the information you need.

Here are the modules that we referenced in this chapter:

• Auto Timezone: http://drupal.org/project/autotimezone

• Content Translation: Part of the Drupal core

• Devel module: http://drupal.org/project/devel

• Internationalization and Language Icons: http://drupal.org/project/i18n

• Locale: Part of the Drupal core

• Localization client: http://drupal.org/project/l10n_client

• String Overrides: http://drupal.org/project/stringoverrides

• Translation Overview: http://drupal.org/project/translation_overview

310 | Chapter 8: Multilingual Sites

http://drupal.org/project/languageicons
http://drupal.org/project/translation_overview
http://drupal.org/project/autotimezone
http://groups.drupal.org/i18n
http://groups.drupal.org/translations
http://drupal.org/contribute/translations
http://drupal.org/project/autotimezone
http://drupal.org/project/devel
http://drupal.org/project/i18n
http://drupal.org/project/l10n_client
http://drupal.org/project/stringoverrides
http://drupal.org/project/translation_overview

These are some other resources that we referenced and community resources for learn-
ing more about the new concepts introduced in this chapter:

• Drupal core translations: http://drupal.org/project/translations

• Multilingual modules: http://drupal.org/project/Modules/category/97

• Multilingual variables: http://drupal.org/node/313272

• Translations working group: http://groups.drupal.org/translations

• Translator’s guide: http://drupal.org/contribute/translations

Summary | 311

http://drupal.org/project/translations
http://drupal.org/project/Modules/category/97
http://drupal.org/node/313272
http://groups.drupal.org/translations
http://drupal.org/contribute/translations

CHAPTER 9

Event Management

Managing online calendars and event registration can present a huge challenge. With-
out a dynamic system, the task is nearly impossible. Generating the HTML required to
display a calendar and all the various presentation options (day, week, month views,
and so on) is unreasonable; and worse, because the events are time-sensitive, remem-
bering to update “next” or “upcoming” event lists can be onerous. Nothing looks worse
than having last week’s meeting listed first on your “Upcoming Events” page.

Even with dynamic systems, you tend to be constrained to certain parameters with
fixed options. However, by taking advantage of the flexibility of Drupal and building
on the powerful base of CCK and Views, you can accommodate nearly any variation
on event listings for your site.

To follow along with the hands-on example in this chapter, you should install Drupal
using the Events install profile. The completed website will look as pictured in Fig-
ure 9-1 and at http://events.usingdrupal.com. For more information on using the book’s
sample code, see the Preface.

This chapter introduces the following modules:

Date (http://drupal.org/project/date)
Provides a CCK field for entering date information, as well as libraries to handle
things like time zone conversion

Calendar (http://drupal.org/project/calendar)
A view style for displaying a list of site content in a rich calendar display

Flag (http://drupal.org/project/flag)
A flexible module that enables administrators to add on/off toggle switches to items
such as nodes and comments

313

http://events.usingdrupal.com
http://drupal.org/project/date
http://drupal.org/project/calendar
http://drupal.org/project/flag

Case Study
The Aurora Book Club is a rather social group of local book enthusiasts. They hold
semiregular monthly meetings and events for both current and prospective members.
Members want to be able to see when and where the next meeting is happening. Ad-
ditionally, members should be allowed to post their own events to the site. Events
should have start and end times and dates, as well as information about the event and
where it will take place. To make it easy to see what is happening soon, there should
be a short list of upcoming events in addition to the full calendar. The calendar needs
to offer day, month, and annual views, and a way for members to subscribe to the club’s
calendar using Microsoft Outlook or Apple’s iCal. Finally, since they would like to
know how many cookies to bring and how many chairs to have on hand, the club
president has asked that we include a way to track who plans to attend each event.

Implementation Notes

Event Management
The book club has two main options for managing event data in Drupal. The options
are indicative of a common trend amongst Drupal’s contributed modules. Specifically,

Figure 9-1. The completed Aurora Book Club site

314 | Chapter 9: Event Management

there is a long-standing module in the Drupal community simply called Event (http://
drupal.org/project/event), which natively handles most of the required features. The
other option, and the one we will be using in this chapter, is a combination of CCK
and Views add-ons: the Date module (http://drupal.org/project/date) and the Calendar
module (http://drupal.org/project/calendar), respectively. The main differences are as
follows:

• The Event module allows per-content-type “event enabling,” which means that it
will add a start and end time to any existing content type. Included with the module
is also an entire system for viewing your created events and even a block for listing
upcoming events.

• The Date module offers a CCK field type for handling dates. The Calendar module
is a Views plug-in that renders a view in a browsable calendar layout.

Both options are capable of meeting all the requirements for the book club’s site. In
fact, when compared side by side, they look functionally equivalent: both options allow
us to create new events, view a list of upcoming events, and offer rich, full-featured
calendar displays. In fact, by working with any content type, the Event module still
allows us to use CCK to build custom content types for our event data (for example,
for holding additional information about events). This significantly blurs the line be-
tween the solutions, particularly compared to the choice between the Image module
and Imagefield, as discussed in Chapter 7. With the Image module, a specific content
type (“image”) is defined, whereas with Event you can reuse any custom content type.
Furthermore, Event is a single module without any dependencies, whereas Date and
Calendar require CCK and Views respectively. So why not use the Event module?

As we’ve discussed in several earlier chapters, the CCK and Views modules represent
the future of site building with Drupal. Their added flexibility and granularity present
far more flexible options for tailoring the modules to fit our site’s exact needs. By being
more narrowly focused, Date and Calendar also implement their specific features more
completely. This is particularly true of the Date module, which has several more options
for date format support than Event. Also, by going with a CCK and Views native sol-
ution, improvements and efficiencies will automatically trickle down as CCK and Views
continue to evolve new features.

Essentially, the reason to use the Event module would be either for legacy purposes or
ease of installation. For more information about event-related modules, see the Event
category on Drupal.org (http://drupal.org/project/Modules/category/61).

Attendance Tracking
The Signup module http://drupal.org/project/signup is designed specifically for the pur-
pose of tracking event attendance, and has some nice features such as the ability to
email reminders to attendees prior to an event. However, this module was unavailable
for Drupal 6 and was undergoing development at the time of this writing.

Implementation Notes | 315

http://drupal.org/project/event
http://drupal.org/project/event
http://drupal.org/project/date
http://drupal.org/project/calendar
http://drupal.org/project/Modules/category/61
http://drupal.org/project/signup

Instead, we will use this opportunity to highlight a helpful general-purpose module
called Flag (http://drupal.org/project/flag). Flag (known as “Views Bookmark” in Drupal
5) allows users to mark or “flag” a piece of content. This functionality can be used for
a myriad of useful purposes, including marking content as offensive, allowing users to
bookmark interesting stories, and even to let users mark events as “attending” or “not
attending.”

Hands-On: First Steps
First, we’ll set up a few basics for our site just using Drupal core and CCK. The main
thing that we need in order to start off is a content type to handle our events. Log in to
the Aurora Book Club site with the username admin, password oreilly, if you are using
the installation profile.

Creating an Event Content Type
We’ll start by creating a new, basic content type just for events. We just need the event
name and description along with an easy way to add the event location:

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• CCK package

— Content

— Text

2. Go to Administer→Content management→Content types (admin/content/types)
and select the “Add content type” tab (admin/content/types/add) to create a new
content type called Event, using the settings from Table 9-1.

Table 9-1. Settings for the Event content type

Field Value

Identification

Name Event

Type event

Description A book club meeting or social event

Submission form settings

Title field label Name

Body field label Description

Workflow settings

Default options Uncheck “Promoted to the front page”

Comment settings

316 | Chapter 9: Event Management

http://drupal.org/project/flag

Field Value

Default comment settings Disabled

3. Click the “Save content type” button.

4. Add a text field for storing the location of the event (that is, where the event takes
place). You should have been returned to the Content types administrative page
(admin/content/types) after saving the new type. Click the “manage fields” link
for the Event content type (admin/content/node-type/event/fields). Complete the
New field form using the values from Table 9-2.

Table 9-2. Settings for adding a location field to the Event content type

Field Value

Label Location

Field name location

Select a field type Text

Select a widget Text field

5. Click Save. This will take us to the configuration settings page for the Location
field. We will just use the default settings here, so click the “Save field settings”
button to finish.

Access Control
Now that we’ve got the content type created and configured properly, we need to grant
permissions to our members to allow them to create events.

Go to Administer→User management→Permissions (admin/user/permissions) and set
the permissions as shown in Table 9-3. Click the “Save permissions” button when you
are done.

Table 9-3. Permissions for the event content type

Permission anonymous user authenticated user editor site administrator

node module

create event content Checked

delete any event content Checked

edit any event content Checked Checked

edit own event content Checked

Hands-On: First Steps | 317

Spotlight: Date Module
The main building block for the site is our new Event content type. The information
that we need it to provide us with is “where” and “when.” We have taken care of the
“where” part in our initial setup. The Date module helps us effectively answer the
“when” question, in an incredibly flexible manner.

As mentioned previously, our real interest in the Date module is to add a CCK field to
our Event content type to indicate date and time. However, looking at the Date module
more closely, there are a few extra pieces worth noting.

Date API Module
As its name would imply, the Date API module merely provides a set of library functions
for date handling. These functions consist of things like converting between date for-
mats, providing integration with modules such as Views, and even generating date input
select boxes. Though covering the full extent of the API is outside the scope of this
chapter, it is worth noting that the Date API module does not depend on CCK, but is
required by both the Date and Calendar modules. In theory, any module in Drupal that
performs any sort of date handling or manipulation could take advantage of this
module.

For users running PHP4, the Date PHP4 module is required to emulate
date manipulation functions introduced in PHP 5.2. This module can
optionally make use of an external library for parsing additional dates:
the ADOdb date library (http://phplens.com/phpeverywhere/adodb_date
_library). Without this library, Date PHP4 primarily handles dates from
1970 to 2038. The library adds support for any date from the year 100
to 3000. For the purpose of the book club, we will be able to just use
Date API on its own.

Date Timezone
Drupal core, by default, does all time zone handling based on an offset from Greenwich
Mean Time (GMT), represented as the number of hours’ difference (plus or minus)
from GMT. For example, the offset −0400 is used for Eastern Daylight Time in the
United States. This approach has several drawbacks, the most significant of which is
in trying to account for Daylight Saving Time, as the offset will change. When the local
time changes to Eastern Standard Time, the actual offset from GMT changes from
−0400 to −0500, and the setting must be updated again.

The Date API comes with a module, Date Timezone, that alters the core behavior to
use named time zones rather than hour offsets (for example, America/New York versus
−0400). Therefore, Date API can account for Daylight Saving Time accurately in its
calculations.

318 | Chapter 9: Event Management

http://phplens.com/phpeverywhere/adodb_date_library
http://phplens.com/phpeverywhere/adodb_date_library

Date Field Types
At its most basic level, the Date module defines three CCK field types—Date, Dates-
tamp, and Datetime—for adding date fields to content types. The differences among
these fields are summarized in Table 9-4.

Table 9-4. CCK fields offered by the Date module

Name Description Example Database storage

Date Store a date in the database as an ISO8601 date, used for his-
torical (pre-1000 A.D.) or partial dates (for example, only a year
and no day or month). This field type should be avoided oth-
erwise, as it’s extremely expensive to sort and perform conver-
sions on this style of date.

2008-08-26T17:02:00 varchar(20)

Datestamp Datestamp field types are stored using the common Unix time-
stamp format containing the number of seconds since January
1, 1970. As such, these have a limited date range available (1901
A.D.–2038 A.D. on most systems) but are quick to calculate time
zone offsets and sort in listings. A legacy format, Datestamps
are supported across all database systems.

1219770120 int(11)

Datetime Datetime field types are stored using the database system’s
internal “datetime” format for date handling. It has the ad-
vantage of being able to use database-specific functions for
date handling, including ease of extracting a single part of the
date, but with the caveat of inconsistent support across data-
base systems.

2008-08-26 17:12:00 datetime

For much, much more than you ever wanted to know about the pros
and cons of various date storage formats, there’s an interesting discus-
sion on the Events working group at http://groups.drupal.org/node/731.

Because the Aurora Book Club has no intention of moving from MySQL, and all dates
will be well within “normal” ranges, we will be using the Datetime field type for our site.

Date Widgets
In addition to the base field types, the Date module also defines three CCK widgets for
entering Date information, which are pictured in Figure 9-2:

Select list
Presents a series of drop-down lists for each of year, month, day, hour, minute,
and second, based on the configured granularity for the date field defined by the
data settings.

Spotlight: Date Module | 319

http://groups.drupal.org/node/731

Text field with custom input format
Provides a simple text field for date entry that will then be converted to the appro-
priate storage format. The advantage of this widget is that it lets advanced users
enter dates much faster. However, for the uninitiated, it can be frustrating if your
natural date entry format is not properly recognized.

Text field with jQuery pop-up calendar
Adds an elegant, user-friendly option for Date value entry. This widget uses Java-
Script to present a calendar pop-up when a user clicks in the date text field. The
user can then click the date on the calendar to select the date that he wants.

The book club will be using the “Text field with jQuery pop-up calendar” widget for
improved usability.

Date Settings
There are quite a few settings available specific to date fields and different from other
CCK field types, as shown in Figures 9-3 and 9-4. Some of these are:

Default value
The default value setting gives you a few options to choose from. The Blank and
Now settings are pretty straightforward. The Relative setting will let you set the
default to a date that is relative to the current time, such as two days from now.
To set up a relative default, you must enter a value in Customize Default Value

Figure 9-2. Date CCK field widgets

320 | Chapter 9: Event Management

that uses PHPs strtotime() syntax, such as +2 days. You can find out more about
strtotime() at http://www.php.net/manual/en/function.strtotime.php.

Input format
The input format setting dictates the ordering of the fields—year, month, day,
hour, minute, and second—as they appear on the form for entering the date. Only
the values available in the Granularity data setting will be taken into consideration.
There is also a “Custom input format” option, which allows an arbitrary date for-
mat to be used when using the “Select list” and “Text field with custom input

Figure 9-3. Date field content type settings

Spotlight: Date Module | 321

http://www.php.net/manual/en/function.strtotime.php

format” widgets for ultimate flexibility. The custom format is set using PHP’s
date() formatting syntax (http://php.net/date). The “Text field with jQuery pop-up
calendar” does not offer a custom input format, because it must use its format to
work with the pop-up calendar.

Years back and forward
This setting gives us control over how many years will be listed in the widget for a
user to select from. An example of the format used is −2:+4, where −2 is the number
of years before the current year to show in the list and +4 is the number of years
after. If the current year is 2009, this would indicate that the years available to select
should be between 2007 (−2 years) and 2013 (+4). For our event site, there is
probably little use in using a wide range here, particularly in allowing support for
events in the distant past.

Time increment
The time increment setting allows us to constrain how many minutes (and seconds,
if specified in the granularity settings) will be shown. By default, all 60 minutes are
available as options; however, in many instances, dates may be entered only as 15-
or 30-minute intervals. Therefore, having all 60 minutes as options makes the drop-
down list more cumbersome to use.

Customize date parts
A date consists of the date fields and the label for each field. You can customize
where you would like to display the label in relation to its field: above the field,
within the field (either as an option in a select list or inserted inside a text field) or
none at all.

The “Select list” widget has a few more options. Despite its name, we can actually
have text field entry for certain values in the date, mixing drop-downs and text
fields. For instance, rather than having a select list of 31 days, we could set Day to
be a text field input, in which case Drupal will render the input as select lists for
year and month with a small text field for day. This option again allows us full
control over the widget and a chance to select the interface easiest to use for our
target audience.

Under the global date field settings, we see even more options related to how the field
is handled:

To Date
The “To Date” setting allows you to associate an ending date/time, thus making
the date field a date span. The setting has three options:

Never
No end date will be associated with this date field.

Optional
The date field can potentially have an end date, and an entry widget will be
displayed, but may be left blank.

322 | Chapter 9: Event Management

http://php.net/date

Figure 9-4. Date field settings

Spotlight: Date Module | 323

Required
An end date must be entered if either the date field is required or a start date
has been entered.

Granularity
The granularity data setting dictates how much information will be retained about
the dates supplied. The checkboxes for Year, Month, Day, Hour, Minute, and
Second can be selected independently to provide extreme flexibility. For instance,
if we wanted only birthday (but not a full birth date), we could select only Month
and Day; for example, July 10. For the purpose of event management, the default
selection of Year, Month, Day, Hour, Minute is suitable, which allows us to display
the date like July 10, 2008 - 7:30.

Note that the Granularity setting will impact the date entry widget, in that only the
appropriate options will be displayed.

Default display
The default display setting section allows us to configure the format that will be
used when displaying the date value. There are four formats that we can configure:
default, which is shown on the form in Figure 9-4, as well as short, medium, and
long, which can be configured by expanding the Additional Display Settings field-
set. For each of the display settings, there are two options. The “Date display”
drop-down list contains a huge variety of date permutations (month names versus
numeric months; 12- versus 24-hour clocks; time zone information as well as or-
dering of each year, month, day value). Should none of the listed options prove to
be suitable, each display option has an additional “Custom display format” text
field that allows even further customization, in the same way as the custom input
format mentioned above.

Each of the four options—default, short, medium, and long—will be available then
as CCK formatters for use in the content display settings as well as for Views and
theming.

Time zone handling
The time zone handling settings allow us to configure how time zones should affect
the stored date values and whether conversions should be performed. The options
are described in Table 9-5.

Table 9-5. Date field time zone options

Option Description

Site’s time
zone

The time zone specified for the entire site, specified at Administer→Site configuration→Date and Time
(admin/settings/date-time). Useful for making sure each date field shares a consistent time throughout
the site, even if users are from different time zones.

Date’s time
zone

Adds a Time zone drop-down next to the date widget to specify the time zone for the date. Useful for
sites where many users from many different time zones will be creating dates.

324 | Chapter 9: Event Management

Option Description

User’s time
zone

The time zone specified in each user’s My Account settings if the option is enabled under Adminis-
ter→Site configuration→Date and Time (admin/settings/date-time). This option is useful if you mainly
have events in one time zone, but users from many different places.

UTC Coordinated Universal Time (UTC), which is informally equivalent to GMT. This is a standard time zone
that is the same across all systems.

No time zone
conversion

For events with dates only, rather than dates and times, or for sites with both local events and users,
performs no time zone conversions on the date.

For the book club, we will not be doing time zone conversions, as all members will
be local.

Hands-On: Adding Dates
In this section, we will transform our basic Event content type by adding the date
component. This will be the linchpin of the book club’s site, as the rest of the site will
build from this content.

Set Up the Date Module
1. Go to Administer→Site building→Modules (admin/build/modules) and enable the

following modules (note that if you are using PHP 4, you will need to enable Date
PHP4 as well):

• Date/Time package

— Date

— Date API

— Date Popup

— Date Timezone

2. Go to Administer→Site configuration→Date and Time (admin/settings/date-time)
and select an option from the “Default time zone” drop-down list that matches
your time zone. Click “Save configuration” to save your changes.

Add the Date Field
With all our required modules enabled and set up, we can now customize the Event
content type we created earlier by adding dates. Note that as we do this, we will only
add a single CCK field to handle both the event’s start and end times:

1. Go to Administer→Content management→Content types (admin/content/types)
and click the “manage fields” link for the Event content type (admin/content/node-
type/event/fields). Complete the New field form with the values in Table 9-6.

Hands-On: Adding Dates | 325

Table 9-6. Settings for adding a time field to the Event content type

Field Value

Label Time

Field name time

Select a field type Datetime

Select a widget Text field with jQuery pop-up calendar

2. Click Save. This brings us to the date field configuration screen. As the Date module
is geared toward event management by default, several of the default settings work
well. Enter the values in Table 9-7, and click the “Save field settings” button to
complete adding the configuration.

Table 9-7. Date field configuration settings

Field Value

Event settings

Default value Now

Input format Select a format such as 08/29/2008−11:31pm

Years back and forward −1:+2

Time increment 15

Global settings

Required Checked

To Date Optional

Default Date Display Select a format such as 08/29/2008–11:31pm

Time zone handling No time zone conversion

3. You should be returned to the “Manage fields” tab (admin/content/node-type/
event/fields). Reorder the fields as follows and click Save:

• Name

• Time

• Location

• Description

• Menu settings

With the content type fully created and permissions granted, our members can now
post events to the site! To do so, go to Create content→Event (node/add/event) and
complete the form with the settings in Table 9-8. If all has gone well, you should see
something like the form in Figure 9-5. Go ahead and create a few more events for the
Aurora Book Club.

326 | Chapter 9: Event Management

Table 9-8. Initial example event

Field Value

Name Monthly meeting

Time

Choose a time tomorrow 09/17/2008—2:30PM

Choose a time tomorrow 09/17/2008—3:30PM

Location The Book Nook on Main Street

Description Andrew and Camryn are bringing cookies.

Figure 9-5. Our initial event

Hands-On: Upcoming Events View
Now that we’ve created our event content type and started populating some content,
it’s clear that we need to add in a way to access all our event data. In the book club’s
requirements, we had a need for an “upcoming events” listing that would allow mem-
bers to quickly see the meetings happening in the coming days or weeks. To achieve
this, we will use the Views module to create our block. Keep in mind that when building
views of event data, we generally want to do our sorting or our limiting on the date
field, not the content’s created or updated time, as we normally do.

We will create a simple block view of published events where the event’s time field is
in the future. In terms of the views configuration, having a date value “greater than
now” represents dates “in the future.” Finally, the view will be sorted in chronological
(or ascending) order of the event’s date (not the event posting’s created date). When
completed, this section will look as pictured in Figure 9-6. Clicking the event name link
in the block will take you to the full information.

Hands-On: Upcoming Events View | 327

Figure 9-6. The Aurora Book Club site showing a list of upcoming events

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following modules:

• Other package

— Advanced help

• Views package

— Views

— Views UI

2. Once the modules are enabled, go to Administer→Site building→Views (admin/
build/views) and click on the Add tab (admin/build/views/add).

3. Fill out the view form using the values in Table 9-9.

Table 9-9. The Upcoming Events view configuration values

View setting Value

View name upcoming_events

View description A block list of upcoming events

View tag event

View type Node

4. Clicking the Next button places us in the main Views interface. From here, we can
configure our view. Let’s begin with the Basic settings for the Defaults in Ta-
ble 9-10, clicking Update after setting each one.

328 | Chapter 9: Event Management

Table 9-10. Basic settings for the upcoming events view

Defaults: Basic setting Value

Title Upcoming Events

Style Select List and click Update

List type: Unordered list

Items to display Defaults: Items to display: 5

5. Now, we must add some fields to our view. In the Fields section, click the + (plus)
icon and add the following fields: “Content: Time (field_time value)” and “Node:
Title.” Configure the settings to match those in Table 9-11 and make sure to click
the Update button after each one.

Table 9-11. Upcoming Events view field values

Defaults: Fields Values

Content: Time (field_time value) Label: None

Node: Title Label: (make this blank)

Link this field to its node: Checked

6. In the Filters section, we’ll add our required filters by clicking the + (plus) icon:

• Date: Date

• Node: Published

• Node: Type

7. Recall that our view is for upcoming (that is, future) events; therefore, we will filter
on dates that are greater than now. Match the filter settings with the values in
Table 9-12 and Update them.

Table 9-12. Upcoming Events view filter values

Defaults: Filters Value

Date: Date Select Content: Time (field_time_value) under Date field(s), and click Update

Operator: Is greater than or equal to

Date default: now

Node: Published Published: Checked

Node: Type Operator: Is one of

Node type: Event

8. Then, we need to similarly add the Sort Criteria, using the + (plus) icon. Select
“Content: Time (field_time value),” click Add, ensure that the Sort order is
Ascending, and click the Update button to finish.

9. To create the block, add a Block display by selecting Block from the drop-down
list on the left side of the interface and click “Add display.”

Hands-On: Upcoming Events View | 329

10. Under “Block settings,” under Admin, enter the Block: Block admin description
to read Upcoming Events and click Update.

11. Save the view, which should now look like Figure 9-7.

Figure 9-7. Upcoming Events block view

12. Because we created a block view, we should see no change to our site until we
enable the block that we’ve created. To do this, go to Administer→Site build-
ing→Blocks (admin/build/block). Drag the “Upcoming Events” row to the “Right
sidebar” region (or simply change the region value in the drop-down) and click
“Save blocks.”

Spotlight: Calendar Module
Although a simple list of upcoming events is very useful (particularly in a sidebar block),
the book club has additional requirements for the display of the event data. As is ex-
tremely common for event management websites, this site needs an interactive calendar
for browsing through past and future events. We will implement this feature using the
Calendar module in conjunction with Views.

In addition to creating a nice online calendar, the Calendar module can handle the need
for book club members to be able to update their desktop calendars (in Microsoft
Outlook or Apple’s iCal) with the event information from the book club site. To do
this, the desktop applications use a standardized format known as iCalendar (http://en
.wikipedia.org/wiki/iCalendar), or iCal for short. Calendar comes with the Calendar
iCal module, which allows us to easily provide this format for the interested members.

330 | Chapter 9: Event Management

http://en.wikipedia.org/wiki/iCalendar
http://en.wikipedia.org/wiki/iCalendar

Calendar View Type
The Calendar module provides a new view type that shows the results of a view in a
calendar rather than a list or table as with the default view types. This view type is one
of the more complicated ones available. It provides full day, week, month, and year
views of the event data on our site with lots of links between views and paging through
days, months, and years. To achieve this rich functionality, Calendar requires certain
views arguments to exist, and to be ordered and configured in a certain way.

The Calendar view type then determines which view the user would like to see based
on the arguments that exist. For example, if our view URL is calendar, the Calendar
view will handle the paths described in Table 9-13.

Table 9-13. Calendar path-based display

Path Calendar display

calendar Month view, defaulting to the current month

calendar/1970 Year view, for the year 1970

calendar/1970-1 Month view for January 1970

calendar/1970-1-1 Day view for January 1, 1970

Hands-On: Calendar View
In this section, we’ll be enabling the Calendar view of book club events. Although this
is potentially a daunting task, the Calendar module conveniently comes with a default
view that handles most of the difficult bits for us. In this section, we’ll alter that default
calendar view to fit our requirements.

Figure 9-8 shows the finished Aurora Book Club calendar. Note the small iCal icon in
the bottom right. Clicking this link will download the calendar to an appropriate desk-
top application.

1. Go to Administer→Site building→Modules (admin/build/module) and enable the
following modules:

• Date/Time package

— Calendar

— Calendar iCal

2. Go to Administer→Site building→Views (admin/build/views). You should now see
“Default Node view: calendar” listed. Turn it on via its Enable link (admin/build/
views/enable/calendar).

3. Click its Edit (admin/build/views/edit/calendar) link to open the calendar view for
editing.

4. We need to make changes to the default Arguments. By default, the calendar view
uses the date the node was last changed to place events on the calendar. Down in

Hands-On: Calendar View | 331

the Date field(s) section, click on the “Date: Date” link and under “Date field(s),”
uncheck “Node: Updated date” and check “Content: Time (field_time value)” in-
stead. Then click Update.

5. For the Fields section, add the Content: Time (field_time_value) field, then make
the changes noted in Table 9-14 and click Update. This selection will show our
event’s date, rather than the node’s last updated date, and will remove the word
“Title” from the event name that comes by default.

Table 9-14. Calendar view fields configuration

Defaults: Fields Value

Node: Updated date (Remove this field)

Content: Time (field_time_value) Label: None

Node: Title Label: (make this blank)

���������

Figure 9-8. Completed event calendar, with iCal link

332 | Chapter 9: Event Management

6. We need to add some filters so that only our published Event content shows in the
calendar. Do this by clicking the + (plus) icon next in the Filters section and select
the Node: Published and Node: Type filters. Complete the filter configuration ac-
cording to Table 9-15, clicking Update for each one.

Table 9-15. Calendar view filter configuration

Defaults: Filters Value

Node: Published Published: Checked

Node: Type Node type: Event

7. Finally, we need to add a menu item for the calendar page. The default view already
provides us with a path of “calendar,” which makes sense for us to keep. To add
this to the menu, click on the Calendar Page tab on the left side of the interface
and complete the “Page settings” section according to Table 9-16. Click Update
after you enter the menu settings.

Table 9-16. The Calendar view’s Page settings

Page: Page settings Value

Menu Type: Normal menu entry

Title: Events calendar

8. Save the view, which should look like Figure 9-9.

9. We can now move the Events Calendar menu item into the Primary Links menu.
Go to Administer→Site building→Menus→Navigation (admin/build/menu-
customize/navigation) and click “edit” in the Events calendar row.

10. Update the “Parent item” to read “<Primary links>” and click Save.

Figure 9-9. Upcoming Events calendar view

Hands-On: Calendar View | 333

Now we have a working events calendar that can be reached by clicking on the events
calendar link in the Primary navigation.

Spotlight: Flag Module
The Flag module (formerly known as Views Bookmark) is an incredibly flexible module
that allows you to create relationships between users and content on your site. After
creating a flag, an item can be marked with the flag a few different ways, including links
displayed below content, as shown in Figure 9-10, or checkboxes displayed on the edit
form, as shown in Figure 9-11.

Figure 9-10. Flags as links shown on content

Figure 9-11. Flags as checkboxes shown on the node edit form

Upon installation, the Flag module defines a “bookmark” relationship, allowing users
to maintain a list of bookmarks (or posts they find interesting) on the site. However,
this default behavior only touches on the surface of the flexibility of the Flag module.
Some possible uses for Flag include:

• A “favorite” or “bookmark” flag to mark content

• A “promote” flag (or many different promote flags) that are similar to the default
“Promote to Frontpage” checkbox

334 | Chapter 9: Event Management

• An “offensive” flag for comments and nodes

• A “friend” flag that allows users to mark other users as friends

• An “attending” flag for events

As you can see, there are a variety of uses for flagging content. After creating a flag for
some purpose, views can be constructed that create lists of content that has been flagged
by users. We’ll use it to let users indicate whether they plan to attend a book club event.
Once the flag relationships are created, we can create a view to list the attendees of a
particular event.

Hands-On: Flag Configuration
In this section, we will configure the Flag module to allow our users to indicate that
they are attending our events, as pictured in Figure 9-12.

1. Go to Administer→Site building→Modules (admin/build/modules) and enable the
“Other package: Flag” module.

2. Now go to Administer→Site building→Flags (admin/build/flags) to manage the
defined flags. By default, the Flag module defines a “Bookmarks” flag when in-
stalled. We can either add a new flag or edit the default one to suit our purpose.
As we won’t be using “Bookmarks” on this site, we’re going to edit the default.
Click the “edit” link next to the bookmark flag (admin/build/flags/edit/book-
marks). Fill out the form according to Table 9-17.

Figure 9-12. Attendance indicator shown on node the form

Hands-On: Flag Configuration | 335

Table 9-17. Attendance flag configuration

Field Value

Name attendance

Title Attendance

Flag link text attend this event

Flag link description Attend this event

Flagged message You are attending this event

Unflag link text cancel attendance

Unflag link description Cancel attendance to this event

Unflagged message You are no longer attending this event

What nodes this flag may be used on Event: Checked

Story: Unchecked

Display options Display link on node teaser: Unchecked

Display link on node page: Checked

Display checkbox on node edit form: Unchecked

3. Clicking Submit will create our attendance flag. We can now go to any events that
we previously created and click the “attend this event” link.

Hands-On: Attendee View
The Flag module provides a default view that will allow any user to see the content that
she has flagged for any flag that we have defined. You should now see a My Attendance
link in the Navigation menu, which will show all of the events that you have marked
as attending.

However, the book club would also like to see a list of who will be attending each event.
For this, we will need to create a new view, pictured in Figure 9-13.

Figure 9-13. Event attendees list view

336 | Chapter 9: Event Management

1. Go to Administer→Site building→Views (admin/build/views) and click on the Add
tab.

2. Complete the form according to Table 9-18.

Table 9-18. Attendees view settings

Setting Value

View name attendees

View description Attendees for a given event

View tag event

View type User

3. The first thing we need is a relationship to give us access to the flag information
related to our users in our view. Click the + (plus) sign in the Relationships section
and check the “Flags: User’s flagged content” relationship and click Add. Complete
the relationship settings based on Table 9-19.

Table 9-19. Settings for the Flags relationship

Defaults: Relationship Value

Flags: User Label: attendance

Include only users who have flagged content: Checked

Flagged: Attendance

4. We want our view to show the users who have flagged a given Event node; there-
fore, we need to add an argument for the Node ID that was flagged. To do this, we
click the + (plus) sign next to Arguments. Check the “Flags: Content ID” argument
and click Add. The default values for the argument are fine, so we can click Update.

5. Now we can add the fields that we want to display. Click the + (plus) icon next to
Fields. Check the “User: Name” field and then click Add. Blank out the Label text
so that there is nothing there and click Update.

6. It would be helpful if the attendees were listed in an ordered list so that we could
quickly glance at the total number of people attending. To add this functionality,
we need to change the style of the view. Click on Style under “Basic settings” and
change it to List, then click Update. Then set the list type to “Ordered list.” Click
Update to save the change.

7. To complete the view, we need a Page display. Select Page from the drop-down list
on the left side of the interface and click Add display. Complete the Page settings
according to Table 9-20.

Hands-On: Attendee View | 337

Table 9-20. The Attendees view Page settings

Setting Value

Path node/%/attendees

Menu Type: Menu Tab

Title: Attendees

8. Save the view, which should look like Figure 9-14.

Figure 9-14. Event attendees list view settings

Now, when you visit an Event post, you should see an Attendees tab. Clicking on that
tab will display a list of all of the users who have said they will attend the event.

Taking It Further
The site we have built covers all of the needs for the club. As they go down the road,
the members may want to spruce things up a bit. Here are a few modules that could
round out the site even more:

Calendar Popup (part of the Calendar module)
The Calendar package also includes this module. This will make it so that when
you click on an event in a calendar display, it will appear as a JavaScript pop-up
rather than taking you to the node page. This is handy if you want people to be
able to browse the details of events without leaving the calendar view page.

338 | Chapter 9: Event Management

Countdown (http://drupal.org/project/countdown/)
This module adds a block that shows the time left until an event. This is a nice way
to let people quickly know that the next meeting is in four days or four hours.

Flag Actions (part of the Flag module)
The Flag module can be set up to send emails, and to unpublish or delete nodes
upon reaching certain flagging thresholds. Although this feature is most commonly
used for things like community flagging of spam or offensive content, it can also
be used to notify someone by email if, say, more than 10 people will be coming to
an event and a second person needs to be asked to help supply refreshments.

Location (http://drupal.org/project/location/) and GMap (http://drupal.org/project/
gmap/)

Instead of just typing a location in a text field, you can use the Location and GMap
modules to let people use a Google map to select the location for each event.

Summary
In this chapter, we have looked at building an event management site for the Aurora
Book Club, making use of the Date field for CCK, the Calendar plug-in for Views, and
the Flag module for handling attendance. The book club now has a handy calendar for
display on the site, as well as being available in iCal format. They also have an easy-to-
find list of all the attendees. The site is simple and easy to use, yet fits all of the club’s
needs quite nicely.

Here are all the modules we referenced in this chapter:

• Calendar: http://drupal.org/project/calendar

• Countdown: http://drupal.org/project/countdown

• Date: http://drupal.org/project/date

• Event: http://drupal.org/project/event

• Flag: http://drupal.org/project/flag

• GMap: http://drupal.org/project/gmap

• Location: http://drupal.org/project/location

• Signup: http://drupal.org/project/signup

• Views: http://drupal.org/project/views

Summary | 339

http://drupal.org/project/countdown/
http://drupal.org/project/location/
http://drupal.org/project/gmap/
http://drupal.org/project/gmap/
http://drupal.org/project/calendar
http://drupal.org/project/countdown
http://drupal.org/project/date
http://drupal.org/project/event
http://drupal.org/project/flag
http://drupal.org/project/gmap
http://drupal.org/project/location
http://drupal.org/project/signup
http://drupal.org/project/views

Additional resources:

• ADOdb Date Time Library: http://phplens.com/phpeverywhere/adodb_date_library

• Date module handbook: http://drupal.org/node/92460

• Event-related modules: http://drupal.org/project/Modules/category/61

• iCalendar: http://en.wikipedia.org/wiki/ICalendar

• PHP date formatting: http://php.net/date

• PHP strtotime:http://www.php.net/manual/en/function.strtotime.php

340 | Chapter 9: Event Management

http://phplens.com/phpeverywhere/adodb_date_library
http://drupal.org/node/92460
http://drupal.org/project/Modules/category/61
http://en.wikipedia.org/wiki/ICalendar
http://php.net/date
http://www.php.net/manual/en/function.strtotime.php

CHAPTER 10

Online Store

Many businesses both large and small would like to take better advantage of their web
presence by selling their products or services directly online. Setting up e-commerce,
however, can be a very daunting task. There are several options with varying complex-
ity. Many hosting providers offer e-commerce or “shopping cart” packages that may
be either included with your web hosting plan or available for purchase. Other services,
such as PayPal, offer simple ways of including means for simple purchases using an
HTML form that submits to their processing system. There are other options still for
using dedicated e-commerce packages, both open source and proprietary, that you host
and configure. The biggest issue with all of these methods tends to be the lack of inte-
gration with the rest of the website—all shopping cart functions and checkout take
place within the other, external system.

The other complication with e-commerce implementations is that there is real money
involved for both you and your customers. Customers will be providing credit card
details and other sensitive information, so we need to be aware of security implications.

This chapter will introduce the following module:

Ubercart (http://drupal.org/project/ubercart)
Provides a full e-commerce package for running an online store

To follow along with the hands-on example in this chapter, install Drupal using the
Online Store install profile, which installs Drupal with a few sample users and basic
settings, as shown in Figure 10-1 and found at http://store.usingdrupal.com. For more
information on using the book’s sample code, see the Preface.

341

http://drupal.org/project/ubercart
http://store.usingdrupal.com

Case Study
Sweet Tees is a local T-shirt store that sells wildly popular, custom-printed T-shirts.
They have a physical storefront, and the owners enjoy running a small store and love
their current location. However, they get frequent mail order requests for their shirts
and stickers, and would like to grow that end of the business. Taking orders on the
phone and tracking sales has proven to be inefficient and time-consuming for both
them and their customers.

In order to increase sales, we will equip the Sweet Tees website with an online store
that has integrated shopping cart functionality, where visitors to the site can add items
to their cart without the hassle of having to create an account first. A shopping cart
should be visible on all pages with a link to “check out” at any time. The store needs
to flow seamlessly with the existing website so that customers have a consistent expe-
rience. Sweet Tees would like to make the checkout process as simple as possible, so
we will also need to make sure we provide them with a single-page checkout, without
requiring customers to create a user account. Finally, they wish to accept credit cards
on their orders, so we will need to set up a payment gateway for this purpose.

Implementation Notes
Sweet Tees has several options to manage their online store; however, they really want
to provide a seamless, user-friendly experience for their customers. They are looking
for a solution that is simple and elegant, yet also comprehensive.

Figure 10-1. Sweet Tees’ completed website

342 | Chapter 10: Online Store

For Drupal, there are two primary e-commerce solutions, both of which consist of
several modules, to implement the various features required.

The e-Commerce module (http://drupal.org/project/ecommerce) is the oldest and more
flexible of the options. The package is designed to be a highly modular framework for
building e-commerce solutions in Drupal. In a way, it is a development framework of
its own on top of Drupal’s existing framework. The principal benefit of the e-Commerce
package is ultimate control and extensibility. Because of the high number of variable
components in an online store (payment processor, shipping calculations, taxes, and
so on), this flexibility is incredibly useful. The downside, however, is that the flexibility
increases the level of complexity, thus making it more time-consuming to set up and
configure. Also, again due to its architecture, the checkout process for the e-Commerce
package takes several pages and requires that customers register accounts on the web-
site. This violates two of the client’s primary requirements.

Ubercart (http://drupal.org/project/ubercart) is a much newer solution that was initially
intended to provide a much more simplified installation, configuration, and manage-
ment process than e-Commerce. Although arguably less flexible than e-Commerce,
Ubercart is designed to accommodate 80–90% of online stores. Ubercart also has some
nice features that make it attractive for our implementation: a single-page checkout
process, anonymous user purchases, and a nice administration interface.

For Sweet Tees, we will be using Ubercart to bring the simple, elegant feel of their
physical storefront to the Internet.

The Ubercart project has its own website that is separate from
Drupal.org where you can find support forums, documentation, and
add-on modules. Check out http://www.ubercart.org.

Spotlight: Ubercart Packages
Ubercart is a complete package for running an online store. As such, it actually contains
more than 30 individual modules that implement each of the various features required
for running an online store. These modules range from basic framework modules such
as Payment or Cart to very specialized modules that implement specific features. Nav-
igating the giant list of modules (which is more than Drupal core itself includes!) can
be confusing, so in this section we’ll look at each module and outline its purpose and
where it fits.

The modules that make up the Ubercart package are broken into five packages under
Administer→Site building→Modules (admin/build/modules). We’ll look at what the
modules in each package include in this section.

Spotlight: Ubercart Packages | 343

http://drupal.org/project/ecommerce
http://drupal.org/project/ubercart
http://www.ubercart.org

Ubercart—core
The Ubercart—core package represents the base framework components for our online
store. There are five modules in this section: Cart, Conditional Actions, Order, Product,
and Store. Each of these modules is required for running an online store. Following is
a brief description of each:

• Cart handles the shopping cart, pictured in Figure 10-2, with features such as
tracking which products a customer has selected and the quantity of each product
that has been ordered. The Cart module is also responsible for the “checkout”
procedure. In addition to the basic functionality, the Cart module also provides
options for extensibility in the shopping cart and checkout functions for other
modules.

Figure 10-2. Shopping cart provided by the Cart module

• Conditional Actions provides a mechanism for the rest of Ubercart to use for pro-
viding configurable, rules-based actions for things like taxes and shipping. This
module makes use of the core Actions system and is an advanced alternative to the
Trigger module in Drupal core, which was covered in Chapter 6.

• Order is responsible for recording, tracking, and managing individual orders to the
store. Figure 10-3 shows an order generated by the Order module. The Order
module provides features for manual, backend creation of orders (that is, those
taken over the phone), and invoicing, as well as an interface for viewing and editing
existing orders. Like the Cart module, Order also serves as a framework module
for the rest of the package by providing hooks for automated fulfillment and pay-
ment processing.

• Product serves as the base information for all items available in the store. It creates
a “product” node type that can be extended via “product classes” that we can
define. Figure 10-4 shows some of the properties supplied by Ubercart’s Product
module.

344 | Chapter 10: Online Store

Figure 10-4. Product information supplied by Product module

Figure 10-3. An order view courtesy of Order module

Spotlight: Ubercart Packages | 345

• Store governs the administration of the entire Ubercart package. It creates the basic
management interface at Administer→Store administration (admin/store), pic-
tured in Figure 10-5, and also provides common helper functions such as unit
conversions and country-specific features.

Figure 10-5. Administration panel provided by the Store module

Ubercart—core (optional)
The Ubercart—core (optional) package of modules consists of several modules that
most, but not all, stores will require. There are also some interesting and often-
requested features made available by the modules in this section.

• Attribute allows products to have slightly different variations so that customers
may select from a group of options rather than having entirely separate products
listed for minor variations. We’ll use the Attributes module later to allow customers
to choose a size when ordering our T-shirts.

• Catalog provides categorization of products via Drupal’s core taxonomy system by
creating a predefined “Product Categories” vocabulary. Catalog also provides some
additional features, such as associating an image with each category (as shown in
Figure 10-6) and providing some additional browsing options for products in the
catalog.

346 | Chapter 10: Online Store

• File Downloads allows products to have associated downloadable files. Ideal for
selling software or digital media, the File Downloads module automatically sends
a customer an email with a link to a secure download. Customers can also down-
load any purchased items again by logging into their account.

• Notify enables features for sending email notifications to customers upon checkout
or to notify of order updates.

• Payment is a framework-style module that enables and manages third-party pay-
ment processor integration with Ubercart. During checkout, it allows customers
to choose a payment method from a list of enabled Payment processors, as shown
in Figure 10-7. The Payment Module also includes a test gateway, which is very
useful for testing the checkout process (without the use of any specific third party).
The modules in the Ubercart—payment package all integrate with the Payment
module’s framework. Most provide integration with specific payment processors
such as 2Checkout, Authorize.net, CyberSource, and PayPal, with a few
exceptions:

— Test Gateway provides a simple, dummy payment-processing interface, which
is very useful for testing and when setting up the store to make sure that orders
and reports are all working properly. The test gateway does not make actual
charges to a credit card.

— Payment Method Pack adds the “Other” options for payment such as COD,
checks, or money orders. This module doesn’t actually collect any funds
directly.

— Recurring Payments does not collect any payments itself, but can add recurring
charges to specified products, thus enabling the creation of subscription-based
services for Ubercart stores.

— Credit Card is a base module that adds a “pay by credit card” method to the
checkout process and provides hooks for specific third-party integration mod-
ules to integrate with credit cart payments. By itself, the Credit Card module
does not actually generate a charge to a credit card.

Figure 10-6. The first page of a product catalog with a few categories

Spotlight: Ubercart Packages | 347

• Reports provides a reporting console for sales reports and general activity within
the store, as shown in Figure 10-8. This module also allows downloading the re-
ports as a comma-separated values (CSV) file for importing into a spreadsheet
program or other reporting tool.

Figure 10-8. An example report generated with the Reports module

• Roles allows users who purchase certain configured products to be granted a
specified role—either indefinitely or for a specified duration. This module is great
for enabling membership features or other subscription-style services.

• Shipping, much like the Payment module, is an API or base module that provides
general management related to preparing purchased products for shipping. Mod-
ules listed in the Ubercart—fulfillment package all integrate with the Shipping and/
or the Shipping Quotes modules. Their purpose is to provide service-specific in-
tegration for calculating shipping costs, generating shipping labels, or creating
tracking numbers. The two primary services included with Ubercart are integration

Figure 10-7. A variety of payment methods in Ubercart

348 | Chapter 10: Online Store

with the U.S. Postal Service, via their XML web service, and integration with UPS,
via their similar service. There are also additional modules included to do both flat-
rate shipping costs (which can be defined per product) and weight-based quotes
that work similarly to flat rates, but using the weight of each product. Fig-
ure 10-9 illustrates some of the shipping options that Ubercart provides.

Additional shipping integration modules can be downloaded from
the Ubercart site under the “Contributions” section at http://www
.ubercart.org/contrib.

• Shipping Quotes also provides a basic means of generating quotes or estimates
around shipping costs. Other fulfillment modules, listed in the Ubercart fulfillment
section, can then provide their unique calculations based on the customer’s selec-
ted shipping method.

• Taxes enables an interface for creating tax rules specific to certain regions based
on product types.

Figure 10-9. Shipping options for a product

Spotlight: Ubercart Packages | 349

http://www.ubercart.org/contrib
http://www.ubercart.org/contrib

Ubercart—extra
Although our site will not make use of most of the modules contained in the Ubercart
- extra section, there are some interesting options available. The distinction between
“extra” and “core (optional)” modules is a bit fuzzy, but in general the “core (optional)”
modules are things that directly affect the online shopping experience or provide
additional, extensible framework elements. The extra modules, on the other hand,
enable additional functionality:

• Cart Links allows administrators to construct URLs that will add certain quantities
of specified products (along with additional details). These links could then be
used on external sites—blogs, affiliate sites, or within other content on the store
site—to provide quick “buy now” links. Although there is no user interface for
generating the links, you can read more about the Cart Links module at Adminis-
ter→Store administration→Help→Creating cart links (admin/store/help/
cart_links) when the module is enabled.

• Google Analytics for Ubercart acts as an integration point between Ubercart and
Google Analytics and can be used to track conversion rates and marketing cam-
paigns versus sales. This module requires that the Google Analytics module be
installed (http://drupal.org/project/google_analytics).

• Importer is a very useful module for exchanging Ubercart data with external sys-
tems. Importer actually provides import and export of product information via an
XML format.

• Product Kit enables a feature for grouping products together to be sold as a single
unit. The kit can then have its own (discounted) price for the collection of products.

• Repeater provides the functionality to update product information on remote
Ubercart stores. This module is very useful if Ubercart is working in a multisite
setup, with related or dependent stores. The updates to product information are
sent using the same format as the Importer module.

• Stock provides tools for tracking and managing stock levels of items in the store.
Store administrators can set thresholds for products, below which they will be
notified via email to indicate low stock levels. The Stock module also integrates
with the Reports module to provide stock levels reporting.

Spotlight: Ubercart’s Administration Panel
Ubercart, due largely to its complexity and vast number of modules, has its own ad-
ministration section, which is found at Administer→Store administration (admin/
store), as seen in Figure 10-10. All subsequent Ubercart features will be managed under
this new section.

The main panel shows a listing of all available actions to perform on the store, and
includes managing the product catalog, viewing and filling store orders, viewing reports

350 | Chapter 10: Online Store

http://drupal.org/project/google_analytics

on store activity, and adjusting the configuration of any setting. Additional sublinks of
each section are hidden by default and expanded by clicking the “Show links” link.
Below the main panel is a list of status messages that may indicate problems or missing
configuration steps. It’s a good spot to check if things aren’t working correctly.

The Orders, Customers, and Products links each point to a section where you can
create, manage, and search existing records. This is where day-to-day store mainte-
nance happens.

The Reports section allows you to answer questions about how well the store’s per-
forming overall. What products are selling well? Are there plenty of products in stock,

��������	
�����������	��	����������
��������	��	������	�����

���������������	��������	�������

���������������������	�
��������������
������

Figure 10-10. The Ubercart administration panel

Spotlight: Ubercart’s Administration Panel | 351

or is it time to order more? How is the store’s bottom line? All of these questions and
more can be answered with the tools available here.

The Configuration section contains oodles and oodles of settings for everything from
where users get redirected after they add something to their shopping cart, to what the
input form looks like for entering a shipping address and how many orders should be
displayed in the order overview form. If there’s a particular behavior of Ubercart you
really wish you could change, chances are good that you’ll find it here. Unlike most
Drupal administration sections, the “Store settings” section provides an outline that
lists all the currently set values grouped in sections. To edit any of the values, just click
on a section (which will highlight on mouseover), as seen in Figure 10-11.

��������	
�	���	����
�	�����	��	��
����	�
��������	������	���	��	�����

����	����
�	�
�����	��	
�������	
�
���	
���
�	����	����	����	���

Figure 10-11. The Ubercart settings pages display a summary of options, which take you to
appropriate edit forms when clicked

352 | Chapter 10: Online Store

And finally, the Help section takes you to a listing of Ubercart resources, as well as links
to help pages for specific modules in the Ubercart suite: it’s a great place to go if you
are stuck and want advice from other Ubercart users or experts.

Hands-On: Setting Up the Store
To begin setting up the online T-shirt store, we must first establish some basic infor-
mation about the store that later features will be able to use. Let’s get started with the
essentials: the store information that will be used in invoices and to calculate shipping
costs.

Initial Setup Tasks
1. Log in to the Sweet Tees site as the admin user if you have not done so already.

2. Go to Administer→Site building→Modules (admin/build/modules) and enable the
following module:

• Ubercart—core package

— Store

3. Go to Administer→Store administration→Configuration→Store settings (admin/
store/settings/store).

4. Click on the “Name and contact information” section, which brings up the “Con-
tact settings” form (admin/store/settings/store/edit). Complete this form as shown
in Table 10-1, and click the “Save configuration” button when done. When you
return to the “Store settings” Overview page, it should look as pictured in Fig-
ure 10-12.

Table 10-1. Contact settings

Setting Value

Store name Sweet Tees

Store owner Stephen Sweet

E-mail address store@example.com

Phone number 800-555-1234

Fax number 110-555-4321

Street address 1 123 Example St

Street address 2

City Example City

Country United States

Zone California

Postal code 90210

Hands-On: Setting Up the Store | 353

Although Ubercart defaults to supporting North American conventions,
these are all fully configurable. The “Format settings” tab (admin/store/
settings/store/edit/format) allows us to configure the display of various
measurements such as currency, weight, length, and dates. And under
the Country settings form at Administer→Store administration→Coun-
try settings (admin/store/settings/countries), you can import additional
country data and set up country-specific address forms.

Spotlight: Products, Product Classes, and Attributes
Before we get to the next step—adding products to our store—it’s worth taking some
time to discuss how Ubercart treats products within the system.

Products in Ubercart are nodes, which means that you can do anything with products
that we’ve done with nodes in the rest of this book: you can add comments or ratings,
tag them, add CCK fields to hold additional properties, display products in listings with

Figure 10-12. Store name and contact information

354 | Chapter 10: Online Store

Views module, and so on. This seamless integration of store products with the rest of
the content that Drupal can manage is a “killer” feature of Ubercart.

Ubercart’s Product module defines a single “Product” node type, which comes prebuilt
with fields such as SKU and sale price, as pictured in Figure 10-13. These fields interact
directly with other parts of the system, such as sales reports and shipping calculations.

Figure 10-13. Product information supplied by the Product module

A single-product node type is sufficient if you are only selling one style of product in
your store, such as a club membership. Many online stores are more complex, however.
Amazon.com sells books, movies, and, as we saw in Chapter 4, kitchen utensils. Books
have properties like “author” and “ISBN number,” and movies might have properties
like “rating” and “movie studio.” Can you imagine how long the product node form
would be if it needed to provide a field for every single one of these properties for all
possible types of products? No thanks.

Luckily, the Ubercart developers have a solution to this predicament: special node types
called product classes. Product classes are slightly different than standard content types,
as they need to inherit the base product fields. However, once a product class is created,

Spotlight: Products, Product Classes, and Attributes | 355

it will then look and behave like a normal Drupal content type—there will be an entry
form for it under “Create content” (node/add), and we can edit fields and properties
via Administer→Content management→Content types (admin/content/types). Each
product class may be customized without affecting other products. You can create a
product class for “Book” and a product class for “Movie” and use CCK to give each its
own specific properties. We’ll make use of product classes later on for creating our
T-shirt and sticker products.

In order for Ubercart to recognize a node type as a product, it must be
either the “Product” node type supplied by Product module, or created
as a “product class” node type. Without this, the various product prop-
erties won’t appear to enter required fields such as SKU and sale price.

But what about products like T-shirts, which are fundamentally the same product type,
but for which there are multiple variations of the same product, such as different colors
and sizes? These variations, though important distinctions for order fulfillment and
sometimes price, aren’t really separate products, but rather different options for a single
product. It would surely be tedious to create one product for “Red, Small Drupal logo
T-shirt” and another for “Red, Large Drupal logo T-shirt” and yet another for “White,
Small, Drupal logo T-shirt,” and so on.

Ubercart refers to these sorts of minor variations as attributes, which are supplied by
the Attribute module. Each attribute, such as “Color,” is given a series of options, such
as “Red,” “Blue,” and “Plaid,” which a customer may select when adding the product
to his shopping cart. Attributes may be shared across different product classes (both
stickers and T-shirts might have a color), or specific to one type of product. You can
even set different pricing for different attribute options, as that Plaid T-shirt requires
hand-sewing from the local tailor. Figure 10-14 shows an example of a “Media format”
attribute, which might be applied to albums. CDs are physical entities, and therefore
have an associated cost and weight. MP3s, on the other hand, are digital and have
neither of these properties.

Figure 10-14. Example of an attribute with different options

356 | Chapter 10: Online Store

Hands-On: Creating Products
In this section, we will be setting up the product information for Sweet Tees, which is
the first piece required to put together our online store. Ubercart’s Product module
provides a Product content type for us on installation, and the FileField (http://drupal
.org/project/filefield), ImageField (http://drupal.org/project/imagefield), and
ImageCache (http://drupal.org/project/imagecache) modules that we covered in Chap-
ter 7 will allow us to display and collect images on products.

As Ubercart uses the ImageField and ImageCache modules for all prod-
uct image handling, we can modify any of the default settings using the
techniques outlined in Chapter 7 to customize them for our purposes.

Initial Setup Tasks
Go to Administer→Site building→Modules (admin/build/modules) and enable the fol-
lowing modules:

• CCK package

— Content

— FileField

— ImageField

• Core package

— Path

• ImageCache package

— ImageAPI

— ImageAPI GD2

— ImageCache

— ImageCache UI

• Other package

— Token

• Ubercart—core package

— Product

• Ubercart—core (optional) package

— Attribute

— Catalog

After enabling these modules, we can see that our store administration section has
changed dramatically. Going to Administer→Store administration (admin/store) now

Hands-On: Creating Products | 357

http://drupal.org/project/filefield
http://drupal.org/project/filefield
http://drupal.org/project/imagefield
http://drupal.org/project/imagecache

shows messages in the “Status messages” list and two new sections, Products and At-
tributes, as seen in Figure 10-15.

Figure 10-15. Store administration panel, after enabling Product-related modules

Configuring Product Classes
When we enabled the modules in the previous step, Ubercart automatically added a
Product content type and associated it with an Image field so that we can attach pictures
to our products. However, Sweet Tees sells two kinds of products: T-shirts and stickers.
In order to accomplish this requirement, we’ll create two product classes, as shown in
Figure 10-16.

Figure 10-16. Product classes for T-shirts and stickers

358 | Chapter 10: Online Store

1. Go to Administer→Store administration→Products→Manage classes (admin/store/
products/classes).

2. You will be presented with a form to add a class. Create the first class, for T-shirts,
according to Table 10-2 and click “Submit.”

Table 10-2. Adding a “T-shirt” class

Setting Value

Class ID tshirt

Class name T-shirt

Description Our award-winning T-shirts

3. Now add a second product class for stickers as shown in Table 10-3.

Table 10-3. Adding a “sticker” class

Setting Value

Class ID sticker

Class name Sticker

Description A sticker with a witty phrase

Configuring Product Attributes
For the Sweet Tees online store, customers need to be able to select the T-shirt size that
they wish to order, as well as the colors of their shirts and stickers. To implement this,
we will make use of Ubercart’s product attributes feature. Figure 10-17 shows an ex-
ample of the Size attribute.

Figure 10-17. The Size attribute and its options

Hands-On: Creating Products | 359

1. Go to Administer→Store administration→Attributes (admin/store/attributes) and
click on the “Add an attribute” tab (admin/store/attributes/add).

2. On this page, we can create attributes and options for our products. Initially, we
need to provide a bit of information about the attribute. Enter the values according
to Table 10-4.

Table 10-4. Settings for the Size attribute

Field Value

Name Size

Help text Pick a T-shirt size

Make this attribute required Checked

Display type Select box

3. Clicking Submit takes us back to the Attributes Overview tab (admin/store/attrib-
utes). Click the “options” link in the Operations column of the Size row.

4. This gives us the options overview page, which will list all options available for this
attribute. Click the “Add an option” tab (admin/store/attributes/1/options/add).

5. This form allows us to add an option for the Size attribute. Complete this form for
each of our sizes using the values in Table 10-5. Note that you can also offer Cost,
Price, and Weight adjustments for each option. For our purposes, we will assume
that all T-shirt sizes cost and weigh the same.

Table 10-5. Options for the Size attribute

Name Order

S 0

M 1

L 2

XL 3

6. Let’s also create a color attribute for both T-shirts and stickers. Return to Admin-
ister→Store administration→Attributes (admin/store/attributes) and click on the
“Add an attribute” tab (admin/store/attributes/add). Enter the values in Ta-
ble 10-6.

Table 10-6. Settings for the Color attribute

Field Value

Name Color

Help text Select a color

Make this attribute required Checked

Display type Select box

360 | Chapter 10: Online Store

7. Back at the overview screen, click “options” in the Color row, choose “Add an
option,” and enter the values in Table 10-7.

Table 10-7. Options for the Color attribute

Name Order

White –1

Dark blue 0

Light blue 0

Plaid 0

8. We now need to associate our new attributes with our product classes. Return to
Administer→Store administration→Products→Manage classes (admin/store/prod-
ucts/classes) and click the “edit” operation in the T-shirt row (admin/store/
products/classes/T-shirt/edit).

9. Click on the Attributes tab (admin/store/products/classes/tshirt/attributes) and
click on the “add attributes to this class” link in the help text (admin/store/
products/classes/tshirt/attributes/add).

10. In the Attributes select list, select both Size and Color, and click “Add attributes.”

11. Click the Options tab (admin/store/products/classes/tshirt/options).

12. Select all four colors and all four sizes by checking the checkbox next to each. Pick
White as the default color, and M as the default size. Your configuration screen
should look as pictured in Figure 10-18. Click Submit when finished.

13. Stickers, on the other hand, don’t have a size, and come only in white and light
blue. Head back to Administer→Store administration→Products→Manage classes
(admin/store/products/classes) and click the “edit” operation in the sticker row
(admin/store/products/classes/sticker/edit).

14. Click on the Attributes tab (admin/store/products/classes/tshirt/attributes) and
click on the “add attributes to this class” link in the help text (admin/store/prod-
ucts/classes/tshirt/attributes/add). In the Attributes select list, select Color, and
click “Add attributes.”

15. Click the Options tab (admin/store/products/classes/tshirt/options) and make
sure both White and Light blue are checked. Make White the default color, and
click Submit.

Hands-On: Creating Products | 361

Configuring Product Settings
Before we move on to the catalog area, let’s configure some basic product settings:

1. Go to Administer→Store administration→Configuration→Product settings (admin/
store/settings/products) and click on the “Product settings” section.

2. This page lets us configure some default settings for products, such as the number
of products to show on listing pages and how “Add to cart” links are handled. The
defaults will work here, except we’d like to check the “Display an optional quantity
field in the Add to Cart form checkbox.” Click “Save configuration.”

3. Click on the “Product fields” tab (admin/store/settings/products/edit/fields).
Here, we have a selection of optional fields we can expose on all of our products.
These fields are common to all products in our online store. In addition to the
defaults, click the checkbox next to Weight and click “Save configuration.”

Because Ubercart products are a Drupal content type, we can add ad-
ditional fields via CCK the same way we do with any other type, by
visiting Administer→Content management→Content types (admin/
content/types) and clicking “manage fields” for Product. The product
fields used by Ubercart are common fields used by all products.

Configuring the Catalog
The Catalog module that we enabled will allow category-based browsing of our prod-
ucts, as pictured in Figure 10-19. The entire catalog system is built on Drupal’s core

Figure 10-18. T-shirt attribute options

362 | Chapter 10: Online Store

taxonomy system; therefore, adding and manipulating the hierarchy of the catalog is
done via the standard taxonomy interface. However, Ubercart adds several additional
nice features for browsing and listing products in the categories for us.

Figure 10-19. The Sweet Tees product catalog

Before beginning this section, double-check that the “Catalog” vocabu-
lary has been properly created by checking on the status messages at
Administer→Store administration (admin/store). If all goes well, there
should be a status message claiming “Vocabulary Catalog has been
identified as the Ubercart catalog.” This means that the catalog vocabu-
lary has been created successfully. If you do not receive this message,
create a new vocabulary by hand, and head to Administer→Store
administration→Configuration→Catalog settings (admin/store/set-
tings/catalog) to mark it for use by the Catalog.

1. Let’s start by adding some categories for our catalog. Go to Administer→Content
management→Taxonomy (admin/content/taxonomy).

2. Click “add terms” for the Catalog vocabulary and add the product categories listed
below. Use the term Advanced options “Parents” and “Weight” settings to place
them in the following hierarchy:

• Stickers

• T-shirts

— Men’s

— Women’s

— Kids’

Hands-On: Creating Products | 363

3. Go to Administer→Store administration→Configuration→Catalog settings (admin/
store/settings/catalog).

4. Click on the “Catalog” section (admin/store/settings/catalog/edit/catalog) to open
the edit form. Note that you can select any taxonomy vocabulary to serve as the
Catalog vocabulary (if you have an existing vocabulary that you would like to use).

5. We will leave the default settings here for the most part. Change the settings as
indicated in Table 10-8 and click “Save configuration.”

Table 10-8. Catalog display settings

Field Value

Catalog products list

Product nodes per page 12

Catalog block settings

Always expand categories in the catalog block Checked

6. Click the Grid tab (admin/store/settings/catalog/edit/grid).

7. Here, we can have our catalog pages laid out in a grid rather than a standard table
listing view. Complete this form according to Table 10-9 and click “Save
configuration.”

Table 10-9. Catalog grid settings

Setting Value

Display products in grid Checked

Display product model (SKU) Unchecked

Display product add to cart Unchecked

8. Let’s add some products to our catalog! Go to Create Content→T-shirt (node/add/
T-shirt) and complete the form as per Table 10-10, and click the Save button to
create the product. There are T-shirt images provided for you in the book’s source
code in the assets/ch10-store folder, or you can use some of your own! When fin-
ished, your product upload will look similar to Figure 10-20.

Table 10-10. Create T-shirt form

Field Value

Name Druplicon

Catalog Men’s, Women’s

SKU T-shirt001

Sell price 14.99

Weight 2 Pounds

Description Drupal’s logo

364 | Chapter 10: Online Store

Field Value

Image [Upload a T-shirt image]

If an image field doesn’t show up for you here, check back at the
status messages on the main Ubercart administration page at
Administer→Store administration (admin/store) and follow the in-
structions next to Images. You may have forgotten to enable a few
of the required modules earlier.

Figure 10-20. A sample T-shirt product

9. Add a few more products to fill out the catalog a little. Note that each product can
have per-product Attributes, Options, or Adjustments. You can adjust these by
clicking on the node’s Edit tab and then using the tabs that show under the View
and Edit tabs. For instance, if we have a T-shirt that is unavailable in certain sizes,
we can click the Options tab and uncheck the sizes that are not available.

10. Now, let’s view the results of what we’ve made. Enable the catalog block by visiting
Administer→Site building→Blocks (admin/build/block) and dragging the Catalog
block to the top of the left sidebar region. When the block is in place, click “Save
blocks.” We can now look through the product catalog by clicking on the links in
the Catalog block in the sidebar.

11. Finally, let’s set up the permissions for the items we’ve configured so far. Go to
Administer→User management→Permissions (admin/user/permissions), enter the
settings in Table 10-11, and click “Save permissions.”

Hands-On: Creating Products | 365

Table 10-11. Permissions for the event content type

Permission anonymous user authenticated user editor site administrator

uc_catalog module

administer catalog Checked

view catalog Checked Checked

uc_product module

administer product classes Checked

administer products Checked

create products Checked

edit all products Checked

uc_store module

administer store Checked

view customers Checked Checked

view store reports Checked Checked

Spotlight: The Ordering Process
We now have an online store that can be populated with the entire Sweet Tees inven-
tory. However, at the moment customers can only browse the catalog and see infor-
mation about the products. Most e-commerce sites are concerned with actually selling
something, and that means getting into the ordering process.

Figure 10-21 depicts the typical workflow for a store such as our client’s. It begins when
a customer adds products to her online shopping cart and clicks the “Checkout” but-
ton. The customer is presented with a form in which to fill out basic customer infor-
mation, such as billing and shipping address, credit card information, and preferred
shipping method. The customer then has a chance to review the order, including its
total price, with taxes and shipping calculated based on the information provided ear-
lier. Once the order is submitted, a payment gateway validates the entered billing in-
formation to determine if the credit card is legitimate. If all goes well, the order is placed
and the store fulfills its end of the bargain by packing the products up and shipping
them where they need to go.

Although this is typical for a “traditional” e-commerce store, many types of stores have
very different needs. Ubercart’s module suite allows for many flexible ways to configure
a customized ordering process. Want to sell downloadable products, which have no
need to be shipped anywhere? No problem. Turn on the Downloads module, and turn
off the Shipping module. Need to calculate complex international tax rules? The Con-
ditional Actions module combined with the Taxes module will do what you need. Does
an order in your system take lots of steps on its way to being completed, such as “Pend-
ing various red-tape paperwork” or “Needs invoice”? The Orders module has the ability

366 | Chapter 10: Online Store

to define custom workflow states for your orders, so you always know the current state
of open orders in the system.

Although there are far too many configuration options to get into all of them in detail
here, we’ll discuss some of the settings pages that impact ordering, found underneath
Administer→Store administration→Configuration (admin/store/settings):

Cart settings
Various shopping behaviors, such as where customers are directed after adding
products, and what information shows up on the shopping cart page

Order settings
Settings for how invoices appear, an order’s workflow states, and the display of
order information in the administration panel

Customer

���������	
��
�
��������	��

��	������	���
�
�����������

��
������������
���������
���

��������������

�����

 ����
�������
������
��

���������	
�����
	�����
��������

����!"�������
�����
�

Payment gateway

Store owner

��������	��
�����
���������	�����	
����		�����

�������
��
�������
���
���������
�

���� ����������	�����
��!����������	�"��

Figure 10-21. Ubercart’s typical ordering process

Spotlight: The Ordering Process | 367

Checkout settings
Field visibility on the checkout page and the text of various system messages

Payment settings
Payment tracking options, types of payments to accept, and payment gateway
configuration

Shipping quote settings
Default pickup address and shipping methods

Tax rates and settings
Creation of specific tax rate rules

Often, the default settings are fine, but it pays to familiarize yourself with some of the
options found here in case your store’s needs ever change.

Hands-On: Processing Orders
The remaining element of our site is actually implementing the e-commerce portions:
an online shopping cart and the ability to process orders, as well as reporting tools to
tell us how our store is doing. We will now complete our store configuration.

To complete this section, we must first enable one final set of modules. Go to Admin-
ister→Site building→Modules (admin/build/modules) and enable the following:

• Ubercart—core package

— Cart

— Conditional Actions

— Order

• Ubercart—core (optional) package

— Payment

— Reports

— Shipping

— Shipping Quotes

— Taxes

• Ubercart—fulfillment package

— Flatrate

• Ubercart—payment package

— Credit Card

— Payment Method Pack

— Test Gateway

368 | Chapter 10: Online Store

Because the precise instructions for implementing payment systems vary
widely between various services (Paypal, Authorize.net, and so on), in
this chapter, we’ll be setting up credit cards only with a test gateway.
On a “real” e-commerce site, you’ll want to use an actual payment gate-
way that can accept and process credit card transactions for you. Uber-
cart’s website contains a list of its supported payment systems, along
with documentation on how to set them up: http://www.ubercart.org/
payment.

Shopping Cart
In this section, we will configure the site’s shopping cart, as pictured in Figure 10-22.
Once we get the cart set up, we will be able to browse to an individual T-shirt page,
select options such as color and quantity, and add the customized products to our cart.

The vast majority of our work for this section is completed by simply enabling the Cart
module. The cart settings come with very workable defaults, but there are a couple
settings we want to change:

1. Go to Administer→Store administration→Configuration→Cart settings (admin/
store/settings/cart) and click the “Cart settings” section (admin/store/settings/
cart/edit).

2. The default setting for the “Continue shopping link URL” is to return the user to
the site’s front page. We should change this to be the full catalog. Enter “catalog”
and click “Save configuration.”

Figure 10-22. Ubercart’s shopping cart, along with a sidebar block

Hands-On: Processing Orders | 369

http://www.ubercart.org/payment
http://www.ubercart.org/payment

3. We can also create a Shopping Cart block so that shoppers have ready access to
their cart from any page on the site. Go to Administer→Site building→Blocks
(admin/build/block).

4. Drag the Shopping Cart block to the top of the left sidebar region and click “Save
blocks.”

We now have our shopping cart ready to go. That was easy! Next, we’ll talk about what
happens when someone clicks the Checkout button.

Taxes
Before we can open up our store to the public, we need to ensure that all applicable
sales taxes are being applied to our items. As Sweet Tees is based in California, we will
need to charge sales tax on all products sold.

This example is for illustrative purposes only: determine what types of
taxes you need to charge to sell products in your own store. The Con-
ditional Actions module, part of Ubercart core, allows setting all sorts
of complex tax rules to calculate different rates depending on whether
purchasers are from the same state or a different state, for different
product types, or for international orders.

1. Go to Administer→Store administration→Configuration→Tax rates and settings
(admin/store/settings/taxes) and click the “Make a new tax rule” link (admin/
store/settings/taxes/edit).

2. Complete the “Edit tax rule” form using the values from Table 10-12.

Table 10-12. Edit tax rule form

Field Value

Name Sales tax

Rate 7.25%

Taxed product types T-shirt, Sticker

3. Click Submit to save the sales tax settings.

Shipping
Because we are selling physical goods, or “shippable items,” in our store, we need to
account for the costs involved to ship our products. For simplicity, we will use a flat
rate to provide a single set of shipping costs, assuming no base shipping cost and a
default shipping rate of $5.99 for all T-shirts.

370 | Chapter 10: Online Store

1. Go to Administer→Store administration→Configuration→Shipping quote settings
(admin/store/settings/quotes) and click on the “Quote methods” section (store/
settings/quotes/methods).

2. Click on the “Flat rate” tab (admin/store/settings/quotes/methods/flatrate) and
click the “Add a new flat rate shipping method” link.

3. Complete the form using the values from Table 10-13.

Table 10-13. Flat rate method settings

Field Value

Shipping method title Default shipping

Line item label Shipping

Base price 0.00

Default product shipping rate 5.99

Payment
We can now configure the final piece for our site: payments. There are a lot of options
for how to accept payment via Ubercart. We will be taking checks or money orders as
well as processing credit cards (via the test gateway).

1. Go to Administer→Store administration→Configuration→Payment settings
(admin/store/settings/payment) and click on the “Payment methods” section (ad-
min/store/settings/payment/edit/methods).

2. In the Payment methods table, ensure that “Check” and “Credit card” are checked,
and that the default gateway is set to “Test Gateway.” Click “Save configuration.”

3. You should see an error at the top that says “Credit card encryption must be con-
figured to accept credit card payments.” Let’s fix that.

There are several security implications involved in accepting credit
card payments online. You should always use a proper, valid SSL
certificate for accepting the information and, when possible, avoid
storing the card numbers in Ubercart. For more information about
secure credit card handling with Ubercart, please see the online
documentation: http://www.ubercart.org/docs/user/2731/credit
_card_settings#security.

4. Create a directory in the filesystem called keys, which will be used to encrypt credit
card data, in a place that is not web accessible. For example, if your main website
page points to /home/username/www, create the directory at /home/username/keys.

5. Temporarily make the directory writable, for example with the command chmod a
+w /home/username/keys.

6. Expand the “Credit card settings” fieldset, and in “Card number encryption key
filepath,” enter the path to the keys file; for example, /home/username/keys.

Hands-On: Processing Orders | 371

http://www.ubercart.org/docs/user/2731/credit_card_settings#security
http://www.ubercart.org/docs/user/2731/credit_card_settings#security

7. In the “Checkout workflow” section, ensure that “Attempt to process credit card
payments at checkout” is checked.

8. Also expand the “Check settings” fieldset, and enter some address information for
the store.

9. Click “Save configuration.”

10. On the file system, reset the directory’s permissions to prevent write access, for
example with the command chmod a-w /home/username/keys.

Placing a Test Order
We are now ready to make our first test order! Here’s how:

1. Browse the catalog to find our “Example T-shirt” product. We must select a Color
and a Size and then click “Add to cart.” We will then be redirected to the cart view.
Note that the “Shopping cart” block on the left instantly reflects the number of
items (1) and total amount of our current selection.

2. From the shopping cart view, we could choose to “Continue shopping,” which will
redirect us back to the catalog overview, or we can make changes to our cart by
removing items or updating the quantity of any product (by making changes and
clicking “Update cart”). However, we would like to see the order process in action,
so let’s click Checkout.

3. We are now on the Ubercart checkout screen. The top portion of the page, shown
in Figure 10-23, displays the contents of our shopping cart for confirmation fol-
lowed by a customer information section, which—as we are currently logged in—
will display our email address.

Figure 10-23. The order summary and delivery details of the Ubercart checkout screen

372 | Chapter 10: Online Store

4. Complete the delivery information and billing information sections with your
information.

5. Continue down to the payment method. By default, “Check or money order” is
selected as the payment method, with the address we provided earlier. Click on
the “Credit card” option and the section dynamically updates to include a credit
card entry form, as shown in Figure 10-24.

Figure 10-24. The shipping and payment section of the checkout screen

Hands-On: Processing Orders | 373

Figure 10-25. The review order screen, where customers can make final adjustments

6. As we are using the Test gateway, we don’t need to enter a valid credit card number
to complete the order. We do, however, need to enter credit card information in a
valid format. The Credit Card module will check to ensure that there are the proper
number of digits in the card number and that the expiration date is still valid.
Complete this section with the settings in Table 10-14.

Table 10-14. Credit card form

Field Value

Card Number 4111111111111111 (that’s 15 1s)

Expiration Date July 2017

CVV 123

7. Upon clicking the “Review order” button, we are presented with a final confirma-
tion screen, pictured in Figure 10-25, to review all the entered information. If there
are errors, click the Back button and you will return to the checkout screen, where
you can make corrections. Clicking “Submit order” will complete the transaction,
send the email confirmation, and create the order record for store administrators.

8. When finished, the customer is presented with a thank-you page, with a link to
view the current order status from the Orders section of his user profile.

374 | Chapter 10: Online Store

Fulfilling an Order
Our test order has been successfully placed. Let’s now turn our attention to what hap-
pens afterward: the order shipping and order fulfillment process, and viewing reports
of the overall health of the store.

1. Go to Administer→Store administration→Orders (admin/store/orders) to view a
list of all of the orders in the system. Our order shows “Payment received,” because
our test gateway payment went through properly. Click the View icon to display
the order, which should look something like Figure 10-26. From here, you can do
things such as print and mail invoices, view a log of changes to the order, and view
payment details.

Figure 10-26. Viewing an order in the order system

2. You can also ship products from here, which is what we’ll do next. Click the Pack-
ages tab and click the “Create packages” link to arrive at the screen depicted in
Figure 10-27.

Hands-On: Processing Orders | 375

Figure 10-27. Organizing product shipments into packages

3. Check the T-shirt and click “Create one package.” This screen also allows you to
do things like ship two products together and another one separately.

4. Next, click the Shipments tab, and the “Make a new shipment” link. Check off the
package, choose “Ship manually” as the shipment type, and click “Ship packages.”

5. A form will appear where additional details may be entered, such as tracking num-
ber, ship date, and delivery date. Simply click “Save shipment” to accept the
defaults.

6. Finally, we should edit our order to reflect that it is now complete, and the order
has successfully shipped. Click the View tab to return to the order view.

7. At the bottom of the order is a drop-down for order status. Change its setting to
Completed, and click Update.

8. Now that we’ve completed our first order, it’s as good a time as any to look at some
of the system reports that Ubercart provides. Go to Administer→Store administra-
tion→Reports (admin/store/reports). Click on “Sales reports” to view a summary
of the store’s performance, as seen in Figure 10-28. Feel free to explore some of the
other reports under this section as well.

376 | Chapter 10: Online Store

Figure 10-28. Sales reports show overall health of the store

Access Control
Finally, let’s configure the permissions for the new modules that we enabled in this
section. Go to Administrator→User management→Permissions (admin/user/permis-
sions), set them as indicated in Table 10-15, and click “Save permissions.” Most of
these are similar to what we’ve already seen or their function can be guessed by the
name, but a few deserve special attention, as it’s not immediately clear what they entail:

• Under uc_credit module, there are two credit card-related permissions: “view cc
details” and “view cc numbers.” “view cc details” allows a user to see what type of
card was used and how much it was charged, so we’ll give that to the editor role.
However, a credit card number is very sensitive information. Although Ubercart
will normally store only the last four digits of a credit card, it’s better to be safe
than sorry. We’ll give these permissions only to site administrators.

• Under the uc_order module section, there are two similarly named permissions:
“delete orders” and “delete any orders.” The difference is that users with “delete
any orders” permissions can even remove already-completed orders in the system,
and bypass any additional checks that might otherwise prevent an order from being
removed. As a result, we give this permission only to the site administrator role.

Hands-On: Processing Orders | 377

Table 10-15. Permissions for Ubercart order processing modules

Permission anonymous user authenticated user editor site administrator

ca module

administer conditional actions Checked

uc_credit module

administer credit cards Checked

process credit cards Checked Checked

view cc details Checked Checked

view cc numbers Checked

uc_order module

administer order workflow Checked

create orders Checked Checked

delete any order Checked

delete orders Checked Checked

edit orders Checked Checked

view all orders Checked Checked

uc_payment module

delete payments Checked

manual payments Checked Checked

view payments Checked Checked

uc_quote module

configure quotes Checked

uc_reports module

view reports Checked Checked

uc_shipping module

fulfill orders Checked Checked

uc_store module

view store reports Checked Checked

uc_taxes module

configure taxes Checked

Taking It Further
In this chapter, we have covered the basics of setting up an online storefront and shop-
ping cart using the Ubercart package for Drupal. However, there are several additional
modules that you will likely want to consider before taking your online store live:

378 | Chapter 10: Online Store

Secure Pages (http://drupal.org/project/securepages)
When collecting sensitive, personal information online—particularly credit card
information—it is highly recommended that you do it via a secure, SSL connection.
The Secure Pages module allows you to specify certain Drupal paths that should
be visited only via HTTPS. The recommended paths to protect are user/* and
cart/*.

PayPal (included with Ubercart)
Although the PayPal module is not required, you will likely want to use some pay-
ment gateway for processing payments (recall that we used the Test Gateway in
this chapter). PayPal’s merchant services are easy to set up and well supported by
Ubercart.

Stock (included with Ubercart)
Particularly when selling something like T-shirts, it is a good idea to keep track of
the current available stock level to avoid selling someone a product that is not
available. The stock module (found in Ubercart—extra) updates a given stock level
for each product every time a purchase is made. When new stock arrives, simply
add the new quantity to the current level. Also included with the module is a
threshold setting which, when reached, will trigger an email notification that in-
ventory is getting low.

Summary
In this chapter, we were able to set up a complete online store for our customer, Sweet
Tees. Although there are a lot of modules, configuration screens, and chances to over-
ride the features in Ubercart, the sane default options and helpers for common tasks
such as setting up ImageCache presets make Ubercart fairly easy to get running.

Here are the modules we referenced in this chapter:

• CCK: http://drupal.org/project/cck

• e-Commerce: http://drupal.org/project/ecommerce

• FileField: http://drupal.org/project/filefield

• Google Analytics: http://drupal.org/project/google_analytics

• ImageAPI: http://drupal.org/project/imageapi

• ImageCache: http://drupal.org/project/imagecache

• ImageField: http://drupal.org/project/imagefield

• Token: http://drupal.org/project/token

• Ubercart: http://drupal.org/project/ubercart

Summary | 379

http://drupal.org/project/securepages
http://drupal.org/project/cck
http://drupal.org/project/ecommerce
http://drupal.org/project/filefield
http://drupal.org/project/google_analytics
http://drupal.org/project/imageapi
http://drupal.org/project/imagecache
http://drupal.org/project/imagefield
http://drupal.org/project/token
http://drupal.org/project/ubercart

Here are the additional resources that we referenced in this chapter:

• Ubercart official site: http://www.ubercart.org

• Ubercart contributions: http://www.ubercart.org/contrib

• Ubercart credit card security: http://www.ubercart.org/docs/user/2731/credit_card
_settings#security

• Ubercart payment systems: http://www.ubercart.org/payment

380 | Chapter 10: Online Store

http://www.ubercart.org
http://www.ubercart.org/contrib
http://www.ubercart.org/docs/user/2731/credit_card_settings#security
http://www.ubercart.org/docs/user/2731/credit_card_settings#security
http://www.ubercart.org/payment

CHAPTER 11

Theming Your Site

The rest of this book has extensively discussed how to construct a diverse array of
websites from photo sharing to product reviews to event management by combining
powerful Drupal core features and dozens of add-on contributed modules. Drupal gives
you a lot of tools to move things around and arrange the functionality of your site, but
often the main difference between most websites comes down to presentation.

When you think about it, there’s really not much difference between the functionality
of YouTube and Flickr. Certainly, one manages video content and the other focuses on
photos. But these sites have more similarities than differences. Both manage media
content and allow users to share their uploads. Both allow users to create a network of
contacts. Users can create their own profiles, comment on others’ content, and mark
content as a “favorite” for later reference.

Functionally, these sites are very similar, but their presentation is completely different.
The layout of the sites is different, their backgrounds are different, their entire look and
feel is different—each has a different presentation of its elements.

When we talk about theming, we are talking about Drupal’s presentational layer. It is
where the site developer is able to take complete control and specify what goes onto
the page. All CSS, JavaScript, images, and HTML can be rearranged and overridden by
a Drupal theme. Drupal’s theme system can provide special formatting of the site for
mobile devices, reformat content for display in RSS feeds, display a thumbnail of the
user’s image whenever the username is shown, completely change the default output
provided by a module, and much more. Drupal theming is a topic broad enough to fill
an entire book of its own. The aim of this chapter is to give an overview with as many
tip-of-the-iceberg concepts as possible—to show what can be done and some basic
information on how to do it. We hope to give you enough of an overview so that if you
are interested in customizing the look and feel of your Drupal site, you will be able to
use the concepts in this chapter as a launching pad.

381

We should also mention that although the rest of this book is as code-free as possible,
even an overview of Drupal’s theming system requires some basic knowledge of HTML,
CSS, and PHP. If this type of code scares you, you might want to squint through the
rest of this chapter, as the code samples assume that you are at least somewhat familiar
with weird stuff like <div> and #header and foreach. If you’re curious but not quite
comfortable with code, however, a great place to learn about all three of these tech-
nologies is the W3Schools website at http://w3schools.com.

To follow along with the hands-on examples in this chapter, install Drupal using the
default Drupal install profile. Go to http://theme.usingdrupal.com for the completed
website, along with a copy of the theme with the customizations from this chapter.

Spotlight: The Theme System
As discussed briefly in Chapter 1, modules generate the contents of a given page, and
the theme system provides the opportunity to cut in and customize the page before it’s
displayed. A theme is a collection of images, CSS, and (usually) HTML/PHP files that
change the look of Drupal’s default output. With a simple flick of a radio button, you
can completely change the design of your website by choosing a different theme, and
you can customize settings on a theme to make adjustments, such as to the site logo or
colors, as we saw in Chapter 2.

Figure 11-1 provides a general overview of how the theme system works. Each path in
Drupal corresponds to a particular module that is responsible for handling the page
request. For example, “node/1” is handled by the Node module, “admin/build/
themes” is handled by the System module, and a path like “albums” might be handled
by the Views module. After the module has built up the contents of the page, it calls
up the theme system with a special function called theme(), which we’ll be discussing
in more depth later in the chapter.

The theme system consists primarily of a theme engine, which defines the dynamic parts
of the page, as well as the rules for how Drupal’s output is defined and can be over-
ridden, and the currently enabled theme, such as Garland. The theme engine is capable
of setting up the basic structure and markup of the content and rendering the entire
page template with the current page’s content inside of it. But where the visual magic
happens—and where you start to gain control over exactly how each element on the
page looks—is in the theme itself.

Every single element on the page, from the title in the browser window, to the site logo,
to the regions where blocks are placed, to the links in the menu bar, is run through the
theme system. The difference between an obviously “Drupal”-looking site and a stylish
site is creative use of the tools provided by the theme layer. Let’s look at the pieces of
a theme we have to work with, as well as how Drupal expects us to use them.

382 | Chapter 11: Theming Your Site

http://w3schools.com
http://theme.usingdrupal.com

This chapter discusses the PHPTemplate theme engine (also referred to
as a templating system), which is provided by Drupal core. However,
it’s worth pointing out that other theme engines are available, including
Smarty and PHPTAL. See the full list at http://drupal.org/project/Theme
+Engines.

���������	�

��������������	������������

��������	
����

�
����������

�������	������	����
���

Figure 11-1. An overview of how Drupal goes from URL to HTML

Spotlight: The Theme System | 383

http://drupal.org/project/Theme+Engines
http://drupal.org/project/Theme+Engines

Modifying Drupal
Why do we need a theme system at all? It’s open source, right? Why not just find the
spot in Drupal’s core files that’s not doing quite what we want, and modify it directly?

Let’s just start by saying that modifying Drupal’s core files is almost always a very bad
idea. One of Drupal’s great strengths lies in its ubiquity—everyone is using the same
tried and true, well-tested, secure code base. This code is constantly being tested and
improved by an enormous community of contributors.

When you make changes to the files in your Drupal installation, you are creating your
own proprietary version of Drupal, and losing its collective benefits. When a security
update of Drupal is announced, upgrading your Drupal installation becomes some-
where between difficult and impossible. Most Drupal sites with modified files end up
stranded, unable to benefit from security, speed improvements, new features, and us-
ability improvements of later versions.

Drupal is designed to never require modification in order to customize it to your needs.
It provides many opportunities during a page load, called hooks, which allow modules
and themes to modify the fundamental operation of Drupal. Drupal will always do its
default thing, but it gives you many opportunities to override those defaults. Most of
the methods used to override default Drupal behavior and presentation are based on
simple naming conventions. If you name your files and functions with the proper
names, they will take precedence.

By keeping our customizations separate, we can easily change the underlying Drupal
installation without affecting Drupal’s default code. Additionally, when the time comes
to upgrade the site, Drupal core and contributed themes can be updated smoothly,
leaving just our custom bits to wrangle with.

.info Files
Beginning with Drupal 6, themes are defined by a theme_name.info file that resides in
the theme’s directory, often simply referred to as the “.info file.” This file defines a
variety of metadata for the theme, including the name of the theme, a description, its
Drupal core version compatibility, and which theme engine it uses. Beyond those ba-
sics, the .info file can also define the block regions available to the theme, and the CSS
stylesheets and JavaScript files used. You can also define the theme features available
to administrators under the theme configuration screens (see Chapter 2.

Here is a simple example showing basic theme information, taken from the core Blue-
marine theme. A full description of all attributes available in .info files for themes is
available at http://drupal.org/node/171205.

name = Bluemarine
description = Table-based multi-column theme with a marine and ash color scheme.
core = 6.x
engine = phptemplate

384 | Chapter 11: Theming Your Site

http://drupal.org/node/171205

.info files are the only required file for a theme, and they make it possible to create
themes using no PHP or custom HTML at all. Themes can instead rely on Drupal’s
default HTML and just add CSS, images, and JavaScript, if desired. The Skyliner theme
(http://drupal.org/project/skyliner), pictured in Figure 11-2, is an example of such a
theme.

Regions
Regions are the areas on your site where you can place blocks, as we did in Chapter 2
and in other places throughout this book. Drupal provides five regions by default:

• Header (header)

• Footer (footer)

• Left sidebar (left)

• Right sidebar (right)

• Content (content)

You can change this list of regions for your theme in its .info file. Here is an example
that creates a new region, Ads, and also excludes some of the defaults, such as Header,
by not defining them:

regions[ads] = Ads
regions[right] = Right sidebar
regions[content] = Content
regions[footer] = Footer

Figure 11-2. Skyliner theme, which consists of only CSS, JavaScript, images, and a .info file.

Spotlight: The Theme System | 385

http://drupal.org/project/skyliner

By defining just these regions in the theme, site administrators are limited in where they
may place blocks on the block administration page for this theme. There will be no
Header or Left sidebar for them to use. This can be very powerful when you have a very
specific layout and you don’t want administrators putting things in the “wrong” place.

There’s also a second step to displaying block regions, which is printing
a variable for the region in your theme’s page.tpl.php file, such as <?php
print $ads; ?>. This command will print out all of the blocks that have
been placed in that region. We’ll delve into this more later in the “Cre-
ating a New Region” section.

If you define regions in your .info file, then Drupal will no longer use its
defaults. If you define even one region, then you must explicitly define
all of them that you wish to use. For example, if you add a new “Ads”
region, then you need to also define the left, right, content, header, and
footer regions if you want to use them as well.

Features
Features refer to the various elements of a theme that can be toggled on and off through
the theme administration interface at Administer→Site building→Themes (admin/
build/themes), under the Configure tab. The following is the default list of features
provided by Drupal core:

• Logo (logo)

• Site name (name)

• Site slogan (slogan)

• Mission statement (mission)

• User pictures in posts (node_user_picture)

• User pictures in comments (comment_user_picture)

• Search box (search)

• Shortcut icon (favicon)

• Primary links (primary_links)

• Secondary links (secondary_links)

If you wish to exclude a feature from the toggle list, you need to create your own feature
list in the .info file and make sure to comment out or remove the items you don’t want.
The Skyliner theme has the following feature list:

features[] = name
features[] = slogan
features[] = mission
features[] = search
features[] = favicon

386 | Chapter 11: Theming Your Site

features[] = primary_links
features[] = secondary_links

This list does not include the Logo, User pictures in posts, or User pictures in comments
features, so, for example, a site administrator cannot use a custom logo with this theme.

CSS
You can define the name and location of all of the CSS and JavaScript files for your
theme in the .info file. If no stylesheets are added in the .info, Drupal will automatically
find and include the style.css file within your theme directory. You can easily use other
stylesheets in addition to style.css if you want. You can also override the CSS that is
provided by modules in your site. By giving a theme’s CSS file the same name as a
module’s CSS file, we tell Drupal, “Use this file, not that file,” and Drupal will swap
this file out for the original. An example of this would be to define system-menus.css in
your theme, which would then override the core system-menus.css file in the System
module’s directory (modules/system). Here is an example of defining CSS stylesheets
from the Skyliner theme’s .info file (note that they have all been placed in a styles di-
rectory inside the theme’s main directory):

stylesheets[all][] = styles/reset.css
stylesheets[all][] = styles/typography.css
stylesheets[all][] = styles/forms.css
stylesheets[all][] = styles/style.css

JavaScript
There is also an automatically recognized default JavaScript filename, script.js, that you
can use for your themes. Again, you can add additional filenames to your .info file as
well, as you can see in another example from the Skyliner theme:

scripts[] = skyliner.js

Drupal comes with the jQuery JavaScript library (http://jquery.com) in-
cluded in core, so you have access to all of the jQuery goodness without
needing to add the library yourself.

Spotlight: The Theme System | 387

http://jquery.com

CSS and JavaScript Optimization Settings
Because of Drupal’s modular nature, even a relatively simple site can end up with many
CSS and JavaScript files included on any given page. In a default Drupal 6 installation,
the CSS and JavaScript tags included in the HTML of the content editing page (with
no extra modules enabled) comes to seven CSS files and six JavaScript files! And this
number expands quickly when installing and enabling more modules.

By visiting the Performance settings page at Administer→Site configuration→Perform-
ance (admin/settings/performance), you can enable CSS and JavaScript optimization.
This option joins all of the CSS files for a given page into one optimized file with com-
ments and extra whitespace removed. JavaScript gets a similar treatment. Instead of
the 13 files that we were including originally, after optimization we now get only these
4 lines:

<link type="text/css" rel="stylesheet" media="all"
href="/drupal/sites/default/files/css/7f66dbf90ba0323c5d322cde426f75ed.css" />
<link type="text/css" rel="stylesheet" media="print"
href="/drupal/sites/default/files/css/bf2acfbc35fa1d13cbc410a9bdc36563.css" />
<script type="text/javascript"
src="/drupal/sites/default/files/js/45caa15f0935ad439814b66bcdf4b022.js"></script>
<script type="text/javascript">jQuery.extend(Drupal.settings,
{ "basePath": "/drupal/", "teaserCheckbox": { "edit-teaser-js": "edit-teaser-include" },
"teaser": { "edit-teaser-js": "edit-body" } });</script>

Obviously, there are fewer files—which require fewer hits to your server as the browser
determines whether it has the correct files in its cache. This is good stuff, and highly
recommended for live sites! Just be careful not to turn this option on while you’re
actively developing your CSS and JavaScript.

Template Files
Creating a Drupal theme with just images and CSS will work fine if Drupal’s outputting
the HTML markup that you need. But what happens when you want to place an extra
<div> around the title of a node, or you want to move the user picture from the top of
posts to the bottom? This is where template files come in, providing the bulk of Drupal’s
output markup.

Comments, nodes, blocks, and the overall page itself are all output through template
files. Template files end with the special filename extension of .tpl.php. A template file
is named by the item that it is controlling; for example, comments are controlled by
the comment.tpl.php file, and the entire page is controlled by the page.tpl.php file.

The way in which template files map to a typical Drupal page is pictured in Fig-
ure 11-3, and the template files behind a fancier page with a bit more going on are
pictured in Figure 11-4.

388 | Chapter 11: Theming Your Site

����������	�

���������	� ����������	�

�����
�������	�
��������	�

����������	�

Figure 11-3. An example from Drupal.org on how a typical Drupal page is generated by template files

�������	��	
	
	����	��	
	

�����	��	
	 �������	��	
	

�������	��	
	

�������	��	
	

�������	��	
	

�������	��	
	

�������	��	
	

Figure 11-4. SpreadFirefox.com (http://www.spreadfirefox.com) uses a more complex layout, but the
same template files apply

Spotlight: The Theme System | 389

http://www.spreadfirefox.com
http://www.spreadfirefox.com

Template files are mostly made up of HTML with PHP snippets that display the dy-
namic parts of the page. The page.tpl.php file of a given theme, in particular, should
look basically familiar if you’ve done any prior work with HTML. An excerpt from the
Zen (http://drupal.org/project/zen) theme’s page.tpl.php file is shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
lang="<?php print $language->language; ?>"
xml:lang="<?php print $language->language; ?>">

<head>
 <title><?php print $head_title; ?></title>
...
 <div id="content-area">
 <?php print $content; ?>
 </div>
...
<?php if ($closure_region): ?>
 <div id="closure-blocks" class="region region-closure">
 <?php print $closure_region; ?>
 </div>
 <?php endif; ?>

 <?php print $closure; ?>

</body>
</html>

HTML is interspersed with sections of PHP that say things like, “Print the content
here,” or “If there are blocks in the ‘closure’ region, put them in this <div>.” Inside
these sections with the <?php ?> tags you will notice words that begin with a $ (dollar
sign). These special PHP “words” are called variables. Variables are dynamic content.
Though this may initially look alarming to designers without a PHP background, once
you understand enough PHP to read and write what’s in the example, you’re suddenly
empowered to do a whole lot of awesome customization in Drupal.

The template.php File
We’ve now had a look at the basic building blocks for themes and some of the files that
make up a theme. The last, crucial piece of Drupal theming is the ability to completely
override the output that Drupal gives you by default and use your own custom markup
instead. This is where the fun really starts.

You may find that while the template files give you a lot of control, you can’t really do
much about the HTML that you are given inside those variables. You can do all the
HTML editing around them that you want, but how do you crack into the variables
themselves and get them to behave? The real customization of the nitty-gritty details
comes in the form of the template.php file. This file is where master themers can really
show their stuff by adding extra variables and logic to their themes. They can also

390 | Chapter 11: Theming Your Site

http://drupal.org/project/zen

override theme functions, which are specially named functions that modules use to
display HTML without using a .tpl.php file.

The template.php file leaves the realm of “mostly HTML” and is instead a regular PHP
file that uses functions. This file can be daunting if you aren’t familiar with PHP, but
if you take the time to learn enough PHP to use this file, it gives you amazing power
and control over your themes. Here is a small example from the Foundation (http://
drupal.org/project/foundation) theme’s template.php that is creating a new variable,
$authored, to be used in node.tpl.php and changing the default search form by removing
the title:

<?php
// $Id: template.php,v 1.3 2008/06/23 12:08:02 add1sun Exp $

/**
 * Override or insert PHPTemplate variables into the node templates.
 */
function foundation_preprocess_node(&$vars) {
 // Set author information line separately from the full $submitted variable.
 $vars['authored'] = t('Submitted by') .' '. $vars['name'];
}

/**
 * Override the search form (theme, not block) to remove the label.
 */
function foundation_search_theme_form($form) {
 unset($form['search_theme_form']['#title']);
 return drupal_render($form);
}

Take note that the template.php file has an opening PHP tag (<?php) but
not a closing one (?>). This is a proper coding standard in the Drupal
community. Leaving the end tag in can sometimes create header errors,
so leaving it out of your files is considered a general PHP best practice.
You can read more about this standard at http://drupal.org/node/545.

We’ll be covering some simple examples later on in the chapter that touch on overriding
Drupal’s output with the template.php file.

Spotlight: The Theme System | 391

http://drupal.org/project/foundation
http://drupal.org/project/foundation
http://drupal.org/node/545

Whenever you override something in a theme, you need to let Drupal
know that you have changed things. Drupal tries to be smart about per-
formance and so it stores (caches) a lot of information to make itself
faster. When you change things that have been stored away, you need
to get Drupal to update them.

First, you should disable all caching on the site while working on the
theme generally. You can do this by going to Administer→Site configu-
ration→Performance (admin/settings/performance) and disabling the
various caching and optimization options. In addition, when doing
overrides in particular, you specifically need to wipe out the theme reg-
istry cache by clicking the “Clear cached data” button at the bottom of
this same screen.

The Devel module (http://drupal.org/project/devel) also provides a
handy block with a “Clear cache” link on it to make this common task
a little easier.

A Themer’s Toolbox
Before we head into the “Hands-On: Creating a Custom Theme” section, we should
take a few minutes to briefly discuss some handy tools that most themers find essential
to working quickly:

Text editor
When working with files in Drupal, you need to use a text editor. Text editors are
plain text editors that do not add any rich text markup like bold or italic. Avoid
word processors like Microsoft Word. Instead, use something like Notepad++
(http://notepad-plus.sourceforge.net) for Windows, TextWrangler (http://www
.barebones.com/products/textwrangler) or Smultron (http://smultron.sourceforge
.net) for Mac, or Kate (http://kate-editor.org) or gedit (http://www.gnome.org/
projects/gedit) for Linux. It’s helpful to have one that supports features such as
syntax highlighting and line numbers. For more information on various editors,
see http://drupal.org/node/147789.

Firebug (https://addons.mozilla.org/en-US/firefox/addon/1843)
This tool is the themer’s best friend. It is a Firefox browser extension that allows
you to hover over and select elements on your screen and immediately see the CSS
that is affecting it, as well as to edit the CSS and see the results on the fly. It is also
a wonderful tool for working with JavaScript and testing things out in a live browser
window.

Web Developer Toolbar (https://addons.mozilla.org/en-US/firefox/addon/60)
This is also a Firefox browser extension; it provides many useful tools, including
quick resizing of your browser, displaying information about all the various ele-
ments on the screen, running numerous validators (CSS, HTML, accessibility, and
so on), and editing and playing with online forms.

Devel module (http://drupal.org/project/devel)
The Devel module is actually a package of modules that are a whole toolkit of
handy helpers for developers (and themers). The most useful tools for themers are

392 | Chapter 11: Theming Your Site

http://drupal.org/project/devel
http://notepad-plus.sourceforge.net
http://www.barebones.com/products/textwrangler
http://www.barebones.com/products/textwrangler
http://smultron.sourceforge.net
http://smultron.sourceforge.net
http://kate-editor.org
http://www.gnome.org/projects/gedit
http://www.gnome.org/projects/gedit
http://drupal.org/node/147789
https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/60
http://drupal.org/project/devel

the Devel-provided block that has a handy Clear cache link in it and the Devel
Generate module, which can let you fill out a site with dummy user and content
very quickly. It lets you see your theme interacting with content, even if the site
isn’t ready for real content yet.

Theme developer module (part of Devel)
This module is actually part of the main Devel module package, but it is so in-
credibly cool and useful that it deserves its own mention. Once enabled, Theme
Developer allows you to see which elements on the page have been run through a
theme function or template simply by clicking on them to get information about
how they were generated and what variables are available to them.

Hands-On: Creating a Custom Theme
Let’s look at how you can modify one of Drupal’s themes to make it your own. There
are many good themes that can act as a good “starter theme.” The Drupal contributed
themes repository (http://drupal.org/project/Themes) has several specifically designed
for this purpose—the Zen theme (http://drupal.org/project/zen) is often recommended.
For our example, we’ll start with a simple core theme: Bluemarine, as pictured in
Figure 11-5.

Figure 11-5. The Drupal core Bluemarine theme

Hands-On: Creating a Custom Theme | 393

http://drupal.org/project/Themes
http://drupal.org/project/zen

Bluemarine was Drupal’s default theme prior to Drupal 5. It uses a table-based layout,
which is generally considered bad practice in these days of CSS-based layout
techniques. However, for the purposes of our example, it makes for a simple and clean
starter theme. Let’s see what we can do to customize it.

Figure 11-6 shows the Bluemarine theme directory. It contains template override files
for blocks, boxes, comments, nodes (all types), and the page. There are images for the
default logo and a screenshot for the theme listing page. The required .info file is there.
The main stylesheet for the theme is called style.css and there’s another sheet called
style-rtl.css that gets called in when Drupal is displaying right-to-left languages such as
Arabic or Hebrew.

Figure 11-6. Bluemarine theme files

Make a Copy of the Theme
The first step in customizing a theme is to make a copy of it and place it into the
appropriate location in the sites directory. Think of the sites directory as “the stuff that
makes your site yours.” All of your customizations, installed modules, and themes
should go into this directory. For most sites, this will mean placing themes into sites/
all/themes. Drupal will discover themes within subdirectories, so feel free to organize
this however you like.

1. Ensure that sites/all/themes exists and copy the bluemarine directory into it.

2. Rename the new directory from bluemarine to newmarine.

3. Rename the bluemarine.info file to newmarine.info.

4. Open newmarine.info into a text editor and edit the file to reflect the new name.
This is the information that will appear on the theme listing page in Dru-
pal administration:

394 | Chapter 11: Theming Your Site

; Id
name = Newmarine
description = Table-based multi-column theme based on Bluemarine.
version = VERSION
core = 6.x
engine = phptemplate

You will notice that at the top of files you download from Dru-
pal.org there is always a line commented out that starts with
$Id:, with a name and some date information that follows after.
This is a special ID tag used by the version control system used by
Drupal.org (CVS) to maintain all of the core and contributed code.
Your custom files don’t need this line on them but it doesn’t hurt
to have it there either. If you do ever decide to contribute your work
back to the community, you will need to make sure all of your files
start with that line. The empty version of this string is simply Id.

5. Visit the Drupal theme administration page (Administer→Site building→Themes
(admin/build/themes), and enable the new theme by clicking the “Default” radio
button next to it, as seen in Figure 11-7. Click “Save configuration” to switch the
theme.

Figure 11-7. Selecting Newmarine as the default theme

Hands-On: Creating a Custom Theme | 395

You should see your new theme on the site now. Right now it looks just like Bluemarine,
but we’re going to change that momentarily.

The last thing we want to do before we jump into theming is get some content on the
site so we can see how things are changing:

1. Go to go Administer→Site building→Modules (admin/build/modules) and enable
the following module:

• Development package

— Devel generate

2. Go to Administer→Generate items (admin/generate) and click the “Generate cat-
egories” link. We’ll make categories first so that they can be assigned to the nodes
we’ll make in the next step.

3. The defaults are fine for our purposes, so just click the “Do it!” button to make the
categories.

4. Return to Administer→Generate items (admin/generate) and click the “Generate
content” link. For this one, most of the defaults are fine, but we want to add a few
things to our content.

5. In the “How many comments per node would you like to generate?” text box, enter
“100,” so that we can see how comments will look on the site, too.

6. We also want to use our taxonomy terms, so check off the “Add taxonomy terms
to each node” box.

7. Click “Do it!” and you will have a nicely populated site to work with.

Changing CSS
Before you start editing CSS, visit the Performance page at Administer→Site configu-
ration→Performance (admin/settings/performance) and ensure that the “Optimize CSS
files” setting is set to Disabled. With this setting enabled, any edits you make to your
theme’s CSS files will not be reflected immediately on your site.

You can now start customizing the theme as you would like. Let’s start by adding a
border around content items to help them stand out on the page:

1. Open up Newmarine’s style.css in a text editor.

2. Find the following rule (at line 232):

.node {
 margin: .5em 0 2em; /* LTR */
}

3. Change it as follows:

.node {
 margin: .5em 0 2em; /* LTR */
 border: 1px dashed #ccc;

396 | Chapter 11: Theming Your Site

 padding: .5em;
}

4. Save the file and reload the front page of your website.

Your page will now appear with dashed lines around the nodes, as shown in Fig-
ure 11-8. If it does not, try force-refreshing your browser, typically by holding down
the Shift key on the keyboard while pressing the Reload button in the browser's toolbar.

Figure 11-8. The Newmarine theme with dashed lines around nodes

So we now have a new theme set up, some dummy content to work with, and a few
CSS tweaks under our belt. The next thing we’ll want to look at is changing more
substantive things, like the underlying HTML.

Spotlight: Template Files
The great thing about overriding the HTML in template files is how totally easy it is.
All you have to do is find the default template file, copy it into your theme folder, and
edit to your heart’s content. Many themes start with these main Drupal core default
templates:

Spotlight: Template Files | 397

page.tpl.php (located in modules/system)
Controls the layout of the entire page. This isn’t for the page content type; you can
think of it more as the overall screen in which your content types and blocks are
displayed.

node.tpl.php (located in modules/node)
This is used for the display of each individual node.

block.tpl.php (located in modules/system)
This is used for all of the blocks on the site.

comment.tpl.php (located in modules/comment)
Each individual comment is displayed with this file.

box.tpl.php (located in modules/system)
This is a rarely used legacy template. It is used in Drupal core for the container
element that surrounds search results and that surrounds a list of comments that
is attached to a node.

Just like the node and comment template files, you can find any other templates in the
folder of the module that created it. This holds true for core and contributed modules.
So, for example, forum templates will be in the forum module folder (modules/forum)
and templates for the calendar module will be in the calendar module folder (sites/all/
modules/calendar).

In addition to the basic template files provided by core, there are a number of additional
“suggested” templates, such as page-front.tpl.php, which will affect only the layout of
the home page of the site. It is also possible to theme content types differently based
on using suggested templates. Perhaps blog posts show the author’s picture at the bot-
tom, and stories and page posts do not display the picture at all. Content-type-specific
templates use the naming scheme node-nodetype.tpl.php, where nodetype is “story,”
“page,” “forum,” “blog,” or whatever the machine-readable name of your content type
is. These machine-readable names can be found in the Type column of the Content
types listing page at Administer→Content management→Content types (admin/
content/types), as seen in Figure 11-9.

For a list of the templates provided by core and the suggested names that you can use,
see the handbook page at http://drupal.org/node/190815.

Hands-On: Working with Template Files

Modifying a Template File
Now let’s look at customizing the page.tpl.php file. This is the file that defines the
general HTML structure of the entire page. The theme engine and enabled modules
make a number of variables available to this file, and then these variables are simply
output using PHP print statements. Let’s change the structure of our theme by moving

398 | Chapter 11: Theming Your Site

http://drupal.org/node/190815

the breadcrumb output up into the header region of the page. We want our bread-
crumbs to look like those shown in Figure 11-10.

Figure 11-9. The machine-readable names of content types, which can be used to name custom
template files

Figure 11-10. Breadcrumbs appearing in the header

Hands-On: Working with Template Files | 399

There are many variables available to the templates, and not all of them
are used in the themes provided by Drupal core. A list of variables can
be found at http://drupal.org/phptemplate, with the variables for each
template listed under the appropriate section; however, modules can
add and alter this list, so a better way to discover these variables is to
use the Devel Themer module, which we’ll discuss in a moment.

1. We are going to use the Theme developer module to help us out, so go to Admin-
ister→Site building→Modules (admin/build/modules) and enable the following
modules:

• Development package

— Devel

— Theme developer

2. You should still be on the module administration page, which has a breadcrumb
trail at the top. You will also notice that you have a new translucent box in the
lower lefthand corner of your browser window with a Themer info checkbox as
shown in Figure 11-11. Check the box to turn the Theme developer module on for
the page.

If the theme developer tool isn’t working, PHP may have exceeded
its memory limit. Try visiting a page other than the modules form,
which requires a lot of memory to display, especially combined
with the theme developer tool (which also takes up a lot of mem-
ory). Disable the theme developer tool when not using it.

3. Once you check the box, a new gray box will appear in the upper-right corner of
your browser, titled Drupal Themer Information. As the box states, “Click on any
element to see information about the Drupal theme function or template that cre-
ated it.” Go ahead and hover over the breadcrumb on the page. You should see a
red outline appear around it. Once you see that red outline around it, click the page

Figure 11-11. The Themer info checkbox appears after enabling the Theme developer module

400 | Chapter 11: Theming Your Site

http://drupal.org/phptemplate

to display the information for it. The red outline will turn to gray around your
selection and you should see something like Figure 11-12.

4. The information that we want is which template file prints this element to the page.
If you look at the first section of the Drupal Themer Information box, you will see
a line that says “Parents: page.tpl.php.” So our breadcrumb is being printed from
page.tpl.php.

5. Open up the page.tpl.php file in your Newmarine theme folder and go to about line
29, where the $header variable is printed. Down at line 42 is the $breadcrumb vari-
able we want to move:

29 <tr>
30 <td colspan="2"><div><?php print $header ?></div></td>
31 </tr>
32</table>
33
34<table border="0" cellpadding="0" cellspacing="0" id="content">
35 <tr>
36 <?php if ($left) { ?><td id="sidebar-left">
37 <?php print $left ?>
38 </td><?php } ?>
39 <td valign="top">
40 <?php if ($mission) { ?><div id="mission"><?php print $mission ?></div>
 <?php } ?>
41 <div id="main">
42 <?php print $breadcrumb ?>
43 <h1 class="title"><?php print $title ?></h1>

6. Now let’s modify the file to output the breadcrumbs immediately after the header,
by removing line 42 and restoring it as a modification to line 30 as follows:

29 <tr>
30 <td colspan="2"><div><?php print $header ?><?php print $breadcrumb ?>
 </div></td>
31 </tr>
32</table>
33
34<table border="0" cellpadding="0" cellspacing="0" id="content">

Figure 11-12. Theme Developer information for the breadcrumbs

Hands-On: Working with Template Files | 401

35 <tr>
36 <?php if ($left) { ?><td id="sidebar-left">
37 <?php print $left ?>
38 </td><?php } ?>
39 <td valign="top">
40 <?php if ($mission) { ?><div id="mission"><?php print $mission ?>
 </div><?php } ?>
41 <div id="main">
42
43 <h1 class="title"><?php print $title ?></h1>

7. Save the file when you are done.

8. Reload the page; the breadcrumbs should now appear in the header region of the
page. They show up as blue on blue, so a little bit of CSS editing is helpful to get
them to contrast with the background better.

9. Find the following rule on line 171 in style.css:

.breadcrumb {
 margin-bottom: .5em;
}

10. And replace it with the following:

.breadcrumb {
 margin-left: 2em;
}
.breadcrumb a {
 color: #ccc;
 font-weight: normal;
}

We now have our breadcrumbs in the header and styled so that they are legible.

402 | Chapter 11: Theming Your Site

Figure 11-13. Submission information and taxonomy moved to the bottom of content

Theming Specific Content Types
To see how creating new templates for specific content types works, we’ll create a
template file that affects only Story nodes. We want to display post author submission
information and taxonomy terms (categories) below the content (see Figure 11-13).

1. Copy the node.tpl.php from your newmarine directory into a new file called node-
story.tpl.php.

2. Open node-story.tpl.php in a text editor. It should appear similar to the following:

<?php
// $Id: node.tpl.php,v 1.7 2007/08/07 08:39:36 goba Exp $
?>
<div class="node<?php if ($sticky) { print " sticky"; } ?><?php if (!$status)
{ print " node-unpublished"; } ?>">
<?php if ($picture) {
 print $picture;
 }?>
<?php if ($page == 0) { ?><h2 class="title"><a href="<?php print $node_url?>">
<?php print $title?></h2><?php }; ?>
<?php print $submitted?>
<div class="taxonomy"><?php print $terms?></div>
<div class="content"><?php print $content?></div>
<?php if ($links) { ?><div class="links">»

Hands-On: Working with Template Files | 403

<?php print $links?></div><?php }; ?>
</div>

3. Now let’s move the submitted and taxonomy terms after the main content of the
node:

<?php
// $Id: node.tpl.php,v 1.7 2007/08/07 08:39:36 goba Exp $
?>
<div class="node<?php if ($sticky) { print " sticky"; } ?><?php if (!$status)
{ print " node-unpublished"; } ?>">
<?php if ($picture) {
 print $picture;
 }?>
<?php if ($page == 0) { ?><h2 class="title"><a href="<?php print $node_url?>">
<?php print $title?></h2><?php }; ?>
<div class="content"><?php print $content?></div>
<?php print $submitted?>
<div class="taxonomy"><?php print $terms?></div>
<?php if ($links) { ?><div class="links">»
<?php print $links?></div><?php }; ?>
</div>

And just like that, we are able to control how Drupal puts these items on the page by
default.

Overriding a Module’s Template File
Now, let’s demonstrate how to override a module’s default template files, using Com-
ment module’s comment-wrapper.tpl.php file as an example. This file doesn’t do much
more than wrap a div around the comments output. Let’s add the text “Comments:”
to this file so that it appears above any comments on node pages. We’re aiming to
achieve what is shown in Figure 11-14.

404 | Chapter 11: Theming Your Site

Figure 11-14. Comments displayed with “Comments:” above

The steps are:

1. Find the file at modules/comment/comment-wrapper.tpl.php and copy it into our
theme directory at sites/all/themes/custom/newmarine. Be sure to copy (not move)
the file, because the original file will be needed if we ever switch to another theme.

2. Open the new file from your theme directory into your text editor. It contains a lot
of comments explaining the available variables:

<?php
// $Id: comment-wrapper.tpl.php,v 1.2 2007/08/07 08:39:35 goba Exp $

/**
 * @file comment-wrapper.tpl.php
 * Default theme implementation to wrap comments.
 *
 * Available variables:
 * - $content: All comments for a given page. Also contains sorting controls
 * and comment forms if the site is configured for it.
 *
 * The following variables are provided for contextual information.
 * - $node: Node object the comments are attached to.
 * The constants below the variables show the possible values and should be
 * used for comparison.
 * - $display_mode
 * - COMMENT_MODE_FLAT_COLLAPSED
 * - COMMENT_MODE_FLAT_EXPANDED

Hands-On: Working with Template Files | 405

 * - COMMENT_MODE_THREADED_COLLAPSED
 * - COMMENT_MODE_THREADED_EXPANDED
 * - $display_order
 * - COMMENT_ORDER_NEWEST_FIRST
 * - COMMENT_ORDER_OLDEST_FIRST
 * - $comment_controls_state
 * - COMMENT_CONTROLS_ABOVE
 * - COMMENT_CONTROLS_BELOW
 * - COMMENT_CONTROLS_ABOVE_BELOW
 * - COMMENT_CONTROLS_HIDDEN
 *
 * @see template_preprocess_comment_wrapper()
 * @see theme_comment_wrapper()
 */
?>
<div id="comments">
<?php print $content; ?>
</div>

3. Add a new <h2> element containing Comments:. In our modified example here, we’ve
removed the comments for brevity, but it won’t hurt to leave them in. We are also
wrapping this text in the t() function so that it is accessible to Drupal’s language
translation system if needed:

<div id="comments">
<h2 class="title"><?php print t('Comments:'); ?></h2>
<?php print $content; ?>
</div>

4. Remember that in order to get Drupal to recognize this new template, we need to
refresh the theme registry, by visiting Administer→Site configuration→Performance
(admin/settings/performance) and clicking the “Clear cached data” button shown
in Figure 11-15.

Figure 11-15. The “Clear cached data” button, which should be used if theme changes don’t
immediately appear

406 | Chapter 11: Theming Your Site

Creating a New Region
Drupal provides several default regions, as we’ve discussed. The special “content” re-
gion handles blocks in an unexpected way: when you place a block in that region,
instead of going above the regular content, it actually goes underneath. There is no way,
by default, to add a block on top of your main content area. Well, we have the power
of our .info and template files to work with, so let’s add a new region so we can put
things right where we want them. Figure 11-16 shows a site with a region that has the
Powered by Drupal block in it, placed above the content.

1. First, we need to let Drupal know about our region. Open up newmarine.info again
and we will define our regions. Remember that in order to add a new region, we
need to define all of the regions we want, including the default ones. Add the
following lines to the end of the file:

regions[header] = Header
regions[left] = Left sidebar
regions[right] = Right sidebar
regions[content_top] = Content Top
regions[content] = Content
regions[footer] = Footer

2. Next, we will need to clear the theme cache to make sure Drupal sees the changes
we made. Go to Administer→Site configuration→Performance, and click the “Clear
cache” button.

3. Go to Administer→Site building→Blocks (admin/build/block) and when you look
at the regions listed, you will see a new one named “Content Top” that we can put
our blocks into. Go ahead and drag the “Powered by Drupal” block from the Footer
region into the Content Top region and click the “Save blocks” button.

4. You will see that the block has disappeared altogether. It isn’t in the footer any-
more, and although the Content Top region exists, Drupal doesn’t know where to

Figure 11-16. The Powered by Drupal block in a new custom region placed above the content

Hands-On: Working with Template Files | 407

display it yet. We need to add the new region to the template file, so open up
newmarine’s page.tpl.php.

5. We want to add this in the top of the “main” div, above the existing content region,
so add the line as shown here at line 42:

41 <div id="main">
42 <?php print $content_top; ?>
43 <h1 class="title"><?php print $title ?></h1>
44 <div class="tabs"><?php print $tabs ?></div>
45 <?php if ($show_messages) { print $messages; } ?>
46 <?php print $help ?>
47 <?php print $content; ?>
48 <?php print $feed_icons; ?>
49 </div>

6. Save the file and refresh your site. You should see the “Powered by Drupal” logo
above your content now.

Spotlight: Advanced Overrides
To really get in and affect things in the dynamic realm, you will need to move away
from HTML and CSS, and begin using PHP; only PHP can modify the deepest layers
of Drupal. The following two sections discuss how to override variables and functions
in the theme’s template.php file. You should have a basic understanding of what PHP
variables and functions are in order to get the most out of this part of the chapter.

There’s much more information available about these kinds of advanced overrides
available in the Drupal 6 theming guide at http://drupal.org/node/173880.

Template Variables
Those little bits of dynamic content that you are using in your template files are really
handy—until they annoy you by not quite producing exactly the output that you want.
The variables that Drupal creates by default, like $site_name and $submitted, are meant
to be a baseline that will fit a lot of people’s needs. Like everything else in the theme
system, though, you have the power to crack them open and change them. Not only
can you override existing variables, but you can also create your own brand-new
variables.

All variables that go out to a template file are first passed through a special kind of
function, called a preprocess function. You can add your own preprocess function to
your template.php file and get the last shot at the variables before they head out to the
template. To keep things tidy, you can use one preprocess function per template; for
example, you can create a mytheme_preprocess_page function to affect variables to be
used in your page.tpl.php file. With this function, you can define, or redefine, any var-
iable. For instance, if you wanted to make a new variable that printed out a random
number between 1 and 100, you could add this to template.php:

408 | Chapter 11: Theming Your Site

http://drupal.org/node/173880

function mytheme_preprocess_page(&$vars) {
 $vars['random_number'] = rand(1, 100);
}

Then (after clearing the Drupal cache), you can print out that variable out in your
page.tpl.php file just like any other variable:

<?php print $random_number; ?>

You use the exact same procedure to override an existing variable. When you assign a
variable name that is the same as the one Drupal is already using, yours will take prec-
edence. We’ll walk through this a bit more and show you how to override the $submit
ted variable in the hands-on section.

Theme Functions
Much of Drupal’s HTML output is easily accessible in template files. But what about
something like the page’s “breadcrumb trail,” which shows the hierarchy to the current
page? Unfortunately, there’s no breadcrumb.tpl.php file. In this situation, you need to
dig a little bit deeper, to the place where remaining markup in Drupal is initially defined:
theme functions.

Theme functions are regular PHP functions located in Drupal’s code whose names
begin with theme_. Every element on the page that is not in a template file is run through
a theme function, such as the theme_breadcrumb() function:

function theme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' » ', $breadcrumb) .'</div>';
 }
}

In its current state, this function will print out the breadcrumb trail on a page, such as
Home » Administer » Site building » Themes. But what if we decide that we’d rather
the breadcrumb be printed as Home::Administer::Site building::Themes, with double-
colons instead? No problem! We’ll just pop open theme.inc and change it there, right?
Wrong!

The proper way to handle overriding theme functions is by simply copying the function
into your template.php file and naming it according to Drupal’s naming conventions
so that it’s recognized. Then you can modify it however you like. Figure 11-17 illustrates
the logic Drupal uses to determine which function to call in order to display an element.

Drupal will step through a hierarchy of names to determine which version of the func-
tion it should finally use. It checks to see which identifier is used at the beginning of
the function name. The three possibilities, in increasing specificity, are theme,
enginename, and themename, where enginename is the name of the templating system in
use (PHPTemplate is what most Drupal themes use) and themename is literally the name
of the theme itself as defined by the name of your .info file. Drupal searches for the most
specific name first (themename), and then continues to search down the list if it can’t

Spotlight: Advanced Overrides | 409

find anything. It will use the first name that it finds. This means that if you want to use
your own version of a function in your theme, you just need to name the function
correctly and Drupal will use your version instead of the original function.

So, in this example, theme_breadcrumb() would become newmarine_breadcrumb(). We’ll
do just this in the following section, “Hands-On: Using template.php for Overrides,”
with a simple example. You can also find more information on theme functions in the
Drupal handbook at http://drupal.org/node/11811.

Drupal’s theme() Function
One important thing to note about theme functions is that they are never called directly.
They are instead called through a clearinghouse function called theme(). So even though
a module may define a function such as theme_username(), when the module needs to
output its code, it would call theme('username') instead. The theme() function is what
makes this system of overrides possible.

���������������	���	
�������
�
��������

���������������������������
����������
�������
���

���������������������������
������������
�������
���

����

��	��
�������
�	
�������
�

�

!"#

�

!"#

����
��	������
�������
�	
�������
�

����
���
�	���
��
�������
�	
�������
�

Figure 11-17. Drupal’s method of determining which theme function to call

410 | Chapter 11: Theming Your Site

http://drupal.org/node/11811

Hands-On: Using template.php for Overrides

Overriding a Template Variable
Drupal gives us lots of nice variables to use, but they don’t always look the way we
prefer. A common item that many people wish they could change is the “Submitted
by...” line, which prints out the author name and date that a node was created. You
can turn this display off and on in the theme configuration screen at Administer→Site
building→Themes (admin/build/themes), under the Configure tab (admin/build/
themes/settings), but you can’t change what information is actually printed out when
the display is on. We’re going to change this line to instead print out “Posted on”
followed by the date, as shown in Figure 11-18.

Figure 11-18. Changing the text of the “Submitted by…” line to “Posted on…”

One important piece that we need in order to modify this is a template.php file. As our
Newmarine theme doesn’t have a template.php file in it yet, we’ll create that as well to
accomplish our task:

1. If we go to a node that has submitted information showing and do the same Drupal
Themer Information trick that we did back when we moved the $breadcrumb var-
iable, we can find out what the parent template for that “Submitted by…” line is.
You will see that its parent is the node.tpl.php file. If you open up that file (or node-
story.tpl.php if you completed the hands-on example in the earlier section “Them-
ing Specific Content Types”), we can see that the $submitted variable is being prin-
ted there to produce that output as highlighted below (remember we just moved
this line earlier, along with the taxonomy terms):

<?php if ($page == 0) { ?><h2 class="title"><a href=
"<?php print $node_url?>"><?php print $title?></h2><?php }; ?>
<div class="content"><?php print $content?></div>
<?php print $submitted?>
<div class="taxonomy"><?php print $terms?></div>

2. To change this, we can override it in our template.php file. But Newmarine doesn’t
have a template.php file yet. So let’s create one and put it in our newmarine folder,
along with our other theme files.

3. Once we have the template.php file created, we need to add a new preprocess
function to intercept the variable we wish to change. Add the following code to
your template.php file:

Hands-On: Using template.php for Overrides | 411

<?php
// $Id:$

/**
 * Implementation of hook_preprocess_node().
 */
function newmarine_preprocess_node(&$vars) {

}

4. Now we need to actually override the variable, by adding it inside the function and
then putting our own value into it:

<?php
// $Id:$

/**
 * Implementation of hook_preprocess_node().
 */
function newmarine_preprocess_node(&$vars) {
 // Change the submitted value to output like "Posted on June 12, 2008".
 $vars['submitted'] = t('Posted on ') .
 format_date($vars['node']->created, 'custom', 'F j, Y');
}

5. Once again, clear the good old cache at Administer→Site configuration→Perform-
ance (admin/settings/performance).

6. When you reload the page, you should see our new format for the submitted date.

Overriding a Theme Function
Overriding a theme function is basically as simple as copying and pasting the appro-
priate theme function into your theme’s template.php file. The difficult part is usually
finding the theme function. We are going to change the site’s breadcrumb so that it
doesn’t print out the breadcrumbs separated by » but instead by :: (double colon), to
look like those in Figure 11-19.

Figure 11-19. The breadcrumb trail as output by our newmarine_breadcrumb() function

412 | Chapter 11: Theming Your Site

We’ll use our nifty Devel Themer Information tool to help us again, so go to a page
with a breadcrumb trail showing. Something like Administer→Site building (admin/
build) should work fine. Follow these steps:

1. Turn on the Themer info by checking the box. Now you can hover over the bread-
crumb and then click to display the info in the Drupal Themer Information box.

2. This time, instead of looking at the “Parents info,” we want to look at the “Function
called:” section. It should say theme_breadcrumb() in big letters, as shown in Fig-
ure 11-20.

Figure 11-20. Theme Developer shows us the function being used for the breadcrumbs

3. Now we know which function is creating the breadcrumbs, so we can go grab a
copy of it to work with. Open up includes/theme.inc and search for theme_bread
crumb. Copy the entire theme_breadcrumb function. The function basically just takes
an array of HTML links and uses PHP’s implode() function to concatenate the
values using the » character, wrapping this in a <div> with the class of
“breadcrumb.”

4. Open your template.php file, and paste the function in. Rename it to
newmarine_breadcrumb, as shown:

/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function newmarine_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' » ', $breadcrumb) .'</div>';
 }
}

Hands-On: Using template.php for Overrides | 413

If you forget to rename the function, when you try to use it on the
site you will get a PHP error like this: “Fatal error: Cannot redeclare
theme_breadcrumb().” Don’t panic! Drupal core is already using
the theme_breadcrumb function name, so you can’t use it as well.
Just go back to the template.php file and make sure to change the
function name to use your theme’s name at the beginning. Reload
the screen and your site will return.

5. Now we just need to change the » to a double colon (::), as shown here:

function newmarine_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' :: ', $breadcrumb) .'</div>';
 }
}

6. Clear the cache and refresh the screen. Our breadcrumbs now look just the way
we want them to.

Taking It Further
A little bit of PHP knowledge can take you a long way. There is a whole section of the
handbook at http://drupal.org/handbook/customization/snippets that contains handy
bits of code that you can add to your site to accomplish various tasks. These are easy
ways to tweak your site to be just the way you need it.

Many snippets involve copy/pasting PHP into things like blocks or no-
des. To accomplish this, you need to enable the PHP Filter module,
included with Drupal core. Be very careful about who has access to use
this filter; ideally, it should be User 1 and no one else. For more on filter
system security, see Chapter 2.

Snippets in the handbook are user-submitted; that is, anyone with a
Drupal.org account can add a snippet. They are not reviewed or mod-
erated—use them at your own risk! You should always read snippets
over to make sure nothing looks out of the ordinary, test them out first,
and give them your own security review following the security practices
at http://drupal.org/writing-secure-code.

There are snippets of code under several categories. The two sections most used are
the Theme snippets (http://drupal.org/node/45471) and the PHP snippets (http://drupal
.org/handbook/customization/php-snippets). Theme snippets use the methods outlined
in this chapter to provide short pieces of code that can help customize the look and feel
of your site. The PHP snippet section is further broken down—following is a quick list
of the important sections:

414 | Chapter 11: Theming Your Site

http://drupal.org/handbook/customization/snippets
http://drupal.org/writing-secure-code
http://drupal.org/node/45471
http://drupal.org/handbook/customization/php-snippets
http://drupal.org/handbook/customization/php-snippets

Mini modules
These are very simple modules that may be copied and pasted to accomplish a
particular task. There are instructions for using mini modules at http://drupal.org/
node/70903.

PHP block snippets
These snippets create custom blocks using the PHP filter module; they allow you
to create your own dynamic blocks and place them wherever you like in your site.

PHP block visibility settings
In contrast to the block “content” snippets listed previously, these snippets control
when your blocks will appear to visitors. The basic block configuration allows you
to use checkboxes for limiting visibility by role and mark specific pages on which
you wish the block to appear. These snippets use a wider range of criteria to give
you more control over visibility.

PHP page snippets
These are used when you set a content type to use the PHP filter and then create a
dynamic node. Generally, these are discouraged—if you truly need custom, dy-
namic pages then you should take the extra step to create a module in the mini
module fashion. They are easy to create and you should limit the use of the PHP
filter on your site due to security concerns.

Summary
What we’ve covered here is really just the tip of the iceberg in terms of things that can
be done in your theme, but we’ve exposed you to all of the basic concepts. We’ve
covered how to alter CSS for your theme; how to change the page structure and node
content structure; and how to override template files, variables, and theme functions.
Hopefully, these exercises gave you an idea of the power of Drupal’s theming system.
There are many more ways in which themes can alter Drupal’s output and set up rules
for how content and pages are structured based on the area of the site in which they
appear—or really, on any criteria at all.

More information on theming can be found at http://drupal.org/theme-guide, and
several commercial books dedicated to Drupal theming are available if you want to
continue down the path to becoming a theming ninja.

Drupal’s theme layer attempts to be supremely flexible, allowing knowledgeable them-
ers to alter all aspects of the page in any way they would like. Yet it is just a set of tools.
Like web design itself, Drupal theming is limited only by the creativity and skills of
those who are creating and implementing the theme. In the right hands, Drupal can
make websites as beautiful and functional as anyone can imagine.

Summary | 415

http://drupal.org/node/70903
http://drupal.org/node/70903
http://drupal.org/theme-guide

References
Here are the themes and modules we referenced in this chapter:

• Bluemarine theme: core

• Devel module: http://drupal.org/project/devel

• Foundation theme: http://drupal.org/project/foundation

• Skyliner theme: http://drupal.org/project/skyliner

• Zen theme: http://drupal.org/project/zen

Here are Drupal.org resources we referenced in this chapter:

• Default templates and suggestions: http://drupal.org/node/190815

• Drupal development resources: http://drupal.org/node/147789

• Drupal theme guide: http://drupal.org/theme-guide

• Drupal contributed themes: http://drupal.org/project/Themes

• Drupal contributed theme engines: http://drupal.org/project/Theme+Engines

• Overriding theme functions: http://drupal.org/node/11811

• PHP tag coding standard: http://drupal.org/node/545

• PHPTemplate variables: http://drupal.org/phptemplate

• Secure code: http://drupal.org/writing-secure-code

• Snippets: http://drupal.org/handbook/customization/snippets

• PHP Snippets: http://drupal.org/handbook/customization/php-snippets

• Theme Snippets: http://drupal.org/node/45471

• Updating themes: http://drupal.org/update/theme

Here are external resources we referenced in this chapter:

• Firebug: https://addons.mozilla.org/en-US/firefox/addon/1843

• gedit: http://www.gnome.org/projects/gedit

• jQuery: http://jquery.com

• Kate: http://kate-editor.org

• Notepad++: http://notepad-plus.sourceforge.net

• Smultron: http://smultron.sourceforge.net

• TextWrangler: http://www.barebones.com/products/textwrangler

• Web developer toolbar: https://addons.mozilla.org/en-US/firefox/addon/60

• W3Schools: http://w3schools.com

416 | Chapter 11: Theming Your Site

http://drupal.org/project/devel
http://drupal.org/project/foundation
http://drupal.org/project/skyliner
http://drupal.org/project/zen
http://drupal.org/node/190815
http://drupal.org/node/147789
http://drupal.org/theme-guide
http://drupal.org/project/Themes
http://drupal.org/project/Theme+Engines
http://drupal.org/node/11811
http://drupal.org/node/545
http://drupal.org/phptemplate
http://drupal.org/writing-secure-code
http://drupal.org/handbook/customization/snippets
http://drupal.org/handbook/customization/php-snippets
http://drupal.org/node/45471
http://drupal.org/update/theme
https://addons.mozilla.org/en-US/firefox/addon/1843
http://www.gnome.org/projects/gedit
http://jquery.com
http://kate-editor.org
http://notepad-plus.sourceforge.net
http://smultron.sourceforge.net
http://www.barebones.com/products/textwrangler
https://addons.mozilla.org/en-US/firefox/addon/60
http://w3schools.com

APPENDIX A

Installing and Upgrading Drupal

The first step to using Drupal, of course, is to actually get the software and install it.
Drupal comes with an installation script that will walk you through a few screens to
gather information and then set up your database and create your site settings file for
you. We’ll look at everything you need to make that process run smoothly; you’ll find
that installing Drupal is quick and painless once some basic requirements are in place.

Once you have Drupal up and running, it’s important to keep your site up-to-date.
New releases of contributed modules and Drupal core come out periodically to address
critical security fixes, and it’s important to stay on top of updates as they are released.
We’ll take a look at Drupal 6’s built-in Update Status module, which will notify you
of updates available for your site, and we’ll talk about the steps required to update both
individual modules and the Drupal core itself from one version to another.

You will notice that many people (and even Drupal core’s documenta-
tion) use the terms “updating” and “upgrading” interchangeably. They
both refer to replacing existing code with newer code.

Before You Begin Installation
Prior to installing Drupal, it’s important to make sure that you can actually do so, and
understand a bit about how Drupal is structured. This section provides a checklist of
Drupal’s requirements, and also highlights important things in the Drupal file structure
that are worth knowing before diving into the installation process.

Gathering Requirements
It’s important to have a few things ready prior to installing Drupal. A full list of re-
quirements is available at http://drupal.org/requirements. Use the following as a basic
checklist prior to installing Drupal:

417

http://drupal.org/requirements

1. Ensure access to a web host or local development environment with the following:

a. A web server, such as Apache (http://httpd.apache.org), which handles serving
up Drupal’s pages to the browser. Having access to Apache’s mod rewrite ex-
tension also allows you to use Drupal’s “Clean URLs” feature, which trans-
forms URLs like http://www.example.com/index.php?q=contact to http://www
.example.com/contact.

b. PHP (http://php.net), the dynamic scripting language that powers Drupal.
Drupal 6 requires at least PHP version 4.3.5, although PHP 5.2 or higher is
recommended. The requirements page at Drupal.org has more information on
required and recommended PHP extensions, most of which are enabled in PHP
by default.

c. A database server, such as MySQL (http://mysql.com), where Drupal will store
all of the content, data, and settings that it needs in order to function.

This book assumes that you are using Apache and MySQL.
For additional help and support with other web and database
servers, see http://drupal.org/getting-started/6/install.

2. Write down the following information from your web host:

a. Your (S)FTP or SSH username and password, so you can put Drupal’s files
into place.

b. Your database server’s details, including username, password, and database
name, so that Drupal can connect to the database. Some web hosts also require
additional information to access the database, such as specifying a remote
hostname or a specific database port.

3. Before you start installing Drupal, you also need a database to which it can be
installed; Drupal doesn’t create the database for you, as this normally requires
“elevated” permissions on a server. Drupal can be installed either in its own sep-
arate database, or alongside other applications in a single database using table
prefixes, but it’s generally better if it has its own dedicated database. Check with
your hosting provider or system administrator if you need information on how to
create a new database, and jot down its name for later. Also, make sure you have
the database username and password handy too.

For development purposes, you may find it easier to have your web
environment installed locally to make your changes prior to up-
loading them to their final locations. There are several free pro-
grams that are more or less a “drop in and go” solution, including
XAMPP (http://www.apachefriends.org/en/xampp.html) on Win-
dows and Linux, WampServer (http://www.wampserver.com) on
Windows, or MAMP (http://mamp.info/en/download.html) on
Macintosh.

418 | Appendix A: Installing and Upgrading Drupal

http://httpd.apache.org
http://www.example.com/index.php?q=contact
http://www.example.com/contact
http://www.example.com/contact
http://php.net
http://mysql.com
http://drupal.org/getting-started/6/install
http://www.apachefriends.org/en/xampp.html
http://www.wampserver.com
http://mamp.info/en/download.html

Once you have checked to make sure you have everything, you’re ready to begin.

Downloading Drupal
The first step before installation is to actually acquire the Drupal code. You can use the
Drupal source code provided at http://usingdrupal.com/source_code, or you can down-
load it directly from Drupal.org. Here are the steps to get it from Drupal.org:

1. Go to http://drupal.org and you will see several links to download Drupal. They
are all marked in Figure A-1. Click on the Download tab in the upper-right corner
of the screen.

2. The following page lists all of the types of projects you can download: modules,
themes, translations, and so on. Click the “Drupal project” link to get to the Drupal
core’s page.

3. The release table, shown in Figure A-2, lists the available versions in order from
newest to oldest. Unless you are helping with development, you only want to
download those versions that are marked as Recommended. These are referred to
as “stable releases.” To use the examples in this book, click the Download link for
the version listed as “Recommended for 6.x.”

Figure A-1. Download links on the Drupal.org website

Before You Begin Installation | 419

http://usingdrupal.com/source_code
http://drupal.org

4. Drupal files are packaged using the tar program and compressed with gzip. This
gives the file an extension of tar.gz. These files behave similarly to “zipped” files.
Save the file and then extract the files using your favorite extraction application.

5. Place the extracted files on your web server using an (S)FTP program, or by logging
in via shell access and downloading and extracting the files directly on the server.

Drupal’s Files and Directories
Now that you have downloaded Drupal, you should take a few moments to open it up
and take a look around. Getting familiar with the basic structure and locating important
files and directories can take some of the mystery out of how all of this works. When
you open up the Drupal folder, you will see the files structured as shown in Figure A-3.

The important pieces that we’ll be covering here are the installation and update files,
along with the sites directory. The install.php and update.php files are the two scripts
that actually do the work according to their respective names. Because they are located
in the top-level folder, also called the Drupal root directory, you can access them

Figure A-2. Drupal versions listed on the download page

420 | Appendix A: Installing and Upgrading Drupal

directly in your browser’s address bar by typing in something like http://example.com/
install.php. In addition to the scripts themselves, there are also two text files, one for
each operation: INSTALL.txt and UPGRADE.txt. These files contain instructions on
how to use the scripts, which we’ll also be covering in this appendix.

Most first-time Drupal administrators will take a look at the directories in Figure A-3
and place contributed and custom modules and themes respectively into the modules
and themes directories in the Drupal root. That is where Drupal keeps the core modules
and themes, so it only makes sense, right? Placing your files there will work, and Drupal
will recognize them; however, this becomes a problem when you first attempt to update
to the next security release—overwriting these directories with the new core versions
will destroy any modifications that you have made. The best practice is to keep all of
a site’s contributed and custom code inside the sites directory. Unless you are running
a complex multisite installation (see the sidebar on this subject), this means that you
should create new modules and themes directories inside of the sites/all directory, and
place your contributed and custom code there, as in Figure A-4. This way, all of the
files that are particular to your site are in one tidy location rather than all mixed up
together with the core files. This makes it much easier to work with when performing
upgrades.

Figure A-3. Drupal’s file structure

Before You Begin Installation | 421

http://example.com/install.php
http://example.com/install.php

Multiple Sites from One Drupal Installation
For more advanced setups, one of Drupal’s most powerful features is the ability to run
multiple Drupal websites off of the same single set of files. This is referred to as Drupal’s
multisite capability. The example websites at http://www.usingdrupal.com use this fea-
ture in order to run off of the very same source code files that readers can use on their
own computers.

How does it work? On the Apache side of things, a virtual host entry is set up in
httpd.conf for each subdomain to point to the same set of Drupal files, like so:

<VirtualHost *>
 ServerName usingdrupal.com
 ServerAlias *.usingdrupal.com www.usingdrupal.com
 DocumentRoot /home/www/public_html
</VirtualHost>

Then, on the Drupal side of things, we create a new folder within the sites directory for
each subsite, each with its own settings.php file and files directory. You would end up
with the settings being located at sites/jumpstart.usingdrupal.com/settings.php. When a
browser hits a URL like http://jumpstart.usingdrupal.com, Drupal searches through the
sites folder for the entry that matches best, then loads its settings file.

The multisite feature is not limited to just subsite relationships like this, however.
Completely different websites can also be shared, each with modules and themes spe-
cific to it. You can even do trickier setups like sharing database tables among the various
sites to have a single sign-on or searching across content on all websites.

For more information about Drupal’s multisite feature, consult the documentation on
Drupal.org at http://drupal.org/node/43816.

Figure A-4. Contributed modules and themes go under the sites/all directory

422 | Appendix A: Installing and Upgrading Drupal

http://www.usingdrupal.com
http://jumpstart.usingdrupal.com
http://drupal.org/node/43816

Installing Drupal
Once you have met all of the requirements and gathered the information you need, you
can get down to the installation. These instructions assume that you have already cre-
ated your database, downloaded Drupal, and placed the extracted files on your web
server:

1. Set Drupal up to create your settings for you. Within Drupal, copy sites/default/
default.settings.php to sites/default/settings.php—that is, without the default. at the
beginning of the filename. You will also need to make sure that the new set
tings.php file is writable, such as with the command chmod 666 or chmod a+w sites/
default/settings.php. Your web host should have more information on how to
make files writable in their environment. Also see the documentation in the Drupal
handbook under http://drupal.org/node/202483.

Make sure that you copy the file, not simply rename it. Drupal
needs both files to exist in order to create your settings file for you
properly.

2. Now you can navigate to http://www.example.com/install.php to begin the instal-
lation process.

3. The first page of the installation allows you to choose a language, as shown in
Figure A-5. By default, the only language available is English. However, you may
also download other translations and install Drupal in your language of choice.
Chapter 8 has more information on installing and configuring multilingual sites.
Go ahead and click the Install Drupal in English link.

The next screen will initially check for correct permissions before
letting you proceed. You may need to change permissions on the
parent sites directory, depending on your host configuration. View
the help pages referenced in the installer error messages for more
details.

4. Providing all went as expected, you should see a screen asking for your database
credentials, as pictured in Figure A-6.

Installing Drupal | 423

http://drupal.org/node/202483
http://www.example.com/install.php

Figure A-6. Database configuration during the Drupal installation

5. Remember earlier when you wrote down the details of your database connection,
including username and password? Now it’s time to use them. At a minimum, you
need the name of the database, the database username, and the database password.

Figure A-5. Language selection for installing Drupal

424 | Appendix A: Installing and Upgrading Drupal

If your web host requires additional information such as hostname or database
port, expand the “Advanced options” fieldset to enter these options. Once you
have entered all of the database information, click the “Save and continue” button.

6. The next page, as shown in Figure A-7, contains a list of initial settings that should
be configured on any site.

7. First you should fill out the “Site information” fieldset. This deals with important
global site settings:

Site name
This is the name that will be displayed in the title bar on all pages, as well as
in the upper-left corner of all pages, by default.

Figure A-7. Configuring settings during the Drupal installation

Installing Drupal | 425

Site e-mail address
All system emails will be sent from this address; for example, new user regis-
tration emails.

8. The next step is configuring the Administrator account. The Administrator account
(also referred to as “User 1”) is a “superuser” account that is exempt from all
permission checking and has full powers to do everything on the site. You should
therefore create a very strong password for this account (fortunately, Drupal will
try and help you out by verifying the strength of the password as you type). Use
this account sparingly, and only for administrative tasks. For day-to-day usage,
create a second user account with fewer privileges.

9. The Server settings section can normally be left at the defaults selected. These
options include:

Default time zone
Unless a user otherwise specifies her time zone in her account settings, all posts
on the site will show up in the site time zone selected here. By default, Drupal
will select the time zone of the browser during installation in an effort to guess
what you’d like.

Clean URLs
Clean URLs allow you to have URLs such as http://example.com/about rather
than http://example.com/?q=about. A test will be performed here to see whether
the web server is correctly configured for Clean URLs, and if so, you will be
able to enable this feature.

If you are having problems enabling Clean URLs, it may help
to know that these are normally caused by one of the follow-
ing:

• Your web server does not have mod_rewrite (or an equiv-
alent) installed.

• Your web server is not properly reading the .htaccess file
that comes with Drupal.

Ask your server administrator to investigate whether one or
both of these applies for you. For more information, you can
read the Clean URLs section of the online handbook at http:
//drupal.org/node/15365.

Update notifications
Drupal 6 comes with a new feature to check for updates of new modules,
themes, and Drupal core automatically, and will inform you when updates are
available. This option (checked by default) is highly recommended, as it helps
ensure that your site is up-to-date on security releases.

10. Once you have all of your settings entered, click the “Save and continue” button.

426 | Appendix A: Installing and Upgrading Drupal

http://example.com/about
http://example.com/?q=about
http://drupal.org/node/15365
http://drupal.org/node/15365

11. The final screen informs you that the installation is complete and you’re ready to
proceed with configuring your new website. Click the “your new site” link to begin
your Drupal adventure! Figure A-8 shows the initial Drupal screen when it’s first
installed.

Figure A-8. A newly installed Drupal site

Keeping Drupal Up-to-Date
It’s not enough to just get Drupal installed, however; you also need to make sure to
keep it up-to-date. New releases of modules and Drupal core come out periodically,
most of which fix problems, some of which add new whiz-bang features, and some of
which address critical security problems.

Version Numbers
When discussing updates, it helps to have some background information about Dru-
pal’s version numbering system. For all the gory details, see http://drupal.org/handbook/
version-info, summarized in Figure A-9.

Each “major” release of Drupal core gets a new number: Drupal 5, Drupal 6, Drupal
7, and so on. A new major Drupal version is released every 12–18 months, and consists
of new features, improved usability, and more flexible APIs. Throughout a major ver-
sion of Drupal’s release cycle, several “minor” versions of Drupal are also released, such

Keeping Drupal Up-to-Date | 427

http://drupal.org/handbook/version-info
http://drupal.org/handbook/version-info

as 6.0, 6.1, and 6.2. Minor Drupal versions fix critical security problems and important
bugs as well.

Releases of projects like contributed modules, themes, and translations have a version
naming scheme such as 6.x-1.3. The “6.x” indicates the major version of Drupal that
it is intended to work with; in this case, Drupal 6. The “1” indicates the “major” release
of the contributed module. And the “3” indicates that this is the third bug fix release of
this major release of the module.

Some releases also have “extra” version information, such as “-beta4” or “-rc2.” These
indicate that the modules are still in development, but available for testing.

Updates between minor versions of Drupal core and modules, such as between Drupal
6.3 to 6.4, or Views module 6.x-2.0 to 6.x-2.1, are normally fairly painless, as long as
your site is kept up-to-date. Updates between major versions, however, such as Drupal
6.3 to 7.0, or Organic Groups module 6.x-1.0 to 6.x-2.0, and especially to 7.x-1.0, will
need special care, as the changes are generally quite extensive.

On Backward Compatibility
The Drupal project’s policy on backward compatibility is that between major versions
(such as Drupal 6.x to 7.x), developers are allowed to freely break the underlying
code, but must always provide a migration path for a user’s data. If a cleaner, faster, or
better way of doing something is discovered, developers are allowed (and encouraged)
to change the underlying code to work in that fashion. This allows Drupal to stay on
the cutting edge of technology without the burden of legacy code that needs to be
supported and maintained throughout the ages. However, the result of this policy is
that contributed module authors must incorporate these code changes into their own
modules between major versions in order to upgrade and stay compatible.

�������	
�

�������	
���	�����
�	�	�
	��������������	�

���
��
���	�������
������	�	�
	�
�������	�	�
	

�
�������������	

	����������	
�

����
���������
�������	
	����

���	�
������

�����	
���
�����
���
�����	���

		���
�����
�	�����	�
���	
��
����
������

�	�
����

��	�	����	��		�
����������

�	�	�
	
��	�
���
��
���	��������
�	�
����������

����	�

!��"��������	

!�	�	�
	���������	"
�����
�����	��
����
�	������������������

��	
��	�#�������$
����
	�
%��������	�������	
����

�����������		����&�

Figure A-9. Drupal version numbers explained

428 | Appendix A: Installing and Upgrading Drupal

Additionally, the Drupal project currently has a policy of supporting only the current
release and one release previous. Although Drupal 6 is the newest release of Drupal as
of this writing, both Drupal 6 and Drupal 5 will continue to have bug fixes applied,
security updates, and so on. But when Drupal 7 comes out, Drupal 5 will no longer be
supported.

As a Drupal user, what these policies mean to you is that there is often a lag time of a
few months between when a new major version of Drupal is released and when key
contributed modules are ready for widespread use. You should also plan on upgrading
your Drupal sites to a new major release every 18–24 months.

For more on Drupal’s backward compatibility policy, see http://drupal.org/node/65922.

Update Status Module
Drupal 6 core includes a module called Update Status, which periodically checks Dru-
pal.org for new releases of modules, themes, and Drupal itself. If one or more of these
projects are out of date, or if there is a new security release available, a red warning will
be displayed on all pages of the administration panel, telling you to head to Adminis-
ter→Reports→Available updates (admin/reports/updates) for more information. You
can also sign up for the security mailing list at http://drupal.org/security and/or follow
the Security RSS feed (http://drupal.org/security/rss.xml).

The “Available updates” screen, as shown in Figure A-10, displays an index of projects
installed on your website, colored according to status.

Figure A-10. Update status showing the different project statuses

Keeping Drupal Up-to-Date | 429

http://drupal.org/node/65922
http://drupal.org/security
http://drupal.org/security/rss.xml

The color codes indicate the following status states:

Red
A new recommended version of this project is available, and the version on this
website is out of date. Pay special attention to projects marked “Security update
required!” and download the new recommended versions immediately.

Yellow
Update status was not able to find the state of this project. This will happen on
projects such as a specific site’s custom, hand-built theme, or on projects that were
not downloaded from Drupal.org, or if there was a problem reading the status
information for this project.

Green
Project is up-to-date. No further action is required.

The Update Status module can be very noisy if you have many
modules installed; over the course of a week, several modules may
report that new updates are available if they’re undergoing heavy
development. You can adjust the notification threshold at Admin-
ister→Reports→Available updates on the Settings tab (admin/
reports/updates/settings) to email only about security releases,
which are mandatory, rather than regular bug fix releases.

Security updates should be taken very seriously and updated as
soon as possible. Read the module’s release notes for more infor-
mation about bug fixes or features that the update offers.

There is also a contributed module called the Upgrade Status module (http://drupal.org/
project/upgrade_status), similar to the Update Status module, which will display similar
information about enabled modules and whether they have been ported to the next
major Drupal version. This functionality comes in handy when determining when
might be a good time to move to a new major version, such as from Drupal 6 to Drupal
7.

Site Maintenance Mode
If you navigate to the Administer→Site configuration→Site maintenance (admin/set-
tings/site-maintenance) page, pictured in Figure A-11, you can set the site into “off-
line” mode prior to the upgrade taking place. This mode is useful, as sometimes updates
can temporarily cause errors before the entire process is completed. Offline mode
makes the site inaccessible to regular users while still allowing administrators to work
on the site. You don’t want users creating content while you are updating the database,
because this could lead to losing some data or errors displayed to your site visitors.

430 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/project/upgrade_status
http://drupal.org/project/upgrade_status

When you take the site offline, you can also set a message to display to your users to
let them know what is going on.

Figure A-11. A Drupal website showing in offline mode

If you wish to log in to the site while it is in offline mode, your user
account must be assigned to a role that has the “administer site config-
uration” permission. Pull up the login form by heading to http://www
.example.com/user.

The update.php Script
The update.php script, pictured in Figure A-12, automatically runs through any
underlying database changes that a module requires in order to move from one version
to another. Whether you’re updating between minor or major versions of Drupal and
contributed modules, update.php is the piece that ensures your data ends up in the
places that it should when all is said and done.

The script lists all of the enabled modules on your site, and specifies whether updates
are required to be run. A progress bar counts up as each module is updated. And finally,
at the end, a report is generated with the database changes that were performed, along
with any errors that occurred.

Because update.php performs updates against the database, it’s very im-
portant to create a backup of your database before running this script.
The Drupal handbook has instructions at http://drupal.org/upgrade/
backing-up-the-db.

Keeping Drupal Up-to-Date | 431

http://www.example.com/user
http://www.example.com/user
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db

Figure A-12. The update.php script, which performs database updates between versions

The update.php script is intended to be run by User 1. If you are not
using the User 1 account, you need to edit the settings.php file manually
in order to be able to run the update script. You must change the
$update_free_access variable in settings.php so that it is equal to TRUE
rather than FALSE.

But be careful, if you change this value in settings.php, make sure that
you change it back to FALSE as soon as you are done running the update
script! Failure to do so means that anonymous users might be able to
rerun database updates, which could cause all manner of problems.

Updating Drupal Core
Updating your site often sounds much scarier than the actual experience is. In addition
to the included UPGRADE.txt file, the online handbook has a great deal of documen-
tation available at http://drupal.org/upgrade/ and a helpful support forum at http://dru
pal.org/forum/21. The most important step to remember is creating and testing backups
of your site.

It cannot be stressed enough how important backups are when doing
upgrades. This holds true for upgrading both Drupal core and contrib-
uted modules. You need to make sure you back up both essential parts
of a Drupal site: the filesystem and the database. Every system can have
a different way to do backups, so that will not be covered in detail in
this appendix. You can ask your system administrator or refer to the
backup section of the upgrade guide on Drupal.org at http://drupal.org/
upgrade/backing-up-the-db. Make sure that you test the backups as well
so that you are sure that you can recreate your site if something goes
awry.

Updating your out-of-date modules requires manually downloading the necessary files
from Drupal.org and placing them on your server just as you did the first time you
uploaded them. Drupal does not automatically download updates. This is to prevent
overwriting existing module code before you have a chance to test it. For example, it’s

432 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/upgrade/
http://drupal.org/forum/21
http://drupal.org/forum/21
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db

possible that a module may make a change that requires a newer version of PHP than
you have installed, which could result in fatal errors on your site if the files were down-
loaded blindly. Always test out updated modules on a test server before deploying them
on your “live” site.

This section walks you through the steps to update Drupal within a major version to
the next minor release number—for example, if you are using Drupal 6.3 and need to
upgrade to Drupal 6.4. When upgrading to a new major version of Drupal, such as
Drupal 7, the steps are essentially the same, except that you must also upgrade all of
your contributed and custom modules and themes at the same time.

1. Get the latest release for your version of Drupal by following the same steps as
covered in the “Downloading Drupal” section previously.

2. Before you do anything else, you must make backups of both your database and
files. Again, refer to your system administrator or the backup guide at http://drupal
.org/upgrade/backing-up-the-db.

3. Once you have your backups done, log in to your site as User 1.

4. Go to Administer→Site configuration→Site maintenance (admin/settings/site-
maintenance) and select the Off-line radio button. Feel free to edit the “Site off-
line message” to whatever you choose. Click the “Save configuration” button to
take the site offline.

If you set the site to offline mode and log out before changing it
back to online mode, you can still log in easily by going to the user
login page manually in the address bar at http://example.com/user.

5. For major version upgrades, it’s also recommended to go to Administer→Site
building→Themes (admin/build/themes) and switch the site theme to a core theme
such as Garland or Bluemarine. This step can prevent errors if underlying things
have changed that your site’s normal theme depends on.

6. Extract the Drupal files from the tarball and replace all of the existing files on your
server with the new files.

7. Make sure that all of your site’s files are back in place. Your entire site’s contributed
and custom code, along with your files directory, should be in the sites folder in
your backup. Grab a copy of the sites folder from the backup you made and add it
to your Drupal files. If you have made modifications to other system files, such
as .htaccess or robots.txt, restore those from backup as well.

8. Now that all of the files are in place, it is time to update the database, too. Go to
http://example.com/update.php in your browser. You will be presented with a
screen that outlines the steps you should take to update the site. Click the Continue
button.

9. You are taken to the update screen. Click the Update button to run the script.

Updating Drupal Core | 433

http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/upgrade/backing-up-the-db
http://example.com/user
http://example.com/update.php

If you expand the “Select versions” fieldset, you can see which
modules have registered that they have update code to be run.
Modules that have updates to be run will have a schema version
number, such as 6001, preselected in their drop-down select list.
Drupal keeps track of this for you, so you shouldn’t change this.
Modules with no updates will have “No updates available” selec-
ted. Even if there are no updates marked, you should still run the
update.php script, as it will reset your cache, making sure that Dru-
pal recognizes all of the new files. Failing to run the script may cause
some weirdness in the newly updated site until the cache is cleared
at Administer→Site configuration→Performance (admin/settings/
performance).

10. After the script runs, you will be returned to a screen indicating that the update is
complete. If you changed to a core theme for the upgrade, switch it back to your
regular theme at Administer→Site building→Themes (admin/build/themes).

11. Click around your site and verify that the update was successful. Once you are
convinced the site looks OK, return to Administer→Site configuration→Site main-
tenance (admin/settings/site-maintenance), select the Online radio button, and
click “Save configuration” to take the site back online.

Updating Contributed Modules
Drupal’s contributed projects tend to move more quickly than Drupal core and there-
fore require more updates within a Drupal version’s life cycle. You can upgrade multiple
modules at the same time, although it’s best to do one at a time to reduce the chance
of errors, and to allow you to isolate problems that might come up during an upgrade.

To update contributed modules, follow these steps. You will see that the process is the
same as the one used for Drupal core, only the files that are changed are a little different.

1. Just as with Drupal core, you need to get the latest version of the module you wish
to update. You should always read any release notes that are associated with the
module to make sure that there are no special instructions for your update.

2. It is still important to make backups of your entire Drupal installation, even though
you are only updating a module. If something goes wrong you want to be able to
restore the site to the state it was in before you began. So make your backups before
proceeding.

3. Log in to your site as User 1.

4. Go to Administer→Site configuration→Site maintenance (admin/settings/site-
maintenance) and select the Off-line radio button. Edit the “Site off-line message”
to whatever you choose. Click “Save configuration” to take the site off-line.

5. Now it’s time to replace the module files. Extract the module file that you down-
loaded from Drupal.org and completely replace the old module. To be thorough,

434 | Appendix A: Installing and Upgrading Drupal

you can delete the entire folder for the old module and then add the new, fresh
module folder to the sites/all/modules directory.

6. Go to http://example.com/update.php in your browser and click the Continue
button.

7. Click the Update button to actually run the update script.

8. Return to your site and make sure that everything looks okay. You should especially
check the functionality that the particular module or modules provided for your
site and make sure that there are no errors.

9. Repeat steps 5 through 8 for each module that you wish to update.

10. To finish up, go back to Administer→Site configuration→Site maintenance (admin/
settings/site-maintenance), select the Online radio button, and click “Save config-
uration” to take the site back online.

References
Here is a list of modules we referenced in this appendix:

• Update status: core

• Upgrade status: http://drupal.org/project/upgrade_status

Here is a list of the external references we used in this appendix:

• Apache web server: http://httpd.apache.org

• MAMP: http://mamp.info/en/download.html

• MySQL: http://mysql.com

• PHP: http://php.net

• PostGreSQL: http://postgresql.org

• WampServer: http://www.wampserver.com

• XAMPP: http://www.apachefriends.org/en/xampp.html

Here are the Drupal.org resources we referenced:

• Drupal project: http://drupal.org/project/drupal

• Backward compatibility: http://drupal.org/node/65922

• Backing up the database and files: http://drupal.org/upgrade/backing-up-the-db

• Clean URLs: http://drupal.org/node/15365

• Installation guide: http://drupal.org/getting-started/6/install

• Multisite installation: http://drupal.org/node/43816

• Security: http://drupal.org/security

• Security RSS feed: http://drupal.org/security/rss.xml

• System requirements: http://drupal.org/requirements

References | 435

http://example.com/update.php
http://drupal.org/project/upgrade_status
http://httpd.apache.org
http://mamp.info/en/download.html
http://mysql.com
http://php.net
http://postgresql.org
http://www.wampserver.com
http://www.apachefriends.org/en/xampp.html
http://drupal.org/project/drupal
http://drupal.org/node/65922
http://drupal.org/upgrade/backing-up-the-db
http://drupal.org/node/15365
http://drupal.org/getting-started/6/install
http://drupal.org/node/43816
http://drupal.org/security
http://drupal.org/security/rss.xml
http://drupal.org/requirements

• Upgrade guide: http://drupal.org/upgrade

• Upgrading Drupal forum: http://drupal.org/forum/21

436 | Appendix A: Installing and Upgrading Drupal

http://drupal.org/upgrade
http://drupal.org/forum/21

APPENDIX B

Choosing the Right Modules

With over 2,000 modules to choose from, and more added every single day, finding
the contributed module you need for a given task can be a daunting process. Through-
out this book, the authors have endeavored to highlight and identify most of the “must-
have” modules, particularly architectural modules that are commonly used to build
Drupal websites. We’ve also endeavored to cover modules that have a proven track
record and are likely to continue to be used to build sites.

However, each new website project has unique requirements that may be outside the
scope of what this book has covered, and the landscape of the contributions repository
is a constantly shifting space. Modules that were once critical building blocks may be
abandoned or deprecated by superior alternatives, and new modules may come along
that completely blow away anything else that came before them.

This appendix, therefore, attempts to highlight some of the best practices used by those
“in the know” for evaluating and selecting the right module for the job. It’s important
to keep in mind that no simple set of guidelines—these included—can tell you every-
thing about a module. The important thing to remember is that evaluating modules
carefully before you commit to them will help prevent unpleasant surprises down the
road.

Finding Modules
The first step to choosing the right module for your needs is actually finding it. Fortu-
nately, all Drupal modules (with only a few rare exceptions) are located directly on the
main Drupal.org website, so there’s only one resource for finding them. Here’s how
you do it.

437

Browse Module Listings
The module listing pages at http://drupal.org/project/Modules, pictured in Figure B-1,
list modules by category (such as CCK or mail-related modules), by name alphabeti-
cally, and by the date they were last updated. Browsing these category-based pages can
be useful for determining the modules that exist in a particular space, and keeping an
eye on the modules that are frequently at the top of the date list helps highlight those
with active maintainers.

Drupal 5.x modules are not compatible with Drupal 6.x, and vice versa.
To see an accurate list for your site, make sure to change the “Filter by
Drupal Core compatibility” filter to show only those modules that are
compatible with your Drupal version. You will have access to apply this
filter only if you are logged in to the Drupal.org website. Getting an
account is free and easy, and opens up many useful tools to you.

Another nice Drupal.org “hack” is keeping an RSS reader pointed at
http://drupal.org/taxonomy/term/14, which is a list of all the newest
modules on Drupal.org as they are created.

����������	�
����
������	��������	�	��������	���
���

�
���	������	���������
�	������	���� ���	���
	��������	������������	
	�������	��	
��������
���������
	�������

Figure B-1. Module browse pages on Drupal.org

438 | Appendix B: Choosing the Right Modules

http://drupal.org/project/Modules
http://drupal.org/taxonomy/term/14

Keyword Search
Drupal.org also provides a block for searching the downloads on the site, also pictured
in Figure B-1. For example, searching for “wiki” brings up a list of modules with that
keyword in their name or description. This allows you to drill down to modules specific
to your needs faster than browsing by the default category view.

Drupal.org Forums
The Drupal.org support forums at http://drupal.org/forum, particularly the “Before you
start” forum at http://drupal.org/forum/20, can provide a wealth of information in the
form of questions from other users about the modules they used for their own projects.
Often, you can receive some helpful advice not only about the feature you’re trying to
implement now, but also for future things your website will need to take into consid-
eration. The “Drupal showcase” forum at http://drupal.org/forum/25 is also filled with
people showing off websites they built with Drupal—and they are often more than
happy to share details about how they built a particular piece.

Case Studies
Chances are good that no matter how crazy the use case, someone else has had to solve
the very same problem with Drupal as you have. You can cut down the time required
to find modules tremendously by finding out how they went about it. The Drupal
handbook contains a section for case studies at http://drupal.org/cases. These consist
of detailed write-ups, often about major websites using Drupal, about why exactly
Drupal was chosen and how the site was put together. Some of the more comprehensive
case studies include:

• Popular Science magazine: http://drupal.org/node/233090

• Sony BMG MyPlay: http://drupal.org/node/241344

• New York Observer: http://drupal.org/node/141187

Planet Drupal
Planet Drupal (http://drupal.org/planet), pictured in Figure B-2, is an aggregation of
Drupal contributing members’ blogs and is a great way to find out what’s new and hot
in the module world. Module tutorials, reviews, and news are often posted there, and
Planet Drupal also a great general resource for keeping your finger on the pulse of what’s
happening in the larger community.

Finding Modules | 439

http://drupal.org/forum
http://drupal.org/forum/20
http://drupal.org/forum/25
http://drupal.org/cases
http://drupal.org/node/233090
http://drupal.org/node/241344
http://drupal.org/node/141187
http://drupal.org/planet

Third-Party Websites
http://drupal.org/node/289913 provides a list of third-party websites—that is, separate
from Drupal.org—that often provide useful information when evaluating modules. For
example, http://drupalmodules.com provides user ratings and reviews of Drupal mod-
ules, and http://www.lullabot.com has a variety of articles, videos, and podcasts, many
of which highlight popular modules and how to use them.

Assessing a Module’s Health
An open source project’s strength comes from the power of its base of contributors,
and the Drupal project is no different. Although every line of code added or changed
in Drupal core goes through rigorous peer review, contributed modules are more of a
“Wild West” where anyone who jumps through a few basic hoops can add modules
for everyone to download. The Drupal community strives to keep the barriers to con-
tributing code back as low as possible in order to facilitate growing Drupal’s thriving
development community. This approach has both pros (for almost any problem, there’s
a module that either can get you fully or at least partway there) and cons (developers’
experience levels are varied, so contributed code can have inefficiencies and security
problems, and developers can become overextended and unable to keep up with main-
tenance of their modules).

Whether or not a module is well-maintained, its overall code quality, and how well-
used it is in the overall community are all important factors to consider when selecting
modules. This section will talk about determining these factors by closely inspecting

Figure B-2. Planet Drupal, which aggregates content from blogs of Drupal companies and contributors

440 | Appendix B: Choosing the Right Modules

http://drupal.org/node/289913
http://drupalmodules.com
http://www.lullabot.com

the tools Drupal.org provides, starting with the central feature of all Drupal modules:
the project page.

Project Pages
Modules, themes, translations, and even Drupal core itself are all referred to as
projects on Drupal.org. Each project has its own page at http://drupal.org/project/file
_name, which contains a wealth of information that can be used to evaluate a module’s
health.

Figure B-3 shows the first part of a module’s project page. Here you can find the name
of the module’s maintainer (usually the original author and/or the module’s primary
developer), the date the project was first created, a description of what the module
does, and sometimes a screenshot showing what the module does.

����������������	
����������
���������

��
�����
���
��	�������������	�����	��

�����������������	�������	���	����������������

����
��	��	����������������������
�

Figure B-3. The project page for the Devel module

The original project creation date can be useful when looking for time-tested solutions
(if the module was created in the past week, it’s probably best to let it mature a bit

Assessing a Module’s Health | 441

http://drupal.org/project/file_name
http://drupal.org/project/file_name

before depending on it). But also be aware that some older modules may be legacy
solutions that more modern modules deprecate.

Further down, we see the module release table (pictured in Figure B-4), which we dis-
cussed briefly in Chapter 2. A plethora of useful information is available here, including
the date that the code was last updated; whether the module has “Official releases,”
which indicate stable releases; links to release notes for each release to tell what bugs
were fixed and features were added; and a link to view all releases—even old, outdated
ones.

Figure B-4. The module release table for a typical module

This release table, taken from the Date module on September 7, 2008, is indicative of
a healthy project. The Date module has stable releases for both Drupal 5 and Drupal
6 (although the Drupal 6 version is only a release candidate, this shows that it is nearing
completion and ready for testing). The date on the module’s development releases
indicates that the code has been updated very recently, which means that the maintainer
is actively developing on the project. Clicking on “View all releases” shows releases of
this module dating back to Drupal 4.7, and it even has a Drupal 7 development release,
although Drupal 7 is currently in active development and is not close to being released
yet, as of the current date.

On the other hand, signs that it might be worth looking elsewhere include:

• If there are only development snapshots available and no official releases, or if there
is no release table at all, this indicates that this module is undergoing development
and should not yet be relied upon for production websites.

• If the last updated date of the latest release is several months in the past, this could
indicate lack of maintainer activity and interest in the module. It could also mean
that you’ve found an example of a completely perfect module that has no bugs and
needs no new features added, but those are pretty rare.

Finally, at the bottom of the project page is an optional list of links, including resources
such as a project’s external home page, a link to its documentation, or a demonstration

442 | Appendix B: Choosing the Right Modules

site. Presence of these links tends to indicate a maintainer who is passionate about his
module, and wants it to be as high-quality as possible.

Also, don’t miss the project’s usage statistics, which are invaluable in evaluating the
popularity of a module in relation to others.

Issue Queues
Development of code in the Drupal community happens in a project’s issue queue, such
as http://drupal.org/project/issues/3060, pictured in Figure B-5. The issue queue is a log
of bugs, feature requests, support requests, and tasks for a given project that module
maintainers use as their public working space. Anyone in the community can log issues
against a project, and anyone can provide solutions for them as well.

�������	
����	���	����	���	���	��	��
���	��	���	�
�	����
��
�	
�	�������	�	����	
��
�����	��	�	������	������
������
��	������	�	�������

����
���	���	�������	����
�����	
�	���
��	��	��
�	
����

�!
���	
����	���	����	�����"�	���
��
�����
��	���	���
��	��	��
�	�������

#���	������	�
��	�
��
�	��	����	� 	��	���	��	�	����	�
��	��	�
������	��������	���	�
��	��	���	�
��
�	��	����	����	��	���$

Figure B-5. The issue queue from the Drupal core, an example of a healthy project

You can find an issue queue for a project in several ways. The most common way is
simply to start on the project’s page. If you scroll to the bottom, you will see a list of
links for support, features, etc. The handiest link in that list is the “View open issues”
link under the Support section. You can also look at the main list of all issues across

Assessing a Module’s Health | 443

http://drupal.org/project/issues/3060

all projects at http://drupal.org/project/issues, and use the Project drop-down list to se-
lect the project you’re interested in.

Because issue queues provide an open window into what’s happening with develop-
ment of a given project, being able to “read” an issue queue is an invaluable skill in
evaluating a project’s health.

For example, most people might logically assume that a project with lots of issues is a
poor-quality project, and one with very few issues is a high quality project. While this
certainly can be the case, it’s worth pointing out that Drupal itself currently has more
than 5,000 open issues, and its code is written to a very high standard of quality. More
often than not, the number of issues in an issue queue merely indicates the popularity
of a project, not necessarily a lack of quality.

That said, the specific details of said issues are very important. In Figure B-5, we see a
number of things that indicate an overall healthy project. There are a couple of issues
that have been marked fixed within the past 24 hours. Two of the issues are also as-
signed to developers, which normally indicates that they are taking responsibility to
find solutions for the problems. Most of the open issues have code associated with them
in one way or another: a couple that are ready for larger community review, and one
that still needs more work, but is at least the start of a solution. This is indicative of a
healthy developer community around the project. Only two of these issues are marked
“active,” which indicates that they are still awaiting code to fix them.

Figure B-6 shows a different story. This is the issue queue from the Flexinode module,
which was the predecessor to the current CCK module. At first glance, it looks similar
to the Drupal issue queue that we saw earlier. Sure, there are a few more “active” issues,
and none that are currently marked as having been fixed. But there are still a few issues
that have some code attached, and even some that are assigned to developers. So what’s
the problem?

The problem is the “Last updated” column, which indicates when a reply was last
posted to the issue. In the Drupal project issue queue, shown in Figure B-5, replies are
typically at most an hour or two apart, with some replies as recent as eight minutes
ago! This means that at almost any given hour, people from all over the world are
constantly contributing to the project. However, the last time that anyone responded
to Flexinode’s most recent issue was 18 weeks ago, and for most issues, over one year
ago. This is a sure sign of an abandoned module whose maintainer has lost interest.

Most modules are somewhere in between these two extremes, with a mix of issues that
haven’t been looked at in awhile and those that have more activity. Spot-check a couple
of issues by clicking them and seeing who’s actually responding. Is it the maintainer,
specifying what she found when she looked at the problem, or is it other desperate users
who are saying, “Yep, I have this problem too. Any ideas?”

444 | Appendix B: Choosing the Right Modules

http://drupal.org/project/issues

Code
All of Drupal’s contributed modules are stored in a central code repository at http://cvs
.drupal.org/viewvc.py/drupal/contributions/modules/, which you can browse through in
order to get a sense of how the code looks for a given module prior to downloading it.
Obviously, people with a PHP background are going to be able to get more out of this,
but in general anyone can spot some basic best practices. Look for clearly written,
documented, well-organized code that conforms to a standard coding style. Code that
does not meet these criteria is harder to maintain, and harder for other developers to
jump in and help with.

The People Behind the Code
Each contributor to Drupal is a unique individual who has his own areas of interest,
expertise, background, and motivations for contributing. Some contributors are master
programmers who live, breathe, sleep, and eat code. Some are backed by Drupal de-
velopment and consulting companies, and are paid to maintain their modules. Others
are hobbyists who run a fan club site and maintain one or two particular modules that
act as the main backbone of their community. Still others help out for the fun of it,
because it feels good and they enjoy it. There are those who get code as far as they need

���������	
���������������
���	��
�������������	����������������

�����	������	�����������
����	����
�������	�����	����������������������

��� ���! �������	������"���	��	�����	���	�������
#���	����������
����������

Figure B-6. The issue queue from Flexinode, an example of a project that has been abandoned

The People Behind the Code | 445

http://cvs.drupal.org/viewvc.py/drupal/contributions/modules/
http://cvs.drupal.org/viewvc.py/drupal/contributions/modules/

it, toss it out there, and move on to bigger and greener pastures. And, of course, there
are those who are some, all, or none of the above.

Therefore, a critical piece to evaluating a module is to also learn more about the humans
behind the code. Drupal.org has a few useful tools to help.

Maintainer Activity
The first is the “Developers” link at the bottom of project pages (for example, http://
drupal.org/project/developers/3060), which takes you to a table, shown in Figure B-7,
displaying a list of the individual developers who are maintaining (or have maintained)
the project. The data shown here are the commits, or code changes to a project, by
everyone who has ever had access.

From this information, you can get a general idea of who within the project has been
working on it the longest, how active each contributor is, and how much experience
each has with a given project’s code. A sign of a good, healthy project is lots of recent
commit activity, along with numerous contributors in the list if some of the original
folks are no longer around. If this list is small, and the last commit was several months
ago, particularly if the project’s issue queue shows warning signs, it may be worth
looking for alternative solutions, or perhaps offering the maintainer payment for the
changes you need, in order to help entice her interest again.

Figure B-7. A list of developers for the Drupal project, along with commit activity

446 | Appendix B: Choosing the Right Modules

http://drupal.org/project/developers/3060
http://drupal.org/project/developers/3060

User Profiles
Anytime that you see a username on Drupal.org, you can click it to view the user’s
profile (for example, http://drupal.org/user/35821), as shown in Figure B-8. Although
there’s information here that’s typical of any user profile on any site, such as first and
last name, a list of interests, gender, and country, there are a few elements that are
particularly useful to those looking to find out more about the person behind the code.

The user profile begins with a brief blurb about the user’s contributions to Drupal. This
typically mentions modules that they have written, various initiatives that the user’s a
part of, such as the documentation team or site administration team, and other such
data. This information can help provide insight as to the person’s motivations and
background.

�������	
��	������	�����	�������	���	�����
���
�������	
��	�����������	���������	������
�������������������

�	�����	������������	����	����	
������
���
����������	
���������������������������������

��������	����������	�����
�����	�������	����
��	���
���
�	��������������������������������	�	��

Figure B-8. User profile page on Drupal.org

This information is followed by a series of “flags” that indicate things such as whether
the person helps out with documentation, user support, and module development, as
well as what Drupal conferences the user has attended. Each flag is a link that displays
a list of other users who have that flag checked. A user with many of these links dis-
played is generally much more tied into the larger Drupal community than one without.

The People Behind the Code | 447

http://drupal.org/user/35821

The tabs along the top edge are also very useful. The Track tab shows a list of all of the
posts on Drupal.org that the user has created or responded to. This can help gauge his
overall involvement in the Drupal community and how active he is, as well as his general
attitude towards others.

The Contact tab, if he’s enabled it, can be used to contact the user directly via email.

Although it can be tempting to use the Contact form to ask maintainers
support questions or to report bugs about their modules directly, this
is considered bad form. Time a maintainer spends answering emails is
time that is not spent further developing the module and helping other
users who might have the same problem.

Always use a module’s issue queue for reporting problems, as that
method allows anyone who uses the module to respond, not just the
maintainer, and allows the results to be searched by others. In general,
use a maintainer’s contact form only for topics that are intended to be
kept private, such as requests for hire.

The contact form can also be used to send a general “thanks” for a job
well done; most module developers hear only about problems from their
users, so it can make a maintainer’s day to hear from someone who has
nice things to say about the code she received for free.

Further down the profile page, there’s an indication of how long the user has been a
member of Drupal.org, as well as a list of the projects that the user has committed code
to during that time, shown in Figure B-9. Some maintainers have one or two projects
listed here, and others have 50 or more. A list consisting of many projects is usually
indicative of someone who’s been around awhile and likely knows what he’s doing.
On the other hand, because he has been around awhile, he might also be over-extended
and trying to do too many things at once, and all of his modules may be suffering as a
result.

Getting Involved
By far, the best way to keep up-to-date on what modules are the most useful, and to
ensure that those modules do what you need, is to actually get directly involved and
help. The Drupal community offers a myriad of ways for everyone, from the person
who just installed Drupal for the first time yesterday to the person who has been coding
since she was in diapers, to give something back.

The “Getting Involved” handbook at http://drupal.org/getting-involved is the main
“jumping-off” point for ways to get involved in the Drupal project. Here are a few that
are suited to nonprogrammers as well:

448 | Appendix B: Choosing the Right Modules

http://drupal.org/getting-involved

Issue queue cleanup
While you’re evaluating modules, you’ll naturally be in the issue queue anyway.
Why not take a few extra minutes and look for places you might be able to clean
things up? If there are two or more similar issues, mark the higher-numbered one
as a “duplicate.” See if a bug report is still valid, and if it’s not, mark it “fixed.” If
you see a support request that you know the answer to, answer it. Every minute
spent by someone other than the module maintainer on this type of activity is more
time that she can spend improving her modules, and so this type of contribution
is hugely appreciated by maintainers.

Helping with user support
If you’ve gotten as far as getting Drupal installed, congratulations! You now
officially know enough to help someone else. Head to the Drupal forums or
#drupal-support on irc.freenode.net and look for opportunities to answer other
users’ questions. You’re guaranteed to learn a ton in the process.

Figure B-9. Drupal developers have a list of projects they’ve committed to at the bottom of their user
profiles

Getting Involved | 449

Filing issues
If you come across a problem with a module, or something that you think would
be really cool, file it as a detailed bug report or feature request in the module’s issue
queue using the guidelines at http://drupal.org/node/317. Remember to click on the
“Advanced search” link at the top of the issue queue first to check for an existing
issue before creating one of your own.

Documentation
Did you just get done spending a frustrating half-hour on something because there
was a lack of documentation or an error in the existing documentation? Edit the
page with your corrections, so that you can spare the next person your same fate.
You can also join the documentation team at http://drupal.org/contribute/documen
tation/join to collaborate with others on the overall direction of Drupal’s docu-
mentation.

Donations
Don’t have time to contribute yourself, but have some spare change rolling around?
You can donate to the Drupal Association, the legal entity that provides server
infrastructure, organizes Drupal conferences, and handles fundraising for the Dru-
pal project at http://association.drupal.org/donate. Many individual developers also
gladly accept donations. If using someone’s module has helped save you some
money, give them a little back to say “thanks.”

Why get involved? Aside from the “warm fuzzy feeling,” there are a number of practical
reasons, which include:

• As a general rule, more attention is paid to your support requests, bug reports, and
feature requests if you are known to be a contributor to the project.

• Being an active part of the community helps forge relationships, which can lead to
clients and employers.

• Being involved can help take months off of your Drupal learning curve by exposing
you to discussions and individuals that you wouldn’t otherwise have come across.

• You can help shape the exact direction of modules and even the Drupal core itself,
so that they meet the requirements for your project.

• It’s also really fun! You meet people from all over the world, and get to learn from
some of the best and brightest minds out there on web design.

Looking forward to meeting you on Drupal.org!

Summary
The tips and techniques outlined in this chapter can help identify “must-have” modules
long after this book is out of date. By assessing things such as how active a project’s
maintainer is, how large the user community is around a project, and how well-
documented and easy-to-read its code is, you can help make smart, future-proof choices

450 | Appendix B: Choosing the Right Modules

http://drupal.org/node/317
http://drupal.org/contribute/documentation/join
http://drupal.org/contribute/documentation/join
http://association.drupal.org/donate

on your module selection. And by getting involved directly in the community itself,
you can meet the awesome people who make Drupal what it is, and become one of
them yourself!

References
Here is a list of the resources referred to in this appendix:

Bug report and feature request guidelines: http://drupal.org/node/317

Case studies: http://drupal.org/cases

Contribute page: http://drupal.org/contribute

Contributed module list: http://drupal.org/project/Modules

CVS repository online: http://cvs.drupal.org/viewvc.py/drupal/contributions/modules

Developers list for the Drupal project: http://drupal.org/project/developers/3060

Documentation team: http://drupal.org/contribute/documentation/join

Donate money: http://association.drupal.org/donate

Drupal core project issue queue: http://drupal.org/project/issues/drupal

Drupal.org forums: http://drupal.org/forum

Drupal “Before You Start” forum: http://drupal.org/forum/20

Drupal showcase forum: http://drupal.org/forum/25

New York Observer case study: http://drupal.org/node/141187

Planet Drupal: http://drupal.org/planet

Popular Science magazine case study: http://drupal.org/node/233090

Sony BMG MyPlay case study: http://drupal.org/node/241344

Third-party resources: http://drupal.org/node/289913

References | 451

http://drupal.org/node/317
http://drupal.org/cases
http://drupal.org/contribute
http://drupal.org/project/Modules
http://cvs.drupal.org/viewvc.py/drupal/contributions/modules
http://drupal.org/project/developers/3060
http://drupal.org/contribute/documentation/join
http://association.drupal.org/donate
http://drupal.org/project/issues/drupal
http://drupal.org/forum
http://drupal.org/forum/20
http://drupal.org/forum/25
http://drupal.org/node/141187
http://drupal.org/planet
http://drupal.org/node/233090
http://drupal.org/node/241344
http://drupal.org/node/289913

APPENDIX C

Modules and Themes Used in This Book

This appendix lists the modules and themes used in each project throughout the book.
These are all included with the source code and are listed here for quick reference or if
you would like to replicate the chapters without using the source code.

This book was written against Drupal 6.4.

Chapter 1, Drupal Overview
Not applicable.

Chapter 2, Drupal Jumpstart
Modules:

• Administration menu 6.x-1.1 (http://drupal.org/project/admin_menu)

• FCKeditor module 6.x-1.3-rc1 (http://drupal.org/project/fckeditor)

• FCkeditor package 2.6.3 (http://fckeditor.net)

• IMCE 6.x-1.1 (http://drupal.org/project/imce)

Theme:

• Garland (core)

Chapter 3, Job Posting Board
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Content Construction Kit (CCK) 6.x-2.0-rc10 (http://drupal.org/project/cck)

• FileField 6.x-3.0-alpha6 (http://drupal.org/project/filefield)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

453

http://drupal.org/project/admin_menu
http://drupal.org/project/fckeditor
http://fckeditor.net
http://drupal.org/project/imce
http://drupal.org/project/advanced_help
http://drupal.org/project/cck
http://drupal.org/project/filefield
http://drupal.org/project/views

Theme:

• Wabi 6.x-1.1 (http://drupal.org/project/wabi)

Chapter 4, Product Reviews
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Amazon 6.x-1.0-beta3 (http://drupal.org/project/amazon)

• Content Construction Kit (CCK) 6.x-2.0-rc10 (http://drupal.org/project/cck)

• CSS Injector 6.x-1.3 (http://drupal.org/project/css_injector)

• Fivestar 6.x-1.13 (http://drupal.org/project/fivestar)

• Search (core)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

• Voting API 6.x-2.0-beta6 (http://drupal.org/project/votingapi)

Theme:

• Nitobe 6.x-1.6 (http://drupal.org/project/nitobe)

Chapter 5, Wiki
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Diff 6.x-2.0 (http://drupal.org/project/diff)

• Freelinking 6.x-1.6 (http://drupal.org/project/freelinking)

• Markdown filter 6.x-1.0 (http://drupal.org/project/markdown)

• Pathauto 6.x-1.1 (http://drupal.org/project/pathauto)

• Token 6.x-1.10 (http://drupal.org/project/token)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

Theme:

• Barlow 6.x-1.0 (http://drupal.org/project/barlow)

Chapter 6, Managing Publishing Workflow
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Trigger (core)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

454 | Appendix C: Modules and Themes Used in This Book

http://drupal.org/project/wabi
http://drupal.org/project/advanced_help
http://drupal.org/project/amazon
http://drupal.org/project/cck
http://drupal.org/project/css_injector
http://drupal.org/project/fivestar
http://drupal.org/project/views
http://drupal.org/project/votingapi
http://drupal.org/project/nitobe
http://drupal.org/project/advanced_help
http://drupal.org/project/diff
http://drupal.org/project/freelinking
http://drupal.org/project/markdown
http://drupal.org/project/pathauto
http://drupal.org/project/token
http://drupal.org/project/views
http://drupal.org/project/barlow
http://drupal.org/project/advanced_help
http://drupal.org/project/views

• Views Bulk Operations 6.x-1.1 (http://drupal.org/project/views_bulk_opera
tions)

• Workspace 6.x-1.3 (http://drupal.org/project/workspace)

• Workflow 6.x-1.1 (http://drupal.org/project/workflow)

Theme:

• Light Fantastic 6.x-1.0 (http://drupal.org/project/lightfantastic)

Chapter 7, Photo Gallery
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Content Construction Kit (CCK) 6.x-2.0-rc10 (http://drupal.org/project/cck)

• Custom Pagers 6.x-1.10-beta1 (http://drupal.org/project/custom_pagers)

• FileField 6.x-3.0-alpha6 (http://drupal.org/project/filefield)

• ImageCache 6.x-1.0-alpha2 (http://drupal.org/project/imagecache)

• ImageField 6.x-3.0-alpha1 (http://drupal.org/project/imagefield)

• Token 6.x-1.10 (http://drupal.org/project/token)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

Theme:

• Ubiquity 6.x-1.x-dev (2008-May-31) (http://drupal.org/project/ubiquity)

Chapter 8, Multilingual Sites
Modules:

• Book (core)

• Content Translation (core)

• Forum (core)

• Internationalization 6.x-1.0-beta1 (http://drupal.org/project/i18n)

• Localization (core)

• Localization client 6.x-1.3 (http://drupal.org/project/l10n_client)

Theme:

• Dreamy 6.x-1.3 (http://drupal.org/project/dreamy)

Chapter 8, Multilingual Sites | 455

http://drupal.org/project/views_bulk_operations
http://drupal.org/project/views_bulk_operations
http://drupal.org/project/workspace
http://drupal.org/project/workflow
http://drupal.org/project/lightfantastic
http://drupal.org/project/advanced_help
http://drupal.org/project/cck
http://drupal.org/project/custom_pagers
http://drupal.org/project/filefield
http://drupal.org/project/imagecache
http://drupal.org/project/imagefield
http://drupal.org/project/token
http://drupal.org/project/views
http://drupal.org/project/ubiquity
http://drupal.org/project/i18n
http://drupal.org/project/l10n_client
http://drupal.org/project/dreamy

Chapter 9, Event Management
Modules:

• Advanced help 6.x-1.0 (http://drupal.org/project/advanced_help)

• Content Construction Kit (CCK) 6.x-2.0-rc10 (http://drupal.org/project/cck)

• Calendar 6.x-2.0-rc3 (http://drupal.org/project/calendar)

• Date 6.x-2.0-rc3 (http://drupal.org/project/date)

• Flag 6.x-1.0-beta5 (http://drupal.org/project/flag)

• Views 6.x-2.0-rc4 (http://drupal.org/project/views)

Theme:

• Deco 6.x-1.1 (http://drupal.org/project/deco)

Chapter 10, Online Store
Modules:

• Content Construction Kit (CCK) 6.x-2.0-rc10 (http://drupal.org/project/cck)

• FileField 6.x-3.0-alpha6 (http://drupal.org/project/filefield)

• ImageCache 6.x-1.0-alpha2 (http://drupal.org/project/imagecache)

• ImageField 6.x-3.0-alpha1 (http://drupal.org/project/imagefield)

• Token 6.x-1.10 (http://drupal.org/project/token)

• Ubercart 6.x-2.x-dev (2008-Nov-3) (http://drupal.org/project/ubercart)

Theme:

• Pixture 6.x-1.1 (http://drupal.org/project/pixture)

Chapter 11, Theming Your Site
Modules:

• Devel 6.x-1.9 (http://drupal.org/project/devel)

Theme:

• Bluemarine (core)

456 | Appendix C: Modules and Themes Used in This Book

http://drupal.org/project/advanced_help
http://drupal.org/project/cck
http://drupal.org/project/calendar
http://drupal.org/project/date
http://drupal.org/project/flag
http://drupal.org/project/views)
http://drupal.org/project/deco
http://drupal.org/project/cck
http://drupal.org/project/filefield
http://drupal.org/project/imagecache
http://drupal.org/project/imagefield
http://drupal.org/project/token
http://drupal.org/project/ubercart
http://drupal.org/project/pixture
http://drupal.org/project/devel

Index

Symbols
“$Id:” tag in Drupal.org files, 395

A
access control

about, 45–59
online stores, 377

actions
email notifications, 213
ImageCache module, 246
workflow, 215–220, 230

Administration Menu module, 42
administration pages

wikis, 229
administration theme setting, 74
AdSense module, 178
Akismet, 67
aliases

Pathauto, 196
Amazon module, 156–161
Apache web server

Clean URLs, 253
API modules, 158
arguments

Views module, 119
attachment displays, 116
attendance

tracking, 315
attributes

online stores, 354–366
authoring information

controlling display, 187
Auto Time Zone module, 310
autocomplete text fields, 97

Automatic Node Titles module, 147

B
back-ups

when upgrading Drupal, 432
Backlinks view, 207
backwards compatibility, 428
block regions

displaying, 386
block.tpl.php template file, 398
blocking users, 50
blocks

about, 14, 27
configuration, 34
displays, 116, 143
internationalization, 299
themes, 73

blogs
creating, 61
module, 14, 178

Body field, 22
Book module, 273
box.tpl.php template file, 398
branding

customizing look and feel, 75
breadcrumbs

templates, 399
theme functions, 409, 412

bugs
reporting, 448, 449

C
Calendar module, 330
Calendar Popup module, 338

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

457

Cascading Style Sheets (CSS)
theming, 387, 396

case studies
Aurora Book Club site, 314
Berchem University SGA wiki, 182
Epic University, 92
Migratory Patterns website, 272
Mom and Pop, Inc website, 18
popular Drupal websites, 439
Robinson’s photo gallery website, 236
Super Duper Chefs website case study, 150
Sweet Tees website case study, 342
Twin City Arts website, 212

Catalog module, 362
categorization

photos, 244
products, 346

CCK (Content Construction Kit)
about, 94–111
display field options, 176

CCK formatters, 251
changes, tracking in wikis, 184

(see also revisions)
checkboxes, 97
classes

online stores, 354–366
Clean URLs

ImageCache module, 253
server settings for, 426
troubleshooting, 253–255

code examples
using, xvii

code repository
Drupal, 445

color codes
Drupal update status, 430

comment.tpl.php template file, 398
comments, 14, 24
community tagging, 269
compatibility

backwards, 428
modules, 438

Conditional Actions module, 370
configuration

access permissions, 187
Amazon module, 157
blocks, 34
Catalog module, 362
CSS Injector module, 177

flags, 335
ImageField module, 238
Locale module, 284
Pathauto, 197
permissions, 52
photo field display, 257
themes, 70
Ubercart module, 352
user access, 46
views, 118
wiki filters, 188
workflow actions, 217
workflow views, 230

contact forms
creating, 56

content, 21
(see also nodes; supporting content)
about, 21
creating, 29
editing, 20, 76
internationalization, 297
translating, 274, 279, 286, 293

Content Construction Kit (see CCK)
content management

about, 4–8
tools, 20

content moderation
tools for, 67–69

Content Permissions module, 147
Content Translation module, 274
content types

in CCK, 99
for events, 316, 318
internationalization, 304
for job applications, 108
for jobs, 100
for photos, 240
for product reviews, 153
theming, 403
for wikis, 185

contributed modules
defined, 10

contributors
to Drupal, 445

copying themes, 394
core

Drupal, 19
modules, 10

Countdown module, 339

458 | Index

creating
block displays, 143
blogs, 61
contact forms, 56
content, 29
content types, 99, 108, 153, 185, 240, 316
custom themes, 393
event content types, 316
ImageCache presets, 255
lists, 93
navigation, 32
nodes, 12
page displays, 137
regions, 407
roles, 50
views, 134
wiki input format, 189
workflow actions, 230
workflows, 222
workspaces, 227

cron utility
search modules, 170

cropping images, 248
CSS (Cascading Style Sheets)

theming, 387, 396
CSS Injector module, 175
Custom Links module, 147
Custom Pagers module, 266

D
databases

about, 6
in building websites, 6
requirement for, 418
updating Drupal, 431

date field types, 319
Date module, 315, 318–327
Defaults displays, 134
deleting data, 40

(see also removing)
Devel module, 303, 392
developers

Drupal, 446
Diff module

wikis, 201
directories

Drupal, 420
disabling

modules, 40

display field
setting options, 176

displaying
block regions, 386
fields, 105
images, 237
product information, 151

displays
Defaults, 134
Views module, 114

documentation, helping with, 450
(see also references)

donations
for Drupal project, 450

downloading
Drupal, xviii, 419

drop-down select lists, 97
Drupal

about, 1
compatibility between versions, 39, 428
core, 19
downloading, xviii, 419
helping with project, 448
installing, xiii, 417–427
requirements, xiii
thanking developers and maintainers, 448
updating, 427–435
using, 8–15

Drupal.org forums
finding and selecting modules, 439

E
e-commerce (see online stores)
e-Commerce module, 343
editing

content, 20, 76
edits

listing wikis, 205
efficiency

views, 119
email

notifications, 213
environment (see web environment)
Event content type, 318
event management, 313–340

access control, 317
attendance tracking, 315
attendee view, 336
Calendar module, 330

Index | 459

calendar views, 331
content types, 316
Date module, 318–327
Flag module, 334–336
upcoming events view, 327–330

Event module, 315
export and import information

online stores, 350
exposing filters, 172

F
FCKeditor

setting up, 82
features

of Drupal, 3
theming, 386

fields
about, 95
Amazon, 158
CCK, 95
displaying, 105, 113
ratings field, 163
Views module, 118

files
.css files, 387
downloads, 347
Drupal, 420
ID tags used in, 395
.info files, 384
install.php, 420
.js files, 387
settings.php, 299, 302
template files, 388, 397–408
translation files, 275
update.php, 420, 431

filters
configuring, 188
exposing, 172
Freelinking filter, 184, 188
and input formats, 79
order of, 190
PEAR Wiki Filter, 207
Views module, 119
wikis, 188

finding
modules, 38

Firebug, 392
Fivestar module, 152, 161–165
Flag module, 232, 316, 334–336, 339

fonts
italics, 116

format
permissions, 191
text, 183
wiki input, 187

formats
input, 79

formatters
about, 107
CCK, 97, 251

Forum module, 273
forums

internationalization, 307
free tagging

photos, 244
Freelinking filter, 184, 188
front pages

about, 13
nodes, 23

functions
preprocess, 408
search, 160
t(), 275
themes, 409, 412

G
GD image library, 254
GMap module, 339
Google Analytics

online stores, 350
granularity

dates, 324

H
HTML filter, 80

I
i18n (Internationalization module), 296–309
icons

languages, 310
ID tags, 395
IDs (see product Id)
Image Assist module, 78
ImageCache module, 246–258
ImageField module, 237
images, 258

(see also photo galleries)

460 | Index

handling, 20, 77
quality, 258

IMCE module, 78
import and export information

online stores, 350
.info files

theming, 384
input

wiki format for, 187
input formats, 79

dates, 321
input forms

CCK, 93
install.php script, 420
installation

Drupal, xiii, 417–427
FCKeditor, 82
modules, 38
themes, 70
translations, 277, 280
web environment, 418

interfaces (see user interfaces)
internationalization

defined, 271
features of, 274–279
module, 296–309

issue queues
about, 443
helping cleanup, 449

italics
fonts, 116

J
JavaScript

theming, 387
job posting board, 91–148

CCK, 94–111
Views module, 112

JPEG images
thumbnails, 258

K
kits

products, 350

L
Language Icons module, 310
languages (see multilingual sites)

layers
Drupal and website architecture, 8

libraries
Date API module, 318
GD image library, 254

linking
in wikis, 184

lists, building, 93
(see also product lists)

Locale module, 274, 284, 288
localization

defined, 271
Localization client, 287, 291
Location module, 339

M
maintainers

Drupal, 446
menus

Administration Menu module, 42
default menus, 25
internationalization, 299

meta data
for themes, 384

Microsoft IIS web server
Clean URLs, 253

moderation (see content moderation)
module administration page, 37
modules

about, xiv, 10, 36–45
Administration Menu, 42
AdSense, 178
APIs, 158
Auto Time Zone, 310
Automatic Node Titles, 147
Blog, 14, 178
Book module, 273
Calendar module, 330
Calendar Popup, 338
Catalog, 362
Conditional Actions, 370
Content Permissions, 147
Content translation, 274
Countdown, 339
CSS Injector, 175
Custom Links, 147
Custom Pagers, 266
Date, 315, 318–327
Devel, 303, 392

Index | 461

Diff, 201
e-Commerce, 343
Event, 315
finding and selecting, 437–451
Fivestar, 152, 161–165
Flag, 232, 316, 334, 339
Forum module, 273
GMap, 339
Image Assist, 78
ImageCache, 246–258
ImageField, 237
IMCE, 78
Internationalization, 296–309
Language Icons, 310
list of, 453–456
Locale, 274, 284, 288
Location, 339
Multilingual Blocks, 299
Multilingual Menu, 299
Multilingual Taxonomy, 299
Nodequeue, 232
Notifications, 178
Path, 41
Pathauto, 185
PayPal, 379
PEAR Wiki Filter, 207
Poormanscron, 171
Profile module, 299
Rules, 213
Search, 170
Secure Pages, 379
Stock, 379
Strings, 298
Table of Contents, 207
Tagadelic, 269
Talk, 207
Taxonomy, 13, 96, 208
Taxonomy Redirect, 269
Theme Developer, 393
Translation Overview, 310
Translation Synchronization, 300
Update Status, 429
updating, 434
Upload module, 93
Views, 112, 203
Views Bulk Operations module, 228
Wikitools, 183
Workflow, 220–226
Workflow Fields, 232

Workflow Graph, 232
Workspace, 226–228

Mollom, 67
Mom and Pop, Inc website case study, 18
Multilingual Blocks module, 299
Multilingual Menu module, 299
multilingual sites, 271–311

Book module, 273
content translation, 279
Forum module, 273
installing translations, 280
internationalization, 274–279, 296–309
Locale module, 284
Localization client, 287
user interfaces, 273, 288
user-generated content, 274

Multilingual Taxonomy module, 299
multisite capability, 422

N
navigation

about, 25
creating, 32

Navigation menu, 25
node.tpl.php template file, 398
Nodequeue module, 232
nodes, 11

(see also content)
about, 11
compared to blocks, 28
products in Ubercart module, 354
synchronization with taxonomies, 300
translations, 299

notifications
Drupal updates, 426
workflow, 213

Notifications module, 178

O
off-line mode

site maintenance, 430
online stores, 341–380

attributes, 354–366
classes, 354–366
ordering process, 366–378
products, 354–366
setting up, 353
Sweet Tees website case study, 342

462 | Index

Ubercart, 343–353
ordering process

in online stores, 366–378
orders

online stores, 375
overrides

strings, 302
overriding

template files, 404
template variables, 411
theme functions, 409
themes, 408–414

P
Page content type

compared to Story content type, 185
page displays

creating, 137
page nodes

compared to story nodes, 12
defined, 22

page.tpl.php template file, 398
pages

administration pages, 229
displays, 116
front pages, 13
module administration page, 37
overview pages, 213
project pages, 441
search pages, 152

Path module, 41
Pathauto module, 185, 194–199
payments

processing, 347
PayPal module, 379
PEAR Wiki Filter module, 207
permissions

access control, 46
adding, 155
configuring, 52
when creating roles, 47
for input formats, 191
for revisions, 200

photo galleries, 235–270
Custom Pagers module, 266
generating thumbnails, 237
ImageCache module, 246–258
ImageField module, 237
uploading photos, 237

PHP
Date module, 318
ImageCache images, 253
permission names, 53
security issues, 28
snippets, 414
viewing information about, 254

placeholders (see tokens)
Planet Drupal, 439
.po file extensions, 275
polls

translation of, 299
Poormanscron module, 171
posts

listing in wikis, 203
preprocess functions, 408
presentation (see theming)
presets

ImageCache module, 246, 251, 255
Primary links menu, 25
product classes, 355
product IDs

finding, 160
product lists

building, 166–170
searching, 172

product node type, 355
product reviews, 149–179

Amazon module, 156–161
CSS Injector module, 175
getting started, 153–156
product lists, 166–170
Search module, 170–175
Voting API, 161–165

products
categorization, 346
online stores, 354–366

Profile module, 299
project pages, 441
properties

adding to nodes from modules, 12

Q
quality

images, 258

R
radio buttons, 97

Index | 463

ratings
adding, 162
products, 151

references
events management chapter, 340
finding and selecting modules, 451
general, 90
getting help, 15
installing and updating Drupal, 435
job posting boards chapter, 148
multilingual sites chapter, 311
online stores chapter, 380
photo galleries chapter, 270
product reviews chapter, 179
theming chapter, 416
wikis chapter, 209
workflow chapter, 233

regions
themes, 73
theming, 385, 407

relationships
Views module, 120

removing
author information on nodes, 187
data, 40
modules, 40
revisions, 200

reports
issue queues, 448, 449
online store activity, 348, 351

repository
Drupal code, 445

requirements
Drupal, xiii, 417

resizing images, 249
resources (see references)
revisions

tracking, 199–202
right-to-left (RTL) languages, 274
roles

about, 11
access control, 45, 46
creating, 50
of users making purchases, 348

RSS feed displays, 116
Rules module, 213

S
scaling images, 249

scripts
about, 6
installing Drupal, 420
updating Drupal, 431

search functions
finding fields, 160

Search module, 170
search pages, 152
Secondary links menu, 25
Secure Pages module, 379
security

PHP, 28
security updates, 430
select lists, 97
settings

users, 49
settings.php file, 299, 302
shipping products, 370
shopping carts

online stores, 344, 350, 369
site maintenance mode, 430
snippets

PHP, 414
sort criteria

Views module, 120
spam

detection of, 67
SQL

and Views module, 113
states

workflow, 213, 221, 222
Stock module, 379
stock tracking

online stores, 350
stores (see online stores)
Story content type

compared to Page content type, 185
story nodes

compared to page nodes, 12
string overrides, 302
Strings module, 298
supporting content, 14
Sweet Tees website case study, 342
switching languages in multilingual sites, 276,

285
synchronization

taxonomy and node fields, 300

464 | Index

T
t() function, 275
Table of Contents module, 207
Tagadelic module, 269
Talk module, 207
taxes

online stores, 349, 370
taxonomies

about, 59–61
taxonomy

about, 13
internationalization, 299, 307
synchronization with nodes, 300
versus CCK, 96

Taxonomy Redirect module, 269
template files

theming, 388, 397–408
template variables

overriding, 411
theming, 408

test orders
online stores, 372

test users, 48
text

formatting in wikis, 183
translating in user interfaces, 273

text areas, 97
text editors

theming, 392
text fields, 97
text-to-HTML translators, 76
thanking Drupal developers and maintainers,

448
Theme Developer module, 393
theme functions, 409
theming, 381–416

about, 69–75, 382–393
custom themes, 393
overrides, 408–414
template files, 388, 397–408

thumbnails
generating, 237

time increments, 322
time zones, 318, 324, 426
tokens

about, 195
Pathauto, 197

toolbars
content editing, 76

FCKeditor, 87
Web Developer Toolbar, 392

Tracker module, 202–206
tracking

attendance, 315
changes in wikis, 184
editorial workflow, 213
revisions in wikis, 199–202
stock in online stores, 350

translation
content, 274, 279, 286, 293
installation of, 280
installation process, 277
Locale module, 275
user interfaces, 273, 275, 288

Translation Overview module, 310
Translation Synchronization module, 300
triggers

assigning, 219
workflow, 215–220

troubleshooting
Clean URLs, 253–255
ImageCache module, 253
resources, 15

U
Ubercart, 343–353
uninstalling modules, 40
Update Status module, 429
update.php script, 420, 431
updating

Drupal, 427–435
uploading

files, 93
photos, 237, 240–245

URLs
Clean URLs, 253, 426
ImageCache module, 253
images, 248
and nodes, 13
views, 119
in wikis, 185

user interfaces
translating, 273, 275, 288

user profiles
about, 48
on Drupal.org, 447

users
about, 10

Index | 465

access control, 45
blocking, 50
configuring access, 46
settings, 49
supporting, 449

V
variables

language-dependent, 298
overriding, 411
site-wide and internationalization, 301
template variables, 408, 411
in templates, 400

version numbers
Drupal, 427

view types
calendar, 331

viewing
preset images, 252
revisions in wikis, 200

views
calendars, 331
module, 112, 203
searching with, 172

Views Bookmark (see Flag module)
Views Bulk Operations module, 228
visitor ratings

enabling, 164
Voting API, 161–165

W
Web Developer Toolbar, 392
web environment

installing on local system, 418
widgets

CCK, 96
dates, 319

wikis, 181–209
access permissions, 187
administration pages, 229
author information display, 187
creating content type, 185
functionality, 183
human-readable URLs, 185
input format, 187
linking, 184
Pathauto, 194–199
revision tracking, 199–202

text formatting, 183
Tracker module, 202–206
tracking changes, 184

Wikitools module, 183
workflow, 211–233

action and triggers, 215–220
changing default settings for, 214
custom states for tracking, 213
email notifications, 213
module for, 220–226
online stores, 366
overview pages, 213

Workflow Fields module, 232
Workflow Graph module, 232
Workspace module, 226–228
WYSIWYG editors, 76

466 | Index

About the Authors
Angela Byron is an open source evangelist who lives and breathes Drupal. She got her
start as a Google Summer of Code student in 2005 and since then has completely im-
mersed herself in the Drupal community. Her work includes core coding and patch
review, creating and contributing modules and themes, testing and quality assurance
efforts within the project, improving documentation, and providing user support on
forums and IRC.

Angela is on the Board of Directors for the Drupal Association and is the Drupal 7 core
co-maintainer. She helps drive community growth by leading initiatives to help get new
contributors involved, such as Drupal’s participation in Google Summer of Code and
Google’s Highly Open Participation (GHOP) programs. She is a sought-after lecturer
on many themes, especially the topic of women in Open Source. Angie is known as
“webchick” on Drupal.org.

Addison Berry takes part in many aspects of both the Drupal software and community.
She contributes patches to core Drupal, maintains several contributed modules, and is
active in various mentoring programs such as the Drupal Dojo group and the GHOP
program.

Addison is the Drupal project Documentation team lead, helps maintain Drupal.org,
and is a permanent member of the Drupal Association General Assembly. She has
worked to provide a wide range of video and written tutorials covering all aspects of
Drupal from community involvement to code. Addi is known as “add1sun” on
Drupal.org.

Nathan Haug is one of the foremost user-interface developers in the Drupal project.
His interest in combining design and software implementation led him to undergrad-
uate degrees in both Visual Communications and Computer Science. He developed
significant UI improvements for the Drupal 6 release, including Drupal’s drag-and-drop
implementation and a framework for easy Ajax-like behaviors.

Nathan is considered the leading JavaScript developer in the Drupal project. In 2007,
he led a development team at SonyBMG to build a Drupal-based platform for com-
munity websites around each of SonyBMG’s music artists. He spends much of his time
working on popular contributed modules such as Fivestar and Webform, or working
to improve functionality in Drupal core. Nate is known as “quicksketch” on Dru-
pal.org.

Jeff Eaton has been building Internet and desktop software for over a decade. He’s
participated in projects ranging from web portals for communities and nonprofits, to
enterprise client-server applications for retail industries and large-scale web applica-
tions for companies like Dow AgroSciences and Prudential Real Estate.

In 2005, he began developing solutions based on the open source Drupal content man-
agement framework. In the years since, he’s become a core developer for the Drupal
project, specializing in architecture and API development. In his capacity as a consul-
tant for Lullabot Consulting, LLC, he’s helped plan and build the software infrastruc-
ture for Drupal sites that have included MTV UK’s music portal, SonyBMG’s artist site
platform, and Fast Company’s groundbreaking business networking site. Jeff is known
as “eaton” on Drupal.org.

James Walker is Lullabot’s Director of Education; he oversees the company’s public
workshops, seminars, and private Drupal trainings, combining his passion for both
technology and teaching. A leader in the Drupal community, James is a founding
member of the nonprofit Drupal Association and the Drupal security team. As a long-
time member of the Drupal community, James maintains more than a dozen modules
and has contributed countless patches to Drupal core.

A longtime believer in Open Source and Open Standards, James has spent years coor-
dinating Drupal’s involvement with other communities such as Jabber/XMPP and,
most recently, OpenID. An engaging speaker, James is a frequently requested presenter
at many types of technical conferences. His humorous and informative lectures have
been among the most well-attended at DrupalCons, starting with the first one, four
years ago. James is known as “walkah” on Drupal.org.

Jeff Robbins is cofounder and CEO of Lullabot. Jeff started one of the world’s first
web development companies in 1993 and has developed sites for Ringo Starr, MTV,
and New York’s Museum of Modern Art. Additionally, Jeff spent most of the 1990s
fronting the band Orbit, touring with the Lollapalooza festival, and penning a top-10
modern rock single.

Jeff hosts Lullabot’s popular Drupal podcast and has garnered a certain amount of
recognition within the community. Additionally, he has contributed many widely used
Drupal modules and themes including ConTemplate, LoginToboggan, the Zen theme,
and the Theme Developer tool. Jeff is known as “jjeff” on Drupal.org.

Colophon
The animal on the cover of Using Drupal is a dormouse. Dormice are part of the
Gliridae family and originally come from Africa and Southern Europe. There are many
species of this rodent, but the most popular and common one on the pet market is the
African dormouse. The other known dormice are the “common dormouse” or the “ha-
zel mouse” and most resemble small squirrels. Their name is derived from the French
word dormir, which means to sleep—significant because dormice hibernate for as long
as six months, or longer if the weather is cool, awaking only briefly to eat food they
stored nearby. During the summer months, they accumulate fat in their bodies allowing
them to hibernate for such long periods of time.

On average, dormice are about four inches long, not including the two-inch bushy tail.
They have rounded ears, large eyes, and their fur is thick and soft and reddish brown
in color. Dormice have an excellent sense of hearing and use a range of different vo-
calizations to signal each other. They are very playful, social, and personable animals
(more so if you raise them from a young age). Their playfulness consists of flips,
climbing rope, and leaping and jumping; they are nocturnal so they play mostly at night.
Being left alone may cause them to become stressed and unhappy, as they thrive on
interaction with others.

Dormice feed on fruit, insects, berries, flowers, seeds, and nuts, and they are especially
partial to hazelnuts. They are unique among other rodents because they lack a “cecum,”
a pouch connected to the colon of the large intestine, which is used in fermenting
vegetable matter. Dormice breed once or twice a year and produce an average litter of
four young. Their average lifespan is a somewhat short five years. They are born hairless,
and their eyes don’t open until about 18 days after birth, rendering them helpless at
birth. They become sexually mature after the end of their first hibernation.

The cover image is from an unknown source. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Audience
	Assumptions This Book Makes
	A Note About the Modules Used in This Book
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Downloading Drupal 6
	Safari® Books Online
	Comments and Questions
	Acknowledgments

	Chapter 1. Drupal Overview
	What Is Drupal?
	Who Uses It?
	What Features Does Drupal Offer?

	A Brief History of Content Management
	A Historical Look at Website Creation
	The Age of Scripts and Databases
	The Content Revolution

	How Does Drupal Work?
	Modules
	Users
	Content (Nodes)
	Ways of Organizing Content
	Types of Supporting Content

	Getting Help
	Conclusion

	Chapter 2. Drupal Jumpstart
	Case Study
	Implementation Notes
	Basics
	Easy content editing and image handling

	Spotlight: Content Management
	Content
	Comments
	Navigation
	Blocks

	Hands-On: Content Management
	Creating Content
	Managing Site Navigation
	Configuring Blocks

	Spotlight: Modules
	Module Administration Page
	Finding and Installing Modules
	Removing Modules

	Hands-On: Working with Modules
	Path Module
	Administration Menu Module

	Spotlight: Access Control
	Configuring User Access
	User Profiles
	User Settings
	Handling Abusive Users

	Hands-On: Creating Roles
	Hands-On: Configuring Permissions
	Hands-On: Contact Form
	Spotlight: Taxonomy
	Hands-On: Blog
	Spotlight: Content Moderation Tools
	Automated Spam Detection Tools
	Manual Content Moderation Tools

	Spotlight: Themes
	Finding a Theme
	Theme Installation
	Theme Configuration
	Blocks and Regions
	Administration Theme Setting

	Hands-On: Branding the Site
	Spotlight: Content Editing and Image Handling
	Content Editing
	Image Handling

	Spotlight: Input Formats and Filters
	Hands-On: Setting Up FCKeditor
	Summary

	Chapter 3. Job Posting Board
	Case Study
	Implementation Notes
	Custom input forms
	Listings
	File uploads

	Spotlight: CCK
	Fields
	Widgets
	Formatters

	Hands-On: CCK
	Hands-On: Job Content Type
	Hands-On: Customizing Field Display
	Hands-On: Job Application Type
	Spotlight: Views Module
	Displays
	Pieces of a View
	Fields
	Filters
	Arguments
	Sort criteria
	Relationships

	Hands-On: The Views Module
	Jobs View
	Job Applications View
	Create the View and Defaults displays
	Create the page display
	Create the Job tab display
	Create the Applications block display

	Taking It Further
	Summary

	Chapter 4. Product Reviews
	Case Study
	Implementation Notes
	Product information
	Product ratings
	Custom searching

	First Steps: Basic Product Reviews
	Creating the Product Review Content Type

	Spotlight: Amazon Module
	What’s Included?
	Locale
	Referral Settings

	Hands-On: Adding an Amazon Field
	Adding the Product Field
	Finding Product IDs

	Spotlight: Voting API and Fivestar
	Hands-On: Adding Ratings
	Adding the Rating Field
	Turning on Visitor Ratings

	Hands-On: Building a Product List
	Spotlight: The Search Module
	The Importance of Cron
	Searching with Views

	Hands-On: Make the Product List Searchable
	Spotlight: CSS Injector
	Hands-On: Polishing the Presentation
	Setting CCK Display Fields Options
	Configuring CSS Injector

	Taking It Further
	Summary

	Chapter 5. Wiki
	Case Study
	Implementation Notes
	Wiki Functionality
	Easy Text Formatting
	Easy Linking
	Tracking Changes
	Human-Readable URLs
	Listing Changes

	Hands-On: First Steps
	Creating a Wiki Content Type
	Removing the Author Information Display
	Configuring Access Permissions

	Hands-On: Wiki Input Format
	Configuring the Filters
	Creating the Wiki Input Format
	Setting Up Format Permissions
	Adding Content

	Spotlight: Pathauto
	Hands-On: Pathauto
	Configuring Settings

	Spotlight: Drupal’s Revision Tracking
	Hands-On: Revisions and Diff
	Make Revisions the Default
	Setting Permissions
	Viewing Revisions and Reverting
	Using Diff

	Hands-On: New Pages and Recent Edits with Views
	Recent Posts Listing
	Recent Edits Listing

	Taking It Further
	Summary

	Chapter 6. Managing Publishing Workflow
	Case Study
	Implementation Notes
	Editorial workflow
	Email notifications
	Overview pages

	Hands-On: First Steps
	Spotlight: Actions and Triggers
	Hands-On: Actions and Triggers
	Configure Actions
	Assign Triggers

	Spotlight: Workflow Module
	Hands-On: Creating a Workflow
	Spotlight: The Workspace Module
	Hands-On: Create Workspaces
	Spotlight: Views Bulk Operations
	Hands-On: Building an Administration Page
	Create Workflow Actions
	Configure the View

	Taking It Further
	Summary

	Chapter 7. Photo Gallery
	Case Study
	Implementation Notes
	Photo Uploads
	Thumbnail Generation
	Photo Galleries

	Spotlight: ImageField
	Configuration

	Hands-On: Uploading Photos
	Photo Content Type
	Image Galleries

	Spotlight: ImageCache
	Presets and Actions
	Crop
	Resize
	Scale
	Scale and crop

	Using a Preset
	CCK formatters
	Manually viewing a preset image

	Troubleshooting ImageCache
	Check Clean URLs
	Check GD library

	Hands-On: ImageCache
	Create ImageCache Presets
	Configure Photo Field Display
	Improve Image Quality

	Hands-On: Gallery View
	Hands-On: Latest Photos Block
	Hands-On: Custom Pagers
	Taking It Further
	Summary

	Chapter 8. Multilingual Sites
	Case Study
	Implementation Notes
	Forum Discussions
	Knowledge Base
	Translating User Interface Text
	Translating User-Generated Content

	Spotlight: Core Internationalization Features
	Locale
	Translations
	Interface translation
	Language switching
	Localized installer

	Content Translation

	Hands-On: Installing a Translation
	Hands-On: Configuring Locale Features
	Language Negotiation Settings
	Language Switcher

	Hands-On: Translatable Content
	Spotlight: Localization Client
	Hands-On: Translating the Interface
	Using the Locale Module
	Using the Localization Client

	Hands-On: Translating Content
	Translation

	Spotlight: Internationalization
	Content Selection
	Strings
	Site-Wide Language-Dependent Variables
	Module Helpers
	Synchronization

	Hands-On: Internationalization Features
	Content Selection
	Site-Wide Variables
	Content Types
	Taxonomy
	Forums

	Taking It Further
	Summary

	Chapter 9. Event Management
	Case Study
	Implementation Notes
	Event Management
	Attendance Tracking

	Hands-On: First Steps
	Creating an Event Content Type
	Access Control

	Spotlight: Date Module
	Date API Module
	Date Timezone
	Date Field Types
	Date Widgets
	Date Settings

	Hands-On: Adding Dates
	Set Up the Date Module
	Add the Date Field

	Hands-On: Upcoming Events View
	Spotlight: Calendar Module
	Calendar View Type

	Hands-On: Calendar View
	Spotlight: Flag Module
	Hands-On: Flag Configuration
	Hands-On: Attendee View
	Taking It Further
	Summary

	Chapter 10. Online Store
	Case Study
	Implementation Notes

	Spotlight: Ubercart Packages
	Ubercart—core
	Ubercart—core (optional)
	Ubercart—extra

	Spotlight: Ubercart’s Administration Panel
	Hands-On: Setting Up the Store
	Initial Setup Tasks

	Spotlight: Products, Product Classes, and Attributes
	Hands-On: Creating Products
	Initial Setup Tasks
	Configuring Product Classes
	Configuring Product Attributes
	Configuring Product Settings
	Configuring the Catalog

	Spotlight: The Ordering Process
	Hands-On: Processing Orders
	Shopping Cart
	Taxes
	Shipping
	Payment
	Placing a Test Order
	Fulfilling an Order
	Access Control

	Taking It Further
	Summary

	Chapter 11. Theming Your Site
	Spotlight: The Theme System
	.info Files
	Regions
	Features
	CSS
	JavaScript
	Template Files
	The template.php File

	Hands-On: Creating a Custom Theme
	Make a Copy of the Theme
	Changing CSS

	Spotlight: Template Files
	Hands-On: Working with Template Files
	Modifying a Template File
	Theming Specific Content Types
	Overriding a Module’s Template File
	Creating a New Region

	Spotlight: Advanced Overrides
	Template Variables
	Theme Functions

	Hands-On: Using template.php for Overrides
	Overriding a Template Variable
	Overriding a Theme Function

	Taking It Further
	Summary
	References

	Appendix A. Installing and Upgrading Drupal
	Before You Begin Installation
	Gathering Requirements
	Downloading Drupal
	Drupal’s Files and Directories

	Installing Drupal
	Keeping Drupal Up-to-Date
	Version Numbers
	Update Status Module
	Site Maintenance Mode
	The update.php Script

	Updating Drupal Core
	Updating Contributed Modules
	References

	Appendix B. Choosing the Right Modules
	Finding Modules
	Browse Module Listings
	Keyword Search
	Drupal.org Forums
	Case Studies
	Planet Drupal
	Third-Party Websites

	Assessing a Module’s Health
	Project Pages
	Issue Queues
	Code

	The People Behind the Code
	Maintainer Activity
	User Profiles

	Getting Involved
	Summary
	References

	Appendix C. Modules and Themes Used in This Book
	Chapter 1, Drupal Overview
	Chapter 2, Drupal Jumpstart
	Chapter 3, Job Posting Board
	Chapter 4, Product Reviews
	Chapter 5, Wiki
	Chapter 6, Managing Publishing Workflow
	Chapter 7, Photo Gallery
	Chapter 8, Multilingual Sites
	Chapter 9, Event Management
	Chapter 10, Online Store
	Chapter 11, Theming Your Site

	Index

