
www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2012
and .NET 4.5 Expert
Development Cookbook

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

Abhishek Sur

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visual Studio 2012 and .NET 4.5 Expert
Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1050413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84968-670-9

www.packtpub.com

Cover Image by Siddhart Ravishankar (sidd.ravishankar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Abhishek Sur

Reviewers
Carlos Hulot

Ahmed Ilyas

Sergiy Suchok

Ken Tucker

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Susmita Panda

Technical Editors
Jalasha D'costa

Amit Ramadas

Project Coordinator
Anish Ramchandani

Proofreader
Claire Cresswell-Lane

Indexer
Tejal Soni

Graphics
Aditi Gajjar

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Abhishek Sur is a Microsoft MVP in Client App Dev since 2011. He is an architect in the
.NET platform. He has profound theoretical insight and years of hands on experience in
different .NET products and languages. Over the years, he has helped developers throughout
the world with his experience and knowledge. He owns a Microsoft User Group in Kolkata
named KolkataGeeks, and regularly organizes events and seminars in various places for
spreading .NET awareness. A renowned public speaker, voracious reader, and technology
buff, his main interest lies in exploring the new realms of .NET technology and coming up with
priceless write-ups on the unexplored domains of .NET. He is associated with the Microsoft
Insider list on WPF and C#, and is in constant touch with product group teams. He holds a
Masters degree in Computers along with various other certificates to his credit.

On the web, Abhishek is a freelance content producer, developer, and a site administrator. His
website abhisheksur.com guides both budding and experienced developers to understand
the details of languages and latest technology. He enjoys a huge fan following on social
networks. You can reach him at books@abhisheksur.com, or get online updates from
Facebook or Twitter @abhi2434.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Writing this book would not have been possible without the help of many people. Knowledge
is a priceless alternative of time. While writing this book, I have spent a considerable amount
of time in reading a lot of online journals, documentations, and blogs to explain and present
concepts and ideas in a more lucid way.

First of all, I am extremely thankful to the entire Packt Publishing team for their continuous
help. I would like to thank Anish Ramchandani and Susmita Panda, who have been very
supportive and helped me to meet the deadlines. My most sincere thanks to my reviewers
Carlos Hulot, Ahmed Illyas, Sergiy Suchok, and Ken Tucker for reviewing every line I wrote
for this book, which resulted in bringing so many positive changes in this book. Last but not
the least, a lot of thanks to Amit Ramadas and Jalasha D'costa for editing the chapters of
this book.

I would also like to thank my colleague cum friends Shibatosh, Ranjit, Pallab, Ayan, Malini, and
other members of our group for their continuous support and motivation to write this book. I
am also thankful for being in touch with Mr. Raj Goswami, CEO and Mr. D. K Goswami, Director
of BuildFusion, India. I would also like to extend my sincere thanks to Anoop Madhusudan,
Abhijit Jana, Kunal Chowdhury, Dhananjay Kumar, Karthikayan Anabarasan, Lohith, Abhishek
Kant, and Shivprasad Koirala for their continuous help and motivation.

I would also like to acknowledge my fiancée Riya for helping me and motivating me to write
better. I want to dedicate this book to her.

Being a community lover I used to write a lot of blogs and articles, but this is the first time
I am putting my experience and efforts in the form of a book. I am really thankful to all my
readers and followers all over the world who loved my blogs and hopefully they will love
this book too.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Carlos Hulot has been working in the IT area for more than 20 years in different
capabilities, from software development, project management to IT marketing product
development and management. Carlos has worked for multinational companies like Royal
Philips Electronics, PricewaterhouseCoopers, and Microsoft. Currently, Carlos is working as an
independent IT consultant. Carlos is a Computer Science lecturer at two Brazilian universities.
Carlos holds a Ph.D in Computer Science and Electronics from the University of Southampton,
UK, and a B.Sc. in Physics from the University of São Paulo, Brazil.

Ahmed Ilyas has a bachelor's degree in engineering from Napier University in Edinburgh,
Scotland, and has majored in software development. He has 15 years of professional
experience in software development.

After leaving Microsoft, he ventured into setting up his consultancy company offering the
best possible solutions for a magnitude of industries and providing real-world answers
to problems. They only use the Microsoft stack to build these technologies, to be able to
bring in best practice, patterns, and software to their client base. Thus, enabling long term
stability and compliance in the ever changing software industry and also improving software
developers around the globe—pushing the limits in technology as well as develop themselves
to become better.

This went on to being awarded the MVP in C# three times by Microsoft for providing excellence
and independent real-world solutions to problems that developers face.

With the breadth and depth of knowledge he as obtained not only from his research but
also with the valuable wealth of information and research at Microsoft, the motivation
and inspirations come from this, with 90 percent of the world using at least one form of
Microsoft technology.

www.allitebooks.com

http://www.allitebooks.org

Ahmed Ilyas has worked for a number of clients and employers. With the great reputation that
he has, this has resulted in having a large client base for his consultancy company, Sandler
Ltd (UK) which includes clients from different industries from, media to medical and beyond.
Some clients have included him on their "approved contractors/consultants" list, which
include ICS Solution Ltd and he has been placed on their "DreamTeam" portal and also CODE
Consulting/EPS Software (www.codemag.com, based in the US).

Ahmed Ilyas has also been involved, in the past, in reviewing books for Packt Publishing and
wishes to thank them for the opportunity once again.

I would like to thank the author/publisher of this book for giving me the
great honor and privilege in reviewing the book. I would also like to thank
my client base and especially Microsoft Corporation and my colleagues over
there for enabling me to become a reputable leader as a software developer
in the industry, which is my passion.

Sergiy Suchok graduated in 2004 with honors from the Faculty of Cybernetics, Taras
Shevchenko National University of Kyiv (Ukraine), and has since then been keen on
information technology. He currently works in the banking area and has a PhD in Economics.
Sergiy is the coauthor of more than 45 articles and has participated in more than 20 scientific
and practical conferences devoted to economic and mathematical modeling. He is a member
of the New Atlantis Youth Public Organization (newatlantida.org.ua) and devotes his
leisure time to environmental protection issues, historical, and patriotic development and
popularization of a grateful attitude towards the Earth. He also writes poetry and short stories
and makes macramé.

I would like to thank my wife and my young daughter for their patience and
understanding while reviewing.

Ken Tucker is a web developer for Sea World, and has been a Microsoft MVP since October
2003. In his spare time he enjoys writing Windows Phone and Windows Store apps.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to Visual Studio IDE Features 7

Introduction 7
Identifying the various components of Visual Studio IDE 8
Working with Solution Explorer and Class View 14
Working with the main workspace area of IDE 18
Navigating between code inside the IDE 22
Extending Visual Studio templates 29
Using Code Snippets in Visual Studio 39
Using Smart Tags and Refactor in Visual Studio 45

Chapter 2: Basics of .NET Programs and Memory Management 51
Introduction 52
Inspecting the internal structure of a .NET assembly 53
Working with different types of assemblies 60
Inspecting the major components of a .NET program 70
How to work with custom configurations for an application 75
How to disassemble an assembly 81
Securing your code from reverse engineering by using obfuscation 89
Understanding .NET garbage collection and memory management 96
How to find memory leaks in a .NET program 104
Solutions to 10 common mistakes made by developers while writing code 115

Chapter 3: Asynchronous Programming in .NET 123
Introduction 123
Introduction to Threading and Asynchronous Threading patterns 125
Working with Event-based asynchronous pattern and BackgroundWorker 135
Working with thread locking and synchronization 139
Lock statement using task-based parallelism in concurrent programming 147

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Working with async and await patterns 155
Working with Task Parallel Library data flows 165

Chapter 4: Enhancements to ASP.NET 173
Introduction 173
Understanding major performance boosters in ASP.NET web applications 174
How to work with statically-typed model binding in ASP.NET applications 185
Introduction to HTML5 and CSS3 in ASP.NET applications 189
Working with jQuery in Visual Studio with ASP.NET 205
Working with task-based asynchronous HttpHandlers and HttpModules 211
New enhancements to various Visual Studio editors 214

Chapter 5: Enhancements to WPF 223
Introduction 223
Getting started with WPF and its major enhancements in .NET 4.5 226
Building applications using MVVM pattern supported by WPF 234
Using the Ribbon User Interface in WPF 260
Using WeakEvent pattern in WPF 272

Chapter 6: Building Touch-sensitive Device Applications
in Windows 8 275

Introduction 275
Building your first Windows 8 style tiles application
using JavaScript, HTML5, and CSS 278
Writing a library for WinJS 294
Building your first Windows 8 style tiles application using C# and XAML 297
Working with storage files in Windows 8 style tiles applications 306
Understanding the application life cycle of WinRT applications 312

Chapter 7: Communication and Sharing using Windows 8 325
Introduction 325
How to enable app to app sharing inside a Windows 8 environment 326
Working with notification and services 330
How to perform background transfers of data in Windows 8 style tiles
applications 348

Index 355

Preface
Moving through the last few decades, from being the new kid on the block, .NET has turned
itself into the most talked about young thing on the IT horizon. More and more people are
getting inclined to use .NET, to make a mark in their career and also, more and more, clients
are coming to .NET to accomplish their dreams. The recent buzz about C# being the best
programming language has now made the world of developers very eager to build .NET
applications. As the crowd is growing in the developers arena, there is always a need to
have a clear perception on how things work and ways to make things better.

Visual Studio 2012 and .NET 4.5 Expert Development Cookbook mainly focuses on things
that you need to know in those crunch situations as a developer. It also tries to feed you
with as much details as it can, and covers as much technological domain in the world of
.NET. The book is written in the form of recipes with step-by-step tutorials on every topic
where the developer accompanies the author in this wonderful journey into the known and
hitherto unknown realms of .NET. The recipes in the book, which are mostly sought out by
developers on the Internet, are chosen in such a way so as to practically demonstrate them
and not restrict developers only to them, but to also expose the other unexplored domains on
the same topic to give them a clear view of the whole picture. There is a special section for
each recipes bearing the heading There's more…, which always focuses on giving you extra
knowledge on things that you might have missed without it. By the time you come to the end
of this journey, you will feel the comfort and enjoy the confidence that a clear understanding
of the insight of .NET gives you.

The book is a practical handbook that could give you optimal utilization of time for knowledge.
It separately presents the topics very precisely and elaborates the same which you can rely
on for a deeper look. It explains the recipes with proper sample code blocks that might make
the usage of each topic very clear and make you utilize the final source code while writing your
real-world applications. The examples taken for this book will clear your understanding of how
things exactly work for that particular recipe and also adapt you as a developer to make use
of the same source code in your production environment efficiently and quickly. If you want to
utilize your busy schedule to explore all the necessary ongoing technology in the market, this
book is best suited for you.

Preface

2

The book focuses on giving you:

 f Maximum utilization of time for learning
 f Major insights into ongoing technologies such as Visual Studio 2012, .NET 4.5, ASP.

NET, Windows 8 Applications, Windows Presentation Foundation, HTML5, jQuery,
memory management, and so on

 f Practical examples on procedures to create real-world applications
 f Step-by-step examples to create simple applications based on heads

What this book covers
Chapter 1, Introduction to Visual Studio IDE Features, starts with a basic introduction to Visual
Studio IDE and gives the developer insights into how to increase productivity of development
using a common set of tools and features present inside the IDE.

Chapter 2, Basics of .NET Programs and Memory Management, introduces the intersection
of a .NET program and its core components. It dives deep in demonstrating the .NET
infrastructure with detailed explanation of memory management and related techniques.

Chapter 3, Asynchronous Programming in .NET, focuses on introducing all existing techniques
to deal with threading in .NET followed by the newer patterns that takes over the existing
working principles with in-depth explanation on their working principles.

Chapter 4, Enhancements to ASP.NET, gives you an introduction to latest enhancements of
ASP.NET 4.5 with HTML5 and jQuery. It also introduces some of the performance boosters
available in .NET 4.5 and Visual Studio 2012 with ASP.NET.

Chapter 5, Enhancements to WPF, introduces the enhancements to WPF 4.5 and the major
components of WPF. It gives a practical implementation of MVVM based WPF application
covering all the facets required to program in WPF environment.

Chapter 6, Building Touch-sensitive Device Applications in Windows 8, introduces the new
programming model for developing Windows 8 style tiles application. It gives a step-by-step
introduction in how to program using HTML5 and JavaScript as well as WPF and C# for
developing Windows 8 applications.

Chapter 7, Communication and Sharing Using Windows 8, focuses on how to implement
network-enabled applications in Windows 8 with step by step implementation on how sharing
and searching works inside the Windows 8 environment.

Appendix, .NET languages and its Construct, focuses on giving insights on how languages
work in the .NET framework and C# with details explanation with examples of various features
of C# language.

You can download this Appendix from http://www.packtpub.com/sites/default/
files/downloads/6709EN_Appendix_NET_Languages_and_its_Construct.pdf

Preface

3

What you need for this book
The basic software requirements for this book are as follows:

 f Microsoft .NET Framework 4.5 and higher

 f Microsoft Visual Studio 2012 Express or higher editions

 f Windows 8 Operating System (especially to work with Chapter 6 and 7)

 f Latest web browsers

Who this book is for
The purpose of this book is to give you ready made steps in the form of recipes to develop
common tasks that, as a developer, you might often be required to access. The book utilizes
its chapters skillfully to provide as much information as it can and also with as much detail
as necessary to kick start the subject. The book also delivers in-depth analysis of some
advanced section of the subject to get you to expertise level. If you are a starter in the
development environment and want to get expertise on ongoing technologies in the market,
this book is ideal for you. Even for architects and project managers, the book can be a guide
to enrich their existing knowledge.

The book uses C# and Visual Studio 2012 with Windows 8 (as the operating system) in the
examples. Even though the book does not require any knowledge to start, it expects some
basic theoretical and practical overall experience on the subjects to understand the recipes.
The book bridges the gap between a normal developer to an expert architect.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The requestValidationMode attribute
of httpRuntime defines how the request is validated to the server before calling
HttpPipeline."

A block of code is set as follows:

(function($){
 $.fn.extend({
 Value1 : 20,
 myMethod : function(msg){
 alert(msg + "value : " + this.Value1);
 }
 });
})(JQuery);

Preface

4

Any command-line input or output is written as follows:

Install-Package Microsoft.Web.Optimization

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "you can also open Nuget
package manager by right-clicking on the references folder of the project and select Add
Library Package Reference".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it. You can also contact the author
directly at books@abhisheksur.com to address any technical problems while covering
the recipes.

mailto:copyright@packtpub.com

1
Introduction to Visual

Studio IDE Features

In this chapter, we will start with a basic introduction to Visual Studio IDE, and understand
how we can increase the productivity of our development using some of the tools and features
present in the IDE. After going through the chapter, you will understand the following recipes:

 f Identifying the various components of Visual Studio IDE

 f Working with Solution Explorer and Class View

 f Working with the main workspace area of IDE

 f Navigating between code inside the IDE

 f Extending Visual Studio templates

 f Using Code Snippets in Visual Studio

 f Using Smart Tags and Refactor in Visual Studio

Introduction
Ever since Microsoft announced .NET for the first time almost 10 years ago, there has been
a lot of noise in the developer community about the way the changes are going. .NET led its
way to modernize the ideas of coding with more sophisticated techniques by adopting more
object-oriented paradigm in programming and also changing the style of coding altogether.
The Microsoft forerunner VB was announced to be modernized in the new environment and
redesigned to be named as VB.NET, and also some other languages that are totally different
in syntax, such as C#, J#, and C++ have been announced. All of these languages are built on
top of the .NET Runtime (known as Common Language Runtime or CLR) and produce the
same intermediate output in Microsoft Intermediate Language (MSIL).

Introduction to Visual Studio IDE Features

8

Microsoft announced .NET runtime as a separate entity by defining standardized rules and
specifications that every language must follow to take advantage of CLR. The entirely new set
of libraries, classes, syntaxes, or even the way of coding in Microsoft technologies, created
a huge hindrance in the developer community. Many developers switched their jobs, while
there are a few who really switched gears to understand how to work with the new technology
that is totally different from its predecessors. The community has already started to realize
that the existing set of Microsoft tools might not satisfy the needs of new evolving technology.
Microsoft had to give a strong toolset to help the developers to work easier and better with the
new technology.

Visual Studio is the answer to some of them. Microsoft Visual Studio is an Integrated
Development Environment (IDE) to work with Microsoft languages. It is the premier tool that
developers can posses to easily work with Microsoft technologies. But you should note, Visual
Studio is not a new product from Microsoft. It has been around for quite sometime, but the
new Visual Studio had been redesigned totally and released as Visual Studio 7.0 to support
.NET languages.

Evolution of Visual Studio
As time progressed, Microsoft released newer versions of Visual Studio with additional
benefits and enhancements. Visual Studio being a plugin host to host number of services as
plugins, has evolved considerably with a lot of tools and extensions available; it has been the
integral part of every developer's day-to-day activity. Visual Studio is not only a tool used by
developers, but it has been identified that a large number of people who are not a part of the
developer community have been loving this IDE and using it for editing/managing documents.
The wide acceptance of Visual Studio to the community had made the product even better.

This year, Microsoft has released the latest version of Visual Studio. In this chapter, we will
tour Visual Studio IDE features, its utilities, and mostly cover parts that can really help to
make your work done more quickly.

Identifying the various components of
Visual Studio IDE

Visual Studio 2012 has come up with lots of new enhancements and features. Some of these
features widely enhance productivity of development. Knowing your IDE better is always an
advantage to a developer. In this recipe, we will try to get our hands on to various Visual
Studio IDE features to get started with using Visual Studio.

Chapter 1

9

Getting ready
Before we start using Visual Studio, we need to first make a choice on which version
practically suits us. Let's have a look at the features of all the versions of Visual Studio.

 f Visual Studio Express: If you are looking to try out small applications or
medium-sized applications and do not want to spend a single penny from your
pocket, Visual Studio Express is the right choice for you. Microsoft has given the
Express build free to everyone that is capable of doing all the basic needs of
software build up.

 f Visual Studio Professional: This edition of Visual studio is for individual development
with most of the important debugging tools and all the things a developer commonly
needs. So if your primary orientation of using the IDE is basic development, this
would be the right choice for you. This edition is reasonable in price too.

 f Visual Studio Premium: Visual studio Premium edition is for people who make
high-quality usage of the IDE. It adds tools for testing, code analysis, debugging,
profiling, discovers common coding errors, generate test data, and so on.

 f Visual Studio Ultimate: This is the ultimate edition of the product with all the
components that could exist within Visual Studio. This edition provides advanced
debugging capabilities with all architecture and modeling tools with it.

You can find the entire comparison list between all the versions of Visual Studio from the
link below:

http://www.microsoft.com/visualstudio/eng/products/compare

Once you are determined on what suits your requirement best, you can install it on your
machine and we are ready to go.

If you are opening the IDE for the first time, the IDE will present
you few options and ask you what type of development you
want to take. In most cases, I would recommend you to choose
General Development, as this is the most convenient layout of
Visual Studio.

How to do it…
In this recipe, we will understand the different sections of the Visual Studio 2012 IDE and
will show you where to start.

1. To start with the recipe, let us navigate to the Start menu | All Programs, choose
the Visual Studio 2012 folder and select Visual Studio 2012. This will launch
the Visual Studio IDE.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Visual Studio IDE Features

10

2. After displaying the initial splash screen for a while when the IDE has been loaded, it
presents you with a Start page with a three main options:

 � Connect to Team foundation server

 � New Project

 � Open Project

3. We can use either New Project here from the link, or we can navigate to File | New
Project to create a new project. This pops up a New Project dialog box. In this dialog
box, we have a number of options available based on the packages that are currently
installed with the IDE. On the left-hand side of the dialog box, we see a tree of various
items installed within the IDE. You can see there are a number of templates listed
in the tree. When one item on the left-hand side gets selected, the corresponding
templates associated with that group will be listed in the middle section of the dialog
box (marked as 2 in the next screenshot).

4. Select an appropriate name for your project in the Name: field (marked as 3 in the
next screenshot).

5. You can select the Create directory for the solution checkbox (marked as 4 in the
next screenshot) to indicate that a new folder with the name just specified will be
created inside the location you specify, which will hold the various files rather than
storing them directly inside the specified location.

Chapter 1

11

6. We choose Visual C# from the left-hand side pane, Console Application from the
middle pane; keeping the default name we click on OK as shown in the previous
screenshot. If everything is good, it opens the IDE and displays something as shown
in the following screenshot:

7. In the previous screenshot, we have marked a few sections of the IDE which need
special attention. They are as follows:

 � The first section is IDE Search, which is just a blank textbox to search the
IDE component.

 � Tool Windows are docked on the left, right, or bottom of the screen. When
a tool window is open as shown in TaskList Tool Window at the bottom, it
shows up a small dockable container and when it is collapsed, it shows a
reference of it in the IDE sidebar as shown in the left-hand and right-hand
side of the window.

 � The main IDE workspace area represents the main working area of the IDE.
This forms the major portion of the IDE and mainly the application developer
writes code here.

 � A special Zoom Control is also there inside the IDE, which helps to zoom in
and out of the editor.

8. Finally, you can start writing your code in the main working area of the IDE or start
exploring other options in the IDE yourself.

Introduction to Visual Studio IDE Features

12

How it works…
There are a few things that need attention when a Visual Studio IDE is opened. Visual Studio
is a process that is launched using an executable called devenv (which can be spelled as
Developer's Environment). You can either double-click on the Visual Studio icon from the
Start menu (which most of the people do), or go to Start and then search for devenv to run
the IDE. The IDE is generally invoked in default permission mode. Sometimes, it is important
to open the IDE as Administrator to enjoy administrative features on the environment. To
change this behavior, you can right-click on the shortcut and select Run as Administrator.
You can also permanently set the IDE to run as administrator from the Properties menu.

After the Visual Studio initial splash screen is displayed during the opening sequence, the
first thing that you see is the Start page. We have navigated to File | New Project to open the
New Project dialog box. As shown in the first screenshot, on the left-hand side of the window
(marked as 1), we see a tree of all the installed project type groups into collapsible panels.

If you do not find your template, you can also use Search Installed Template to search any
template by its name in the right-hand corner of the dialog box.

As more than one framework can coexist in the same PC, the New Project dialog box is
smart enough to allow you to choose the Framework that you need to use while deploying the
application. By default it shows .NET 4.0 as the framework for the project, but you can change
it by selecting the dropdown. The whole environment will change itself to give you only the
options available for your current selection.

We choose Visual C# from the left tree and select Console Application from the middle pane
as project template. Upon choosing any template, the description of the current template
is loaded on the right-hand side of the screen. It gives you a brief idea on what Console
Application is and is capable of doing.

At the bottom, we have the option to name the project and the solution, and we also have
option to select the location where the project needs to be created (marked as 3). You can
select your own folder path to store the files you create inside the project by choosing the
appropriate filesystem path in the box.

There are two checkboxes available as well. One of them is Create directory for solution,
when selected (which is by default remains selected) creates a directory below the chosen
path and places the files inside it. Otherwise it will create files just inside the folder chosen.
To make it a habit, it is good to keep it selected.

Finally, click on OK to create the project with default files.

After the project is created, the basic IDE you see looks like the screenshot in step 5. We
will now divide the whole IDE into those parts and explore the IDE together in the recipes
that follow.

Chapter 1

13

Let's paste the code inside the Main method that you see when you open the program class
and paste the following code between the curly braces of Main method:

string content = "This is the test string to demonstrate Visual Studio
IDE features. ";
string content2 = "This is another string content";
Debug.Assert(content.Equals(content2), "The contents of the two
strings are not same");
Console.WriteLine("Thanks!");
Console.ReadKey(true);

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

After you paste the code, let's press F5 on the keyboard. You will see a Console window that
appears inside the IDE showing a message. Press the Enter key to close the Console.

There's more...
There are lots of other options that Visual Studio comes up with. In spite of opening Visual
Studio normally, you can also use some special options to handle Visual Studio better. Let's
try to look into other options that can be good to eye on.

Visual Studio command switches
Visual Studio being a normal executable that runs under Windows also provides some
switches that can be used when we open the IDE. To use Visual Studio with these switches,
we need to either use command prompt or use Run to add switches to the IDE. To use
command prompt, just navigate to the location %systemdrive%\Program Files\
Microsoft Visual Studio 11\VC and type in devenv /? to get a list of all the
command switches available for the IDE. For instance devenv /resetsettings.

This command switch will reset all the user settings that have been applied to the IDE. The
reset settings can also be used to specify the vssettings file, which has been used up to
override settings for the current IDE. Similarly, you can use devenv /resetSkipPkgs.

This command will reset loading of all user-related tags associated to the packages that
need to load to make everything work smoothly with Visual Studio. Sometimes if the IDE
gets corrupted or loading time increases, you can also turn on diagnostic load using
devenv /SafeMode.

Introduction to Visual Studio IDE Features

14

You can also try running a project without opening the IDE totally. I mean if you only
need to open the IDE, run the project, and exit. The best option is to use Command switch
devenv /runexit "[solution/Project Path]".

You need to replace the [solution/Project path] with the path where you find the
Solution file (.sln extension) or project files (.csproj/.vbproj files).

To see all the command switches supported by the executable, you can try devenv /? from
the command prompt too.

Working with Solution Explorer and Class
View

The most important part of the IDE that you need most often is your Solution Explorer.
Solution Explorer, which resides on the right-hand side of the IDE, is the most widely used
navigation tool between files and classes. It is shown in the following screenshot:

In the above screenshot, you see the basic structure of Solution Explorer when the IDE is
loaded with a project. The Solution Explorer window starts with the Solution file and loads
all the projects that are associated with the solution in a tree. The very next node of the
Solution file generally is the project file. For the sake of identifying each of the files in
the IDE, it provides you the proper icon and also makes the project file names bold.

Chapter 1

15

How to do it…
In this recipe, we are going to explore Solution Explorer.

1. On the right-hand side of the IDE, you will see Solution Explorer as shown in the
preceding screenshot. This is the main screen area where you can interact with the
files and folders associated with your project. If you do not see Solution Explorer,
please navigate to View | Solution Explorer from the menu or press Ctrl + W, S from
the keyboard.

2. Once you see the Solution Explorer, it should contain a tree of all the files and
folders that are associated with the project. Toggle each node in the tree to see its
related information. You can see in the figure, the Solution Explorer is capable of
showing the list of members of a type that is written inside a file as well. The node
TestClass, when opened, shows a tree of all its members in subsequent nodes.

3. The header section of Solution Explorer contains a number of buttons. These
buttons are commands associated with the current selection of the tree node.

How it works…
Solution Explorer is the main window that lists the entire solution that is loaded to the IDE. It
gives you an organized view of projects and files that are associated with the solution for easy
navigation in a form of a tree. The outermost node of the Solution Explorer is the Solution
itself, and below it are the projects, then files/folders. The Solution file also supports you to
load folders directly inside the solution and even store documents in the first level. The project
that is set as startup is marked in bold.

There are a number of buttons stacked at the top of the Solution Explorer window called
toolbar buttons, and based on the type of file that is selected in the tree will be made
available or disabled. Let's talk about each of them individually:

The solution tree in Visual Studio 2012 also loads the entire structure of the class into its
nodes. Just expand the .cs file and you will see all its members and classes are listed. Visual
Studio also has a class view window, but Solution Explorer is smart enough to list all the
Class View elements inside its own hierarchy. You can open Class View by navigating to View |
ClassView or pressing Ctrl + W, C, to see only the portion of class and its members.

Introduction to Visual Studio IDE Features

16

Another important consideration is Solution Explorer as it shows the files from the Solution file,
it also tracks the actual existence of the file in the physical locations too. While loading the files
sometimes, it might show exclamatory signs if the file doesn't exists in physical location.

Here the MyClass file, even though it is a .cs file, does not show up the usual icon, but shows
one exclamatory sign which indicates that the file is added to the solution, but the physical file
does not exists.

On the contrary, some files are shown in the solution as blank files, (in our case
FileNotIncluded.cs or folders like bin/obj). These files, even though they exist
in the filesystem, are not included in the solution file.

Each of the files show one Additional Information button on the right-hand side of the tree
node in the solution. This button gives extra information associated with the file. For instance,
if you click on the button corresponding to a .cs file it will pop up a menu with Contains. This
will get the associated class view for the particular file in the solution. The menu can be pretty
long depending on the items that cannot be shown in generalized toolbar buttons. When the
solution loads additional information, there are forward/back buttons which can be used to
navigate between views in the solution.

There's more...
In addition to the basic updates to Solution Explorer, there are lots of other enhancements
that are made to the Solution Explorer to increase productivity and better user experience
to the IDE. Let's explore them one by one.

Previewing images in Solution Explorer
Solution Explorer shows a preview of images just by hovering on the image without actually
opening the image. This is a new enhancement to Solution Explorer and is not available
with any previous version of Visual Studio IDE.

Add an image in the solution by right-clicking on the project and navigating to Add | Add
Existing Item and select an image from the filesystem.

Chapter 1

17

If you did it correctly, the image will be loaded in the tree as in the screenshot. Just hover the
mouse pointer over the image, and you will see a small preview of the image as shown in the
previous screenshot.

Different IDE editors
Visual Studio comes with a number of editors installed within it by default. Based on the type
of the file, this editor gets loaded onto the IDE. For instance, if you double-click on an image it
will open it in image editor, while when you choose a .cs file, it will open it in a C# editor.

You can right-click on any file from the Solution and select Open With... rather than using
the normal double-click to open a dialog box, which lists all the available editors that can
load the selected file. Some of the default IDE editors are C# Editor, C# Editor with Encoding,
Automatic Editor Selector, XML Editor, HTML Editor, Notepad, Binary Editor, Resource Editor,
and so on.

To open a CS file in Binary Editor, right-click on the CS file and choose Open With… choose
Binary Editor and select OK. You can see from the following screenshot that the code file
looks like a sequence of binary characters:

Introduction to Visual Studio IDE Features

18

The first column shows the address of the bytes in the file, the second shows the actual byte
content, and the third contains the string equivalent of the same.

You can also try out other editors in the list.

Working with the main workspace area of
IDE

This section represents the main workspace area of the screen. This is the most important
section of the Visual Studio IDE which the developers mostly use. The workspace generally
fills up the entire IDE or most of the portion of the IDE. Each of the windows that can be
loaded inside the IDE has the feature to toggle hidden, can float outside the IDE, and even
be snapped into different dock positions.

In the main workspace area, a file has already been loaded for us with a class named
class1. The editor associated with .cs file is loaded in the screen to show the file. There are
a number of editors available with Visual Studio, each of them can be loaded directly in this
section. Generally, we do our main development in this section of the IDE.

How to do it...
We will work the main workspace area of IDE by performing the following steps:

1. Close all associated windows in the IDE that you can see the portion of the IDE that
still remain on the screen is the main workspace area.

2. Open Solution Explorer, double-click on some files. You can see each file produces a
stack of tabs. Upon opening a new file, you can see the new tabs are stacked on the
left-hand side of the tabs. Opening a large number of files in the IDE will produce a
menu on the top-right corner of the screen.

3. Drag a tab and place it in between other tabs to reposition.

4. Change something in the file without saving the content. The tab header will indicate
the update with a star sign. It will show a lock sign when you open a read-only file.

5. Use the Toggle button on one of the tabs to make it sticky, so that opening new files
does not changes its position. If you are in the Preview tab, you will see a special
Promote button, which will promote it as a new window to work on. The workspace
contains the editor which forms the most of the part of IDE. This section loads the
content of the actual file. The changes in the editor are tracked in yellow (when the
change is not saved) and green (when the content is saved).

6. You can zoom the content of the editor using the Zoom dropdown in the bottom-left
corner of the screen.

Chapter 1

19

How it works...
The workspace loads the editors in tabs. So, when you pick two nodes from Solution Explorer
to open the code window, Visual Studio keeps links to each of the files that are opened in
separate tabs. Each tab header contains a few fixed set of items.

In the previous screenshot, you can see that the tab header containing the name of the file
(MyNewTypedMember.cs) that links to the tab, it shows a * when the item needs to be
saved, it has a toggle pinner button (just like all other IDE tool windows), which makes the tab
sticky on the left-hand side, and the close button. The title section sometimes also indicates
an additional status, like when the file is locked it shows a lock icon, when the object is loaded
from metadata it shows that in square braces as in the screenshot. In this section, as we
keep on opening files it goes in to a stack of tab pages-one after another until it reaches the
end. After the whole area is occupied, it finally creates a menu in the right most corner of the
workspace title to hold a list of all the files that cannot be shown on the screen. You can select
from this menu to choose which file you need to open. Ctrl + Tab can also be used to toggle
between the tabs that are already loaded in the workspace.

Below the title of the tab, before the main workable area, there are two dropdowns. One has
been loaded with the class that is opened in the IDE and the right one loads all the members
that are created in the file. These dropdowns help easier navigation in the file by listing all the
classes that are loaded in the current file on the left. On the right-hand side there is another
which contextually lists all the members that are there in the class that is chosen on the
right-hand side. These two dropdowns are smart enough to update automatically whenever
any new code is added to the editor.

The main workspace area is bounded by two scroll bars that handle the overflow of the
document. But after the vertical scroll bar, there is a special button to split the window.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Visual Studio IDE Features

20

The horizontal scroll bar on the other hand holds another dropdown that shows the current
zoom of the editor. Visual Studio now allows you to scale your editor to your preferred zoom
level. The shortcut for the zoom is Ctrl + the scroll mouse wheel.

There's more...
As our basic overview of the Visual Studio 2012 IDE is over, let us have an insight on a few
other features that are available inside the IDE.

Docking windows inside the IDE workspace
Let's go on opening a few of the windows in the IDE. You can start from View | Windows
Menu of the IDE. After you have opened up quite a number of tool windows, you will find a
requirement for easy arrangement of the windows. Visual Studio IDE is composed of a number
of dock holders, each of which can freely flow both inside or outside of the main IDE. You can
move a window by dragging its title bar as you do for any normal window. When you move the
panel just inside Visual Studio, a set of controls appear as shown in the following screenshot,
which indicates the dock positions available for the current window:

When you hold against the dock position, it will show you how it appears when stacked in
a certain position (shown in the previous screenshot). Visual Studio will automatically adjust
the stacks of items that are stacked through the Dock Managers.

The whole IDE has a stack of tabs on each side of its workspace, which holds tabs to link
each of these windows. As I have already mentioned, each of the tabbed window is capable
of toggling to auto hide. When the window is hidden it shows only the tab link, while when the
window is open, it associates itself into a set of tabs.

The other parts of the IDE consists of the menu bar, the standard toolbar, and the status bar.
Each of them is used to give commands to the IDE.

Search IDE features
On the top-right corner of the screen, you will find a new search box. This is called the IDE
search box. Visual Studio IDE is vast. There are thousands of options available inside IDE,
which you can configure. Sometimes, it is hard to find a specific option that you want. The IDE
search feature helps you find an option more easily.

Chapter 1

21

As shown in the previous recipe, say if I forget where the option for Preview File tab on single
click is available, I can type Preview in the search box.

As shown in the screenshot, Visual Studio will open a list of all the options where you
can see the Preview text available. On choosing the first option, you will navigate to the
appropriate location.

Preview files in IDE
Visual Studio IDE has a feature to preview files without opening the same in the IDE. Just with
a single click on the file, it will open up in the main workspace area as preview. As we have
already seen, the preview of the file is generally opened on the right-hand side of the IDE, and
selecting another file replaces the previous preview, it is called as a temporary preview of file.
The file can be promoted or opened either by working directly inside the preview, or by using a
special promote button on the title of the preview tab.

Generally this option is disabled by default. You can navigate to Tools | Options, then in the
left tree, Environment | Tabs and Windows, check the Allow new files to be opened in
preview Tab.

The Preview Tab option is generally useful when you are working with a large number of files
and loaded in the IDE.

Introduction to Visual Studio IDE Features

22

Navigating between code inside the IDE
Visual Studio comes with a number of useful code navigators; most of them are pretty useful
and handy. First of all let us try the Code Highlighting feature in Visual Studio.

How to do it…
To try the Code Highlighting feature in Visual Studio, perform the following:

1. Double-click on a C# file to highlight each occurrence of the same type in
the code.

2. Press Ctrl + Shift + down/up arrow to navigate between references.

3. Press Ctrl + ,(comma) to open the Navigate to dialog box to list all the navigation
options available for the current selection (or under cursor position).

4. Right-click on any method or type and select Go To Definition to move to the
definition of it.

5. Right-click on any of the type and select Find All References to list all the references
in a new tool window.

6. You can select View Call Hierarchy from the right-click pop-up menu to list all the
references to and from the member you have selected.

7. You can rename a type in the IDE and press Ctrl + .(dot) to open a menu and rename
all its references.

How it works…
Navigating from one file to another and one type to another is an important thing while
working with any project. Visual Studio IDE did a splendid job by giving us tools and features
that help in navigating from one place to another easily.

Select any text in the project document by double-clicking on it, which highlights all the
occurrences of the same code in the file. You can press Ctrl + Shift + down/up arrows to
navigate between the references:

Chapter 1

23

For advanced code navigation, you can press Ctrl + , to open a new window named Navigate
To that quickly searches code members and files and list them.

The Navigate To dialog box also shows the file from which the window is invoked and the
name of the project.

Another important code navigation tool is the Call Hierarchy window. You can invoke this
window using right-click and selecting View Call Hierarchy. The Call Hierarchy window gives
you the overview of all the references that are using the same code. You can also view the
overrides of the method if you have any. The right-hand side of the window also lists all the
calls by giving the exact line and the filename where the call has been made.

There's more...
In addition to the basic navigation tools inside the IDE, there are a few advanced options
available to the IDE that help in navigating within the UI quickly, logically, and efficiently.
Let's now take a look at a few other options available to us.

Introduction to Visual Studio IDE Features

24

Architecture Explorer
One of the coolest additions to Visual Studio recently is Architecture Explorer. The tool helps
you to navigate between the solutions assets very easily. Let's navigate to View | Architecture
Explorer to get a window similar to the following screenshot:

In the Architecture Explorer window you can view, navigate to the content of any class,
namespace, or method. Visual Studio also has the facility to export the Architecture Explorer
window in a graph document. You can select the items that you need to show in the graph
and select the Create New Graph Document button on the top-left corner of the Architecture
Explorer window. The graph will show up to analyze code members, circular references,
unreferenced nodes, and so on and create a pictorial representation of the entire library. You
can even export the document as a directed graph using the Export Directed graph button
on the explorer.

The graph in the Architecture Explorer window can be exported to XPS document for future
reference too.

Chapter 1

25

Sequence diagrams
You can generate sequence diagrams from Visual Studio IDE by directly right-clicking
on a method and by selecting the Generate Sequence Diagram option. This option is
only available in the Ultimate version of Visual Studio. Sequence diagram will show a
diagrammatic representation of the complete method body using a diagram.

You can see in this method that I have used a few classes and objects, which are shown in
the diagram based on their usage.

Task List
Visual Studio can be used to list task information on the project. You can open Task List from
the View menu, which lists all the tasks that are outstanding in the project.

There are a number of options that you can use to create tasks in the project.

 f When you comment something in the code with Task List tokens, your task will get
listed in the Comments section. For example:
// ToDo This is a task that is outstanding or
// Hack This hack need to be changed

Introduction to Visual Studio IDE Features

26

The ToDo task will be listed on the Tasklist Tool window.

 f You can also create tasks directly inside the task window. Choose User Tasks and
click on the button just beside the combo. You can also specify the priority of a task.

The commented tasks can be double-clicked to navigate to the appropriate line where the
comment is written.

Bookmark menu
Another important window to manage code is Bookmarks. You can also use Bookmarks
to navigate between code. To add a bookmark, go to the line where you want to apply a
bookmark to, and select the Toggle Bookmark option in Edit | Bookmarks ,or press Ctrl
+ B, T. A white box will appear against the line. Once the bookmark is set, you can move to
next and previous bookmarks using Ctrl + B, N and Ctrl + B, P respectively. You can clear all
breakpoints either from the menu or simply choosing Ctrl + B, C from the keyboard. You can
also open the Bookmark tool window to navigate between bookmarks more easily.

The Bookmark tool window can be opened using Ctrl + W, B or by navigating to View | Other
Window | Bookmarks. You can manipulate bookmarks from this window.

The Code Definition window
This is a read-only editor present inside the IDE which displays the definition of types and
methods while the user navigates on the code in the editor. As you move the cursor over the
IDE or change the selection on Class View, Object Browser, or Call Browser, the content of the
Code Definition window automatically gets updated with either the actual code from within
the application, or it displays metadata content of a selected type.

Chapter 1

27

To open the Code Definition window, navigate to View | Code Definition window.

The Code Definition window not only displays the definition of the code in the navigation,
but it also allows you to copy code, use Edit Definition to edit the definition, put breakpoints,
and so on. The Code Definition window is very useful in certain cases while working with
large applications.

Extension Manager
Visual Studio supports extensibility. A large number of Visual Studio IDE components are
now extensible. Extension Manager is a special section which allows you to view, control,
or uninstall any extension associated with Visual Studio.

Navigate to Tools | Extension Manager to open the window. If you choose Online Extension
from the left-hand side, it will connect to the online extension gallery. You can select an
extension from the list and download the extension and install.

Once the extension is installed, it will show you the option to either disable or uninstall
the extension.

What is MSBuild and how can I use it?
The Microsoft Build Engine is a platform to simplify the build process when there are a
large number of files that need to be compiled together. Visual Studio build process uses
the MSBuild environment to provide transparent build experience on all the files and folder
structures together in one library. The entire build process needs a project file, which is an
XML-based file that provides the basic structure of the library.

Visual studio has a project file to maintain all the items that are included in the project
and this file is later passed on to the MSBuild interface to invoke build process. In case of
advanced scenarios when you don't have Visual Studio available, but you need to build a
hierarchy of project structure, MSBuild can be invoked manually too by writing the project
file manually.

Introduction to Visual Studio IDE Features

28

Let us examine each section of a project file.

 f Item: It represents the items that comprise the build process. They are grouped
together into user-defined collection.
<ItemGroup>
 <Compile Include = "Program.cs" />
 <Compile Include = "TestClass.cs" />
</ItemGroup>

 f Properties: It presents the key/value pair of all the properties that configure builds.
<PropertyGroup>
 <BuildDir>Build</Build>
</PropertyGroup>

 f Task: They are tasks that needs to be performed while the build process is on.
<Target Name"MakeBuildDirectory">
 <MakeDir Directories="$(BuildDir)"/>
</Target>

 f Targets: They form the entry point of the build process. Targets are grouped into
individual build process.
<Target Name="Compile">
 <Csc Sources="@(Compile)" />
</Target>

These sections provide valuable information about how the project needs to be built. After
successfully creating the project file, you can use it to create the actual executable:

MSBuild.exe TestApplication.proj /property:Configurtion=Release

Thus, the project will be built in the release mode.

Debugging the application
After the application has been created successfully, the next step is to run the application
from inside the IDE and debug it. Debugging an application inside Visual Studio IDE is fun. You
can execute the application step-by-step to clearly understand the code that is running and
also identify any problem(s) that the code might have while executing.

To debug the application, either you click on Start from the toolbar, or select Debug | Start
Debugging from the menu. The shortcut for start debugging the current application is F5.

Chapter 1

29

When the application runs inside the IDE, every step the application performs is monitored
by the IDE, and any changes made to the application directly pass through the IDE execution
host engine. Breakpoints are special indicators inside the code which allows the IDE to halt the
execution of the program at a certain point. When the application breaks at a breakpoint, the
program stops its execution and everything in the state gets evaluated in the environment.

To go over the program line by line, we can either choose Debug | Step over or press F10 in
the IDE, or to step into the definition of the code, we can navigate to Debug | Step into or
press F11 from the IDE. Visual Studio provides a new environment for the IDE to execute the
program while debugging. The environment also supports a large number of tools that help
in clearly identifying what is going on at a particular point for the application.

See also
You can try the productivity power tools for Visual Studio 2012 for other extensions to the IDE
available at http://bit.ly/ProductivityPowerTools.

Extending Visual Studio templates
Visual Studio files are created using templates. There are a large number of templates
associated with Visual Studio that are stored with your IDE, which are automatically copied
when you create files and projects in the application. These files are called templates in
Visual Studio.

We can use Visual Studio to produce custom templates that can automate these things for us,
by using the pre-defined structure for the project file type such that whenever you start a new
project or add a new item to your project, most of these items are generated for you.

In this recipe, we will cover how to use all the predefined templates that are preinstalled with
in the Visual Studio IDE and also talk on how to create a template of your own.

There are two types of templates:

 f Project Templates: These files are related to projects and are used when a new
project is created or added to a solution. The templates that we create in the project
are listed inside the New Project dialog box of Visual Studio.

 f Item Template: These are item files that are listed in New Item dialog box of the
project. So when we add a new item to the project, the item templates that are
listed in the dialog box are deployed as Item Templates.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Visual Studio IDE Features

30

The default location of project and item template folders is listed in the Options dialog box of
Visual Studio as shown in the following screenshot:

In the previous screenshot, you can see that the Project and Item templates are located to a
specified unc path. They are basically a zipped content archive that we can place in the same
location to ensure that it is listed on the project and item dialogs.

The basic Project Templates and Item Templates are located inside the Program Files\
[Microsoft Visual Studio Installation Directory]\Common7\IDE\Project
Templates and Program Files\[Microsoft Visual Studio Installation
Directory]\Common7\IDE\ItemTemplates folders respectively.

How to do it...
Let us create a new project and item templates in this recipe and look into their details.

1. Create a custom project by writing the code that is actually needed whenever
someone uses the template.

2. Include references of assemblies that need to be referenced on the
final project.

Chapter 1

31

3. Select File | Export Template. A new wizard will open up where you can choose
either Project Template or Item Template. Let us choose Project Template so that
the entire project gets exported.

If you have multiple projects in the same solution, you can use either of them from
the dropdown at the bottom of the screen.

4. In the next screen, we need to specify the name of the template which it needs to
show in the New Project dialog box and description of the template. This information
will be shown inside the New Project Template dialog box either in tooltip or in the
separate description pane.

5. The Template Options window also gives you options to choose the icon file that is
to be used and a preview image for the template icon. In our case, we leave it blank.

Introduction to Visual Studio IDE Features

32

6. Notice, the output location is shown in a textbox below these options and it shows
that a ZIP file will be created in the location specified:

7. Once everything is done, click on Finish. The WPFCorporateProject.zip file
will be created. The file is actually exported to My Exported Template location.
To make it list in the New Project dialog box, you need to copy the file to the
template location.

8. Finally when we open the New Project dialog box, it shows our WPFCorporateProject
as shown in the following screenshot:

9. When we select the project type, it will automatically replace the namespace name,
filenames, and so on, and customize itself for the new project.

Chapter 1

33

In the same way, you can export Item Template in the solution. The main difference between
the Project Template and the Item Template is that the Project Template is meant to define
the whole project, while the Item template is meant to define one single project item.

How it works...
Visual Studio defines a set of rules that need to be applied to the content of a ZIP file, when
we create a new instance of it. During the export of a template, Visual Studio analyzes all the
files that need to be exported with the project such that it can recreate the file again. It zips the
whole content to a compressed zipped archive and exports the same to the specified folder.

Let's look at the content of the zipped archive.

The main file that holds reference to all the information about the template is inside the
.vstemplate file. It is an XML file with the name of the project, the description, the project
type, the default location, icon, and the references to the project items are listed in the file.
You can look into the file for details:

<VSTemplate Version="3.0.0" xmlns="http://schemas.microsoft.com/
developer/vstemplate/2005" Type="Project">
 <TemplateData>
 <Name>WPFCorporateProject</Name>
 <Description>This project template will be used for corporate
people</Description>
 <ProjectType>Windows</ProjectType>
 <ProjectSubType>CSharp</ProjectSubType>
 <SortOrder>5</SortOrder>
 <CreateNewFolder>true</CreateNewFolder>
 <DefaultName>WPFCorporateProject</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 <LocationField>Enabled</LocationField>
 <EnableLocationBrowseButton>true</EnableLocationBrowseButton>
 <Icon>__TemplateIcon.ico</Icon>
 </TemplateData>
 <TemplateContent>
 <Project TargetFileName="MyWPFProject.csproj" File="MyWPFProject.
csproj" ReplaceParameters="true">
 <ProjectItem ReplaceParameters="true"
TargetFileName="App.config">App.config</ProjectItem>
 …
 <Folder Name="Properties" TargetFolderName="Properties">
 <ProjectItem ReplaceParametters="true" TargetFileName="AssemblyInfo.
cs">AssemblyInfo.cs</ProjectItem>
 …

Introduction to Visual Studio IDE Features

34

 </Folder>
 </Project>
<References>
 <Reference>
 <Assembly>System, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089
 </Assembly>
 </Reference>
 <Reference>
 <Assembly>
 System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089
 </Assembly>
 </Reference>
 </References>

</TemplateContent>
</VSTemplate>

In this sample XML document you can see there are few things to address:

 f The Name and Description indicate what needs to be shown on the New Project
and New Item dialog boxes to the user. The Type and description appear on the
description pane of the dialog box.

 f ProjectType and SubType indicates the grouping information of the Project Type
in the New Project dialog box.

 f SortOrder defines where the item will be placed by default.

 f LocationField indicates whether the location of the project could be chosen or
not. By location we mean the unc path of the hard disk location.

 f TemplateContent identifies the whole hierarchy of the structure of the exported
Template. These may contain references, project files, folders, and so on.

 f Each project contains a set of ProjectItem. ReplaceParameters indicates a set
of routines that needs to be run on the file to ensure that all the parameters that are
assigned to the file are replaced with the actual value. For instance the parameter
$safeprojectname$ is replaced with the actual project name that we specify while
creating the project.

 f A project can also include folders. The Folder element can be used to enumerate all
the files inside the Folder for a specific project.

 f You can add some custom references to .dlls using Reference that are available
for each project. The references can be multiple.

When we open the Project Template dialog box, it reads the XML file with the .vstemplate
extension and lists the template accordingly.

Chapter 1

35

It is recommended to use reference from GAC rather than actually
ship the .dll inside the zipped archive.

The template that has been created using the wizard is pretty simple and straight forward.
Generally in real world scenarios, it is not very useful with the basic template that is there
in Visual Studio. We need to export the template to include additional components. When
Template is created we generally need to replace certain parameters that need to be set with
actual values when the template is used up. Let's look into what are the parameters that are
already predefined to be replaced by Visual Studio while creating the actual file.

Paramter Name Description
clrversion Replaces the current version of CLR.
GUID [1-10] You can generate 10 GUIDs for a single project. The

parameter will be replaced with the unique GUIDs in
the files.

itemname Name that the user provides in the Add Item pop-up
dialog.

machinename Name of the computer.
projectname Replaces the project name that the user enters into the

Project Popup dialog box.
registeredorganization Organization Name to which the computer is

registered. It takes the value from the HKLM\
Software\Microsoft\Windows NT\CurrentVersion\
RegisteredOrganization registry key.

rootnamespace Namespace to add project files into. It returns the
current root Namespace information.

safeitemname Returns the current File name.
safeprojectname Returns the project name chosen by the user in the

Project Dialog.
time Returns time of file creation.
userdomain User domain name.
username Fetches current user name.
year Year of file creation.

We need to add a $ sign before the start of each of these parameters to use it in the file.
Let us have a look at a sample code with parameters that we need to use while editing
the projects.

// Legal Notice goes here
// File Created : $year $time$
// Created By : $username$ $userdomain$ $clrversion$

Introduction to Visual Studio IDE Features

36

// Copyright protected : $registeredorganization$

using System;
using System.Collections;
using System.IO;
using System.Text;
using MyOrganization.$safeprojectname$;

namespace MyOrganization.$safeprojectname$
{
 public class $safeitemname$
 {
 #region Variables
 //Declare Variables
 #endregion

 # region Properties
 // Declare Properties
 #endregion

 # region Events
 //Declare Events
 # endregion

 #region Constructors
 //Declare Constructors
 public $safeitemname$()
 {
 }
 #endregion

 #region Methods
 //Declare Methods
 #endregion
 }

}

The parameters in the file will get replaced when the actual file is created. Just add a new item
from the list and you can see the parameters are replaced with meaningful names. Try out
yourself and see the magic.

There's more...
After creating a template for your project, let us add some sugar to the plate by introducing some
of the additional points that you might need to consider while using this in real-world scenarios.

Chapter 1

37

Adding custom parameters
Sometimes, the parameters that are available to the files do not seem enough to you.
Visual Studio templates allow you to put custom parameters, which will also be replaced
when the actual replacement occurs. To write your custom parameters, you can use the
CustomParameters tag and list a collection of all of those parameters that will be replaced
while creating the item. Lets see how it works.

<TemplateContent>
 <CustomParameters>
 <CustomParameter
 Name="$mycustomparameter$"
 Value="Template designed by @abhishek" />
 </CustomParameters>
</TemplateContent>

Inside TemplateContent of the .vstemplate file, we can write our custom parameters like
mycustomparameter. which will be replaced by the value.

Creating a template with more than one project
Instead of using one single project as an item of project, it is sometimes useful to create an
entire solution as a template. For example, for every organization the development group
generally not only starts a project using one single project at a time, but rather they will create
extra projects for data access layers, business logic, and so on inside the solution in addition
to the actual project. We can create templates for all of them and list all in the New Project
dialog box, or creating a template with the entire solution and giving it to all the developers is
an easier way.

Introduction to Visual Studio IDE Features

38

Multiple projects can be created from one ZIP file, but it needs to include one master
.vstemplate file which lists the links to all individual projects in the solution. Let us
suppose we want to have three projects for the template, one for Data layer, one for Business
Logic, and another one is the actual project. To do this, we need to individually create all the
.vstemplate files as we have discussed in the steps.

Once you have created all of these templates, we create individual folders for each of the
projects. Data Access Layer should reside in DAL, Business Logic will reside in BAL, and the
actual project will remain inside the Main folder.

The main content of the SolutionTemplate will look like the following:

<VSTemplate Version="2.0.0" xmlns=http://schemas.microsoft.com/
developer/vstemplate/2005
 Type="ProjectGroup">
 <TemplateData>
 ...
 </TemplateData>
 <TemplateContent>
 <ProjectCollection>
 <ProjectTemplateLink Projectname="DataAccessLayer">
 .\DAL\DAL.vstemplate
 </ProjectTemplateLink>
 <ProjectTemplateLink ProjectName="BusinessLogic">
 .\BAL\BAL.vstemplate
 </ProjectTemplateLink>
 <ProjectTemplateLink ProjectName="MainApplication">
 .\Main\MainApp.vstemplate
 </ProjectTemplateLink>
 </ProjectCollection>
 </TemplateContent>
</VSTemplate>

You can easily notice that the type of the template hence defined is actually a Project
Group rather than a Project. Here we have defined the ProjectTemplateLink attributes to
different projects templates in the zipped archive. You should create separate folders called
BAL, DAL, and Main to store the .vstemplates of each individual project and place the
SolutionTemplate.vstemplate file in the parent folder.

Once you are done with it, you can zip the entire folder structure again and put it in the
configured location to be loaded on the New Project dialog box.

See also
 f http://bit.ly/VSTemplates

Chapter 1

39

Using Code Snippets in Visual Studio
Code snippets are another important feature of the Visual Studio IDE. Visual Studio
IntelliSense menu lists a number of code snippets that could be used very easily when you
code for fast development. Code snippets are also available in the right-click menu in the
editor as Insert Snippets.

IntelliSense is a feature that enables writing code
faster and easier. It is a feature that auto-completes
the code while writing it in the IDE. Just start typing, it
will automatically get the associated contextual items
and list them inside the code window. For writing code
faster, IntelliSense comes very handy.

How to do it…
To insert code snippets, perform the following steps:

1. Inside a class, write prop and press Tab.

2. The property Code snippet will appear on the screen. The propfull tab will look
as shown in the following screenshot:

3. A code snippet is composed of a number of placeholders. You can toggle between
these placeholders using the Tab key and type the appropriate code.

4. Snippet is smart enough to automatically change placeholders that has a common
meaning. In our case, if you change the data type of the variable, it automatically
changes the data type of the property. You can change the name of the variable,
and it will change all other occurrences of the variable in the code snippets.

5. When you are happy with the snippet, you can press Enter to continue.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Visual Studio IDE Features

40

You can also insert code snippets by right-clicking on the IDE and choosing Insert Code
snippets. This option gives you the entire hierarchy of code snippets from which you need
to choose appropriate code snippets.

Code snippets are available virtually in every type of code. You can use code snippet for ASP.
NET pages, C# code blocks, or even for a JavaScript element.

There is a special type of code snippet available in Visual Studio
called Surround with. The Surround with code snippets
are items that produce outlining on the code. For instance, you can
Surround with a code with an if block which supports writing
code inside it, or even you can surround a combination of methods
inside a region. You can select a code block and right-click to select
the Surround with feature of the IDE.

How it works...
Visual Studio IDE also comes with an in-built Code Snippets Manager to easily manage code
snippets. To open it, navigate to Tools and Choose Code Snippets Manager.

Chapter 1

41

In the previous screenshot, you can see you can easily manage the property/code snippets
within Code Snippets Manager. You can get the location where the actual code snippets
are installed. You can even import a new code snippet to your Visual Studio IDE. By default,
the custom VS code snippets are loaded from MyDocuments/Visual Studio/Code
Snippets. You can create your own code snippet and store it into this folder, so that it will
be automatically detected and loaded in the IntelliSense menu.

Code snippets are actually an XML file with specific schema. Generally most of the code
snippets that are regularly used are already listed there in the IntelliSense menu.

But while developing an application, it is often required to use INotifyPropertyChanged
for properties. Let's see the following code which will automatically include
INotifyPropertyChanged for a property:

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets xmlns="http://schemas.microsoft.com/VisualStudio/2005/
CodeSnippet">
 <CodeSnippet Format="1.0.0">
 <Header>
 <Title>propnch</Title>
 <Shortcut>propnch</Shortcut>
 <Description>Code snippet for property and backing
field and ensure that it invokes INotifyPropertyChanigng and
INotifyPropertyChanged</Description>
 <Author>Abhishek</Author>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>
 <Declarations>
 <Literal>
 <ID>type</ID>
 <ToolTip>Property type</ToolTip>
 <Default>int</Default>
 </Literal>
 <Literal>
 <ID>property</ID>
 <ToolTip>Property name</ToolTip>
 <Default>MyProperty</Default>
 </Literal>
 <Literal>
 <ID>field</ID>
 <ToolTip>The variable backing this property</ToolTip>
 <Default>myVar</Default>

Introduction to Visual Studio IDE Features

42

 </Literal>
 </Declarations>
 <Code Language="csharp"><![CDATA[
 private $type$ $field$;
 public $type$ $property$
 {
 get { return $field$; }
 set
 {
 this.OnPropertyChanging("$property$");
 $field$ = value;
 this.OnPropertyChanged("$property$");
 }
 } end]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

The code here is divided into three sections. The <Header> section includes the <Title>,
<Description>, <Shortcut>, <SnippetType>, and so on. These information are read
and shown from the IntelliSense menu.

The second section represents the actual body of the snippets that is divided into the
<Declaration> part, and the <Code> block. The <Declaration> part defines the
<Literal> attributes that are to be used in the <Code> block which will be replaced
actually by the user. The <Literal> attributes are the placeholders of the current block.

The <Code> block includes the actual code. Here we define the <Literal> attributes
inside $. Save the file inside the default location, that is, My Documents\Visual Studio
2012\Code Snippets. Once you install the Code snippet, it will be available inside the
IntelliSense menu.

There's more…
There are additional features to the IDE that can also help in the productivity of the code.
Options like removing unused using statements and collapse/expand outlines can really help
in navigating within the code more efficiently and productively. Let us consider some of the
other interesting features within the IDE that can help productivity.

Organizing Usings
Visual Studio also allows you to organize Usings on your code by removing unnecessary Usings
or reordering using statements at the top. It analyzes and parses the code that you wrote on
the file upon selecting the option and does these manipulations.

Chapter 1

43

To use this, right-click on your code and select Organize Usings. There are a few options
available under this:

 f Remove Unused Usings: This will check every type that you have used in the code
inside appropriate namespaces and remove those which are not used in the code.

 f Sort Usings: This option will sort the Usings in alphabetical order.

 f Remove & Sort Usings: It is the combination of both.

Outlining
Visual Studio is smart in analyzing the code. When your code is loaded into the IDE, it is
parsed and loaded with outlines, which allow you to hide/unhide individual blocks in the
code. It produces a collapsible region of code which produces a + (plus) sign when collapsed
and - (minus) when expanded.

Collapsing the outline shows only the portion of the code that is relevant to identify it. Hence,
while you are writing code in a large file, it is nice to have all the blocks collapsed. For a large
code, it is a very tedious job to collapse/expand all outlining. The Visual Studio Outlining
menu lets you toggle between them easily.

Right-click on the code and use Outlining | Collapse to Definitions. This will collapse all the
logical blocks of code recursively into their collapsed state.

You can use Toggle All Outlining to toggle between expanded mode and collapsed mode.

You can also disable the Outlining feature of code using the Stop outlining
feature from the menu. Once the outlining is disabled, you can re-enable it
using Start automatic outlining again.

Introduction to Visual Studio IDE Features

44

Using the Toolbox
Visual Studio has a Toolbox which can help you in some cases to quickly find code that you
require often during development. Generally, the Toolbox is useful to work with the Designers,
but sometimes it comes very handy to increase your productivity by remembering the
recurring code.

Select a code that you need very often. Drag it from the editor to the toolbar on the left-hand
side of the IDE. If it is not open, navigate to View | Toolbox from the menu or press Ctrl +W, T.

The Toolbox will produce an item automatically with Text:…. You can hover over the toolbar
item to see what code it has.

To use the code, you can again drag it to the editor.

You can also rename or delete a code snippet by right-clicking on
the item in the toolbox. You can even click on Add Tab to group
common code blocks in one place.

Chapter 1

45

Using Smart Tags and Refactor in Visual
Studio

Visual Studio allows you to use Smart Tags to enhance the productivity of writing code. Visual
Studio Smart Tags can produce blank implementation of properties, methods, fields, or can
even create a custom type by creating a class file directly in the appropriate project.

How to do it...
In this recipe, we are going to cover how to use the Smart Tags and Refactor option inside
Visual Studio 2012.

1. Start typing the code as shown in the following screenshot. You can see while writing
that Visual Studio is smart enough to detect the class name in the IntelliSense menu
even though the Type does not exist.

2. By invoking Ctrl + .(dot) on the screen, it will open a small smart menu which allows
you to create a Type just for the statement. Notice that the Type will create a file in the
solution and add it to the project as well.

3. Let's create some members inside the Type. Go on assigning members, press
Ctrl + .(dot) to produce properties inside the file as shown in the following screenshot:

The Smart Tags can also be used for various other productivity needs like renaming a
Type, renaming a method, implementing an Interface, and so on. Let's have fun with
creating few more Types and Methods in the solution. Sometimes this approach is
also called as Consume First Deployment.

Introduction to Visual Studio IDE Features

46

Similar to Smart Tags, Refactoring is another important feature
of the IDE which helps in refactoring of code blocks easily.
Refactoring is actually a technique to change the software system
in such a way that the internal structure of the design changes
are made more intuitive while the external behavior of the system
remains the same. The Refactor Menu adds a special meaning
when you are working on large projects. It is taken as a rule of
thumb that when writing a code, you should always consider a
method to only contain one unit of work and the whole Type or
class should contain one independent module of work.

4. Consider the following code block:
 public void PrintMessage()
 {
 int sum = 0;
 for (int i = this.Start; i <= this.End; i++)
 sum += i;
 string message = string.Format("Sum of all numbers between
{0} and {1} is {2}", this.Start, this.End, sum);
 Console.WriteLine(message);
 Console.ReadKey(true);
 }

5. The above method is doing more than one unit of work in a single method. It
computes the sum of all the numbers between start and end, and then finally prints
out the message. Let's select the first three lines and choose Extract Method from
the Refactor menu. Extract Method is capable of automatically analyzing the code
and detects the appropriate parameter sets that needed to be passed from your code
and the appropriate return statement.

6. A new window pops up to allow you to export the selection to a new method. Let's call
it GetSum.

7. Click on OK to finish. The magic of Refactoring automatically changes the portion of
code with a method call and the method is placed in the code just below it.

8. Let us suppose that at a certain point of time, we don't like the name of the member
name GetSum, and we need to rename the member name more appropriately and
want this to be done to all overloads and every calls that are made to in the entire
project, all at a time. One thing you can do is to use the Find option in Visual Studio.
But this will be worse when two types have the same method name. This has been a
common problem. The Refactor Rename feature gives you easy means to rename a
method by automatically analyzing code based on its type used. Select the member
you want to rename and Press F2, or select Rename from the Refactor Menu. Say
we want to rename the method GetSum to AddBetweenNumbers.

Chapter 1

47

9. Select the New Name in the dialog box that comes up, and select the options that
are needed to be considered.

 � The Preview reference changes will indicate that the tool will show a new
dialog box that will be previewed before changes are made. Always select
this option to be on the safe side.

 � Search in comments indicate that the name in comments also need
be changed.

 � Search in strings will search in string literals too.

 � Rename overloads are useful if we need to change name of all overloads of
the current name.

10. Once we select all the options, we go on to do the actual Rename operation. Now as
we have selected Preview reference changes, the Refactor in Visual Studio will go on
and select all the method names on each Type associated with it to change names
and will be presented in a new dialog box in a tree format.

Introduction to Visual Studio IDE Features

48

As you can see in the previous dialog box, it searched one occurrence of GetSum
in the tree TestClass.cs. It also previews the code on what it will look like after
conversion is been made in the bottom pane. You can individually choose the
checkboxes from the tree and make changes everywhere you need. The Nodes are
responsive, I mean you can preview any node from the tree view upon clicking on
the type and the actual final code will be shown on the pane below.

11. Finally when everything is OK, select Apply to apply changes to every node that
is checked.

For quick rename, you can also use Rename Smart Tags
that renames all references automatically.

Sometimes, it is important to encapsulate a Field into a property. One way is to write
the entire property yourself, or you can navigate to Refactor | Extract Field to do
the same thing. Extract Field works the same way as Rename. Upon selecting the
field of a class, you will be asked for the name of the property and you can use this
to create a property from the field.

12. Extract Interface creates an interface from the existing type taking all the members
from the current type and exporting it into a new interface, and finally implementing
the class from the interface.

1. Create a class that has at least one instance specific data member.

2. Right-click on the class and navigate to Refactor | Extract Interface.

3. You will be prompted with a dialog box where you can specify the name of
the interface, the list of members in the current type and the filename.

4. Click on OK.

If you already have an interface and want to auto create
methods, you can right-click on the interface and select
Implement Interface or use Smart Tags.

13. RemoveParameter or ReorderParameter are other options in the Refactor menu
to remove extra parameters or to reorder the parameters in a member. Sometimes
when the parameter is long, these options come in handy. Select each of these
options and try them inside the IDE.

Chapter 1

49

How it works...
Smart Tags and Refactoring are inbuilt to the Visual Studio editor and act as a productivity
feature to the developer that automatically creates objects or refactor them. There are a large
number of these available within the IDE that can be used while coding to increase productivity.

There's more...
Even though Refactoring and Smart Tags are the most important parts of code analysis,
Visual Studio IDE also contains some other interesting features that are worth noticing.
Let us consider them here.

Clone Code Detection
Visual Studio IDE includes a unique feature to detect clones in code, or in other words you can
find duplicate code in your solution. Sometimes developers copy and paste an existing code to
other part of the project. Visual Studio Code analyzer finds code that is almost similar in logic.
It is capable of detecting variable changes and parameters. To use this feature, select the
portion of code that you want to find clones for. Right-click and choose Find matching clones
in solution. You can also select Analyze Solution for Code Clones to detect any clones in
the solution.

While the IDE detects the clones, it automatically puts in the weight of the clone.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Visual Studio IDE Features

50

Sometimes it is required to exclude files from the result of Clone search. This is often
required when you have generated similar code using tools. In such cases, you can place a
.codeclonesettings file inside the main application directory with the list of files that do
not include in this search. This file is actually an XML file containing files, namespace, types,
and so on which are excluded from the search. For instance:

<CodeCloneSettings>
 <Exclusions>
 <!-- Absolute or relative path names: -->
 <File>TestFile.cs</File>
 <!-- Filepaths may contain wildcards: -->
 <File>GeneratedFiles*.cs</File>
 <!-- Namespace, Type, and FunctionName must be fully qualified:
-->
 <Namespace>MyCompany.MyProject</Namespace>
 <Type>MyCompany.MyProject.MyClass1</Type>
 <FunctionName>MyCompany.MyProject.MyClass2.MyMethod</FunctionName>
 <!-- Names may contain wildcards: -->
 <Namespace>*.AnotherProject</Namespace>
 <Type>*.AnotherClass*</Type>
 <FunctionName>MyProject.*.AnotherMethod</FunctionName>
 </Exclusions>
</CodeCloneSettings>

The wide variety of wild cards makes this very handy to create logic.

See also
 f http://bit.ly/VSSmartTags

 f http://bit.ly/VSRefactor

2
Basics of .NET

Programs and Memory
Management

The goal of this chapter is to get you through the introduction of a .NET program, its files, and
core components. The idea behind this chapter is to give you an insight on how .NET is built
and we will be closely looking at the memory usage of a .NET program. In this chapter we
will cover:

 f Inspecting the internal infrastructure of a .NET assembly

 f Working with different types of assemblies

 f Inspecting the major components of a .NET program

 f How to work with custom configuration for an application

 f How to disassemble an assembly

 f Securing your code from reverse engineering by using obfuscation

 f Knowing the .NET garbage collection and memory management

 f How to find memory leaks in a .NET program

 f Solutions to 10 common mistakes made by developers while writing code

Basics of .NET Programs and Memory Management

52

Introduction
.NET has made a lot of improvements in its core to enhance the performance of an
application. It is the first solid-core environment that really connects to all parts of the
technology for developers. After getting through with the basic understanding of the Visual
Studio tool in the previous chapter, you would be definitely waiting to start writing code in the
IDE. But to make solid footsteps in the .NET environment, it would be great to know about the
basic advantages and also the architecture of the .NET environment that you are going to start
working on. In this chapter we will mostly cover the basic infrastructure of a .NET environment
to give you a solid foundation.

The most important infrastructural component of the .NET framework is Common Language
Runtime (CLR). The code that you write inside the framework is called the managed
code, which benefits from cross-language integration, cross-language exception handling,
enhanced security, versioning, and easy deployment support. Every component in a managed
environment conveys some specific rule sets. When you write your code in a managed
environment, the code gets compiled into the common intermediate language (CIL). This
language remains constant or equivalent to a code that might be compiled from another
language. The commonality of languages is maintained in a managed environment by the
use of an intermediate language. The languages that are built on top of CIL follows rules
defined on the Common Language Specification (CLS). Let us demonstrate the fact from
the following diagram:

Source Code

C#

VB.NET

Other
Language

Compile Time

This code is the same
for every source

Runtime

Native
Code

Native Code

CIL
(Common

Intermediate
Language)

Other .NET compiler

VBC compiler

CSC compiler

BYTE Code

JIT compiler

Chapter 2

53

Here in the diagram, the source code from any .NET language is converted to CIL code
with help from the respective supported compilers. To compile a C# source code, we have
CSC compiler and similarly we have a VBC compiler for VB .NET code. The CIL is then again
converted to native code using the JIT compiler. The JIT (just-in-time) compiler converts the
intermediate language to a machine-dependent code when it is executed during runtime.
Thus, you can copy an assembly to any platform that has the runtime installed and the
assembly will work in the same way. The introduction of a multicore JIT implementation
with CLR makes applications run almost at the same pace as running native code.

The CLR is supported by Common Type System (CTS). When you consider the languages in
.NET, each of them is backed up with a wide set of libraries available in every language. This
library is a set of assemblies installed when the .NET framework is loaded in a system, and
when it forms a major portion of any program, we built on top of it. Even though the framework
allows you to write code in different languages, the internal type system remains constant for
every language. For example, Integer of VB .NET is mapped to the same type in CLR as to
int of C#. Both of them point to the System.Int32 type in a framework.

The language that exists in the .NET environment is built on top of CLR such that the compiler
that compiles the source code should produce the CIL which follows the ECMA standardization
specified. There are a number of languages that are not built by Microsoft and are not shipped
with the .NET framework which include Lsharp, Boo, A Sharp, Fantom, and so on, which are
built on top of the .NET framework and which follows the ECMA standards. The internal bits of
an assembly built by these language compilers are exactly same and can be identified by the
JIT compiler easily.

Inspecting the internal structure of a .NET
assembly

In .NET when you compile your code, an assembly is produced. An assembly is a collection
of modules (or even a single module) which holds the intermediate code and metadata
associated with it which are popularly known as Portable Executable files or in short PE files.
Each assembly in .NET can be linked together with other assemblies via an assembly linker.
We cannot see the data inside a .NET assembly using text editors. We need specialized tools
that can read binary data present inside an assembly to get any meaning from it. The .NET
framework includes a great tool called ildasm.exe that can read from portable executables
and show you the IL. The idea behind inspecting an assembly is to understand what is inside
it and get to know some of the concepts that are worth knowing about the files that we will
work on. Knowing the bits and pieces can be of great help in understanding the behavior of a
.NET assembly on different runtime environments.

Basics of .NET Programs and Memory Management

54

Getting ready
Before we start the actual recipe, we need to create an assembly so that we can examine it
further. An assembly can be either a .dll file (dynamic link libraries) or an executable which
can be produced from a project. So let's open Visual Studio and create a Console Application
project. Type in the following code:

static void Main(string[] args)
{
 Console.WriteLine("Inside Main");
 AnotherMethod();
}

private static void AnotherMethod()
{
 Console.WriteLine("Inside AnotherMethod");
}

The preceding code is very simple. It has one main method block which prints something on
the screen and another method called AnotherMethod that prints another message. Now if
you run this program, it produces these messages onto the screen.

When you go to the Debug\bin directory of the project, you will see that the actual executable
has been created there. We are going to use this assembly to examine its contents:

C# Code

Each managed module contains
a number of headers in addition

to IL and Header

PE Header

CLR Header

Metadata

IL Code

Resource 2

Resource 1

Managed Module 2

Managed Module 1

Resource 1

Resource 2

Byte Code

al.exe
csc.exe

al.exe
csc.exe

al.exe
csc.exe

al.exe
csc.exe

Assembly

csc.exe Win32
Components

Managed
Module 1

Managed
Module 2

Chapter 2

55

In the preceding pictorial representation, we depicted how a managed module looks and how
the resources are written inside the actual assembly component. Each managed module
contains a number of headers and its metadata in addition to the actual IL instructions which
form the program logic. Once each managed module is built, it is then combined to form an
assembly using assembly linker. Each managed module is contextually found and loaded
using a relative virtual address by CLR. Let us look into the actual content of a module in
this recipe.

How to do it...
1. Open Visual Studio Command Prompt and move to the location where the

executable is located. Copy the path of the location, type CD and right-click to paste
the path so that the command looks like cd "your path". Press the return key
(Enter) to move your current directory to the specific path. For example, write the
following command:
dumpbin /all "yourassemblyname.exe" >output.txt

dumpbin is a utility program from Microsoft that reads the
information about a portable executable file and produces
it as a text content.

This will produce a file on the same directory called output.txt which contains
information about the assembly.

2. Open Output.txt to see the output hence generated. You will find that the file is
divided into different parts.

3. The first part of the section identifies the PE header section of the assembly. It
defines the file type, file header values, and optional header values. Each of these
sections together comprise the assembly. Each section starts with a section header,
which determines the header information about the specific header.

4. Moving down the optional parameters, you will see the information about stack
reserve and committed size and heap reserve size. These options define what will be
the reserved stack size for all the threads running on the process or the allocation
of heap in the process. The greater this size the less the allocation needed for the
application. But also know that the overall size of the memory used by the process
increases considerably.

Note that these options will only be found when you are
looking at an executable file.

Basics of .NET Programs and Memory Management

56

5. If you scroll down further, you will see a number of important directories. In our case,
we see that it lists 10 directories which are represented by pointers using Relative
Virtual Address (RVA). These addresses are specified as an offset from the base
address where the PE file has been loaded into memory.

6. As in the previous diagram, you can see there are a number of directories defined.
The most important one is the COM descriptor directory which describes where
exactly the metadata and IL start in the assembly.

7. Scrolling further it shows the actual sections. In our case there are three sections
available which are sorted by the starting address (RVA). The first one represents the
metadata information about the assembly. Each of the raw metadata information
has been marked as an offset. You can see the number corresponding to each line
representing the address of the line.

8. The Debug directories are also listed in the file with the absolute path of the
.pdb file. A unique GUID has also been created for the build which matches the
correct .pdb file.

9. The CLR header represents a special meaning to the compiler. You can see in
the diagram the CLR header has an entry point token assigned to 600001. This
is the number from where the execution starts. The CLR header also lists the
runtime version.

10. Another interesting thing to address; the start metadata definition block is marked
with 4 bytes, 42 53 4A 42 (BSJB), which are the first letters of the names of the
developers who are responsible to the implementation of metadata section in .NET.
BSJB stands for Brian Harry, Susan Radke – Sproull, Jason Zander, and Bill Evans.

How it works...
Assemblies are code contained in Microsoft Portable Executable files with metadata and all
other associated information inside. An assembly can be made up of more than one file but
that one file should contain metadata information about all other files in a section called
manifest. Let's take a look at the different sections of an assembly file.

Chapter 2

57

Portable Executable (PE) File (.NET Executable)

MS DOS Header

PE Header

Data Dictionaries

Section Table

.text Section

Metadata root

MSIL

.rsrc Section

Unmanaged resources

CLI Header

Import
Address Table

Unmanaged
Export Stubs Resources

#Strings #US #GUID #Blob others

MZ...

PE...

BSJB

Like any executable, every .NET assembly starts with MZ header information (coined after the
initial of Mark Zbikowski, who has been the original architect of MS-DOS). This has been kept
just to print out the message This program cannot be run in DOS mode.

After the MS-DOS Header information, the PE Header information starts. When you see the
output file of the dumpbin utility, you will see the PE header section, starting with some of the
basic information regarding the managed module with some data directory information. The
data directory represents special information inside the file which stores a predefined set of
values. The location of each directory is marked with a pointer address to RVA.

The real starting point of a PE file, from the .NET point of view, is the COR20 header. This
tells the .NET runtime where to find the metadata. The COR20 header specifies some data
directories just like the PE header as well as the entry point of the program. The address of
the start of metadata streams is pointed in one of these directories.

Basics of .NET Programs and Memory Management

58

.NET holds the metadata information in a number of streams each of which is in a
different format:

 f #BLOB: This holds binary data, which includes method signatures, strings in UCS 2.

 f #US: This stores strings in UCS 2.

 f #GUID: This stores the streams of GUIDs that are used in the assembly. GUIDs are
referenced in the stream using indexes not an offset.

 f #String: These streams comprise of most of the part of the assembly which includes
information about UTF 8 strings which include names of types, methods, and so on.

 f #~Stream: This stores metadata table information.

Finally the MSIL which represents the intermediate language is stored. The MSIL forms the
major portion of the assembly which needs to be JIT compiled when the assembly is executed.

The metadata section also lists a separate directory for the import address table and
unmanaged export stubs and resources, although the unmanaged resources have a separate
section (.rsrc). Each of these directories is mapped by the CLR header information.

There's more...
There are also a number of other options used to inspect an assembly. Let's look into some
of the other ways of inspecting an assembly.

Inspecting by using an assembly viewer
Asmex created by Ben Peterson (http://bit.ly/AssemblyViewer) is an amazing tool
to inspect the inside of an assembly. Please run the tool from the source code included with
the chapter that would help us inspect an assembly.

There are a few options that you need to consider when using the tool. The first one is
to open a private assembly. Let's run the tool and open an assembly as shown in the
following screenshot:

Chapter 2

59

When you open an assembly in this tool, you will see a tree on the left-hand side which is
divided into sections such as Headers, Imports/Exports, Relocations , Heaps, Tables, and
many more as shown in the preceding screenshot. Please consider looking at each section
one by one.

The Headers section includes, OSHeaders which includes the information that is required for
every binary file in the Windows operating system, COR20Header which includes metadata
information of CLR runtime, MetaDataHeaders which includes the location of streams,
storage signatures, and so on, and MetaDataTableHeaders which includes information
regarding metadata tables. These headers are marked clearly using the offset location for
that assembly, such that, if you open the assembly and read to an offset to that address,
you will find exactly the same information that is included in the tool.

Now going further to Heaps, you will see the streams of storage that have been written into
the assembly. These streams are separated into blob, GUIDs, Strings, and UCS streams. If
you select these nodes, you can see what is written into the assembly.

You can also consider looking at Tables, which gives you the information on all the bits
and pieces of the assembly. There are a number of nodes that appear for tables, such as
TypeDef, which has the information about all the types that exist inside the assembly; or
Constants that write the information about all the constants defined within the assembly.

www.allitebooks.com

http://www.allitebooks.org

Basics of .NET Programs and Memory Management

60

If you try to open an assembly from Global Assembly Cache (GAC) using the Open Assembly
button of this tool, you can see additional information about the assembly as well. For
instance, you will see what referenced assemblies are for a particular assembly, or the exact
file location for the assembly, and so on. If you want to learn more, it is recommended that
you look at each section of the assembly using this tool and discover more hidden secrets of
an assembly.

Working with different types of assemblies
In the previous recipe we have understood the internal bits of an assembly. We saw the
components that comprise an assembly; the file formats and metadata information regarding
an assembly. We have built an executable and inspected its major components. The main
motive of the previous recipe was to understand different sections of a .NET assembly and
its file format. In this recipe, our focus is to build an assembly with different components.

A .NET assembly is of three types:

 f Private assemblies: Private assemblies are those files that are deployed with the
application, either in the same directory where the application is running or in
its subdirectories. These assemblies are designed to be used by one particular
application and to remain private to all other applications. To enable another process
to use a private assembly, it needs to be deployed in the same location where the
DLL is deployed. Each of the processes that share a private assembly, loads the
assembly into its own domain. Private assemblies do not use a strong signature to
identify the file when it is called for. They load a disk file directly into the memory
where the process is allocated.

 f Public assemblies: They are installed in a separate location called Global Assembly
Cache (GAC). A public assembly is shared between applications and has version
constraints. In .NET, more than one assembly with the same name may exist when
they are from different versions. A public assembly is required when either you are
working on a very large project that requires generalized modules or the component
belongs to third-party vendors.

 f Satellite assemblies: They are .NET assemblies that store language-specific
resources. You can place different resources from different languages into different
assemblies and the correct assembly will be loaded when application is launched.

If you consider the assembly based on file types, they are of two types. The first one consists
of executables that can run independently, while the other consists of DLLs which are
associated to other executables to run its components.

Chapter 2

61

Getting ready
Let's start Visual Studio and create a Console Application project. In the Solution Explorer
pane, right-click and select Add New Project and select Class Library. We will use class
libraries to demonstrate each of the assembly types one by one.

How to do it...
After creating a new project, let's try each of the types of assembly one by one by carrying out
the following steps:

1. When Visual Studio is ready, write the following code inside Class1.cs
(I have renamed the file to MyClass.cs):
public class MyClass
 {
 public void AMethodOnaClass()
 {
 Console.WriteLine("Code inside a Method");
 }
 }

2. Now take reference of the library to the console application. To do this, we right-click
on the project and select Add Reference, and from this dialog box, we choose the
project from Project Reference, and compile.

3. After this if you move to the bin directory of the console application, you will see that
the PrivateAssembly is present in the same location.

4. Let's add another Class Library template to the project and now let's call it
SharedAssembly, and write the following code:
public class MysharedClass
 {

 public void MethodShared()
 {
 Console.WriteLine("This code is coming from shared
assembly");
 }
 }

5. The shared assembly created needs to be stored into GAC where all the shared
assembly in .NET are listed. Hence, rather than taking reference to the DLL to the
console application, we need to list it to GAC first.

Basics of .NET Programs and Memory Management

62

6. We will then create a folder in a local folder, in my case I have created a folder in C:
and named it keys.

Open Visual Studio Command Prompt and type the following command to generate
a cryptographic key pair:
sn –k "C:\keys\sharedassemblykey.key"

The console will say Key pair written to c:\keys\sharedassemblykey.key.

7. Now go to Visual Studio and open the Properties\AssemblyInfo.cs file of the
project SharedAssembly.

8. Type in the following command:
[assembly: AssemblyKeyFile("c:\\keys\\sharedassemblykey.key")]

9. Replace the path of the file in the attribute. Also please make sure the filename is
spelled correctly.

10. Now build the project. It will produce an assembly with signed keys. Open Visual
Studio again and type the following command:
gacutil –I "C:\......\SharedAssembly.dll"

When you run this command, it should say Assembly successfully added to the
cache. If you see any permission-related issue, you need to re-open the command
prompt in administrative mode. To do this, right-click on the command prompt and
select Run as Administrator.

11. Now switching back to Visual Studio, let's add a reference to the shared assembly of
the console project. Select Add Reference to the console application project. Browse
to select the assembly file.

12. Rebuild the solution. You will see that the shared assembly is not created in the
bin\Debug folder, yet if you call the method from MysharedClass, it will be
called correctly.

13. To add a satellite assembly, let's right-click on the console application and create a
folder, naming it Resources.

14. Right-click on the folder and select Add New Item and select Resources File.
Name the file MyResources.resx. Add some resources and click on Save
in Visual Studio.

15. You can add the key (which is the identifier that needs to be used by the project to
refer to the actual text written in Value.

16. Now go to command prompt again and type:
resgen "C:\\.....\Resources\MyResource.resx"

17. The command should say Writing resource file…. Done.

Chapter 2

63

18. The resgen command will produce a binary resource file named MyResource.
resources. Copy this file to the bin\Debug directory of the project. Now to create a
satellite assembly from the resource file, open the command prompt again and move
to the location where the .resource file and the actual executables are stored
(in the bin\Debug directory). Type the following command:
al /t:lib /embed:MyResource.resources, MyAssemblies.MyResources.
Resources /culture:en-US /out:MyResources.resources.dll

After the command is executed in the command line, it should not print anything on
the screen other than the Microsoft welcome message.

19. After the DLL is created, create a folder and name it with a culture name. In our case
I have created a folder named en-US and copied the resource file into it.

How it works...
Private assemblies are local assemblies that are entirely deployed for the usage of one
single application. When the application loads and calls for an assembly, the memory for that
assembly gets loaded. The application loads up the memory of the assembly during runtime
into its own AppDomain.

Shared assembly is, on the other hand, useful to share an assembly between more than one
application. There exists only one copy of an assembly in the GAC on one specific version and
every application that loads up the memory for this assembly needs to load from the same
location. The GAC is accessible to every application.

The .NET framework maintains a repository of assemblies machine
wide, such that any program can access an assembly directly
from this location called GAC. GAC maintains a controlled central
repository address of the shared libraries such that you can get
multiple versions of the same library from different applications.

Satellite assemblies are assemblies that store localized resources. You can use a satellite
assembly to store culture-specific codes that are based on the culture of the current
application; the application can load up an appropriate assembly.

There's more...
There are a lot of small important facts that you should remember while working with
assemblies in day-to-day life. Let's take a look at some of the other interesting topics
related to assemblies.

Basics of .NET Programs and Memory Management

64

Creating a friend assembly
It is important to understand that internal types are only accessible to the types that are
present within the same assembly. That means internal types (known as friend types) are
public within an assembly but not outside it. To make one type exposed to the external
world, we need to make it public. But this does not solve some of the real-world scenarios.
There might be situations that can arise which require you to access members from another
assembly without leaving the type exposed to the external world. Say for instance, you want
to separate the test code that runs on an assembly or you are developing an assembly that
needs access to some component directly defined within another assembly. In these cases,
friend assemblies are exceptions to the general rule. These assemblies expose any internal
types defined within one assembly to another assembly which is defined explicitly.

An assembly can be defined as a friend assembly by using an attribute
InternalsVisibleToAttribute, which specifies one assembly file to be friend to
the assembly such that the internal objects defined within this assembly are accessible
from the other:

Internals to Visible

Two assemblies can access Internal members

Private
Internal

Assembly B
Assembly A

Private
Internal

In the preceding diagram, you can see that the private members remain inaccessible from
outside the assembly even though the assembly is regarded as a friend but yet all other
properties can be accessed directly.

You can specify the InternalsVisibleTo attribute either at the start of the source code
or in the AssemblyInfo.cs file. Once the attribute is applied for a particular assembly,
any class defined as internal, inside the assembly, will be accessible to a type on the
other assembly.

Chapter 2

65

Let's create two assemblies to demonstrate this problem:

1. Open Visual Studio and create a new a Class Library project and name it
Assembly1.

2. Once the IDE loads up with a new blank class, we replace the existing code with the
following one:
public class Assembly1Class
{
 private void PrivateMember()
 {
 Console.WriteLine("Private Member");
 }
 internal void InternalMember()
 {
 Console.WriteLine("Internal Member");
 }
 public void PublicMember()
 {
 Console.WriteLine("Public Member");
 }
}

The class creates three methods, each of which belongs to a separate access group.

3. Right-click on the Solution node in the Solution Explorer pane and add a new Class
Library template, we will call it Assembly2.

4. Take reference of Assembly1 in Assembly2. Now let's write the following code:
Using Assembly1;
public class FriendClass
{
 public void TestMembers()
 {
 Assembly1Class oclass = new Assembly1Class();
 oclass.PrivateMember();
 oclass.InternalMember();
 oclass.PublicMember();
 }
}

The FriendClass class creates an object of Assembly1Class which is defined
within the first assembly and tries to call its members.

Basics of .NET Programs and Memory Management

66

5. If we try to compile the project, it puts two error messages saying that
PrivateMember and InternalMember are inaccessible because of the
protection level.

6. Now let's open Assembly1Class and put the following line at the start of the class:
[assembly:InternalsVisibleTo("Assembly2")]

7. If we compile the project now, only one error will still exists because of the private
member. The InternalsVisibleTo attribute defines Assembly2 to be a friend
of Assembly1, so that it can access internal members in addition to the public
members from outside.

If we want to use a signed assembly from GAC to be available as friend to an assembly, we
need to specify the exact path of the assembly using the entire public key with the assembly
name as shown in the following command:

[assembly:InternalsVisibleTo("Assembly2, PublicKey=99434…")]

We can specify the InternalsVisibleTo attribute inside the AssemblyInfo.cs file for a
project as well.

How to delay sign an assembly
When we need to ship a DLL with an application, we need to sign an assembly so that it can
be installed inside the GAC of the target machine and can be used up as a shared assembly
when required. During the development process, where one or more groups of developers
are working on the same assembly, there is a possibility that the private key of the assembly
might be mishandled. But the development process needs to sign the assembly just to invoke
the tests on it. We use delay signing on an assembly during the development phase by
generating a partial signature during development to access only the public key. The private
key remains secret and secure, and can be used only during the final build before shipping
the project.

We will use the Strong Name tool to extract the public key portion of the actual key.
Let us suppose the actual key for the organization is keyfile.snk, we then use the
following command:

sn -p keyfile.snk myKey.snk

This command will extract the public key portion of the keyfile.snk file and put it into the
mykey.snk file.

Once the key is created, open AssemblyInfo.cs under the project folder and put the
following attributes:

[assembly:AssemblyKeyFileAttribute("myKey.snk")]
[assembly:AssemblyDelaySignAttribute(true)]

Chapter 2

67

The first attribute passes the name of the file containing the public key, and the second
attribute instructs that delay signing has been used for the current project. Once the file is put
into the application directory, the compiler inserts the public key into the assembly manifest.
Now as these assemblies do not contain the strong name signature, we need to turn off the
verification for the assembly. We will use the following command to stop verification:

sn –vr myAssembly.dll

Finally when the assembly needs to be shipped, we replace the key with the actual key using
the –R option in the Strong Name tool:

sn –R myAssembly.dll keyfile.snk

You can also specify the delay signing for an assembly directly from Visual Studio. Go to
Project | Properties and click on the Signing tab as shown in the following screenshot:

As in the screenshot, you can create a file for the key, and if you have already created that file,
you can specify the file for the assembly and select the Delay sign only checkbox.

How to share a private assembly between more than one
application
From the previous discussion, it is evident that a private assembly needs the referenced
assembly to have a local copy so that it finds the referenced assembly when the application
is loaded. So, whenever you need to load the same assembly to more than one application,
either both of the applications need to be copied to the same application directory when
deployed so that it finds the assembly from both the applications, or it needs to be loaded
from the GAC. If the application does not find the referenced assembly to this location, it will
create an exception and shut down. But sometimes we need to put all the assemblies into a
common folder, and each application that is deployed to its own folder needs to reference the
assembly and hence share a common assembly file together. This needs a manual load of the
assembly. You can use code to load the assembly whenever the application is launched.

Basics of .NET Programs and Memory Management

68

During the initial load up of the assemblies, the application searches for the initial application
directory or GAC to load the assemblies that it has reference to. If the application does not find
the assembly in the desired location, the Application object raises an AssemblyResolve
event. We can use this event to load the missing assemblies to the application.

1. Let's say we place the assembly that needs to be shared, with more than one
application, to a separate directory named C:\Assemblies, and the name of the
assembly is MyPrivateSharedAssembly.dll. Now to load up this assembly to an
application we need to create an application.

2. Open Visual Studio and create a new application.

3. Subscribe the event handler for the AssemblyResolve event during the start up of
the application. We use the following code to hook up the AssemblyResolve event:
AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler
(CurrentDomain_AssemblyResolve);

4. Once the event is hooked up, we need to load the assembly inside the event handler
using the following code:
static System.Reflection.Assembly CurrentDomain_
AssemblyResolve(object sender, ResolveEventArgs args)
{
 string[] assembliesFailed = args.Name.Split(',');
 string defaultPath = "c:\\Assemblies";
 string assemblypath = Path.Combine(defaultPath,
assembliesFailed[0] + ".dll");
 if (File.Exists(assemblypath))
 return Assembly.LoadFile(assemblypath, Assembly.
GetExecutingAssembly().Evidence);
 else
 throw new ApplicationException("Assembly not found");

}

5. When the application loads up, if any of the assembly is found missing inside the
application directory (or bin directory), it will automatically invoke the event handler
and get the assembly from the default path specified.

You can use this code in multiple applications to load the same assembly file for
each of them.

When an application loads the assembly using Assembly.LoadFile, the
assembly remains locked and cannot be modified from any other application.
If you need the file to remain unlocked, you can read the file using a byte array
and load the Byte array:

byte[] assemblyBytes = File.ReadAllBytes(assemblypath);
return Assembly.Load(assemblyBytes);

Chapter 2

69

Replacing Assembly.LoadFile with the preceding one will solve the
problem of locking the file.

Also, it is important to note that even though the assembly resides in same
directory, the memory allocated for the assembly will be different for each
process that has been launched for the application. In other words, the
assembly memory is created once per application (process).

How to use the Global Assembly Cache tool
As we already know that the GAC maintains a central repository of all the assemblies that
are loaded into the machine with their specific public key token and associated version
information. So whenever an application calls for a specific DLL, the GAC can easily point
to the appropriate one and load the DLL to the application.

Even though we generally load a .dll file into the GAC using an installer, if we manually
want to manage DLLs inside it, we need to use the Global Assembly Cache tool. The GAC
tool (Gacutil) is actually a command-line utility tool that helps in checking, installing, or
uninstalling a library from the GAC.

To use this tool, open Visual Studio Command Prompt and use the command-line utility.

One can check the availability of a shared assembly using the following command (in our
example, the name of the assembly is myassembly.dll):

gacutil.exe /l myassembly.dll

This command will list all the assemblies that are found on the GAC with the count specified.

If you want to install an assembly in the GAC, we use the following commands:

gacutil.exe /i myassembly.dll

gacutil.exe /u myassembly.dll

The two commands will install and uninstall myassembly into the GAC respectively.

You can use the command argument /? to get the list of all command options available
with Gacutil.

Even though GAC is not actually a folder, it is actually a tree of folders on
which all the shared DLL is stored. Each DLL is stored in its own folder. The
main location of the GAC in hard disk is located at %windir%\assembly\.

The .NET 4.5 GAC is located at %windir%\Microsoft.NET\assembly\.

Basics of .NET Programs and Memory Management

70

Inspecting the major components of a .NET
program

When writing a program in .NET, it is not always true that the entire program that you create
contains only code, but rather there are a lot of things in addition to that which exist besides
source code. Some of the major components are the manifest, configuration files, information
file, metadata, and so on.

Every program generally needs to communicate with the underlying operating system in some
way. The manifest file contains all the metadata information needed to specify the assembly's
version requirements and/or security identity and all information regarding the scope of
the assembly. An assembly can contain the manifest file internally or externally. When the
manifest file exists externally, we call it as a standalone manifest file, while the data can be
incorporated inside the PE file as well.

The configuration and settings file on the other hand stores the application-specific or
user-specific settings for the application. The configuration files are meant to be modified
after the application is deployed, so they are stored as a .config file directly in the
application directory with the same name as the executable. Sometimes when you need your
configuration file to store sensitive information, we can also use encryption to encrypt the
data inside it.

Finally, the assembly information file. This file is required by every application and the
information that we put inside the file is compiled and stored as header information or
metadata information of the assembly. When you create an assembly inside Visual Studio, a
separate file is automatically created inside the project folder which holds information about
the assembly such as product name, description, trademark copyright, and much more. This
information will become a part of the assembly when it is compiled.

In this recipe we will try to look at the associated information regarding an assembly and how
they are shipped to the actual assembly.

How to do it...
To understand the different sections of a program, let us follow these steps and create a
simple application:

1. Start Visual Studio and create a new Windows Application project.

2. You will be shown a blank window designer when the project is loaded. Let's add a
new configuration file (if it is not added already) with the name app.config. Right-
click on the project and select Add | New Item. From the new item dialog box select
Application Configuration File and click on OK.

Chapter 2

71

Have a look at the following code:
<connectionStrings>
 <add name="MyConnectionString" connectionString="Data
Source=(local)\SQLExpress;Initial Catalog=DatabaseName;Persist
Security Info=True;User Id=sa;pwd=pktsa!" providerName="System.
Data.SqlClient" />
</connectionStrings>
 <appSettings>
 <add key="CurrentSetting1" value="data1" />
 <add key="CurrentSetting2" value="mystring2" />
 </appSettings>

In the preceding code we have created one connectionStrings key
with name MyConnectionString and two settings keys. You can use the
ConfigurationManager type to access these settings.

3. Now right-click on the project again and add a new item. From the dialog box, we
choose Settings File. The settings file is used to store user information and settings.
Basically the settings file once saved actually stores everything in config file during
the debugging session, (after it is deployed it will put it inside the user settings
location). Let's add a few settings inside the UI. You will notice that the settings
file actually creates a type to access this configuration, and hence settings are
strongly-typed configurations.

4. Add an Application Manifest File template in the same way as for the other two
files. The application manifest file comes with existing code written already inside
it. The most common usage of an application manifest file is to define the assembly
identity version or the trust level that needs to be applied to the executable after it
is deployed.

5. The assembly information file should have already been added to the solution after
the project was created. If you open the Properties folder inside the project, you
will see the AssemblyInfo.cs file. Open the file, and you can see all the assembly-
level attributes already mentioned with their default names:

Basics of .NET Programs and Memory Management

72

In the preceding screenshot, the Solution Explorer pane is depicted with a number of files
that form the major component of a program. You can see the AssemblyInfo file under
the Properties folder, the information of which is deployed inside the assembly file, the
configuration file (App.config) is deployed as program.exe.config and the app.
manifest file which stores the required manifest information.

How it works...
In this recipe we have addressed the four types of files that comprise every assembly. Let's
take a look at them one by one.

Entry point
The most important part of a program is its entry point. Every assembly defines the entry
point which identifies from where the executable starts execution. The entry point of a
program is generally defined in its main method. There are a few variations of the main
method that are allowed in .NET:

static void Main() {...}
static int Main() {...}
static void Main(string[] a) {...}
static int Main(string[] args) {...}

Each of these methods can be defined only once and when the application gets compiled
to an assembly, one of these methods will have an entry point defined which starts the
application. You should note that the entry point is not mandatory for an application. For
instance, the assembly that acts as a class library generally does not hold an entry point.

The AssemblyInfo file
The AssemblyInfo file is a repository of all assembly-related information which is compiled
to the assembly and later exposed from the assembly file defining specific information about
it. There are a number of defined attributes that you can assign to an assembly and a few
of them are exposed externally as metadata of an assembly. For instance, if you open the
AssemblyInfo.cs file, you will see a lot of interesting attributes that are already defined
inside the assembly. Let us look into some of the most important attributes:

 f AssemblyTitle: This defines the title of the application

 f AssemblyDescription: Using this you can provided description about the assembly

 f AssemblyProduct, AssemblyCompany, AssemblyVersion,
AssemblyFileVersion, AssemblyTrademark, and so on: These are some of the
other interesting configurations that you can specify

Chapter 2

73

For specifying general metadata configuration of the assembly, there is another attribute that
has been added to the .NET 4.5 base class library called AssemblyMetadataAttribute. It is a
general purpose assembly attribute that allows associating a key-value pair to an assembly.
There can be a number of these metadata components which can be associated with an
assembly. Say for instance, you want to specify the home page URL of the product company
that builds the assembly–the AssemblyMetadata attribute can be used to indicate this
inside an assembly.

The application manifest file
The application manifest file is another important consideration when dealing with security
and privileges that are needed by the application when run in a Windows environment.
Every application in .NET certainly contains a certain level of privilege set when run inside a
Windows environment. Operating systems higher than Windows XP do not allow an executable
to run in the admin mode when being launched; if not, it asks for it when it is launched. The
application manifest file allows the .NET application to request a certain level of permission
when the application is launched. The application manifest file also describes the metadata
for files that are private to the application. The application manifest file is embedded inside
the .NET assembly as a resource. Let us see what the application manifest file looks like:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
manifestVersion="1.0">
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level=" highestAvailable"
uiAccess="false" />
 </requestedPrivileges>
 </security>
 <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
 <application>
 <!--This Id value indicates the application supports Windows
Vista functionality -->
 <supportedOS Id="{e2011457-1546-43c5-a5fe-008deee3d3f0}"/>
 <!--This Id value indicates the application supports Windows 7
functionality-->
 <supportedOS Id="{35138b9a-5d96-4fbd-8e2d-a2440225f93a}"/>
 </application>
 </compatibility>

 <assemblyIdentity type="win32"
 name="PKTPub.Experts.dotnetSample"
 version="6.0.0.0"

Basics of .NET Programs and Memory Management

74

 processorArchitecture="x86"
 publicKeyToken="0000000000000000"
 />
 <dependency>
 <dependentAssembly>
 <assemblyIdentity type="win32"
 name="PKTPub.Research.SampleAssembly"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="0000000000000000"
 language="*"
 />
 </dependentAssembly>
 </dependency>
</assembly>

Here in this XML manifest file, the first section defines the privileges that the executable
should consider when the application is being executed. We have used highestAvailable
to ensure that the application runs on the highest permission set available in the
current environment. The other options that you can specify include AsInvoker and
requiresAdministrator. Depending on the existing privileges, the application generally
asks with a prompt whenever the administrator permission is required to execute. The
compatibility node defines the operating system that can run the executable. The GUIDs
specify the respective operating systems. Finally, the dependency of private assemblies
associated with the current assembly is defined.

The application configuration file
The final and the most important component that every application needs is the application
configuration file. An application configuration file is stored externally and holds special
configurations about the application that can also be configured or changed later (even after
the application is deployed). The application configuration (app.config) file is deployed as
an application.exe.config file. The app.config file holds sections that in turn hold
special information about assemblies and options used inside each assembly. The most
common and usual usage of application configuration files is the connectionStrings
and application settings. Let us look into it:

<connectionStrings>
 <add name="MyConnectionString" connectionString="Data
Source=(local)\SQLExpress;Initial Catalog=DatabaseName;Persist
Security Info=True;User Id=sa;pwd=pktsa!" providerName="System.Data.
SqlClient" />
 </connectionStrings>
 <appSettings>
 <add key="CurrentSetting1" value="data1" />
 <add key="CurrentSetting2" value="mystring2" />
 </appSettings>

Chapter 2

75

The connectionStrings and application settings are directly available inside the
application using ConfigurationManager. So if we use ConfigurationManager.
AppSettings["currentSetting1"], it will give us data1 as output. Similarly if we use
ConfigurationManager.ConnectionStrings["MyConnectionString"], it will give
the whole connectionString value as output. ConfigurationManager also exposes
APIs that help in getting sections on a particular configuration.

There's more...
There are a few operating system-specific configurations that you might also try to implement
from your program.

How to work with custom configurations for
an application

Configuration is one of primary concerns that you need to keep in mind while building an
application. Irrespective of whether it is an ASP.NET web application or a Windows Application
or a Windows Service, a configuration file is generally needed. We create configuration files
in XML formats and the compiler automatically binds them with the executable as exe
config. This is later loaded by the program when it is being executed. A configuration file is
a sequence of configuration sections which individually hold a format of the configuration.
Some of the configuration sections are already built by the framework and are generally used.
Some of the widely used configuration sections are connectionStrings, appSettings,
system.Web, and so on. Today we are going to build a custom configuration section and
show you how it can be used for your daily programming needs.

While dealing with configurations, there are three things that you need to address:

 f ConfigurationSection

 f ConfigurationElement

 f ConfigurationElementCollection

For the purpose of defining simple configuration sections, the first two classes
are generally enough, but when you need more complex configurations for your
application, say which itself holds a sequence of configurations, you might need to
use ConfigurationElementCollection and store the collection of individual
ConfigurationElement objects in a program. Here in this recipe we will see how
to create a custom configuration file taking all of these classes.

Basics of .NET Programs and Memory Management

76

Getting ready
In this recipe, we are going to implement a special configuration which stores information on
the servers that the application needs to use:

<Servers>
 <Element name="LocalServer"
 servername="192.168.179.60"
 userid="abhishek"
 password="password"
 isactive="false" />
 <Element name="RemoteServer"
 servername="68.240.22.19"
 userid="abhijit"
 password="passcode"
 isactive="true" />
 </Servers>

This two-server configuration has a number of settings such as servername, password,
userid, isactive, and so on. If we use a normal configuration, we cannot store all this
information at the same time, and it would be difficult to use appSettings to store it. We
can use custom configuration to deal with such scenarios.

How to do it...
As we have already mentioned, to deal with these types of complex configurations, we need to
implement three types: ConfigurationElement, ConfigurationElementCollection,
and ConfigurationSection. Now let us write the code to form a configuration:

1. Create a class called Element and inherit it from ConfigurationElement. Each
ConfigurationElement object represents a unique configuration, let us suppose
in our case it maps to Element.

2. Specify the properties of each individual configuration attribute and specify the
ConfigurationProperty attribute to each of them that directly maps to the
configuration file. You can also specify a few properties for each of these properties:
[ConfigurationProperty("isactive", DefaultValue = "true", IsKey =
false, IsRequired = false)]
public bool isactive
{
 get { return (bool)base["isactive"]; }
 set { base["isactive"] = value; }
}

Chapter 2

77

For instance, here the isactive property maps to the isactive attribute in the
configuration element. You can see the ConfigurationProperty attribute has
been applied to the property to indicate the metadata. The name "isactive"
specifies the attribute name, while DefaultValue and IsRequired are special
attributes that you can specify for a property. You can also specify whether the
property is a key or not. Remember, XML is case sensitive and you can only specify
one key per element.

3. Implement the ConfigurationElementCollection class to specify the
collection of the elements. While implementing you need to specify the type on which
the collection will map. We specify the ConfigurationCollection attribute with
Typeof(Element) to specify our ConfigurationElement value.

4. The ConfigurationCollection attribute defines an indexer which indexes all
the elements that are found in the configuration file. Remember to specify the return
type of the indexer as Element. The GetElementKey method is overridden to
return the Keyfield value for Element. We can also mention that the configuration
is read-only or not from here. We also need to return a New element from the
CreateNewElement method.

5. Finally, we wrap ConfigurationCollection from inside
ConfigurationSection. This class returns the collection of servers
to the application. The XML element has been also specified using
ConfigurationProperty for this class too:
public class ConnectionSection : ConfigurationSection
{
 [ConfigurationProperty("Servers")]
 public ServerAppearanceCollection ServerElement
 {
 get { return ((ServerAppearanceCollection)
(base["Servers"])); }
 set { base["Servers"] = value; }
 }
}

6. Once the configuration has been built, we specify the configuration directly inside
the application configuration file with proper SectionType (in our case it is
ConnectionSection), we use the ServerElement property to enumerate
all the elements:
public IEnumerable<Element> ServerElements
 {
 get
 {
 ServerAppearanceCollection collection = (ConnectionSection)
ConfigurationManager.GetSection("serverSection").ServerElement;
 foreach (Element selement in this.ServerApperances)

Basics of .NET Programs and Memory Management

78

 {
 if (selement != null)
 yield return selement;
 }
 }
 }

7. In the preceding code, you can see that serverSection is found using the
GetSection API call of ConfigurationManager and we cast the output into
ConnectionSection to get our object. If everything works well, this cast will
be valid.

How it works...
.NET configuration uses the same technique which is used in .NET serialization. Serialization
is a technique of representation of a runtime object in some data format, such that the
serialized data can again be deserialized to produce the actual object again. The whole
configuration file has been separated into a number of sections, each of which are serialized
XML representations to a valid .NET object. In this recipe, we have created a collection of
custom configurations and mentioned the same using a section name. The section name is
important to specify each section of the configuration:

Within our configSections tags, we specified the name of the configuration and the type
which handles the configuration. Once we call GetSection from configuration, it reads the
config file with the appropriate section and tries to cast it into the type we specified.

If configuration is valid, the cast is valid, and we get the exact representation of the section in
a managed object representation.

Chapter 2

79

There's more…
Creating a custom configuration and using it with an application looks very sophisticated.
Even library developers put in a lot of configuration blocks that enable some hidden
configuration of the library. The use of configuration has been growing day by day. Now,
let us take a look on some of the additional options that you might sometimes require.

How to change the configuration of an application at runtime
We often come across a requirement to change the value of the configuration during runtime
of the application. The ConfigurationManager API exposes methods that enable the
application to write data at runtime.

First of all, you should note, that when the application is deployed, the app.config file
would be modified to the actual applicationName.exe.config file. You can also open the
config file using the XML document and replace it manually, but it is recommended to use
ConfigurationManager to do this. Let's see how to do this using code:

System.Configuration.Configuration config =
 ConfigurationManager.OpenExeConfiguration(
 ConfigurationUserLevel.None);
config.AppSettings.Settings.Add("mykey", "myvalue");

 // Save the configuration file.
customSection.SectionInformation.ForceSave = true;
config.Save(ConfigurationSaveMode.Full);

Here, we open the configuration during runtime using the OpenExeConfiguration
method of ConfigurationManager. This is important because the configuration is
actually deployed as a exe.config file. After the configuration is open, you can modify
appSettings, connectionStrings, or even add CustomSection to the configuration
and finally use the Save method to save it.

ForceSave ensures that the configuration is saved in the config file even if it is
not modified.

How to deal with configuration versions
Configuration is one of the most important parts of a .NET program. Visual Studio 2012
comes with a feature that automatically detects appropriate configuration files to ship with the
executable when the project is built with different modes. For instance, say when the project
is built in the debug mode, we need a separate set of configurations. In the testing phase we
need a staging configuration, and finally in the production release we need to ship another set
of settings. Hence we really need to have more than one configuration stay for an application
that needs to be deployed based on the state of deployment.

1. Let us create a new Console Application project and add two application
configuration files, namely, debug.config and release.config to the project.

Basics of .NET Programs and Memory Management

80

2. Put one configuration to each of them. I have used <add key="myKey"
value="This is from debug"/> in appSettings of my debug and the same
key with different messages in the release version of the application. In my release
version the string is This is from release.

3. Now to use these configurations, right-click on the project in the Solution Explorer
pane and select Unload Project.

4. Select Edit project.csproj and navigate to the node Target. If there is no target
defined for the project, you will see that the configuration section has been
commented out. Add the following code to the section:
<Target Name="AfterBuild">
 <Delete Files="$(TargetDir)$(TargetFileName).config" />
 <Copy SourceFiles="$(ProjectDir)$(Configuration).config" Desti
nationFiles="$(TargetDir)$(TargetFileName).config" />
 </Target>

5. The preceding configuration will put a task at the AfterBuild event of MSBuild
and delete the existing config files (if any) and copy the file from the project
directory based on the name of the configuration file. Remember, as we have
used $(projectDir)$(Configuration).config, it is important to name the
config files in the project directory with the same name as the name of the build
configuration (in our case we named it as debug.config and release.config).

6. Save the content and reload the project.

7. Now put a small code in the Program.cs file to invoke the configuration as follows:
static void Main(string[] args)
{
 string key = ConfigurationManager.AppSettings["myKey"];
 Console.WriteLine(key);

 Console.ReadKey(true);

}

8. When you run the code in debug mode, you will now see the configuration from debug
and when in release mode, it will show the release string.

Also, in certain cases it is required to create more configuration builds than debug and
release. In such cases you can use ConfigurationManager from Visual Studio IDE to
create as many configuration stages as you want:

Chapter 2

81

Here we have created a new configuration as Staging and added staging.config to
the application.

How to disassemble an assembly
As you might already know, .NET assemblies are compiled to produce an intermediate language
rather than a machine-dependent language. Anyone who knows the specification very well
can easily reverse engineer the process of compilation and decompile the IL into specific
languages thereby exposing the logic that has been written to create the executable. The
reverse engineering technique has been present for a long time. The introduction to general
purpose-free disassemblers made it a practice for architects to look inside an assembly
inspecting things before actually using them. Some disassemblers can even show the
equivalent source code in .NET languages. Therefore, it is very easy for a normal-level
programmer to look into the exact logic and understand the various sections of code. Thus,
many of the information about licensing of third-party software can be very easily compromised
if the entire logic is exposed to the assembly. Visual Studio is shipped with a tool that can show
the intermediate language of an assembly. By looking at the intermediate language, one can
quite easily understand what logic is written inside an assembly and can reverse engineer it
to its original source code. The tool is called IL Disassembler. In this recipe we will use this
tool to demonstrate the IL equivalent of an assembly and try to understand the reverse
engineering techniques.

Basics of .NET Programs and Memory Management

82

Getting ready
Let us create a blank code to demonstrate this recipe. Open Visual Studio and create a
Console Application project. Call it DisassembleCode and select OK. Let's write a few
lines of code inside the Program.cs files and create a class to show the recipe:

class Program
{
 static void Main(string[] args)
 {
 string firstString = "Hi this is my first string";
 string secondString = "Hi this is my seconds string";

 CompareStrings cstrings = new CompareStrings();
 cstrings.FirstString = firstString;
 cstrings.SecondString = secondString;

 if (cstrings.Compare())
 Console.WriteLine("these strings are equal");
 else
 Console.WriteLine("These strings are unequal");

 Console.ReadKey(true);

 }
}

// CompareStrings
class CompareStrings
{
 public string FirstString { get; set; }

 public string SecondString { get; set; }

 internal bool Compare()
 {
 return this.FirstString.Equals(this.SecondString);
 }
}

The preceding code just compares the two strings which are statically defined within the
assembly and produces an output based on whether the strings are equal or unequal. Here
in our code, it always results to unequal because the value of FirstString is not equal
to SecondString.

Chapter 2

83

Please note that the code introduces a new type called CompareStrings that initiates a new
object within the main method and then invokes the Compare method to get the comparison
result. When you compile the code, and go to bin\debug folder of the project, you will see an
executable. When you run the executable, the application will open a blank console window
and show the message.

Disassembling is a technique used to reverse engineer an intermediate code written inside
an assembly to a human-readable code to understand the logic inside an assembly. Say
for instance, you do not have the source code for the assembly and you want to know what
exactly is written inside it. The recipe will focus on the use of the IL Disassembler that comes
free with Visual Studio to see the various features of the program and how to know the entire
structure of the assembly.

How to do it...
1. Open the folder containing the assembly. Generally the assembly is produced inside

the bin directory of the application folder and produced with the same name as
the project.

2. Open the IL Disassembler by going to Start | All Programs | Visual Studio |
Microsoft Windows SDK tools.

3. Select File | Open or use the shortcut Ctrl + O from the IL Disassembler and select
the executable that has just been created. If you don't remember the location of the
assembly, you can copy the whole address of the assembly from the opened explorer
and paste it in the File Name field of the Open dialog box.

4. When the assembly has been successfully loaded inside the IL Disassembler tool, it
will produce a tree showing all the information about the assembly. You can see the
tree shows the types, all the methods that are defined inside the assembly as a tree
node, and also the metadata associated with the assembly.

Basics of .NET Programs and Memory Management

84

5. When you double-click on any of the nodes, it will show the respective branch of
code defined within the assembly. The preceding screenshot shows the metadata
of an assembly, which generally translates the metadata compiled from the
AssemblyInfo file and also gives insight about the version needed to run the
assembly: the CorFlags, the public token, and so on.

6. Open the DisassemblerCode.CompareStrings node and check the various options
available as shown in the following screenshot:

7. You can double-click on any node to see the corresponding IL code that is written
inside the assembly.

How it works...
As you already saw various elements of the code inside the IL Disassembler, it is important
to know a few basics of the IL construct to actually understand the basic structure of
disassembled code. Let us check some of the interesting sections of an IL to understand
the basic code structure:

.class private auto ansi beforefieldinit DisassemblerCode.
CompareStrings
 extends [mscorlib]System.Object
{

.field private string '<FirstString>k__BackingField'

.custom instance void [mscorlib]System.Runtime.CompilerServices.
CompilerGeneratedAttribute::.ctor() = (01 00 00 00)

.property instance string FirstString()
{
 .get instance string DisassemblerCode.CompareStrings::get_
FirstString()
 .set instance void DisassemblerCode.CompareStrings::set_
FirstString(string)

Chapter 2

85

} // end of property CompareStrings::FirstString

.field private string '<SecondString>k__BackingField'

.custom instance void [mscorlib]System.Runtime.CompilerServices.
CompilerGeneratedAttribute::.ctor() = (01 00 00 00)

.property instance string SecondString()
{
 .get instance string DisassemblerCode.CompareStrings::get_
SecondString()
 .set instance void DisassemblerCode.CompareStrings::set_
SecondString(string)
} // end of property CompareStrings::SecondString

} // end of class DisassemblerCode.CompareStrings

Here in the preceding code, the first thing that you notice is actually the header information
of the class. The .class stands for the start of a class (or type) in IL. Any type (other than
a few exceptions such as Interfaces, and others) in a .NET environment is derived from
System.Object. We do not specify this in our code, but you can see that the compiler
automatically writes the information inside the IL. Notice that the beforefieldInit flag
specifies that the type is "lazy initialized", or in other words, the type will be initialized only
when it is really needed.

The next section creates an instance of a string. You can see each property has a compiler
generated backing up the field as we implemented auto properties. get and set are
respective methods that invokes the getter and setter of the property. The naming
convention is get_FirstString and set_FirstString where IL is concerned.

Now let us demonstrate what the Compare method looks like:

.method assembly hidebysig instance bool
 Compare() cil managed
{
 // Code size 23 (0x17)
 .maxstack 2
 .locals init ([0] bool CS$1$0000)
//000015: {
 IL_0000: nop
//000016: return this.FirstString.Equals(this.
SecondString);
 IL_0001: ldarg.0
 IL_0002: call instance string DisassemblerCode.
CompareStrings::get_FirstString()
 IL_0007: ldarg.0

Basics of .NET Programs and Memory Management

86

 IL_0008: call instance string DisassemblerCode.
CompareStrings::get_SecondString()
 IL_000d: callvirt instance bool [mscorlib]System.
String::Equals(string)
 IL_0012: stloc.0
 IL_0013: br.s IL_0015
//000017: }
 IL_0015: ldloc.0
 IL_0016: ret
} // end of method CompareStrings::Compare

Here you can see that there are lot of things happening inside the IL for our Compare method.
Each method in the IL comprises of three sections. The first one being the declaration where
the local objects are referenced in a thread stack; second is the actual IL instruction code;
and third is the return value.

Here in the preceding code, the highlighted section on the top defines the stack for the
method. The main declaration initializes the size of the stack that can be used for the method.
You can notice, even though we didn't define any local variable, the stack size still says 2 and
defines a local Boolean variable to hold the compared values.

The IL instruction loads Firststring and secondString by invoking the call instruction to
the respective getter method that has been already defined inside the code and finally uses
callvirt to call the Equals method of the System.String type.

The instruction code stloc.0 and ldloc.0 stores and retrieves the local stack element
respectively and returns back the already loaded value back from the method.

It is important to note that during the compilation process, the C#
compiler does a lot of optimizations on code which sometimes gives
different IL than that compiled from the source. In such cases the
decompilation may result in a dissimilar source.

Let us look into some of the most important IL instructions:

 f .entrypoint: If present, it will be present only once and defines the starting point
of the assembly. You can find it inside the Main method.

 f .locals init: This defines and initializes the stack locals for a method body.

 f stloc.*: This stores the loaded value into stack location. * indicates the index of
the variable that it is stored to.

 f ldloc.*: This loads the location into memory. * indicates the stack location.

 f newobj: This creates a new object instance by calling the constructor of a type.

 f call/callvirt: This calls a virtual method on a specified object or type.

Chapter 2

87

There are a lot of other IL instructions that you can look at and understand. You can get a list
of all IL instructions from the following reference:

http://en.wikipedia.org/wiki/List_of_CIL_instructions

You can use [assembly:SuppressIldasmAttribute(
)] to suppress an assembly to be opened using the IL DASM
tool. When you try opening an assembly with this attribute, it will
show an error message: Protected module.

There's more...
It is not really a good idea to use only IL Disassembler to disassemble an assembly. There are
some really interesting tools that can help in addition to the use of IL Disassembler. Let us
look into them.

How to disassemble an assembly using Reflector
There are other tools that are smarter than the IL Disassembler which can readily convert
the assembly code into their corresponding source code in any .NET language. The tool is
really interesting and just one or two mouse clicks can convert the entire assembly into its
corresponding source code equivalents. The .NET Reflector along with a few other tools are
already available on the market for free which act as a first-class citizen to reverse engineer
code. Let us see how the Reflector can help in converting existing code. You can download
Reflector from http://bit.ly/NETReflector. Reflector 6.8 is free but higher versions
are chargeable.

Open the Reflector tool (after you have downloaded and installed it in your system). Select
File | Open Assembly and select an assembly. You can also use Open Global Assembly
Cache command to list the assemblies installed in GAC. After the assembly is loaded into
the Reflector tool, you will see the name of the assembly in the left-hand side as a node
in the tree. Expand the tree to see the classes defined within the assembly:

Basics of .NET Programs and Memory Management

88

In the preceding screenshot, you can see that the assembly is already loaded in the left-hand
side of the screen, and the right-hand side shows the corresponding code for the selected
class file.

The tool is basically reading the IL of the assembly and writes the corresponding high-level
source code equivalent for it. It is evident that the conversion of the IL from the source code is
done by the compiler. The tool reverses the technique and places the logic to reverse engineer
the IL code to a source code.

So, from the drop-down list, if you select C#, the source is converted to C# and if you select VB
.NET, you will see it is converted to VB. NET. The navigation between different class files is also
very easy in this tool. You need to just click on the method or type and the corresponding code
block will be displayed immediately.

How to merge assemblies into one
Each .NET assembly contains individual modules of code that work independently. An
application needs to load each of those modules into the memory to call them when needed.
So generally, it is always a good idea to separate source codes into assemblies to produce
independent modules. Or in other words, separating two modules into separate assemblies
means they should be independent of each other.

Sometimes it comes as a requirement to separate dependent modules into two or more
assemblies. Say for instance, the size of the dependent assembly becomes so big that it is
hard to maintain, or some separate groups of people are working on a product and they build
code in different .NET languages. In such cases, it is important to separate the assembly
into multiple disk files even though they are interdependent from one another. But loading
two dependent assemblies into the memory puts additional pressure on the application and
hence decreases performance. ILMerge is an interesting tool that helps to merge two or more
assemblies into one, so that dependent assemblies are not separated into more than one
disk file.

To merge two assemblies into one, we use the ILMerge tool which can be downloaded from
http://research.microsoft.com/en-us/people/mbarnett/ilmerge.aspx.
Once you download the tool, install it and you will find the executable somewhere inside
C:\ProgramFiles\Microsoft\ILMerge\. Open the command prompt and move to
the directory and try the following command:

ilmerge /target:winexe /out:CompositeProgram.exe MyApplication.exe
ClassLibrary1.dll ClassLibrary2.dll

The preceding command will merge three assemblies, MyApplication.exe,
ClassLibrary1.dll, and ClassLibrary2.dll into one composite assembly
CompositeProgram.exe. The target specifies what type of executable you are building in
the target assembly. In our case we have used WinExe to ensure that it creates a Windows
executable. If you specify target:exe in the command line, it will produce a executable or
target:library for a DLL file.

Chapter 2

89

What is IL Weaving
IL Weaving is a technique to inject IL code inside an assembly. As we already know, .NET
when compiled produces a byte code, which is machine independent and need to be
recompiled again using the JIT compiler to produce runtime machine-dependent code. Thus,
the assembly that has been created using initial compilation can be easily changed and
can be made perfect for JIT compilation. IL Weaving is the concept of either changing the IL
code after compilation or changing it during the compilation process. For instance, Simon
Cropp has produced one IL Weaving tool that automatically plugs in as an extension to Visual
Studio and works as a post-build script to wire up the PropertyChanged notification to each
individual property that needs it. The Notify Property Weaver runs as an MSBuild task.

You can try this with its entire source code from the following link:

http://bit.ly/ILWeaver

Securing your code from reverse
engineering by using obfuscation

It is sometimes very important for an application to hide the code that is written inside a
managed assembly. Using a managed environment, as we have seen in our previous example,
it is very easy to decompile a code and hence reverse engineer the code and produce
the exact same code that has produced the output assembly. We cannot hide the source
code from an assembly because the intermediate byte code has equivalent source code
equivalents. So for an expert it is really easy to understand the logic that is written inside an
assembly. With the large number of .NET decompilers available in the market for free, it is very
easy even for a basic developer to reverse engineer the source code. So when you really need
to protect your source, for instance, by writing an algorithm to detect licensing of a product or
even an algorithm that are sensitive or under Non Disclosable Agreement (NDA), you need to
only rely on obfuscation tools in a managed environment.

Obfuscation is a technique of hiding the meaningful code into something that is really
confusing and hard to interpret. Hence, even though the source IL does exist in the assembly,
they are written in such a way that neither a basic developer nor an expert could understand
it. The use of control flow obfuscation, data obfuscation, renaming types, and so on, can really
confuse and even make it impossible to understand the actual code.

Getting ready
In this recipe, we are going to use the same code as we defined in our previous recipe but
here I will be using Dotfuscator (http://bit.ly/DotFuscator) to obfuscate the code
before looking into the code using IL Disassembler.

Basics of .NET Programs and Memory Management

90

So to go with the recipe, let's create a console application and write in some code. Compile
the project and create an assembly. Once the assembly is created, let us open the
DotFuscator Community Edition or Professional Edition and try obfuscating an assembly.

How to do it...
Let us follow the steps to obfuscate an assembly:

1. Open DotFuscator and create new project. A project is an XML file that creates the
necessary settings so that when you open the same project subsequently, everything
will be loaded automatically as saved before.

2. Once you open the tool, the first thing that you notice is Input Assemblies. A
special list is showed up on the tool that contains all the assemblies you choose
to disassemble.

3. Input an assembly using the Input Assemblies node of the tree. Choose the
appropriate assembly that you want to use. Remember, you can choose all the
dependent assemblies of a project in one shot so that you can reduce the amount
of time to create related projects and do necessary settings for every assemblies.

4. After the assembly is chosen, you can select the node on the list and select options.
There are few options available such as Honor Instrumentation Attributes which
indicates the tool to process these special attributes supported by Dotfuscator
and perform the indicated transformation on the target assembly. Similarly, Strip
Instrumentation Attributes strips all the Dotfuscator attributes from the final output.

Chapter 2

91

5. The Library mode when selected will produce the output as a library that needs to be
referenced by other assemblies. If you choose this, the publicly exposed objects do
not rename it.

6. Once you are done with this, you can directly use the Build Project button to create
the obfuscated assembly. If the project has not yet been saved, the tool will ask you
to save the project as an XML file. This file is used to open the configuration again
in future.

7. Once the build is complete, the obfuscated assembly will reside on the working
directory from where you choose the assembly from inside a new folder called
DotFuscated.

8. Once you save the project file, you can invoke the Dotfuscator directly from Visual
Studio as well as using the command-line utility. Right-click on the project and select
Properties. Go to Build Events and paste the following code inside Post-build Event
Command line:
"C:\Program Files\PreEmptive Solutions\Dotfuscator community
Edition 2.0\dotfuscator.exe" "c:\DotfuscatorProjects\
dotconfiguration.xml"

9. Here dotconfiguraiton.xml is the project file from the Dotfuscator tool. You
can also specify the configuration directly from the command line without using
configuration file. For instance:

dotfuscator.exe /in: $(OutDir)\ $(TargetFileName) /appl:exe /
debug:on /break:on /enha:on /clob:on

This command when placed in the Post-build Event Command Line window, will
compile the assembly as a .exe file, break ILDasm, produce PDB files, use enhanced
overload induction, and silently overwrite the map file (clob).

The assembly when produced will have every API renamed, hence when you try to reverse
engineer the assembly using Reflector, you will see something like the following screenshot:

You can see that every property and method has been renamed with junk characters.

Basics of .NET Programs and Memory Management

92

How it works...
Dotfuscator is one of the most popular tools for obfuscating an assembly. Most people use
this tool as a community version that comes for free with the Visual Studio installation. If
you open the project file, that we just saved while performing obfuscation, we see something
like this:

 <input>
 <loadpaths />
 <asmlist>
 <inputassembly refid="0b86956e-8677-4887-8c18-7f24b0077ae8">
 <option>honoroas</option>
 <option>stripoa</option>
 <option>transformxaml</option>
 <file dir="C:\Users\Abhishek\Documents\Visual Studio
2010\Projects\InterProcessCommunications\InterProcessCommunications\
bin\Debug" name="InterProcessCommunications.exe" />
 </inputassembly>
 </asmlist>
 </input>
 <output>
 <file dir="${configdir}\Dotfuscated" />
 </output>

Even though the actual project file is longer than what you see, there are a few key things that
you need to notice here in this file. The section that I have just opened here contains a section
of input and output configurations. Clearly the output section only includes the file
directory path which is specified as ${configdir}, which is the actual assembly path with
the Dotfuscated folder. You can change the directory path of the output to anything relative
to configdir here.

The input section in addition to the file directory path, includes few additional options.
honoroas specifies the honor obfuscation attributes or stripoa specifies the strip
obfuscation attributes.

Chapter 2

93

The entire process of obfuscation works as shown in the following diagram:

Source

.NET MSIL
DotFuscator
Process

Dotfuscation Dotfuscated
MSIL

CLR

Functionality
Equivalent

Traditional
MSIL

Compile

CLR

This diagram shows how the process of obfuscation takes place using Dotfuscator. The source
code is compiled to produce Traditional MSIL, but we use Dotfuscation to obfuscate the MSIL
to dotfuscated MSIL. If you see the assembly after obfuscation, you will find that a special
namespace has been added for Dotfuscation. But the important thing to note here is that the
functionality of both the obfuscated code and the normal code remains the same even though
both represent CLR.

There's more...
Even though the Dotfuscation looks like it's working great, as all the types, members, or fields
have been renamed, it is not exactly very secure. The code inside the obfuscated modules is
still visible using popular disassembler code, yet it has been slightly difficult to understand.
Any smart developer can still reverse engineer the code to get the actual logic. But code
obfuscation goes well beyond simple renaming of types, members, or variables. There are
features such as Use Enhanced Overload induction (only in non-commercial versions)
which will rename many methods to the same name and hence will make it more difficult to
obfuscate. The commercial version of Dotfuscator allows you to add a lot of other options that
really help to secure the assembly code in such a way that it would be impossible to reverse
engineer the code by hand. Let us look at some of these options.

You can download the trial version of a commercial edition directly
from the Preemptive site (www.preemptive.com).

Basics of .NET Programs and Memory Management

94

Using different additional options on Dotfuscator
Dotfuscator includes lot of additional options that you might use when you are using the
Professional edition. Let's quickly demonstrate these options so that it is easier to jump
into it if you really need to:

 f Renaming: Renaming is an option that has already been discussed. It includes
renaming of types, methods, and fields. Dotfuscator can also be configured to use
Overload Induction to rename types with the same name when it can.

 f String encryption: Strings are generally placed inside the code insecurely and even
inside the IL. String encryption of obfuscation lets the strings being encrypted be
stored in a special location where the program asks for it by its serial number.

 f Control flow obfuscation: This option changes the control flow of the application
logic and makes it non-deterministic and semantic making sure the output remains
the same. In its options you can specify the control flow level as well.

 f Debugging Obfuscated code: Generally, obfuscation changes the entire assembly
so that every line in the original assembly will either be shifted to another location
or the entire type will be renamed. Thus, it is impossible to use the PDB file that
Visual Studio generates to debug the obfuscated DLL. Dotfuscator allows you to
specify options to include PDB files during the obfuscation to allow debugging of
the assembly. On the properties page, you can select Emit Debugging Symbols to
generate debugging files.

 f Pruning: This option statically analyzes the entire assembly and determines which
portion of the code is not been used. Intelligently, it removes all the codes that are
not used and produces the assembly.

 f Instrumentation: This new feature of Dotfuscator allows you to generate reports on
features usage of the assembly. Add custom attributes to the Dotfuscator project
and the code will get automatically injected into the assembly to produce feature
usage of the assembly and gives analytical data. In the Instrumentation tab, right-
click on the executable selected and use the Add attributes to add these features.
For instance, BusinessAttribute determines the information about the company
that builds the assembly. You can specify the company name and company key.
ExceptionTrackAttribute tracks the exception that occurs on the assembly.
This is very important to build analytical data on what is actually producing bugs on
the piece of software. You can also specify attributes to methods, types, and so on,
similar to this.

Configuring an assembly directly from Visual Studio
Dotfuscator integrates with Visual Studio. When you install the Dotfuscator professional
edition, you will get a template to create Dotfuscator projects. Let's create a Console
Application project and add a new project to the solution, and select MyDotFuscatorProject.
You will see that the entire tool has been loaded inside Visual Studio, and you can use the
Solution Explorer pane to invoke specific UI elements.

Chapter 2

95

Let's follow the steps to obfuscate directly from inside Visual Studio:

1. Once the project has been loaded, you can either choose the individual assemblies
from the Input files folder or you can right-click on the Solution Explorer pane
and select Add Project Output. This will prompt you to the Add Project Output dialog
box. Choose Primary Output for each of the assemblies. You will see that each of the
DLLs will get added to the Input folder inside the solution.

2. Choose the necessary configuration you want, in the same way you did for the tool.
3. Right-click on the Dotfuscator project and select Properties. Interestingly, this opens

the Properties window to enable/disable each option that you want to use inside
Dotfuscation. Generally, it is good to enable Renaming, Control Flow, and String
Encryption to make a solid obfuscation.

4. Select Build Settings to ensure the Output directory has been configured correctly.
5. Build the solution, and you will get the output inside the Output directory.

You can select a lot of other options from the Property Pages
window. For instance, if you change Break ILDASM to Yes, the
Ildasm tool cannot open the assembly.

Similarly, if you change Build Progress to Verbose, it will give
additional information on the Output directory of Visual Studio.

You can also change the Emit Debug Symbols property to Yes to
output PDB files with the output assembly. Debugger can use this
file during debugging sessions.

Obfuscation using SmartAssembly
SmartAssembly (www.smartassembly.com/) is a great obfuscation tool from Red Gate that
works best if you want to purchase a commercial obfuscation tool. Let us take a look at the
advantages of SmartAssembly and its ease of use.

Open SmartAssembly, in my case I am using SmartAssembly 6.0. In the initial screen, you can
choose either to create a new project or open an existing project. In our case, as we want to
do a new project we select New Project:

http://www.smartassembly.com/
http://www.smartassembly.com/

Basics of .NET Programs and Memory Management

96

A new project opens up another screen which indicates the Browse option to select the
assembly you want to obfuscate. We are going to select one of our existing assemblies to
try the obfuscation using this tool. We also need to select the destination filename after
the obfuscation is done. Once you do the initial setup, SmartAssembly opens the actual
workspace with options:

Obfuscation with SmartAssembly is much easier than that with Dotfuscator. It depends on
your choice and which one you use.

Understanding .NET garbage collection and
memory management

.NET memory management is actually not something we generally need to bother about. Any

.NET application that runs, actually contains its own garbage collector which manages the
memory used by the program and releases the memory when it is not required. There is a
high-priority thread that runs under every process which is called the finalizer thread. This
invokes itself automatically when there is high memory pressure or after a certain interval
of time. The process of cleaning up memory has been done for the program using a unique
algorithm to reclaim memory by creating a map of reachable objects and releasing all the
memory that does not have its roots in the application:

When running a process on Visual Studio, you can always determine the finalizer thread which
is used for garbage collection from the Threads window. The one thread that has highest
priority and has a call to GCHeap.FinalizerThreadStart() in its call stack is actually the
finalizer thread for the process. This thread remains idle for most of the time, but occasionally,
it executes and performs GC on the memory map of all threads executing on the application.

Chapter 2

97

GCHeap even though it is used quite heavily, it is not exposed to
the end user to call it directly. So you cannot use GCHeap.Create
to create a new heap on your process memory and use it. Rather,
it is recommended to separate each memory heap using separate
AppDomain, which is regarded as a logical separation of memory.
Each object created is associated with the current AppDomain
class, hence when AppDomain is unloaded, all objects even the
static variables are disposed. AppDomain separates the execution
of code within itself. Even assemblies are loaded in AppDomain,
such that any untrusted code cannot affect another AppDomain
class. You can use AppDomain.CreateDomain to create a new
AppDomain class to run your user code.

In this recipe we will use SOS (Son of Strike) http://bit.ly/SOSDll to see how these
objects are getting allocated and disposed.

Getting ready
Before we actually get started with the recipe, we need to understand a few key concepts
that are very important to understand, before we actually move ahead with the .NET
garbage collection:

 f Stack: The local storage is allocated on a per thread basis. When the code gets
executed under CLR, the thread that is running on the code will have its local
stack defined for its execution which allocates and stores local variables, method
parameters, and temporary values for that particular thread. The important thing is,
this memory is highly contiguous and does not employ GC to clean up data. The data
for a particular method will automatically get cleared out whenever the method is
returned. Another important consideration is that when each object is allocated in
a managed heap, the reference is generally allocated inside the stack such that the
GC tries to find the reference of the element on the thread stack to find whether the
thread has this reference or not.

 f Unmanaged heap: For a program, the unmanaged heap is used for runtime
data structures, which are allocated using Win32 API calls, the MSIL , the method
Tables, the JITed code, and so on. The CLR uses unmanaged heap extensively for
its data structure.

 f Managed heap: The managed heap means the memory heap that is maintained by
the garbage collector. Managed objects are allocated inside managed heaps. Both
allocation and deallocation of a managed heap is managed by GC and we cannot
create a managed heap from an application. The GC.Collect API is helpful to
force the GC to start allocating.

Basics of .NET Programs and Memory Management

98

If you delve deep into how CLR allocate resources, you will see it actually maintains
NextObjPtr, which always points to the next free space on the heap. When a process is
initialized, it allocates a contiguous space (thus making it faster) on the heap for the process,
and points NextObjPtr to the base location. As the application moves forward with memory
allocation (using Win32 API VirtualAlloc or VirtualAllocEx), Nextobjptr moves
forward to point to the next empty space that it finds. Finally, as allocation goes on and GC
releases the nonreachable memory, the gaps start to appear in the heap and so, GC has to
compact the heap at a certain interval. During heap compaction, the GC uses the memcpy
function to move the objects from one memory to another to remove the unreferenced holes
in memory map.

GC actually uses generations to improve its algorithm of deallocation. I have already
mentioned, GC creates a map of all the objects that exists on the program assuming all as
garbage and finding only the reachable memory from the program, it also marks each of the
memory that is still needed by the application. This mark indicates that the memory has been
moved to the next generation of GC. For the first time, every object in GC is treated as Gen 0
and after each collection, the ones that survive are marked to Gen 1 and then to Gen 2. As
GC is costly, creating a memory map for the entire process memory is very costly. GC invokes
its collection for Gen 0 more than what it does for Gen 1 and then to Gen 2. Hence, the
short-lived objects are GCed more often than the long-lived object. GC does Gen 2 collection
only when the memory pressure is very high, so the objects that have already moved to Gen 2
are not prone to garbage collection often even though it is not in use.

If we look into the sequence of GC collection:

 f The EE gets suspended (execution engine suspension) until all managed threads
have reached a safe point

 f It marks all objects that do not find roots as garbage

 f The GC creates a budget for each generation and determines the amount of
fragmentation that can exist as a result of collection

 f Deletes all objects that are marked for deletion

 f Moves all reachable objects to fill the gaps (as GC heap is contiguous)

 f The execution engine gets restarted

The following points continue with the key concepts you need to know about:

 f Large object heap: It should also be noted, that the heap is classified into two types.
One is small object heap (SOH), which we have already stated, and another is large
object heap (LOH). Any object that is more than 85,000 bytes gets allocated on LOH.
LOH isn't compacted, as invoking memcpy on such large objects is very expensive. As
a result gaps may be produced for the object. In .NET 4.5, the CLR maintains a free
list of dead objects so that any LOH allocation further can take up the free space
rather than allocating using NextobjPtr of LOH.

Chapter 2

99

 f Background GC: Another important concept that you need to know is that of the
background GC. Before the introduction of .NET 4.0, the .NET GC used concurrent GC
to deallocate memory. The basic difference between background GC and concurrent
GC is that background GC can run multiple times for a single GC generations and
it uses non blocking management to GC on heaps. The basic characteristics of
background GC are as follows:

 � Only full GC collection (Generation 2) can take place in the background

 � Background GC cannot be compact

 � Foreground GC (Generation 0 / Generation 1) can run parallel to the
background GC

 � Full blocking GC can also happen on GC threads

Background GC increases the performance of GC and runs in parallel to the
foreground GC collections.

MethodTable: This stores all information about a type. It holds information
regarding static data, a table of method descriptors, pointers to EEClass,
pointers to other methods from other VTable, and pointer to constructors.

EEClass: This holds static data information.

MethodDesc: This holds information regarding a particular method such
as IL or JITed information.

How to do it...
As we already know the basic concept of how GC works, let us use SOS (Son of Strike) to
debug the process to identify an object:

1. Start a console application and create a class. Let us suppose the code we wrote
looks like the following one:
public class MyClass
{
 public static int RefCounter;
 public MyClass(string name, int age)
 {
 this.Name = name;
 this.Age = age;
 MyClass.RefCounter++;
 }
 public string Name { get; set; }
 public int Age { get; set; }
 public void GetNext(int age)

Basics of .NET Programs and Memory Management

100

 {
 Console.WriteLine("Getting next at age" + age);
 }
}

Clearly, in the preceding code we use GetNext to get the age we pass printed on the
screen and the constructor holds the value of age and name.

2. To open SOS we need unmanaged code debugging. Right-click on the project and
select Properties. Go to Debug and check Enable unmanaged code debugging.

3. Put a call to GetNext in the main function. Now start debugging.

4. In the intermediate window, type .load C:\WINDOWS\Microsoft.NET\
Framework\v4.0.30319\sos.dll, this will load the SOS for the current project.

5. Let's first see what has been produced in stack of the current thread. We use the
following command:
!dumpstackobjects

This command lists all the managed objects that have been loaded into current
stack. The list contains addresses and offsets from the base memory of stack.

6. To get the information about the object that we have created, take the address of the
reference, which is created on stack and use the following command:
!DumpObj 01aebfe4

This will list all the necessary fields that the object has created and the value it holds
with the offset. The argument that I have passed to the command represents the
address of the memory location, where the object reference has been created. It also
lists MethodTable and EEClass which the object uses.

7. Until now we checked the stack that has been created during the execution of the
steps. Now let's look into the heap. To dump heap allocation we use:
!dumpheap –stat

This command will list all the objects that have been created on managed heap. The
address that has been specified with the object is the MethodTable information
about the objects in heap.

8. Now lets copy MethodTable of MyClass and try to see the details. We use the
command:
!dumpheap -mt 00413910

This command will produce the address, the total size of the object, and the counter
of objects on heap.

Chapter 2

101

9. To find the GC roots for an object, copy any address of an object and use the
following command:
!gcroot 00413910

This command will find the GC root address for the current object.

10. You can use CLRStack to get information about the entire stack trace of the
currently executing assembly. With the command-line parameter –p –l in sequence,
it produces a better result to show the parameters passed to the current method and
the locals declared.

11. Copy the address of MethodTable information and execute the following command:
!dumpmt -md 0012f058

The output will show all the method description that is present in MethodTable.
It also shows how the method has been compiled. For instance, pre-JIT means the
assembly has already been compiled before it's executed, either using the NGen tool
or using an optimization service. The JIT indicates that the method has been JITed
during execution and None indicates it hasn't been JITed.

How it works...
It needs to be noted that the CLR objects are either allocated into the managed heap or in a
thread local stack. Even if the object remains in a heap, the reference of the object always
remains in a stack, such that GC can get the information about the reference in the stack
directly when GC collection is being executed. The objects in a heap allocate a memory of the
MethodTable information, which holds information of all the methods that are present inside
the object. You can easily determine the information about the location of the field using the
offset value from the base address. Each heap object also contains a GC root associated with
it, this indicates that the root of the object which holds the reference is not being exposed to
the garbage collector.

Now, let us depict the memory allocation of a value type into memory:

Managed Pointer

Size : 0x000n - 0x0000

0x02030

Field 1

Field 2

Field N

0x0000

0x0004

0x000n

Basics of .NET Programs and Memory Management

102

The preceding diagram indicates that the managed pointer holds reference to the initial
location of the actual memory. Thus in case, the managed pointer reference to 0x0000 which
is the base location of Field 1 and the size of the field is 4, the next field pointer will be at
0x0004. As value types are allocated in contiguous block, we can easily use the Sizeof
operator to determine the actual size of the object.

Reference type on the contrary defines lot of additional information about the object:

Managed Pointer
(0x0020)

Sync Block address

RTTI address

Field1

Field2

FieldN

Reference Type instance
in GC Heap

Method Table Structure for
a Runtime Type

Interface Map Table
Address

(0x04C3E)

Inherited Virtual Method
Address

Static Method Address

Static Field 1..N

Interface Method Address
1..N

New Virtual Method
Address

AppDomain wide Interface
Offset Table

Interface1 Address

InterfaceN address

...

0x04C3E

0X0050

Size : (depends)

0x0000

0x0020

Memory Laid out for Object
Or Reference Types

In the preceding diagram, I have shown the entire layout of memory for a reference type.
The initial managed pointer here for reference types holds the address of reference to RTTI
address (Run-time type information). The initial 4 bytes of the memory is allocated to the
synchronization block. In CLR, every object is locked inside this initial 4 bytes of memory.
There is another important consideration that you need to think of, it is that every CLR object
holds its type information inside it. This ensures that every object can explain its own type to
itself without any dependency from outside. Hence, the reference types are self-explanatory
types and programs can use this information while casting, polymorphism, dynamic binding,
reflection, and so on. Even though the MethodTable structure resides outside the actual
object, the RTTI address holds the initial address of the MethodTable runtime object, which
holds all the information regarding the type of the object. We query the information of the
runtime type using the GetType method from any reference type. The .NET runtime creates a
special object, Type that helps to find out the actual type information.

Chapter 2

103

There's more...
As far as we have discussed, garbage collection is a special technique implemented on CLR
that automatically deals with memory management for your program. There are a number of
additional properties of managed memory allocation. Let's consider few of them.

The effect of finalizer on garbage collection
Just like any other language, .NET languages allows you to create a destructor for an object
that has been created called finalizer. Finalizer on managed objects are not recommended.
Objects that are allocated inside the heap are prone to garbage collection when there is no
active reference kept for the object from the program. That means the object is of no use by a
program when there is no reference of the same from the program itself.

When garbage collector is performed, it reclaims the memory of all inaccessible objects that
are without finalizers and puts the objects that need to call finalize in a finalizer queue. This
queue calls the Finalize method of all the objects sequentially and removes the objects
from the list. But even though the garbage collection has already been performed on the
objects and the memory has not been reclaimed by the GC, the object remains in memory
until the next GC cycle executes. Hence, when you use garbage collection on a .NET object, it
affects the performance of the application as the memory has not been reclaimed until GC
gets executed on it for the second time (at least).

Optimizing native images using Managed Profile Guided
Optimization
For a faster startup of the application, we generally precompile the assembly into cached
native images using the Native Image Generation tool (NGen). With the .NET 4.5 release,
there is another tool called Managed Profile Guided Optimization (MPGO), which can be
used to optimize the native image with even greater performance. Just like Multicore JIT,
MPGO uses a profile-based optimization technology. The profile data includes scenarios
or sets of scenarios, which can be used to re-order the native structures. This results in a
shorter startup time and lesser working set.

The MPGO tool creates a profile for the intermediate language and adds the profile data
inside the assembly as resource. NGen can later be used to precompile the IL into native
code after profiling:

Application Application with
Profile Data

Optimized Application
NGen ImagesMPGO NGen Install

Basics of .NET Programs and Memory Management

104

The profile guided optimization uses the /LTCG:PGINSTRUMENT compiler option newly
introduced to produce profile data. A tool called pgosweep can be used to create a .pgc file
that holds profile-guided information. The following command will produce a profile for the
executable myapp.exe:

Pgosweep myapp.exe myapp_profile.pgc

Multicore JIT
JIT, or Just in time compiler, compiles the code that is written as IL and compiles back to
machine code during the startup of the application. The .NET application startup is generally
slower than native components as JIT needs to recompile the basic executable before it
actually executes itself. Recently, CLR introduced a new feature called Multicore Just In
Time compiler.

Talking about modern day, every PC is made up of at least two cores. Multicore JIT uses all the
cores that are available to the PC and generates native code much faster than it did before.
Multicore JIT shares the task into multiple cores which results in increased startup time and
overall experience. The JIT creates a background thread which runs on another core to quickly
JIT the code which is running. The second core runs faster than the primary and hence,
compiles all the methods ahead of when it is actually needed. To know which method needs
to be compiled, the feature generates profile data that is used later to determine what needs
to be compiled. You can also invoke the profile data using a static method from the System.
Runtime.ProfileOptimization class.

See also
 f Visit http://bit.ly/SOSDebug for further reference of the SOS commands

How to find memory leaks in a .NET program
Memory leaks are a nightmares for any developer. A memory leak increases the memory of an
entire application slowly, and gradually eats up the entire process memory and eventually the
entire system memory. The memory leak becomes the biggest problem when the application
is deployed to the server and needs to run day and night as a service.

Memory leaks can occur either in a stack, an unmanaged heap, or managed heaps. There
are many ways to detect memory leaks in a program. Tools such as Windbg, PerfMon,
DebugDiag, or even Visual Studio can be used to detect memory leaks in a program. The
most important area of memory that is used by the process is represented by private bytes.

Chapter 2

105

It is important to note that one should always avoid using the task
manager to confirm memory leaks in a program. A task manager
memory usage can be misleading most of the times because it
gives information about the working set memory and not the actual
memory used. Some memory of the working set is even shared
between multiple processes. Hence, the task manager memory
usage is not exact.

Getting ready
Memory leak in a program can create a lot of symptoms. For instance, when a program is
leaking memory, it can throw OutOfMemoryException or it may be sluggish in responding
to user input because it has started swapping virtual memory to disk or maybe the memory is
gradually increasing in the task manager. When you are certain that there is a memory leak in
the program, the first thing that you need to do is to detect exactly where the memory leak is
occurring. In this recipe, we will try to find the memory leak of the program.

Memory leak can happen either in managed resources or in unmanaged resources. Let us try
to put unmanaged resources using Marshal.AllocHGlobal(8000) in a timer, such that
whenever the timer becomes elapsed, memory gets created.

Similarly, for managed memory leaks we use a type with one member with more than 85,000
bytes of data, so that it is created in LOH, rather than SOH. As LOH is not been compacted, it
produces a large memory gap between objects which can essentially produce memory leaks:

public class LargeObjectHeap
{
 private byte[] buffer = new byte[90000];
}

This code produces a large heap allocation, and eventually invoking this multiple times will
produce a memory leak in the program.

How to do it...
To deal with a memory leak, we are going to use PerfMon. PerfMon is an interesting tool that
can be used to examine counters on process. We can detect the private bytes allocated by the
process, the .NET CLR memory, the bytes on all heaps, and .NET CLR LocksAndThreads.
Based on the counters we can determine exactly where the problem is.

If CLR LocksAndThreads (# of current logical Threads) is increasing then the thread stack
is leaking.

If only private bytes are increasing but .NET CLR memory is not increasing, then we have an
unmanaged memory leak.

Basics of .NET Programs and Memory Management

106

If both are increasing then it is a managed memory leak.

To work with the PerfMon tool, let's follow these steps:

1. Start the application that has memory leaks.

2. Run PerfMon from the Run command to open the Performance Monitor tool.

3. Delete all current performance counters that are already added using the Delete
button on top and select Add to add counters:

4. Select Process from Performance object, and select Private bytes from the list of
counters. Select the appropriate process instance that is leaking memory.

5. Again, select .NET CLR Memory from the Performance object again and select
bytes in all heaps.

6. Finally, select .NET CLR LocksAndThreads in the Performance object and select #of
current logical Threads from the list of counters. In the preceding figure you can see
how it looks when you are adding these performance counters. I have already added
the counters, so click on OK when complete:

Chapter 2

107

7. The performance counters in the graph will show the continuous update on these
counters with different colors. You can see the list of performance counters in the
screenshot marked as yellow and clearly, you can identify the hike in private bytes in
the picture.

8. Download the DebugDiag tool from the Microsoft site, start the tool and select Native
(non-.NET) Memory and Handle Leak. The tool actually gives you three options. It
allows you to check either for a crash of the application, or performance, or memory
leaks. As our application probably has a memory leak, we are going to choose the
one that deals with memory. You can also check performance or crash checking for
your process using this tool:

Basics of .NET Programs and Memory Management

108

9. Next, select the process that you need to check for leakage. The tool will give a list
of all the processes that are running on the computer. You can select the one that is
appropriate and choose Next.

10. Finally, select Activate Rule to start the monitoring.

11. After a certain amount of time has elapsed, select Memory Pressure Analysis from
the tools and select Start Analysis.

12. From the HTML report you can identify how memory has been allocated in
managed or unmanaged resources. It shows you a warning on the code that
has been creating memory leaks.

13. Based on the report we need to go to the source code to actually fix the memory leak
on the program.

14. There is no fixed rule to remove memory leak in the program, but you can
use DebugDiag's analysis report to actually investigate the problem and fix it
from the pointers you get from it.

How it works...
Memory leaks are generally caused by a managed application when:

 f Holding references to a managed object: This is a situation where the variable never
goes out of active scope and hence never gets exposed to GC

 f Failing to release unmanaged resources: When dealing with unmanaged memory,
loaded memory needs to be freed manually and hence releasing unmanaged
memory using disposable pattern is important

 f Failing to Dispose drawing objects: Drawing objects holds unmanaged resources,
hence we need to dispose explicitly

Memory management is one of the most important considerations for any application.

There's more...
Let's talk some more about the problems and solutions that can help you to deal with
memory leaks.

What are weak references in .NET
While doing actual code, sometimes it is important to know how to allocate a memory and
when to create a memory location. When GC kicks in, it tries to find all the reachable types
that have strong references from the application. It goes in and traces all the bits and pieces
of the program, to find out if the object is somehow linked to the program, that is, it has
some reference from the program that can still use this object. The GC uses this algorithm
to determine whether the memory is actually garbage or not.

Chapter 2

109

If we can call an object from our program, GC treats the object as "important" and marks it to
move to the next generation (if not, the highest generation is reached). But it is important to
remember, that when we are talking about references from the program, we only speak
about strong references. A weak reference is another concept that works in contrast with
the strong references.

A weak reference is an exception to GC, such that when GC kicks in, it will always thread a
memory that is held by a weak reference as garbage. The garbage collection's algorithm puts
a weak reference as an exception to it, and collects it when GC tries to find the reference from
the program.

The .NET class library exposes a special type called WeakReference that actually
implements the weak reference concept just stated. Sometimes it is important to create an
object that can exists from the application, but when the memory pressure is high we do not
want that memory to stay. In such cases, we create a weak reference and forget about the
object. When we need the object again, we first try to find the object from the weak reference,
if found we use it, otherwise we recreate the object again.

Hence, weak reference acts as an exception to the existing GC algorithm, which lets the GC
reclaim the memory even though the memory is still accessible from the program.

Weak references can be of two types:

 f Short: They lose the reference when GC is collected. In a general case, when we
create an object of the WeakReference class in our program, we create this type
of memory.

 f Long: They retain their object even after the Finalize method has been called. The
object state cannot be determined in such cases. We can pass trackResurrection
to true on the constructor of WeakReference to create a Long weak reference:

WeakReference weakref = null;
 private SomeBigClass _somebigobject = null;
 public SomeBigClass SomeBigObject
 {
 get
 {
 SomeBigClass sbo = null;
 if (weakref == null) //When it is first time or
object weakref is collected.
 {
 sbo = new SomeBigClass();
 this.weakref = new WeakReference(sbo);
 this.OnCallBack("Object created for first time");
 }
 else if (weakref.Target == null) // when target
object is collected

Basics of .NET Programs and Memory Management

110

 {
 sbo = new SomeBigClass();
 weakref.Target = sbo;
 this.OnCallBack("Object is collected by GC, so
new object is created");
 }
 else // when target object is not collected.
 {
 sbo = weakref.Target as SomeBigClass;
 this.OnCallBack("Object is not yet collected, so
reusing the old object");
 }
 this._somebigobject = sbo; //gets you a strong
reference
 return this._somebigobject;
 }
 set
 {
 this._somebigobject = null;
 }
 }

Let us suppose SomeBigObject is a class that creates a large amount of data inside it.
So while creating an instance of that class we use the weak reference implementation of
.NET and pass the object to it. We can find the object from the Target property only when
the object has not been collected by GC. In the preceding code, you can see that we check
whether the object has already been collected or not and depending on the same we create
the object again or pass the existing object.

The Target property gets you a strong reference from WeakReference. When you are
holding the value of Target to some reference in your program, the GC will not collect the
object. But as soon as the reference is nulled and no reference to the Target object has
been stored, the object inside WeakReference is exposed for collection.

Here in the preceding code, we have also created a callback just to print the message to the
caller whether the object is recreated or not.

What are lazy objects in .NET
In our previous code we see how we can create a weak reference that can be used while
dealing with very big objects. The concept of lazy objects on the other hand is a pattern that
defers the initialization of the object when it is really required. A lazy object in .NET actually
allows you to specify a callback that will automatically be called whenever the object is
invoked. The idea is to pass the callback which creates the object, in such a way that when
the object actually needs to be created, the lazy object will invoke the handler and create
the object.

Chapter 2

111

There are three types in .NET that support lazy Initialization:

 f Lazy: This is just a wrapper class that supports lazy initialization

 f ThreadLocal: This is the same as Lazy but the only difference is that it stores data
on thread local basis

 f LazyInitializer: This provides static implementation of lazy initializer that eliminates
the overhead of creation of lazy objects

Lazy
Lazy creates a thread-safe lazy initialization of objects. Say for instance, when we need to
create a large number of objects and each of these objects by itself create a lots of objects,
it is easy to initialize the master object using Lazy blocks. For instance, say there are a
large number of customers and for each customer, there are a large number of payments,
if Customer is an entity and Payment is also an entity, Customer will contain an array of
Payment objects. Thus, each entity requires a large number of database calls to ensure that
the data is retrieved, which doesn't makes sense. Using the Lazy class you can eliminate
this problem.

Let us look at how to use it:

public class Customer
 {
 public string Name { get; set; }
 public Lazy<IList<Payment>> Payments
 {
 get
 {
 return new Lazy<IList<Payment>>(() => this.
FetchPayments());
 }
 }

 private IList<Payment> FetchPayments()
 {
 List<Payment> payments = new List<Payment>();
 payments.Add(new Payment { BillNumber = 1, BillDate =
DateTime.Now, PaymentAmount = 200 });
 payments.Add(new Payment { BillNumber = 2, BillDate =
DateTime.Now.AddDays(-1), PaymentAmount = 540 });
 payments.Add(new Payment { BillNumber = 3, BillDate =
DateTime.Now.AddDays(-2), PaymentAmount = 700 });
 payments.Add(new Payment { BillNumber = 4, BillDate =
DateTime.Now, PaymentAmount = 500 });
 //Load all the payments here from database
 return payments;

Basics of .NET Programs and Memory Management

112

 }
 public Payment GetPayment(int billno)
 {
 if (this.Orders.IsValueCreated)
 {
 var payments = this.Payments.Value;
 Payment p = payments.FirstOrDefault(pay => pay.
BillNumber.Equals(billno));
 return p;
 }
 else
 throw new NotImplementedException("Object is not
initialized");
 }

 }

 public class Payment
 {
 public int BillNumber {get;set;}
 public DateTime BillDate { get; set; }
 public double PaymentAmount { get; set; }
 }

Here I have created a class called Payment that has a few properties. Each customer has
a list of payments. You can see the Customer class that uses Lazy implementation. This
calls FetchPayments to create objects whenever this.Payments.Value is called. The
IsValueCreated property will evaluate to true when the list is created.

Similar to the list, you can use Lazy binding to any other CLR objects as well.

System.Lazy creates a ThreadSafe object by default. The default
constructor creates an object with LazyThreadSafetyMode.
ExecutionAndPublication. Thus, once an object is created by one
thread, the object will be accessible to all other concurrent threads.

ThreadLocal
Similar to Lazy, ThreadLocal creates an object local to one thread, so each individual
thread will have its own Lazy initializer object and hence, will create the object multiple
times once for each thread. You can create objects that are local to one thread using
the ThreadStatic attribute. But sometimes ThreadStatic fails to create a true
ThreadLocal object. Basic static initializer is initialized for once, in case of the
ThreadStatic class.

Chapter 2

113

ThreadLocal creates a wrapper of Lazy and creates a true ThreadLocal object:

public void CreateThreadLocal()
 {
 ThreadLocal<List<float>> local = new
ThreadLocal<List<float>>(() => this.GetNumberList(Thread.
CurrentThread.ManagedThreadId));
 Thread.Sleep(5000);
 List<float> numbers = local.Value;
 foreach (float num in numbers)
 Console.WriteLine(num);

 }
 private List<float> GetNumberList(int p)
 {
 Random rand = new Random(p);
 List<float> items = new List<float>();
 for(int i = 0; i<10;i++)
 items.Add(rand.Next());
 return items;
 }

In the preceding methods, CreateThreadLocal creates a local thread and takes the lazy
object GetNumberList when the value is called for (just like normal lazy implementation).

Now, if you call CreateThreadLocal using the following code:

Thread newThread = new Thread(new ThreadStart(this.
CreateThreadLocal));
 newThread.Start();
 Thread newThread2 = new Thread(new ThreadStart(this.
CreateThreadLocal));
 newThread2.Start();

Each thread newThread and newThread2 will contain its own list of lists.

LazyInitializer
Finally, coming to LazyInitializer, you can create the same implementation of the
lazy objects without creating the object of Lazy. LazyInitializer handles the lazy
implementation internally giving you static interfaces from outside that enable you to
use it without much heck.

Basics of .NET Programs and Memory Management

114

The LazyInitializer.EnsureInitialized method takes two arguments, in general.
The first one is the ref parameter, where you have to pass the value of the variable. Here,
you want the target to be generated and the delegate that generates the output:

public void MyLazyInitializer()
{
 List<Payment> items = new List<Payment>();
 for (int i = 0; i < 10; i++)
 {
 Payment paymentobj = new Payment();
 LazyInitializer.EnsureInitialized<Payment>(ref paymentobj, () =>
 {
 return this.GetPayment(i);
 });
 items.Add(paymentobj);
 }
}

In the preceding scenario, you can see that I have used LazyInitializer that fetches each
Payment object when it is required. The ref parameter takes a class type object explicitly
and returns the object to the variable.

When should we use Lazy?

If you are using an object base which is resource consuming and you
are sure that every object will not be required for the application to
run, you can go for lazy initializers, otherwise it is not recommended.
Another important consideration is that Lazy doesn't work very well
with value types, and it is better to avoid it for these.

How to use Visual Studio to create memory dump files
Visual Studio allows you to store and create dump files during debugging sessions. These
dump files allow you to save the entire dump information of a program when a program
crashes. With the use of dump files, you can debug it later whether on a build computer or
another computer that has the source code and debugging symbols.

Visual Studio 2012 debugger can save mini dump files for either managed or native code.
To create a dump, select Debug | Save Dump file. You can either select Minidump or
Minidump with heap.

Once the dump has been saved, you can use this dump to open in Visual Studio from File
| Open to get the entire report of the dump. From the Action section, you can debug the
program either with native only or with mixed.

Chapter 2

115

How to isolate code using AppDomain
In .NET, the primary execution unit of an application is not a process but rather an
AppDomain. AppDomain is a separate unit that exists in the .NET environment that loads
memory and runs user code. Such that the memory that has been allocated in one
AppDomain instance is totally isolated from another one. Unlike threads, an AppDomain
instance does not share the same memory, and hence any corruption of memory in one
domain cannot affect the other.

While doing memory management of an application, it is good to use separate AppDomain
instances to load the assembly that leaks memory. This will ensure that the assembly
executes in a separate and isolated memory.

You can use the following code to create an AppDomain instance:

AppDomain newDomain = AppDomain.CreateDomain("domainName");
newDomain.ExecuteAssembly(yourassembly);

Even though we do not create an AppDomain instance during the execution of any
application, the CLR creates a default AppDomain instance for us. You can use AppDomain.
CurrentDomain to get information about the domain where the user code is executing.

Solutions to 10 common mistakes made by
developers while writing code

Being a developer has always been a mammoth task to handle bad code. Most developers
need to work in teams such that one's code needs to be recompiled and used by others.
Mistakes in development by one of them adversely affects the entire application. Even most
current programmers do not know the mistakes that they are making in the application. In this
recipe, I am going to cover some of the interesting common mistakes that I see while working
with developers and discuss their solutions.

Getting ready
We create a console application to demonstrate each case.

How to do it...
In this recipe, let's add some of the interesting mistakes which developers do, often either
unknowingly or mistakenly. We will discuss each of the points individually:

1. Use of a destructor instead of IDisposable

2. Forgetting to call Dispose before going out of scope

3. Forgetting that strings are immutable

Basics of .NET Programs and Memory Management

116

4. Breaking the call stack of an exception by throwing the exception again

5. Calling object members without making sure that the object cannot be null

6. Forgetting to unhook event handlers appropriately after wiring them

7. Not overriding GetHashcode when overriding Equals

8. Forgetting the call to the base constructor when calling derived objects

9. Putting large objects into static variables

10. Calling GC.Collect unnecessarily

How it works...
Let's see how we can solve the problems we described.

 f Use of a destructor instead of IDisposable

If you are declaring a class which uses references to unmanaged resources, it is
important to dispose the object when it is going out of scope. In .NET you can use
a destructor as its predecessor to release unmanaged resources which include file
handles, database handles, and so on, such that the .NET environment calls the
destructor automatically whenever GC gets executed. But this approach even though
you don't need your caller to be aware of anything, is non-deterministic and adds
some expenses. First of all, GC is non-deterministic, and hence the caller cannot
make sure that the object has been disposed only after the object is dereferenced.
The caller needs to wait for the GC to execute its finalizer until the resources are
free from the object. Another important drawback is that the destructor loses the GC
cycle, and hence the object will remain in memory for a longer time than expected.
So if the class holds a reference to a large object, it might cause a delay in reclaiming
the memory:
public class FinalizerClass
{
 public object LargeObject { get; set; }
 ~FinalizerClass()
 {
 //Release unmanaged references
 this.LargeObject = null;
 }
}

In the preceding code, LargeObject is disposed from the finalizer thread, hence
once the object is sent out of scope, it has to wait for GC to execute the destructor.

Chapter 2

117

.NET comes with a better approach with the disposable pattern, allowing the caller to
release its resources. Thus, the caller knows when to release the resources and this
approach works in a deterministic manner:
public class DisposableClass : IDisposable
{
 public object LargeObject { get; set; }
 public void Dispose()
 {
 //Release unmanaged references
 this.LargeObject = null;
 }
}

Here, the caller needs to call Dispose whenever it wants to release the resources
from memory. The disposable pattern does not lose the GC cycle and hence works
best in a managed environment.

 f Forgetting to call Dispose before going out of scope

Just similar to previous example, when you are using a disposable object, it is
important to call the Dispose method before the object goes out of scope to release
unnecessary resources from memory. C# comes with a shortcut to ensure that the
object calls the Dispose method when going out of scope. It is always a good idea
to use the using block when using a disposable object to avoid the problem:
public void CallDisposable()
{
 using (DisposableClass dclass = new DisposableClass())
 {
 //Working with the dclass
 }
}

In the preceding code, the Dispose method will automatically be called when
dclass is going out of scope of the using block.

 f Forgetting that strings are immutable

In .NET, strings are immutable. So when you do a slight manipulation on a String
element, the entire memory is recreated again to store the final result. The value
of a string once created cannot be changed. For instance:
public void StringWhoes()
{
 string thisString = "This " + "is " + "a " + "string.";

 thisString.Replace("is", "was");

Basics of .NET Programs and Memory Management

118

 Console.Write(thisString); //wrong

 thisString = thisString.Replace("is", "was");

 Console.Write(thisString);
}

In the preceding code, we declared a string dynamically. It is important to note that
(even though here the IL optimization does not affect any performance) strings are
immutable, hence for each string concatenation, a new memory is created. It is better
to use StringBuilder or string.Format rather than String when we need to
append strings with some other variables. Another interesting fact is that as strings
are immutable, you cannot replace the object string using the Replace method.
You need to store the result into another reference to get the result from Replace.

 f Breaking the call stack of an exception by throwing the exception again

Breaking the call stack of an exception is another important mistake that
developers often make. Let us look at the following code:
public void BreakCallStack()
{
 try
 {
 this.Call1();
 }
 catch (Exception ex)
 {
 throw ex; // Wrong
 throw new ApplicationException("Exception occurred", ex);
// wrong

 throw; // right
 }
}

private void Call1()
{
 this.Call2();
}

private void Call2()
{
 throw new NotImplementedException();
}

Chapter 2

119

In the preceding code, BreakCallStack calls a method Call1 which in turn calls
Call2. Now when the exception is caught in BreakCallStack, it will hold the
information of the entire stack in ex. Calling throw ex, or wrapping the exception
into another exception will eventually lose the stack. So rather than using the first two
constructs it is good to use the third construct (throw) to retain the call stack.

 f Calling object members without making sure that the object cannot be null

NullReferenceException is one of the most common forms of exception that we
see regularly. While developing code, it is always important to check every parameter
that is coming as an argument, or any external object to null before calling its members:

public string CallWithNull(object param1)
{
 return param1.ToString();
}

In the preceding code the method is called with a parameter param1 of which
we pass the ToString implementation. Now if the param1 parameter holds null
during any call, the method will produce NullReferenceException. Hence, it is
important to check if param1 equals null before invoking any method.

 f Forgetting to unhook event handlers appropriately after wiring them

A memory leak can occur when an event is hooked to an event source but never
unhooked. Generally, an event takes a delegate as argument, which is passed from
the caller. But if you do not unhook the event handler from the actual object where
the event exists, the object will not be garbage collected until the object that holds
the event handler gets exposed to GC. Events in .NET holds a strong reference to
EventSource, and hence it is very important to unhook the event handlers when
not in use.

 f Not overriding GetHashcode when overriding Equals

Sometimes developers forget to override GetHashCode even after the overriding
equals. When we equate two objects, the .NET first calls GetHashCode of each of
the objects before calling the Equals method. So if the hash code of two objects
does not match, they will never be considered as equal. Hence, you need to override
GetHashCode of both the types and return the same value for two objects.

 f Forgetting the call to the base constructor when calling derived objects

Sometimes we forget to call the base object from the constructor of a derived object.
It is important to note that we must construct the base object totally before doing the
work in the derived object. For instance:
public class DerivedNode : BaseNode
{
 public DerivedNode(string derivednote) //wrong
 {

Basics of .NET Programs and Memory Management

120

 this.DerivedNote = derivednote;
 }
 public DerivedNode(string basenote, string derivednote) //
right
 : base(basenote)
 {
 this.DerivedNote = derivednote;
 }

 public string DerivedNote { get; set; }
}

In the preceding code, the first constructor does not call the base constructor
but rather calls the default constructor that does nothing, whereas the second
constructor actually creates the base object completely.

 f Putting large objects into static variables

Static variables are disposed once AppDomain is unloaded. Hence, when you are
using a static object, you need to remember that those are long living objects and
will never be reclaimed during the execution of the process until AppDomain is
unloaded (which is a rare scenario for a program). Hence, putting a large object in a
static variable will put additional pressure on the process memory. Another important
consideration that you need to remember is that calling a static member from
multiple threads can create a nightmare. You must make static members thread
safe when being accessed from concurrent threads.

 f Calling GC.Collect unnecessarily

Developers are often prone to call GC.Collect to invoke the GC cycle. Generally,
GC collection blocks the execution engine if it is not a background GC and hence,
can create performance bottlenecks in the application. GC collection is automatically
managed by the CLR, and hence it is recommended to avoid the explicit call.

There's more...
Even though we have already discussed the 10 common mistakes that developers often do
while developing an application, it is not an entire list. Let's identify some of the additional
mistakes that can be taken care of.

Never declare structs if you don't have good reason to
I have seen developers declare structs in their code when they do not need member functions
or inheritance. Generally, it is important to note that struct even though it exists in
languages, should be avoided. Generally, the limit of struct is 16 bytes, if it is anything over
that threshold, the performance of struct degrades from a class and it is better to use a
class instead of struct.

Chapter 2

121

Another interesting fact is that, a struct will automatically allocate itself whenever the object is
declared, and you cannot put your custom logic into the default constructor of a struct. Structs
should always be immutable if it is declared.

Do not create a list from IEnumerable before iterating on it
IEnumerable is a special interface that implements a state machine to generate the
sequence of objects. It is important to note that sometimes when we need to directly call one
object with its index, you need to create a deterministic list of objects from the IEnumerable
list. But you should always remember, IEnumerable is good at iterating. So, if you do not
need a cached implementation, and just need to use the list to iterate on an object, it is not
good to convert IEnumerable to a list.

For instance, consider the following code:

public void GetList(IEnumerable<string> strings)
{
 List<string> lstrings = strings.ToList();
 foreach (string lstring in lstrings)
 {
 //Write custom logic
 }
}

In the preceding code, it is not necessary to create a list of strings before going to the
foreach loop. The ToList extension method actually generates the list by iterating using
foreach and putting it into the cached list. So here, the performance is degraded because
the same sequence is iterated twice.

See also…
 f See http://bit.ly/ProgrammingMistakes

3
Asynchronous

Programming in .NET

In this chapter, we will cover the following recipes:

 f Introduction to Threading and Asynchronous Threading patterns
 f Working with Event-based asynchronous pattern and BackgroundWorker
 f Working with Thread locking and synchronization
 f Lock statement using task-based parallelism in concurrent programming
 f Working with async and await patterns
 f Working with Task Parallelism Library data flows

Introduction
We are in a world of continuous development. The more we move towards the future, the
more we see the advancements in technology around us. The hardware that we use today is
becoming more and more improved. Today, almost all the desktops have at least two cores
installed. The power of the CPU is also constantly increasing day-by-day.

As a matter of fact, with the improvements in technology and hardware the bar of expectation
towards an application has also increased considerably. The issues and requirements that we
would have earlier neglected becomes a prominent need for any application built in today's
world. There has already been a revolution with User Interfaces. We now use rich graphics to
develop user interfaces employing superior graphics drivers for professional applications. As
our hardware supports multiple cores, as an application developer, it is important to utilize all
of the cores to get output quickly. To run a program in multiple cores, we need Threading
patterns to share the complex work into multiple parallel executing threads without blocking the
UI threads. So as we are moving further in the future, the application developer needs to adapt
the Threading pattern frequently and use it in the primary development of any application.

Asynchronous Programming in .NET

124

The Asynchronous programming approach is a way to enable developers to use either threads
or do something that does not block an existing sequence of the program. Any modern day
application strongly recommends this feature, even though the latest trend in technology
prohibits you from writing applications that do everything in synchronous mode and block the
user from doing anything until the ongoing process finishes its execution. We will learn more
about Metro apps and/or Windows Phone apps which do not allow you to even block your
UI threads for more than a few seconds. So the idea of asynchronous programming is very
common in modern day programming. All the major languages are trying to give most APIs to
the developers, so that they can write the asynchronous code more efficiently and easily.

Writing an asynchronous code is not easy. There are lots of things that you need to consider
while transforming a sequential code into an asynchronous mode. When there is an
inclusion of threads, we need to consider a lot of different things like thread synchronization,
interlocking between threads, concurrency, shared resources, thread local storages, and so
on. All these things wouldn't be required if you write the same code sequentially.

As an application developer, you also need to go through a lot of complexity when you are
developing an application that requires multi-threading, rather than an application that does
not require it. As the complexity increases, it becomes difficult for an ordinary programmer
to understand the logic easily and hence the learning curve increases. The application
programmer also needs to ensure when they actually require the introduction of threads, and
how many threads he/she should be creating for an application he/she is building. He/she
would also need to consider when thread locking is required and when it isn't. So there
are lots of strategies that an application developer needs to go through while developing
an application.

.NET languages are creating new patterns to support the flexibility of the user to go with
threads easily and seamlessly. It introduces Begin and End patterns which ensure that even
though the code is running on the same thread, it still does not block the thread when some
external resources are executed. Recently C# introduced async and await patterns that made
the life of a .NET developer even easier. This pattern lets the user define the asynchronous
method in the same way as he/she would define a synchronous block. Just specifying or
annotating the method with a sync keyword ensures that the compiler rewrites the block
completely to orchestrate the execution of the asynchronous block.

.NET has made changes to its components which enable the programmer to manage threads
easily reducing the overall operating system thread on a process when the application goes
on creating orphan threads. Most of the complexities are automatically managed by it. In this
recipe we will consider the use case scenarios of asynchronous operations with examples.

Chapter 3

125

Introduction to Threading and Asynchronous
Threading patterns

Threads have been around for a long time. It is said that to support concurrency, operating
systems need to create threads and run two blocks of code in parallel. So when we create
threads, we create one more execution context and when we start a thread the operating
system automatically schedules a thread which will run in parallel while executing the
program. Threads ensure that while executing one operation, the other operation remains
either idle or shares the CPU, executing its own code in parallel.

Let us consider the following code:

static void Main(string[] args)
{
 Thread thNew = new Thread(WriteThreadName);
 thNew.Name = "Worker Thread";

 Thread.CurrentThread.Name = "Main Thread";

 thNew.Start();

 WriteThreadName();

 if(thNew.IsAlive)
 Console.WriteLine("Thread is still alive");

 Console.ReadKey(true);
}

public static void WriteThreadName()
{
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(Thread.CurrentThread.Name);
 }
 Console.WriteLine("Thread is now closing");
}

Asynchronous Programming in .NET

126

Thread is the .NET class that creates a new thread. We need to pass a delegate to the
thread constructor which is either void or takes an object argument. In our case,
WriteThreadName is the method that is passed as a delegate to the thread object. Each
thread has Name which identifies the current thread and by calling Start on that Thread,
the execution of the method gets started. The previous code prints the name of the thread 10
times, and prints another message before exiting the method. You should note that we have
called WriteThreadName from the Main method too, which is called sequentially and will
print the thread name sequentially. Thread.CurrentThread gets the currently executing
thread, and hence we name the Main thread using Thread.CurrentThread.Name. If you
look at the output it appears as follows:

Clearly, there is an overlap of Worker Thread and Main Thread. If the Thread.Start
method is called sequentially, all the Worker Thread methods will be printed first and
then MainThread gets printed. But as the two threads run in parallel, the overlapping of the
thread occurs based on the CPU time each execution thread gets. The IsAlive property
determines whether the thread has finished its execution or it is still executing. Here you can
see the worker thread is still active even after the main thread has finished execution.

Chapter 3

127

A process is created with a number of threads which share memory between them. Thread
is the unit of processing, so if there are five threads in a process, the process will share five
timeslices for each execution context and share the CPU cycles together. Each thread has its
own memory associated with it called thread local memory, that associates a Stack which is
the main memory for the executable value type allocation and references, its context, and so
on. All the threads in the process share the memory that has been allocated by the process.

In an ideal situation there should be as many threads and as many
processors installed in the machine. Or more precisely, there should
exist one thread per processor to avoid context switch overhead on
multiple threads running on same processor.

For a particular thread there are a few methods that have special significance, as follows:

 f Start: Invoked to Start a Thread

 f Suspend: Suspend a thread from execution

 f Resume: Suspended Thread can be resumed

 f Abort: Aborting a thread means cancelling the execution of the Thread completely

 f Sleep: Suspend the thread execution for a certain milliseconds specified
as argument

 f Join: The current thread is blocked until the thread for which the Join is called has
finished execution

There is also the concept of ThreadPool which allows you to manage the Threads. We
can queue work items on a ThreadPool using ThreadPool.QueueUserWorkItem to
actually queue a method for execution. We can also configure the ThreadPool Maximum
and Minimum threads which get the queued work items and executes them. It is important
for a program to always use ThreadPool to ensure that the program does not fall into large
number of threads situation.

Each thread in .NET consumes 4 MB of memory, and hence creating threads in .NET process
or anywhere is expensive.

.NET asynchronous programming comes with mainly three patterns:

 f Asynchronous Programming Model (APM)

 f Event-based Asynchronous Pattern

 f Task-based Asynchronous Pattern (TPL)

Each of these models of asynchronous patterns gradually made it easier to use asynchrony in
an application. In this recipe we will cover the Asynchronous Programming model, and show
you how you can use it in your application to implement asynchrony.

Asynchronous Programming in .NET

128

How to do it...
To understand asynchronous patterns further let us go ahead and follow the steps to create
an application:

1. To use Asynchronous pattern, let's create a method that needs to be called through
this model. We call it CallNormalAsyncMethod.

2. Each Async pattern is associated with respective Begin and End patterns, where the
Begin pattern actually indicates the start of the call, and the End pattern indicates
the close of the method. For instance:
public void CallNormalAsyncMethod()
 {
 Thread.CurrentThread.Name = "Worker Thread1";
 Func<int, int> faction = this.GetSquare;
 faction.Invoke(2); // Synchronous call

 faction.BeginInvoke(2, this.GetSquareCall back,
"First");

 Console.ReadKey(true);
 }

 private void GetSquareCall back(IAsyncResult result)
 {
 if (string.IsNullOrEmpty(Thread.CurrentThread.Name))
 Console.WriteLine("Its a New Thread");

 AsyncResult aresult = result as AsyncResult;
 Func<int, int> fdelegate = aresult.AsyncDelegate as
Func<int, int>;

 if(aresult.IsCompleted)
 Console.WriteLine("EndInvoke need to be called,
{0}", aresult.AsyncState);

 int retVal = fdelegate.EndInvoke(aresult);

 Console.WriteLine(retVal);
 }

3. The code in step 2 uses the BeginInvoke and EndInvoke patterns. We assign
the method to a delegate of same type and call its BeginInvoke. We know that
delegates can be called using the Invoke method to run sequentially, while it also
supports two more methods, BeginInvoke and EndInvoke, which actually runs
the method in a separate thread.

Chapter 3

129

4. Each BeginInvoke call takes the arguments based on the delegate, a call back,
and a State object. In the State object you can pass anything which you are going
to propagate with the method. There is also a Call back that you need to pass as an
argument. Call back is of the AsyncCall back type.

5. Call back gives an object of AsyncResult as argument. This object holds the total
information about the whole operation. For instance, we can retrieve the actual
delegate from AsyncDelegate property; you can also use the IsCompleted
property to find whether the call has finished execution. There is another special
property called CompletedSynchronously. Actually BeginInvoke and
EndInvoke do not indicate only asynchronous operation. Sometimes it can also
work synchronously. It will be evaluated to true if the operation is synchronous. You
can test this by calling EndInvoke directly after the BeginInvoke statement.

6. The BeginXXX and EndXXX pattern has been also added to the Base Class Libraries.
For instance, FileStream has a BeginRead and EndRead method respectively
that works exactly the same way as it does with BeginInvoke and EndInvoke
patterns. Let us look at the following code:
public void ReadFile(string filename)
{
 if (File.Exists(filename))
 {
 FileStream fstream = new FileStream(filename, FileMode.
Open);
 byte[] buffer = new byte[1000];
 AsyncCall back rfCall back = this.ReadFileCall back;
 IAsyncResult r = fstream.BeginRead(buffer, 0, buffer.
Length, rfCall back, fstream);
 }
}

private void ReadFileCall back(IAsyncResult result)
{
 FileStream fs = (FileStream)result.AsyncState;
 int bytesRead = fs.EndRead(result);

 Console.WriteLine("Bytes read {0}", bytesRead);
 fs.Close();

 Console.ReadKey(false);
}

Here BeginRead invokes the read operation asynchronously, and hence after the file has
been read, it will call Call back from which you can call EndRead to get the number of
bytes read as the result.

Asynchronous Programming in .NET

130

How it works...
The BeginXXX and EndXXX patterns were introduced with .NET 1.1 which allow you to create
a non-blocking call to a method that may or may not include a Thread. It is very important
to remember that when BeginXXX and EndXXX involve anything other than CPU intensive
work, it does not create a new Thread. For instance, while reading a disk file, we can use the
BeginRead and EndRead patterns which reads data from FileStream and do not block
the caller UI Thread. The Begin/End patterns are not Thread locking.

The asynchronous pattern creates a new Thread from the ThreadPool and assigns that
thread to the current work in the queue. If the maximum thread has already been reached,
no more worker thread will be created for the current execution, but will queue the object
to the ThreadPool.

To understand this better we need to take a detailed look at the types: IAsyncResult and
the AsyncCallback.

The AsyncResult interface defines the status of the asynchronous operation. It sets the
properties which directly maps to the operating system threads and thus gives the entire
information about the status of the execution context. AsyncResult has few properties
that need attention:

 f AsyncState: This is the state object that is propagated throughout the
asynchronous operation.

 f AsyncWaitHandle: This is the WaitHandle instance that can be used for waiting
for the asynchronous operation to complete.

 f CompletedSynchronously: This indicates whether this is a synchronous or
asynchronous call.

 f IsCompleted: This indicates whether the call is completed or not. This is a
non-blocking call and immediately returns the completion state of the operation.

The AsyncCallback automatically gets IAsyncResult as the argument that can be used
to invoke the call back to the operation when complete.

It is important to note that this pattern does not support Exception
handling, Cancellation, and Progress monitoring explicitly.

There's more...
Threading and its patterns have a few additional things to be learned. Let us discuss them
to complete the recipe.

Chapter 3

131

Relation between a Process, AppDomain, and Thread
A process is in simple terms an executing program. It is a unit of application which can
independently run on the operating system. A process allocates its own memory area that
needs to be used by the application context. The application requests memory through
the process.

Application domains are special logical containers of a CLR program which separate the
Threads into isolation. In other words, in .NET there is an abstraction level which manages its
own memory and separates the memory and execution context in logical separation called
AppDomain. .NET automatically creates a new Appdomain by default when the application
is launched.

Any static memory or threads are allocated inside an AppDomain such that when the
Appdomain is unloaded, all the memory associated with the Appdomain ceases to exist and
aborts execution. AppDomain provides a mechanism to create a logical separation of threads
running on the application and makes you create an isolation.

Threads are the units of execution as we already know. Each thread in .NET is associated with
an AppDomain which has access to shared resources and memory.

What is a Waithandle class and why is it important?
WaitHandle is used for signaling. Sometimes it is important to stop execution of one thread
until a portion of another thread has executed. To receive notifications we use WaitHandle,
we wait for a signal from one thread and set the signal on another. The WaitHandle class is
of three types:

 f AutoResetEvent works like a Ticket turnstile. You can block a thread using
WaitOne, which opens one turnstile until another thread unblocks it using the Set
method. If more than one thread uses WaitOne, it maintains a queue of turnstile.

 f ManualResetEvent functions like an ordinary gate allowing any number of threads
to pass through. Calling Set opens the gate allowing the WaitOne to let through.
Reset closes the gate and after that any WaitOne class will block the thread until
it is opened again. .NET recommends using ManualResetEventSlim (which is
available from .NET Framework 4.0 and onwards) rather than ManualResetEvent,
as it is optimized and allows you to pass CancellationToken.l.

 f CountdownEvent lets you wait for one or more threads until the counter is reached.
You can signal a thread using the Signal() method but it will block until the
number of signal mentioned on the counter is encountered.

static AutoResetEvent autoset = new AutoResetEvent(false);
static ManualResetEventSlim mreset = new ManualResetEventSlim(false);
static CountdownEvent creset = new CountdownEvent(3);

static void Main(string[] args)
{

Asynchronous Programming in .NET

132

 Thread th = new Thread(CallThread);
 th.Start();
 Console.WriteLine("auto blocking");
 autoset.WaitOne();
 Console.WriteLine("auto Unblocked");

 Console.WriteLine("manual blocking");
 mreset.Wait();
 Console.WriteLine("manual unblocked");

 Console.WriteLine("countdown blocking");
 creset.Wait();
 Console.WriteLine("countdown unblocked");
 Console.ReadKey(false);
}

static void CallThread()
{
 Console.WriteLine("thread Called");
 Thread.Sleep(1000);
 autoset.Set();
 Console.WriteLine("thread signalled auto");
 mreset.Set();//unblocks all Waits.

 //mreset.Reset(); //blocks again for all wait call

 creset.Signal();
 creset.Signal();
 creset.Signal(); // Need 3 calls to unblock
 Console.WriteLine("Countdown reset");
}

In the given code demonstration, AutoResetEvent works just with WaitOne and
Set. ManualResetEvent blocks until Set is called and before Reset is again called.
CountdownEvent works when the number of signals reaches a certain counter.

How does the Barrier class in .NET work?
Barrier is a new type introduced in .NET 4.0. It allows the user to define the synchronization
primitives and lets your threads run code simultaneously in predefined phases.

A Barrier class defines phases in such a way that the thread executing a set of code reaches
a certain point where it is stopped and sent to wait until all the threads running in Barrier get
signal. The set of code that it executes is called pre-phase work until each of them reaches
a Barrier. Once all the threads reach Barrier, it executes the post-phase code.

Chapter 3

133

Thus the Barrier class is used in very specific cases, wherein you are required to specify a
barrier for the threads to stop and wait for other threads to finish the execution, and finally
run a method specified as call back to the Barrier as post-phase code.

Let's look for the same in the following code:

public static Barrier barrier = new Barrier(5, e =>
{
 Console.WriteLine("All threads Finishes");
});
static void Main(string[] args)
{
 Thread t1 = new Thread(() => ProcessPhaze1());
 Thread t2 = new Thread(() => ProcessPhaze1());
 Thread t3 = new Thread(() => ProcessPhaze1());
 Thread t4 = new Thread(() => ProcessPhaze1());
 Thread t5 = new Thread(() => ProcessPhaze1());

 t1.Start();
 t2.Start();
 t3.Start();
 t4.Start();
 t5.Start();

 Console.ReadLine();
}

public static void ProcessPhaze1()
{
 Thread.Sleep(1000);

 barrier.SignalAndWait(2000);
}

Here each thread calls ProcessPhaze1 from Main. Thus ProcessPhaze1 will be called
in parallel by five threads. Once each of them finishes execution (for simplicity we have just
used Thread.Sleep) it signals Barrier to wait and thus it stops itself. As shown here, you
can specify the timeout value for SignalAndWait to ensure that deadlock does not occur.

Once all threads are signalled, it calls the call back specified as argument in Barrier. The first
argument 5 specifies how many threads are participant of the Barrier. Here we are using
five threads. If we change the argument to 2, it will print the Phaze2 call back twice. The
argument specifies how many times callback needs to be called for each signal received. After
each call back is executed, Barrier PhazeNumber gets incremented. You can get the value of
the Phaze number from barrier.CurrentPhaseNumber.

Barrier also supports dynamic addition and removal of participants.

Asynchronous Programming in .NET

134

What is SynchronizationContext?
In the Windows environment, Thread Affinity is one of the important concerns that every
developer comes across. The UI elements on Windows applications are affinated towards
the Thread that creates it. It ensures that you always access the UI element from the
Thread on which it is created. The UI is generally created on UI thread, and hence every
UI element needs to be accessed on the UI thread. Windows Forms applications have
been using ISynchronizeInvoke interface to invoke the code to run on the thread in
which it has been created. .NET introduces a new model for thread synchronization using
SynchronizationContext. The new Threading model simplifies the communication
between other threading models and simplifies the synchronous and asynchronous operations.

SynchronizationContext is a new class recently introduced and is widely used inside
framework class libraries to communicate between different threading models. The new
async language implementation already uses SynchronizationContext inside its core
to identify correct thread to post messages. SynchronizationContext represents the
abstract base class for a model which defines two methods:

 f Send: This invokes a delegate which is passed to it synchronously

 f Post: This invokes a delegate passed as an argument asynchronously

Each of them also takes a delegate of type SendOrPostCallback and the state object.
When SynchronizationContext is created, it associates the current thread to its context
and keeps the reference inside the object, so that, based on the thread in which the block is
executing, the SynchronizationContext.Current will always get you the object that is
created in the current thread.

The Post actually uses ThreadPool internally to call the call
back you pass asynchronously.

Now let's create a class that uses SynchronizationContext:

public class MyCallerType
{
 private Thread currentThread;

 private SynchronizationContext context;

 public event EventHandler EventCall back;

 public MyCallerType()
 {
 context = SynchronizationContext.Current;
 context = context ?? new SynchronizationContext();

 currentThread = new Thread(new Threadstart(Run));
 currentThread.Start();

Chapter 3

135

 }

 private void CallEventHandler(object state)
 {
 EventHandler handler = EventCall back;

 if (handler != null)
 {
 handler(this, EventArgs.Empty);
 }
 }

 private void Run()
 {
 context.Send(new SendOrPostCall back(this.CallEventHandler),
null);
 }
 private void RunAsync()
 {
 context.Post(new SendOrPostCall back(this.CallEventHandler),
null);
 }
}

The class MyCallerType actually holds the current SynchronizationContext
type. So when Run or RunAsync is called, it gets the current thread from its
SynchronizationContext (which is held from its object creation) and invokes it.

See also
 f http://bit.ly/ThreadingTutorial

 f http://bit.ly/SynchronizationContext

Working with Event-based asynchronous
pattern and BackgroundWorker

EAP is a model that has also been introduced to handle threading in an easier and elegant
way. The Event-based asynchronous pattern forms few rules that you need to follow while
following the pattern. The implementation of Event-based Asynchronous pattern has been
widely accepted, which uses events to notify the caller with the changes to the thread.

Asynchronous Programming in .NET

136

Getting ready
In this recipe, we are going to show an example of the BackgroundWorker type rather
than implementing a new EAP class which will use ThreadPool in the background and run
the method that is passed to it asynchronously. The BackgroundWorker class has special
features like ProgressReport, CompleteCallback, or even cancellation of the call, hence
it becomes the sole EAP type which most of the developers use to take benefit of.

How to do it...
Let us create a Windows application to show the usage of the BackgroundWorker class in
the recipe.

1. Create a method named XXXAsync for asynchronous member with the same
parameters that are needed to be called for the synchronous member. You can pass
a State object as well if needed. This method calls BeginInvoke to perform the
asynchronous operation.

2. AsyncCompletedEventArgs, used as the second parameter, is inherited from
EventArgs and represents the additional settings that need to be passed to every
event when it completes. The AsyncCompletedEventArgs parameter itself
exposes properties like Cancelled (which indicates whether the operation is
cancelled), Error (holds the error object) or UserState (holds the state of the call).

3. Create a delegate with XXXCompletedEventHandler, which takes argument as an
object, and XXXCompletedEventArgs.

4. Create an event of type XXXCompletedEventHandler. The event is raised when
the asynchronous operation is complete.

5. BackgroundWorker is a managed class that has already implemented the EAP.
We use BackgroundWorker in the following code to implement the asynchrony
in the application:
BackgroundWorker backgroundWorker;
BackgroundWorker Worker
{
 get
 {
 this.backgroundWorker = this.backgroundWorker ?? new
BackgroundWorker();
 return this.backgroundWorker;
 }
}
public long DoCpuIntensiveWork()
{
 int i = 2, j, rem, result = 0;

Chapter 3

137

 while (i <= 1000000)
 {
 for (j = 2; j < i; j++)
 {
 rem = i % j;
 if (rem == 0)
 break;
 }
 if (i == j)
 result = i;
 i++;

 int progress = (int)(((float)i /(float)1000000) * 10000);
 if(progress > 0)
 this.Worker.ReportProgress(progress);

 if (this.Worker.CancellationPending)
 return i;
 }
 return result;
}

private void start_Click(object sender, EventArgs e)
{
 this.Worker.RunWorkerAsync();
 this.button1.Enabled = false;
 this.button2.Enabled = true;
}

public void backgroundWorker_DoWork(object sender, EventArgs e)
{
 this.DoCpuIntensiveWork();
}

private void Form1_Load(object sender, EventArgs e)
{
 this.Worker.WorkerSupportsCancellation = true;
 this.Worker.WorkerReportsProgress = true;
 this.Worker.DoWork += new DoWorkEventHandler(backgroundWork
er_DoWork);
 this.Worker.ProgressChanged += new ProgressChangedEventHandler
(Worker_ProgressChanged);
 this.Worker.RunWorkerCompleted += new RunWorkerCompletedEventH
andler(Worker_RunWorkerCompleted);

Asynchronous Programming in .NET

138

}

void Worker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)
{
 this.button1.Enabled = true;
 this.button2.Enabled = false;
}

void Worker_ProgressChanged(object sender,
ProgressChangedEventArgs e)
{
 this.progressBar1.Value = e.ProgressPercentage;
}

private void cancel_Click(object sender, EventArgs e)
{
 this.Worker.CancelAsync();
}

The previous code uses BackgroundWorker to implement the functionality of
Asynchronous operation. We call DoCPUIntensiveOpration from the DoWork
eventhandler of BackgroundWorker. DoWork represents the working module. The
ProgressChanged event is raised when we call the ReportProgress method
from inside the working module where we need to update the progress bar control on
the UI. You should also note that the event ProgressChanged automatically detects
the right thread from where it is created.

This form displays two buttons which let us start a long running process with the
click of the Start button and the operation progress is reflected on the progress bar,
and the Cancel button cancels the operation.

6. When Cancel is clicked we request cancellation. The logic inside DoWork
should check for CancellationPending, and depending on its value, it
cancels the operation.

7. RunWorkerCompleted is called when the operation has finished execution.

Chapter 3

139

How it works...
Event-based Asynchronous pattern works similar to any other asynchronous pattern, but uses
events and delegates to implement Call backs. The BackgroundWorker class being the
classic example of EPM, implements the Event-based Asynchronous pattern. According
to this pattern, the class should contain:

 f A method with MethodNameAsync to invoke the operation.

 f There should be a corresponding MethodNameCompleted event that will be invoked
when method has finished execution. This serves as a call back to the method.

By the way, you should also remember that the RunWorkerAsync immediately returns the
control, as it runs the method asynchronously. It creates a new Thread from the ThreadPool
and calls it as a WorkItem to the ThreadPool thread. It also subscribes a call back that will
invoke the RunWorkerCompleted event when the method has finished execution.

Additionally, the BackgroundWorker class can also report progress of the execution if you
call ReportProgress from your code, which will invoke the ProgressChanged event as
we saw before. There are lots of other features of the BackgroundWorker class too, and
it is recommended to have Event-based Asynchronous Pattern type following .NET threading
patterns.

See also
 f http://bit.ly/BackgroundWorker

 f http://bit.ly/BWUseCases

Working with thread locking and
synchronization

Locking is an essential part of a multi-threaded application. Synchronization on the other
hand is another important factor of a program that ensures the smooth running of the
program in a managed environment. In this recipe, we are going to cover how to use thread
locking and synchronization feature of .NET to avail the smooth running of the program logic.

While running a multi-threaded application which sometimes involves multi-core systems,
resource sharing is one of the important concerns for developers. While being in concurrent
access, mutual exclusion exists with the use of lock block of C#. In this recipe, we are going
to cover how to employ locking on a portion of code that requests mutual exclusiveness of
the logic even when the application supports parallelism.

Asynchronous Programming in .NET

140

Getting ready
Thread synchronization is an important technique that enables coordination of two or more
threads with a predictable outcome. Generally when we start an asynchronous operation
there is no rule of thumb that defines the outcome. Processor allocates dedicated threads
based on the scheduling and processor architecture. Running an innumerable number of
threads might cause a problem. Ideally, each core should have only one thread. Threads
running in parallel need blocking to perform synchronization and coordination between
multiple threads. Let us create a multi-threaded application and try out the features.

Synchronization is of the following four types:

 f Simple blocking methods: These types of blocking methods wait for another thread
to finish or wait for an amount of time. For instance, Thread.Sleep, Thread.Join,
Task.Wait, and so on.

 f Locking constructs: These constructs limits the number of threads that execute a
block of code at a certain time. Exclusive locking constructs allows only one thread
to run a specific code at a time. This lets other threads access common data (some
shared objects) without interfering with each other. For instance, lock, Mutex,
SpinLock, and so on. Some of the non-exclusive locking constructs are Semaphore,
Reader/Writer locks, and so on.

 f Signaling construct: These allows you to pause until one thread receives some
notification. This has already been discussed earlier.

 f Non-blocking synchronization constructs: These protect access to a common field
by calling process or primitives. For instance, Thread.Memorybarrier, Thread.
VolatileRead, the Interlocked class, and so on.

How to do it...
In this recipe, let us look into locking constructs and synchronization feature of .NET
parallel world.

1. Threads trying to update a shared resource (say a static variable) often gets bad
data when accessing it concurrently. Lock statement makes some section of the
code exclusive for a thread to execute.
class Threadsafe
{
 static readonly object locker = new object();
 static int val1, val2;

 static void Go()
 {
 lock (locker)

Chapter 3

141

 {
 if (val2 != 0) Console.WriteLine (val1 / val2);
 val2 = 0;
 }
 }
}

The previous code exclusively locks using an object named locker. The lock
construct will ensure that the calculation on static integer variable val1 and val2
will be exclusively locked and cannot be accessed by more than one object.

It is important to note that an object locker is used
to exclusively lock the code. Each object has header
information associated with it which includes a lock mark
bit. Using lock on locker will mark the object with a
lock in its header. This ensures that when the second
thread tries to access locker, it will see the lock bit is
already set and will wait for lock to release.

2. Semaphores work a little different to locks. In the case of Semaphore, any thread
can release a lock, but it has a restriction to allow a certain number of threads to
access it concurrently based on the capacity. Let us look into the following code:
static SemaphoreSlim sem = new SemaphoreSlim (3);
 static void SemaphoreTest ()
 {
 sem.Wait();
 // the code that can only run by 3 threads at a time
 sem.Release();
 }

Here if we call semaphoreTest more than three times, the rest of the threads will
be queued, as _sem. Wait allows only three threads to run the code between it and
release at a time.

3. To implement automatic locking of a Threadsafe object, we need to derive the
class from ContextBoundObject and apply the Synchronization attribute
to the class.
 [Synchronization]
 public class AutomaticThreadsafe : ContextBoundObject
 {
 public void Demo()
 {
 //Locks exclusively
 }
 }

Asynchronous Programming in .NET

142

The class in this code is automatically set to Threadsafe. Execution of any code
within an object that is derived from ContextBoundObject and application of the
Synchronization attribute will ensure the object to be Threadsafe automatically.

4. The code in step 3 automatically locks the execution of code within its methods to
ensure only one thread can exclusively access the object.

5. The Threadsafe object is sometimes called reentrant. If you pass True as a
reentrant argument to the Synchronization attribute, the thread will release
the locks temporarily when execution leaves the context.

6. The reentrant threads prevents deadlocks, but allows more than one thread to call
a method when the context switches.

How it works...
Lock is an implementation of Monitor.Enter and Monitor.Exit. If you see the
Threadsafe code actually, the equivalent code will look like the following:

Monitor.Enter (locker);
try
{
 if (val2 != 0) Console.WriteLine (val1 / val2);
 val2 = 0;
}
finally { Monitor.Exit (locker); }

This code is exactly same as the lock statement, the runtime evaluates the same code in
both the cases.

Monitor has a method called TryEnter, which has a Timeout seed overload that can be used
to try locking an object and wait for a timeout.

The automatic synchronization of an object is done using ContextBoundObject. The object
that has its parent as ContextBoundObject is intercepted to all its properties and methods.
The CLR automatically creates a proxy of the object which acts as an intermediary.

There's more...
Now let us consider looking into some of the other things that you need to know about locking
and synchronization. Let us discuss them.

Chapter 3

143

How to determine Mutex of a Thread?
Mutex is not new to the .NET framework. The Win32 API supports an object called Mutex and
.NET framework class Mutex is actually a wrapper class for the same Win32 kernel Mutex
object. Mutex objects are generally used to synchronize threads across processes. Mutex
objects can be named and hence you can signal whether the Mutex is acquired or not by
some other thread (probably in a different process). You should note that Mutex is created
with the call of the Win32 CreateMutex call. You can check ownership of Mutex using
WaitAll, WaitAny, and so on calls and which avoids deadlocks.

As we have already discussed, Mutex has an underlying Win32 kernel object associated with
it, even though it supports cross-process thread synchronization, yet it is heavier than the
Monitor.Enter/Monitor.Exit sequence, and you need to explicitly close Mutex when
it is released.

Let us use Mutex in code to clear how you could use Mutex.

static Mutex _mlock = new Mutex();
public static long Sum()
{
 long counter = 0;
 if (_mlock.WaitOne(1000))
 {
 try
 {
 for (int i = 0; i < Repository.Count; i++)
 Interlocked.Add(ref counter, Repository[i]);
 }
 finally
 {
 _mlock.ReleaseMutex();
 }
 }
 return counter;
}

public static void AddToRepository(int nos)
{
 if (_mlock.WaitOne(2000))
 {

 try
 {
 for (int i = 0; i < nos; i++)
 Repository.Add(i);
 }
 catch { }
 finally

Asynchronous Programming in .NET

144

 {
 _mlock.ReleaseMutex();
 }
 }
}

In this code we have created Mutex, and lock is acquired using the WaitOne method of the
Mutex object. We have also specified the timeout value for Mutex. If the timeout is elapsed,
Mutex returns False.

If you have more than one Mutex that needs to be acquired before running a code, you can
put all the Mutex objects in an array and call WaitHandle.WaitAll to acquire all the
Mutex objects at a time.

Mutex[] mutexes = { this._mlock, this._mlock2, this._mlock3};
if(WaitHandle.WaitAll(mutexes))
{
 // All mutexes acquired.
}

The WaitHandle method actually avoids the deadlock internally.

Similar to WaitAll, the WaitHandle class also supports methods, such as the WaitAny or
SignalAndWait methods to acquire locks.

Use Mutex for Instance Count
As I have already told you, Mutex objects can be named and can be accessed across process,
you can use Mutex to count the number of instances of a certain thread that is created on a
particular machine. Let's see how to do this:

bool instanceCountOne = false;
Mutex mutex = new Mutex(true, "MyMutex", out instanceCountOne);
 using (mutex)
 {
 if (instanceCountOne)
 {
 // When there is only one Instance
 }
 }

Here we name the Mutex as MyMutex which will count all the existing processes of
the system, and see whether the MyMutex object is newly created or it's already there.
instanceCountOne identifies whether the name is newly created or not. Thus, it will
identify the instance count of Mutex.

If you write this code at the entry point of your application, you can check out how many
instances of the application actually exist in the system.

Chapter 3

145

Locking using Spinlock
SpinLock like the Monitor.Enter/Monitor.Exit sequence spins a number of CPU
cycles when it tries to acquire a lock. Monitor.Enter/Monitor.Exit on the other hand
uses some CPU cycle initially, but also invokes a True wait after a certain timeout if lock
cannot be acquired. In case of multi-core machines, the Wait timeout for Monitor is actually
very short and in this scenario it is better to use SpinLock instead of Monitor. But it is
recommended to check the CPU performance before using SpinLock in profiler, as it is
natural that Spinlock always consumes CPU memory before acquiring the lock.

static SpinLock _spinlock = new SpinLock();
public static List<int> Repository = new List<int>();
public static long Sum()
{
bool lockTaken = false;
 _spinlock.Enter(ref lockTaken);
 long counter = 0;
 try
 {
 for (int i = 0; i < Repository.Count; i++)
 Interlocked.Add(ref counter, Repository[i]);
 }
 finally
 {
 if(lockTaken)
 _spinlock.Exit();
 }
 return counter;
}
public static void AddToRepository(int nos)
{
 bool lockTaken = false;
 if (_spinlock.IsHeld)
 return;
 _spinlock.TryEnter(1000, ref lockTaken);
 try
 {
 for (int i = 0; i < nos; i++)
 Repository.Add(i);
 }
 catch { }
 if (lockTaken)
 _spinlock.Exit();
}

Asynchronous Programming in .NET

146

SpinLock has an Enter and Exit to acquire and release the lock. It requires a Boolean
field to be passed to it which ensures whether the lock is actually acquired or not. TryEnter
is used to specify the timeout seed for the lock.

As I have already told you, SpinLock will yield a few time slices when it hasn't acquired the
lock, this will ensure that the garbage collector makes progression on the block that tries to
acquire the lock. Another important point is that SpinLock is a structure, and if more than
one thread requires to check the lock, it should be passed by reference.

SpinLock also allows you to check whether the lock is held by any thread using the
IsHeld property or even you can check whether the current thread holds the lock using the
IsHeldByCurrentThread property. If more than one thread tries to acquire the locked
resource, SpinLock generates LockRecursionException, and hence SpinLock is
not reentrant.

ReaderWriterLock for non-blocking synchronization constructs
ReaderWriterLock allows shared locks together with exclusive locks. Hence it is possible
to read the same resource using shared locking, each time Readerlock is invoked the lock
count is increased, but allows you to read the block of code inside it. ReaderWriterLock
also gives you an option for exclusive locking using the WriteLock statement to eliminate
inconsistent reads. Let's see how to use this with code.

static ReaderWriterLock locker = new ReaderWriterLock();
public static List Repository = new List();

public static long Sum()
{

 locker.AcquireReaderLock(1000);

 long counter = 0;
 try
 {
 for (int i = 0; i < Repository.Count; i++)
 Interlocked.Add(ref counter, Repository[i]);
 }
 finally
 {
 locker.ReleaseReaderLock();
 }
 return counter;
}

public static void AddToRepository(int nos)
{

Chapter 3

147

 if (locker.IsWriterLockHeld)
 return;

 locker.AcquireWriterLock(1000);

 try
 {
 for (int i = 0; i < nos; i++)
 Repository.Add(i);
 }
 catch { }

 locker.ReleaseWriterLock();
}

AddToRepository is only used to add integer values to a list. You can easily lock the
repository using the lock (Repository) statement, and that will mean an exclusive locking
will be established. On the other hand, the code written inside AddToRepository also
produces exclusive locking using the AquireWriterLock statement. You can optionally
specify the timeout value for the WriterLock (specify TimeSman.Infinite when you
don't need timeout).

Putting an exclusive lock on the list during the sum operation can produce inefficiencies on
code and should be avoided. We have used AquireReaderLock in this case to create shared
locking for the block. Hence, concurrent reads can take place only when no WriterLock is
established, but concurrent writer locks are not possible.

ReaderWriterLock also has a method to escalate from Reader to Writer and vice versa
using UpgradeToWriterLock or DowngradeFromWriterLock.

Every lock should always specify its Release statement finally.

See also
 f http://bit.ly/ThreadLock

Lock statement using task-based
parallelism in concurrent programming

Concurrent programming, as we have seen in common threading patterns, is being simplified
day-by-day. In .NET 4.0 Microsoft introduced a new complex type Task that simplifies the
asynchrony more than ever before. The concurrency has been separated with asynchrony and
the task is named as something that is expected in future. Every asynchronous operation is
specified with a task either by using CPU cycles, an input/output operation, a Network card, or
even some other device. The tasks are identified by SynchronizationContext when the
operation has finished its execution and gets you the result to the calling environment.

Asynchronous Programming in .NET

148

The Task Parallel Library (TPL) inherently uses ThreadPool behind the scenes, but is
supported with algorithms that adjust the number of threads that should be running on the
system automatically to maximize throughput. The tasks are lightweight and more scalable
to system resources, and hence are the preferred choice for both concurrent applications
that involve CPU processing, and other asynchronous operations. TPL also enhances the
programmatic control with the thread or work items by supporting features such as APIs
for task waiting, cancellation and continuations, robust exception handling, detailed status
notifications, custom scheduling, and so on.

In this recipe we are going to cover the basic usage of the Task Parallel Library and see how
to use it in your daily asynchronous programming needs.

Getting ready
To start with this recipe, let us create a Console Application. Let us start by writing a
small piece of code:

Parallel.Invoke(FirstMethod, SecondMethod);

This code actually invokes the two methods, FirstMethod and SecondMethod in parallel
using ThreadPool. So if you put a Thread.Sleep inside the methods, it will produce a
delay when calling the method. Parallel.Invoke takes an array of action delegates,
which will be called in parallel. Parallel.Invoke also takes a second argument of
ParallelOptions which allows you to specify the degree of parallelism, cancellation
options, and so on. We will look into it in more detail in this recipe.

How to do it...
1. A Task is a combination of ThreadPool with some algorithms that support easier

constructs and abstraction to work with multi-core systems and parallel computing.
The basic construct of creating a task is as follows:
Task t1 = new Task(FirstMethod);
t1.Start();

This code creates an object of task which will call FirstMethod. The call is made
when Start is called for the task object just like how a thread works.

2. A factory is provided with the TPL that can also be used directly to create a new
task. You can also use Task.Factory.StartNew(SecondMethod) to call
Secondmethod similar to the previous operation. In the second case the task object
will be created automatically and the Start method will be called immediately.

Chapter 3

149

3. If we need to get the output of a method, we need to check the Result property.
Task has a few more constructors that allow you to pass the generic type parameters
that determine the return object of the method. This ensures that the parameters are
type safe and yet does not involve unnecessary reference conversion.
Task<int> tThird = new Task<int>(ThirdMethod);
tThird.Start();

if(tThird.Status == TaskStatus.RanToCompletion)
 Console.WriteLine(tThird.Result);

In this code Func<int> has been passed rather than the action. ThirdMethod
actually returns an integer value which we can get from the Result property of the
task object. The status indicates the various states of the task object, among which,
a few are: Created, Running, Cancelled, Faulted, RuntoCompletion, and so
on. In fact if you look carefully, the call to Result actually blocks the execution until
the method returns. Thus, even if the status is not evaluated to RanToCompletion
it can still call Result without error.

4. Task supports continuation. The ContinueWith method of the task lets you specify
the call back when the execution of a task completes. Each ContinueWith method
actually receives the object of antecedent task object and hence the entire chain is
maintained. You can get the result of a task from its previous chain and call the next
method on the chain.
 Task<int> finalValue = Task.Factory.StartNew(FirstMethod)
 .ContinueWith((x) = SecondMethod())
 .ContinueWith((y) = ThirdMethod());
Console.WriteLine(finalValue.Result);

In this code, FirstMethod is called which calls SecondMethod as its call back
and finally ThirdMethod to get the final result. Notice, the ContinueWith method
takes an Action<Task> to receive the previous task object to continue execution of
the call back. Hence, the whole chain is maintained.

5. Task supports waiting. As I have already told you, the call of Result from a task
object actually waits for the result, you can also call the Wait method of the task
object to actually wait for the completion of the task. When dealing with multiple
tasks you can use Task.WaitAll to wait for all tasks to complete.
Task t1 = new Task(FirstMethod);
Task t2 = new Task(SecondMethod);
Task<int> t3 = new Task<int>(ThirdMethod);

t1.Start();
t2.Start();
t3.Start();

Task.WaitAll(t1, t2, t3);

Asynchronous Programming in .NET

150

In this code, three task objects have been created and Task.WaitAll is called.
This will ensure that it waits for all tasks to finish. You can also call WaitAny which
exclusively waits for only one method.

6. Tasks also support CancellationToken to cancel a task when some external
cancellation has been set. Remember, cancellation of a task is not something
equivalent to Thread.Abort. Task allows you to pass a token which needs to be
manually handled and ensures that the wait is released only when the program
is stable.
public static void CancellationOperation()
{
 CancellationTokenSource source = new
CancellationTokenSource();
 CancellationToken token = source.Token;

 Task t1 = new Task(() => DoWork(token), token,
TaskCreationOptions.LongRunning);
 t1.Start();

 Thread.Sleep(10000);
 source.Cancel();

}

static void DoWork(CancellationToken token)
{
 while (true)
 {
 Console.WriteLine("Current Time is {0}", DateTime.Now);
 Thread.Sleep(1000);
 if (token.IsCancellationRequested)
 {
 Console.WriteLine("Cancellation has been requested");
 break;
 }
 }

 Console.ReadKey(false);
}

This code passes a cancellation token to the DoWork method. The DoWork method
continually checks whether the cancellation has been requested or not and
depending on its value it breaks the never ending loop. CancellationToken is
actually created using CancellationTokenSource, which can invoke Cancel
to cancel the operation. In the previous code, the cancellation is invoked after
10 seconds.

Chapter 3

151

7. Every task has a few options, which you can pass. For instance, in the code in step
6 the LongRunning task will indicate that this task is long running and any short
running task will be invoked in between. PrefereFairness will make tasks that
started before to finish before, and AttachToParent makes the task attached
with the current task.

8. Each task is associated with an ID which identifies the task in Visual Studio debugger.
As we have already shown before, the Parallel Stacks and Parallel Tasks windows
help to identify these Tasks uniquely and view its information.

The Parallel Tasks window shows all the tasks that are running in parallel and the
Parallel Stacks window shows the graphical representation of the tasks running on
different threads.

How it works...
Task Parallel Library internally runs on ordinary ThreadPool or threads. It uses enhanced
algorithm to actually handle parallel execution easier and elegantly. The performance of a
code running TPL is often better than a code that does not use it. We live in a world in which
most CPUs have at least two cores. Scheduling threads into multiple CPUs often becomes
a difficult job for a programmer when you are continuously dealing with throughput. TPL
supports multiple CPU execution as well and automatically manages this for a program.

Asynchronous Programming in .NET

152

In the preceding figure, it is depicted how threads are generally scheduled by the Task Parallel
Library. If you are running four threads in parallel in an ideal situation and if there are two
processors installed, the two threads will run in parallel, but the two of them share time
slices of one single processor.

TPL supports Data Parallelism or Task Parallelisms. You can run your logic in parallel around
your data or while processing your data using the Parallel class members:

Parallel.For(0, 100, ProcessMe);

The preceding code loops through 0 to 100 to call the method ProcessMe with the current
value of index as argument in parallel. Hence, if you print the index inside the ProcessMe
method, you will see the method runs in parallel. Similar to this, you can replace the ForEach
loop with Parallel.ForEach or methods with ThreadLocal data.

Task Parallelism actually works on task and its associated objects. It works as an operation
which is similar to threading and acts as a new threading pattern. Task objects are used
widely with async to implement asynchrony better.

There's more...
 Task parallelism library has made certain common use cases very easy to implement. As we
move ahead in using it, more and more use cases come to mind. Let us discuss some of the
additional information about the library which is nice to have for anyone.

How to handle exceptions inside a Task?
Unlike most of the existing threading patterns, Task Parallel Library has enhanced support
of exception handling within it. Every task exposes one Exception object and Status such
that when status is Faulted, or the operation throws an exception, the Task automatically
receives it and stores it into the Exception property.

Task<int> t1 = new Task<int>(ThirdMethod);
t1.Start();
t1.Wait();
if (t1.Status == TaskStatus.Faulted)
{
 foreach(var exception in t1.Exception.InnerExceptions)
 Console.WriteLine(exception.Message);
}

Task exposes the Exception object which actually receives an AggregateException
object. This exception is especially created for TPL and is used to store all its inner exceptions
into the InnerExceptions object. Here in the preceding code, the task throws an exception
and all the exceptions that have been thrown either by the Task or its child tasks will be
shown on the console.

Chapter 3

153

How to work with TPL without concurrency?
TPL supports the call of BeginXXX/EndXXX APIs too internally which do not create a new
thread automatically inside, but rather, use the existing Begin and End patterns to work
on other device operations. For instance, if you are working on Stream, Socket, or even
WebRequest, Task.Factory.FromAsync allows you to call these operations without
creating new threads and blocking them. The async operations in such cases will work
synchronously, but will use SynchronizationContext to find underneath device call
backs (for example I/O Completion Ports on Windows).

NetworkStream stream;
byte[] data;
int bytesRead;
Task<int> readChunk = Task<int>.Factory.FromAsync (
 stream.BeginRead, stream.EndRead,
 data, bytesRead, data.Length - bytesRead, null);

Here FromAsync will read data from the network without blocking a separate thread and
everything works synchronously.

More easier construct of these is available with async and await patterns discussed in the
next recipe.

How to create custom TaskScheduler?
Task Parallel Library itself has created a TaskScheduler that schedules Tasks into multiple
threads and also into multiple cores, and also looks after the overall performance of the
program to maximize throughput. You can access the default TaskScheduler using
TaskScheduler.Default. The current execution context TaskScheduler is available
from TaskScheduler.Current or using the FromCurrentSynchroizationContext
method. By the way, if you are working with advanced scenarios, you might also create your
own TaskScheduler and schedule the tasks based on your own requirement.

public class ThreadPerTaskScheduler : TaskScheduler
{
 protected override IEnumerable<Task> GetScheduledTasks() { return
Enumerable.Empty<Task>(); }

 protected override void QueueTask(Task task)
 {
 //Execute each Task into individual Thread
 Thread th = new Thread(() = TryExecuteTask(task));
 th.IsBackground = true;
 th.Start();
 }

Asynchronous Programming in .NET

154

 protected override bool TryExecuteTaskInline(Task task, bool
taskWasPreviouslyQueued)
 {
 return TryExecuteTask(task);
 }
}

In the preceding code, ThreadPerTaskScheduler actually creates one thread per task.
That means it creates each individual orphan thread (not even from ThreadPool) and
starts the task on it. You should notice that I have implemented the TaskScheduler by
deriving from the TaskScheduler class, and QueueTask is called when the task should
be executed.

To use a custom TaskScheduler class, you need to pass the object when you create the
object of task. If you do not specify a TaskScheduler object, the .NET framework uses
the default one.

How to deal with PLINQ?
PLINQ or parallel LINQ is an integration of parallel into LINQ queries. When working with
PLINQ, we convert the IEnumerable into ParallelEnumerable. An extension method
that is attached with the Enumerable objects, called AsParallel, allows you to get
ParallelEnumerable from an IEnumerable object.

var sequence = Enumerable.Range(1, 10000);

var evens = from n in sequence.AsParallel()
 where (n % 2) > 0
 select n;

In the preceding code the LINQ query uses AsParallel to get ParallelEnumerable
which runs in parallel, and each number is divided to get the sequence of even numbers.

ParallelEnumerable has few extension methods which are important to note. You can use
AsOrdered to preserve ordering while executing the parallel LINQ query, or you can specify
how many processors the LINQ will use using WithDegreeOfParallelism.

var sequence = Enumerable.Range(1, 10000);

var evens = from n in sequence.AsParallel().AsOrdered().
WithDegreeOfParallelism(2)
 where (n % 2) >
 select n;

The preceding code will preserve the ordering of the Enumerable objects and will parallelize
the query into two physical processors. The degree of parallelism is often important while tuning
the query performance, as parallelize does not always mean an increase in performance.

Chapter 3

155

See also
 f http://bit.ly/TPLLibrary

Working with async and await patterns
.NET asynchronous APIs have always been an element of problem to developers.
Understanding a code that has been written in synchronous cannot be easily transformed into
asynchronous. There are a lot of things that need to be done before making the actual code
work. If you are following some pattern in code, making it asynchronous makes it inside out.
You need to deal with a lot of call backs and methods such that it behaves the same way
as it did earlier. This way the maintenance of code becomes a tough task for anyone.

.NET places one step forward to simplify this long running problem that has been a continuous
need of technology. It introduces some compiler fixes which will keep things simple for
the programmer, but holding the underlying asynchrony to work in the same way as it did
with synchronous. If you have an existing code that runs in a synchronous way, making
it asynchronous is just a little fix. You don't need to change any logic of the code after
introducing the new asynchronous pattern. In this recipe I am going to introduce this new
pattern with the help of simple examples.

As C# is continually growing with branches, the latest release of C# 5.0 introduces the new
async feature considering one of the major problems that programmers often face while
developing asynchronous code. The main motive though is to mould the language in such a
way that the asynchronous kind of programming pattern does not need to do any additional
coding or follow some specific style while converting it from the synchronous form. During the
inception of C# 2.0, the async pattern was introduced using BeginInvoke and EndInvoke
calling patterns of code. But if you look closely, the whole logic of code needs to be modified
and rewritten to support the new pattern when you are going to change your code from a
synchronous one. You need to consider creating the call back method and change the logical
flow of the program completely. C# 5.0 keeps the notion of logical program flow intact, but
introduces two keywords to transform the same code instantly into asynchronous form.
Asynchrony is completely different than concurrency. Concurrency is a subset of asynchrony
where the operation on which the application is going to run asynchronously is CPU bound.
The async pattern uses SynchronizationContext to find an appropriate message
queue automatically to bridge the gap between the unmanaged environment and the
managed environment.

Asynchronous Programming in .NET

156

Getting ready
Every asynchronous operation using the new asynchronous pattern is ornamented with an
async modifier on the function and those calls can be ornamented using the await keyword in
code. The async will make the method awaitable, that means while calling the method, you
can use the contextual await keyword before that, such that the control waits for the operation
to finish asynchronously. The method that has async pattern implemented can support only
three types of return statement. You can return void or a Task with the support of generic task
object in form of Task<T>. Let us take an example of such an operation:

public async Task WaitAsync()
{
 await Task.Delay(1000);
 Console.WriteLine("After 1 Second");
 await Task.Delay(1000);
 Console.WriteLine("After 2 Seconds");
}

In the preceding code the async method has been implemented. The method simply puts
a Console statement initially after one second and then after another second. The code
looks like same as Thread.Sleep(1000), but actually it isn't. In this code, the Task object
is returned as soon as the first await is encountered. The thread automatically yields the
Task object on which you can either await again from outside, or create a call back to it.
It does not block the current thread for 1 second, rather it immediately returns the Task
object and makes the current thread available to the programmer. The new asynchronous
pattern does not employ creation of a new thread as well, rather it creates an object of
SynchronizationContext and puts a call back using its post method such that when the
Delay has finished, it posts from the context automatically and invokes the next call on the
same thread.

To start using async we first create a Windows Presentation Foundation (WPF) application.
We use a WPF application to get data from the Internet asynchronously and use this to model
our concept to build a more sophisticated application.

In this application we are going to create a few buttons which download data from a URL using
the Internet. To work with the web, we need WebClient. WebClient is a class that exists in
the System.Net namespace which lets us work with web from client space. Let us put this
further by creating the application for the recipe.

Chapter 3

157

How to do it...
Let us now create an application to demonstrate this new feature.

1. Start a WPF application and create a UI. In MainWindow.xaml we put few buttons
inside StackPanel.
<StackPanel Orientation="Vertical">
 <Button x:Name="btnSync" Content="Synchronous"
Click="btnSync_Click" />
 <Button x:Name="btnaSyncPrev" Content="Traditional Async"
Click="btnaSyncPrev_Click" />
 <Button x:Name="btnaSyncPres" Content="Mordern Async"
Click="btnaSyncPres_Click" />
 <Button x:Name="btnaSyncPresParallel" Content="Mordern
Async Parallel" Click="btnaSyncPresParallel_Click" />
 <Button x:Name="btnGoCPUBound" Content="CPU Bound
Call(Uses ThreadPool Thread)" Click="btnGoCPUBound_Click" />
 <ProgressBar Maximum="100" x:Name="prg" MinHeight="30" />
 <TextBlock x:Name="tbStatus" />
 </StackPanel>

StackPanel creates a stack of buttons, Textblock to show the status, and
ProgressBar to show progress.

2. Each of the buttons are assigned to their own EventHandler which will be called
when they are clicked. For all the buttons we do the same thing, that is, we call a
server URL 10 times and create a string from the response. Using the Synchronous
button we download the string one by one synchronously.
public void SynchronousCallServer()
{
 WebClient client = new WebClient();
 StringBuilder builder = new StringBuilder();
 for (int i = 2; i <= 10; i++)
 {
 this.tbStatus.Text = string.Format("Calling Server
[{0}]..... ", i);
 string currentCall = string.Format(Feed, i);
 string rss = client.DownloadString(new Uri(currentCall));

 builder.Append(rss);
 }
 MessageBox.Show(string.Format("Downloaded Successfully!!!
Total Size : {0} chars.", builder.Length));
}

Asynchronous Programming in .NET

158

Obviously the preceding code hangs up the whole application when the synchronous
call is made. As an end user, you don't want to see such an application and the code
is almost unusable in a production environment.

3. The second button does the same thing, but by calling the Async method directly. In
the traditional asynchronous pattern, a new thread is created from ThreadPool and
is blocked waiting for WebClient to finish its operation.

4. In the third button, the new async pattern is used. In case of modern approach the
call is made asynchronously from the UI thread which immediately returns the task
object after calling the network.
public async Task AsynchronousCallServerMordernAsync()
{
 WebClient client = new WebClient();
 StringBuilder builder = new StringBuilder();

 for (int i = 2; i <= 10; i++)
 {
 try
 {
 this.tbStatus.Text = string.Format("Calling Server
[{0}]..... ", i);
 string currentCall = string.Format(Feed, i);
 string rss = await client.DownloadStringTaskAsync(new
Uri(currentCall));

 builder.Append(rss);
 }
 catch (Exception ex)
 {
 this.tbStatus.Text = string.Format("Error Occurred --
{0} for call :{1}, Trying next", ex.Message, i);
 }
 MessageBox.Show(string.Format("Downloaded Successfully!!!
Total Size : {0} chars.", builder.Length));
 }
}

In the preceding code, the async pattern is used. Notice the method returns a
task reference. As I have already told you, a task is automatically returned after it
encounters the first await. In the previous code, you must also notice that the variable
rss is a string. If you check the return statement of the DownloadStringAsync
method, you will notice that it is of Task<string> type, while when we place the
contextual keyword, the type changes to just a string. Task being a representation of
future when associated with await, will halt the execution until the right hand side has
finished execution and the resultant is thrown to the variable defined on the line.

Chapter 3

159

The await contextual keyword can only be associated with an
awaitable pattern. In the .NET class library, it is declared as the
naming convention of a method to suffix with Async when it is
awaitable. For instance XXXAsync is awaitable while XXX is the
normal method.

5. You can also call all the operations in parallel and use Task.
WhenAll or the WhenAny API to wait for a single task. Modifying the
AsynchronousCallServerMordernAsync method to support this
behaviour is very easy.
public async Task AsynchronousCallServerMordernParallelAsync()
 {
 List<Task<string>> lstTasks = new
List<Task<string>>();
 StringBuilder builder = new StringBuilder();
 for (int i = 2; i <= 10; i++)
 {
 using (WebClient client = new WebClient())
 {
 try
 {
 this.tbStatus.Text = string.
Format("Calling Server [{0}]..... ", i);
 string currentCall = string.Format(Feed,
i);
 Progress<int> p = new Progress<int>(v =>
prg.Value = v);
 Task<string> task = client.DownloadStringT
askAsync(currentCall, p);
 lstTasks.Add(task);
 }
 catch (Exception ex)
 {
 this.tbStatus.Text = string.Format("Error
Occurred -- {0} for call :{1}, Trying next", ex.Message, i);
 }
 }
 }
 string[] rss = await Task.WhenAll<string>(lstTasks);
 foreach (string s in rss)
 builder.Append(s);
 MessageBox.Show(string.Format("Downloaded
Successfully!!! Total Size : {0} chars.", builder.Length));
 }

Asynchronous Programming in .NET

160

In the next button, we call the DownloadStringTaskAsync method directly and
create List<Task<string>> from all the tasks returned from the method. We
finally use Task.WhenAll to create an aggregation of all the task objects and
retrieve the whole array of the downloaded string. Here all the web requests are
made in parallel.

6. In the code in step 5, notice that we have used the Progress class to support
progress of an operation on WebClient. The method DownlaodStringAsync
has an overload that takes Progress as an argument. (In current CTP release, we
need to create an extension to do this). The progress takes a method to update the
Progress notification which will be called when report of the progress is called.

7. As I have already told you, async methods do not create a thread when await is
encountered. They actually stop the current progress and releases the thread with a
task object returned. But this is not the case when you need to do some computation
on something in the application. To do a CPU bound operation we use a separate
thread to run the code in parallel inside Task.
await Task.Run(() =>
 {
 //Switch to net Thread from ThreadPool
 result = this.DoCpuIntensiveWork(); //Very
CPU intensive
});

Here in the preceding code, Task.Run actually creates a new thread from
ThreadPool under the hood and runs the action that has been passed to run a CPU
intensive task. As a matter of fact, as all the Task object is awaitable, you can await
on the task object received from the Task.Run method.

8. As every task supports CancellationToken, you can pass CancellationToken
to most of the awaitable methods as well. You can use either return to immediately
return when cancellation is requested or use ThrowIfCancellationRequested
to throw an exception.
var cancelToken = new CancellationTokenSource();
var taskRequest = await DownloadTaskAsync(this.url, cancelToken.
Token)

In the preceding code CancellationToken is created using the
CancellationTokenSource object and works in the same way as we
saw earlier with tasks.

Chapter 3

161

How it works...
It is a widely popular phrase that compilers are good at state machines. If you look at
IEnumeramble of C#, the compiler internally maintains a state-machine and stores every
state of the enumeration inside it. The call to yield statement invokes the state machine and
every enumeration automatically calls MoveNext of the enumeration to execute a certain set
of instructions. The yield is just a syntactic sugar on the language which creates the actual
IEnumerable and IEnumerator implementation on a separate class that also belongs to
a state machine. This transformation of the code is already dealt inside the compiler itself
to hide complexity around the state machine from the developer. C# async and await also
works on the same model. The compiler rewrites the whole program during the compilation
and builds and maintains the state machine inside a separate type. The C# asynchrony
automatically identifies the thread and maintains a SynchronizationContext to avoid
cross thread execution of messages. Hence, when you write await for a block, it actually
yields the control after calling the method, and returns back a task object (that represents
the ongoing method). If the ongoing method returns something, it is returned as Task<T>.

The code runs in two phases. First it calls the AsynchronousCallServerMordern
method until it finds the first await, it then creates a task reference and registers the
rest of the instructions inside a state machine as a method and returns the task object
immediately. Hence, the UI will be available immediately after the first await. When the call to
DownloadStringTaskAsync is finished, it automatically finds the context on the workflow
and runs the existing code on the workflow. The state machine goes on executing the workflow
steps divided based on the number of await statements and goes on executing them one
by one. Therefore, if the LongRunning process is inside the line on which the users wait, the
program will be free during its execution.

Asynchronous Programming in .NET

162

While you think of this situation, you might be thinking how is it possible to return the control
before executing the whole method instance. When you are creating an async method, you
internally create a state machine that keeps track of the whole execution of the method. If
you have already used state machine before, you might already know that state machines are
capable of keeping track of the current state of a flow. The async methods are nothing but an
instance of a state machine created on the fly, which wraps the parameters, local variables,
the state of the method that it is currently in, and so on. The method divides itself into a
number of states based on the number of contextual await specified on the method. The flow
gets executed until await is encountered and then everything is wrapped inside a call back on
the next flow change.

For instance, let us consider the following code:

Console.WriteLine("Before await");
await TaskEx.Delay(1000);
Console.WriteLine("After await");

Now, when you compile the assembly, it actually creates an object of state machine with two
methods (one for each state).

It takes the first delegate and associates it with the following:

Console.WriteLine("Before await");
await TaskEx.Delay(1000);

Say for instance, it names it as State 1. It takes the rest of the part to a new method.

Console.WriteLine("After await");

So after decomposition of the actual method into state machine, there are basically two
methods each for one state. It executes the first part of the program synchronously and saves
the state of the method into an object until it waits for a delay. TaskAwaiter automatically
calls its call back when the delay is elapsed and executes the next state of the method. Finally
when all the states are executed the result is stored into the task object and the method is
turned into its completion.

There are quite a few things to remember in this regard, let's list them:

 f For any async block it is important to have at least have one await, otherwise the
whole block will execute synchronously.

 f Any async method should always postfix Async (as a rule). This rule is
just to differentiate a normal method with an async method. For instance,
MyMethodAsync is an async method, while MyMethod is a normal method.

 f Any async method can either return void (call and forget), Task, or Task<T>
based on the Result the await method sends.

 f The compiler does the adjustment to find the same caller and invokes the GoTo
statement to execute the rest of the logic from the same position where await is
invoked, rather than doing a Callback.

Chapter 3

163

 f Everything is managed by a state machine workflow by the compiler.

 f CPU bound calls can have their own thread, but async-based mechanism does not
necessarily mean creating a new thread while accessing any resource. For instance,
it is necessary to block the calling thread while accessing a resource before the result
arrives for network, or I/O bound calls do not require any new thread to be created
under the hood.

 f Any object which needs await must have GetAwaiter defined inside it.

Let us go a little deeper to understand what is happening under the hood. To check the
compiled code, let us use Reflector.

As I have already explained, await works only for objects which implement the GetAwaiter.
Task class in C# implements the method GetAwaiter, which returns another object (called
TaskAwaiter) that is used to actually register the await pattern. Every Awaiter object
should include some of the basic methods like BeginAwait and EndAwait. In BCL, there
are a number of implementations of the awaitable methods, each of which defines its awaiter.
If you look closely into BeginAwait and EndAwait, they are using the same technique that
you might do in case of manually creating an asynchronous pattern block:

Asynchronous Programming in .NET

164

BeginAwait actually calls TrySetContinuationforAwait, which actually breaks apart
the existing method body into two separate blocks and registers the next part of each await
statement to the continuation of the task, just like the following:

Task1.ContinueWith(Task2);

Where, Task2 represents the rest of the code to run in call back. So if you want your object
to work with an asynchronous pattern, you must have GetAwaiter implemented on the type
which returns an object that also implements BeginAwait and EndAwait.

There's more...
Async and await made things really easy. With the introduction of this new asynchronous
pattern, it opens up a lot of new responsibilities. Let us take a look at a few more interesting
facts about it.

How to write Async anonymous method or a lambda expression?
Delegates and lambda expressions are one of the most popular concepts which are rapidly
adopted in .NET languages. Most of us today create short lambda expressions to pass to
another method or call it directly from the code. Async delegates and lambda expressions
need to be invented in the language before the release of original async method.

Func<Task> asyncDelegate = async delegate()
{
 await this.AsynchronousCallServerMordernAsync();
};
await asyncDelegate();

Here you can see the delegate actually returns a Task and we await on the Task.

You can also replace the preceding syntax to the following code:

Func<Task> asyncDelegate = async () =>
{
 await this.AsynchronousCallServerMordernAsync();
};
await asyncDelegate();

This code produces a lambda expression for the delegate. To write a delegate or a lambda
expression which supports you to call contextual await inside it, you must precede the
declaration with the async keyword.

You must also remember that you can cast the asyncDelegate to the Action,
Func<Task>, or Func<Task<T…>> types.

Chapter 3

165

Different awaitable methods
With the introduction of .NET async and await features, the base class library has also been
modified to introduce newer awaitable methods inside it. The awaitable methods return
either Task or Task<T> or void, and you can call them either from a normal function
or an async method.

There are lot of async methods introduced inside the I/O classes, as stream has
ReadAsync, WriteAsync, FlushAsync, CopyToAsync, and so on. The network APIs
also introduce a lot of them. The main advantage of an awaitable method is that it does not
need a new thread to block it when it can go without. The async methods generally use the
SynchronizationContext class to hold itself inside an object and later when the message
is available for the registered SynchronizationContext, it posts the data into it.

The SemaphoreSlim class also introduces the WaitAsync method that awaits an object
before the lock is achieved. For instance:

private static SemaphoreSlim locker = new
SemaphoreSlim(initialCount:1);
public static async Task DoWorkAsync()
{
 await locker.WaitAsync();
 try
 {
 … // code here with awaits
 }
 finally { locker.Release(); }
}

In the preceding code the lock is achieved using the async pattern. The locker is awaited using
the WaitAsync method and later when the method receives the lock, it tries to run the code
and finally releases the locker. These types of methods come in really handy, as they do not
require new threads to be created and blocked.

See also
 f http://bit.ly/AsyncPattern

Working with Task Parallel Library
data flows

Task Parallel Library data flows are recently introduced with .NET 4.5. The main objective
of the library is to enhance the message passing techniques using the benefits of Task
Parallel Library. It introduces a number of new classes and interfaces which deal with
data flow patterns, and each of them forms special meaning and technique and to be
used when required.

Asynchronous Programming in .NET

166

In most of the traditional systems of data flows, there are input and output on the two extreme
ends of the pipeline. The data generally flows from multiple stages and processes the input
to produce raw data which are used up by different processes. We post the messages to the
system as input and wait for the processing to produce output. Dealing with such Message
Passing techniques without using TPL Data Flows would not be easy as the foundation does
not directly supports them. But with the introduction to the new framework, it becomes easy
to build frameworks on top of it to support data flow blocks.

Getting ready
The approach of the TPL DataFlow are performed using data flow blocks. The TDF is based on
actor-oriented models, and it does not guarantee isolation of one process with another. At its
core, TPL Data Flow library is based mainly on two interfaces:

 f ISourceBlock<T> which offers data source of the block

 f ITargetBlock<T> which offers the target data of the blocks

Each DataFlowBlock is inherited from IDataFlowBlock which has a source of type
ISourceBlock and a target of type ITargetBlock. While it is passed through the block,
the messages are processed. In this recipe we are going to cover all these TDF blocks which
forms the entire library starting from the one of the most simplest construct to more and
more complex construct. There are three types of blocks in TDF:

 f Executor Blocks: Examples are ActionBlock, TransformBlock, and
TransformManyBlock

 f Buffering Blocks: Examples are BufferBlock, BroadcastBlock, and
WriteonceBlock

 f Joining Blocks: Examples are BatchBlock, JoinBlock, and BatchedJoinBlock

How to do it...
To demonstrate the TPL data flow library, let us write some code and take example of the
working principle of each of the types available on it.

1. ActionBlock is one of the most common and simplest data flow blocks that has
been exposed from the library. ActionBlock takes a delegate to return the output.

Chapter 3

167

In the preceding figure, ActionBlock takes all the Post requests and performs
the task (that means the method passed to it) and deletes it. To clear let us see
the following code:
ActionBlock<int> ab = new ActionBlock<int>(v =>
{
 bool isEven = Compute(v);
 if(isEven)
 Console.WriteLine("The Number is Even");
 else
 Console.WriteLine("The number is odd");
});

ab.Post<int>(20);
ab.Post<int>(21);

This is the simplest type which takes a delegate and simply calls the method that has
been passed as a delegate with a value that is sent. Here ActionBlock<int> is
created, which makes it a delegate of Action<int>, hence we can post an integer
value to it to get the delegate called.

2. BufferBlock is little different than that of ActionBlock. The ActionBlock takes
a delegate and executes it one by one, but BufferBlock on the other hand provides
storage of the posted message until it is processed such that both synchronous as
well as asynchronous producer/consumer scenarios can be handled through it.

Here in the figure you can see that the task is performed on FIFO basis, such that the
input is buffered right away when it is fed into the system as input and finally returns
the output:
BufferBlock<string> buf = new BufferBlock<string>();
Task.Factory.StartNew(async () =>
{
 await buf.SendAsync<string>("http://www.abhisheksur.com");
 await buf.SendAsync<string>("http://sqlservergeeks.com");
});
Task.Factory.StartNew(async () =>
{
 while(true)

Asynchronous Programming in .NET

168

 Console.WriteLine(await buf.ReceiveAsync<string>());
});
Console.ReadLine();

Here in the preceding code we put two strings in the buffer using SendAsync and
ReceiveAsync. As both support async, they are awaitable and hence, you can
post both these messages at a time, and receive them from the buffer.

3. JoinBlock can group data coming from multiple data sources. Joinblock exposes
TargetBlock of input as properties based on the parameters and joins them into a
tuple of all targets.

Here InputT1 and InputT2 are passed and the joined tuple taking one element from
all the input produces the output:

JoinBlock<string, double, int> jb = new JoinBlock<string, double,
int>(new GroupingDataflowBlockOptions { Greedy = true }); ;
Task.Factory.StartNew(async () =>
 {
 while (true)
 {
 string input1 = "Abhishek";
 await jb.Target1.SendAsync(input1);
 double input2 = 10.4d;
 await jb.Target2.SendAsync(input2);
 int input3 = 1950;
 await jb.Target3.SendAsync(input3);
 }
 });

Task.Factory.StartNew(async () =>
{
 while (true)
 {
 var output = await jb.ReceiveAsync();
 Console.WriteLine(output.ToString());
 }
});

Chapter 3

169

In the preceding code JoinBlock receives three targets, each of which are exposed as
properties. The three inputs are joined to produce one output. Remember, we have used
greedy block. This ensures that it will allow Receive from the output only when all the
inputs are ready.

How it works...
The TPL DataFlow blocks are really important when dealing with message processing. Each
of the block is actually an implementation of IDataFlowBlock<T>. Each data flow blocks
is designed to act as a data source using ISourceBlock<T>, and all data flow blocks that
need to act as a target are implemented by ITargetBlock<T>.

Hence, the underlying data structure of every block is contained by three basic interfaces.

Here you can see the each data block can either have an ISourceBlock, ITargetBlock,
or both, but they should have IDataFlowBlock to be considered as a DataFlow block. The
ActionBlock does not implement ISourceBlock and hence cannot receive values.

There's more...
The TPL data flows are very important for consideration. We can use it for various purposes.
Let us look at the configuration options available.

What are the configuration options available for TPL Data Flow
blocks?
There are a lot of configuration options that may be applied to individual blocks. These are
exposed through DataflowBlockOptions to the external world, and it has its derived
types as ExecutionDataflowBlockOptions or GroupingDataflowBlockOptions
depending on the type of the DataFlow block it is executing.

Asynchronous Programming in .NET

170

Let us look into a few of the important configuration options that are available to these blocks:

 f TaskScheduler: This specifies how the task will schedule for the block. You can use
either the default which is used by the TPL or you can implement your own and pass
it to the block.

 f MaxDegreeOfParallelism: This defines how many processing units will it
create to run the tasks in parallel. Depending on the hardware you can restrict
the parallelism of the tasks using this option.

 f MaxMessagePerTask: You can configure the number of messages that each Task
will process. This is important as there can be a huge number of messages posted
on one end and if it creates that many tasks, it might compromise the overall
performance. So there is a constant trade-off.

 f Greedy: Greedy blocks are available to join blocks which group multiple targets into
one to produce the output. If the block is configured as greedy, it will produce the
output only when all data is available.

 f BoundedCapacity: It specifies the maximum number of items that it can store in
its buffer. You can restrict it for a block using configuration.

 f CancellationToken: You can at any time pass CancellationToken to the block
and input the necessary logic to cancel an operation.

How to link to one block to another for Target?
Each ISourceBlock allows linking to other blocks that support targets. There is a method
LinkTo that allows you to pass the target to another block. For instance, BufferBlock
stores the messages and later on can use ActionBlock which supports ITargetBlock
to pass the message for processing. Let us consider this with an example:

BufferBlock<int> bb = new BufferBlock<int>();
ActionBlock<int> a1 = new ActionBlock<int>((a) =>
{
 Console.WriteLine("ActionBlock with value {0}", a);
})
);

bb.LinkTo(a1);
Task t = new Task(() =>
{
 int i = 0;
 while (i < 10)
 {
 i++;
 bb.Post(i);
 }
 });
t.Start();

Chapter 3

171

So here rather than receiving from BufferedBlock, it links to ActionBlock for processing.
The LinkTo method of BufferBlock redirects the target from it to ActionBlock that
prints the value that has been passed. We pass 10 values to BufferedBlock, and if you run
this code, you will see that all the messages are getting printed out using ActionBlock.

See also
 f http://bit.ly/TPLDataFlows

4
Enhancements to

ASP.NET

The goal of this chapter is to introduce the latest features of ASP.NET 4.5 and all the Visual
Studio enhancements that make a richer development environment and a smarter end
product. The chapter focuses on the latest programming trends, giving you insights on a few
things that are interesting and yet important to learn before writing your program in ASP.NET:

 f Understanding major performance boosters in ASP.NET web applications

 f How to work with statically-typed model binding in ASP.NET applications

 f Introduction to HTML5 and CSS3 in ASP.NET applications

 f Working with jQuery in Visual Studio with ASP.NET

 f Working with task-based asynchronous HttpHandler and HttpModules

 f New enhancements to various Visual Studio editors

Introduction
Just like other technologies, ASP.NET had also come up with major alterations and
advancements in recent times. Some of the things are merely related to actual development
experiences rather than any benefits in terms of performance for the end user. But recent
changes to ASP.NET have some real advantages and performance implication directly moving
to the end users. The introduction of minification of JS and CSS files so easy now; anyone can
now implement the same without using single lines of code. The code is inbuilt into the ASP.
NET system and the API uses it gracefully to handle the release and debug environments.

Enhancements to ASP.NET

174

It is not only restricted with the feature releases, but the Web has recently made a lot of
advancements in terms of new HTML constructs appearing to the world. The adoption of
HTML5 and CSS3 made the appearance of the Web almost identical to the desktop yet it runs
on the browser. The browser is now capable of taking advantage of a graphics card or even
multiple CPUs. There are APIs to directly communicate with the server from the client using a
secured socket rather than the very old AJAX requests. The web look and feel has changed to
support vector graphics, 2D and 3D canvas, WebGL, and so on, or even the browser supports
local data storage, database, application cache, and much more. The world is moving towards
a system where there will be a unified collaboration of online and offline activities.

This chapter focuses on some of the best introductions to the modern ASP.NET environment
that catalyzes the modern web world. The chapter will guide you through the basic
understanding of the concepts that will place you apart from other developers.

Understanding major performance boosters
in ASP.NET web applications

Performance is one of the primary goals for any system. For a server, the throughput /time
actually specifies the performance of the hardware or software in the system. It is important
to increase performance and decrease the amount of hardware used for the throughput.
There must be a balance between the two.

Performance is one of the key elements of web development. In the last phase of ASP.NET
4.5, performance was one of the key concerns for Microsoft. They made a few major changes
to the ASP.NET system to make it more performant.

Performance comes directly, starting from the CPU utilization all the way back to the
actual code you write. Each CPU cycle you consume for producing your response will affect
performance. Consuming a large number of CPU cycles will lead you to add more and more
CPUs to avoid site unavailability. As we are moving more and more towards the cloud system,
performance is directly related to the cost. Here, CPU cycles costs money. Hence to make
a more cost effective system running on the cloud, unnecessary CPU cycles should always
be avoided.

.NET 4.5 addresses the problem to its core to support background GC which we will discuss
in Appendix, .NET Languages and its Construct, with support for multicore JIT and so on.
The background GC for the server introduces support for concurrent collection without
blocking threads; hence the performance of the site is not compromised because of garbage
collection as well. The multicore JIT in addition improves the start-up time of pages without
additional work.

Chapter 4

175

By the way, some of the improvements in technology can be really tangible to developers as
well as end users. They can be categorized as follows:

 f CPU and JIT improvements

 f ASP.NET feature improvements

The first category is generally intangible while the second case is tangible. The CPU and JIT
improvements, as we have already discussed, are actually related to server performance. JIT
compilations are not tangible to the developers which means they will automatically work on
the system rather than any code change while the second category is actually related to code.
We will focus here mainly on the tangible improvements in this recipe.

Getting ready
To get started, let us start Visual Studio 2012 and create an ASP.NET project. If you are
opening the project for the first time, you can choose the ASP.NET Web Forms Application
project template. Visual Studio 2012 comes with a cool template which virtually creates the
layout of a blank site. Just create the project and run it and you will be presented with a blank
site with all the default behaviors you need. This is done without writing a single line of code.

Now, if you look into Solution Explorer, the project is separated into folders, each
representing its identification. For instance, the Scripts folder includes all the JavaScript
associated with the site. You can also see the Themes folder in Content, which includes the
CSS files. Generally, for production-level sites, we have large numbers of JavaScript and CSS
files that are sometimes very big and they download to the client browser when the site is
initially loaded. We specify the file path using the script or link path.

If you are familiar with web clients you will know that, the websites request these files in
a separate request after getting the HTTP response for the page. As most browsers don't
support parallel download, the download of each file adds up to the response. Even during the
completion of each download there is a pause, which we call network latency. So, if you see the
entire page response of a website, you will see that a large amount of response time is actually
consumed by the download of these external files rather than the actual website response.

Let us create a page on the website and add few JavaScript files and see the response time
using Fiddler:

Enhancements to ASP.NET

176

The preceding screenshot shows how the browser requests the resources. Just notice, the first
request is the actual request made by the client that takes half of a second, but the second
half of that second is consumed by the requests made by the response from the server. The
server responds with a number of CSS and JavaScript requests in the header, which have
eventually been called to the same web server one by one. Sometimes, if the JavaScript is
heavy, it takes a lot of time to load these individual files to the client which results in delay in
response time for the web page. It is the same with images too. Even though external files are
downloaded in separate streams, big images hurt the performance of the web page as well:

Here you can see that the source of the file contains the call to a number of files that
corresponds to each request. When the HTML is processed on the browser, it invokes each of
these file requests one by one and replaces the document with the reference of those files. As
I have already told you, making more and more resources reduces the performance of a page.
This huge number of requests makes the website very slow. The screenshot depicts the actual
number of requests, the bytes sent and received, and the performance in seconds. If you look
at some big applications, the performance of the page is reduced by a lot more than this.

To address this problem we take the following two approaches:

 f Minimizing the size of JavaScript and CSS by removing the whitespaces, newlines, tab
spaces, and so on, or omitting out the unnecessary content

 f Bundling all the files into one file of the same MIME type to reduce the requests
made by the browser

ASP.NET addresses both of these problems and introduces a new feature that can both
minimize the content of the JavaScript and CSS files as well as bundle all the JavaScript or
CSS files together to produce one single file request from the site.

Chapter 4

177

To use this feature you need to first install the package. Open Visual Studio 2012, select View
| Other Windows | Package Manager Console as shown in the following screenshot.

Package Manager Console will open the PowerShell window for package management inside
Visual Studio:

Once the package manager is loaded, type the following command:

Install-Package Microsoft.Web.Optimization

This will load the optimizations inside Visual Studio.

On the other hand, rather than opening Package Manager Console, you can also open
Nuget package manager by right-clicking on the references folder of the project and select
Add Library Package Reference. This will produce a nice dialog box to select and install the
appropriate package.

In this recipe, we are going to cover how to take the benefits of bundling and minification of
website contents in .NET 4.5.

Enhancements to ASP.NET

178

How to do it...
1. In order to move ahead with the recipe, we will use a blank web solution instead of

the template web solution that I have created just now. To do this, start Visual Studio
and select the ASP.NET Empty Web Application template.

2. The project will be created without any pages but with a web.config file
(a web.config file is similar to app.config but works on web environments).

3. Add a new page to the project and name it as home.aspx. Leave it as it is, and go
ahead by adding a folder to the solution and naming it as Resources.

4. Inside resources, create two folders, one for JavaScript named js and another for
stylesheets name css.

5. Create a few JavaScript files inside js folder and a few CSS files inside the css folder.
Once you finish the folder structure will look like below :

Now let us add the files on the home page. Just drag-and-drop the js files one by one
into the head section of the page. The page IDE will produce the appropriate tags for
scripts and CSS automatically.

6. Now run the project. You will see that the CSS and the JavaScript are appropriately
loaded. To check, try using Fiddler.

7. When you select the source of a page, you will see links that points to the JavaScript,
CSS, or other resource files. These files are directly linked to the source and hence if
we navigate to these files, it will show the raw content of the JavaScript.

8. Open Fiddler and refresh the page keeping it open in Internet Explorer in the debug
mode. You will see that the browser invokes four requests. Three of them are for
external files and one for the actual HTML file. The Fiddler shows how the timeframe
of the request is maintained. The first request being for the home.aspx file while the
others are automatically invoked by the browser to get the js and css files. You can
also take a note at the total size of the whole combined request for
the page.

Chapter 4

179

9. Let's close the browser and remove references to the js and css files from the head
tag, where you have dragged and added the following code to reference folders rather
than individual files:
<script src="Resources/js" ></script>
<link rel="stylesheet" href="Resources/css" />

10. Open the Global.asax file (add if not already added) and write the following line in
Application_Start:
void Application_Start(object sender, EventArgs e)
{
 //Adds the default behavior
 BundleTable.Bundles.EnableDefaultBundles();
}

Once the line has been added, you can now run the project and see the output.

11. If you now see the result in Fiddler, you will see all the files inside the scripts are
clubbed into a single file and the whole file gets downloaded in a single request.
If you have a large number of files, the bundling will show considerable performance
gain for the web page.

12. Bundling is not the only performance gain that we have achieved using Optimization.
Press F5 to run the application and try to look into the actual file that has been
downloaded as js and css. You will see that the bundle has been minified already
by disregarding comments, blank spaces, new lines, and so on. Hence, the size of
the bundles has also been reduced physically.

13. You can also add your custom BundleTable entries. Generally, we add them inside
the Application_Start section of the Global.asax file, like so:
Bundle mybundle = new Bundle("~/mycustombundle",
typeof(JsMinify));
mybundle.AddFile("~/Resources/Main.js");
mybundle.AddFile("~/Resources/Sub1.js");
mybundle.AddDirectory("/Resources/Files", "*.js", false);
BundleTable.Bundles.Add(mybundle);

The preceding code creates a new bundle for the application that can be referenced
later on. We can use AddFile to add individual files to the Bundle or we can also
use AddDirectory to specify a whole directory for a particular search pattern.
The last argument for AddDirectory specifies whether it needs to search for a
subdirectory or not. JsMinify is the default Rule processor for the JavaScript files.
Similar to JsMinify is a class called CssMinfy that acts as a default rule for
CSS minification.

Enhancements to ASP.NET

180

14. You can reference your custom bundle directly inside your page using the
following directive:

<script src="mycustombundle" type="text/javascript" />

You will notice that the directive appropriately points to the custom bundle that has
been created.

How it works...
Bundling and minification works with the introduction of the System.Web.Optimization
namespace. BundleTable is a new class inside this namespace that keeps track of all the
bundles that have been created in the solution. It maintains a list of all the Bundle objects,
that is, list of JavaScript or CSS files, in a key-value pair collection. Once the request for a
bundle is made, HttpRuntime dynamically combines the files and/or directories associated
with the bundle into a single file response.

Let us consider some other types that helps in transformation:

 f BundleResponse: This class represents the response after the resources are
bundled and minified. So BundleResponse keeps track of the actual response of
the combined file.

 f IBundleTransform: This type specifies the contract for transformation. Its
main idea is to provide the transformation for a particular resource. JsMinfy or
CssMinify are the default implementations of IBundleTransform.

 f Bundle: The class represents a resource bundle with a list of files or directories.

The IBundleTransform type specifies the rule for producing the BundleResponse class.
To implement custom rules for a bundle, we need to implement this interface:

public class MyCustomTransform : IBundleTransform
{
 public void Process(BundleResponse bundleresponse)
 {
 // write logic to Bundle and minfy…
 }
}

Here, the BundleResponse class is the actual response stream where we need to write the
minified output to.

Chapter 4

181

Basically, the application uses the default BundleHandler class to initiate the transform.
BundleHandler is an IHttpHandler that uses ProcessRequest to get the response
for the request from the browser. The process is summarized as follows:

 f HttpRuntime calls the default BundleHandler.ProcessRequest method to
handle the bundling and minification request initiated by the browser.

 f ProcessRequest gets the appropriate bundle from the BundleTable class and
calls Bundle.ProcessRequest.

 f The Bundle.ProcessRequest method first retrieves the bundle's Url and invokes
Bundle.GetBundleResponse.

 f GetBundleResponse first performs a cache lookup. If there is no cache available, it
calls GenerateBundleResponse.

 f The GenerateBundleResponse method creates an instance of
BundleResponse, sets the files to be processed in correct order, and finally invokes
IBundleTransform.Process.

 f The response is then written to BundleResponse from this method and the output
is thrown back to the client.

The preceding flow diagram summarizes how the transformation is handled by ASP.NET. The
final call to IBundleTransform returns the response back to the browser.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Enhancements to ASP.NET

182

How to configure the compilation of pages in ASP.NET websites
Compilation also plays a very vital role in the performance of websites. As we have already
mentioned, we have background GC available to the servers with .NET 4.5 releases, which
means when GC starts collecting unreferenced objects, there will be no suspension of
executing threads on the server. The GC can start collecting in the background. The support
of multicore JIT will increase the performance of non-JITed files as well.

By default, .NET 4.5 supports multicore JIT. If you want to disable this option, you can use the
following code:

<system.web>
<compilation profileGuidedOptimizations="None" />
</system.web>

This configuration will disable the support of spreading the JIT into multiple cores.

The server enables a Prefetcher technology, similar to what Windows uses, to reduce the disk
read cost of paging during application startup. The Prefetcher is enabled by default, you can
also disable this using the following code:

<system.web>
<compilation enablePrefetchOptimization ="false" />
</system.web>

This settings will disable the Prefetcher technology on the ASP.NET site. You can also configure
your server to directly manipulate the amount of GC:

<runtime>
<performanceScenario value="HighDensityWebHosting" />

The preceding configuration will make the website a high density website. This will reduce the
amount of memory consumed per session.

What is unobtrusive validation
Validation plays a very vital role for any application that employs user input. We generally use
ASP.NET data validators to specify validation for a particular control. The validation forms
the basis of any input. People use validator controls available in ASP.NET (which include
RequiredFieldValidator, RangeValidator, and so on) to validate the controls when
either a page is submitted or when the control loses its focus or on any event the validator is
associated with. Validators being most popular server-side controls that handles client-side
validation by producing an inline JavaScript block inside the actual page that specifies each
validator. Let us take an instance:

<asp:TextBox ID="Username" runat="server"></asp:TextBox>

<asp:RequiredFieldValidator
 ErrorMessage="Username is required!"

Chapter 4

183

 ControlToValidate="Username"
 runat="server"></asp:RequiredFieldValidator>

<asp:RegularExpressionValidator
 ErrorMessage="Username can only contain letters!"
 ControlToValidate="Username"
 ValidationExpression="^[A-Za-z]+$"
 runat="server"></asp:RegularExpressionValidator>

The validator handles both the client-side and server-side validations. When the preceding
lines are rendered in the browser, it produces a mess of inline JavaScript.

.NET 4.5 uses unobtrusive validation. That means the inline JavaScript is replaced by the data
attributes in the HTML:

This is a normal HTML-only code and hence performs better than the inline HTML and is also
very understandable, neat, and clean.

You can also turn off the default behavior of the application just by adding the line in
Application_Start of the Global.asax file:

void Application_Start(object sender, EventArgs e)
{
 //Disable UnobtrusiveValidation application wide
 ValidationSettings.UnobtrusiveValidationMode =
UnobtrusiveValidationMode.None;
}

The preceding code will disable the feature for the application.

Applying appSettings configuration key values
Microsoft has implemented the ASP.NET web application engine in such a way that most of
its configurations can be overridden by the developers while developing applications. There is
a special configuration file named Machine.config that provides the default configuration
of each of the config sections present for every application. web.config is specific to an
application hosted on IIS. The IIS reads through the configuration of each directory to apply
for the pages inside it.

Enhancements to ASP.NET

184

As configuring a web application is such a basic thing for any application, there is always a
need to have a template for a specific set of configuration without rewriting the whole section
inside web.config again. There are some specific requirements from the developers
perspective that could be easily customizable without changing too much on the config.
ASP.NET 4.5 introduces magic strings that could be used as configuration key values in the
appSettings element that could give special meaning to the configuration. For instance,
if you want the default built-in JavaScript encoding to encode & character, you might use
the following:

<appSettings>
 <add key="aspnet:JavaScriptDoNotEncodeAmpersand" value="false"
/>
</appSettings>

This will ensure that & character is encoded as "\u0026" which is the JavaScript-escaped form
of that character. When the value is true, the default JavaScript string will not encode &.

On the other hand, if you need to allow ScriptResource.axd to serve arbitrary static files
other than JavaScript, you can use another magic appSettings key to handle this:

<appSettings>
 <add key="aspnet:ScriptResourceAllowNonJsFiles" value="false" />
</appSettings>

The configuration will ensure that ScriptResource.axd will not serve any file other than
the .js extension even if the web page has a markup <asp:ScriptReference Path="~/
myFile.txt" />

Similar to this, you can also enable UnobtrusiveValidationMode on the website using a
separate magic string on appSetting too:

 <appSettings>
 <add key="ValidationSettings:UnobtrusiveValidationMode"
value="WebForms" />
 </appSettings>

This configuration will make the application to render HTML5 data-attributes for validators.

There are a bunch of these appSettings key magic strings that you can use in your
configuration to give special meaning to the web application. Refer to http://bit.ly/
ASPNETMagicStrings for more information.

Chapter 4

185

DLL intern in ASP.NET servers
Just like the reusability of string can be achieved using string intern tables, ASP.NET allows
you to specify DLL intern that reduces the use of loading multiple DLLs into memory from
different physical locations. The interning functionality introduced with ASP.NET reduces the
RAM requirement and load time-even though the same DLL resides on multiple physical
locations, they are loaded only once into the memory and the same memory is being shared
by multiple processes. ASP.NET maintains symbolic links placed on the bin folder that map
to a shared assembly. Sharing assemblies using a symbolic link requires a new tool named
aspnet_intern.exe that lets you to create and manage the stored interned assemblies.

To make sure that the assemblies are interned, we need to run the following code on the
source directory:

aspnet_inturn –mode exec –sourcedir "Temporary ASP.NET files" –
interndir "c:\assemblies"

This code will put the shared assemblies placed inside assemblies directory interned to
the temporary ASP.NET files. Thus, once a DLL is loaded into memory, it will be shared by
other requests.

See also
 f Visit the following link:

http://bit.ly/ASP45Performance1

http://bit.ly/ASP45Performance2

How to work with statically-typed model
binding in ASP.NET applications

Binding is a concept that attaches the source with the target such that when something is
modified on the source, it automatically reflects to the target. The concept of binding is not
new in the .NET framework. It was there from the beginning. On the server-side controls,
when we set DataSource, we generally don't expect DataSource to automatically produce
the output to be rendered onto the actual HTML. We expect to call a DataBind method
corresponding to the control. Something magical happens in the background that generates
the actual HTML from DataSource and produces the output. DataSource expects a
collection of items where each of the items produces single entry on the control. For instance,
if we pass a collection as the data source of a grid, the data bind will enumerate the collection
and each entry in the collection will create a row of DataGrid. To evaluate each property
from within the individual element, we use DataBinder.Eval that uses reflection to
evaluate the contextual property with actual data.

Enhancements to ASP.NET

186

Now we all know, DataBinder actually works on a string equivalent of the actual property,
and you cannot get the error before you actually run the page. In case of model binding, the
bound object generates the actual object. Model binding does have the information about the
actual object for which the collection is made and can give you options such as IntelliSense or
other advanced Visual Studio options to work with the item.

Getting ready
DataSource is a property of the Databound element that takes a collection and provides
a mechanism to repeat its output replacing the contextual element of the collection with
generated HTML. Each control generates HTML during the render phase of the ASP.NET
page life cycle and returns the output to the client. The ASP.NET controls are built so
elegantly that you can easily hook into its properties while the actual HTML is being
created, and get the contextual controls that make up the HTML with the contextual data
element as well. For a template control such as Repeater, each ItemTemplate property
or the AlternateItemTemplate property exposes a data item in its callback when
it is actually rendered. This is basically the contextual object of DataSource on the nth
iteration. DataBinder.Eval is a special API that evaluates a property from any object
using Reflection. It is totally a runtime evaluation and hence cannot determine any mistakes
on designer during compile time. The contextual object also doesn't have any type-related
information inherent inside the control.

With ASP.NET 4.5, the DataBound controls expose the contextual object as generic types
so that the contextual object is always strongly typed. The control exposes the ItemType
property, which can also be used inside the HTML designer to specify the type of the
contextual element. The object is determined automatically by the Visual Studio IDE and it
produces proper IntelliSense and provides compile-time error checking on the type defined
by the control.

In this recipe we are going to see step by step how to create a control that is bound to a model
and define the HTML using its inherent Item object.

How to do it...
1. Open Visual Studio and start an ASP.NET Web Application project.

2. Create a class called Customer to actually implement the model. For simplicity, we
are just using a class as our model:
public class Customer
{
 public string CustomerId { get; set; }
 public string Name { get; set; }
}

The Customer class has two properties, one that holds the identifier of the customer
and another the name of the customer.

Chapter 4

187

3. Now let us add an ASPX file and add a Repeater control. The Repeater control has
a property called ModelType that needs the actual logical path of the model class.
Here we pass the customer.

4. Once ModelType is set for the Repeater control, you can directly use the contextual
object inside ItemTemplate just by specifying it with the :Item syntax:
<asp:Repeater runat="server" ID="rptCustomers"
ItemType="SampleBinding.Customer">
<ItemTemplate>
 <%# :Item.Name %>
</ItemTemplate>
</asp:Repeater>

Here in this Repeater control we have directly accessed the Name property from the
Customer class. So here if we specify a list of Customer values to its data source, it
will bind the contextual objects appropriately. The ItemType property is available to
all DataBound controls.

5. The Databound controls in ASP.NET 4.5 also support CRUD operations. The controls
such as Gridview, FormView, and DetailsView expose properties to specify
SelectMethod, InsertMethod, UpdateMethod, or DeleteMethod. These
methods allow you to pass proper methods that in turn allow you to specify
DML statements.

6. Add a new page called Details.aspx and configure it as follows:

<asp:DetailsView SelectMethod="dvDepartments_GetItem"
ID="dvDepartments" UpdateMethod="dvDepartments_
UpdateItem" runat="server" InsertMethod="dvDepartments_
InsertItem" DeleteMethod="dvDepartments_DeleteItem"
ModelType="ModelBindingSample.ModelDepartment" AutoGenerateInsertB
utton="true">
</asp:DetailsView>

Here in the preceding code, you can see that I have specified all the DML methods.
The code behind will have all the methods and you need to properly specify the
methods for each operation.

How it works...
Every collection control loops through the Datasource control and renders the output. The
Bindable controls support collection to be passed to it, so that it can make a template of
itself by individually running the same code over and over again with a contextual object
passed for an index. The contextual element is present during the phase of rendering the
HTML. ASP.NET 4.5 comes with the feature that allows you to define the type of an individual
item of the collection such that the template forces this conversion, and the contextual item is
made available to the template.

Enhancements to ASP.NET

188

In other words, what we have been doing with Eval before, can now be done easily using the
Item contextual object, which is of same type as we define in the ItemType property. The
designer enumerates properties into an IntelliSense menu just like a C# code window to write
code easier.

Each databound control in ASP.NET 4.5 allows CRUD operations. For every CRUD operation
there is a specific event handler that can be configured to handle operations defined inside
the control. You should remember that after each of these operations, the control actually
calls DataBind again so that the data gets refreshed.

There's more...
ModelBinding is not the only thing that is important. Let us discuss some of the other
important concepts deemed fit to this category.

ModelBinding with filter operations
ModelBinding in ASP.NET 4.5 has been enhanced pretty much to support most of the
operations that we regularly need with our ASP.NET pages. Among the interesting features is
the support of filters in selection of control. Let us use DetailsView to introduce this feature:

<asp:DropDownList ID="ddlDepartmentNames" runat="server"
ItemType="ModelBindingSample.ModelDepartment" AutoPostBack="true"
 DataValueField="DepartmentId" DataTextField="DepartmentName"
SelectMethod="GetDepartments">
 </asp:DropDownList>

 <asp:DetailsView SelectMethod="dvDepartments_GetItems"
ID="dvDepartments" UpdateMethod="dvDepartments_UpdateItem"
 runat="server" InsertMethod="dvDepartments_InsertItem"
DeleteMethod="dvDepartments_DeleteItem"
 ItemType="ModelBindingSample.ModelCustomer" AutoGenerateIn
sertButton="true">
 </asp:DetailsView>

Here you can see the DropDownList control calls Getdepartments to generate the
list of departments available. The DetailsView control on the other hand uses the
ModelCustomer class to generate the customer list. SelectMethod allows you to bind the
control with the data. Now to get the filter out of SelectMethod we use the following code:

public IQueryable<ModelCustomer> dvDepartments_GetItems([Control("ddlD
epartmentNames")]string deptid)
 {
 // get customers for a specific id
 }

Chapter 4

189

This method will be automatically called when the drop-down list changes its value. The
departmentid of the selected DropDownItem control is automatically passed into
the method and the result is bound to DetailsView automatically. Remember, the
dvDepartments_GetItems method always passes a Nullable parameter. So, if
departmentid is declared as integer, it would have been passed as int? rather than int.
The attribute on the argument specifies the control, which defines the value for the query
element. You need to pass IEnumerable (IQueryable in our case) of the items to be
bound to the control.

You can also specify a filter using Querystring. You can use the
following code:

public IQueryable<Customer>
GetCustomers([QueryString]string departmentid)
{
 return null;
}

This code will take departmentid from the query string and load the
DataBound control instead of the control specified within the page.

See also
Refer to the following links:

 f http://bit.ly/ASP45Mb

 f http://bit.ly/ASP45MB

Introduction to HTML5 and CSS3 in ASP.NET
applications

Web is the media that runs over the Internet. It's a service that has already has us in its grasp.
Literally, if you think of the Web, the first thing that can come into your mind is everything
about HTML, CSS, and JavaScript. The browsers are the user agents that are used to
communicate with the Web. The Web has been there for almost a decade and is used mostly
to serve information about business, communities, social networks, and virtually everything
that you can think of. For such a long period of time, users primarily use websites to see
text-based content with minimum UI experiences and texts that can easily be consumed by
search engines. In those websites, all that the browsers do is send a request for a page and
the server serves the client with the appropriate page which is later rendered on the browser.
But with the introduction to modern HTMLs, websites are gradually adopting interactivity
in terms of CSS, AJAX, iFrame, or are even using sandboxed applications with the use of
Silverlight, Flash, and so on.

Enhancements to ASP.NET

190

Silverlight and Adobe AIR (Flash) are specifically likely to be used when the requirement is
great interactivity and rich clients. They totally look like desktop applications and interact with
the user as much as they can. But the problems with a sandboxed application are that they
are very slow and need every browser to install the appropriate plugin before they can actually
navigate to the application. They are heavyweight and are not rendered by the browser engine.

Even though they are so popular these days, most of the development still employs the
traditional approach of HTML and CSS. Most businesses cannot afford the long loading waits
or even as we move along to the lines of devices, most of these do not support them. The
long term user requirements made it important to take the traditional HTML and CSS further,
ornamenting it in such a way that these ongoing requirements could easily be solved using
traditional code. The popularity of the ASP.NET technology also points to the popularity of
HTML. Even though we are dealing with server-side controls (in case of ASP.NET applications),
internally everything renders HTML to the browser.

HTML5, which was introduced by W3C and drafted in June 2004, is going to be standardized
in 2014 making most of the things that need desktop or sandboxed plugins easily carried
out using HTML, CSS, and JavaScript. The long term requirement to have offline web, data
storage, hardware access, or even working with graphics and multimedia is easily possible
with the help of the HTML5 technology. So basically what we had to rely on (the sandbox
browser plugins) is now going to be standardized. In this recipe, we are going to cover some
of the interesting HTML5 features that need special attention.

Getting ready
HTML5 does not need the installation of any special SDK to be used. Most of the current
browsers already support HTML5 and all the new browsers are going to support most of these
features. The official logo of HTML5 has been considered as follows:

Chapter 4

191

HTML5 has introduced a lot of new advanced features but yet it also tries to simplify things
that we commonly don't need to know but often need to remember in order to write code. For
instance, the DocType element of an HTML5 document has been simplified to the following
one line:

<!DOCTYPE html>

So, for an HTML5 document, the document type that specifies the page is simply HTML.
Similar to DocType, the character set for the page is also defined in very simple terms:

<meta charset="utf-8" />

The character set can be of any type. Here we specified the document to be UTF – 8. You
do not need to specify the http-equiv attribute or content to define charset for the page
in an HTML5 document according to the specification. Let us now jot down some of the
interesting HTML5 items that we are going to take on in this recipe. Semantic tags, better
markups, descriptive link relations, micro-data elements, new form types and field types,
CSS enhancements and JavaScript enhancements.

Not all browsers presently support every feature defined in HTML5.
There are Modernizr scripts that can help as cross-browser polyfills for all
browsers. You can read more information about it from the following link:

https://github.com/Modernizr/Modernizr/wiki/HTML5-
Cross-Browser-Polyfills

How to do it...
1. The HTML5 syntax has been adorned with a lot of important tags which include

header, nav, aside, figure, and footer syntaxes that help in defining better
semantic meaning of the document:
<body>
 <header>
 <hgroup>
 <h1>Page title</h1>
 <h2>Page subtitle</h2>
 </hgroup>
 </header>
 <nav>

 Specify navigation

 </nav>
 <section>
 <article>

Enhancements to ASP.NET

192

 <header>
 <h1>Title</h1>
 </header>
 <section>
 Content for the section
 </section>
 </article>
 <article>
 <aside>
 Releated links
 </aside>
 <figure>

 <figcaption>Special HTML5 Logo</figcaption>
 </figure>
 <footer>
 Copyright ©
 <time datetime="2010-11-08">2010</time>.
 </footer>
</body>

By reading the document, it clearly identifies the semantic meaning of the document.
The header tag specifies the header information about the page. The nav tag
defines the navigation panel. The Section tag is defined by articles and besides
them, there are links. The img tag is adorned with the Figure tag and finally, the
footer information is defined under the footer tag. A diagrammatic representation
of the layout is shown as follows:

The vocabulary of the page that has been previously defined by div and CSS classes
are now maintained by the HTML itself and the whole document forms a meaning to
the reader.

Chapter 4

193

2. HTML5 not only improves the semantic meaning of the document, it also adds new
markup. For instance, take a look at the following code:
<input list="options" type="text"/>
<datalist id="options">
 <option value="Abhishek"/>
 <option value="Abhijit"/>
 <option value="Abhik"/>
</datalist>

datalist specifies the autocomplete list for a control. A datalist item
automatically pops up a menu while we type inside a textbox. The input tag
specifies the list for autocomplete using the list attribute. Now if you start
typing on the textbox, it specifies a list of items automatically:
<details>
 <summary>HTML 5</summary>
 This is a sliding panel that comes when the HTML5 header is
clicked
</details>

The preceding markup specifies a sliding panel container. We used to specify
these using JavaScript, but now HTML5 comes with controls that handle these
panels automatically:

3. HTML5 comes with a progress bar. It supports the progress and meter tags that
define the progress bar inside an HTML document:
<meter min="0" max="100" low="40" high="90" optimum="100"
value="91">A+</meter>
<progress value="75" max="100">3/4 complete</progress>

The progress shows 75 percent filled in and the meter shows a value of 91:

Enhancements to ASP.NET

194

4. HTML5 added a whole lot of new attributes to specify aria attributes and microdata
for a block. For instance, consider the following code:
<div itemscope itemtype="http://example.org/band">
 <ul id="tv"
 role="tree"
 tabindex="0"
 aria-labelledby="node1">
<li role="treeitem" tabindex="-1" aria-expanded="true">Inside
Node1

Here, Itemscope defines the microdata and ul defines a tree with aria attributes.
These data are helpful for different analyzers or even for automated tools or search
engines about the document.

5. There are new Form types that have been introduced with HTML5:
<input type="email" value="some@email.com" />
<input type="date" min="2010-08-14" max="2011-08-14"
value="2010-08-14"/>
<input type="range" min="0" max="50" value="10" />
<input type="search" results="10" placeholder="Search..." />
<input type="tel" placeholder="(555) 555-5555"
 pattern="^\(?\d{3}\)?[-\s]\d{3}[-\s]\d{4}.*?$" />
<input type="color" placeholder="e.g. #bbbbbb" />
<input type="number" step="1" min="-5" max="10" value="0" />

These inputs types give a special meaning to the form:

The preceding figure shows how the new controls are laid out when placed inside a
HTML document. The controls are email, date, range, search, tel, color, and
number respectively.

Chapter 4

195

6. HTML5 supports vector drawing over the document. We can use a canvas to draw 2D
as well as 3D graphics over the HTML document:
<script>
 var canvasContext = document.getElementById("canvas").
getContext("2d");
 canvasContext.fillRect(250, 25, 150, 100);

 canvasContext.beginPath();
 canvasContext.arc(450, 110, 100, Math.PI * 1/2, Math.PI * 3/2);
 canvasContext.lineWidth = 15;
 canvasContext.lineCap = 'round';
 canvasContext.strokeStyle = 'rgba(255, 127, 0, 0.5)';
 canvasContext.stroke();
</script>

Consider the following diagram:

The preceding code creates an arc on the canvas and a rectangle filled with the color
black as shown in the diagram. The canvas gives us the options to draw any shape
within it using simple JavaScript.

7. As the world is moving towards multimedia, HTML5 introduces audio and video
tags that allow us to run audio and video inside the browser. We do not need any
third-party library or plugin to run audio or video inside a browser:
<audio id="audio" src="sound.mp3" controls></audio>
<video id="video" src="movie.webm" autoplay controls></video>

The audio tag runs the audio and the video tag runs the video inside the browser.
When controls are specified, the player provides superior browser controls to the user.

8. With CSS3 on the way, CSS has been improved greatly to enhance the HTML
document styles. For instance, CSS constructs such as .row:nth-child(even)
gives the programmer control to deal with a particular set of items on the document
and the programmer gains more granular programmatic approach using CSS.

Enhancements to ASP.NET

196

How it works...
HTML5 is the standardization to the web environments with W3C standards. The HTML5
specifications are still in the draft stage (a 900-page specification available at http://www.
w3.org/html/wg/drafts/html/master/), but most modern browsers have already started
supporting the features mentioned in the specifications. The standardization is due in 2014 and
by then all browsers need to support HTML5 constructs.

Moreover, with the evolution of smart devices, mobile browsers are also getting support
for HTML5 syntaxes. Most smart devices such as Android, iPhone, or Windows Phone now
support HTML5 browsers and the HTML that runs over big devices can still show the content
on those small browsers.

HTML5 improves the richness of the web applications and hence most people have already
started shifting their websites to the future of the Web.

There's more...
HTML5 has introduced a lot of new enhancements which cannot be completed using one
single recipe. Let us look into some more enhancements of HTML5, which are is important
to know.

How to work with web workers in HTML5
Web workers are one of the most awaited features of the entire HTML5 specification.
Generally, if we think of the current environment, it is actually turning towards multicore
machines. Today, it's verbal that every computer has at least two cores installed in their
machine. Browsers are well capable of producing multiple threads that can run in parallel
in different cores. But programmatically, we cannot have the flexibility in JavaScript to run
parallel tasks in different cores yet.

Previously, developers used setTimeout, setInterval, or XMLHttprequst to actually
create non-blocking calls. But these are not truly a concurrency. I mean, if you still put a long
loop inside setTimeout, it will still hang the UI. Actually these works asynchronously take some
of the UI threads time slices but they do not actually spawn a new thread to run the code.

As the world is moving towards client-side, rich user interfaces, we are prone to develop
codes that are capable of computation on the client side itself. So going through the line, it is
important that the browsers support multiple cores to be used up while executing a JavaScript.

Web workers are actually a JavaScript type that enable you to create multiple cores and
run your JavaScript in a separate thread altogether, and communicate the UI thread using
messages in a similar way as we do for other languages.

Chapter 4

197

Let's look into the code to see how it works:

var worker = new Worker('task.js');
worker.onmessage = function(event) { alert(event.data); };
worker.postMessage('data');

Here we will load task.js from Worker. Worker is a type that invokes the code inside
a JavaScript in a new thread. The start of the thread is called using postMessage on the
worker type. Now we have already added a callback to the event onmessage such that when
the JavaScript inside task.js invokes postMessage, this message is received by this
callback. Inside task.js we wrote:

self.onmessage = function(event) {
// Do some CPU intensive work.
self.postMessage("recv'd: " + event.data);
};

Here after some CPU-intensive work, we use self.postMessage to send the data we
received from the UI thread and the onmessage event handler gets executed with message
received data.

Working with Socket using HTML5
HTML5 supports full-duplex bidirectional sockets that run over the Web. The browsers are
capable of invoking socket requests directly using HTML5. The important thing that you
should note with sockets is that it sends only the data without the overload of HTTP headers
and other HTTP elements that are associated with any requests. The bandwidth using sockets
is dramatically reduced. To use sockets from the browsers, a new protocol has been specified
by W3C as a part of the HTML5 specification. WebSocket is a new protocol that supports
two-way communication between the client and the server in a single TCP channel.

To start socket server, we are going to use node.js for server side. Install node.js on the
server side using the installer available at http://nodejs.org/dist/v0.6.6/node-
v0.6.6.msi. Once you have installed node.js, start a server implementation of the socket:

var io = require('socket.io');
//Creates a HTTP Server
var socket = io.listen(8124);
//Bind the Connection Event
//This is called during connection
socket.sockets.on('connection',function(socket){
//This will be fired when data is received from client
 socket.on('message', function(msg){
 console.log('Received from client ',msg);
 });
 //Emit a message to client
 socket.emit('greet',{hello: 'world'});

Enhancements to ASP.NET

198

 //This will fire when the client has disconnected
 socket.on('disconnect', function(){
 console.log('Server has disconnected');
 });
});

In the preceding code, the server implementation has been made. The require('socket.
io') code snippet specifies the include module header. socket.io provides all the APIs
from node.js that are useful for socket implementation. The Connection event is fired on
the server when any client connects with the server. We have used to listen at the port 8124
in the server. socket.emit specifies the emit statement or the response from the server
when any message is received by it. Here during the greet event, we pass a JSON object to
the client which has a property hello. And finally, the disconnect event is called when the
client disconnects the socket.

Now to run this client implementation, we need to create a HTML file:

<html>
 <title>WebSocket Client Demo</title>
 <script src="http://localhost:8124/socket.io/socket.io.js"></
script>
 <script>
 //Create a socket and connect to the server
 var socket = io.connect('http://localhost:8124/');
 socket.on("connect",function(){
 alert("Client has connected to the server");
 });
 socket.on('greet', function (data) {
 alert(data.hello);
 }
);
 </script
</html>

Here we connect the server at 8124 port. The connect event is invoked first. We call an
alert method when the client connects to the server. Finally, we also use the greet event
to pass data from the server to the client. Here, if we run both the server and the client, we
will see two alerts; one when the connection is made and the other alert to greet. The greet
message passes a JSON object that greets with world.

The URL for the socket from the browser looks like so:

[scheme] '://' [host] '/' [namespace] '/' [protocol version] '/'
[transport id] '/' [session id] '/' ('?' [query])

Chapter 4

199

Here, we see:

 f Scheme: This can bear values such as http or https (for web sockets, the browser
changes it to ws:// after the connection is established, it's an upgrade request)

 f host: This is the host name of the socket server

 f namespace: This is the Socket.IO namespace, the default being socket.io

 f protocol version: The client support default is 1

 f transport id: This is for the different supported transports which includes
WebSockets, xhr-polling, and so on

 f session id: This is the web socket session's unique session ID for the client

Getting GeoLocation from the browser using HTML5
As we are getting inclined more and more towards devices, browsers are trying to do their best
to actually implement features to suit these needs. HTML5 introduces GeoLocation APIs to
the browser that enable you to get the location of your position directly using JavaScript.

In spite of it being very much primitive, browsers are capable of detecting the actual location
of the user using either Wi-Fi, satellite, or other external sources if available. As a programmer,
you just need to call the location API and everything is handled automatically by the browser.

As geolocation bears sensitive information, it is important to ask the user for permission.
Let's look at the following code:

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function(position) {
var latLng = "{" + position.coords.latitude + "," + position.coords.
longitude + "with accuracy: " + position.coords.accuracy;
alert(latLng);
}, errorHandler);
}

Here in the code we first detect whether the geolocation API is available to the current
browser. If it is available, we can use getCurrentPosition to get the location of the current
device and the accuracy of the position as well.

We can also use navigator.geolocation.watchPosition to continue watching the
device location at an interval when the device is moving from one place to another.

Working with local IndexDB storage in a browser using HTML5
IndexDB is another important storage mechanism in the browser industry along with
HTML5. This is a high-speed data access key-value collection. On November 18, 2010, W3C
announced that they are going to depreciate the addition to SQL database but rather they will
go with the IndexedDB specification in HTML5.

Enhancements to ASP.NET

200

Let's now look into the code on how to work with IndexedDB:

if ('webkitIndexedDB' in window) {
window.indexedDB = window.webkitIndexedDB;
window.IDBTransaction = window.webkitIDBTransaction;
}
else if ('moz_indexedDB' in window) {
window.indexedDB = window.moz_indexedDB;
}

if (window.indexedDB) {
idbRequest_ = window.indexedDB.open("Test", "A test object store.");
idbRequest_.onerror = idbError_;
idbRequest_.addEventListener('success', function(event) {
idb_ = event.srcElement.result;
idbShow_(event);
}, false);
}

In the preceding code, we first checked whether indexedDB is available for the browser
where the code is running. As the specification is not yet ready in most browsers, as a
developer we need to pay special attention to checking whether indexedDB is available
before using it. Once we get the object we call its open method to open a test database.
Here we call it test. We can also put a small description about the database.

To store the data object we need to use to following code:

var db = window.indexedDB;
var trans = db.transaction(["abhishek"], IDBTransaction.READ_WRITE,
0);
var store = trans.objectStore("abhishek");
var request = store.put({
"text": 'Hi, this is Abhishek',
"timeStamp" : new Date().getTime()
});

request.onsuccess = function(e) {
// Re-render all the data
};

request.onerror = function(e) {
// show e.value };
};

Chapter 4

201

In the preceding code snippet, we tried to put a JSON object inside the indexedDB storage of
a browser using the READ_WRITE mode access. To do this, we created a store and named it
Abhishek. We put some JSON-formatted data into it. Similar to all storage, it also takes two
callbacks for success and error.

Now to retrieve the data from the store we use the following code:

 var db = window.indexedDB;
var trans = db.transaction(["abhishek"], IDBTransaction.READ_WRITE,
0);
var store = trans.objectStore("abhishek");

// Get everything in the store;
var keyRange = IDBKeyRange.lowerBound(0);
var cursorRequest = store.openCursor(keyRange);

cursorRequest.onsuccess = function(e) {
var result = e.target.result;
if(!!result == false)
return;

//write result.value
result.continue();
};

cursorRequest.onerror = function(e){
<pre> };
};

So here the data is retrieved using a cursor and fetching all the data one by one. The resulting
object will hold the actual data that has been stored inside indexedDb.

In the same way as mentioned, you can use var request = store.delete(id); to
delete an element from object store.

It is sometimes important to detect the actual quota of storage that the current client browser
supports before actually storing data into it. To prevent the QUOTA_EXCEEDED_ERR exception
from happening in the browser. As a developer you will always need to query which memory
can be stored without exceeding the quota given by the client to the application.

Let us take a look at how to query the local storage:

webkitStorageInfo.queryUsageAndQuota(webkitStorageInfo.TEMPORARY,
showData, showerror);
webkitStorageInfo.queryUsageAndQuota(webkitStorageInfo.PERSISTENT,
showData, showerror);

Enhancements to ASP.NET

202

These two lines of code will show the queryUsageAndQuota value of the browser. If the data
cannot be retrieved, it will call the error callback else it will call showData:

function showData (used, remaining) {
/// the used and remaining bytes will be received inside this method
automatically.
}

As far as I know, Mozilla Firefox, Chrome, Opera supports 5 MB of storage while Internet
Explorer supports 10 MB of local storage, but this data might change.

Using application cache for a site in HTML5
Well, yet another offline storage can be the actual HTML that has been transferred from the
server. It is an important fact that even if we use browser cache using the cache header,
the browser does not respond properly when offline, as it does when one is online. HTML5
introduces a new way of programming which ensures that the browser cache can be used up
to cache individual pages of the website which work in the same way even when offline than
when it gets online.

To use application cache, we first need to understand that it works with a manifest file. Let us
consider an example:

<html manifest="cache.appcache">

Here in this code, the HTML points to the cache file. We generally give the extension as
appcache to the external header. The content of this file is a plain text and will hold all
the files that need to be used as application cache.

The cache file contains the following code:

CACHE MANIFEST
version 1.0.0

CACHE:
/html5/src/logic.js
/html5/src/style.css
/html5/src/background.png

NETWORK:
*

Chapter 4

203

Here we have specified the content of the manifest that needs to be cached. Here, the
background.png, style.css, and logic.js will remain cached and will act normally to
the browser as if the application is online. The network * specifies all other files that needed
to be online. You can also define the fallback for the cached manifest:

window.applicationCache.addEventListener('updateready', function(e) {

if (window.applicationCache.status == window.applicationCache.
UPDATEREADY) {
window.applicationCache.swapCache();
if (confirm('A new version of this site is available. Load it?')) {
window.location.reload();
}
}
}, false);

So in the preceding code we add an event handler to the UpdateReady event such that when
the cache update is ready it will show a dialog to reload the page automatically.

Detecting online status of the browser using HTML5
Since HTML5 has been introduced, lately there has been a great amount of thrust on the web
browser market to cope with different APIs built on top of it, thus producing a lot of interesting
features. HTML5 tries to eradicate the use of third-party plugins completely by giving the
best out of it. Web applications can now run without even having an active connection to the
Internet. They can store offline data into their storage and later when the machine is turned
online, that data can be silently uploaded to the server. When doing this, it is important to
determine when the application is online and when it isn't. Let us try to detect the browser
online status:

var addEvent = (function () {
 if (document.addEventListener) {
 return function (el, type, fn) {
 if (el && el.nodeName || el === window) {
 el.addEventListener(type, fn, false);
 } else if (el && el.length) {
 for (var i = 0; i < el.length; i++) {
 addEvent(el[i], type, fn);
 }
 }
 };
 } else {
 return function (el, type, fn) {
 if (el && el.nodeName || el === window) {
 el.attachEvent('on' + type, function () { return fn.call(el,
window.event); });

Enhancements to ASP.NET

204

 } else if (el && el.length) {
 for (var i = 0; i < el.length; i++) {
 addEvent(el[i], type, fn);
 }
 }
 };
 }
})();

You should already know that there are browser compatibility issues as most of the browsers
still lack standardization. document.addEventListener works in most of the browsers
except IE. So to handle this, we have to bypass the availability of the event handler.

Now we will subscribe to the event we call:

addEvent(window, 'online', online);
addEvent(window, 'offline', online);
online({ type: 'ready' });

So basically here we trap the online and offline events of the Window object using either
attachEvent or addEventListener to show the online or offline status. The online status
is the event callback. Let's take a look on the event handler:

function online(event) {
document.getElementById('status').innerHTML = navigator.onLine ?
'online' : 'offline';
}

The preceding code determines the online status of the browser using navigator.onLine,
it returns true when the client is online or else false.

Working with notifications in browsers using HTML5
Notification is one of the interesting things that browsers are adding support to. Generally,
when we think of a web notification, we always go for some HTML pop up or use a new
window through JavaScript. But those HTML generally do not follow any standards and even
look different to the user at different sites. Hence, a few of the notifications lack consistency.
HTML5 introduces new notification specifications that enables the browser to send its own
notification rather than going with custom notifications from the developer.

Notifications are now currently implemented in Chrome, but it will be implemented in the
latest releases of other browsers as well. Let us look how to use notifications in your browser.

To request for notifications, use the following code:

window.webkitNotifications.requestPermission();

Chapter 4

205

When the browser asks for notifications, it will pop up one message to the user to allow or
deny. If the user allows the notification, the notification service gets enabled and the site
can then send notifications to the browser:

if (window.webkitNotifications.checkPermission() == 0) {
var notification = window.webkitNotifications.
createNotification(imgpath, 'Notification received', 'Hii, this is
special notification');
notification.show();
}

So when we use createNotification, it will create a notification object with the image,
title, and the message which needs to be notified. The show() method will show the
notification to the user.

See also
 f Refer to the following link:

http://bit.ly/html5-Intro

Working with jQuery in Visual Studio with
ASP.NET

Today, jQuery has been adopted by most (if not all) of the big giants in the browser industry
and hence the requirement of knowing jQuery has also been huge. Microsoft has adopted
jQuery and has made Visual Studio to natively support jQuery with all its syntaxes directly
within the IDE. This made writing JavaScript in a jQuery syntax easier than ever before working
with Visual Studio. In this recipe, I am going to give you some basic ideas about working with
jQuery and will guide you through how to make use of it in your day-to-day programming.

Getting ready
jQuery is a widely-accepted JavaScript library that helps you to define your markups on the
client side of a web page. It is a lightweight "write less, do more" JavaScript library. jQuery
has the following few features:

 f HTML element selectors

 f HTML element manipulators

 f CSS manipulators

 f JavaScript effects and animations

 f DOM traversal

Enhancements to ASP.NET

206

 f AJAX

 f HTML event functions

 f Utilities

The library is free to be used commercially as well. So you can download the library from
jquery.com and add it to your web page. ASP.NET templates automatically add the
JavaScript library for you, so if you are using Visual Studio, you do not need to download
jQuery separately.

jQuery can be downloaded into two formats (if you are using Visual Studio 2012, jQuery will
be automatically added to the solution under the scripts folder). The first one which is the
entire jQuery source code, used during debugging your application or during development
environment. Another version, which is suffixed with –min, is the minified version of the library
and it is considerably smaller in size and should be used in production environments. You can
also refer the library directly from the Web using the Microsoft or Google server. The links are
as follows:

http://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js

http://ajax.microsoft.com/ajax/jquery/jquery-1.6.2.min.js

The best and the most popular jQuery construct is $. $ is defined as a function that acts
as a primary selector for the DOM elements. It is important to note that DOM elements are
completely available only when the application is ready. So if you want to run some code just
after your document is fully loaded, you can write it like this:

$(document).ready(function(){
/// Write code that need to run when document is fully loaded.
});

Rather than hooking up inside the DOM element for the ready method, jQuery gives you
a great construct to bind a JavaScript method directly to the ready event of the document
using the preceding syntax. We are going to use the following HTML to inspect our page
using jQuery:

<p class="intro">
 Hi, Welcome to JQuery Tutorial</p>
<p>
 I am Abhishek Sur, living in India</p>
<p>
 My friend is Abhijit who lives in India too.</p>
<div id="msges">
</div>
Who is your favorite:
<ul id="choose">

Chapter 4

207

 <input type="checkbox" data="sg" />Scott Gutherine

 <input type="checkbox" data="sh" />Scott Hansleman

 <input type="checkbox" data="jp" />John Papa

<div id="ajaxResponse">
</div>
<input id="btnSelectors" type="button" value="InvokeSelectors" />
<input id="btnslideToggle" type="button" value="Invoke Silde" />
<input id="btnAppend" type="button" value="Append text" />
<input id="btnAnimate" type="button" value="Animate Ps" />
<input id="btnAjax" type="button" value="Call Ajax" />

Now let us move ahead step by step with the recipe.

How to do it...
1. jQuery selectors play a vital role in working with HTML elements. $ is used as a

selector for DOM elements. Let us consider the following JavaScript code:
var allelements = $("*"); //Returns all elements of the page
var ullist = $("#choose"); //Returns the unordered list with id
choose.
var firstP = $("p:first"); // gets the first P element
var lastP = $("p:last"); // gets the last P element
var pOdd = $("p:odd"); // gets list of all odd P
var peven = $("p:even"); //gets list of all even P
var fromClass = $(".intro"); // gets list of all elements that has
intro class applied
var secondli = $("ul li:eq(1)"); // gets li whose index is 1
var thirdli = $("ul li:gt(1)"); // gets li whose index greater
than 1
var getElementswithIndia = $("p:contains('India')"); // gets all P
that has India
var checkedItems = $("input:checked"); // Finds all checked inputs
var findbycustomattribute = $("[data=sh]"); //finds element that
has sh in data attribute
var findbydata = $("[data]"); // returns all elements that has
data attribute
//All selectors returns array.
findbydata.hide(); //hides all element that returned from the
selector

Enhancements to ASP.NET

208

Here we have shown you a few selectors which you can use in your jQuery to get
elements from the document. You should note that each selector actually returns
a jQuery object that has the actual DOM elements enumerated. The aggregate
methods which include hide(), show(), val(), and so on, when applied on
an object that has multiple objects selected, the methods will apply on all those
objects as well. In other words, findbydata here selects all the checkboxes on
the document and hide() will hide all the checkboxes that are selected.

2. jQuery being very good at its selectors or with existing DOM elements, is also
capable of changing the DOM elements dynamically. Unlike the way of JavaScript
createElement or appendChild, it has a few superior APIs available that makes
the HTML DOM manipulation very easy. For instance, consider the following code:
$("#msges").append("Add text after existing. <hr/>");
$("#msges").prepend("Add text before existing. <hr/>");
$("#msges").html("Replaces the text. <hr/>");

This code adds or replaces the text to all elements that have been selected by the
selector. Similarly, you can also call remove or detach to remove content from
the DOM element.

3. CSS manipulation using jQuery has also been very easy. There are APIs to add and
remove CSS classes:
$("#msges").css("background-color", "yellow");
$("#msges").css({"background-color":"yellow", "font-size":
"50px");
$("#msges").height("300px");
$("#msges").addClass("mark"); //adds the class mark
$("#msges").removeClass("mark");

Here you can see how easy it is to manipulate CSS with jQuery. You can add CSS to
the selected elements, specify the height/width, or use the custom CSS class to add
a class or remove a class to the element.

4. DOM elements raise events whenever some action is performed on the HTML. For
instance, when a button is clicked or the mouse is moved over some object, some
data changes on a textbox or some other control. Most of the times to deal with these
events we need to hook event handlers. jQuery provides superior API support to deal
with these events. For instance, consider the following code:
$("#btnSelectors").click(callSelectors);
$("#btnslideToggle").bind("click", function () {
 $("p:first").slideToggle();
});
$("#btnAppend").click(addWelcome);

Chapter 4

209

Here in the preceding code you can see that the button click events are bound to the
event handlers. The click directly binds to the click handler. Here callSelectors
and addWelcome are the event handlers. You can also use the generic bind method
to specify the event and the event handler.

5. In addition to the normal DOM manipulation and selectors, jQuery also supports
some cool effects that you can apply. For instance, consider the following code:
$("p").hide(1000, function () { alert("a p are hidden"); });
$("p").show();
$("p").fadeOut(4000);
$("p").fadeIn(4000);
$("p").animate({ "fontSize": "200%" }, "slow");

These methods allows the DOM elements to animate. Each of these API supports you
to send:

 � Seed: This bears the value that specifies the time to complete animation

 � Callback: A method that will be called after the animation finishes

Here in the first call, we pass all the arguments. You will notice that alerts will appear
after each P is hidden. fadeout and fadeIn are fade effects. animate allows you
to pass styles such that the style gets animated to a certain value. Here in our case
the fontsize value has been increased to 200 percent.

6. Finally, AJAX is one of the most important parts nowadays to bring life to a site. AJAX
is asynchronous call to a server that allows you to get a response from the server
without posting back the page. AJAX is used to handle partial updates on the page:
$.ajax({
 url: "about.aspx",
 type: "GET",
 beforeSend: function () {
 $("#ajaxResponse").html("<center><img src='images/
progressbar.gif'/></center>");
 },
 success: function (data) {
 if (data)
 $("#ajaxResponse").html(data);
 },
 error: function (req, e) {
 alert(req.status + " " + req.statusText);
 }
});

Enhancements to ASP.NET

210

This code calls the URL about.aspx on the server with the GET method. $.ajax
is the jQuery implementation of AJAX. The beforeSend function is called before
the server request is made. It is generally used to configure the call. In our case, we
have specified an image which will be loaded in the document. The success gives the
output of the page. data being the output, we place on a div tag predesigned on the
page. The error callback is called when some error has occurred on the page. For
instance, it will show 404 not found when about.aspx is not found.

How it works...
jQuery is a JavaScript library that runs on top of the existing JavaScript API available on
the browser but also solves the following few key problems that the code running on the
browser has:

 f It reduces the cross-browser API problems of JavaScript

 f It provides a superior API that requires minimal code to be written by the user

 f It supports extension to itself

A large number of extensions or plugins for the jQuery have already been made available to
the world which can be easily plugged into the source with jQuery main JavaScript library to
generate a beautiful UI. jQuery also has support for HTML5 that has been introduced lately.

There's more...
jQuery is not limited to what is previously shown. Let us check some advanced topics on
jQuery in this section.

Extending the jQuery library
jQuery supports extension. There are a large number of extensions to jQuery available on the
market which took help from jQuery to implement their own JavaScript library. After learning
jQuery, you would also feel like creating your own extension. The method that is used to
extend jQuery is named as extend. Let us look at the following code:

(function($){
 $.fn.extend({
 Value1 : 20,
 myMethod : function(msg){
 alert(msg + "value : " + this.Value1);
 }
 });
})(JQuery);

Chapter 4

211

The preceding code will add a method called myMethod inside the jQuery library and hence
you can call this method directly to get an alert with the message passed to the method. For
a function, you can also define global variables. In case of this code, the Value1 variable is
defined as a global variable and hence all the methods that are defined within the extension
can access Value1.

See also
 f Refer to the following link:

http://bit.ly/JQueryTut

Working with task-based asynchronous
HttpHandlers and HttpModules

The introduction to async in .NET 4.5 has opened many alternatives. ASP.NET not being
an exception to this has introduced new ways of writing async operations within it. The
asynchronous HttpHandlers and HttpModules classes are not new to the system,
but because of task-based asynchrony available in the system, the use of asynchronous
handlers and modules becomes more relevant and useful. We know tasks in async do not
employ a new thread most often. It uses SynchronizationContext to switch between an
application end thread with devices which include I/O, network, and so on. Now if you are
dealing with such an operation, you cannot block a thread that has been dedicated for the
entire processing. The better approach would be to release the thread that is currently running
and dedicate another thread when the process finishes. The asynchronous HttpHandlers
and HttpModules classes are meant for this and hence are very useful in the context of
task-based async operations.

In this recipe, let us look at how exactly async handlers, and modules, work and write a
custom module for our ASP.NET application.

Getting ready
Before we begin explaining asynchronous HttpHandlers and HttpModules classes, it is
important to know what exactly HttpHandlers and HttpModules are. During the phase of
any request processing, HttpRuntime passes through some phases. During these phases,
the request gets processed into a response and is sent back to the client. The process of
transformation is done by HttpHandlers. HttpModules include events that are associated
with the runtime during the phase of processing.

Every page is a handler, and every time a page is requested, the ProcessRequest method
of the page is called. The authentication/authorization are the modules that are invoked to
validate the authenticity of the request. HttpHandlers and HttpModules together make
HttpPipeline.

Enhancements to ASP.NET

212

How to do it...
1. Start an ASP.NET application and create a class.

2. Create a class and call it TaskModule.

3. Inherit the class from IHttpModule and put your task-based async method.
Once you have the method defined, create a handler with (object,
EventArgs) arguments such that we can post the request through
EventhandlerTaskAsyncHelper:
private async Task PageEventHandlerAsync(object caller, EventArgs
e)
{
 await GetHtmlPage("http://www.abhisheksur.com");
}
private async Task<string> GetHtmlPage(string url)
{
 using (WebClient client = new WebClient())
 {
 var result = await client.DownloadStringAsync(url);
 return result;
 }
}
public void Init(HttpApplication context)
{
 EventHandlerTaskAsyncHelper helper = new EventHandlerTaskAsync
Helper(PageEventHandlerAsync);
 context.AddOnPostAuthorizeRequestAsync(helper.
BeginEventHandler, helper.EndEventHandler);
}

Here in the code, we have used GetHtmlPage to define the async code. We have
wrapped up the method inside PageEventHandlerAsync such that we can use
it to EventHandlerTaskAsyncHelper. This class makes the conversion to begin
and end patterns.

4. We pass the begin and end methods to the AddOnPostAuthorizeRequestAsync
module. You can use your own module as well.

5. Add a Web.config entry for the module and run. When AuthorizeRequest
is called, it will automatically call the GetHtmlPage method to get a result
asynchronously.

6. Create another class and now we call it TaskHandler.

7. Inherit from HttpTaskAsyncHandler. This class inherits from
IAsyncHttpHandler and also performs all the important tasks to actually call a
task for HttpHandler.

Chapter 4

213

8. Override the ProcessRequestAsync method and write your content, like so:
public override async Task ProcessRequestAsync(HttpContext
context)
{
 using (WebClient client = new WebClient())
 {
 var result = await client.DownloadStringAsync("http://www.
abhisheksur.com");
 context.Response.Write(result);
 }
}

In the preceding code, WebClient is used to get the content and write to
the response.

9. Both HttpHandler and HttpModule need to be configured in web.config.

How it works...
In case of synchronous HttpHandler, the same thread is engaged in serving the request
that has invoked by the request and hence, we need to block the thread even when the
async operation does not need our thread to execute. Let us suppose you need to send an
e-mail through the request. Doing it in a synchronous block will make the calling thread block
unnecessarily for the time in it uploads the data through the network and returns back with a
status message. Waiting unnecessarily like this for a long time often imposes a lot of resource
cost on the server and hence, degrades the performance of the entire website. On the other
hand, asynchronous handlers or modules are meant for such a scenario where the thread
becomes available as soon as the control gets passed to the component and it does not wait.
The calling thread returns back to the thread pool and is available to process another request.
When the assigned task is complete, a new thread is assigned to service the request.

Enhancements to ASP.NET

214

In the preceding diagram, it is depicted how the async task gets executed with asynchronous
HttpModules or HttpHandlers. Thread1 is assigned to process a resource initially. It
calls the Begin method, requests for the resource and returns back to the thread pool. When
the resource is ready through async operation, it assigns a new thread (Thread2), which
processes the request and gets the response back.

So, from the perspective of the request-response model, it will seem that the same thread is
returning the response, but in fact the threads are optimally utilized in this model and hence,
reduce the downtime of the servers.

New enhancements to various Visual Studio
editors

To support ASP.NET development, various Visual Studio editors are being updated. There
are lot of enhancements in terms of Visual Studio that help in the development of ASP.
NET applications to be easier and more productive. The new Visual Studio release has
enhancements on various ASP.NET components including JavaScript editor update, ASP.NET
designer update, CSS editor update, and so on. All these features directly enhance the
productivity of ASP.NET applications and make development easier.

In this recipe, we are going to cover some of the interesting updates to the editor that you
must know.

Getting ready
To get ready for the update, let us create a new ASP.NET project using Visual Studio 2012 IDE.
Add a file in the editor and call it Default.aspx. Add a JavaScript file into the project and a
CSS file.

Let us look step by step at all the updates that have been made to the Visual Studio editor. We
divide the Visual Studio updates into the following categories:

 f HTML editor updates

 f JavaScript editor updates

 f CSS editor updates

 f Publishing website

We are going to divide the recipe into these sections.

Chapter 4

215

How to do it…
 f HTML editor updates

 � ASP.NET is built up with lot of complex controls. For a long time, the Visual
Studio design view provided a lot of dialog boxes, which helps in configuring
these complex controls. But most developers do not like to go to the design
view nowadays and hence, they miss these dialogs. Visual Studio 2012 IDE
comes up with these dialogs in the source view. They are context-aware tasks
that come into the source view on a particular control at a particular time.
These features are named as Smart Tasks in Visual Studio:

In the screenshot, GridView is declared and a SmartTask dialog appears
when we press Ctrl + .(dot). After editing the control from this dialog, the
source view gets updated with the appropriate HTML.

 � Writing accessible websites is becoming important. The aria- attributes
are important declarations on how the websites need to layout. The aria
attributes are fully supported by Visual Studio now:

The aria attributes are HTML5 constructs and all the semantic of aria
attributes are supported.

Enhancements to ASP.NET

216

 � As the world is moving towards HTML5, Visual Studio is providing snippets
directly in the source view which allows you to place HTML5 constructs:

The HTML5 code snippets can be used directly inside the design view to
implement HTML5 documents quickly.

 � Visual Studio HTML editor now supports IntelliSense for a server-side code in
HTML:

You can see, even the HTML controls are capable of providing IntelliSense
inside server-side tags.

 � You can extract a user control directly by selecting the HTML within a page.
Generally when the page becomes more and more complex, we tend to
create user controls to make a reusable component. Visual Studio provides
an option to create a user control directly from the right-click menu as shown
in the following screenshot:

You can see that you can right-click on the selection and extract an user
control directly out of it.

Chapter 4

217

 � One of the best inclusions in Visual Studio HTML editor is the automatic
event handler generation. Visual Studio now automatically creates method
stubs while creating a design on the source view:

It automatically detects the appropriate method signature and creates it
automatically for any event or method.

 � Visual Studio HTML editor now supports smart indentation while writing the
code. We often need Ctrl +K, D to reformat a document while writing HTML,
but now Visual Studio automatically maintains this for us:

Here the indentation is maintained when we press Enter within any
HTML element.

 f JavaScript editor updates

 � JavaScript editors now support code outlining, such that you can collapse
some portion of the code:

You can see that the outlining is maintained within the JavaScript editor.

 � JavaScript automatically matches the braces and Visual Studio shows
appropriate braces that match the current brace.

 � JavaScript editors supports Go to Definition. So when we right-click on a
JavaScript call and select Go To Definition, the cursor moves to the actual
definition of the method.

Enhancements to ASP.NET

218

 � A VS document is also supported by JavaScript editors. A signature
element can be used to specify the JavaScript documentation. Even
signature overloads are also supported by the IDE:
function parseValue(obj, defaultval) {
 ///<signature>
 /// <summary>Parses the integer value from a
string</string>
 /// <param name="obj" type="String">Provides string
equivalent of an integer</param>
 /// <returns type="int"/>
 ///</signature>
 ///<signature>
 /// <summary>Parses the integer value from a
string</string>
 /// <param name="obj" type="String">Provides string
equivalent of an integer</param>
 /// <param name="defaultValue" type="int">Provides
an integer that is passed by default</param>
 /// <returns type="int"/>
 ///</signature>
 var intval = parseInt(obj);

 if (intval)
 return intval;
 return defaultval;
}

Here the code offers two document for its two overloads and when the
method is called, the two overloads are shown to the user.

 � JavaScript files automatically maintain a central list of files for referencing
external files. For instance, if you have added a jQuery file directly into the
central repository of the project, IntelliSense automatically detects the
reference and shows the IntelliSense menu for all the methods from jQuery.

 f CSS Editor updates

 � The IntelliSense menu for the CSS editor now supports title case filters
or even filters based on CSS properties. For instance, if you start typing
"border", it will list the borders only in the IntelliSense menu.

Chapter 4

219

 � CSS editor supports hierarchical rules such that the child CSS rules
are indented:

In the preceding screenshot you can see when hierarchical indentation
is selected; the div tag inside the body element will be indented as a
child automatically.

 � CSS editors now supports a large number of vendor-specific CSS. All of them
are listed in the IntelliSense menu of the Visual Studio CSS editors:

Here you can see the –ms-word CSS specific to Microsoft Word,
while –webkit belongs to Chrome and –moz belongs to Mozilla.

Enhancements to ASP.NET

220

 � Visual Studio CSS editor has been enhanced with a lot of controls. For
instance, the CSS editor has an in-built color picker within the IDE that
allows you to pick up a color while defining the same within the CSS.

Here in this screenshot, you can see the color picker has been opened
to define the specific color for the body element.

 � CSS editor now supports the creation of custom regions such that the region
can be collapsed using outlines. The open region matches the respective
end region to provide an outline to the whole code within the scope:

Chapter 4

221

Here you can see the region is defined for the body element which can be
expanded and collapsed into an outline. This helps in reducing complexity
in code.

 � The Page Inspector tool is a new addition to Visual Studio that allows you to
examine the actual output of a section of code with the corresponding HTML
markup without opening the HTML code in the IDE. The Page Inspector
tool helps in determining the actual output of the end product and quickly
examines the output form within the Visual Studio IDE.

 f Publishing enhancements

 � Visual Studio web applications support profiles. You can maintain a number
of publish profiles within the project and depending on the profile that has
been selected, the project gets published. The profiling option has been
added to MSBuild and works directly while the project is built.

 � ASP.NET projects also give an option to precompile the application before
the publishing option under Package/Publishing Web Properties page. This
option lets the user to merge the site's content while publishing or packaging
the project:

Here you can see the Package/Publish Web Properties page provides
an option to precompile application before publishing. You can select the
Advanced settings to choose how the application will merge assemblies.

Enhancements to ASP.NET

222

There's more…
Visual Studio has been enhanced to support modern trends of development. Let us look into
some of the other enhancements that have been made to the IDE to support current trends
of development.

Configuration changes in ASP.NET 4.5
Visual Studio configuration plays a vital part in any website. IIS 7 introduced managed web
hosting, which can read web.config of a certain website and detect the configurations that
has been set to the website. Hence the IIS can be configured directly from Visual Studio itself
by writing correct entries in the web.config file.

We generally define the application settings, connectionStrings, httpHandlers,
modules, and so on, inside a web configuration file but there are certain configurations that
actually determine the overall architecture of the website. ASP.NET 4.5 introduces such
architectural configuration sections that can configure the architecture of the IIS where it is
going to be hosted. Let us define some of the interesting changes to the configuration file:

 f <httpRuntime> introduces a new encoderType attribute in configuration that
enables you to set the default encoder for the site. The default defined in the
template is AntiXSS.

 f The requestValidationMode attribute of httpRuntime defines how the request
is validated to the server before calling HttpPipeline. The default settings for any
web application in .NET 4.5 are set to 4.5, which means deferred validation.

 f The default value of runAllManagedModulesForAllRequests in the modules
section of <system.webServer> is set to false. When this setting is set to true,
the IIS 7 ASP.NET routing is automatically configured. All the requests made to
the website directly calls the modules in the website of IIS 7 such that if routing is
configured on the server, it calls the appropriate module for routing automatically.

These small changes to the configuration have been made to the ASP.NET template such
that these changes are readily available to any site that is created for the first time and
not configured.

 See also
 f Refer to the following link:

http://bit.ly/ASP45VS

5
Enhancements to WPF

The goal of this chapter is to introduce the enhancements that have been made to WPF 4.5
applications. After reading the chapter, you will have an idea of how to build a WPF application
and also know the latest updates to WPF technology. In this chapter we are going to cover the
following recipes:

 f Getting started with WPF and its major enhancements in .NET 4.5
 f Building applications using MVVM pattern supported by WPF
 f Using the Ribbon User Interface in WPF
 f Using WeakEvent pattern in WPF

Introduction
With the introduction to modern day styles of application development, people are more
and more inclined towards UI technologies. UI became the primary concern for customers.
Technologies, such as HTML5, CSS3, and DirectX utter the same voices. Customers are
also nowadays more inclined towards presentation with respect to look and feel rather
than functionalities.

WPF comes as a new technology from Microsoft that deals with these problems. It has lots
of advantages. Let me introduce a few of its features.

Device Independent Pixel (DPI)
WPF introduces Device Independent Pixel (DPI) settings for the applications built with it.
For a window, it is very important to calculate how many dots per inch (DPI) the screen can
draw. This is generally dependent on the hardware device and operating system in which the
application runs and also how the DPI settings are applied on the device. Any user can easily
customize these settings and hence, make the application look horrible. Windows forms
application uses a pixel-based approach. So with changing DPI settings, each control will
change its size and look.

Enhancements to WPF

224

WPF addresses this issue and makes it independent of DPI settings of the computer. Let's
look at how it is possible.

Windows Forms

96DPI

120DPI

WPF

96DPI

120DPI

Let's say you have drawn a box, just like the one in the figure, which is one inch long in the
96DPI screen. Now if you see the same application in 120DPI settings, the box will appear
smaller. This is because the things that we see on the screen are totally dependent on
DPI settings.

In the case of WPF, this is modified to a density-based approach. That means when the
density of a pixel is modified, the elements will adjust them accordingly and hence, the pixel
of WPF application is Device Independent Pixel. As you can see in the figure, the size of the
control remains the same in the case of the WPF application, and it takes more pixels in the
case of the 120DPI application to adjust the size properly.

Built-in support for graphics and animation
As WPF applications are being rendered within a DirectX environment, it has major support
for graphics and animation capabilities. A separate set of classes are present that specifically
deal with animation effects and graphics. The graphics that you draw over the screen are
also vector-based and are object-oriented. That means, when you draw a rectangle in a WPF
application, you can easily remove it from the screen, as the rectangle is actually an object
which you always have a hold on. In a traditional Windows-based application, once you draw
a rectangle, you can't select it individually. Thus programming approach in the case of WPF
is completely different and more sophisticated than a traditional graphics approach. We will
discuss graphics and animation in more detail in a later section of the article.

Redefine styles and control template
In addition to graphics and animation capabilities, WPF also comes with huge flexibility
to define the styles and control template. A style-based technique, such as you might come
across with CSS is a set of definitions which defines how the controls will look like when it
is rendered on the screen. In the case of traditional Windows applications, styles are tightly
coupled with each control, so that you need to define color, style, and so on for each individual
control to make it look different. In case of WPF, styles are completely separated from the
UIElement. Once you define a style, you can change the look and feel of any control by just
putting the style on the element.

Chapter 5

225

Most of the UIElement properties that we generally deal with are actually made using more
than one individual element. WPF introduces a new concept of templates, which you might
use to redefine the whole control itself. Say for instance, you have a CheckBox, which has
a rectangle in it and a ContentPresenter (one where the caption of the TextBox appears).
Thus you can redefine your checkbox and put a ToggleButton inside it, so that the check will
appear on the ToggleButton rather than on the rectangle. This is very interesting. We will look
into more detail on Styles and ControlTemplate later.

Resource-based approach for every control
Another important feature of WPF is resource-based approach. In the case of traditional
Windows applications, defining styles is very hectic. So if you have 1,000 buttons, and you
want to apply the color gold to each button, you need to create 1,000 objects of color and
assign each to individual elements. Thus, it makes it very resource hungry.

In WPF, you can store styles, controls, animations, and even objects as a resource. Thus,
each resource will be declared once when the form loads itself, and you may associate
them to the controls. You can maintain a full hierarchy of styles in a separate file called
ResourceDictionary, from which styles for the whole application will be applied. Thus
the WPF application could be themed very easily. Moreover, to deal with styles, Microsoft has
introduced a new tool called Expression Blend which is more suited for the designers and
allows generating styles and resources directly after working with the designer toolsets. It is
very easy and necessary when dealing with complex designs and textures. Visual Studio 2012
Professional and above, automatically ships with Expression Blend which can be of great use
while developing cool styles for an application. The Expression Blend tool comes with some
predefined styles which also add up to its functionalities.

New property system and binding capabilities
Here, I must introduce the new property system introduced with WPF. Every element of WPF
defines a large number of dependency properties. The dependency properties have stronger
capabilities than the normal properties. Thus when I define our new property, we can easily
register our own property to any object we wish to. It will add up to the same observer that is
associated to every object. As every element is derived from DependencyObject in its object
hierarchy, each of them contains DependencyObserver. Once you register a variable as
Dependency property, it will create a room on the observer associated with that control and
set the value there. We will discuss this in more detail in later sections of the series.

In this chapter we are going to discuss a lot of enhancements to the presentation layer and
introduce WPF to get you started.

Enhancements to WPF

226

Getting started with WPF and its major
enhancements in .NET 4.5

WPF as of now has gone through a lot of changes to its core and made it richer. The idea
behind the WPF system is to make sure that the object model can take advantage of all the
hardware and technological advancements that are going on in other areas of .NET, such as
asynchronous programming, hardware acceleration, animation, data binding, and so on.

WPF Managed +
Unmanaged dll
comprises win
presentation
framework

Operating system
core element

CLR

milcore WindowsCodecs

WPF Unmanaged Layer

WPF managed layer

WindowBase PresentationFramework

PresentationCore

Direct3D

User32

GDI

Device Drivers

For every new technology, it is very essential to have a clear idea about its architecture. So
before beginning your application, you must grab a few concepts. If you would not like to know
WPF in detail, please skip this recipe. As mentioned earlier, WPF is actually a set of assemblies
that build up the entire framework. These assemblies can be categorized as follows:

 f Managed Layer: Managed layer in WPF is built using a number of assemblies. These
assemblies build up the WPF framework, and communicate with the lower level
unmanaged API to render its content. The few assemblies that comprise the WPF
framework are:

 � PresentationFramework.dll: This creates the top level elements, such
as layout panels, controls, windows, styles, and so on.

Chapter 5

227

 � PresentationCore.dll: This holds base types, such as
UIElement, visual from which all shapes and controls are derived in
PresentationFramework.dll.

 � WindowsBase.dll: They hold even more basic elements which are capable
of being used outside the WPF environment, such as dispatcher object, and
dependency objects. I will discuss each of them later.

 f Unmanaged Layer (milcore.dll): The unmanaged layer in WPF is called milcore
or Media Integration Library Core. It basically translates the WPF's higher-level
objects, such as layout panels, buttons, animation, and so on into textures that
Direct3D expects. It is the main rendering engine of WPF.

 f WindowsCodecs.dll: This is another low-level API which is used for imaging
support in WPF applications. WindowsCodecs.dll comprises a number of codecs
which encode/decode images into vector graphics that would be rendered into the
WPF screen.

 f Direct3D: This is a low-level API in which the graphics of WPF are rendered.

 f User32: This is the primary core API which every program uses. It actually manages
memory and process separation.

 f GDI and Device Drivers: GDI and Device Drivers are specific to the operating systems
which are also used from the application to access low-level APIs.

This is the basic architecture of the WPF application. Now let us take a look at the major
enhancements that have been made to WPF recently:

 f Support for Async programming style

 f Easier ways to access collection from non-UI threads

 f Styles, triggers, and animation to objects

 f Markup extensions

How to do it...
In this recipe, we are going to cover these concepts such that at the end of this recipe, you will
have the basic idea about these concepts.

The following steps will help you to learn the major enhancements of WPF.

1. Start a new WPF application. Once the application gets loaded, you will see
MainWindow.xaml.

2. Add a button to the XAML code and put a click handler to it. We call the button as
Click Me.
<Grid>
 <Button Content="Click Me" Click="btnClickMe_Click" />
</Grid>

Enhancements to WPF

228

3. When the button is clicked, we call an async code block which can invoke an async
operation. For simplicity we put an awaitable delay.
private async void btnClickMe_Click(object sender, RoutedEventArgs
e)
{
 await Task.Delay(5000);
 MessageBox.Show("Welcome to Async");
}

This code places a message box just after five seconds:

4. When the WPF application starts, it actually creates two threads automatically. One is
the rendering thread, which is hidden from the programmer and and the other one is
the dispatcher thread, which ties all the UI elements created together. Just like in other
Windows environments, any control created on WPF will have thread affinity towards
the dispatcher thread. In WPF every UI element is derived from DispatcherObject,
and thus the reference of the dispatcher thread is inherent within every object. We
can also make use of Dispatcher to call async code blocks. For instance the
Dispatcher class has methods, such as InvokeAsync which runs an async
block and returns an awaitable.
public async void CallingMethod()
{
 await Dispatcher.CurrentDispatcher.InvokeAsync(mymethod);
}

In the preceding code the mymethod is called through Dispatcher. The await can
be applied to this call when the InvokeAsync method is used. The InvokeAsync
method returns a DispatcherOperation object. So if mymethod returns some
object, you can have the returned value in this object. The internally used task object
is also wrapped inside this object.
Func<string> method = this.myMethod;
DispatcherOperation<string> dispatcherOperation = Dispatcher.
CurrentDispatcher.InvokeAsync(method);
dispatcherOperation.Task.Wait();
MessageBox.Show(dispatcherOperation.Result);

Chapter 5

229

When the string is returned from the method, it is shown to the user in
MessageBox. The InvokeAsync method, like any async block, also supports
CancellationToken.

5. The WPF controls have thread affinity. That means the objects created from one
thread cannot be accessed by another thread. We generally call the dispatcher
thread to handle collection modifications. As Dispatcher points to the UI thread,
the call which needs to access collection objects will work.

But calling the dispatcher thread several times will make the code very ugly. Using
EnableCollectionSynchronization on BindingOperations will allow the
collection to automatically handle ThreadAffinity. For instance:
//Creates the lock object
private static object _lock = new object();
//Enable the cross access to this collection
BindingOperations.EnableCollectionSynchronization(_persons, _
lock);

Now if you add an object to the list in another thread, it will automatically handle that.

6. WPF allows you to specify custom types to be associated with its properties. These
custom properties are called Markup Extensions. The markup is annotated with
markup extensions, such as StaticResource, DynamicResource, Binding, and
so on. You can also define your own markup extension. Let us create a new style for
our button and place it inside resources.
<Window.Resources>
 <Style x:Key="btnStyle" TargetType="{x:Type Button}">
 <Setter Property="Background" Value="Bisque" />
 <Setter Property="Foreground" Value="Red" />
 </Style>
</Window.Resources>

In the preceding code we define a style that can be applied to Button. The Style
property is a special type that holds a collection of Setters which allows you to find
the properties of a control and set its values such that it can be applied as a whole
to the instance of that control. It is the same as CSS works in the web.

7. To apply this style we use Style="{StaticResource btnStyle}".
StaticResource is a custom type defined in the WPF system which is known as
Markup Extension.

8. Create a new class called ReflectionExtension and extend the same
from MarkupExtension. In every MarkupExtension, we need to override
ProvideValue to get the result. In our case we get the names of all the methods,
properties, events, and so on for a type passed into it.
public class ReflectionExtension : MarkupExtension
{

Enhancements to WPF

230

 public Type CurrentType { get; set; }
 public bool IncludeMethods { get; set; }
 public bool IncludeFields { get; set; }
 public bool IncludeEvents { get; set; }

 public ReflectionExtension(Type currentType)
 {
 this.CurrentType = currentType;
 }

 public override object ProvideValue(IServiceProvider
serviceProvider)
 {
 if (this.CurrentType == null)
 throw new ArgumentException("Type argument is not
specified");

 ObservableCollection<string> collection = new
ObservableCollection<string>();
 foreach(PropertyInfo p in this.CurrentType.
GetProperties())
 collection.Add(string.Format("Property : {0}",
p.Name));

 if(this.IncludeMethods)
 foreach(MethodInfo m in this.CurrentType.GetMethods())
 collection.Add(string.Format("Method : {0} with
{1} argument(s)", m.Name, m.GetParameters().Count()));
 if(this.IncludeFields)
 foreach(FieldInfo f in this.CurrentType.GetFields())
 collection.Add(string.Format("Field : {0}",
f.Name));
 if(this.IncludeEvents)
 foreach(EventInfo e in this.CurrentType.GetEvents())
 collection.Add(string.Format("Events : {0}",
e.Name));

 return collection;
 }

}

Chapter 5

231

9. Add a namespace to the header to point to the markup extension. We add
xmlns:local="clr-namespace:WPFFirstAppSample" in the header window
tag of the window as an attribute and add a ListBox to the StackPanel.
<ListBox ItemsSource="{local:Reflection {x:Type Grid},
 IncludeMethods=true, IncludeFields=true,
IncludeEvents=true}"
 MaxHeight="200" />

The ListBox property calls the ProvideValue with the type passed in (Grid
in our case) and enumerates all the members, fields, events, and so on for it.
MarkupExtension for events is also supported by the latest release.

10. VirtualizingStackPanel is a special container which allows paging more
elegantly. For ListBox if you specify virtualization, the ListBoxItem property will
not be created initially, rather will be called on the fly when the data is scrolled. Let's
add VirtualizingStackPanel on ListBox to gain performance.

 <ListBox ItemsSource="{local:Reflection {x:Type Grid},
IncludeMethods=true, IncludeFields=true, IncludeEvents=true}"
 MaxHeight="200"
 VirtualizingStackPanel.IsVirtualizing="True"
 VirtualizingStackPanel.
VirtualizationMode="Recycling"
 VirtualizingStackPanel.ScrollUnit="Pixel"
 VirtualizingStackPanel.CacheLength="2,3"
 VirtualizingStackPanel.CacheLengthUnit="Page"
 />

Here in the code VirtualizingStackPanel.IsVirtualizing states that the
container needs to be virtualized. The Mode is Recycling, which indicates that the
same ListBoxItem will be recycled for the scrolling. ScrollUnit is Pixel, which
means the scrolling will be based on each pixel. You can also specify CacheLength
and CacheLengthUnit. Each of them defines how many items need to be cached for
virtualization. For heavy list item, it is better to have a page cached. This will make
the scrolling smoother.

1. Now let's add a Rectangle to the XAML. We use EventTrigger to trigger an
animation to the Rectangle.
<Rectangle Width="50" Height="50">
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.
TargetProperty="Width"

Enhancements to WPF

232

 From="50" To="0" AutoReverse="True"
Duration="0:0:5" ></DoubleAnimation>
 <DoubleAnimation Storyboard.
TargetProperty="Height"
 From="50" To="0" AutoReverse="True"
Duration="0:0:5"></DoubleAnimation>
 <ColorAnimation From="Blue" To="Green"
Duration="0:0:5"
 Storyboard.
TargetProperty="Fill.Color" AutoReverse="true"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
</Rectangle>

In the preceding code EventTrigger is used to hook on the Loaded event of
Rectangle. The initial color of Rectangle is made blue. StoryBoard is a
collection of animation. Here, DoubleAnimation is used to animate the Width and
Height values (which are of type double), and ColorAnimation is used to animate
the Fill color of the Rectangle.

How it works...
Among so many changes to the WPF system recently, the compiler team has made the right
adjustments to the WPF code to orchestrate the asynchronous calls to the members from the
XAML. Any event from XAML can call the async method and code, as during compilation the
binding is automatically done to the original method with the BAML (Binary XAML).

XAML is a replacement of C# code. It allows you to create objects inside it, specifying
other objects. Markup extensions are special classes that can be used inside curly braces,
such that when the XAML is parsed, it automatically detects these markup extensions and
creates respective calls to the object. Each MarkupExtension class has a provideValue
implementation. When the object is parsed, the ProvideValue implementation is called
to get the actual type specified. For instance:

<Button Foreground="{StaticResource fground}" />

In the preceding code Foreground is specified with a markup extension. The
StaticResourceExtension is a class for which the ProvideValue implementation
automatically tries to parse the resources and find the brush with the Foreground key. When
the object is found it is assigned to the Foreground property. You can specify properties for
a markup extension as well which will be separated using a comma.

Chapter 5

233

Animation of WPF has been simplified pretty much. Animation can be defined as the
changes in values over time. You can specify StoryBoard to define the timeline of the
entire animation. The idea is to define animation for a property. For instance, say you want to
animate the value of an integer variable, you can use Int32Animation. Similarly, when you
want to animate value of a double type, you can use a DoubleAnimation, or when you want
to animate a color, you can use ColorAnimation. Each of these animations have been well
defined in the system, and based on the type of the property you can specify the appropriate
animation over time.

There's more...
The WPF is pretty new to the developers even though it has gone through some of the major
enhancements already and is in version 4.5. There are a few concepts that you need to
understand to know it better. Let us discuss them here.

What are Visual Trees and Logical Trees?
Every programming style contains some sort of LogicalTree which comprises the overall
program. LogicalTree comprises the elements as they are listed in XAML. Thus, they will
only include the controls that you have declared in your XAML.

VisualTree on the other hand, comprises the parts that make up the individual controls.
You do not generally need to deal with VisualTree directly, but you should know how each
control is comprised, so that it will be easier to build custom templates using this.

Containers
(Stack panel, Wrap

Panel, Grid and so on.)

Window

UI Element
-TextBlock

UI Element
-Button

Border

AdomerDecoder

ContentPresenter

Containers
(Stack panel, Wrap Panel, Grid and so on.)

Window

UI Element
Text Block

UI Element
- Button

Chrome

Content
Presenter

TextBlock

Logical Tree

Visual Tree

Enhancements to WPF

234

What are RoutedEvents?
RoutedEvents are very new to the C# language, but for those who are coming from
JavaScript/web tech, you would have found it in your browser. Actually there are two types
of RoutedEvents. One which bubbles through the Visual Tree elements and another which
tunnels through the Visual Tree elements. There is also Direct RoutedEvent which does not
Bubble or Tunnel.

When RoutedEevent, which is registered, is invoked, it Bubbles/Tunnels through the Visual
Tree elements and calls all the registered RoutedEventHandlers associated within the
Visual Tree one by one.

To discriminate between the two, WPF demarcated events with Preview*** as the
events which are Tunneled, and just *** for the events that are Bubbled. For instance,
IsPreviewMouseDown is the event that tunnels through the Visual Child elements while
MouseDown Bubbles. Thus Mouse Down of the Outermost element is called first in case of
IsPreviewMouseDown while Mouse Down for the innermost element will be called first in
case of MouseDown event.

What is DependencyObject?
Every WPF control is derived from DependencyObject. DependencyObject is a class that
supports DependencyProperty, a property system that is newly built in WPF. Every object
is derived from DependencyObject and hence it can associate itself in various in-built
features of WPF, such as EventTriggers, PropertyBindings, Animations, and so on.

Every DependencyObject actually has an observer or a list, and declares three methods,
namely ClearValue, SetValue, and GetValue which are used to add/edit/remove those
properties. Thus the DependencyProperty will only create itself when you use SetValue to
store something. Thus, it is resource saving as well. We will look at DependencyProperty in
detail in other articles in the series.

Building applications using MVVM pattern
supported by WPF

WPF introduces a pattern called MVVM pattern and inherently supports it from its core. The
applications built on this pattern support all the core entities of any presentable framework
such that we can reuse the presentation logic in more than one application.

The Model-View-ViewModel (MVVM) pattern splits the user interface into three
conceptual parts:

 f Model: This represents a set of classes which points to where the data is
coming from.

 f View: This represents the visual representation of the data as UI element to which
the user interacts.

Chapter 5

235

 f ViewModel: It serves as a glue between Model and View by wrapping the data
coming from Model and transforming it to a user-friendly manner which can be
directly presented to the View. ViewModel also controls the interactions by the
user in the View with the rest of the application.

ViewModel

Special Model to
represent View

View notifies
Command
and
Properties

Supported by
Design tools

Pure Display Pure Data

Notify
ViewModel
changes to
data

Easy to test

Hard to test

Representation of Data
and Business Logic

Model

XAML Code

View

Binds XAML to
ViewModel

The main key components demonstrated in the preceding architecture are Model, View, and
ViewModel. The ViewModel refers to Model and breaks the Model into viewable data and
commands. View refers to the ViewModel to get the entire data and notifies the ViewModel
due to interactions by the user. You should notice that View can also hold some code, but
this code is hard to test without the actual UI being present and hence is recommended to
minimize. According to the MVVM pattern, we minimize or reject any code to be placed directly
into View, but rather interact with the ViewModel directly to nurture any user interaction.
The ViewModel receives these interactions through Binding between UI elements with the
ViewModel and notifies the Model representing data from services or database.

The MVVM pattern employs few WPF features to support it inherently. Expression Blend is an
application built on MVVM model and represents the ideal example of an MVVM application.
The features that employs the MVVM model from WPF are:

 f Binding: Binding communicates through the ModelObject and ViewModel
properties

 f Data Templates: This transforms the data from ViewModel to a visual

Enhancements to WPF

236

 f Command: This notifies the interaction from View to ViewModel

InotifyPropertyChanged
Binding

Command

View View Model

View communicates with ViewModel using Command or Binding. Binding works on data
elements. ViewModel exposes the data elements which are used by the WPF controls to
perform Binding. Binding in WPF hooks into the INotifyPropertyChanged event for the
property it is bound to, and notifies any changes to the property directly.

In this recipe, we are going to take a brief tour of creating an application using MVVM model.

Getting ready
Before we actually use the MVVM model, we should at least know about two interfaces which
need to be used pretty much while developing. As we have already shown that the main
communication between ViewModel and View is done using Binding and Command,
we need to implement two interfaces that are actually used by the WPF controls to invoke
these notifications:

 f INotifyPropertyChanged: This is an interface that raises property notifications,
such that when the ViewModel raises the notification to the property, View updates
the data from the ViewModel and vice versa.

 f ICommand: It represents an individual command in which the control in the View
sends direct notification to the ViewModel.

The controls that supports Command, expects an object of ICommand to invoke the command
directly from the control. Let us implement the ICommand interface first. We start by creating
a WPF application project and add a class library to the project. We create a class called
RegisterCommand and start writing the code.

public class RegisterCommand : ICommand
{
 private Action<object> executeMethod;
 private Func<object, bool> validateMethod;
 public RegisterCommand(Action<object> executeMethod, Func<object,
bool> validateMethod)
 {

Chapter 5

237

 this.executeMethod = executeMethod;
 this.validateMethod = validateMethod;
 }
 public RegisterCommand(Action<object> executeMethod)
 : this(executeMethod, e => true)
 {
 }

 public bool CanExecute(object parameter)
 {
 try
 {
 return validateMethod(parameter);
 }
 catch { return false; }
 }
 public void Execute(object parameter)
 {
 this.executeMethod(parameter);
 }

 public event EventHandler CanExecuteChanged;
 private void OnCanExecuteChanged()
 {
 if (this.CanExecuteChanged != null)
 this.CanExecuteChanged(this, EventArgs.Empty);
 }

}

The ICommand interface specifies two methods and an event:

 f CanExecute: We need to call a delegate to ensure that the command is validated to
execute. Generally when CanExecute returns false, the Command remains disabled
in the UI.

 f Execute: Calls the method that needs to execute when the command is performed
by the View.

 f CanExecuteChanged: The event is raised to re-evaluate the CanExecute for
the command.

The implementation of ICommand can be bound to Command in the UI element and it invokes
CanExecute, Execute, and CanExecuteChanged automatically when certain object
state changed.

Enhancements to WPF

238

Another most important consideration of the MVVM model is the implementation of the
INotifyPropertyChanged interface. This interface is needed by the property which is
bound from the UI. UIElement exposes dependency properties which require property
notifications to ensure that View can notify the model and vice versa. When we raise the event
PropertyChanged for the property inside the ViewModel, the UI gets refreshed,
and when the user interacts with the control in UI, the property gets reset automatically.
We implement the interface into a class from which we inherit the ViewModel.

public class PropertyBase : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 public void RaisePropertyChanged<T>(string propertyName, T oldVal,
T newVal)
 {
 //We ensure that the oldValue is not equal to newValue such
that we dont
 //raise unnecessary propertychanged notifications
 if (oldVal != null && !oldVal.Equals(newVal) && this.
PropertyChanged != null)
 this.PropertyChanged(this, new PropertyChangedEventArgs(p
ropertyName));
 }
}

Here the INotifyPropertyChanged interface is implemented. The interface only defines
an event PropertyChanged. Now when we need a property to invoke change notification, we
call RaisePropertyChanged with oldValue of the property and newValue of the property
such that we ensure that event doesn't get raised unnecessarily.

How to do it...
To demonstrate how MVVM pattern works, let us take an example. We are going to create a
sample application that keeps track of data inside a list and allows to edit and manipulate
data for that list.

1. We start by creating the Model for the MainWindow. Generally we specify the
MainWindow model directly to the opening window and maintain all other child
windows from MainWindow.

2. MainModel holds references the other models (AllUsersModel and UserModel).
Generally the MainModel creates object of all other Model and opens a
ChildWindow from MainWindow.

3. We create two buttons on the MainWindow, called Manage Users and a Add a
user. The click handler has been handled to set DataContext of each window
that is created by MainWindow.
<Button Content="Manage Users" Click="btnManageUser_Click"/>
<Button Content="Add a User" Click="btnAddUser_Click"/>

Chapter 5

239

private void btnManageUser_Click(object sender, RoutedEventArgs e)
{
 listUsers luser = new listUsers();
 luser.DataContext = this.model.ListUsers;
 luser.Show();
 this.CurrentWindow = luser;
}
private void btnAddUser_Click(object sender, RoutedEventArgs e)
{
 editUser euser = new editUser();
 euser.DataContext = this.model.NewUser;
 euser.Show();
 this.CurrentWindow = euser;
}

4. Here you can see the windows lstUsers and editUsers are created, and the
respective DataContext is set. As we created the windows from MainWindow, it
is important to note that only Mainwindow can close it. So you should always pass
MainModel inside the child models and from ChildModel pass data to MainModel
to help it do these tasks.

5. To close a window, we cannot do that from ViewModel directly, we need to do it
from the View itself. To deal with this, we subscribe to the PropertyChanged
event of MainModel, and we store CurrentWindow in a property. Hence, from
the ChildWindow we can reset a property to close the window.

6. We define a ListBox property to ensure we show all the users that are currently
present in the Collection. The ListBox is bound to the Users property which points
to the ObservableCollection. Hence when the ListUser window is opened, it
shows all the users in a list.
<ListBox ItemsSource="{Binding Users}" SelectedItem="{Binding
CurrentUser}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding UserName}" Margin="10"
/>
 <TextBlock Text="{Binding FirstName}"
Margin="10"/>
 <TextBlock Text="{Binding LastName}"
Margin="10"/>
 <Button Command="{Binding Delete}"
Content="Delete" Margin="10"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Enhancements to WPF

240

The model that is associated with the window exposes the list of users into a
collection of users. The CurrentItem is automatically set using the CurrentUser
property. The ItemTemplate for the ListBox defines the visual of the individual
user entity:

public ObservableCollection<UserModel> Users { get; set; }

private UserModel _currentUser;
public UserModel CurrentUser
{
 get
 {
 return this._currentUser;
 }
 set
 {
 var cuser = this._currentUser;
 this._currentUser = value;
 this.RaisePropertyChanged<UserModel>("CurrentUser", cuser,
value);
 }
}

The preceding code maintains a collection of UserModel and a property called
CurrentUser. When an item is selected by the user in the UI, the CurrentUser
property is set and it raises the PropertyChanged notification.

7. The User Entry window creates an user entity. We create the FirstName, LastName,
and UserName for the user and upon save, it is added to the in memory collection
as shown in the following screenshot:

8. We define commands here to SaveChanges and CancelChanges, or even delete a
particular item from the list.
private RegisterCommand _saveChanges;
public RegisterCommand SaveChanges
{

Chapter 5

241

 get
 {
 this._saveChanges = this._saveChanges ?? new
RegisterCommand(this.OnSaveChanges, this.ValidateData);
 return this._saveChanges;
 }
}
public RegisterCommand CancelChanges
{
 get { return new RegisterCommand(e => this.Parent.Close =
true); }
}
void OnSaveChanges(object state)
{
 this.Parent.AddUser(this);
 this.FirstName = this.LastName = this.UserName = string.Empty;
}
bool ValidateData(object sender)
{
 return !string.IsNullOrWhiteSpace(this.UserName);
}

private RegisterCommand _delete;
public RegisterCommand Delete
{
 get
 {
 this._delete = this._delete ?? new RegisterCommand(e =>
this.Parent.DeleteUser(this));
 return this._delete;
 }
}

The preceding code defines three commands. We are using the RegisterCommand
class to define a command. I have already showed that there are two delegates that
need to be passed to ensure the command is registered. The first one is the delegate
that will get executed when the command is hit, and another is to validate the
command. In runtime, when ValidateData returns false or UserName is blank, the
button to which the command is bound is disabled. When the data is valid, the object
is added to ObservableCollection.

Enhancements to WPF

242

It is important to note that ObservableCollection
supports INotifyCollectionChanged, which is hooked
by the controls to update the user interface when an object is
added or deleted from the collection. If you use list or any other
collection instead, the UI will not get refreshed automatically
when you delete or add items to the collection.

9. The Command binding also allows you to refresh the button context by calling
the CanExecute (or ValidateData) method again by raising the event
CanExecuteChanged. Thus if we see the property UserName, it will look like:
string username;
public string UserName
{
 get { return this.username; }
 set
 {
 var username = this.username;
 this.username = value;
 this.RaisePropertyChanged<string>("UserName", username,
value);
 this.SaveChanges.OnCanExecuteChanged();
 }
}

Here in the preceding property, PropertyChanged is raised to ensure that the
data in UserName reflects the UIElement. CanExecuteChanged is also invoked
when the data is set to ensure that the validation block is re-executed (if any) such
that the button that has command associated with it, re-enable it based on the
returned value.

10. The PropertyChanged event needs to be raised when we need to update a
property to the UI or vice versa. In the UI we define a calculated field with FullName
which returns the combination of FirstName and LastName.

public string FullName
{
 get { return string.Format("{0} {1}", this.FirstName, this.
LastName); }
}

Now when the UI gets loaded , the property FullName gets empty value. We need
to reload the value for the FullName when either the FirstName or the LastName
gets changed. To ensure the FullName gets re-evaluated, we define the FirstName
with a property raise call to FullName.
string firstname;

Chapter 5

243

public string FirstName
{
 get { return this.firstname; }
 set
 {
 var name = this.firstname;
 this.firstname = value;
 this.RaisePropertyChanged<string>("FirstName", name,
value);
 }
}

Here in the preceding code, RaisePropertyChanged raises not only the
PropertyChanged for FirstName but also raises it for FullName, such that
the value for FullName gets reevaluated and reflected to the UI control to which
it is bound.

How it works...
MVVM architecture is built and supported by the WPF from its core by defining
special functionalities to the controls. Each control in WPF is created deriving from
DependencyObject which holds a number of DependencyProperty attributes. The WPF
property system supports DataBinding inherently and does all the plumbing work that is
required for DataBinding like:

 f Hooking up with the PropertyChanged event for object if it inherits from
INotifyPropertyChanged.

 f Hooking up with the CollectionChanged event when working with a collection and
data templates.

 f Invoking change notification to the objects automatically from the UI.

 f Determining the value of the property at runtime by determining the latest value
of the object.

 f Supporting property inheritance, final value resolution, and default value.

 f Reducing memory footprints as the Property System maintains one value for all
controls throughout if not changed. (For example: There will have one Background
property set to red throughout the project if not any particular background of a
TextBlock is changed.)

 f Coercing property value based on runtime information.

Enhancements to WPF

244

Hence, it is not just a property with backing up field and Binding can be associated with these
properties in XAML to communicate between data objects. The Dependency property system
also supports a property attached to a type which does not know anything about it.

Control

Change gets
notified

Updates CLR Propery
which is bound to

Data Object

Register for
Update
notifications

Dependency
Property

Binding

CLR Property

In the preceding figure it has been demonstrated how the DependencyProperty system
works. The Data Object is bound to the Dependency property using the Binding markup
extension. As DependencyProperty itself is capable of providing change notifications,
the Binding bounds to the property and registers to the event to get notifications from the
control. When the object receives notification, it updates the CLR property for the object which
is passed to Binding. Similarly, Binding also subscribes to change notifications of Data Object,
such that when the update is notified from the CLR, it notifies the Binding to update the
Control as well.

The Dependency property system is a unified model for any properties that takes part in any
control. Thus the change notifications from the control can also update properties of other
controls (for instance, the FullName property in our case is bound to some other property,
but still it can notify the changes from another CLR property to update the user interface).

The MVVM model takes help from the property system to implement the interface between
the View models and the View. The separation of concerns are maintained in such a way
that the View Model or the Presentation logic can be re-used to different form factors too.
For instance, you can implement a ViewModel for a Windows desktop and implement the UI
for tabs, phones, and so on and re-use the same code. Visual Studio also comes with a new
standard of portable class library, which can be used to deploy the same code targeting more
than one CLR. This can be used to implement ViewModels and can be ported into any device.

Chapter 5

245

Data Model / Services

View
Model 1

View 1

View
Model 2

View 2

View
Model N

View N

The main intention of MVVM is to introduce a separation of View with the Presentation
logic. Each View in the pattern defines its own ViewModel which bridges the DataModel and
services layer. The ViewModel can refer to the data models and transfer data in a presentable
form to the Views. Similarly, the ViewModels can also communicate with each other in
the same way by which the Views of the application communicates, but here we do not
communicate between Views rather we communicate using the ViewModels.

There's more...
MVVM needs lot of plumbing technology that is available with WPF, which enables the
development of MVVM architecture very easily. Let us define these concepts a little
further so that you have enough knowledge about these technologies.

What is DependencyProperty, and how to declare and use it?
WPF comes with a completely new technique for defining a property of a control. The unit
of the new property system is a Dependency property, and the wrapper class which can
create a DependencyProperty is called a DependencyObject. We use to register a
DependencyProperty in the property system to ensure that the object contains the
property in it and we can easily get or set the value of those properties whenever we like.
We even use the normal CLR property to wrap around a DependencyProperty and
use GetValue and SetValue to get and set values passed within it. To work with the
Dependency property, you must derive the class from DependencyObject, as the whole
observer which holds the new property system is defined within DependencyObject.

Enhancements to WPF

246

As a matter of fact, the DependencyProperty has lots of advantages over the normal CLR
property. Let's discuss the advantages a bit before we create our own DependencyProperty:

 f Property Value Inheritance: By Property Value Inheritance we mean that value of a
DependencyProperty can be overridden in the hierarchy in such a way that the
value with highest precedence will be set ultimately.

 f Data Validation: We can impose Data Validation to be triggered automatically
whenever the property value is modified.

 f Participation in Animation: The DependencyProperty can be used for animation.
WPF animation has capabilities to change value at an interval. By defining a
DependencyProperty, you can eventually support animation for that property.

 f Participation in Styles: Styles are elements that define the control. We can use Style
Setters on the DependencyProperty.

 f Participation in templates: Templates are elements that define the overall structure
of the element. By defining the DependencyProperty, we can use it in templates.

 f DataBinding: As each of the DependencyProperty itself invokes
INotifyPropertyChanged whenever the value of the property is
modified, DataBinding is supported internally. To read more about
INotifyPropertyChanged, please read.

 f CallBacks: You can have callbacks to a dependency property, so that whenever
a property is changed, a callback is raised.

 f Resources: A DependencyProperty can take a resource. So in XAML, you can
define a resource for the definition of a DependencyProperty.

 f Metadata overrides: You can define certain behaviors of a DependencyProperty
using PropertyMetaData. Thus overriding a metadata from a derived property will
not require you to redefine or re-implementing the whole property definition.

 f Designer Support: A DependencyProperty gets support from Visual Studio
Designer. You can see all the dependency properties of a control listed in the
Property Window of the Designer.

In these, some of the features are only supported by the DependencyProperty. Animation,
Styles, Templates, Property Value Inheritance, and so on could only be participated using
the DependencyProperty. If you use CLR property instead in such cases, the compiler
will generate error.

To define a dependency property you need to register it to the DependencyProperty
system first.

public static readonly DependencyProperty MyCustomProperty
= DependencyProperty.Register("MyCustom", typeof(string),
typeof(Window1));

public string MyCustom

Chapter 5

247

{
 get
 {
 return this.GetValue(MyCustomProperty) as string;
 }
 set
 {
 this.SetValue(MyCustomProperty, value);
 }
}

In the preceding code, I have simply defined a DependencyProperty. You must have been
surprised that a DependencyProperty was declared as static. Yes, like you even I was
surprised when I first saw that. But later on after reading about the Dependency property,
I came to know that a DependencyProperty is maintained at class level, so you may
want Class A to have a property B. So property B will be maintained to all the objects that
Class A has individually. The DependencyProperty thus creates an observer for all those
properties maintained by Class A and stores it there. Thus, it is important to note that a
DependencyProperty should be maintained as static.

The naming convention of a dependency property states that it should have the same
wrapper property which is passed as the first argument. Thus in our case, the name of
the Wrapper MyCustom, which we will use in our program, should be passed as the first
argument of the register method. Also, the name of the DependencyProperty should
always be suffixed with the property of the original Wrapper key. So in our case the name of
the DependencyProperty is MyCustomProperty. If you don't follow this, some of the
functionality will behave abnormally in your program.

It should also be noted that you should not write your logic inside the Wrapper property, as
it will not be called every time the property is called for. It will internally call GetValue and
SetValue itself. So if you want to write your own logic when the dependency property is
fetched, there are callbacks to do them.

The MyCustom dependency property now enables DataBinding, Animation, Styles and
all other dependency property system enhancements.

After defining the simplest DependencyProperty ever, let's make it a little enhanced. To add
metadata for a DependencyProperty, we use the object of the class PropertyMetaData.
If you are inside a FrameworkElement as I am inside a UserControl or a Window, you can
use FrameworkMetaData rather than PropertyMetaData. Let's see how to code :

static FrameworkPropertyMetadata propertymetadata = new FrameworkPro
pertyMetadata("Comes as Default", FrameworkPropertyMetadataOptions.
BindsTwoWayByDefault | FrameworkPropertyMetadataOptions.
Journal,new PropertyChangedCallback(MyCustom_PropertyChanged),new
CoerceValueCallback(MyCustom_CoerceValue),
false, UpdateSourceTrigger.PropertyChanged);

Enhancements to WPF

248

public static readonly DependencyProperty MyCustomProperty
= DependencyProperty.Register("MyCustom", typeof(string),
typeof(Window1),
propertymetadata, new ValidateValueCallback(MyCustom_Validate));

private static void MyCustom_PropertyChanged(DependencyObject dobj,
DependencyPropertyChangedEventArgs e)
{
 //To be called whenever the DP is changed.
 MessageBox.Show(string.Format("Property changed is fired : OldValue
{0} NewValue : {1}", e.OldValue, e.NewValue));
}

private static object MyCustom_CoerceValue(DependencyObject dobj,
object Value)
{
 //called whenever dependency property value is reevaluated. The
return value is the
 //latest value set to the dependency property
 MessageBox.Show(string.Format("CoerceValue is fired : Value {0}",
Value));
 return Value;
}

private static bool MyCustom_Validate(object Value)
{
 //Custom validation block which takes in the value of DP
 //Returns true / false based on success / failure of the
validation
 MessageBox.Show(string.Format("DataValidation is Fired : Value
{0}", Value));
 return true;
}

public string MyCustom
{
 get
 {
 return this.GetValue(MyCustomProperty) as string;
 }
 set
 {
 this.SetValue(MyCustomProperty, value);
 }
}

Chapter 5

249

So this is little more elaborate. We define FrameworkMetaData, where we have specified
DefaultValue for the Dependency property as "Comes as Default", so if we don't
reset the value of the DependencyProperty, the object will have this value as default.
FrameworkPropertyMetaDataOption gives you a chance to evaluate the various metadata
options for the dependency property. Let's see the various options for the enumeration.

 f AffectsMeasure: This invokes AffectsMeasurefor the layout element where the
object is placed.

 f AffectsArrange: This invokes AffectsArrange for the layout element.

 f AffectsParentMeasure: This invokes AffectsMeasure for the parent.

 f AffectsParentArrange: This invokes AffectsArrange for the parent control.

 f AffectsRender: This renders the control when the value is modified.

 f NotDataBindable: Data binding could be disabled.

 f BindsTwoWayByDefault: By default data binding will be one way. If you want your
property to have a two way default binding, you can use this.

 f Inherits: This ensures that the child control inherits values from its base.

You can use more than one option using | separation as we do for flags.

PropertyChangedCallback is called when the property value is changed. So it will be
called after the actual value is modified already. CoerceValue is called before the actual
value is modified. That means after CoerceValue is called, the value that we return from it
will be assigned to the property. The validation block will be called before CoerceValue, so
this event ensures whether the value passed in to the property is valid or not. Depending on
the validity, you need to return true or false. If the value is false, the runtime generates an error.

So in the preceding application after you run the code, MessageBox comes up for
the following:

 f ValidateCallback: You need to put logic to validate the incoming data as the
Value argument. True makes it take the value, false will throw the error.

 f CoerceValue: You can modify or change the value depending on the value passed
as argument. It also receives DependencyObject as an argument. You can
invoke CoerceValueCallback using the CoerceValue method associated with
DependencyProperty.

 f PropertyChanged: This is the final Messagebox that you see, which will be called
after the value is fully modified. You can get the OldValue and NewValue from the
DependencyPropertyChangedEventArgs.

Another additional benefit of the dependency property is that it can attach itself to a control
other than where it is defined to. Attached property enables you to attach a property to an
object that is outside the object altogether, making it define a value for it using that object.

Enhancements to WPF

250

Let's declare an attached DependencyProperty:

public static readonly DependencyProperty IsValuePassedProperty =
DependencyProperty.RegisterAttached("IsValuePassed", typeof(bool),
typeof(Window1),
 new FrameworkPropertyMetadata(new PropertyChangedCallback(
IsValuePassed_Changed)));
public static void SetIsValuePassed(DependencyObject obj, bool value)
{
 obj.SetValue(IsValuePassedProperty, value);
}

public static bool GetIsValuePassed(DependencyObject obj)
{
 return (bool)obj.GetValue(IsValuePassedProperty);
}

Here I have declared a DependencyObject that holds a value IsValuePassed. The
object is bound to Window1, so you can pass a value to Window1 from any UIElement.
SetIsValuePassed and GetIsValuePassed are the method stubs that are used to get
the data from the dependency property matrix. FrameworkPropertyMetadata here allows
you to specify a PropertyChanged callback.

So in my code, UserControl can pass the value of the property to the window.

 <local:MyCustomUC x:Name="ucust" Grid.Row="0" local:Window1.
IsValuePassed="true"/>

You can see in the preceding code that IsValuePassed can be set from an external user
control, and the same will be passed to the actual window.

As you can see I have added two static methods to individually set or get values from the
object. This would be used from the code to ensure that we pass the value from code from
appropriate objects.

Say you add a button and want to pass values from code. In such cases the static method
will help.

private void Button_Click(object sender, RoutedEventArgs e)
{
 Window1.SetIsValuePassed(this, !(bool)this.GetValue(IsValuePasse
dProperty));
}

A dependency property is a bundle of interesting features in WPF without which, the whole
system of data binding wouldn't run.

Chapter 5

251

What are the attributes of Binding and use of Binding
Expression?
Binding is the most important feature of WPF that makes it different from the rest of the
technology. It is a framework of types that runs over the dependency property system, and
every control that defines a set of dependency properties can actually hook Binding to it
and create special bonding between two or more objects. DataBinding is not new to .NET
technology. DataBinding was present before the introduction of WPF. In ASP.NET, we bind
data elements to render proper data from the control. We generally pass in DataTable and
bind the templates to get data from individual DataRows. On the other hand, in the case
of traditional windows forms application, we can also bind a property with a data element.
Bindings can be added to properties of objects to ensure that whenever the property
changes value, the data is internally reflected to the data. So in one word, DataBinding
is nothing new to the system. The main objective of DataBinding is to show data to the
application and hence, reduce the amount of work the application developer needs to write
to just make the application properly display the data. WPF DataBinding is not just simple
DataBinding that is supported by other technology and the Binding type is not inbuilt into
the controls, rather, WPF DataBinding is a separate concern that runs homogenously into
the system and can take part with one control to the other or an object outside the WPF world.
When you bind one property with another, the framework automatically does the plumbing to
ensure that when one object changes its state, the other gets notified.

<TextBlock Text="{Binding Name}" />

The preceding line of code binds the Name property with the Text property of the TextBlock
object where Name is defined on a type that has been set to DataContext of the object.

Binding is actually a Markup Extension. It is a type newly introduced called Binding. Like other
classes, Binding also exposes few properties. Let's discuss them:

 f Source: The source property holds the data source. By default, it references
DataContext of the control. If you place the Source property for the Binding,
it will take that in lieu of the original DataContext element.

 f ElementName: In case of Binding with another element, ElementName takes
the name of the elements defined within the XAML for reference of the object.
ElementName acts as a replacement to Source. If a path is not specified for the
Binding, it will use ToString to get the data from the object passed as Source.

 f Path: Path defines the actual property path to get the string data. If the end product
is not a string, it will also invoke ToString to get the data.

 f Mode: It defines how the data will be flown. OneWay means object will be updated
only when source is updated, on the contrary OneWayToSource is the reverse.
TwoWay defines the data to be flown in both ways.

Enhancements to WPF

252

 f UpdateSourceTrigger: This is another important part of any Binding. It defines
when the source will be updated. The value of UpdateSourceTrigger can be:

 � PropertyChanged: It is the default value. As a result, whenever anything
is updated in the control, the other bound element will reflect the same.

 � LostFocus: It means whenever the property loses its focus, the property
gets updated.

 � Explicit: If you choose this option, you need to explicitly set
when to update the Source. You need to use UpdateSource of
BindingExpression to update the control.

BindingExpression bexp = mytextbox.GetBindingExpression("txtName",
TextBox.TextProperty);
bexp.UpdateSource();

By this, the source gets updated for a type txtName within the solution.

 f Converter: Converter gives you an interface to put an object which will be
invoked whenever the Binding objects get updated. Any object that implements
IValueConverter can be used in place of Converter. Refer to http://bit.ly/
WPFBindingConverter for further details.

 f ConverterParameter: It is used in addition to Converter to send parameters
to Converter.

 f FallbackValue: Defines the value which will be placed whenever the Binding
cannot return any value. By default, it is blank.

 f StringFormat: A formatting string that indicates the Format to which the data
will follow.

 f ValidatesOnDataErrors: When specified, the data errors will be validated. You
can use IDataErrorInfo to run your custom validation block when Data object is
updated. We will discuss more about it in the next part.

 f ValidatesOnNotifyDataError: Same as the other one, but in this case the
INotifyDataErrorInfo is taken for granted and works asynchronously.

 f Delay: WPF also supports a property Delay to asynchronously make the binding
notification delayed for a while. As Binding can generate a lot of data update in the
chain, it is important to have a Delay property for Binding so that the data chain
does not get updated when values get changed frequently.

Now as I told you, Binding is a new type that runs outside the existing application and hooks
itself to any environment and binds two properties which are different in all respect. For
instance, we can bind object A with object B such that:

 f A is a WPF Control, B is another WPF control

 f A is a WPF Control, B is a CLR class

 f A is a WPF Control and B is a Static object

Chapter 5

253

Binding also supports static objects. To define a static object we need to create a static event
and raise the event when the object changes its state.

private static Color _color;
public static Color Color
{
 get { return _color; }
 set
 {
 _color = value;
 RaiseColorChanged();
 }
}

public static event EventHandler ColorChanged;
public static void RaiseColorChanged()
{
 EventHandler ohandler = ColorChanged;
 if (ohandler != null)
 ohandler(null, EventArgs.Empty);
}

In the preceding code, Color is a static property and we track the change notification of the
Color property using separate ColorChangedEvent. To bind the Color property with the
object we use:

<TextBlock>
 <TextBlock.Background>
 <SolidColorBrush Color="{Binding (local:ColorHelper.Color)}"/>
</TextBlock.Background>
</TextBlock>

Here in ColorHelper.Color is bound to the Background property of TextBlock. Color
can be changed in the background to have this reflected to TextBlock as well.

There is also a notion of BindingGroup which allows a way to create relationship between
Bindings. Generally, BindingGroup is used for validation such that when two bound objects
updates their value it can validate and have errors notified.

<StackPanel.BindingGroup>
 <BindingGroup NotifyOnValidationError="True">
 <BindingGroup.ValidationRules>
 <local:ValidateDateAndPrice ValidationStep="CheckData" />
 </BindingGroup.ValidationRules>
 </BindingGroup>
</StackPanel.BindingGroup>

Enhancements to WPF

254

In the preceding code, BindingGroup is mentioned for StackPanel, which validates
using ValidationRules setup for the application. ValidateDateAndPrice is a type
defined within the application with ValidationStep defined. The type is derived from
ValidationRule to ensure that the object calls the Validate method overridden on it.

It is important to remember that sometimes it becomes essential to get information about
Binding from the code itself. We can use the BindingExpression type which evaluates
Binding to get information about it.

BindingExpression bexp = mytextbox.GetBindingExpression("txtName",
TextBox.TextProperty);

The object bexp can get information about the Binding like:

//The target
DependencyObject target = bexp.Target;

//The target property
DependencyProperty targetProperty = bexp.TargetProperty;

//The source object
object source = bexp.ResolvedSource;

//The source property name
string sourcePropertyName = bexp.ResolvedSourcePropertyName;

//The binding group
BindingGroup bindingGroup = bexp.BindingGroup;

//The binding group's owner
 if (bindingGroup != null)
 {
 DependencyObject bindingGroupOwner = bexp.BindingGroup.Owner;
 }

Thus, you can get information about Target, Source, and other information anywhere when
you need.

How to implement data validation blocks in MVVM?
As we move ahead with WPF, we find lots of flexibilities that WPF provides for UI development.
One of such is to define a validation rule to work with controls bound with data elements,
such that the data gets annotated automatically using styles when validation rule fails. In this
article, I will discuss how easily you can impose custom validation to your data elements by
doing the entire thing from within the class itself.

Chapter 5

255

First let us create DataElement for which I need to use data validation. As we know Binding
needs few things like INotifyPropertyChanged event to handle binding, it needs
IDataErrorInfo to handle ValidatesOnDataErrors calls. So the first thing that you
need to do is to create a class from the IDataErrorInfo interface.

public class Contact : IDataErrorInfo
 {
 private string _Name;
 private string _desig;

 public string Name
 {
 get { return _Name; } set { _Name = value; }
 }

 public string Designation
 {
 get { return _desig; } set { _desig = value; }
 }

 #region IDataErrorInfo Members

 public string Error
 {
 get { return "Error occurred"; }
 }

 public string this[string columnName]
 {
 get
 {
 return this.GetResult(columnName);
 }
 }

 private string GetResult(string columnName)
 {

 PropertyInfo info = this.GetType().
GetProperty(columnName);
 if (info != null)
 {
 string value= info.GetValue(this, null) as string;
 if (string.IsNullOrEmpty(value))
 return string.Format("{0} has to be set", info.
Name);
 else if(value.Length < 5)

Enhancements to WPF

256

 return string.Format("{0}'s length has to be at
least 5 characters !", info.Name);
 }
 return null;
 }
 #endregion
 }

Now this interface automatically calls the GetResult method on every call to property
changes and thus it gets validated. The error is a Validation property that represents a
collection of error contents. Now to ensure that we visually show the errors to the user, we
need to apply styles which triggers on the Validation.HasError property.

 <Style TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="true">
 <Setter Property="ToolTip" Value="{Binding
RelativeSource={RelativeSource Self}, Path=(Validation.Errors)[0].
ErrorContent}"/>
 <Setter Property="Control.Background" Value="Pink"
/>
 </Trigger>
 </Style.Triggers>
 </Style>

So if TextBox is bound to a property with ValidatesOnDataErrors set to True, it calls the
IDataErrorInfo interface automatically and applies the style for the DataBound object.

<Window.Resources>
 <AppCode:Contact x:Key="dsContact"/>
</Window.Resources>
<TextBox BorderBrush="Black" Margin="80,54.04,19,74.96" Height="22"
 Name="txtLastName" Text="{Binding
Source={StaticResource dsContact}, UpdateSourceTrigger='LostFocus',
Path=LastName, ValidatesOnDataErrors=True}">

In the preceding screenshot, you can see that the FirstName and LastName fields both
shows a pink background which indicates that it has error.

Chapter 5

257

Similar to IDataErrorInfo, WPF exposes another interface called
INotifyDataErroInfo, which additionally includes an event called ErrorsChanged
and runs the validation logic asynchronously. The ErrorsChanged event needs to be
raised when new errors or lack of errors are detected. We need to raise the event just like
PropertyChanged on every property which might through errors.

 public string Name
 {
 get { return _Name; }
set { _Name = value; this.OnErrorsChanged("Name"); }
 }

Here in the preceding code when Name is set, OnErrorsChanged is invoked that will call the
GetErrors method, in which you can write the validation logic for the property.

How to work with CollectionView using Live Shaping?
While working with collection in WPF, a special type has been introduced which helps in data
manipulation in the UI very easily. CollectionView in WPF allows the data to be sorted,
grouped, filtered, and so on. It is a layer that runs over the data objects which allows you to
define rules for sorting, filtering, grouping, and so on, and manipulate the display of data
rather than modifying the actual data objects. Therefore in other words, CollectionView
is a class which takes care of the View totally, and gives us the capability to handle certain
features incorporated within it.

To specify CollectionView for a list, you can use:

this.ListboxControl.ItemsSource = CollectionViewSource.
GetDefaultView(this.Source);

ItemsControl
Filtering
Grouping
Sorting

Current Item Navigation

CollectionView

Data Source

Data Collection

collectionView is an abstraction to the data object, such that it supports features that
developers often need.

Enhancements to WPF

258

Sorting
Sorting can be applied to CollectionView in a very easy way. You need to add
SortDescription to CollectionView. CollectionView actually maintains a stack
of the SortDescription objects, each of them being a structure can hold information of
a column and the direction of Sorting. You can add them in collectionView to get the
desired output.

Say I store CollectionView as a property:

ICollectionView Source { get; set; }

Now you want to sort the existing collection:

this.Source.SortDescriptions.Add(new SortDescription("Name",
ListSortDirection.Descending));

Hence CollectionView will be sorted based on Name and in descending order.

The default behavior of CollectionView automatically gets
refreshed when new SortDescription is added to it. For
performance issue, you might use DeferRefresh() if you want
to refresh only once to add SortDescription more than once.

Grouping
You can create a custom group for ICollectionView in the same way as you do for Sorting.
To create a group of elements, you need to use GroupStyle to define the template for the
group and to show the name of the group in group header.

<ListView.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Name}" />
 </DataTemplate>
 </GroupStyle.HeaderTemplate>
 </GroupStyle>
</ListView.GroupStyle>

Here we define the group HeaderTemplate for each group, so that TextBlock shows
the name of the group item by which the grouping is made. You can specify more than one
grouping information for a single collection. To group a collection, you need to use:

this.Source.GroupDescriptions.Add(new PropertyGroupDescription("Depar
tment"));

Chapter 5

259

Grouping turns off virtualization. So if you are dealing with large
amounts of data, grouping may lead to performance issue.

You can apply custom grouping as well by defining IValueConverter in
PropertyGroupDescription as well.

Filtering
Filtering requires a delegate (Predicate) based on which the filter will occur. Predicate
takes in the item and based on the value (true or false) it returns, it selects or unselects
an element.

this.Source.Filter = item =>
{
 ViewItem vitem = item as ViewItem;
 if (vitem == null) return false;

 return vitem.Name.Contains("A");

};

This will select only the elements which have A in their names.

Current Record Manipulation
ICollectionView also allows to synchronize items with the current position of the element
in CollectionView. Each ItemsControl, which is the base class of any ListControl in
WPF, exposes a property called IsSynchronizedWithCurrentItem, when set to true will
automatically keep the current position of the CollectionView in sync.

There are methods like:

this.Source.MoveCurrentToFirst();
this.Source.MoveCurrentToPrevious();
this.Source.MoveCurrentToNext();
this.Source.MoveCurrentToLast();

These allow you to navigate around CurrentItem of CollectionView.You can also use the
CurrentChanged event to intercept your selection logic around the object.

Live Shaping
When we need live data to be sorted while some data is being inserted on the fly, the Live
Shaping technique comes in very handy. With the Live Shaping technique you can activate
live sorting, live grouping, and live filtering separately based on their use.

Enhancements to WPF

260

For LiveShaping, we use ICollectionViewLiveShaping instead of ICollectionView.
GetCollectionView returns ICollectionViewLiveShaping rather than
ICollectionView in the latest release of .NET. Hence, you can just cast the object of
ICollectionView to ICollectionViewLiveShaping to configure it when required.

We can use the same CollectionView class to apply Filtering, Sorting, or Grouping. To do
this, you can use:

var shaping = this.Source as ICollectionViewLiveShaping;
shaping.IsLiveFiltering = true;
shaping.LiveFilteringProperties.Add("Name");
shaping.IsLiveSorting = true;
shaping.LiveSortingProperties.Add("Name");
shaping.IsLiveGrouping = true;
shaping.LiveGroupingProperties.Add("Department");

Here in the preceding code, we specify the LiveShaping properties for CollectionView
which is by default turned off. In this case the LiveFiltering, LiveSorting, and
LiveGrouping are turned on. Turning these on in the CollectionView for a large data
collection can produce performance implications, so it is recommended to use them only
when it is required.

See also
 f Refer to the following link:

http://bit.ly/WPFMVVM

Using the Ribbon User Interface in WPF
Ribbon-based user interface is the latest trend in designing Windows-based applications. The
latest UI trends are inclined towards Ribbon-based windows. The modern operating system
is promoting Ribbon as the next generation UI for Windows. You can read more about Ribbon
from the link http://en.wikipedia.org/wiki/Ribbon_(computing).

WPF applications support the usage of ribbons. The base class library introduced a number of
APIs that draws Ribbon Window UI on the screen.

In this recipe, we are going to introduce the Ribbon, and also show how these components
can be used in normal scenarios as well as using MVVM patterns.

Chapter 5

261

Getting ready
Before starting the recipe, let us open Visual Studio IDE and create a WPF application.
Currently as I am using Visual Studio RC, there is Visual Studio template that directly creates
a RibbonWindow application with the appropriate .dll files that we need for the application.
So we do it manually.

After the initial application has been loaded to the IDE, we add a reference of "System.
Windows.Controls.Ribbon.dll" to the application. This dll contains all the important
APIs that are needed to create a Ribbon-based application. You should notice that the
application is loaded with one window created, configured, and named as MainWindow.
xaml. If you open the XAML file, it shows the Window tag that forms the window for the
WPF application.

Ribbons are actually windows with the tag RibbonWindow. Change the Window tag to
RibbonWindow to convert the appearance of MainWindow to RibbonWindow. We also
change the background code from Window to RibbonWindow. The code looks like:

<RibbonWindow x:Class="RibbonSample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Ribbon>
 </Ribbon>
</RibbonWindow>

The code after changing the inherited class from Window to RibbonWindow it looks like:

Enhancements to WPF

262

You can see MainWindow after changing the code inherits from RibbonWindow rather than
Window. Also, do not forget to add the namespace using System.Windows.Controls.
Ribbon;. Now run the application.

The window shows a blank ribbon area where we can add controls. The whole ribbon window
is categorized into a number of sections, each of which forms a special section of the window
and is used for special purposes:

 f Ribbon window
 f Quick launch actions
 f Ribbon menu
 f Ribbon tabs
 f Contextual tabs

If we look into the actual UI for each of the sections of the window, we figure out like the one
shown in the following screenshot:

Chapter 5

263

In the preceding screenshot, we depicted all the sections of the ribbon window with
Application Menu. These commands in fact inherited from the regular controls, and support
most of the actions that are supported by the normal controls. Each of these controls
supports command pattern as well as events. Hence, if you are following the MVVM pattern to
create your application, you have total support if it is for every control as well. Now let us start
coding the application.

How to do it...
Now, let us create a ribbon application to test the elegance and styles that you can
incorporate inside your applications.

1. Add a ribbon to the ribbon window. Each window can associate with only one ribbon.

2. A ribbon contains a Title (which defines the title of the ribbon), Application Menu,
Quick Access Toolbar, Contextual Tab Group, and Help Pane. The sections are
depicted in the previous figure. Let us now add each of these sections and define
each of them one by one.

3. At the very right corner of the screen just below the Close button of the window,
we have Help Pane. The Help Pane is a Content Control that has been defined to
manipulate this section. Let us add a HelpButton inside the HelpPaneContent
which is shown in the following screenshot:
<Ribbon.HelpPaneContent>
 <RibbonButton SmallImageSource="Images\Helpandsupport.ico"
Label="Help"/>
</Ribbon.HelpPaneContent>

The preceding code will add a small button on the right-hand side on top of
the ribbon:

Enhancements to WPF

264

This section supports only one control to be added. It shows this control on the top right-
hand corner of the ribbon. As you can see, the button appears with the label and the
SmallImage. Each ribbon-based control contains two Imagesource properties (that is,
SmallImageSource and LargeImageSource) which is used to define the image for the
control and automatically changes the image based on the size of the control.

1. Each RibbonWindow has an associated ApplicationMenu. On the top-left corner
of the ribbon, you will see a big button which opens up a pop-up menu for the
application. It is important to choose the most important menus that needs to be
used by the users. Generally, the user looks for an application menu when he needs
to work on some selected special commands. ApplicationMenu is composed of
RibbonApplicationMenuItem and RibbonApplicationSplitMenuItem.
The former creates a single menu item for the application menu which either
has submenus or represents the leaf menu item, but the latter represents a
RibbonApplicationSplitButton which has a separator between the actual
menu and the submenu from it:
<Ribbon.ApplicationMenu>
 <RibbonApplicationMenu SmallImageSource="Images\MyComputer.
ico">
 <RibbonApplicationMenuItem Header="Desktop"
ImageSource="Images\Desktop.ico" KeyTip="D" Click="RibbonApplicati
onMenuItem_Click"/>

 <RibbonSeparator />
 <RibbonApplicationSplitMenuItem Header="Search Program"
ImageSource="Images\Search.ico" Click="RibbonApplicationMenuIte
m_Click">
 <RibbonApplicationMenuItem Header="BMP Images"
ImageSource="Images\BMPImage.ico" Click="RibbonApplicationMenuIt
em_Click"/>
 </RibbonApplicationSplitMenuItem>
 <RibbonApplicationMenu.FooterPaneContent>

 </RibbonApplicationMenu.FooterPaneContent>
 <RibbonApplicationMenu.AuxiliaryPaneContent>
 <TextBlock Text="This is the Auxilary Pane. You can
also add RibbonGallery to AuxiliaryPane." />
 </RibbonApplicationMenu.AuxiliaryPaneContent>
 </RibbonApplicationMenu>
</Ribbon.ApplicationMenu>

Chapter 5

265

The preceding code creates an application menu for the ribbon we have added
to the window. ApplicationMenu is the only menu that can be associated
with RibbonWindow.

The preceding screenshot shows the Application Menu. Each ribbon window can
contain a single application menu which can be opened by clicking on the top-left
section of the ribbon. The RibbonApplicationMenu is divided into three parts:

 � RibbonApplicationMenu: This section shows all the menu items that we add
to the Application Menu. In the preceding screenshot, the Application Menu
forms the left-hand side of the screen and is marked as Section1.

 � FooterPane: Each Application Menu can have a Footer Pane. This is a
normal ContentControl which is capable of showing any WPF content. We
have placed a few buttons as QuickLinks for the Application Menu. The
section is marked as Section 2.

 � The AuxiliaryPaneContent is on the right-hand side of the Application Menu
where we generally show auxiliary items related to the application. This
section is marked as Section 3 and is also a ContentControl and is flexible
to show anything as content.

2. For every ribbon window, the application title bar has been utilized more efficiently to
display a small set of controls which forms the Quick Access Toolbar for the window.
We generally show the most common commands inside the Quick Access Toolbar. A
Quick Access Toolbar is a collection of the RibbonButton items which shows only
SmallImage to identify without considering the label for the button when added to the
toolbar. The toolbar can show seven items at a time, and if more than seven buttons
are added to the toolbar, it creates a menu automatically to show more controls:
<Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar HorizontalAlignment="Right"
IsOverflowOpen="True">

Enhancements to WPF

266

 <RibbonButton SmallImageSource="Images\RAMDrive.ico"
KeyTip="R" Label="RAM"/>
 <RibbonButton SmallImageSource="Images\OpenFolder.ico"
KeyTip="O"/>
 <RibbonButton SmallImageSource="Images\MyRecentDocuments.
ico" KeyTip="R"/>
 </RibbonQuickAccessToolBar>
</Ribbon.QuickAccessToolBar>

In the preceding code we have added a RibbonQuickAccessToolBar item to the
RibbonWindow. The RibbonButton has specified its SmallImageSource and the
KeyTip. The label will not show for the toolbar and it is immaterial to specify it.

The preceding screenshot shows the toolbar with the overflow button opened to show
the menu of extra buttons that cannot fit into the toolbar.

3. The most important section of the ribbon is a RibbonTab. Each Ribbon holds a
collection of RibbonTab, while each Tab shows a menu to the user which is shown
one at a time. A RibbonTab has a name specified as Header and a number of
RibbonGroup, each Group can hold a collection of controls.

In the preceding recipe, the RibbonTab is an individual menu for the ribbon which
is shown one at a time. In the preceding screenshot, the RibbonTab options are
listed as View, Insert, Format, and so on. Each tab can hold a number of TabGroup.
The TabGroup for the View RibbonTab are Control Panel, Addition Controls, and
Specialized Controls:
<RibbonTab Header="View">
 <RibbonGroup Header="Control Panel">
 <RibbonButton LargeImageSource="Images\ControlPanel.ico"
 Label="Settings Folder" />

Chapter 5

267

 <RibbonButton SmallImageSource="Images\
ConfigurationSettings.ico"
 Label="Config" />
 <RibbonButton SmallImageSource="Images\NetworkConnections.
ico"
 Label="Network"/>
 <RibbonButton SmallImageSource="Images\ProgramGroup.ico"
 Label="Programs"
/>
 </RibbonGroup>
</RibbonTab>

In the preceding code, we have added a RibbonTab to the RibbonWindow and
specified few RibbonGroup. The RibbonGroup header is shown at the bottom
of each group, and each group individually collapses or expands depending on the
available space, automatically. A button has three states:

 � Large (big image with text at the bottom of the image)

 � Medium (small image with text on right-hand side of the button)

 � Small (small image without text)

4. Even though we can add controls inside the RibbonGroup, it is recommended that
you use specially designed ribbon controls only inside the ribbon. For instance, you
should prefer RibbonButton over Button, or RibbonCheckBox over a normal
CheckBox. The Ribbon based controls automatically style uniformly when place
inside the Ribbon. Some of the important RibbonControls are:

 � RibbonButton

 � RibbonToggleButton

 � RibbonComboBox

 � RibbonTextBox

 � RibbonCheckBox

 � RibbonRadioButton

 � RibbonTwoLineText

The RibbonTwoLineText is a special control that shows text using
LineStacking strategy.

5. A ribbon control also supports a RibbonGallery. A gallery is a specially designed
collection of items that acts as a group of elements.
<RibbonComboBox Label="1"
 SmallImageSource="Images/DVDDrive.ico"
 IsEditable="True" >
 <RibbonGallery SelectedValue="Green"

Enhancements to WPF

268

 SelectedValuePath="Content"
 MaxColumnCount="1">
 <RibbonGalleryCategory Header="Colors">
 <RibbonGalleryItem Content="Green" Foreground="Green"
/>
 <RibbonGalleryItem Content="Blue" Foreground="Blue" />
 <RibbonGalleryItem Content="Orange"
Foreground="Orange" />
 </RibbonGalleryCategory>
 <RibbonGalleryCategory Header="Fonts">
 <RibbonGalleryItem Content="Areal" FontFamily="Arial"
/>
 <RibbonGalleryItem Content="Verdana"
FontFamily="Verdana" />
 <RibbonGalleryItem Content="Callibri"
FontFamily="Callibri" />
 </RibbonGalleryCategory>
 </RibbonGallery>
</RibbonComboBox>

In the preceding design, we have specified a gallery of items inside
RibbonCombobox. A RibbonGalleryItem is individual items for a Ribbon which
can be selected as a ComboBox item. RibbonGalleryItem supports grouping.
RibbonGalleryCategory specifies the category for each gallery group. Here in the
preceding code we have created two groups of gallery one defining the Colors and
another defining the Fonts.

MaxColumnCount specifies the number of columns that the gallery will show on
the ribbon.

Chapter 5

269

6. Each Ribbon can specify ContextualTabGroups. A ContextualTabGroup
specifies a single tab inside the ribbon which is shown based on some context. For
instance, say you want to show a special tab when some items inside the window
are selected.
<RibbonTab ContextualTabGroupHeader="ContextualHeader"
Header="Selected">
 <RibbonGroup>
 <RibbonButton LargeImageSource="Images\HelpFile.ico"
 Label="Help" />
 </RibbonGroup>
</RibbonTab>
<Ribbon.ContextualTabGroups>
 <RibbonContextualTabGroup Header="ContextualHeader"
 Visibility="Visible"
 Background="Orange" />

</Ribbon.ContextualTabGroups>

Here in the preceding design we have created a ContextualTab. The
ContextualTabGroupHeader specifies the unique name that is shown on the title
bar of the RibbonWindow. It also helps to define RibbonContextualTabGroup
which needs to be visible through the configuration defined inside the
ContextualTabGroups property of the ribbon. You can also configure the
background of the ContextualTab.

There's more...
Ribbon controls supports a lot of features. Let us define some of them.

Special RibbonTooltip for Ribbon-based controls
A Ribbon-based UI element has a special tool tip designed which could be shown to the
user when they hover their mouse over a control. Each of the controls from RibbonWindow
automatically creates a RibbonTooltip control when the tool tip properties are specified.

<RibbonButton SmallImageSource="Images\ConfigurationSettings.
ico"
 Label="Config"
 ToolTipTitle="Configuration Settings"
 ToolTipDescription="Allows you to change
Configuration settings for the current selection"
 ToolTipImageSource="Images\MyBriefcase.ico"/>

Enhancements to WPF

270

In the preceding code, RibbonButton has been declared with the following few
extra properties:

 f TooltipTitle: Each tool tip shows a title in bold letters

 f ToolTipImageSource: This specifies the property which shows the image on the
left side of the tooltip

 f ToolTipDescription: This shows the description that will be shown on the right
side of the tooltip control

When these properties are specified, the control will automatically create the tool tip when the
mouse is hovered over the control for a while.

In the preceding screenshot, Settings Folder is the defined title, the image and the
description are shown below it. Any control inside the ribbon can show a RibbonTooltip.

Specifying shortcut keys for ribbon controls
Ribbon-based controls are smart enough to handle shortcut keys just like the former toolbars
and menu bars. Each ribbon control has a special property defined as KeyTip, which
specifies the key which would focus the control when the Alt key is pressed from the keyboard.
When the Alt key is pressed, the key associated with a particular control is automatically
displayed above the ribbon.

In the preceding screenshot, the R, O, and C are displayed when the Alt key of the keyboard
is pressed.

<RibbonButton SmallImageSource="Images\RAMDrive.ico" KeyTip="R"
Label="RAM"/>

Chapter 5

271

When the KeyTip is specified, the letter indicates the key which will focus thorough the Alt
key, and acts as a hot key for the ribbon.

How to use RibbonGallery inside the ribbon
A RibbonGallery is a new set of elements defined in a RibbonWindow which maps to
a collection. A RibbonGallery is a list of the RibbonGalleryItem properties that is
grouped together using the RibbonGalleryCategory properties, which is used to visualize
a list in the best possible way that the UI permits. A RibbonGallery can be hosted inside
controls like:

 f RibbonMenuButton

 f RibbonSplitButton

 f RibbonMenuItem

 f RibbonSplitMenuItem

 f RibbonApplicationMenuItem

 f RibbonApplicationSplitMenuItem

 f RibbonComboBox

In the preceding screenshot, we have added a Menu in the RibbonSplitButton, and a
RibbonMenuItem inside the SplitButton holds the Gallery.

<RibbonSplitButton LargeImageSource="Images\RUN.ico"
 Label="Programs"
 Click="RibbonButton_Click" >
 <RibbonMenuItem Header="Programs">
 <RibbonGallery SelectedValue="Green"
 SelectedValuePath="Content"
 MaxColumnCount="4">
 <RibbonGalleryCategory Header="Colors">
 <RibbonGalleryItem Content="Green"
Foreground="Green" />

Enhancements to WPF

272

 <RibbonGalleryItem Content="Blue"
Foreground="Blue" />
 <RibbonGalleryItem Content="Orange"
Foreground="Orange" />
 </RibbonGalleryCategory>
 <RibbonGalleryCategory Header="Fonts">
 <RibbonGalleryItem Content="Areal"
FontFamily="Arial" />
 <RibbonGalleryItem Content="Verdana"
FontFamily="Verdana" />
 <RibbonGalleryItem Content="Callibri"
FontFamily="Callibri" />
 </RibbonGalleryCategory>
 </RibbonGallery>

 </RibbonMenuItem>
</RibbonSplitButton>

The preceding code demonstrates the how the galleries are added to the RibbonMenuItem.
The gallery also supports ItemTemplate and ItemsSource, which will let you define the
source of the gallery from an external list.

Using WeakEvent pattern in WPF
When we are writing a code in the managed environment, it is always a concern how the
garbage collector releases the memory footprints and releases for the application. For every
application, memory management has been the primary concern. While developing large
applications, we often miss looking after any memory leaks that might cause a crash of the
application in the long run. If we do take care of our code, we might miss something which is
hidden from us due to abstraction made to the language.

Events form special circumstances in a way that the subscriber sends a strong reference to
the object to which it is subscribed to, and hence even though the object is not in use later,
the subscription to the event is still holding up a strong reference to the object and will remain
until the subscription is terminated manually or the main object is disposed. WeakReference
is not new to the system and is introduced in Appendix, .NET Languages and its Construct of
the book. WeakEvent is a pattern that is introduced to solve this kind of issue.

WPF introduces a new class WeakEventManager that bridges the events with the subscriber
and maintains only weak reference to the object such that when the object gets disposed,
or de-referenced from the user code, the event does not hold any strong reference to it and
hence it is exposed to the garbage collector.

Chapter 5

273

How to do it...
In this recipe, we are going to introduce WeakReferenceManager and will take you further
on how to use this in your real world WPF applications.

1. Start a new WPF project.

2. We create another window and call it LeakingChild, and add a reference to the
MainWindow.Activated event to it, such that when the MainWindow of the
application gets activated, a special code runs declared within the child window.

3. We can have two approaches to subscribe the Activated event from the
ChildWindow.
App.Current.MainWindow.Activated += MainWindow_Activated;

The preceding code hooks the Activated event of the MainWindow, but you must
remember that the reference of the object of the LeakingChild class is also passed
to Eventhandler. The delegate associated with the Activated event creates a list
and stores the reference of the LeakingChild object. Even if the user closes the
LeakingChild window, the memory allocated by the object does not get erased.
We can detect this by creating a large chunk of memory inside LeakingChild.

4. WPF provides WeakEventManager, which allows you to subscribe an event to an
event handler without having strong reference to the subscriber, such that when the
window gets closed, the memory is exposed automatically for garbage collector.
WeakEventManager<Window, EventArgs>.AddHandler(App.Current.
MainWindow, "Activated", MainWindow_Activated);

5. We can replace the previous code with the new code to have a WeakEvent
implementation. The MainWindow_Activated event handler still gets called,
but without holding any strong reference to the leaking object.

We detect the memory allocation by explicitly calling GC.Collect from the user code
and monitoring PrivateMemorySize64 of the process memory.

How it works...
WeakEvent is an implementation of WeakReference. As I have already introduced
WeakReference before in the previous chapter, it uses a WeakReference object to hold
the target passed for the EventHandler. WeakReference ensures that the object is always
exposed to garbage collection and hence when the object is not in use, the GC.Collect can
detect it and automatically collect the memory.

Enhancements to WPF

274

Moreover, generally events do not de-reference themselves automatically. When you subscribe
to an event, the WeakEvent pattern starts listening to the event. So when the event is raised,
it calls the handler that is passed to it and stored in WeakReference only if the object
exists in context. When the object goes out of the context and collected by GC.Collect,
the WeakEvent pattern automatically unsubscribes the event.

It is best to use WeakEventManager to overcome memory leaks for an application.

See also
 f Read more about WeakEventManager at:

http://bit.ly/WPFWeakEventManager

6
Building Touch-sensitive

Device Applications
in Windows 8

The goal of this chapter is to help you understand Windows store applications and also get
you familiar with some of the interesting considerations that you need to maintain while
building your touch-sensitive applications in Windows 8:

 f Building your first Windows 8 style tiles application using JavaScript, HTML5, and CSS

 f Writing a library for WinJS

 f Building your first Windows 8 style tiles application using C# languages and XAML

 f Working with storage files in Windows 8 style tiles applications

 f Understanding the application life cycle of WinRT applications

Introduction
As an operating system, Windows has gained a considerable amount of popularity and fame
around the world. Microsoft as a company is known to the world by far for Windows rather
than anything else. The era of Windows has seen a lot of glory and appreciation as it is one
of the largest selling general purpose software that runs in the market. Windows is designed
to run on any hardware (or rather most of the hardware) even those which are not released
as yet. People prefer Windows because of its flexibility of vendors and integration with other
software and by far with its user-friendly look and feel. But with the evolving market and
technology, there were a large number of tablets and devices that were floored into the
market, each having a unique behavior and facilities which are not totally supported by the
Windows operating system.

Building Touch-sensitive Device Applications in Windows 8

276

There was a need for a new operating system that can handle these kinds of devices and
also take help from the evolving technology. To provide the best end user experience to these
devices, Microsoft has to raise the bar to provide specific software that have capabilities to
run on these devices. Lately, Microsoft has come up with their new Windows that has inherent
support of touch and sensors. We call the new version of Windows, Windows 8.

There are two versions of Windows 8 that came into the market. The one that works on the
desktop called Windows 8 Pro, and another that works on arm processors known as WinRT.
Microsoft has confirmed that they had redesigned the whole new Windows environment
starting from the chip level to the level of abstraction. Therefore, the whole application model
in comparison to the developer side has been changed. Even though the core components
still remain like the COM environment, a new mode has been developed on top of the core
API to support the new style of application development. A new runtime has been built that
supports HTML5 and JavaScript to build desktop applications or even other Microsoft-centric
languages have evolved new avenues for developers. The introduction to a generalized
marketplace for the Windows environment has also paved the way for developers to reach
out to the world to a greater extent.

The world of WinRT supports a varied number of languages to do the same job. The job of
the languages is to communicate with the hardware devices using COM objects. It should
be noted that the COM APIs that are present within the WinRT environment are not actually
what we see in traditional COM components. WinRT provides a higher level of abstraction
that eliminates the call to the general P/Invoke style programming, rather than placing a
subscriber/publisher model using .NET-inspired delegates and events. It should also be
noted that WinRT objects do not implement the IDispatch interface.

WinRT objects implement IUnknown and ref counting. They are
unmanaged COM APIs exposed in the WinRT environment, which
are written in managed languages such as C# to map each type. For
instance, the managed CLR type IEnumerable is mapped with the
unmanaged IIterable<T> interface of WinRT. WinRT even though it
is unmanaged, supports metadata (as .winmd files), so that it doesn't
require P/Invoke to communicate from a managed environment.

Chapter 6

277

HTML / CSS

JAVASCRIPT
(CHAKRA)

Internet
Explorer Win32 .NET/

SL

XAML

C# / VB.NETC / C++

Windows Core OS Services

Vi
ew

M
od

el
C

on
tr

ol
le

r
C

or
e

HTML
Javascript

C /
C++

C# /
VB

Desktop ApplicationsWin RT Applications

Communication
& Data

Graphics &
Media

Devices &
Printing

Application Model

Win RT APIs

S
ys

te
m

 S
er

vi
ce

s

The preceding diagram shows how WinRT components are laid out. The internal core of the
system is the unmanaged WinRT components. The Application Model is built on top of it that
provides an abstraction to the core APIs. The Application Model provides the actual WinRT
APIs which in turn call the internal core OS services. The WinRT APIs expose almost all of the
APIs available from the Core services and are primarily categorized into Communication &
Data, Graphics & Media, and Devices & Printing components. The languages are built on top
of the WinRT APIs. A WinRT projection is a way of expressing WinRT in a specific language. For
instance, you can build a component in one language and can use the same from another
language. The languages that are supported by WinRT are as follows:

 f C/C++ produces native images after compilations. As WinRT is fully native, the
applications developed using C++ do not need CLR/.NET to compile/run WinRT
applications. C++/CX are extensions provided by Microsoft that helps in developing
WinRT apps.

 f C#,VB/XAML produces a sandboxed WinRT application that doesn't have access
to all the libraries like File I/O, External Devices etc. The CLR maps the basic types
of WinRT components into it and exposes them to the application programmer. The
application model supported by .NET languages does not support synchronous
versions of a number of methods.

Building Touch-sensitive Device Applications in Windows 8

278

 f WinJS is the most abstract development environment to work on for developing
WinRT applications. It is built on top of WinRT components and exposes the
functionalities to access HTML5 features and embed into a JavaScript and HTML
based application. Even though you can create cool applications using JavaScript
and HTML5, WinJS still lacks the support of building reusable components or even
it cannot access an external component either.

The section to the right of the figure, depicts the desktop applications. Everything that has
been developed earlier will run directly under the desktop tile as normal desktop applications.
Unlike Windows 8 style tiles applications, desktop applications are full fledged without any
restriction at all and also do not take advantage of the marketplace.

Building your first Windows 8 style tiles
application using JavaScript, HTML5,
and CSS

If you are coming from a web environment, the new style of desktop application development
environment supporting HTML5 and JavaScript to implement applications is your first
class choice of development. HTML5 provides superior support of HTML5 to handle WinRT
applications leveraging the existing skills of JavaScript and HTML that you already have.

Getting ready
Windows 8 style tiles application has some specific design principles that you need to follow.
The layout that we need to follow has already been created as a project template inside Visual
Studio 2012. Let us go ahead and create a blank JavaScript application from Visual Studio for
the time being.

Visual Studio already provides a number of templates that follow specific rules of the
design principles.

Chapter 6

279

In the preceding screenshot, the new project dialog box displays the following project templates:

 f Blank App: This is specifically used when you want to build an application from
scratch and do not want Visual Studio to help you on building the layout.

 f Grid App: This is designed when we need hierarchical navigation. The Grid App layout
has three-page layers defined. The outermost layer called Hub pages displays all
the items in a flat grid. Little information about each item is also displayed though.
Each of these items are grouped into heads. When an item from the hub page is
clicked on, the detail page gets loaded with the details of the item picked by the user.
Similarly following the pattern, the Section page displays one single group of items
when a group head is selected.

 f Split App: This is designed to support grouped navigation user interface. The app in
this style provides two views. The first page allows group selection and the second
page displays each item.

 f Fixed Layout App: The application does not scale based on the resolution and
maintains a fixed aspect ratio.

 f Navigation App: This project template defines navigation buttons already for you.

If we are starting to create the application for the first time, it will prompt you with a dialog
box asking for a developer license as shown in the following screenshot. It will ask for your
Windows Live ID credentials and finally produce a blank application template.

Building Touch-sensitive Device Applications in Windows 8

280

The blank template gives you a new application with a default.html file created for you.
Notice, if you see the css folder and the js folder, you will see a separate default.js and
default.css has already been created as well for you. This pattern is generally followed
while creating Windows 8 style applications. For instance, if you are going to add a new HTML
page named home.html, you will need to add a separate home.js file and a home.css
file as well.

The default.html file already reference the JavaScript and CSS file for it. It has also
referenced a few JavaScript files such as base.js and ui.js, which primarily provides the
base for creating the application. Another important thing to note is that the ui-dark.css
file has been added to the HTML that provides the black background. Now let us add some
code in default.html where it says:

 <div>
 <label>Enter your Credentials</label>

 <label>Enter your userid</label>

 <input type="text" id="userId" />

 <label>Enter your password</label>

 <input type="password" id="userpassword" />

 <button id="submitButton">Submit</button>

 </div>

Here we have created normal inputs for userId and userpassword and a Submit button.
The code is really simple HTML, and now when you click on Run from Visual Studio, you will
see the Windows 8 style-based textbox and password box has been replaced by this normal
HTML. In the default.css file, we add the following CSS:

div {
 margin:400px 400px 0 400px;
 border: 1px solid white;
}

For simplicity, we placed a border and a margin to the div tag that we create on the HTML.
Now let us make the HTML a little interactive by adding an event handler for the button using
the following code:

 function loaded() {
 var button = document.getElementById('submitButton');
 button.addEventListener('click', function () {
 var tb = document.getElementById('userId');

Chapter 6

281

 var pb = document.getElementById('userpassword');
 var span = document.getElementById('outputSpan');

 if (tb.value == pb.value)
 span.innerHTML = 'password is correct';
 else
 span.innerHTML = 'password is incorrect';
 });
 }
app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 loaded();
 }
};

In the preceding code we call the loaded() function when the application is launched.
args.detail.kind will be set to launch during the launch of the HTML. This is similar to
onReady of a web page. The loaded method adds an event handler to the button click event
and provides a value for the span. If you run the project, you will see the application will now
respond to the button click.

Now having said that, it is not only the HTML controls that we can use and work with when
working with Windows 8 style tiles applications. There are special complex controls that are
specific to the WinJS as well. Let us look into some of the interesting controls that can be used
in your Windows 8 style tiles application in this recipe.

How to do it...
1. Start the application that we are already working on and add a new page to it, we

will call it landingPage.html. From the New Item dialog box, select PageControl
to add a page with its JavaScript and CSS files. We create a new folder called
html and place the HTML file inside it. We also place the css and js files in their
respective folders.

2. We cut the HTML that we defined inside the default.html page and place it inside
content section of the landingPage.html.

3. Create a div tag in the default.html page. We set the div tag's id element
to hostDiv. We also place a data attribute to the body element to declare the
path of our landing page:
<body data-landingPage="/html/landingPage.html">
 <div id="hostDiv" ></div>
</body>

The declarative syntax is generally used by Windows 8 style tiles application to clearly
define the navigation.

Building Touch-sensitive Device Applications in Windows 8

282

The idea of placing the hostDiv tag is to load the content HTML fragments on the
fly based on the user input. It is important to define navigation within the application
such that different pages can be opened based on user interaction.

4. We port the JavaScript that we placed in default.js as well, and placed the same
in landingpage.js. Let's place the loaded function inside the ready method
defined in landingPage.

5. Once the JavaScript is ported correctly, we create our loaded() function in default.
As default.html acts as a shell that hosts all the other inner pages, we need to
implement navigation from this page. We add the following code:
function loaded() {
 homepage = document.body.getAttribute('data-landingPage');
 WinJS.Navigation.navigate(homepage);
}

The preceding code gets the attribute of data-landingPage and navigates the
page to this location. WinJS.Navigation handles all the navigation inside the
window (for instance, it maintains back, forward, and so on). The navigate method
invokes the navigated event to load the location passed in.

6. We handle the navigated event that occurs when the navigate method is called
to set the Promise to load the location inside contentHost:
WinJS.Navigation.addEventListener('navigated', navigated);
function navigated(e) {
 var url = e.detail.location;
 var host = document.getElementById('hostDiv');
 if (host.winControl && host.winControl.unload)
 host.winControl.unload();
 WinJS.Utilities.empty(host);
 e.detail.setPromise(WinJS.UI.Pages.render(url, host, e.detail.
state).then(function () {
 WinJS.Application.sessionState.lastUrl = url;
 }));
}

The first line adds an event listener to the navigated event. The navigated event
is called when the navigate method is called and the page is rendered and loaded
into the host. e.detail.location gets the location of the page that has been
passed. Here we first release the content of the host div using WinJS.Utilities.
empty and then we call setPromise to asynchronously render the content of the
URL directly inside the host. then is a method that creates the continuation task for
Promise, where the application lasturl is set, so that we can use the WinJS.
Navigation APIs to get back or forward to links. We also called the unload event
of the existing page before emptying the content of host div.

Chapter 6

283

7. Now this code is fully reusable and when you run the application, it automatically
calls landingPage.

8. When we call the navigate method with the URL, it will automatically call the
navigated event and load the URL inside div. It is always a better idea to load a
page inside the content host such that we don't move out of the shell. We create
another page and call it about.html. We place an anchor tag inside the default.
html file and point to the page as shown in the following code:
About Us
<a href="http://about.me/abhisheksur" target="MyIFrame"
style="margin-left:100px;">About the Author
<iframe name="MyIFrame" style="width:100%;height:100%"></iframe>

9. In the preceding code we have placed two anchors, one of which points to a local
page while the other points to an external page. To navigate to an external page,
we need an iFrame. The MyIFrame iFrame automatically loads the content from an
external source whenever the external link is clicked.

10. On the contrary, when the internal link is clicked, it loads the whole page inside
the main window and the whole page gets navigated. To load the page inside
the host placed in the default.html page, we need to listen to the click on an
anchor and replace the default navigation to the call to navigate as shown in the
following code:
WinJS.Utilities.query('a').listen('click', processAnchorClick);
 function processAnchorClick(e) {
 if (!e.target.href.indexOf("http://") == -1) {
 e.preventDefault();
 var link = e.target;
 WinJS.Navigation.navigate(link.href);
 }
 }

The first line listens to every click on an anchor tag and calls the
processAnchorClick method. So whenever any anchor is clicked on in the
document, processAnchorClick will be called automatically. We check whether
this is an internal or an external link. To have the external link to be loaded into
iFrame we need to bypass this call.

Building Touch-sensitive Device Applications in Windows 8

284

11. The preventDefault method prevents the default navigation of the document
to the page, but rather we call the navigate method manually to load the content
in hostDiv.

The preceding screenshot shows what the application looks like when loaded. You
can see the About Us and About the Author links on the top of the screen, each of
which navigates to load the internal and external document to the page.

12. Let's add a new page called Input.html and navigate the same when user
authentication is successful. We change the code to validate the Submit button
click using the following code:
if (tb.value == pb.value)
 WinJS.Navigation.navigate("/html/input.html");
else
 span.innerHTML = 'password is incorrect';

In this code we navigate to the input.html page when the password is correct.

13. In Windows 8 style based applications, even though we have all the HTML5 controls,
there are some other special WinJS controls as well, which we can use in our
application. Let us add a few of them in the input.html file:
<div id="createAppBar" data-win-control="WinJS.UI.AppBar" data-
win-options="">
 <button data-win-control="WinJS.UI.AppBarCommand" data-win-opt
ions="{id:'cmdSubmit',label:'Submit',icon:'accept',section:'global
',tooltip:'Submit item'}">
 </button>

Chapter 6

285

 <hr data-win-control="WinJS.UI.AppBarCommand" data-win-options
="{type:'separator',section:'global'}" />
 <button data-win-control="WinJS.UI.AppBarCommand" data-win-opt
ions="{id:'cmdCancel',label:'Cancel',icon:'cancel',section:'global
',tooltip:'Cancel item'}">
 </button>
 <button data-win-control="WinJS.UI.AppBarCommand" data-win-opt
ions="{id:'cmdCamera',label:'Camera',icon:'camera',section:'select
ion',tooltip:'Take a picture'}">
 </button>
</div>

Each of the WinJS controls is placed inside the code using div, and the control is
mentioned using the data-win-control attribute. WinJS.UI.AppBar provides
the application bar for the application. The application bar is a special area, which
is shown to the user when they swipe the bottom or top of the screen. You can
choose data-win-options="{placement : 'top'}" to place appbar on the
top of the window. Each data-win-options control takes a JSON object for the
properties of the corresponding WinJS control. The AppBarCommand buttons define
the ID, label, icon, and so on. We can add event listeners to these buttons just like
regular buttons:

The app bar comes to the window on demand and loads the buttons defined inside
it. The global section of the app bar is placed from the right-hand side, and generally
remains intact while the selection section starts from the left-hand side of the screen.
We can use an hr tag to create a separation between two AppBarCommand buttons.

14. The Appbar commands are defined in the Input.js file. We add an event listener
for when the submit or cancel button is clicked on to show a message box:
ready: function (element, options) {
 var submitBtn = document.getElementById("cmdSubmit");
 submitBtn.addEventListener("click", doClickSubmit,
false);
 var cancelBtn = document.getElementById("cmdCancel")
 cancelBtn.addEventListener("click", doClickRemove,
false);
}

Building Touch-sensitive Device Applications in Windows 8

286

The doClickSubmit and doClickRemove listeners pops up a message box to
show the content using the following code:

function showMessageBox(msg, title) {
 var msgbox = new Windows.UI.Popups.MessageDialog(msg, title);
 msgbox.commands.append(new Windows.UI.Popups.UICommand("OK",
function () { }));
 msgbox.showAsync();
}
function doClickSubmit() {
 showMessageBox("Thank you for submitting your survey. We will
get back to you soon", "Thank you");
}
function doClickRemove() {
 showMessageBox("You have cancelled the survey. Please come
back soon.", "We are sorry!");
}

The preceding code opens a message box with the message and title and with
one UICommand value OK. The Windows.UI.Popups.MessageDialog class
automatically creates a pop up message box for the user. The message box is
modal to the window.

15. Now let us define the main content for the window:
<label>Enter your name</label>
<input type="text" />

<label>Enter your email id</label>
<input type="email" />

<label>Enter your phone number</label>
<input type="tel" />

<label>Select todays date and time</label>
<div data-win-control="WinJS.UI.DatePicker" data-win-
options="{maxYear :'2015', minYear:'1990'}"></div>
<div data-win-control="WinJS.UI.TimePicker"></div>

<label>Guess a number</label>
<input type="range" />

<div id="flyout" data-win-control="WinJS.UI.Flyout">
 <label>Select your gender</label>
 <select>
 <option value="male">Male</option>
 <option value="female" selected="selected">Female</option>
</select>
</div>
<label>Rate our service</label>

Chapter 6

287

<div data-win-control="WinJS.UI.Rating"></div>

<div data-win-control="WinJS.UI.ToggleSwitch" data-win-
options="{labelOn:'Oh Yes', labelOff : 'Not at all', title : 'Do
you like Win8?'}"></div><div data-win-control="WinJS.UI.Tooltip"
data-win-options="{ innerHTML:'A special button!'}">
 <button>Check toolTip</button>
</div>

16. Here we first define a few HTML controls to accept the name, e-mail address, phone
number, range of numbers, and so on. WinJS.UI.DatePicker and WinJS.
UI.TimePicker define the date and time picker controls for the window.

The preceding screenshot depicts the final UI for the HTML. The HTML input controls
behaves properly by providing proper keyboard to the user.

17. The WinJS.UI.Flyout control creates a small message box, which flies out either
when something is selected or clicked outside the screen. To open a flyout we use
the following code:
btnFlyout.addEventListener('click', function () {
var flyout = document.getElementById('flyout');
 flyout.winControl.show(btnFlyout);
});

Here the flyout value is the ID of the div tag where the flyout is loaded. When the
button is clicked on, we call the show method to show the flyout panel adjacent to
the control passed in. Here the flyout loads adjacent to the btnFlyout button.

Building Touch-sensitive Device Applications in Windows 8

288

18. There is a special RatingControl variable that allows you to rate something on
the UI. We can handle the events of the controls in the same way as we did for other
controls. For instance, say we want to show a message box when the user rates
using RatingControl. To do this we add an id value of RatingControl, we call
it rtcontrol. We can then add an event listener to the change event of the control
and handle the event when rating is done:
var ratingcontrol = document.getElementById('rtcontrol').
winControl;
ratingcontrol.addEventListener('change', function (e) {
 showMessageBox('you have rated ' + ratingcontrol.userRating,
'Thank you for rating');
});

You will see when using WinJS control that you need to call the winControl property
of the DOM element to get the actual WinJS control. The change event defined inside
the WinJS control can then be handled normally.

ToggleSwitch allows you to select a Boolean value. The options define the title and
the on and off captions.

WinJS allows you to produce very cool tooltips using the WinJs.UI.Tooltip
control. This control allows you to place an HTML tooltip above a control.

How it works...
Each Windows 8 styled application supports a number of languages. Some of the languages
are close to the WinRT APIs such as C++, while some are most abstract ones such as WinJS.
The HTML5 and JavaScript support is one of the interesting additions to the Windows 8 style
tile application development. The HTML5 controls are redesigned totally for Windows 8 style
applications using WinJS libraries. There are a number of JavaScript library files associated
with the project automatically that form the entire framework of WinJS. With each of the
JavaScript library files, there is an associated metadata XML file associated. The metadata
defines the pluggability of the files with external libraries. Currently, you cannot define a
control using a WinJS library, but you can leverage HTML5 constructs easily for developing
cool applications.

Let us discuss the files that are useful in terms of where the WinJS library is concerned:

 f base.js: This defines namespaces of all the library classes and adds it to the WinJS
namespace. The base.js files form the entire library and define its construction.
Generally all the JavaScript classes are defined with strict turned on.

 f ui.js: This defines all the WinJS as well as HTML controls and all the associated
methods and properties associated with them. This class is also responsible for
generating any UI-related libraries such as animation, behaviors, and many more.

 f Windows: This maps to the external devices and APIs related to them. The API
dynamically creates itself during runtime based on the capabilities of the application.

Chapter 6

289

In this recipe, I have given you a brief introduction on how to create a basic WinRT application
using WinJS. Even though the library is well built, you must have already noted that HTML
is not capable of creating the UI for WinJS. Specifically, the WinJS controls need to call the
process method to create the actual WinJS object from div that we place for a control. The
call to process automatically detects the actual control that it needs to construct and calls
the constructor of the actual JavaScript library class that is associated with the control defined
in data-win-control and also find the options available from the JSON object passed to
the data-win-option attribute defined declaratively into div. Once the object has been
constructed, it can be retrieved from the wincontrol property from the DOM object defined.

There's more...
With HTML5 and JavaScript, the application scope and options are endless. We cannot cover
these in one single recipe, so here are the things that have been missed out.

How to deal with the look and feel of Windows 8 style tiles
application using JavaScript and CSS
Styling an application in a Windows 8 environment is important so that the application suits
itself with the user base with customizations. Windows 8 style tiles application uses CSS
stylesheets to apply styles to the properties. You can style an application using normal CSS
styles to adorn elements of each page.

By default the application also adds a CSS file to every page. The base CSS page allows you
to define themes. There are two themes already supported on the box. One is the light theme,
which writes content in black over a white background, and the other is the dark theme, which
is set by default and writes white content in gray background. The CSS files are ui-light.css
and ui-dark.css respectively.

These base CSS files also define some predefined styles and sometimes it makes a necessity
to override the base style.

For example, every HTML text control or password control has a button just on the
right-hand side of it. You can disable that from your style using the following code:

input[type=text]::-ms-clear {
 display:none;
}

The cross sign that comes on the textbox is styled using –ms-clear. Now to disable it, we
can place the preceding code, which overrides the existing style on the textbox and hides the
cross from any textbox on the screen. You can look into the ui-dark.css stylesheet to get
information about any styles applied to the controls.

Building Touch-sensitive Device Applications in Windows 8

290

While styling an application, there are special @media tags that you have noticed automatically
created for you in the template. The Windows 8 style tiles applications supports three kinds
of view:

 f fullScreen-landscape: This is the default view of the application where the
width of the screen is larger than the height

 f fullScreen-portrait: When the device is turned on, it automatically adjusts
to the portrait mode where the height is greater than the width

 f snapped: The snapped mode takes one-third of the screen where a small portion
of the application is snapped with another app

 f filled: In case of a filled mode, the app takes two-thirds of the screen

The style @media elements are defined for each of these states of the screen. When the
window is snapped, you can specify unique styles such that it looks good on the small section
of the screen. Similarly, you can specify unique styles for the filled view, which takes
two-thirds of the screen and finally for the full screen:

body {
 background-color:#808080;
}

@media screen and (-ms-view-state: fullscreen-landscape) {
 body {
 background-color:#ff6a00;
 }
}
@media screen and (-ms-view-state: filled) {
 body {
 background-color:#00ff90;
 }
}
@media screen and (-ms-view-state: snapped) {
 body {
 background-color:#0ff;
 }
}
@media screen and (-ms-view-state: fullscreen-portrait) {

Chapter 6

291

 body {
 background-color:#f00;
 }
}

In the preceding style, the application changes its background color when the application
state gets changed. It gives a different background for portrait, landscape, snapped, filled
and full screen views.

How to enable animation within a Windows 8 style tiles
application using WinJS
Animation is a special part of any application that creates a professional look and feel to
the user and also make them more engaged to the application. Most users interact with the
application, and animation provides a smooth finish on their feel and makes it very attractive
to them. WinJS has an built-in library that allows the pages, fragments, or individual user
interfaces to animate itself in response to the user's activity. The WinJS.UI.Animation
namespace exposes a lot of cool functionalities that can help animate UI elements quickly
and easily. Let us take a look at how to animate objects. We use the existing application that
has been created in the recipe to add the animation functionality:

app.onloaded = function (args) {
 var host = document.getElementById('hostDiv');
 var anim = WinJS.UI.Animation.enterPage(host, { top: '20px', left:
'300px' });
 anim.then(null);
}

In the preceding code, an enterPage animation is used which creates a transition animation
when the host is loaded. enterPage takes two arguments, the first one being the element
to animate and the second one being the top and left offset to animate. You can pass any
element to animate the DOM when loaded. You can pass document.body to animate the
whole document at a time as well.

For simplicity we have used the onloaded event to animate the
DOM. Generally, it should be written inside the navigated event
to make it animate whenever page is navigated.

Similarly, you can also have the fade animation using fadeIn and fadeOut calls.

Let us do it inside the navigated event call:

WinJS.UI.Animation.fadeOut(host).then(function () {
 WinJS.Utilities.empty(host);
 e.detail.setPromise(WinJS.UI.Pages.render(url, host,
e.detail.state).then(function () {

Building Touch-sensitive Device Applications in Windows 8

292

 WinJS.Application.sessionState.lastUrl = url;
 }));
 WinJS.UI.Animation.fadeIn(host);
 });

In the preceding code, during the transition, hostDiv which loads the UI gets faded out first
using the call fadeOut. As any animation automatically uses Promises, you can call them?
to set the content and finally show div again using fadeIn. If you notice, we have added the
call to fadeIn inside the then method right after all content is loaded. This is important as
fadeOut is an asynchronous call and we need to make sure that fadeIn is called after the
fadeout is completed. This creates a very good transition effect to the user.

There are also very cool animations called pointerDown and pointerUp animations,
which gives life to elements on the UI. Even though pointerDown and pointerUp are just
animations, using it will make the user interaction very responsive, as they will see that the
UI has responded to their call.

Let us add a pointerDown animation to all the titles of the pages. We can query clicks of
all the span elements from default page such that we can run the pointerDown animation
effect when the user clicks on the title of any page:

WinJS.Utilities.query('span').listen('click', function (e) {
 WinJS.UI.Animation.pointerDown(e.target).done(function () {
 WinJS.UI.Animation.pointerUp(e.target);
 });
});

The preceding code listens to the click event of any span and calls the function that has
been passed. The function then runs the pointerDown animation on the target and also
invokes the pointerUp animation when it finishes. The pointerDown animation will make
the clicks feel like responding with a small change in size which is already optimized by
the environment.

How does the event life cycle work in WinJS
There are a number of events that fire when the application gets loaded for the first time.
The events that are generated when the application is first loaded are depicted in the
following diagram:

Chapter 6

293

OnLoaded

DOMContentLoaded

OnActivated

OnReady

OnCheckPoint

OnUnload

During the loading of the application, the OnLoaded method is called first, followed by
DOMContentLoaded, then OnActivated and finally OnReady. During the application life
cycle, there might be times when the application gets suspended or terminated, in such
situations, the application generates the OnCheckPoint and OnUnload events that are
the points to save the state of the application before the application gets terminated.

The initial events are important to identify when we fetch the controls. Generally, the controls
get loaded before the OnLoaded method is fired, and hence the application can call any
control on that.

Remember, even though you do not handle these events, the application gets loaded with
normal HTML controls, the WinJS controls will not load until an explicit call to process the
control is called.

During the initial load up, the application needs to call:

WinJS.UI.processAll()

This call will process all the WinJS controls or otherwise you can also call WinJS.
UI.Process(control) to process individual control during the initial application load up.

Building Touch-sensitive Device Applications in Windows 8

294

Writing a library for WinJS
WinJS allows organizing your JavaScript object by giving you an API just like the prototype
available in browsers. The WinJS library itself is built using the same API. In this recipe, let us
try to build our own library and use it later on, so that we can create our own API for reusability
in different sections of the same or separate applications. We will define how you can create
your own type using WinJS namespace and classes. We will also discuss the API that helps in
defining a class, a namespace, deriving a class, and adding a mixin.

How to do it…
1. The WinJS.Class.define API is used to define a JavaScript type that can be

used later. The API allows you to supply a constructor function and a set of instance
members. You can also pass static members to a type using the same API:
var MyType = WinJS.Class.define(function (name) {
 //constructor
 this.name = name;
 this.myInstanceProperty = 30;
},
{
 //JSON to define member property and methods
 myInstanceProperty: 0,
 myInstanceMethod: function () {
 return "from instance";
 }
},
{
 //JSON to define static property and methods
 MyStaticProperty: true,
 MyStaticMethod: function () {
 return MyType.MyStaticProperty;
 }
});

var myobj = new MyType("hi");
myobj.name = "mynewname";
myobj.myInstanceProperty = 20;
myobj.myInstanceMethod();

MyType.MyStaticProperty = false;
MyType.MyStaticMethod();

Chapter 6

295

The preceding code calls WinJS.Class.define to define a type. The API takes
three parameters, the first one being the method that needs to be called as a
constructor, and the second being the JSON object as a parameter. The first JSON it
uses for instance members and second JSON parameter is used for static members.

The myobj object is created from the type MyType, which has defined the
properties name (created inside the constructor), myInstanceProperty, and
a method myInstanceMethod. The static members MyStaticProperty and
MyStaticMethod are directly available on the type MyType.

Visual Studio is smart enough to automatically create the
IntelliSense property based on the type for your help.

2. WinJS also allows you to define a property using the Object.defineProperty API
of WinJS:
Object.defineProperty(MyType.prototype, "myNewProperty", {
 get: function () { return "" }
});
var value = myobj.myNewProperty;

Here we have added a new instance property to MyType. The MyType.prototype
instance adds myNewProperty to the instance, while if you need to add as static,
you can pass MyType itself.

3. The WinJS.Class.derive API is used to derive an existing type. This is the same
as the inheritance of a type. Let us see the following code:
var MyDerivedType = WinJS.Class.derive(MyType, function (name) {
},
{
 //Instance Members
},
{
 //Static members
});
var mydobj = new MyDerivedType("hello");
myobj.myInstanceProperty = true;

The code derives an existing type and adds new properties or methods to it. You can
also override a method inside it by redefining the same again. As per OOP rules, static
members are not derived automatically.

Building Touch-sensitive Device Applications in Windows 8

296

4. Just like what we see in the .NET environment, the WinJS also allows you to wrap
your types inside a namespace using the WinJS.Namespace.define API:
WinJS.Namespace.define("SpecialTypes", {
 MyType: WinJS.Class.define(function (name) {
 //constructor
 this.name = name;
 this.myInstanceProperty = 30;
 },
 {
 //JSON to define member property and methods
 myInstanceProperty: 0,
 myInstanceMethod: function () {
 return "from instance";
 }
 },
 {
 //JSON to define static property and methods
 MyStaticProperty: true,
 MyStaticMethod: function () {
 return MyType.MyStaticProperty;
 }
 })
});
var myobj = new SpecialTypes.MyType("hi");

Here MyType is wrapped inside the SpecialTypes namespace, such that when
we try to create an object of the type, we need to specify the namespace in front
of the type.

5. Mixin are special objects that implement certain functionalities. WinJS allows you to
pass a JSON object and mix the same with an existing type such that all the members
defined within that type are automatically copied to the type. The WinJS.Class.mix
namespace is used to mix a type with another:

var mixin = {
 myMethod: function () {
 return "myMethod";
 }
};
WinJS.Class.mix(SpecialTypes.MyType, mixin);
var mixobj = new SpecialTypes.MyType("helloworld");
mixobj.myMethod();

Chapter 6

297

So here the mixin object has a method called myMethod that has been mixed to the
type called SpecialTypes.MyType, which adds it to the type. Mix is generally used
to copy functionalities defined within an external library inside its own type without
defining it again.

WinJS JavaScript APIs allow the developer to get the full flavor of object-oriented principles
without going through the existing complexity of the JavaScript API.

See also
 f You can refer to the following link:

http://bit.ly/Win8Javascript

Building your first Windows 8 style tiles
application using C# and XAML

XAML is the local .NET language that is also supported while building a Windows 8 style tiles
application. Just like HTML5, XAML is an XML-based design language that has the inherent
capability of working with .NET languages and is built on top of .NET. XAML is important to
define the UI while the code is written either in C# or VB.NET or any .NET language supported
by WinRT. In this recipe we are going to use XAML and C# to work with our Windows 8
style applications.

Getting ready
Let us start the recipe by creating a blank XAML based Windows 8 style application. When the
application is open, you will see a file called App.xaml opened for you. This file provides the
main application level configurations that you can apply on the application. For instance, if
you want to define a common resource, or override search or sharing charm behaviors or
even changing the startup page, this is the right place to look at.

To start with the application let's start creating a UI for login:

 <Popup x:Name="lgCtrl" IsOpen="False">
 <StackPanel Orientation="Vertical" Background="Red"
x:Name="pop" >
 <TextBlock Text="Enter your credentials"
HorizontalAlignment="Center" Foreground="White" FontSize="25" />
 <TextBlock Text="Id" Margin="10" Foreground="White"
FontSize="25" />
 <TextBox x:Name="txtid" />
 <TextBlock Text="Password" Foreground="White"
FontSize="25" />

Building Touch-sensitive Device Applications in Windows 8

298

 <PasswordBox x:Name="txtpwd" Height="40"
Margin="5,1" Width="408" />
 <Button x:Name="btnLogin" Click="btnLogin_Click_1"
Foreground="Wheat" Width="100" Content="Submit" ></Button>
 <TextBlock x:Name="tbStatus" Foreground="White" />
 </StackPanel>
 </Popup>

If you have read Chapter 7, Communication and Sharing using Windows 8, already, you
must be already familiar with how to work with XAML. Here I have defined a simple XAML
control that uses a pop up to load the UI onto the screen. Pop ups load the screen over some
screen in the background. It invokes the btnLogin_Click_1 event handler when the button
is clicked.

When the button is clicked, we either show some message depending on the validity of
the password, or navigate to another screen called input.xaml. To do this we use the
following code:

private void btnLogin_Click_1(object sender, RoutedEventArgs e)
{
 if (!txtid.Text.Equals(txtpwd.Password))
 tbStatus.Text = "Password is incorrect";
 else
 this.Frame.Navigate(typeof(input));
}

The Frame object holds the reference of the outer navigation frame. When a page is
navigated to using the Navigate method, the page automatically loads the page in the UI.
Now let us explore some of the controls that can be used in Windows 8 style tiles applications
using XAML in this recipe.

How to do it...
1. Start Visual Studio 2012 and open input.xaml and write some code to explore

some of the other controls that useful in XAML:
<StackPanel Orientation="Horizontal">
 <HyperlinkButton Content="About Us" Click="HyperlinkButton_
Click_1" />
 <HyperlinkButton Content="About the Author"
Click="HyperlinkButton_Click_2" />
</StackPanel>
<TextBlock Text="Thank you for logging in to the system"
Style="{StaticResource PageHeaderTextStyle}" />

Here we have created two HyperLinkButton objects that place a link on the UI.
These buttons need the Click handler to work with.

Chapter 6

299

2. There are a lot of styles defined for any XAML-based project. If you open Common\
StandardStyles.xaml, you will see a number of styles predefined within the
project that can be used later on when required. In the preceding XAML, the style
called PageHeaderTextStyle has been defined inside StandardStyles.xaml.

3. We add a new page and named it About Us. We add some text to this page such
that the page doesn't look empty. The first HyperLinkButton object will navigate
the UI to this page and the second link will get HTML from the server and load it to
the UI.

4. Let us add a webView control which is used to navigate to an HTTP link:
<WebView x:Name="webView1" Visibility="Collapsed" />

We have made it invisible initially and show only when the page is navigated to an
external site.

5. Let us add content to handle the button clicks as shown in the following code:
private void HyperlinkButton_Click_1(object sender,
RoutedEventArgs e)
{
 this.Frame.Navigate(typeof(AboutUs));
}

private void HyperlinkButton_Click_2(object sender,
RoutedEventArgs e)
{
 Uri targetUri = new Uri(@"http://www.about.me/abhisheksur");
 webView1.Navigate(targetUri);
 webView1.Visibility = Windows.UI.Xaml.Visibility.Visible;
 spMain.Visibility = Windows.UI.Xaml.Visibility.Collapsed;
}

In the preceding code, the first button just navigates to a page created on the inside
of the project. The second link navigates to an external site and make the WebView
control visible. Hence, when the second link is clicked, the HTML content from the
Web is shown over the WebView control.

6. Most of the applications define an application bar to list the common commands.
Windows 8 style tile applications support the application bar to be added either on
the top of the screen or on the bottom of the screen. Let us define the application
bar for our page using the following code:
<Page.BottomAppBar>
 <AppBar x:Name="bottomAppBar" Padding="10,0,10,0">
 <Grid>
 <StackPanel Orientation="Horizontal"
HorizontalAlignment="Left">

Building Touch-sensitive Device Applications in Windows 8

300

 <Button Style="{StaticResource
PhotoAppBarButtonStyle}" Click="Button_Click"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal"
HorizontalAlignment="Right">
 <Button Style="{StaticResource
SaveAppBarButtonStyle}" Click="Button_Click"/>
 <Button Style="{StaticResource
DiscardAppBarButtonStyle}" Click="Button_Click"/>
 </StackPanel>
 </Grid>
 </AppBar>
</Page.BottomAppBar>

We have added an AppBar control on the BottomAppBar content of the page. This
enables the application bar to kick in when the user swipes from the bottom of the
screen. The AppBar control holds buttons inside it, which has been styled by some
of the predefined styles in the standardStyles resource file.

7. Now let us look into the click handler of the buttons of Appbar:
private async void Button_Click(object sender, RoutedEventArgs e)
{
 var msgbox = new MessageDialog("You have clicked " + (sender
as Button).Name, "Appbar button clicked");
 var uiCommand = new UICommand("Thanks");
 msgbox.Commands.Add(uiCommand);
 await msgbox.ShowAsync();
}

The preceding code creates a message box and shows the same on the screen with
one button to cancel the message box with the label "Thanks" on it. A message box is
a small modal dialog which displays message to the user.

8. Now let us write the main content of the application:
<TextBlock Text="Enter your name" />
<TextBox Grid.Column="1"/>
<TextBlock Text="Enter your email id" Grid.Row="1" />
<TextBox InputScope="EmailSmtpAddress" Grid.Row="1" Grid.
Column="1"/>
<TextBlock Text="Enter your phone number" Grid.Row="2" />
<TextBox InputScope="TelephoneNumber" Grid.Row="2" Grid.
Column="1"/>

Chapter 6

301

In the preceding code, we have introduced InputScope for a control. The
InputScope property defines the input type of a textbox. Windows 8 automatically
sees the InputScope property and provides the appropriate on screen keyboard
to the user. You can see that in addition to a normal textbox, you can also define an
e-mail textbox, a telephone textbox, and so on.

9. A slider gives the user an option to specify a value from a range of numbers. The
Guess a number field defines a Slider control that shows a range of numbers:
<TextBlock Text="Guess a number" Grid.Row="3" />
<Slider Grid.Row="3" Grid.Column="1" />

10. ToggleSwitch is a unique control to toggle between two states. The
ToggleSwitch control has OnContent and OffContent properties, which are
shown when the switch is on or off. ToggleSwitch is similar to ToggleButton but
visually they are different:
<TextBlock Text="Are you sure you like this app?" Grid.Row="4"/>
<ToggleSwitch OnContent="Yes" OffContent="No" Header="Liked it ?"
Grid.Row="4" Grid.Column="1"/>

11. ToggleButton is bound with a pop up, which is a flyout panel displaying some
content to the user when the button is clicked:
<ToggleButton Content="Show Popup" Grid.Row="5"
x:Name="tbtnOpenPopup"/>
<Popup IsOpen="{Binding ElementName=tbtnOpenPopup,
Path=IsChecked}" FlowDirection="LeftToRight"
IsLightDismissEnabled="True">
 <StackPanel Orientation="Vertical" Background="White">
 <TextBlock Text="Enter your gender" Foreground="Black" />
 <ComboBox>
 <ComboBoxItem Content="Male" />
 <ComboBoxItem Content="Female" />
 </ComboBox>
 </StackPanel>
</Popup>

Here the pop up is bound to the tbtnOpenPopup control on its IsChecked
property. When ToggleButton is pressed, it opens the pop up automatically as
it invokes a change on the IsChecked property, to show the content inside it.

Building Touch-sensitive Device Applications in Windows 8

302

How it works...
Windows 8 supports designing applications using XAML and C#. XAML is a powerful technique
to define the UI and bind the UI with the object code. The WinRT defines APIs to support
XAML-based programming techniques. In this recipe, we have covered some of the interesting
controls that are present in XAML environments and can be used while creating an app in
XAML technique. The XAML window contains a few sections:

 f Frame: It defines the shell of the program. You can load user controls inside one shell
page, or you can use the navigation UI to change the frame's main page.

 f StandardStyles: Inside the common folder of each project, there are a number of
styles defined automatically by the project templates. The common styles are useful
to define unique user experiences for an app.

 f App: Each application provides an App class that configures the application. The
basic usage of the App class is to provide the starting point of the application.

Each XAML file has a corresponding .cs file associated with it. The CS file creates a .NET
source file which can be coupled with the XAML design to create interactivity. The WinRT types
are converted to .NET interfaces and are exposed using C# .NET languages. The reference to
.NET Windows 8 style applications has automatically taken which refers to all the types that
are present in .NET library and also the types that maps to the WinRT COM types.

There's more...
After creating one of the most basic UIs using Windows 8 style tiles applications let us
consider some of the other interesting additions that makes sense to know.

What are the layouts available for a Windows 8 style tiles
applications
Windows 8 style tiles application supports a number of layouts as we have already seen in the
JavaScript section of this chapter. The supported layouts are as follows:

 f Snapped

 f Filled

 f FullScreen

 f Portrait

 f Landscape

It is also worth noting that successful implementation of these
layouts is also required for the app to be submitted to the
Windows store.

Chapter 6

303

Snapping makes the app 320px wide and allows the app to be placed beside another app.
When one app is snapped with another, two-thirds of a portion of the screen is taken by
another app while the rest is taken by this app. The VisualStateManager class is used
to display various states of the app.

While designing an app, it should be taken in mind to create an app to support all the snapping
modes. Let us define how we can adjust the layout in Windows 8 style tiles applications:

<VisualStateManager.VisualStateGroups>
 <!-- Visual states reflect the application's view state
-->
 <VisualStateGroup>
 <VisualState x:Name="FullScreenLandscape">
 <Storyboard>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Filled">
 <Storyboard>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="FullScreenPortrait">
 <Storyboard>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Snapped">
 <Storyboard>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

Even though we are creating a clear free flowing UI that can be adjusted easily in all types of
resolutions, there is VisualStateManager.VisualStateGroups which can be named
as Snapped, FullScreenPortrait, Filled, or FullScreenLandscape to define the
animation which needs to be performed when VisualState changes from one state to
another. The VisualStatemanager class can be written on any screen and indicates how
the page will respond to various layout events.

Generally inside VisualStateManager we hide some portion of the visual and show some
other portion depending on the size of the screen:

<VisualState x:Name="Snapped">
 <Storyboard>

Building Touch-sensitive Device Applications in Windows 8

304

 <ObjectAnimationUsingKeyFrames Storyboard.
TargetName="itemListView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.
TargetName="itemGridView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
</VisualState>

For instance, in the preceding XAML, when the page is snapped, itemListView is made
visible which is created for 320 px and itemGridView is for all other visual states. The
ObjectAnimationUsingKeyFrames class defines the animation of objects by defining
every keyframe.

Application snapping is only available to devices that are
running with a resolution of more than 1366px.

How to implement animation in Windows 8 style tile applications
In Windows 8 style tiles application, animations play a very vital role in terms of user
experiences. From the opening of Charms to slide animation of the settings or even animation
inside the application itself, all make up the experiences that the application user gets.
Windows 8 applications has built-in support for animation, for instance controls such as
ToggleSwitch, ApplicationBar, GridView, and ProgressRing. All have in-built
animation and they all animate on either, with the user interaction or without it.

Although you can build your own custom animations using StoryBoards as we have already
discussed in Chapter 7, Communication and Sharing using Windows 8, there are a lot of
in-built animation libraries already present for you, which can be used into your application
to maintain really consistent behaviors to the user. All the library animations are already
optimized and you can take advantage of using them on the go.

In Windows 8 style tiles application we have either the Theme Transitions or Theme Animations.

 f Theme Transitions: These animations are automatically invoked when they are
added to certain state changes. For example, EntranceThemeTransition,
RepositionThemeTransition, AddDeleteThemeTransition,
ReorderThemeTransition, and so on.

Chapter 6

305

 f Theme Animations: These animations need to be explicitly invoked by
the application developer. For example, FadeInThemeAnimation,
FadeOutThemeAnimation, PopInThemeAnimation, PopoutThemeAnimation,
SplitOpenThemeAnimation, SplitCloseThemeAnimation,
TapUpThemeAnimation, TapDownThemeAnimation,
RepositionThemeAnimation, and so on.

Let us look at how to define the Transitions and Animations in code:

<Grid Style="{StaticResource LayoutRootStyle}">
 <Grid.ChildrenTransitions>
 <TransitionCollection>
 <EntranceThemeTransition FromHorizontalOffset="500" />
 </TransitionCollection>
 </Grid.ChildrenTransitions>
 </Grid>

In the preceding code, a EntranceThemeTransition object is defined for the Grid
transition, such that when the grid is loaded for the first time, the UI elements will move
from a horizontal offset of 500px. This will give a smooth animation behavior to the user.

Theme Animation on the other hand is explicitly called. To define a Theme Animation, we
need to define a storyboard inside a VisualState class which will be triggered automatically
when the control goes into that state. The animation can also be invoked by handling custom
events on the control, but it is recommended to use VisualStatemanager instead:

<VisualState x:Name="Opened">
 <Storyboard>
 <SplitOpenThemeAnimation OpenedTargetName="Border"
 ContentTargetName="ScrollViewer"
 ClosedTargetName="DropDownToggle"
 ContentTranslationOffset="0" />
 </Storyboard>
</VisualState>

Here when the control fires the Opened event, SplitOpenThemeAnimation is triggered
and the animation gets executed. We can also use our own custom animation inside
the storyboard.

See also
Visit the following link for more examples:

http://bit.ly/Windows8XAML

Building Touch-sensitive Device Applications in Windows 8

306

Working with storage files in Windows 8
style tiles applications

Data persistence is one of the important concerns of any device running any application.
While working on any app, the first thing that the user might want is to persist some data
inside the app such that when the user comes back, the data remains intact even after
several days. Even though files can be used on the devices with the support of specifying local
system drive locations, this is not the recommended way of defining persistent storage. We
can use declarations to access the pictures library, music library, and so on, but the data will
not be app-specific or would not belong to any security that the app can take advantage of.
The local storage on these storage locations are often not very secure as the user has direct
access to these locations.

Windows 8 style tiles application provides the API to support storage in the application itself.
They provides both local storage and roaming profile storage such that the application can
share or sync data across multiple devices. The app data can be user isolated, such that the
data associated with one user cannot be accessed by another user even on the same device.
The usage of storage classes while storing data inside the app is recommended.

There are in fact three kinds of storage:

Local Data

Local folder
similar to app

data folder
storage.

Stored locally into
the file-system

Stored on the
server for current

user.

Data are stored in
Cloud and can be
synched between

devices.
Data stored on

temporary
location on local

device.

Roaming
Data

Temporary
Data

The preceding figure shows how the three kinds of storages are laid out. The app data files
and settings are laid out to local data folders.

Chapter 6

307

The data is set as private to the device. When using the roaming profile, the data is synched
with the cloud such that the data is available to multiple devices. The temporary data storage
are local temporary storage files.

How to do it...
In these steps, we are going to cover how to work with storage in Windows 8 style
tiles-based application:

1. Start a new application and let's call it LocalDataStorageSample. Open the
project and create a file. We call it AppDataManager.

2. Write two methods to store and retrieve data from a local file using the
StorageFile API:
public static async Task SaveToLocalDataAsync<T>(T data, string
filename)
{
 StorageFile file = await ApplicationData.Current.
LocalFolder.CreateFileAsync(filename, CreationCollisionOption.
ReplaceExisting);
 var stream = await file.OpenStreamForWriteAsync();
 var serializer = new DataContractSerializer(typeof(T));
 serializer.WriteObject(stream, data);
 await stream.FlushAsync();
}

This code creates a file on the Local folder of the application. The Local folder is
the local AppData folder which the application is associated with. It is an isolated
storage that the application has access to. The code saves the data we pass into the
method into the filename. The steps are to open OutputStream and write serialized
data into the file. FlushAsync actually flushes the buffered data into the file.

3. Now let us create a method to retrieve the information stored into the file. Let us write
the following code:
public static async Task<T> RestoreToLocalDataAsync<T>(string
filename)
{
 try
 {
 var file = await ApplicationData.Current.LocalFolder.
GetFileAsync(filename);
 var stream = await file.OpenStreamForReadAsync();

Building Touch-sensitive Device Applications in Windows 8

308

 var serializer = new DataContractSerializer(typeof(T));
 return (T)serializer.ReadObject(stream);
 }
 catch { return default(T); }
}

4. The preceding code is just the reverse to the previous one. Here StorageFile is
opened and it uses InputStream to deserialize the data stored into the file and a
string is created and returned back.

5. Create a textbox (named txtData) on the UI and two buttons to load and save the
data. We create button handlers to save and load data respectively:
string filename = "localData.txt";
private async void Button_Click_1(object sender, RoutedEventArgs
e)
{
 await AppDataManager.SaveToLocalDataAsync<string>(txtData.
Text, filename);
}

private async void Button_Click_2(object sender, RoutedEventArgs
e)
{
 txtData.Text = await AppDataManager.RestoreToLocalDataAsync<st
ring>(filename);
}

The preceding code creates a file named localData.txt on the Local folder
when Save is clicked. The data from the file is retrieved in the same way as using
the Load button.

6. Similar to LocalFolder, the current application can also hold
ApplicationSettings which will be stored into the registry. Let us create some
helper methods to store and retrieve settings:
public void SaveSetting<T>(string settingName, T value)
{
 ApplicationData.Current.LocalSettings.Values[settingName] =
value;
}
public T GetSetting<T>(string settingName)
{
 try
 {
 var localsettings = ApplicationData.Current.LocalSettings.
Values;

Chapter 6

309

 if (localsettings.ContainsKey(settingName))
 {
 return (T)localsettings[settingName];
 }
 }
 catch { }
 return default(T);
}

The above code sets the LocalSetting value based on the settingName we pass
to it and save the value to the settingName. The GetSetting returns back the
object that has been previously stored into settings.

7. Rather than using LocalFolder or LocalSettings always, the StorageFile
API provides a RoamingFolder or RoamingSettings data folder as well, such
that when the application saves data, it directly stores it to their roaming profiles and
when another device opens the same file, it gets the data from the roaming folder.
RoamingFolder points to the user's SkyDrive.

We can use ApplicationData.Current.RoamingFolder instead of
ApplicationData.Current.LocalFolder to access the roaming folder for the
current user.

8. Application data settings supports containers for composite data storage. Let us look
into the following code:
public void SaveSetting<T>(string settingName, T value, string
containerName, bool roam = false)
{
 var dataSettings = roam ? ApplicationData.Current.
RoamingSettings : ApplicationData.Current.LocalSettings;
 var container = dataSettings.CreateContainer(containerName,
ApplicationDataCreateDisposition.Always);
 container.Values[settingName] = value;
}

In the preceding code, the dataSettings variable creates a new container using
CreateContainer. It is a catalog folder where a set of values can be stored.
So for each container there is a collection of Values objects where we are saving
our settings.

9. While using RoamingData, there are times where the AppData gets changed
to another device and the current sync operation of the roaming profile gets
the changed data to the local device. In such scenarios, you can use the
ApplicationData.Current.DataChanged event that gets called when
data has been changed on the current folders.

Building Touch-sensitive Device Applications in Windows 8

310

How it works...
Storage classes give special access to filesystem folders. From a Windows 8 style tile
application, a local filesystem is not available. Hence to access a local filesystem, the only way
is to use the LocalStorage classes, even though the application can invoke the capability to
store in some special known folders. The superior API to store into the local storage is capable
of storing files and settings, where the files are stored into the AppData folder of the current
users application and the settings are stored into the local registry.

The LocalStorage class also supports the usage of the RoamingData folders where the
application stores the files into the SkyDrive associated with its current profile.

RoamingData is used to synch data between devices such that the user can have a unique
user experience by using the application. These data automatically syncs up with the SkyDrive
in a bandwidth-friendly way by a background system service that runs automatically to do this.

There's more...
Let us consider a few more options that we can explore regarding the recipe.

How to work with the Settings charm for an application
Every application provides some settings for the application. Windows 8 style tiles application
provides a charm button that automatically opens up a sliding panel to apply settings for a
particular application that the user is running. Even though there are some basic settings for
every application which are displayed on the panel, the application programmer can also add
custom settings to this pane by directly accessing it from the application. Let us look into how
to work with it:

public MainPage()
{
 this.InitializeComponent();
 SettingsPane.GetForCurrentView().CommandsRequested += MainPage_
CommandsRequested;

}

void MainPage_CommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)
{
 var clearTextBoxSettings = new SettingsCommand("Clear Data",
"Clear",
 cmd =>
 {

Chapter 6

311

 this.txtData.Text = string.Empty;
 });
 args.Request.ApplicationCommands.Add(clearTextBoxSettings);
}

In the preceding code we handled the CommandsRequested event of CurrentView of
SettingsPane. This event is triggered when the application user opens the Settings charm.
In the event handler we have placed a Clear command to clear data on the screen. Adding
SettingsCommand to the ApplicationCommands collection will make the Settings button
be displayed on the Settings pane that comes when the Settings charm is clicked:

The preceding screenshot depicts how the settings charm displays the custom clear button
with the default permission button that exists for every application. The Clear button will
invoke the user code defined inside the Application command.

How to take pictures from the camera in a Windows 8 device
Windows 8 style devices contains a web camera. Now from a Windows 8 style tile
application, it is easy to get a picture from the webcam. Let us look at how to get an
image from the webcam.

To do this, first you need to add a declaration on the Package.appxmanifest file to have
access to the webcam. Once you have access, you can write the following code to get an
image from the camera:

public class CameraCapture
{
 public async void TakeSnapshot(string filename)
 {
 var ui = new CameraCaptureUI();
 ui.PhotoSettings.CroppedAspectRatio = new Size(4, 3);
 StorageFile file = await ui.CaptureFileAsync(CameraCaptureUIM
ode.Photo);

Building Touch-sensitive Device Applications in Windows 8

312

 if (file != null)
 {
 var stream = await file.OpenAsync(FileAccessMode.Read);
 StorageFolder storageFolder = KnownFolders.
PicturesLibrary;
 var result = await file.CopyAsync(storageFolder,
filename);
 }
 }
}

This code takes a picture from the camera and writes it to PicturesLibrary. To access the
pictures library, the application also needs to add a capability on the manifest.

The CameraCaptureUI class gets a file from the CaptureFileAsync call. When the photo
is captured, we crop the image in a 4:3 aspect ratio and save it to the pictures library.

See also
 f The How to share application data between applications using Windows 8

environment recipe in Chapter 7, Communication and Sharing using Windows 8

 f Refer to the following link:

http://bit.ly/Windows8Storage

Understanding the application life cycle of
WinRT applications

Windows 8 applications are quite different than the normal desktop applications. The
applications that need to build on this environment have to undergo certain changes, or you
need to take care of certain special significances while building an application. For example,
in case of normal Windows applications, the user has the close buttons for each application
which is used to close the application, while in Windows 8 style tiles application, the user
does not have a close button in general (and it is explicitly recommended not to have one).
The user has to switch between different apps rather than closing one and opening another.
Another important fact is that the Windows operating system core also takes care of the
memory usage on the box or the availability of memory, based on which it might suspend an
existing app or terminate it. Thus even though the application hasn't been stopped by the
user explicitly, the process can be terminated automatically by the operating system. Again,
Windows 8 style tiles app are sandboxed and have a lot of restrictions to it. It cannot do
anything to the computer which users are allowed to do. The application code is treated
as far less trusted in the Windows 8 style tiles application.

Chapter 6

313

The desktop applications provides full knowledge to the user on what state the program is in.
The application doesn't close itself, even when there are memory crunch scenarios. Generally
in traditional applications, the application that has been executed later will theoretically
have less performance than the applications that run before. Each application will have a
secure button on the taskbar. But in the case of Windows 8 style tiles application, things are
quite different. The application makes sure that the latest application will have the same
application performance than those launched earlier. The applications will not hold the
taskbar but rather produce a special ribbon on the left-hand side of the screen to display
recently launched applications. The applications also won't run when they are not in the
foreground. When the application is placed in the background, it goes into the suspended
mode and doesn't consume CPU memory after a while. It will still go on using the memory it
is allotted for, but the operating system can terminate the application when it sees a memory
crunch. This system has the following three benefits:

 f Multiple applications to run on the same machine without any memory
crunch situation

 f It reduces the burden to shutdown the application by hand

 f It prevents the application in the background from consuming CPU and memory in the
background, and hence the process running in foreground will have full advantage

But to have a better experience from the application, the user shouldn't be aware of what
happened to the application. The application should be developed in such a way that the user,
when switching between applications, will have an impression that the it has been running all
along. So as a developer, it is a little bit harder to improve end users' experiences:

Running actively
with CPU and
Memory

Notified for
Suspension, waits
for 5 seconds
before suspending

Consumes no CPU
but only memory

Do not consume
any process space/
memory

Not Running

Application doesn’t
consume CPU or
Memory

Activated

Suspending

Suspended

Terminated

In the preceding diagram, the application is first in the Not Running state where the
application is not running. The user activates the application using the Start menu and uses
it actively. Now at a certain time, the user can switch to another application. Windows will
then suspend the application. It will first wait for 5 seconds to ensure the application is not
reactivated. It then pushes it into the Suspending mode, where the user is notified for the last
time to save the state. It gives 5 seconds more to save the application state or any non-trivial
information and finally it goes into the Suspended mode.

Building Touch-sensitive Device Applications in Windows 8

314

In Suspended mode, the application is not allowed any CPU usage but memory still remains
there. The operating system terminates the program only when the application is not used
for a long time and there is a memory crunch.

In this recipe we are going to cover how to work with various application life cycle stages.

Getting ready
In the case of using C#-based Windows 8 application projects, we are provided with the App
class which generally provides all the application level events. The App class invokes various
special events that can be used to handle the application life cycle stages. Let us start a blank
project from Visual C# Windows 8 style tiles application and name it.

For JavaScript-based projects, the Shell page contains events such as
WinJS.Application.onactivted or WinJS.Application.
oncheckpoint to do similar tasks. The onactivated event
is equivalent to the OnLaunched event and oncheckpoint is
equivalent to OnSuspending as discussed here.

In the app.xaml.cs page, you will see a number of events already defined for you.
This comes with the project template. There are two events handled in this class. One is
OnLaunched, which indicates whether the application is started by the user. This may hold
the state of the previous run. The other events are OnSuspending and OnResuming. The
OnSuspending event is helpful when the application is being suspended and gives you 5
seconds of time to save the data and state. The OnResuming event is called whenever the
application is turned to activated from the Suspended state. Generally, we need to save data
during this time and also the state, where the application is in before the application gets
suspended. This will ensure that if the application gets terminated and gets activated again,
we can restore the state and data that the user has already been working on.

The idea of the API is to create a simple UI that will store the data when modified on the app
on the fly. I mean the application will autosave data as it is working on to the local storage
folders. When the application gets terminated by the operating system, it will reload the data
present on the application during its re-launch. In this way, any temporary data added by the
application can be restored when the application gets suspended and eventually terminated.

How to do it...
1. Lets add a model class to the solution. We call it StateObject. The StateObject

class has been made very simple by adding one single property that generates one
single GUID. We override the ToString method to return the same GUID:
public class StateObject
{

Chapter 6

315

 private string _myname;
 private string MyName
 {
 get
 {
 if (string.IsNullOrEmpty(this._myname))
 this._myname = Guid.NewGuid().ToString();
 return this._myname;
 }
 }
 public override string ToString()
 {
 return this.MyName;
 }
}

Here is the simple implementation of the Stateobject class.

2. We create another class and call it ModelRepository to add
ObservableCollection of a list of StateObject instances. A list box and a
button is added and the list box is bound to ObservableCollection:
<StackPanel Orientation="Vertical">
 <ListBox ItemsSource="{Binding LocalStates}" />
 <Button Click="Button_Click" Content="Add new item" />
</StackPanel>

LocalStates is an observable collection defined inside the ModelRepository
class we defined. When Button_Click is fired, we call an Add method of the
ModelRepository class.

3. We are going to use StorageFolders to save the state of the app. Let us open the
ModelRepository folder to add the following code:
private static async Task SaveDataToAsync(StateObject[]
copyToSave)
{
 StorageFolder folder = ApplicationData.Current.LocalFolder;
 StorageFile file = await folder.CreateFileAsync(FILETEMPORARY,
CreationCollisionOption.ReplaceExisting);

 IRandomAccessStream ras = await file.OpenAsync(FileAccessMode.
ReadWrite);
 IOutputStream ostr = ras.GetOutputStreamAt(0);

 var serializer = new DataContractSerializer(typeof(StateObje
ct[]));

Building Touch-sensitive Device Applications in Windows 8

316

 using (Stream clrStream = ostr.AsStreamForWrite())
 {
 serializer.WriteObject(clrStream, copyToSave);
 }

 await file.RenameAsync(FILEFINAL, NameCollisionOption.
ReplaceExisting);
}

This code opens LocalFolder of the app and stores an array of StateObject to
its local folder storage with the filename specified as FILEFINAL. Remember, we
have used LocalFolder. You can also use RoamingFolder to store user-specific
data or even the cloud to have data stored for a more sophisticated approach.

We use CreateFileAsync to create a file if not to exist or replace it. When the file
is open, we use DataContractSerializer to serialize all the objects we pass to it
and write the data to the file created. It is worth noticing that we create a temporary
file first, and when the save is done, we rename the temporary file with FinalFile.

4. When an object is added to the UI, we need to add the same to the file stored in
Localfolder. To do the same, we add a queue message to the ModelRepository
method which will be called whenever an item is added.

5. From the button click we call the AddToStateDataAsync method:
public static Task AddToStateDataAsync(StateObject newObject)
{
 ModelRepository.StateObjects.Add(newObject);

 return AddItemToSaveQueue(() =>SaveStateData(StateObjects.
ToArray()));
}

In this code, in addition to adding the object to ObservableCollection, we also
add the item to AddItemToSaveQueue, where we have passed an array of the entire
ObservableCollection.

6. We also need to ensure that all the calls to the SaveQueue method need to be
processed sequentially. To do this, we create a chain of method calls. We use the
async pattern to await each stack of these calls such that when one is done,
we call the other:
static Task _stask;
private static Task AddItemToSaveQueue(Func<Task> worksaveasync)
{
 if (_stask == null || _stask.IsCompleted)
 _stask = worksaveasync();
 else

Chapter 6

317

 _stask = Chain(_stask, worksaveasync);
 return _stask;
}
private static async Task Chain(Task current, Func<Task>
worksaveasync)
{
 await current;
 await worksaveasync();
}
private static Task SaveStateData(StateObject[] copyToSave)
{
 return Task.Factory.StartNew(() =>
SaveDataToAsync(copyToSave).Wait());
}

In the preceding code, we maintain the Task object and create a
AddItemToSavequeue method. We determine whether the existing task is complete
or not. If it is complete, we directly call the function to save data (SaveStatedata)
that has been passed to it, or we call Chain to create a chain of await statements.

7. We add a method to await on any existing queue using the following code:
public static async Task CompleteAllOutstandingSaveWorkAsync()
{
 if (_stask != null && _stask.IsCompleted)
 await _stask;
}

Here, the method only waits for the task to complete.

8. In the OnSuspending event of App.xaml.cs, we call ModelRepository.
CompleteAllOutstandingSaveWorkASync to ensure that all the current
save operations are complete before the application gets suspended:
private async void OnSuspending(object sender, SuspendingEventArgs
e)
{
 var deferral = e.SuspendingOperation.GetDeferral();
 await ModelRepository.CompleteAllOutstandingSaveWorkAsync();
 deferral.Complete();
}

Building Touch-sensitive Device Applications in Windows 8

318

It is to be remembered that await does not hold the thread. Rather,
it will return immediately after calling the method. Thus when the
CompleteAllOutstandingSaveWorkAsync method is called, it immediately
returns the control. e.SuspendingOperation exposes a method called
GetDeferral to notify the environment that the current operation isn't yet complete.
We can indicate the complete notification using the Complete method of the
SuspendingDeferral object.

9. As we have saved the existing model data into local storage on the fly, we also
need to ensure that the application needs to load the data when it is launched
from terminated state. To deal with this we write a method to load data from
StorageFile created:
public static async Task LoadModelAsync()
{
 var io = Task.Factory.StartNew(() => LoadModelAsyncToAsync().
Result);
 IEnumerable<StateObject> storedStates = await io;
 foreach (var obj in storedStates)
 StateObjects.Add(obj);
}

private static async Task<IEnumerable<StateObject>>
LoadModelAsyncToAsync()
{
 StorageFolder localFolder = ApplicationData.Current.
LocalFolder;
 StorageFile file;
 try
 {
 file = await localFolder.GetFileAsync(FILEFINAL);
 }
 catch (FileNotFoundException)
 {
 return Enumerable.Empty<StateObject>();
 }
 IInputStream instream = await file.OpenReadAsync();
 DataContractSerializer serializer = new DataContractSerializer
(typeof(StateObject[]));
 using (Stream clrStream = instream.AsStreamForRead())
 {
 return (StateObject[])serializer.ReadObject(clrStream);
 }
}

Chapter 6

319

Here we retrieve the file from LocalFolder using the GetFileAsync method.
Once the file is retrieved, we read the file and deserialize the content using
DataContractSerializer. Once the objects are returned, we load them to
ObservableCollection that has been bound to the UI.

10. The OnLaunched event of the App class gets the PreviousExecutionState
values. We can get information about whether the application has been terminated
or is freshly run. If the application is terminated previously by the operating system,
we can load up the data that has been saved to the temporary local storage using
the following code:

if (args.PreviousExecutionState == ApplicationExecutionState.
Terminated)
{
 await ModelRepository.LoadModelAsync();
}

We call the LoadModelAsync method when the application is launched from
termination to ensure that all the unsaved data is restored and the application
to the user looks like it's running throughout.

How it works...
Application life cycle for a Windows 8 style tile application generates events. During the initial
launch of the application, it first shows the splash screen for at the most 15 seconds and
then opens the application. It eventually calls the OnLaunch event handler defiled for the
app to load custom contents to the application. The Launch event of the application provides
various information about PreviousExectionState, ActivationKind, and so on. The
PreviousExecutionState property defines what happened to the previous execution of
the app. If the application is freshly launched, it will give you the Running state, while if it is
terminated by the operating system, it will give you the Terminated value.

The ActivationKind property on the other hand provides relevant information about how
the application is being launched. The available kinds are as follows:

 f Launch (for a normal launch)

 f Search (when the application is loaded from search)

 f ShareTarget (when the application is launched for sharing)

 f Device (when the application is launched on device availability)

Building Touch-sensitive Device Applications in Windows 8

320

There are other options too. To have better user experiences, we need to load the previous
state that the user has left behind and load that silently to make an impression to the user
that the application has never terminated. In the recipe steps, we have saved the content of
the data (probably in your case, you save only the unsaved data) to the local storage folders.
The folder will hold a file which stores the XML contents of the data. Now if the application
gets terminated by Windows, the application saves the content that it is already autosaving
on change during its suspending event. When the application is switched back on, either with
resume or after termination, the user state remains intact:

You can try out the app from Visual Studio using the Suspend/Resume button on the
Debug window or even Suspend and shutdown to simulate the terminate operation of
the application.

There's more...
An application model can have some very important things to note for Windows 8 style tile
applications. Let us look at how to handle different application model states conveniently
and efficiently.

Launch of the application and splash screen
Each Windows 8 style tile application is required to have a splash screen. The project
templates provided by the Windows 8 style tile application type already provides a
default transparent bitmap that show the splash screen when the application is getting
launched from the Not Running state. In the Assets folder of your project you will find
SplashScreen.png, which is a transparent image that shows the initial start screen.
You can replace the image with your existing image.

The splash screen is of 620 x 300 pixels long. You can open the Package.appxmanifest
file and scroll down the application UI panel to see the splash screen image listed on
the screen:

Chapter 6

321

The preceding screenshot displays the section of splash screen configuration on the
Package.appxmanifest file. You can also provide a background color for the splash
screen such that the color gets through to the transparent background of the bitmap as well.

Remember, the application model restricts the user to show this splash screen for
15 seconds. If the application needs more than 15 seconds to run, you need to create a
separate splash screen to mimic the same and run the services in the background.

How to package an application
After building a product, once you are done with the application, the last thing that you need
is to package your application and deploy it to your clients. Visual Studio offers you to either
deploy through local package files (called sideloading) or using Windows developers' account,
install through the Web. Though the Windows developers' account is the convenient way of
packaging and deploying an application, you need to buy an account to try this.

Let us look at how to package an application for windows store. Open Package.
appxmanifest and verify the version for the application from the Packaging tab. You can
also choose a certificate and the Publisher name as shown in the following screenshot:

Here we can see how the application packaging looks. The Version field specifies the
application version. When creating an update to the same app, you need to increase the
version. There is also a Publisher name and certificate to choose for the app. The package
store logo can also be changed from here.

Building Touch-sensitive Device Applications in Windows 8

322

Once done with the configuration, go to Project | Store | Create App Package:

In the Create Your Package dialog, it shows that you can either choose to sign in to your
developer account to directly send the package, or just create the file package. Lets, for time
being, choose No to create the package locally and click on Next.

Chapter 6

323

The Specify the package settings dialog box shows the location where the package will
be created, the version of the file, and also the configuration. The Any CPU configuration
is set by default, but users can specific target devices of 32 bit or 64 bit or ARM processor
architectures. Click on Create to create the package.

Once the project is packaged, it will create a appxupload file on the location that is specified.
It contains the following components:

 f Compiled code and custom DLLs

 f XAML files (not compiled BAML)

 f Resources (binary files, localized resources)

 f Application manifest

 f Digital signatures

The appxupload file is generally a packaged file. You can rename the file to a .zip
extension and unzip its contents to see what is inside. You will find the things stated earlier.

See also
Check out the following links:

 f http://bit.ly/Windows8AppLC

 f http://bit.ly/Windows8AppDeploy

7
Communication and

Sharing using
Windows 8

The goal of this chapter is to give you a clear idea on how to deal with communication
between applications and devices. This chapter also gives you an insight into how to deal
with standard APIs using WinRT libraries. We are going to cover the following topics:

 f How to enable app to app sharing inside a Windows 8 environment

 f Working with notification and services inside the Windows 8 environment

 f How to perform background transfers of data in Windows 8 style tile applications

Introduction
Sharing has been the key element while developing any application in the world. Virtually,
no application can be fully functional without the ability to share its resources to the
external world. Networking is one of the primary concerns of any application running in any
environment. With the introduction of more and more interactivity in technology and more
and more adaptation of social media, there is always a rise in the need for APIs to enable
easy sharing of resources with the external world. The world of Windows 8 devices has
already started to show extraordinary response to the sharing of resources and activities. The
operating system has an inbuilt system of sharing resources to the other applications installed
on the system, such that the applications that are capable of receiving the resources can
be invoked directly to send data. The sharing is not only restricted to the operating system
sharing options, but rather there are a large numbers of APIs supported by the Windows 8
environment that make it very easy to share public content and connect to public standard
data formats much more easily than we have ever thought.

Communication and Sharing using Windows 8

326

In this chapter, we are going to see how to use the APIs available with the WinRT environment
and create applications that are capable of communicating with the external world and get or
send data simultaneously using standard set of protocols available on the market.

How to enable app to app sharing inside a
Windows 8 environment

One of the most important and greatest advantages of a Windows 8 style tile-based
application is its ability to participate in app to app sharing. By app to app sharing we mean
that one app shares content or data with another app based on some predefined standard
system contract that the apps need to follow. The application actually interacts with the
Windows 8 environment based on the contract defined in it. There are two agents that
participate in this app to app sharing. One is the source that indicates the application which
invokes the other application and acts as a host of resources, and second is the destination
applications which retrieves the data sent from the host in various formats supported by the
system and present the data somewhere. A number of social media applications already ship
with Windows 8 which might come in handy to make ready transfers of resources directly to
social media environments such as Twitter, Facebook, to name a few. In this recipe we are
going to take a step-by-step approach to see how application content can be shared between
other applications just by creating both the source and destination environments.

How to do it...
The following steps will help enable app to app sharing inside a Windows 8 environment:

1. Start an application and consider creating an application that can act as a
sharing source. To handle an app to be a sharing source, we need to handle the
DataTransferManager.DataRequested event. This event is called when the
Sharing charm is opened by the user in the app. We put two textboxes on the screen,
which will determine the title and data that need to be sent out. We refer to them as
tbTitle and tbData. Let us write some code to share something from the app:
public MainPage()
{
 this.InitializeComponent();
 DataTransferManager.GetForCurrentView().DataRequested +=
MainPage_DataRequested;
}

void MainPage_DataRequested(DataTransferManager sender,
DataRequestedEventArgs args)
{

Chapter 7

327

 var dataPacket = args.Request.Data;
 dataPacket.Properties.Title = tbTitle.Text;
 dataPacket.Properties.Description = "My custom data sent from
application";

 dataPacket.SetText(tbData.Text);
 dataPacket.SetUri(new Uri("http://abhisheksur.com"));
 dataPacket.SetHtmlFormat(HtmlFormatHelper.
CreateHtmlFormat(string.Format("{0}
<i>{1}</i>",
tbTitle.Text, tbData.Text)));

 var img = RandomAccessStreamReference.CreateFromUri(new
Uri(@"http://abhisheksur.com/370715_1209722123_1468206619_n.
jpg"));
 dataPacket.SetBitmap(img);
 dataPacket.Properties.Thumbnail = img;
}

The DataRequested event gets the information on what kind of data the application
can share and based on that, the charm will load the share target supporting these
data formats. To ensure you get a share charm, it is important to specify more than
one data format. Here we have specified the text format, and the HTML format as
well. We have set a Bitmap, and depending on the share target the user opens, they
can use this information and share the content.

2. Share targets on the other hand act as targets for a share from another app. To
make an app a share target, we need to add a declaration of Share Target to the
Package.appxmanifest file declaration section:

Communication and Sharing using Windows 8

328

3. We also need to define the sharing formats that the application can receive.
Let us define Bitmap as the sharing data format to receive Bitmap sent from
a sharing source.

4. Now let us add a sharing UI. The sharing UI is different from a normal page, it opens
in a shorter screen which takes most of the screen, but yet some portion of the
actual app remains open in the background. Let us add a page to our solution. We
add some textboxes, images, and some Textblocks elements depending on what
you want to share. Next, let us define an Activate method on the page as shown in
the following code:
private ShareOperation _shareOperation;
public async void Activate(ShareTargetActivatedEventArgs args)
{
 this._shareOperation = args.ShareOperation;

 // Communicate metadata about the shared content through the
view model
 var shareProperties = this._shareOperation.Data.Properties;
 var thumbnailImage = new BitmapImage();
 this.tbTitle.Text = shareProperties.Title;
 this.tbDescription.Text = shareProperties.Description;
 Window.Current.Content = this;
 Window.Current.Activate();

 // Update the shared content's thumbnail image in the
background
 if (shareProperties.Thumbnail != null)
 {
 var stream = await shareProperties.Thumbnail.
OpenReadAsync();
 thumbnailImage.SetSource(stream);
 this.imgThumbnail.Source = thumbnailImage;
 }
}
private void ShareButton_Click(object sender, RoutedEventArgs e)
{
 this._shareOperation.ReportStarted();

 //Share the content
 this._shareOperation.ReportCompleted();
}

Chapter 7

329

Here in this code we share the content we receive from the share source. We define a
ShareOperation object which we receive as argument to the Activate method. We
set the object properties to our UI and finally use the ShareButton_Click method
to share the content. You can see in the preceding code that the ShareOperation
object exposes ReportStarted and ReportCompleted. These helper methods are
used to report to the source app that the sharing has been done, so that the user can
close the sharing pop up that has been shown on the screen automatically.

5. We would also need to call the Activate method. The App class defines an
overridable OnShareTargetActivated method. When the Sharing charm is
invoking the application, this method is automatically called with an appropriate
argument. To open our special page, we call Activate of the page and load the UI:
protected override void OnShareTargetActivated(ShareTargetActivate
dEventArgs args)
{
 var shareTargetPage = new Sharing();
 shareTargetPage.Activate(args);
} protected override void OnShareTargetActivated(ShareTargetActiva
tedEventArgs args)
{
 var shareTargetPage = new Sharing();
 shareTargetPage.Activate(args);
}

In the preceding code, we have overridden the OnShareTargetActivated method
in our code to redirect the call to loading our sharing UI when the application is
activated using the Sharing charm. In this way your application can act as a share
target or share source or both.

How it works...
Sharing data between one or more applications is supported automatically in the Windows
8 environment. The applications that can share data are called source applications, while
the applications that are capable of receiving data are called target applications. The
source application supports a number of formats based on which you need to pass data.
The applications that are capable of receiving specific data formats, which is specified by its
declarations, are automatically filtered in the environment.

The search also works in the same way as sharing. In the case of making the application work
with Search, you need to override the OnSearchActivated method in the App class. The
OnSearchActivated method receives QueryText as SearchActivatedEventArgs,
which is the same text that the user types in the Search box.

Communication and Sharing using Windows 8

330

Working with notification and services
Services form an important part of any application. Most applications need to get data online
using services to update content. The applications might also need to update the data through
live services. Windows 8 style tile applications support a number of new APIs that are capable
of handling network resources easily and elegantly. First of all, to work with network services,
the Windows 8 style applications exposes two sets of APIs, which can be invoked easily from
inside of the application. They are as follows:

 f General HTTP API

 f Syndication API

The General HTTP API accesses online services through a default HTTP gateway of request
and response. It supports basic HTTP services or even RESTful services to handle web
content. On the other hand the Syndication API accesses web through standard feeds format.
It can also update web feeds using common web standards such as the Atom Feed standard.
These APIs are built on top of the WinRT model, which support inherent usage of async
services that can be used directly within the app.

The services are the endpoints where the application needs access to get latest content or
update content to the Web. To deal with the content, we also need a unified model to enhance
users' experiences with notification services such that we can notify the user with new
updates automatically. The Windows Store applications expose two types of notifications that
can be used inside the app. They are toast-based notifications, which notify the users directly
on the screen using a pop up, and then there are tile-based notifications, which update the
live time which the user might have pinned to the Start menu.

We can use these services to get content and update the notification to the user even if the
application is not running. In this recipe, we are going to cover the basics on how to use the
services from our code and how to update the notification to the end user.

Getting ready
To get ready, let us create a RESTful service to handle the CRUD operations on a list of
contacts. To do this, create a WCF project and add a Contact class as follows:

[ServiceContract]
public interface IContactService
{
 [WebGet(UriTemplate = "contact/{roll}",
ResponseFormat=WebMessageFormat.Json)]
 [OperationContract]
 Contact GetContact(string roll);

Chapter 7

331

 [WebInvoke(Method = "POST", UriTemplate = "contacts",
ResponseFormat = WebMessageFormat.Json)]
 [OperationContract]
 bool SaveContact(Contact currentContact);

 [WebInvoke(Method = "DELETE", UriTemplate = "contact/{roll}",
ResponseFormat = WebMessageFormat.Json)]
 [OperationContract]
 bool RemoveContact(string roll);

 [WebGet(UriTemplate = "contacts", ResponseFormat =
WebMessageFormat.Json)]
 [OperationContract]
 List<Contact> GetAllContacts();
}
[DataContract]
public class Contact
{
 [DataMember]
 public int Roll { get; set; }

 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public string Address { get; set; }

 [DataMember]
 public int Age { get; set; }
}

Here in this code, we have created a standard WCF service that uses System.
ServiceModel.Web.dll to create a RESTful service API. Now the WebGet method will
create a Get response service while the WebInvoke method is used for any type of verb.
The REST service is then hosted on IIS or a small hosting console, and made accessible
via a normal HTTP request/response model.

Now let us create a new Windows 8 style application using a blank template and add code
to it.

Communication and Sharing using Windows 8

332

How to do it...
1. On the main page, we add some elements. One button (we call it as Get Contacts),

a list box to display the data returned from the server, a grid with the properties of
each individual item, and two buttons to send data to the server and delete a record.
This is illustrated in the following screenshot:

This design has been created using XAML. A ListBox control that shows the contacts,
a Button control to get a contact, a form control to enter a contact, two Button
controls to send and clear the form, and a Button control to delete the form.

2. Create an object of the HttpClient type on the constructor and specify the
BaseAddress value. BaseAddress specifies the base location on which the
service needs to invoke:
client = new HttpClient();
client.BaseAddress = new Uri("http://localhost:8080/
contactservice/");

You can see our base location is specified, this is where our service is hosted.

3. The HttpClient type has few APIs available that can help in getting or sending data
to or from a service. The GetAsync method gets an HttpResponseMessage class,
which can be used to retrieve the actual content sent from the service:
HttpResponseMessage response = client.GetAsync("contacts");
response.EnsureSuccessStatusCode();
string content = await response.Content.ReadAsStringAsync();

Chapter 7

333

In the preceding code, the contacts are called on Servicelocation, and the array
of contacts is retrieved. The GetAsync method gets HttpResponseMessage,
which holds the entire message that has been received as response. The
EnsureSuccessStatusCode method generates an exception if anything other than
status code 200 is received by the HttpClient class. If everything is ok, you can
retrieve the content using ReadAsStringAsync on the response object. If you see
the content object, it will hold the string representation of the actual response.

You can also use GetStringAsync to get the string content directly. This is a
shortcut method for the previous three lines.

4. To get a list from the item received from response, we need to deserialize the
content into a list:
var task = client.GetAsync("contacts");
HttpResponseMessage response = await task;
response.EnsureSuccessStatusCode();
Stream content = await response.Content.ReadAsStreamAsync();
var serializer = new DataContractJsonSerializer(typeof(List<Conta
ct>));
var contacts = serializer.ReadObject(content);

this.lstContacts.ItemsSource = contacts;

The preceding code creates a list of contacts that have been sent from the service. To
do that, we got the Stream response from the response object and we deserialize
using DataContractJsonSerializer. To use the same thing for a service,
which receives XML rather than JSON, you can use DataContractSerializer
to deserialize.

5. To implement the Send button, we use PostAsync of the HtmlClient type:
var contact = grdNewContact.DataContext as Contact;
if (contact != null)
{
 var serializer = new DataContractJsonSerializer(typeof(Conta
ct));
 using (var ms = new MemoryStream())
 {
 serializer.WriteObject(ms, contact);
 ms.Position = 0;
 var content = new StreamContent(ms);
 content.Headers.ContentType = new System.Net.Http.Headers.
MediaTypeHeaderValue("application/JSON");
 HttpResponseMessage response = null;
 response = await client.PostAsync("contacts", content);

Communication and Sharing using Windows 8

334

 response.EnsureSuccessStatusCode();
 tbResult.Text = response.StatusCode.ToString();
 }
}

In the preceding code, we first created an object of MemoryStream to write the
object into Serializer. The serialized object is then passed to the PostAsync
method. The serialized object is actually a StreamContent which is sent through
the network. You can see we need to specify the ContentType beforehand to make
the service proper idea about the content.

6. Similarly, the delete operation is done using the DeleteAsync method of
HttpClient:
var contact = this.lstContacts.SelectedItem as Contact;
if (contact != null)
{
 HttpResponseMessage response =await client.
DeleteAsync("contact/" + contact.Roll.ToString());
 response.EnsureSuccessStatusCode();

 tbResult.Text = response.StatusCode.ToString();
}

Here the object that has been selected on the ListBox control and is deleted from
the server. The DeleteAsync calls the HTTP service with the Delete verb and the
service on the other hand gets the roll of the object and removes it from the list.

7. Tiles are an important section of any application. The default tiles are configured
by the application from the package.appxmanifest file. On the application UI
settings, there is a Tile section that allows you to specify various tile settings as
shown in the following screenshot:

Chapter 7

335

In the preceding settings pane, you can select a Logo, Wide logo, and Small logo
values. The logo will appear when the tile is smaller. The wide logo will be displayed
when the tile is set to show a larger view and the small logo appears on the search
pane. The required sizes are important to note.

We can also select the background color of the logo, and a short name for the tile
which will appear above the time as floating text. The configuration also allows
whether the name should be displayed.

8. Tiles can also be made interactive using live updates. There are a large number of
XML templates that allow showing a specific order of a live tile. Each live tile has an
XML document associated with it.

You can find the entire list of templates at http://bit.ly/Win8Templ.

9. Let us add some code inside the btnGetContact button such that when the list is
updated, we update the tile associated with the application:
private void UpdateRetrieveTile(List<Contact> contacts)
{
 var templateType = TileTemplateType.
TileWideSmallImageAndText04;
 var xml = TileUpdateManager.GetTemplateContent(templateType);
 var textNodes = xml.GetElementsByTagName("text");
 textNodes[0].AppendChild(xml.CreateTextNode("List updated from
server"));
 textNodes[1].AppendChild(xml.CreateTextNode(string.
Format("Last operation retrieved {0} contacts", contacts.Count)));

 var imageNodes = xml.GetElementsByTagName("image");
 var elt = (XmlElement)imageNodes[0];
 elt.SetAttribute("src", "Assets/UpdateList.png");

 var tileUpdater = TileUpdateManager.
CreateTileUpdaterForApplication();
 var tile = new TileNotification(xml);
 tileUpdater.Update(tile);
}

In the preceding code, we simply got the TileTemplate document from
TileTemplateManager.GetTemplateContent, which takes an argument
of the type of the template that we need to use. After that, we did some simple
modifications to textnodes and the images to ensure my tile shows the content.

Communication and Sharing using Windows 8

336

10. If we place the call to the UpdateRetrieveTile method after the contact has been
retrieved, we will see the tile of our app has been updated on the Start menu:

This tile shows an image on the left and two lines of text on the right.

11. Similar to the Tile updates, there is also a special type of badge update that can
be used to show notifications to the user. The badge section belongs to the very
right-hand corner of a tile:
BadgeTemplateType type = BadgeTemplateType.BadgeNumber;
var bxml = BadgeUpdateManager.GetTemplateContent(type);
var element = (XmlElement)bxml.SelectSingleNode("badge");
element.SetAttribute("value", contacts.Count.ToString());
var badge = new BadgeNotification(xml);
var updater = BadgeUpdateManager.
CreateBadgeUpdaterForApplication();
updater.Update(badge);

The preceding code updates the badge to the tile, which shows the number of
records that have been currently retrieved in a small section to the bottom-right
of the tile:

This tile shows the badge in yellow on the bottom-right side of the tile.

12. The toast notification is a flying notification message box that is shown on the screen
of the user even though the application is not running. To open a simple toast
notification, let us add the following code:
var template = ToastTemplateType.ToastImageAndText01;
var xml = ToastNotificationManager.GetTemplateContent(template);
var textNode = xml.GetElementsByTagName("text").FirstOrDefault();

Chapter 7

337

textNode.AppendChild(xml.CreateTextNode(string.Format("{0}
contacts were retrieved!", contacts.Count)));
var imageNode = (XmlElement)xml.GetElementsByTagName("image").
FirstOrDefault();
imageNode.SetAttribute("src", "Assets/UpdateList.png");
var notification = new ToastNotification(xml);
ToastNotificationManager.CreateToastNotifier().Show(notification);

The preceding code creates a ToastNotification instance to the user
using the predefined template specified in ToastTemplateType. The
ToastNotificationManager.CreateToastNotifier().Show() method
creates the toastNotification instance and shows it directly on the user screen.

13. When it comes to a toast notification, you can also schedule a toast, such that even
when the application stops execution, the toast notification will still appear:
var notification = new ScheduledToastNotification(xml, DateTime.
Now.AddSeconds(30));
ToastNotificationManager.CreateToastNotifier().
AddToSchedule(notification);

In this case, the toast notification will be displayed 30 seconds after the notification
has been invoked.

How it works...
Network access is one of the primary needs for any application. As we are moving more
and more towards the Internet era, applications need to update themselves directly from
the Internet to give a greater edge to customers. The HttpClient class is built on top of
the WinRT network API that provides a number of new async methods, which is capable
of employing itself in the new async/await pattern. HttpClient is capable of producing
network calls using normal HTTP protocols for basic HTTP services or RESTful services. In
the recipe, we have covered how to invoke requests using all HTTP verbs.

HttpClient can also be configured to provide custom header information for the request,
shown as follows:

HttpRequestMessage request = new HttpRequestMessage();
request.Method = new HttpMethod("POST");
request.Headers.Accept.Add(new System.Net.Http.Headers.MediaTypeWithQu
alityHeaderValue("application/xml"));
request.RequestUri = new Uri("http://localhost:8080/contactservice");

await client.SendAsync(request);

Communication and Sharing using Windows 8

338

Once your service is ready, you need to deploy it to a server
and replace the URL of localhost here. The service needs
to be hosted on a public server before the application can
pass certification.

The preceding code configures the bare HttpRequestMessage body with accept headers
and/or other header information, the method that is to be used to send the request, the
request URI, and so on. If we need to handle any specific request structure for our service,
the HttpClient class is capable of giving us this flexibility as well. The SendAsync method
actually invokes a network request to the HTTP request URI and gets the response back to us
when available. We can also use WebClient when we are required to handle web request/
response rather than HTTP.

Networking is related to notifications. Windows 8 style tile applications provide three types of
notifications that can run out of the box. They are external services that can be invoked even
though the application is not running. They are as follows:

 f Toast: They are notifications that run for 7 seconds and come over any
running application

 f Tile: They display information on a tile on the start screen

 f Badge: They produce small images over the bottom-right side of a tile

Depending on the importance of the notification, we can use any one of the notifications that
a Windows application supports. To invoke a notification, we need to use the manager class
associated with the notification type and call its update. They follow XML's standard schema,
such that based on the type of notification one selects, it will specify the data for the XML and
send the XML directly to invoke it in the environment.

There's more...
HTTP is one of the most important basic needs for any application. The Notification API can be
used to create smart applications. Let us discuss some advanced scenarios here.

How to authenticate a web service using Web Authentication
Broker API
Authentication is one of the important concerns for any website. Many of the apps we create
for Windows 8 style applications are generally to communicate to external services. As with
growing OAuth techniques, most external web applications support the open authentication
protocol. Windows 8 style application exposes a WebAuthenticationBroker class, which
implements the OAuth itself such that you do not need to manually create the Open
Auth protocol.

Chapter 7

339

Facebook gives OAuth support that we can use to demonstrate the authentication. Let us
create an app in the www.developers.facebook.com page and get an appId value for
your application. Once you have that you can implement the OAuth for your application and
get the friend list of all your friends:

HttpClient client = null;
private string appId = "000000000000";
private string loginUri = "https://www.facebook.com/dialog/oauth";
private string redirectUri = "https://www.facebook.com/connect/login_
success.html";

private string authToken = "";
bool isAuthenticated = false;

public FacebookClient()
{
 client = new HttpClient();
 client.MaxResponseContentBufferSize = 100000;
 client.BaseAddress = new Uri("https://graph.facebook.com");
}

private async Task AuthenticateAsync()
{
 var requristr = string.Format("{0}?client_id={1}&redirect_
uri={2}&response_type=token",
 loginUri, appId, redirectUri);
 var requestUri = new Uri(requristr, UriKind.RelativeOrAbsolute);
 var redirectionUri = new Uri(redirectUri, UriKind.
RelativeOrAbsolute);

 var result = await WebAuthenticationBroker.AuthenticateAsync(WebAu
thenticationOptions.None, requestUri, redirectionUri);
 if(result.ResponseStatus != WebAuthenticationStatus.Success)
 throw new Exception("Login failure : " + result.
ResponseErrorDetail);

 authToken = GetAuthTokenFromResponse(result.ResponseData);
 if (!string.IsNullOrEmpty(authToken))
 client.DefaultRequestHeaders.Authorization = new System.Net.
Http.Headers.AuthenticationHeaderValue("OAuth", authToken);
 isAuthenticated = true;
}

Communication and Sharing using Windows 8

340

private string GetAuthTokenFromResponse(string str)
{
 return str.Split(new string[] { "access_token=", "&expires_in" },
 StringSplitOptions.None)[1];
}

In the preceding code, we have created a request on the URL. Facebook provides a request
URL for login, and a redirect URL that the page will be redirected to once the login is
successful. In the code we have prepared the authentication URL for the Facebook page and
passed it to WebAuthenticationBroker.AuthenticateAsync. This method takes three
arguments, the first being the options for the protocol, the second is the authentication URI,
and the third is the redirect URI. The call will automatically open a pop up on the screen and
create an authentication for Facebook. After you log in to the Facebook page, you will be
redirected to your app.

We are using the graph API to get the list of friends from the Facebook account. To access a
friend list using the graph URL, we need the authentication token. Once the authentication is
made, we receive the token result as a string in result.ResponseData. We have parsed
and extracted the token for future use:

ObservableCollection<KeyValuePair<string, string>> _friends;
public ObservableCollection<KeyValuePair<string, string>> Friends
{
 get
 {
 _friends = _friends ?? new ObservableCollection<KeyValuePair<s
tring, string>>();
 return _friends;
 }
}
public async Task GetFriends()
{
 try
 {
 if (!this.isAuthenticated)
 await this.AuthenticateAsync();

 var stream = await client.GetStreamAsync("me/
friends&fields=first_name,last_name");
 var serializer = new DataContractJsonSerializer(typeof(List<Ke
yValuePair<string, string>>));
 var friends = serializer.ReadObject(stream) as
List<KeyValuePair<string, string>>;

Chapter 7

341

 Friends.Clear();
 foreach (var f in friends)
 Friends.Add(f);
 }
 catch { }
}

To access the friend list, we have invoked the GetStreamAsync method on the Facebook
graph API. If the authentication is successful, the graph API will get the list of all friends that
are associated with the current user.

The WebAuthenticationBroker.AuthenticateAsync method is an unified API that has
been provided to any Windows 8 style application for open authentication.

Even though I have been using WebAuthenticationBroker to connect to Facebook, there
is also a well-defined C# SDK for Facebook that works on the same logic from inside but has a
better API and is easier to use. Please use it when you want a target application for Facebook.

Refer to the link http://bit.ly/FacebookSDK.

How to implement Push notifications in a connected Windows 8
style tile application
Windows notification service is a highly-scalable notification service that sends notifications
to billions of users at a time. The WNS is a live cloud service that allows you to register a
channel directly to it and it notifies the app when there is any update available for it. The WNS
automatically invokes the Push notification message to the clients, such that only when the
data is available or only when the server wants it, it can initiate the connection to the clients.
Before discussing the Push notification, let us consider the following code:

public void PeriodicTrigger()
{
 var tileupdater = TileUpdateManager.
CreateTileUpdaterForApplication();
 tileupdater.StartPeriodicUpdate(new Uri(string.Format("{0}{1}",
uri, "tile")), PeriodicUpdateRecurrence.HalfHour);
}

In the preceding code, a periodic notification has been created and the registered app will
call the URI at an interval of HalfHour and update the tile. Now say for instance, you have
thousands of apps running. This periodic call to the server may kill your server's bandwidth.
Also if it has some update in the first minute on the server, it has to wait for 29 minutes more
to get the same update. Hence, it would be nice if only when the data is available can the
server initiate the notification itself.

Communication and Sharing using Windows 8

342

To implement the Push notification we need to first register the app to WNS service. Once
the registration is done, the server can push messages directly through WNS. Let us add
a method to register the service. On the server side, we create a service and specify one
service endpoint to register the app. The code looks like the following:

public void RegisterPushService(PushData data)
{
 if (data == null) return;
 Uri uri = null;
 if (!Uri.TryCreate(data.ChannelUri, UriKind.Absolute, out uri))
 {
 throw new WebFaultException<string>("Invalid uri", System.Net.
HttpStatusCode.BadRequest);
 }
 var dns = uri.Authority;
 if (!dns.EndsWith("notify.windows.com"))
 throw new WebFaultException<string>("Invalid domain", System.
Net.HttpStatusCode.BadRequest);

 registeredClients.Add(data.UniqueId, uri);
}

The code is very simple. We first validate the URI to check whether it is a valid WNS URI. The
URI that supports WNS ends with notify.windows.com, hence we can check the URI to
send fault exceptions from the service. Once the app is validated, it creates a dictionary of ID
and URI. The ID is a GUID specified on the client to uniquely identify the app.

On the client side, we need to register the app when it is launched. Let us consider the
following code:

protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 try
 {
 channel = await PushNotificationChannelManager.
CreatePushNotificationChannelForApplicationAsync();
 }
 catch { }
 var data = new PushData
 {
 ChannelUri = channel.Uri,
 UniqueId = App.ClientID
 };
 await SendDataToServiceAsync<PushData>(data, "register");
}
private async Task SendDataToServiceAsync<T1>(PushData data, string
uri)
{

Chapter 7

343

 StringContent contnet = null;
 using (var ms = new MemoryStream())
 {
 var ser = new DataContractSerializer(typeof(T1));
 ser.WriteObject(ms, data);
 ms.Position = 0;
 contnet = new StringContent(new StreamReader(ms).ReadToEnd());
 }
 contnet.Headers.ContentType = new System.Net.Http.Headers.
MediaTypeHeaderValue("text/xml");
 var response = await client.PostAsync(uri, contnet);
 response.EnsureSuccessStatusCode();
}

On the NavigatedTo method, we process App to create a WNS channel. The
PushNotificationChannelManager.CreatePushNotificationChannel
ForApplicationAsync method creates a new channel with the WNS URI. We can use the
same to register our app to WNS. We create a HttpClient call to our RESTful service created
on the server to call the RegisterApp method and send the channeluri value and the
client's unique identification to register the client.

Now to use WNS from our own server (or our own WCF service) we need to first get credentials
from the Microsoft Windows Dev Center Dashboard, which we can only get when we submit
our app to the Windows Store and it is basically associated with the production process.
But Microsoft also provides a test management portal to generate the same thing without
submitting the app to try out for test. Let's open the URL: https://manage.dev.live.
com/build. After logging into the portal using your live ID, you will see a page which specifies
how to use the service. Open your package.appxmanifest file and go to the Packaging
tab and copy the package display name and the publisher name to the online portal and
accept. It will provide the package name, the secret keys, and identifier for you:

Communication and Sharing using Windows 8

344

The Package name value needs to be replaced to with the original package name specified in
the Package.appxmanifest file and we will use the Client secret value and the Package
Security Identifier number later from our app.

The WNS uses OAuth 2.0 and hence we need to use the secret credentials to authenticate
with the service. Let us use WNS live service to push some data to our app and notify using
tile or toast notification.

Let us first register our app with the service:

string sid = "Q7KAkzubaNgbme7D-7mwQ2BOvjNSsoSU";
string secret = "ms-app:/
/s-1-15-2-1243456607-2043250132-4120883525-3396393594-2572150938-
2635590704-1920367610";
string authuri = "https://login.live.com/accesstoken.srf";
string accesstoken = string.Empty;
private void RegisterWNS()
{
 var body = string.Format("grant_type=client_credentials&client_
id={0}&client_secret={1}&scope=notify.windows.com",
 HttpUtility.UrlEncode(sid), HttpUtility.UrlEncode(secret));
 var client = new WebClient();
 client.Headers.Add("content-type", "application/x-www-form-
urlencoded");

 string response = client.UploadString(new Uri(authuri), body);
 var ser = new DataContractJsonSerializer(typeof(AccessTokenRespon
se));
 using (var stream = new MemoryStream(Encoding.UTF8.
GetBytes(response)))
 {
 AccessTokenResponse tokenResponse = (AccessTokenResponse)ser.
ReadObject(stream);
 accesstoken = tokenResponse.AccessToken;
 }
}

In the preceding code we have created a web request to point to authuri and get
the accesstoken value that is received as response. As WNS uses OAuth, we need
to specify the body of the request with a special value as defined at http://bit.
ly/PushResponseHeaders. It receives a JSON response and we parse it to get the
accesstoken value. We have also stored the access token to a safe variable such that
we can re-use the same later on.

Chapter 7

345

Once we have the header, we can go on and send the Push notification as shown in the
following code:

private void NotifyRegisteredClients(string message)
{
 var templateName = "ToastImageAndText01";
 var toast = string.Format("<toast>" +
 "<visual>" +
 "<binding template=\"ToastImageAn
dText01\">" +
 "<image id=\"1\"
src=\"Assets\\metroNotification.png\" alt=\"Special Notification\"/>"
+
 "<text id=\"1\">{0}</text>" +
 "</binding>" +
 "</visual>" +
 "</toast>", message);
 foreach (var uri in this.registeredClients.Values)
 {
 SendNotificationToClient(uri, toast);
 }
}

private string SendNotificationToClient(Uri uri, string toast)
{
 byte[] content = Encoding.UTF8.GetBytes(toast);
 string status = "";

 var request = HttpWebRequest.Create(uri) as HttpWebRequest;
 request.Method = "POST";
 request.Headers.Add("X-WNS-Type", 'wns/toast");
 request.Headers.Add("Authorization", string.Format("Bearer {0}",
accesstoken));

 request.BeginGetRequestStream(result =>
 {
 var requestStream = request.EndGetRequestStream(result);
 requestStream.Write(content, 0, content.Length);
 request.BeginGetResponse(e =>
 {
 var response = request.EndGetResponse(e) as
HttpWebResponse;
 status = response.StatusCode.ToString();
 }, null);
 }, null);
 return status;
}

Communication and Sharing using Windows 8

346

In this code I have created a toast notification and sent the toast through WNS. The message
passed, will be sent to the actual app that has been registered with the WNS. The WNS
broadcasts our message to the app through the secured channel that has been created.

Finally, if we invoke the NotifyApp URL from any application, this will notify the message to
all the apps that have registered with our service. You can send tile or badge notifications in
the same way as we did for toast notification.

The preceding diagram shows the entire architecture of the Push notification service. The
Windows 8 platform creates an instance of the Push notification client, which is used to
register itself with WNS. The Push notification client sends a channel request and gets a
custom URI as response. This URI is used to create a secure channel between the app and
the WNS. Now the app registers the custom WCF service using the client URI, such that the
WCF service in turn gets an authorization token with the WNS. Now when something needs to
be notified to the client, the WCF service can invoke that request to WNS using the channel
token registered by the Push notification client in the app.

So basically, the WCF gets an authorization token and sends a request to an already
registered URI of the client and the whole process gets executed. Once the notification is
received by the client from the WNS system, the Windows 8 environment can invoke toast,
tile, or badge notifications.

How to use Syndication API and AtomPub API for handling feeds
in Windows 8 style application
If you are working with feeds, the WinRT API exposes a class that can help you retrieve the
feeds. The Syndication API is constructed to retrieve a strongly-typed reference object from the
XML Atom- or RSS-based feeds. So as a developer, you can make use of the classes to get the
Atom and RSS feeds directly without manually parsing the XML document.

Chapter 7

347

SyndicationClient is a HttpClient object that helps in getting Syndication feeds from
the Atom or RSS feed passed to it. Let us look into some code:

var client = new SyndicationClient();
SyndicationFeed feed = await client.RetrieveFeedAsync(new
Uri(atomurl));

feedData.Title = feed.Title.Text;
foreach (SyndicationItem item in feed.Items)
{
 FeedItem feedItem = GetFeedItem(item, feed.SourceFormat);
 feedData.Items.Add(feedItem);
}

In the preceding code, the SyndicationClient.RetrieveFeedAsync method is called,
which will get a strongly-typed object of SyndicationFeed that has all information about the
feed it receives. The Title attribute specifies the title of the blog and Feed.SourceFormat
specifies the format of the feed, and so on:

private FeedItem GetFeedItem(SyndicationItem item, SyndicationFormat
syndicationFormat)
{
 var feedItem = new FeedItem();
 feedItem.Format = syndicationFormat;
 feedItem.Title = item.Title.Text;
 feedItem.PubDate = item.PublishedDate.DateTime;
 if(item.Authors.Count > 0)
 feedItem.Author = item.Authors[0].Name;
 if (syndicationFormat == SyndicationFormat.Atom10)
 feedItem.Content = item.Content.Text;
 if (syndicationFormat == SyndicationFormat.Rss20)
 feedItem.Content = item.Summary.Text;

 if (item.Links.Count > 0)
 feedItem.Link = item.Links.FirstOrDefault().Uri;

 return feedItem;
}

The data can be retrieved from a strongly-typed object. For instance, the title of a blog can be
retrieved from its Title attribute, then we can use PublisherDate, Authors (if any), and
so on.

Communication and Sharing using Windows 8

348

The AtomPub API
In addition to retrieving the feeds from the online web content, Windows 8 also provides
inbuilt support of the AtomPub API that helps in updating the Atom-based feeds. You can post
new content to the Atom feed URL by providing the credentials that are required to log in.
Once the service is authenticated properly, you can use the AtomPub API directly to post
your blog or article to the online web content:

public async void CreatePost(string title, string summary, string
content)
{
 var cred = new PasswordCredential();
 cred.UserName = "abhi";
 cred.Password = "";

 var atomClient = new AtomPubClient(cred);
 string fullposturl = "http://abhisheksur.wordpress.com/wp-app.php/
posts"
 var post = new SyndicationItem();
 post.Title = new SyndicationText(title);
 post.Summary = new SyndicationText(summary);
 post.Content = new SyndicationContent(content,
SyndicationTextType.Text);

 var author = new SyndicationPerson("Abhishek");
 post.Authors.Add(author);

 await atomClient.CreateResourceAsync(new Uri(fullposturl), title,
post);

}

The preceding code uses AtomPubClient to post a blog on the online blog created. The
PasswordCredentials class takes the username and password that need to be passed to
the AtomPubClient class to ensure that the request is well authenticated. It adds them to
every request header. We create an object of SyndicationItem and pass the title, summary
and content of the blog, and add authors to the blog and finally use CreateResourceAsync
to post the object to the link.

How to perform background transfers of
data in Windows 8 style tiles applications

For long running downloads or uploads, HttpClient gets requests that are not sufficient
enough to handle. Windows 8 style apps are subjected to its life cycle events, and thus
when the transfers are long running, the application life cycle can pretty much hamper the
transfer operation.

Chapter 7

349

For instance, while downloading data from server, if the user switches between apps, the app
that launches the transfer may go to a dormant stage called suspended, where all threads on
the app will get blocked and hence any transfer that has been invoked by the application will
also stop. Thus big file downloads cannot be handled by the foreground transfer techniques.

To overcome the situation, Windows 8 apps provide a separate process called background
services that can be invoked from any app to handle data transfers in the apps, such that the
foreground runs independently from the background transfer and any life cycle changes to the
app will not affect the background transfer. Background transfers support HTTP, HTTPS, and
FTP transfer and support the pause/resume ability.

Background transfer type use network connectivity APIs to
efficiently manage the cost of network access, such that
when an application gets disconnected from the Internet, it
automatically pauses the transfer and resumes it when it is
available again. You can set CostPolicy on background
transfers to tune this behavior.

Background transfers are performed using the BackgroundUploader or
BackgroundDownloader class inside the WinRT API. Both the classes implement
the IBackgroundTransferBase interface of WinRT and is defined in the
BackgroundTransfer namespace.

How to do it…
The following steps take you through background transfers:

1. Let us define a UI first. We create page (let us use the default page that is created
with the project template) and call it MainPage.xaml. We place one TextBox
control called txtFile to take the input from the user. We also create four buttons
to download a file, pause, resume, and cancel respectively. We also place a
ProgressBar control named prgFileProgress to show the actual progress
of the download operation. The following screenshot illustrates the layout:

Communication and Sharing using Windows 8

350

In the preceding application, we use the button Download File to initiate the
downloading operation of the file specified on the txtFile textbox. The progress is
shown in the Progressbar control from standard progress callback notification.

2. Let us look into the code as to find out how to implement background transfers:
SynchronizationContext context;
IAsyncOperationWithProgress<DownloadOperation, DownloadOperation>
asyncOperation;
DownloadOperation downloadOperation;
private async void btnDownload_Click(object sender,
RoutedEventArgs e)
{
 string path = txtfile.Text;
 await StartDownloadAsync(path);
}
internal async Task StartDownloadAsync(string filePath)
{
 var downloader = new BackgroundDownloader();
 var fileName = Path.GetFileName(filePath);
 var storageFile = await KnownFolders.MusicLibrary.
CreateFileAsync("test\\" + fileName, CreationCollisionOption.
ReplaceExisting);

 downloadOperation = downloader.CreateDownload(new
Uri(filePath), storageFile);

 asyncOperation = downloadOperation.StartAsync();
 context = SynchronizationContext.Current;

 asyncOperation.Progress = new AsyncOperationProgressHandler<Do
wnloadOperation, DownloadOperation>(notifyProgress);

 await asyncOperation;
}

In the preceding code, when the Download button is clicked on by the user, an object
of BackgroundDownloader is created and CreateDownload is called from it.
The CreateDownload method takes a reference of the URI to which it needs to
download and the storageFile reference where the downloader will download.
We have marked the code required to start the download operation.

3. The CreateDownload method also requires a reference to a storageFile object
reference so that it can download to that location. In the code, I have used the
MusicLibrary folder of the disk. We take the reference from an already existing
API defined as KnownFolders.MusicLibrary.

Chapter 7

351

To use any external folder, you also need to add an entry to the
manifest file. Here, MusicLibrary is used and hence we need to
add the MusicLibrary capability in the manifest of the project.
Also, if we are using FilePicker, we need to add a FilePicker
declaration too.

4. When the StartAsync method is called from the DownloadOperation object, the
actual download gets started. The StartAsync method runs on a separate process
and we can await it.

5. We store SynchronizationContext.Current to make sure we always post
on the right thread to show progress. The BackgroundDownloader class works
on a separate process inside the environment and the callback might come from
a separate thread than the UI thread.

6. We also hook the progress download operation by passing the delegate pointing to
notifyProgress, such that it will be called to update the progress in the UI. To
update the UI we use the following code:
void notifyProgress(IAsyncOperationWithProgress<DownloadOperation,
DownloadOperation> asyncOp, DownloadOperation downloadOp)
{
 context.Post(state =>
 {
 this.prgFileProgress.Maximum downloadOp.Progress.
TotalBytesToReceive;
 this.prgFileProgress.Value = downloadOp.Progress.
BytesReceived;
 }, null);
}

The callback notifyProgress method is passed to the Progress delegate of
the IAsyncOperationWithProgress WinRT interface to hook the method that
notifies the progress of the file download. Remember, as the Progress delegate is
called in on a non-UI thread, we need to hold the SynchronizationContext class
beforehand to ensure the call to the UI object is made from Dispatcher.

7. When the application has already started downloading the files, you can cancel this
operation, or even pause/resume the download using the following code:
private void btnCancel_Click(object sender, RoutedEventArgs e)
{
 if (asyncOperation != null && asyncOperation.Status ==
AsyncStatus.Started)
 {
 asyncOperation.Cancel();
 }
}

Communication and Sharing using Windows 8

352

In the preceding code, the IAsyncOperationwithProgress interface has been
held by the application, and used to cancel a running download.

8. Similarly, the DownloadOperation class also exposes methods to pause or resume
the transfer, provided we are in the state to do that. Let us look at the following code:
private void btnPause_Click(object sender, RoutedEventArgs e)
{
 if(downloadOperation != null && downloadOperation.Progress.
Status == BackgroundTransferStatus.Running)
 {
 downloadOperation.Pause();
 }
}
private void btnResume_Click(object sender, RoutedEventArgs e)
{
 if (downloadOperation != null && downloadOperation.Progress.
Status == BackgroundTransferStatus.PausedByApplication)
 {
 downloadOperation.Resume();
 }
}

Here the btnPause_Click method calls Pause, while btnResume calls the
Resume method. It is important to note that we should check the status of the
ongoing operation before calling these methods.

9. When we start BackgroundTransfer, the application creates a new process to
invoke the transfer. You can open the Task Manager in Windows and see that there
are two processes listed (as shown in the preceding screenshot). Even though the
main application gets suspended, the background process will still remain active
and continue. Now sometimes, we know during the process life cycle, the application
may terminate execution. BackgroundTransfer also provides an API to reattach
existing ongoing transfers when an application is relaunched with an ongoing transfer
still remaining:
protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 context = SynchronizationContext.Current;

Chapter 7

353

 await attachPendingDownload();
}

private async Task attachPendingDownload()
{
 List<Task<DownloadOperation>> tasks = new List<Task<DownloadOp
eration>>();
 var downloads = await BackgroundDownloader.
GetCurrentDownloadsAsync();

 if (downloads.Count > 0)
 {
 downloadOperation = downloads[0];
 txtfile.Text = downloadOperation.RequestedUri.ToString();
 asyncOperation = downloadOperation.AttachAsync();
 asyncOperation.Progress = new AsyncOperationProgressHandle
r<DownloadOperation, DownloadOperation>(notifyProgress);

 await asyncOperation;
 }

}

In the preceding code, the BackgroundDownloader.
GetcurrentDownloadsAsync method gets a list of all the background transfer files
that are currently downloading. In our case, I am just holding the first file that is getting
downloaded, and the information is retrieved by the onNavigate property of the page.
We have also hooked the notifyProgress delegate to the DownloadOperation
object so that it notifies the application progress bar with an actual seed value.

10. Moreover, you can define CostPolicy for your downloader to ensure that
in a restricted network we do not consume too much bandwidth. It takes a
reference of BackgroundTransferCostPolicy, which can be default,
unrestrictedOnly, or always:
downloadOp.CostPolicy = BackgroundTransferContPolicy.always;

default allows transfer in costed networks, while unrestrictedOnly will not.

Similar to download, BackgroundUploader is used to upload files. We can use
the CreateUpload method to initiate the upload operation almost identical to the
download, and call Push to push the upload. Unlike BackgroundDownloader,
BackgroundUploader does not support the pause/resume functionality if the
upload has been disconnected.

Communication and Sharing using Windows 8

354

How it works…
Background transfer works in a separate process outside the domain of the calling
environment. When the app is suspended, the download can still continue in the background.
The operating system automatically determines when to stop/pause operations based on the
policy setup while the transfer is invoked. To ensure that the application always gets the latest
updated status, the BackgroundDownloader class has a GetCurrentDownloadsAsync
method, which invokes the background downloader process and gets the status of the
download operation. The Task Manager of Windows also shows the status of these
operations in a separate process.

Debugging in Visual Studio works differently. Stopping a debugging session means
terminating an application. In this case the downloads are paused. While debugging the
application also enumerates pause, resume, or cancel of any persisted download.

See also
 f Refer to the following link:

http://bit.ly/BackgroundTransfer

Index
Symbols
96DPI screen 224
120DPI application 224
120DPI settings 224
#BLOB format 58
#GUID format 58
.NET

about 7
lazy objects 110
weak references 108, 109

.NET assembly
internal structure, inspecting 53-58
types 60-63

.NET framework
components 52, 53

.NET program
components, inspecting 70-72
memory leaks, searching in 105-108

.pdb file 56
#~Stream format 58
#String format 58
#US format 58

A
Abort method 127
Activate method 329
Adobe AIR (Flash) 190
AJAX 189, 209
AlternateItemTemplate property 186
animation

about 291
enabling, within Windows 8 style tiles

application 291, 292
implementing, in Windows 8 style tiles

applications 304, 305

app
enabling, for app sharing 326-329

AppDomain
about 131
code, isolating 115

application
building, MVVM pattern used 234-245
debugging 28, 29
packaging 321, 323

application cache, HTML5 202, 203
application configuration file 74
application domains 131
application life cycle, WinRT applications

312-320
application manifest file 73, 74
Application Model 277
App section, XAML window 302
appxupload file 323
Architecture Explorer tool 24
A Sharp 53
Asmex

about 58
URL 58

ASP.NET
about 173
working with jQuery, in Visual Studio 205-210

ASP.NET 4.5
configuration changes 222

ASP.NET applications
CSS3 190-196
HTML5 190-196
statically-typed model binding 185-188

ASP.NET servers, DLL intern 185
ASP.NET web applications

performance boosters 175-181

356

ASP.NET websites
compilation of pages, configuring 182

assemblies
merging 88

assemblies, WPF framework
PresentationCore.dll 227
PresentationFramework.dll 226
WindowsBase.dll 227

assembly
about 53
configuring, from Visual Studio 94, 95
delay signing 66, 67
disassembling 81-86
disassembling, Reflector used 87, 88
inspecting, assembly viewer used 58, 59
obfuscating, steps 90-92

assembly file
sections 57

AssemblyInfo file 72
assembly linker 53
AssemblyMetadataAttribute 73
assembly viewer

used, for inspecting assembly 58, 59
async

about 211
anonymous method, writing 164
working with 155-164

AsyncCompletedEventArgs parameter 136
AsyncDelegate property 129
asynchronous programming 124
Asynchronous Programming Model (APM)

127
asynchronous programming, patterns

Asynchronous Programming Model (APM) 127
Event-based Asynchronous Pattern 127
Task-based Asynchronous Pattern (TPL) 127

asynchronous threading pattern 126-130
async language 134
AsyncResult, properties

AsyncState 130
AsyncWaitHandle 130
CompletedSynchronously 130
IsCompleted 130

AsyncState property 130
AsyncWaitHandle property 130

AtomPub API
about 348
used, for handling feeds in Windows 8 style

application 346, 347
audio tag 195
authentication 338
AutoResetEvent 131
awaitable methods 165
await patterns

working with 155-164

B
background GC 99
background services 349
background transfers of data

performing, in Windows 8 style tiles
applications 348-354

BackgroundWorker
about 135
working with 136-139

BackgroundWorker class 139
BAML 232
Barrier class

working 132, 133
Begin pattern 124
Binary XAML. See BAML
binding 185, 251
Binding Expression

about 251
uses 251-254

Blank App 279
blocking methods 140
blocks

linking 170, 171
Boo 53
Bookmark menu 26
BSJB 56
Buffering Blocks 166
Bundle.GetBundleResponse method 181
Bundle.ProcessRequest method 181
BundleResponse class 180
bundling

benefits 177-180
Button control 332

357

C
C#

about 7, 155
used, for building Windows 8 style tiles

application 297-302
C++ 7
CallNormalAsyncMethod 128
CameraCaptureUI class 312
CanExecuteChanged event 237
CanExecute method 237
CheckBox 225
CIL 52
Class View

working with 15, 16
Clone Code Detection 49, 50
CLR 7, 52
CLS 52
code

isolating, AppDomain used 115
securing from reverse engineering, with

obfuscation 89-93
Code Definition window 26, 27
code developer

common mistakes 115-121
Code Highlighting feature

about 22
using, in Visual Studio 22, 23

code snippets
about 39
using, in Visual Studio 39-42

CoerceValue 249
CollectionView

Current Record Manipulation 259
filtering 259
grouping 258
Live Shaping 259
sorting, applying 258
working with 257

CommandsRequested event 311
command switches, Visual Studio 13, 14
common intermediate language. See CIL
Common Language Runtime. See CLR
Common Language Specification. See CLS
compilation of pages

configuring, in ASP.NET websites 182

CompletedSynchronously property 130
components

inspecting, of .NET program 70-72
of Visual Studio IDE 8-13

concurrent programming 147
configuration

about 75
modifying, at runtime 79

configuration changes, ASP.NET 4.5 222
ConfigurationManager API 79
configuration options, TDF blocks

about 169
BoundedCapacity 170
CancellationToken 170
Greedy 170
MaxDegreeOfParallelism 170
MaxMessagePerTask 170
TaskScheduler 170

configuration versions
dealing with 79-81

ContentPresenter 225
COR20 header 57
CountdownEvent 131
CSS

about 189
used, for building Windows 8 style tiles ap-

plication 278-290
CSS3 190-196, 223
CSS Editor

updates 218-221
CTS 53
custom configuration

working with 75-78
CustomParameters tag 37

D
DataBinding 251
DataBind method 185
data persistence 306
DataRequested event 327
DataSource property 185, 186
DataTransferManager.DataRequested event

326
data validation blocks

implementing, in MVVM 254-257

358

data-win-control attribute 285
DebugDiag 104
Debug directories 56
delay signing 66
DeleteAsync method 334
DependencyObject 225 234
DependencyObserver 225
Dependency property

about 245
advantages 246
declaring 245
using 246-249

Device Drivers 227
Device Independent Pixel (DPI) 223, 224
Direct3D 227
DirectX 223
disassembling 83
DLL intern

in ASP.NET servers 185
DocType element 191
Dotfuscator

about 89, 92
options 94

Dotfuscator, options
control flow obfuscation 94
instrumentation 94
Obfuscated code, debugging 94
pruning 94
renaming 94
string encryption 94

Dots per inch (DPI) 223
dynamic link libraries 54

E
EEClass 99
Emit Debug Symbols property 95
End pattern 124
enhancements, Visual Studio editors 214-221
enhancements, WPF

in .NET4.5 226-232
EnsureSuccessStatusCode method 333
entry point 72
enumeration options, Dependency property

AffectsArrange 249
AffectsMeasure 249
AffectsParentArrange 249

AffectsParentMeasure 249
AffectsRender 249
BindsTwoWayByDefault 249
Inherits 249
NotDataBindable 249

Event-based Asynchronous Pattern 127
about 135
working with 136-139

event life cycle
working, in WinJS 292, 293

evolution, Visual Studio 8
Execute method 237
execution engine suspension 98
Executor Blocks 166
Expression Blend tool 225
Extension Manager 27

F
Facebook 326, 339
Fantom 53
features, jQuery 205, 206
feeds

handling, AtomPub API used 346, 347
handling, Syndication API used 346, 347

Figure tag 192
files

previewing, in Visual Studio IDE 21
filter operations, ModelBinding 188, 189
Finalize method 103
finalizer 103
finalizer thread 96
Fixed Layout App 279
footer tag 192
form control 332
Frame section, XAML window 302
friend assembly

creating 64, 65
FromCurrentSynchroizationContext method

153

G
garbage collection

about 96, 98
working 99-102

359

garbage collection, terms
managed heap 97
stack 97
unmanaged heap 97

GC collection 98
GDI 227
General HTTP API 330
Generate Sequence Diagram option 25
GeoLocation

getting, HTML5 used 199
GetAsync method 333
GetCurrentDownloadsAsync method 354
GetStreamAsync method 341
GetType method 102
Global.asax file 179, 183
Global Assembly Cache (GAC)

about 60
using 69

Grid App 279
GridView 215

H
header tag 192
home.aspx file 178
hostDiv tag 282
HTML5

about 190-196, 223
application cache, using 202, 203
local IndexDB storage 199-202
notifications, on browsers 204, 205
sockets 197-199
used, for building Windows 8 style tiles ap-

plication 278-290
used, for detecting online status of browser

203, 204
used, for getting GeoLocation 199
web workers 196, 197

HTML editor
updates 215-217

HTTP 338
HttpClient class 333, 337
HttpHandlers class 211
HttpModules class 211
Hub pages 279

I
ICommand interface

about 236
CanExecuteChanged event 237
CanExecute method 237
Execute method 237

IDE editors 17
IDE search box 20, 21
IDE workspace

windows, docking 20
IDispatch interface 276
iFrame 189
IIterable<T> interface 276
IL Disassembler 81
ILMerge 88
IL Weaving 89
images

previewing, in Solution Explorer 16
IndexDB 199
INotifyPropertyChanged event 236
input tag 193
Instance Count

Mutex, using for 144
instrumentation 94
Integrated Development Environment (IDE) 8
IntelliSense 39
internal infrastructure

inspecting, of .NET assembly 53-58
InternalsVisibleToAttribute attribute 64
InvokeAsync method 229
IsAlive property 126
IsCompleted property 129, 130
ISourceBlock 170
IsPreviewMouseDown event 234
ItemTemplate property 186
item templates 29
ItemType property 186

J
J# 7
JavaScript

used, for building Windows 8 style tiles
application 278-290

360

JavaScript editor
updates 217, 218

JIT 104
JIT compiler 53
Joining Blocks 166
Join method 127
jQuery

about 205
features 205, 206
library, extending 210
working 210

just-in-time. See JIT compiler

L
lambda expression

writing 164
large object heap (LOH) 98
layouts, Windows 8 style tiles applications

Filled 302
FullScreen 302
Landscape 302
Portrait 302
Snapped 302

lazy class 111, 112
lazy Initialization

lazy class 111, 112
LazyInitializer 111-114
ThreadLocal 111-113

LazyInitializer 111-114
lazy objects 110
library

writing, for WinJS 294-296
LinkTo method 170
ListBox control 332
ListBoxItem property 231
ListBox property 231
Live Shaping

used, for working with CollectionView 257
loaded() function 281
local IndexDB storage, HTML5 199, 201, 202
locking

about 139
with Spinlock 145, 146

locking constructs 140

lock statement
task-based application, using in concurrent

programming 148-152
Logical Trees 233
Lsharp 53

M
managed code 52
managed heap 97
managed layer, WPF 226
Managed Profile Guided Optimization. See

MPGO
manifest 56
ManualResetEvent 131
Markup Extensions 229
Media Integration Library Core. See milcore
memory dump files

creating, Visual Studio used 114
memory leaks

about 104
searching, in .NET program 105-108

memory management 96
MessageBox

CoerceValue 249
PropertyChanged 249
ValidateCallback 249

MethodDesc 99
methods, SynchronizationContext class

Post 134
Send 134

MethodTable 99
Microsoft 7, 275
Microsoft Intermediate Language. See MSIL
Microsoft Windows Dev Center Dashboard

343
milcore 227
MODEL 234
ModelBinding

with filter operations 188, 189
Model-View-ViewModel. See MVVM
Modernizr scripts 191
MouseDown event 234
MPGO

about 103
used, for optimizing native images 103, 104

361

MSBuild
about 27
using 28

MS-DOS Header information 57
MSIL 7
Multicore JIT 104
Mutex

about 143
determining, of thread 143, 144
using, for Instance Count 144

MVVM
about 234
data validation blocks, implementing 254-

257
MVVM pattern

about 234
used, for building applications 234-245

MZ header information 57

N
Native Image Generation tool. See NGen
native images

optimizing, MPGO used 103, 104
NavigatedTo method 343
navigate method 282, 298
Navigation App 279
nav tag 192
networking 325
network latency 175
NGen 103
non-blocking synchronization constructs 140
non-blocking synchronization constructs,

ReaderWriterLock 146, 147
notifications

working with 330-338
notifications, HTML5 204, 205
Nuget package manager 177

O
OAuth 338
obfuscation

about 89
used, for securing code 89-93

OnCheckPoint event 293

online status, of browser
detecting, HTML5 used 203, 204

OnLoaded method 293
OnSearchActivated method 329
OnShareTargetActivated method 329
OnUnload event 293
Outlining menu 43
Overload Induction 94

P
Package.appxmanifest file 311, 321, 327
Page Inspector tool 221
parallel LINQ. See PLINQ
PE files 53
PerfMon

about 104, 105
working 106-108

performance 174
performance boosters

in ASP.NET web applications 175-181
PLINQ 154
pointerDown animation 292
Portable Executable files. See PE files
PostAsync method 334
Post method 134
Prefetcher technology 182
PresentationCore.dll 227
PresentationFramework.dll 226
preventDefault method 284
private assembly

about 60
sharing 67-69

process 131 127
processAnchorClick method 283
ProcessRequestAsync method 213
ProgressChanged event 138
project template 29
PropertyChanged event 242
pruning 94
public assemblies 60
push notifications

implementing, in Windows 8 style tile applica-
tion 341-346

362

R
RangeValidator 182
ReaderWriterLock

about 146
for non-blocking synchronization constructs

146, 147
ready event 206
ready method 206
Reflector

about 163
assembly, disassembling 87, 88
option, using in Visual Studio 45-49
URL, for downloading 87

Relative Virtual Address. See RVA
ReportCompleted method 329
ReportProgress method 138
ReportStarted method 329
requestValidationMode attribute 222
RequiredFieldValidator 182
ResourceDictionary 225
Resume method 127
RibbonApplicationMenuItem 271
RibbonApplicationSplitMenuItem 271
RibbonButton

about 270
properties 270

RibbonButton, properties
ToolTipDescription 270
ToolTipImageSource 270
TooltipTitle 270

RibbonComboBox 271
ribbon controls

shortcut keys 270
RibbonGallery

about 271
using, in ribbon 271, 272

RibbonMenuButton 271
RibbonMenuItem 271
RibbonSplitButton 271
RibbonSplitMenuItem 271
RibbonTooltip

for Ribbon-based controls 269
RibbonTooltip control 269
Ribbon User Interface

using, in WPF 260-269

RoutedEvents 234
RTTI address 102
runtime

configuration, modifying at 79
Run-time type information. See RTTI address
RVA 56

S
satellite assemblies 60
Section page 279
Section tag 192
semaphores 141
Send method 134
sequence diagram 25
serialization 78
services

about 330
working with 330-338

Settings charm, Windows 8 style tiles
application 310, 311

ShareOperation object 329
sharing 325
shortcut keys

for ribbon controls 270
show() method 205
sideloading 321
signaling construct 140
Signal() method 131
Silverlight 190
Sleep method 127
small object heap (SOH) 98
SmartAssembly

about 95
URL 95
used, for obfuscation 95, 96

Smart Tags
about 45
using, in Visual Studio 45-49

SmartTask dialog 215
sockets, HTML5 197-199
Solution Explorer

about 14, 175
exploring 15
images, previewing 16
working 15

363

SOS (Son of Strike) 99
source applications 329
SpinLock

about 145
used, for locking 145, 146

Split App 279
stack 97, 127
StandardStyles section, XAML window 302
Start method 127
statically-typed model binding 185-188
storage files, Windows 8 style tiles applica-

tion 306-310
suspended 349
Suspend method 127
SynchronizationContext class 134, 135
Syndication API

about 330
used, for handling feeds in Windows 8 style

application 346, 347
System.Int32 type 53
System.Web.Optimization namespace 180

T
target applications 329
task-based asynchronous HttpHandlers

working with 211-214
task-based asynchronous HttpModules

working with 211-214
Task-based Asynchronous Pattern (TPL) 127
Task-based Parallelism Library (TPL) 148
Task List option 25, 26
task parallelism data flows

about 165
working with 166-169

tasks
exceptions, handling 152

TaskScheduler
creating 153

TDF blocks
configuration options 169, 170

templates
about 29
creating 37, 38
extending 29-36

Theme Animations 305

Theme Transitions 304
thread

Mutex, determining 143, 144
Thread Affinity 134
threading 126-130
ThreadLocal 111-113
Thread Locking

about 139
working with 141, 142

ThreadPool 127
ThreadPool.QueueUserWorkItem 127
threads 125, 131
threads, methods

Abort 127
Join 127
Resume 127
Sleep 127
Start 127
Suspend 127

thread synchronization
about 139, 140
types 140
working with 141, 142

thread synchronization, types
locking constructs 140
non-blocking synchronization constructs 140
signaling construct 140
simple blocking methods 140

ToggleButton 225
Toolbox

using 44
TPL

without concurrency 153
Twitter 326

U
UI 223
unmanaged heap 97
unmanaged layer, WPF 227
unobtrusive validation 182, 183
UpdateRetrieveTile method 336
User32 227
Usings

organizing 42

364

V
validation 182
VB 7
VBC compiler 53
VB.NET 7
versions, Visual Studio

URL 9
Visual Studio Express 9
Visual Studio Premium 9
Visual Studio Professional 9
Visual Studio Ultimate 9

video tag 195
VIEW 234
VIEWMODEL 235
VirtualizingStackPanel 231
VisualStateManager class 303
Visual Studio

assembly, configuring 94, 95
Code Highlighting feature, using 22, 23
code snippets, using 39-42
command switches 13, 14
evolution 8
Refactor option, using 45-49
Smart Tags, using 45-49
templates, extending 29-36
used, for creating memory dump files 114

Visual Studio editors
enhancements 214-221

Visual Studio Express 9
Visual Studio IDE

components 8-13
files, previewing 21

Visual Studio Premium 9
Visual Studio Professional 9
Visual Studio Ultimate 9
Visual Trees 233

W
W3C 199
WaitHandle class

types 131
WaitHandle class, types

AutoResetEvent 131
CountdownEvent 131
ManualResetEvent 131

WaitHandle method 144
WeakEvent pattern

using, in WPF 272-274
weak references

about 108
types 109

weak references, types
large 109
short 109

Web 189
Web Authentication Broker API

used, for authenticating web service 338-341
WebAuthenticationBroker.AuthenticateAsync

method 341
WebAuthenticationBroker class 338
web.config file 178
WebGL 174
WebInvoke method 331
web service

authenticating, Web Authentication Broker API
used 338-341

web workers, HTML5 196, 197
wincontrol property 289
Windbg 104
windows

docking, inside IDE workspace 20
Windows 275
Windows 8 device

picture, taking from camera 311
Windows 8 environment

app enabling, for app sharing 326-329
Windows 8 Pro 276
Windows 8 style application

AtomPub API, used, for handling feeds 346,
347

Syndication API, used, for handling feeds
346, 347

Windows 8 style tiles application
animation, enabling with WinJS 291, 292
animation, implementing 304, 305
background transfers of data, performing

348-354
building, CSS used 278-290
building, C# used 297-302
building, HTML5 used 278-290
building, JavaScript used 278-290

365

building, XAML used 297-302
launching 320, 321
layouts 302-304
push notifications, implementing 341-346
Settings charm 310, 311
splash screen 320, 321
storage files 306-310
Theme Animations 305
Theme Transitions 304

WindowsBase.dll 227
WindowsCodecs.dll 227
Windows Presentation Foundation (WPF) 156
WinJS

about 278
animation, enabling within Windows 8 style

tiles application 291, 292
event life cycle, working 292, 293
library, writing for 294-296

WinJS.UI.Animation namespace 291
WinRT

about 276
application life cycle 312-320
supported languages 277, 278

workspace area, of IDE
working 18-20

WPF
about 223, 226
binding capabilities 225

built-in support, for animation 224
built-in support, for graphics 224
control template, redefining 224
enhancements, in .NET 4.5 226-232
managed layer 226
new property system 225
resource-based approach, for every control

225
Ribbon User Interface, using 260-269
styles, redefining 224
WeakEvent pattern, using 272-274

WPFCorporateProject.zip file 32
WriteThreadName method 126

X
XAML

about 232, 297
used, for building Windows 8 style tiles ap-

plication 297-302
XAML window

App section 302
Frame section 302
StandardStyles section 302

Thank you for buying
Visual Studio 2012 and .NET 4.5 Expert

Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft SharePoint 2010
Development with Visual Studio
2010 Expert Cookbook
ISBN: 978-1-849684-58-3 Paperback: 296 pages

Develop, debug, and deploy business solutions for
SharePoint applications using Visual Studio 2010

1. Create applications using the latest client object
model and create custom web services for your
SharePoint environment with this book and ebook.

2. Full of illustrations, diagrams and key points for
debugging and deploying your solutions securely
to the SharePoint environment.

3. Recipes with step-by-step instructions with
detailed explanation on how each recipe works
and working code examples.

Microsoft Visual Studio
LightSwitch Business
Application Development
ISBN: 978-1-849682-86-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1. A hands-on guide, packed with screenshots and
step-by-step instructions and relevant background
information—making it easy to build your own
application with this book and ebook.

2. Easily connect to various data sources with
practical examples and easy-to-follow instructions.

3. Create entities and screens both from scratch and
using built-in templates.

Please check www.PacktPub.com for information on our titles

Visual Studio 2012 Cookbook
ISBN: 978-1-849686-52-5 Paperback: 272 pages

50 simple but incredibly effective recipes to immediately
get you working with the exciting features of Visual
Studio 2012

1. Take advantage of all of the new features of Visual
Studio 2012, no matter what your programming
language specialty is!

2. Get to grips with Windows 8 Store App
development, .NET 4.5, asynchronous coding
and new team development changes in this
book and e-book.

3. A concise and practical First Look Cookbook to
immediately get you coding with Visual Studio
2012.

LINQ to Entities
ISBN: 978-1-849681-14-8 Paperback: 348 pages

Build SOA applications on the Microsoft platform with
this hands-on guide updated for VS2010

1. Master WCF and LINQ to Entities concepts by
completing practical examples and applying them
to your real-world assignments.

2. The first and only book to combine WCF and LINQ
to Entities in a multi-tier real-world WCF service.

3. Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services.

4. Rich with example code, clear explanations,
interesting examples, and practical advice – a
truly hands-on book for C++ and C# developers.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Visual Studio IDE Features
	Introduction
	Identifying the various components of
Visual Studio IDE
	Working with Solution Explorer and Class View
	Working with the main workspace area of IDE
	Navigating between code inside the IDE
	Extending Visual Studio templates
	Using Code Snippets in Visual Studio
	Using Smart Tags and Refactor in Visual Studio

	Chapter 2: Basics of .NET Programs and Memory Management
	Introduction
	Inspecting the internal structure of a .NET assembly
	Working with different types of assemblies
	Inspecting the major components of a .NET program
	How to work with custom configurations for an application
	How to disassemble an assembly
	Securing your code from reverse engineering by using obfuscation
	Understanding .NET garbage collection and memory management
	How to find memory leaks in a .NET program
	Solutions to 10 common mistakes made by developers while writing code

	Chapter 3: Asynchronous Programming in .NET
	Introduction
	Introduction to Threading and Asynchronous Threading patterns
	Working with Event-based asynchronous pattern and BackgroundWorker
	Working with thread locking and synchronization
	Lock statement using task-based parallelism in concurrent programming
	Working with async and await patterns
	Working with Task Parallel Library
data flows

	Chapter 4: Enhancements to ASP.NET
	Introduction
	Understanding major performance boosters in ASP.NET web applications
	How to work with statically-typed model binding in ASP.NET applications
	Introduction to HTML5 and CSS3 in ASP.NET applications
	Working with jQuery in Visual Studio with ASP.NET
	Working with task-based asynchronous HttpHandlers and HttpModules
	New enhancements to various Visual Studio editors

	Chapter 5: Enhancements to WPF
	Introduction
	Getting started with WPF and its major enhancements in .NET4.5
	Building applications using MVVM pattern supported by WPF
	Using the Ribbon User Interface in WPF
	Using WeakEvent pattern in WPF

	Chapter 6: Building Touch-sensitive Device Applications in Windows 8
	Introduction
	Building your first Windows 8 style tiles application using JavaScript, HTML5,
	and CSS
	Writing a library for WinJS
	Building your first Windows 8 style tiles application using C# and XAML
	Working with storage files in Windows 8 style tiles applications
	Understanding the application life cycle of WinRT applications

	Chapter 7: Communication and Sharing using Windows 8
	Introduction
	How to enable app to app sharing inside a Windows 8 environment
	Working with notification and services
	How to perform background transfers of data in Windows 8 style tiles applications

	Index

