
www.allitebooks.com

http://www.allitebooks.org

Website Development with
PyroCMS

Quickly and efficiently develop and deploy impressive
websites with PyroCMS

Zachary Vineyard

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Website Development with PyroCMS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1081013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78328-223-4

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Zachary Vineyard

Reviewers
Stephen Coogan

Kefeng Deng

Acquisition Editor
Amarabha Banerjee

Commissioning Editor
Mohammed Fahad

Technical Editor
Faisal Siddiqui

Project Coordinator
Esha Thakker

Proofreader
Samantha Lyon

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Zachary Vineyard is a web developer that specializes in frontend web design,
content management, and application development. He's been building websites
with PHP for the last 10 years. He lives in Meridian, Idaho, with his wife and
twin girls.

This book would not exist without the support of my wife, Dana. I
am blessed to have such a loving spouse and companion.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Stephen Coogan is a frontend Web Developer with many years of experience
living in Dublin, Ireland. When he's not neck-deep in code, he can usually be found
engrossed in this month's latest videogame released. He is also the developer behind
Promethean Gaming (http://www.prometheangaming.ie/) where he occasionally
writes articles, too. He also loves talking to people about the latest and greatest in
web technologies, and is more than happy enough for people to reach out to him at:
hello@coog.ie.

Kefeng Deng is an IT professional with over 9 years of work experiences in IT
industry in various stages, including both Java-based and PHP-based. He is currently
working for the University of Auckland as a Software Engineer, and mostly focuses
on web application development using Groovy and Spring technologies. More
details about him are available at http://www.linkedin.com/in/dengkefeng.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Installing PyroCMS 5

Getting started 5
CodeIgniter 6
HTTP web server 6
MySQL 7
PHP 7
GD2 7
cURL 8

Downloading PyroCMS 8
The difference between the Community and Professional versions of
PyroCMS 9

PyroStreams 10
The installer 10

Troubleshooting installation 14
Summary 15

Chapter 2: The Control Panel 17
Control panel access 17
The dashboard 19
Layout and navigation 19

Content 20
Structure 20
Data 21
Users 21
Settings 22
Add-ons 22
Profile 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Choosing a default language 23
Summary 24

Chapter 3: Creating Pages and Page Types 25
Pages 25
The Pages module 26
How to create a basic page 27

Page Details tab 28
Page Content tab 28
Meta Data tab 28
CSS and Script tabs 29
Options tab 29
Save the page 29

Page types 29
Create a new page type 30
Add custom page type fields 31
Create a new page with custom data 33

Summary 34
Chapter 4: Plugin and Module Add-ons 35

Plugins 35
Tags 35
How to create a plugin 36

Modules 38
Folder structure 38
How to create a module 39

The info() method 40
The install() method 41
The uninstall() method 43
The upgrade() method 43
The help() method 43
Putting it together 44

Add a controller 46
Plugins and widgets in modules 47

Summary 48
Chapter 5: Creating a PyroCMS Theme 49

Folder structure 49
Getting started 50

Creating a theme.php file 50
Theme options 51

Building the theme options form 53
Theme layouts 53

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Tags explained 54
Basic tag 54
Tag attributes 54
Using tags in tag attributes 55
Tag pairs 55
Tag conditionals 56

Tags in templates 56
Layouts versus page types 57
Theme partials 57
Multiple layouts 58
Mobile layouts 59
Module view overloading 60
Summary 60

Chapter 6: Using PyroCMS Streams 61
How to get Streams 61
Creating a stream 62
Creating fields 63
Assigning fields 64
Ordering fields 65
Default columns (fields) 65
The backend input form 66
Displaying your data 67
Streams plugin 67

Common variables 67
Entry looping 68
The loop cycle 68
Filter by date 68
Other parameters 69
How to use the "where" parameter 70
Nested variables 70
Pagination 70

Stream data entry form 71
How to build the form 71
Custom success and error messages 73
Form assets 73
E-mail notifications 73

Summary 74

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Building a Website with PyroCMS 75
Installation 75
Creating a custom theme 76
Creating a layout file 78
Brief review of tags 79
Adding theme partials 80
Adding a contact form 81
Adding stream data to your website 82
Defining a custom route 84
Summary 85

Index 87

Preface
PyroCMS is a content management system that has been growing in popularity
because of its intuitive backend design and lightweight, modular architecture.
Described as "a simple, flexible, community driven content management system,"
PyroCMS is easy to learn, understand, and own. In this book, we'll look at the
primary features of PyroCMS and start building a website together.

What this book covers
Chapter 1, Installing PyroCMS, covers all the steps for installing PyroCMS.

Chapter 2, The Control Panel, covers how to use PyroCMS's backend administration
area called the Control Panel.

Chapter 3, Creating Pages and Page Types, covers how to create pages and page types,
the foundations of adding and manipulating text content, in PyroCMS.

Chapter 4, Plugin and Module Add-ons, covers how to build plugin and module
add-ons for PyroCMS using MVC.

Chapter 5, Creating a PyroCMS Theme, covers how to create a theme for PyroCMS,
including how to do multiple layouts.

Chapter 6, Using PyroCMS Streams, teaches you how to create and use streams of data
in PyroCMS using the PyroStreams module.

Chapter 7, Building a Website with PyroCMS, shows you how to put everything you've
learned into building a basic website from scratch using PyroCMS.

Preface

[2]

What you need for this book
Running PyroCMS has a few software dependencies. These dependencies usually
come pre-loaded on most web hosts.

• A web server (Apache 2.x, Nginx, and so on)
• PHP 5.2 or above
• MySQL 5.x
• GD 2
• cURL 7.10.5 or above

Who this book is for
This book is for PHP developers who are looking for a great content management
system. PyroCMS is built on CodeIgniter, so system adopters will need to have some
familiarity with OOP and the MVC programming pattern, especially if they want to
extend PyroCMS by building add-ons. PyroCMS is also for web developers looking
to speed up their development times. PyroCMS comes pre-charged with great tools,
such as the Streams module, to save developers time.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

class Plugin_Hello extends Plugin
{
 // Start of a plugin
}

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

git clone https://github.com/pyrocms/pyrocms.git

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing PyroCMS
In this chapter, we'll walk through the entire PyroCMS installation process. While
it might appear from the size of this chapter that the installation process for
PyroCMS is complicated, it is, in fact, quite simple. After walking through the system
pre-requirements and a few topical recommendations for PyroCMS developers, we'll
follow an easy-to-navigate four-step process that gets you on your way to enjoying
PyroCMS. On the way, we'll also look into a few small problem areas that might
arise while working through the installation process.

By the end of this chapter, we will have also taken a look at some alternate
troubleshooting problems you might face, so that, while it is unlikely, you'll be
prepared for minor problems that may arise when you are trying to get PyroCMS up
and running. Not to worry though, the installation process for PyroCMS is very stable.

Getting started
PyroCMS, like many other content management systems including WordPress,
Typo3, or Drupal, comes with a pre-developed installation process. For PyroCMS,
this installation process is easy to use and comes with a number of helpful hints just
in case you hit a snag while installing the system. If, for example, your system files
don't have the correct permissions profile (writeable versus write-protected), the
PyroCMS installer will help you, along with all the other installation details, such as
checking for required software and taking care of file permissions.

Before you can install PyroCMS (the version used for examples in this book is 2.2) on
a server, there are a number of server requirements that need to be met. If you aren't
sure if these requirements have been met, the PyroCMS installer will check to make
sure they are available before installation is complete. Following are the software
requirements for a server before PyroCMS can be installed:

• HTTP Web Server
• MySQL 5.x or higher

Installing PyroCMS

[6]

• PHP 5.2.x or higher
• GD2
• cURL

Among these requirements, web developers interested in PyroCMS will be glad to
know that it is built on CodeIgniter, a popular MVC patterned PHP framework. I
recommend that the developers looking to use PyroCMS should also have working
knowledge of CodeIgniter and the MVC programming pattern.

Learn more about CodeIgniter and see their excellent system
documentation online at http://ellislab.com/codeigniter.

CodeIgniter
If you haven't explored the Model-View-Controller (MVC) programming pattern,
you'll want to brush up before you start developing for PyroCMS. The primary reason
that CodeIgniter is a good framework for a CMS is that it is a well-documented
framework that, when leveraged in the way PyroCMS has done, gives developers
power over how long a project will take to build and the quality with which it is built.
Add-on modules for PyroCMS, for example, follow the MVC method, a programming
pattern that saves developers time and keeps their code dry and portable.

Dry and portable programming are two different concepts. Dry is
an acronym for "don't repeat yourself" code. Portable code is like
"plug-and-play" code—write it once so that it can be shared with
other projects and used quickly.

HTTP web server
Out of the PyroCMS software requirements, it is obvious, you can guess, that a good
HTTP web server platform will be needed. Luckily, PyroCMS can run on a variety of
web server platforms, including the following:

• Abyss Web Server
• Apache 2.x
• Nginx
• Uniform Server
• Zend Community Server

Chapter 1

[7]

If you are new to web hosting and haven't worked with web hosting software
before, or this is your first time installing PyroCMS, I suggest that you use Apache
as a HTTP web server. It will be the system for which you will find the most
documentation and support online. If you'd prefer to avoid Apache, there is also
good support for running PyroCMS on Nginx, another fairly-well documented web
server platform.

MySQL
Version 5 is the latest major release of MySQL, and it has been in use for quite some
time. It is the primary database choice for PyroCMS and is thoroughly supported.
You don't need expert level experience with MySQL to run PyroCMS, but you'll need
to be familiar with writing SQL queries and building relational databases if you plan
to create add-ons for the system. You can learn more about MySQL at http://www.
mysql.com.

PHP
Version 5.2 of PHP is no longer the officially supported release of PHP, which
is, at the time of this book, Version 5.4. Version 5.2, which has been criticized as
being a low server requirement for any CMS, is allowed with PyroCMS because it
is the minimum version requirement for CodeIgniter, the framework upon which
PyroCMS is built. While future versions of PyroCMS may upgrade this minimum
requirement to PHP 5.3 or higher, you can safely use PyroCMS with PHP 5.2.

Also, many server operating systems, like SUSE and Ubuntu, install PHP 5.2 by
default. You can, of course, upgrade PHP to the latest version without causing harm to
your instance of PyroCMS. To help future-proof your installation of PyroCMS, it may
be wise to install PHP 5.3 or above, to maximize your readiness for when PyroCMS
more strictly adopts features found in PHP 5.3 and 5.4, such as namespaceing.

GD2
GD2, a library used in the manipulation and creation of images, is used by PyroCMS
to dynamically generate images (where needed) and to crop and resize images used
in many PyroCMS modules and add-ons. The image-based support offered by this
library is invaluable.

Installing PyroCMS

[8]

cURL
As described on the cURL project website, cURL is "a command line tool for
transferring data with URL syntax" using a large number of methods, including
HTTP(S) GET, POST, PUT, and so on. You can learn more about the project and how
to use cURL on their website http://curl.haxx.se. If you've never used cURL
with PHP, I recommend taking time to learn how to use it, especially if you are
thinking about building a web-based API using PyroCMS.

Most popular web hosting companies meet the basic server
requirements for PyroCMS.

Downloading PyroCMS
Getting your hands on a copy of PyroCMS is very simple. You can download the
system files from one of two locations, the PryoCMS project website and GitHub.

To download PyroCMS from the project website, visit http://www.pyrocms.com and
click on the green button labeled Get PyroCMS! This will take you to a download page
that gives you the choice between downloading the Community version of PyroCMS
and buying the Professional version. If you are new to PyroCMS, you can start with
the Community version, currently at Version 2.2.3. The following screenshot shows the
download screen:

Chapter 1

[9]

To download PyroCMS from GitHub, visit https://github.com/pyrocms/pyrocms
and click on the button labeled Download ZIP to get the latest Community version
of PyroCMS, as shown in the following screenshot:

If you know how to use Git, you can also clone a fresh version of PyroCMS
using the following command. A word of warning, cloning PyroCMS from GitHub
will usually give you the latest, stable release of the system, but it could include
changes not described in this book. Make sure you checkout a stable release from
PyroCMS's repository.

git clone https://github.com/pyrocms/pyrocms.git

As a side-note, if you've never used Git, I recommend taking some time to get started
using it. PyroCMS is an open source project hosted in a Git repository on Github,
which means that the system is open to being improved by any developer looking
to contribute to the well-being of the project. It is also very common for PyroCMS
developers to host their own add-on projects on Github and other online Git
repository services.

The difference between the Community
and Professional versions of PyroCMS
While both the Professional and Community versions of PyroCMS are nearly
identical, there are some feature benefits from the Professional version that are worth
your one-time $90 investment (at the time of this book). The following is a short list
of features that, by default, come with the Community version of PyroCMS:

• Blog module
• Pages module (with drag-and-drop ordering and so on)

www.allitebooks.com

http://www.allitebooks.org

Installing PyroCMS

[10]

• Theme, Widget, and Module add-ons
• Responsive control panel (accessible from many devices)
• Analytics, Akismet, Storage Provider (Amazon S3 and Rackspace), and

SMTP integration
• Powered by CodeIgniter and the modular MVC pattern

The Professional version of PyroCMS comes with all the preceding listed features
and few other very powerful additions, including the following:

• PyroStreams (custom data management)
• Multi-site hosting
• White-labeling (permission for custom branding)

At first glance, it may seem that the Professional version of PyroCMS just offers you
a few more advanced features, but in reality, these features can transform the way
you think about web development. PyroStreams and Multi-site hosting, in particular,
scale your ability to run more than a handful of websites at one time. Because of this,
I think it is important to talk about why the PyroCMS modules play such a pivotal
role in which version of PyroCMS you should run for your next website project.

PyroStreams
If you could describe the PyroStreams module for PyroCMS in one sentence, it
would probably sound like this, PyroStreams is a smart interface for creating custom
data streams. This makes it incredibly simple to manage large sets of data associated
with your website. I'm not going to explore this feature too much more in this
chapter, but I will emphasize that this feature alone is worth the small fee you pay
for the professional version of PyroCMS.

The installer
The installer is a step-by-step tool web developers can use to install PyroCMS. It is
provided with every download of PyroCMS and is located in the root directory of
the project.

Chapter 1

[11]

The initial screen of the installer looks like the following screenshot:

Take note of the orange button leading you to the first step of the PyroCMS installer.
Enlisted are the steps found in the PyroCMS installer:

1. The first step of the PyroCMS installer allows you to define the database that
will support the system. The first step has a form with seven input fields
broken into two small sections. While fairly self-explanatory, here you can
define the name of your database and the credentials with which you connect
to that database, including MySQL hostname, port, password, and more.
These settings should be fairly straight-forward if you've worked with other
content management systems before.
One installation feature that's unique to PyroCMS is that it lets you choose
the type of HTTP web server platform on which to run, to help make your
instance of PyroCMS run as smoothly as possible. You can select your HTTP
server from a drop-down menu located at the bottom of the screen of the first
step of the PyroCMS installer, as shown in the following screenshot:

Once you've filled out the basic form in step one, including choosing a HTTP
web server, it's time to move to step two of the installer. Be careful what you
choose from this menu. If you choose the wrong system, troubleshooting
problems with URLs that don't resolve (and other similar problems) may not
be very easy.

Installing PyroCMS

[12]

2. The second step on the PyroCMS installer checks to make sure that your
server has all the system pre-requisites (discussed earlier in this chapter)
installed. By default, it checks to make sure you have at least PHP Version
5.2 installed. While some developers might see this as a version of PHP that
should no longer be supported, it is still used as a default version of PHP
by a variety of server operating systems. CodeIgniter 3, the framework that
PyroCMS currently uses, still complies with PHP 5.2.
Step two of the install process checks to make sure all the other pre-requisites
are installed, including MySQL, GD, cURL and more. If this part of the
installation process determines that all the necessary software is installed
to run PyroCMS, it will automatically skip to step three, as shown in the
following screenshot:

3. The third step of the PyroCMS installer is dedicated to make sure that files
and folders associated with your instance of PyroCMS have the appropriate
file-level permissions. Essentially, the installer checks to make sure that the
directories for uploaded files and cache are writeable, and that files like your
main PyroCMS configuration file aren't writeable. Your main PyroCMS
configuration file is located at system/cms/config/config.php.
If the installer finds that your file permissions are not correctly set for the
system, it will offer you commands to run (Linux only) that will help correct
the situation. Following is an example of what those commands look like:
chmod 777 system/cms/cache

chmod 666 system/cms/config/config.php

Chapter 1

[13]

The following screenshot shows the installer asking you for commands to run:

An exhaustive list of which file/folder permissions will need to be changed
will be provided to you in this step of the installation. The most critical
folders and files the system checks are enlisted as follows:

 ° assets/cache
 ° system/cms/cache
 ° system/cms/config
 ° system/cms/config/config.php
 ° system/cms/logs
 ° uploads

Installing PyroCMS

[14]

Be sure that the most sensitive files (usually system/cms/config/
config.php and system/cms/config/database.php) are
protected from being read by your website visitors.

4. The final step of the PyroCMS installer is comprised of two parts, one of
which you complete upon submission of step four's form, while the other
runs in the background.

Create Your Admin Account: Step four is partially dedicated to creating
the administrator account connected to your instance of PyroCMS. The user
account you create in this step will be the default super-admin account, so it
is important to use a strong password.
Run the Installation: The second part of the fourth step is running the
installation. Up until this point in the installation process, you've been
completing the steps necessary for running the final installation step. Once
you click on the Install button at the end of step four, the installer will
check to make sure that all the information you provided will work for the
installation. It will also, if you chose it to do so, try and create the database,
before it creates and populates any database tables, needed for your instance
of PyroCMS. If the installer cannot create the database, this final validation
check will fail. But don't worry, that just means you'll need to create the
database manually and then click on the Install button again.

Once you complete step four of the installation process, you'll be prompted to either
visit the front-end of your new website or click through to the control panel, the
administrative area of PyroCMS. We'll cover the control panel in the following chapter.

Troubleshooting installation
If you've followed all the instructions in this chapter but still run into errors trying
to get access to the control panel or to the homepage of your site, do not worry.
If you are using Apache with mod_rewrite (a popular Apache module) enabled,
you may need to change a few configuration variables or adjust the settings in
your .htaccess file to accommodate your host server's requirements. Please
make sure you have enabled the mod_rewrite.c module in Apache's httpd.conf
configuration file. You can learn more in the section of the installation guide in the
PyroCMS documentation at http://docs.pyrocms.com/2.2/manual/reference/
troubleshooting. Often, you can find other developers describing solutions to
problems on the PyroCMS forums at https://forum.pyrocms.com.

Chapter 1

[15]

Summary
This chapter covered the entire installation process of PyroCMS, from step one's
lead-in to creating and connecting to the database supporting your installation, to
the final step where the super-admin user account is created. We also covered some
basic installation troubleshooting and configuration tips. In between these points, we
also talked about MVC, CodeIgniter, and the required software of which you'll need
a basic understanding to run PyroCMS. In the following chapter, we are going to
explore PyroCMS's control panel.

The Control Panel
The PyroCMS control panel is the tool where you (or your system administrator) will
handle all the administration of your PyroCMS website. In this chapter, we're going
to review the primary features of PyroCMS's control panel, including the area where
you can modify all the settings of your system installation. As you'll find out, many
of the details of setting up your PyroCMS installation are easy to use. There are a few
other settings and control panel ideas, however, that really come into light after a
little exploration.

Control panel access
After you have finished installing PyroCMS, you'll want to jump right into website
administration. To access your PyroCMS installation, visit the following address
(using, of course, your own domain instead of example.com):

http://www.example.com/admin

If you aren't using Apache with the mod_rewrite module enabled, the URL to the
control panel of your PyroCMS installation will be the following URL:

http://www.example.com/index.php/admin

The Control Panel

[18]

At this URL, you'll be greeted with the standard PyroCMS login form, as seen in the
following screenshot:

Log in to this form using the administrator username (usually an email address)
and password you created during step four of the installation process. After
you've logged in, you'll be taken to the initial page of the control panel (called the
dashboard), as shown in the following screenshot:

Chapter 2

[19]

If you haven't done so already, it is very important that you remove
the PyroCMS install directory from your web server. Leaving
this directory on your server compromises the security of your site,
leaving it available to be taken over by anyone.

The dashboard
The dashboard is the first screen you see after logging into your PyroCMS control
panel. It is designed to give you a quick overview of recent changes that may have
happened on your website, such as whether there are new blog comments. The
dashboard also provides you with a news stream of data from the PyroCMS blog.
This stream will help keep you updated about changes in PyroCMS, including
security patches, updates, and more.

Layout and navigation
The PyroCMS control panel is broken up into three sections, the main menu at the
top of the screen, a sub-menu containing supporting links and primary actions
buttons, and the primary content and system administration area below the sub-
menu. In these three areas you'll find a familiar user experience pattern that makes
the PyroCMS control panel simple and intuitive.

The primary PyroCMS navigation is broken into seven major sections, as shown in
the following list. The control panel also includes a button that links you back to the
dashboard, and a logo which when clicked on will open the frontend of your website
in a new browser tab. The PyroCMS navigation also includes a search function you
can use to help locate specific website data. This search feature auto-completes, and
can quickly point you to a blog post or a page on your website.

• Content
• Structure
• Data
• Users
• Settings
• Add-ons
• Profile

The most commonly used control panel modules, for most PyroCMS users, are the
ones connected to content, which is why the Content navigation item is listed first in
the control panel's main menu.

www.allitebooks.com

http://www.allitebooks.org

The Control Panel

[20]

Content
The following screenshot shows the Content option on the Dashboard:

The Content navigation section of the control panel is for modules that deal with
your website's content, including blogs, pages, widgets, uploaded files and other
media. This section will be the primary area of focus for you and the other people
who use the control panel on your website.

Structure
The following screenshot shows the Structure option on the Dashboard:

Especially important to your efforts in content strategy and information architecture,
the Structure section of the control panel is where you'll find links to modules that
control navigation elements, redirects, and email templates.

Chapter 2

[21]

Data
The following screenshot shows the Data option on the Dashboard:

A lesser-used control panel navigation area, this section is reserved for modules
that help control keywords (such as blog post tags) and global variables for your
website. While it is true that you won't visit this control panel section often, don't
underestimate how much power the modules to which it links have. The Variables
module, for example, can help you control specific pieces of information (such as
prices or phone numbers), however small, from a central location.

Users
The following screenshot shows the Users option on the Dashboard:

The Users section is obviously where you'll look for modules that help with user
and permissions administration. Here you'll find ways to build user groups, change
group permissions, and add new users to the system.

The Control Panel

[22]

Settings
The following screenshot shows the Settings option on the Dashboard:

The Settings navigation area is, at first, one of your most visited areas in the control
panel. But once you have the primary settings for your website all plugged in, you'll
rarely find the need to use this navigation area. As you can imagine, though, this
area holds settings for the entire website (like website name, third-party integration
settings, and language preferences). Also, in this area, individual module preferences
are editable.

Add-ons
The following screenshot shows the Add-ons option on the Dashboard:

This area of the control panel contains modules that list the currently installed
modules, field types, plugins, themes, and widgets. This is where you control
which theme is being used on your website, as well as where you can install and
upgrade third-party modules. If a module you install doesn't add a link in one of
the primary navigation areas in the control panel, you can find a link to that module
through this menu.

Chapter 2

[23]

Profile
The following screenshot shows the Profile option on the Dashboard:

The Profile navigation area of the control panel is reserved for modules that help you
control your own website's profile information, including your password. The option
to log out from the control panel is also located under this navigation item.

Choosing a default language
The PyroCMS control panel and some add-ons have been translated into many
different languages. You can switch between languages in PyroCMS by using the
language menu in the footer of the control panel, as shown in the following screenshot:

The Control Panel

[24]

Summary
In this chapter we explored PyroCMS's control panel, the system area where users
like you visit to manage your website. We also quickly explored all the main
navigation areas of the control panel to understand better how it is organized.
Having solid knowledge of how the control panel is organized and designed helps
inform how you should build PyroCMS add-ons and where to quickly find and
edit information on your website. In the following chapter we'll cover how to create
pages and page types.

Creating Pages and
Page Types

Pages and page types can be described as the architectural foundations of most of
the content in your website. This means, basically, that your website's content, in
one way or another, will revolve around the creation of pages. Some content, such as
blog posts, for example, doesn't need to interact with the Pages module in PyroCMS,
but most other content will. In this chapter we'll explore how to create various
types of pages in PyroCMS. We'll also walk through how to create page types in the
system. By the end of this chapter you will have a good grasp on various ways to
work with pages in PyroCMS.

Pages
If you've worked with other content management systems in the past, you're likely
to be familiar with the idea of pages. Pages are singular collections of data usually
represented by a single URL. Pages, in general, have a purpose and these purposes
vary widely. Pages can, for example, list contact information, product details,
a portfolio of work, or just some text. While every page will likely have unique
content, they can also have common elements, including metadata, permissions or
privacy settings, and more.

Pages in PyroCMS, like in other systems, are usually broken into one of two
categories, basic content pages and dynamic pages. Both these categories of pages
are built in different ways in PyroCMS, but each touch PyroCMS's Pages module.

Creating Pages and Page Types

[26]

The Pages module
In PyroCMS, basic pages are created through the Pages module. This module is
found under the Content area of the main menu of your website's control panel.
When you open the Pages module, you'll be greeted with an easy-to-use interface
that lets you organize your pages into a hierarchy. The following interface (at times
nicknamed the page tree) literally lets you drag-and-drop pages underneath other
pages to form a page hierarchy:

When you select a page in the page tree, you're given a few actionable choices for
that page, which are as follows:

• Add child
• Duplicate
• Edit
• Delete

It is obvious to deduce what these actions will do to the page. But before we explore
page editing, it will be good for you to understand how to create pages in PyroCMS.

Chapter 3

[27]

How to create a basic page
To create a basic page in PyroCMS, choose the Pages module out of the main control
panel menu, and then click on the Add Page button that appears near the top-right
corner of the screen. After clicking on this button, you're presented with a form that
helps you build a page. By default, this form is split over the following six tabs:

• Page Details
• Page Content
• Meta Data
• CSS
• Script
• Options

Throughout these six tabs you'll find input fields, each of which are for a different
part of a page's settings or content. By default only two of these input fields are
required to create a new page, Title and Slug. The Title input, of course, is where
you'll put the title of the page. The Slug input is where you'll create the unique URL
slug for the page which, because of the way CodeIgniter handles URLs, becomes one
way that you can uniquely identify a page:

Creating Pages and Page Types

[28]

Page Details tab
The inputs on the page details tab include the following:

• Title
• Slug
• Status
• Add to Navigation

We've already learned about the first two input fields (Title and Slug) in the Page
Details tab of PyroCMS's page creation form. The other two input fields, Status and
Add to Navigation, handle two important settings for a page, whether the page is
publically viewable (that is live or in draft) and into which menu a link to this page
will be placed, respectfully.

Page Content tab
The Page Content tab is where you'll find the default WYSIWYG for adding
the primary content to your page. This input can take a variety of text inputs,
including HTML and plugin Lex parser tags. We'll talk more about the Lex
parser later in the book.

Meta Data tab
The Meta Data tab of the new page creation form is where you can basically
SEO meta tag information to a page, including a meta title, meta keywords, and
a meta description.

Please note that the meta title input overrides the page title
assigned when you created the page.

On this tab, you can choose whether or not to allow all of the links within the
page's content, to include the no-follow attribute and whether or not robots
(such as Google) will be able to index the page.

Not all robots are created equal. Some content web crawlers will ignore
this setting. As a security feature, it is recommended that you block those
robots from scanning content on your server.

Chapter 3

[29]

CSS and Script tabs
Both the CSS and Script tabs within the page creation form allow you to add custom
CSS or JavaScript to any page. This can be a handy fix for small CSS or JavaScript
needs, but it is discouraged to over-use these input fields. It is usually better to
include custom CSS and JavaScript in your site's template files.

Options tab
The Options tab in the page creation form contains a few auxiliary form inputs that
control some page settings, including the following:

• Access
• Comments enabled?
• RSS enabled?
• Is default (home) page?
• Require and exact uri-match?

Each of these input fields describe basic choices you can make about this page. The
Access input area, for example, allows you to choose which groups (permissions)
area allowed to see the page.

Save the page
Once you've completed the required (and hopefully many of the optional) input
fields on the page creation form, you can save the page by clicking on one of the blue
save buttons at the bottom of the window. The page should now appear in the page
tree in the Pages module.

Page types
PyroCMS Version 2.2 introduced a new feature to its users and developers, page
types. Page types are a very flexible way to store content. You could basically
describe page types as administrative templates for content. Essentially, page types
give you a way to organize a variety of types of data into different types of PyroCMS
pages. The best way to learn how page types can become an integral part of your
website is to put them into practice.

www.allitebooks.com

http://www.allitebooks.org

Creating Pages and Page Types

[30]

Create a new page type
To create a new page type, select Pages from the Content section in main control
panel menu. Then click on Page Types in the sub-menu section:

From here, clicking on the Add Page Type button near the top-right corner of
your browser window will lead you to a form that allows you to build a new
page type. As an example, we'll create a page type for listing information about
a business's employee:

For the moment, it isn't important to focus on any fields of this form, other than the
Layout input field on the Layout tab. This input is where you'll define the basic HTML
markup for an employee information page. As you can imagine, markup on these page
types can get pretty complicated, but we are going to keep things easy. We're going to
create a page type that lists an employee's name, bio, and email address.

Chapter 3

[31]

Markup for a page like that would look like the following code in PyroCMS:

<h2>{{ title }}</h2>
<p>{{ bio }}</p>
<p>{{ email:safe_mailto_link }}</p>

Once you've added this markup to the Layout input field, make sure you save your
work by clicking on the blue Save button at the bottom of the page.

This markup, if you can't tell, simply lists the name of the employee wrapped in an
H2 HTML tag, the person's bio, and a safe e-mail link. What you've probably noticed,
though, is that this isn't your traditional HTML markup. That's because PyroCMS
takes advantage of a very powerful template tag parsing system called the Lex Tag
Parser. At this point, all you need to know about the Lex parser is that it maps data
to special Lex tags. To make our custom page type work, we need to build a way for
you to add data to a page that maps to those Lex parser tags.

Lex parser tags are powered by a library added to PyroCMS that can
parse variables and other logic into PyroCMS layouts and templates.
We will cover the use of tags in both chapters four and five.

Add custom page type fields
After you create your page type (by clicking on the blue Save button), you'll land up
on the page type field page, where the system will likely tell you that you don't have
any custom fields yet. To create a new field, click on the New Field button near the
top-right of your browser window. Upon that click, you'll be taken to a form that
allows you to create a custom field for your page type. You can start by creating a
name field. In doing so, you'll be given choices on whether you can make this input
field required for the user and so on. The most important choice you'll make about
this input filed is its type.

By default PyroCMS gives you sixteen different field types to choose from, which
are as follows:

• Choice
• Country
• DateTime
• Email
• Encrypt
• File

Creating Pages and Page Types

[32]

• Image
• Keywords
• Relationship
• Slug
• Text
• Textarea
• URL
• US State
• User
• WYSIWYG

While some of these input types have obvious implications, such as File, Image,
and Textarea, some are a little more cryptic. You can learn everything you need to
know about these input fields from the PyroCMS documentation at http://docs.
pyrocms.com/2.2/manual/field-types. For our name field, we're going to select
the Text type:

Chapter 3

[33]

Once you create this input field, you should get a success message from the system
that reminds you about adding the Lex parser tag to your page layout, "…before its
data will be output you must insert its tag into the Page Type's Layout textarea." Since
we've already added the name Lex tag to the layout, our data is already aligned and
should show up on our page. To add an employee's bio and e-mail address to the
layout, follow the same process with which we made the name input field:

Create a new page with custom data
Now that we've added the custom input fields to our new page type and added our
page type into the system, we can create a new page in PyroCMS that lists, based on
our example, an employee's information. To do this, return to the Pages module in
the main menu in the control panel. Now when you click on the Add Page button,
a modal window will pop up that gives you the option of which type of page you'd
like to create, as shown in the following screenshot:

Creating Pages and Page Types

[34]

Choosing the Employee page type will go back to the page creation form, but now
it has some distinct differences. Now when you click on the Page Content tab, you'll
now see input fields for an employee's name, bio, and e-mail address.

Using drag-and-drop, you can re-order the custom input fields of a
page type by clicking on the Fields button next to a page type's listing
on the Page Types page.

Summary
In this chapter we covered how to create a new page in PyroCMS, including the
various options and settings associated with a new page. These options included text
information that is helpful for SEO. We also explored how to create a new page type
in PyroCMS, giving you the ability to shape how content is organized and displayed
on pages on your website. Custom page types added great value beyond the basic
WYSIWYG data entry mode found in many other content management systems. In the
following chapter we'll discover how create plugin and module add-ons for PyroCMS.

Plugin and Module Add-ons
Like many content management systems and other web applications, PyroCMS
comes pre-loaded with a way to extend the core system. In this chapter we're
going to explore two primary ways with which you can extend PyroCMS, which
are as follows:

• Plugins
• Modules

Plugins
If you've ever worked with other content management systems (such as WordPress,
for example) then you're likely to be familiar with the idea of plugins. In PyroCMS,
plugins are usually built to accommodate specialized content. Examples of this type
of content would be a Google calendar parsed into HTML or a three day weather
forecast. Plugins in PyroCMS are usually built to accommodate a single task and
they can be built in conjunction with modules (a type of plugin we'll also look at in
this chapter). At heart, plugins are the simplest type of add-on a PyroCMS developer
can create.

Tags
One of the central PyroCMS functionality concepts is Tags (also called Lex parser
tags). We quickly covered how tags work in PyroCMS in the previous chapter, but
we didn't cover the fact that tags are powered by plugins. The following tag is an
example of a simple tag that returns the current URL:

{{ url:current }}

Plugin and Module Add-ons

[36]

The code that powers this tag is a plugin, which is really a PHP file that can be called
via PyroCMS tags. Plugins are simple to write and made incorporating complex
functionality into PyroCMS clean and organized. The best part about PyroCMS
plugins is that they can be used everywhere, including WYSIWYG inputs, template
files, and layouts and page types. This type of plug-and-play action for PyroCMS
plugins is what makes them so powerful and distinct from plugins you find in
other systems.

Although they are identical in structure, a plugin can either be standalone
file or be a plugin.php file within a larger module.

How to create a plugin
Building a plugin for PyroCMS is very easy. To get started building your first plugin,
create a new PHP file in one of the two places that plugins may reside within an
instance of PyroCMS. We're going to create a basic Hello World plugin inside a
plugin file named hello.php. Create this file in one of the following two locations:

addons/shared_addons/plugins/hello.php (for plugins available to all websites)

OR:

addons/[your-site-name]/plugins/hello.php (for themes available to only one
specific website)

Plugin PHP files usually contain only one PHP class. In this case the start of the
Hello World class in our plugin will look like the following code. Remember,
PyroCMS runs on CodeIgniter, so our plugins can use CodeIgniter libraries
and methods.

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

class Plugin_Hello extends Plugin
{
 // Start of a plugin
}

Chapter 4

[37]

The start of this class is the default way in which you should start building a custom
class in CodeIgniter. The first line of this code keeps the script from being loaded
if you aren't running it as part of your CodeIgniter system. This line of code isn't
necessary but it is recommended that you use it. After this, we create a new class
called Plugin_Hello that extends the plugin class. Please note that the class name is
Plugin_ followed by the plugin name (lowercase with the first letter in uppercase).
Also note that the class name is the same as the file name. Now we'll implement our
first class method called say_hi, using the following code:

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

class Plugin_Hello extends Plugin
{
 function say_hi()
 {
 $name = $this->attribute('name');
 if($name)
 {
 return 'Hello '.$name;
 }
 else
 {
 return "Hello Dude";
 }
 }
}

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

This say_hi method is very simple. It looks for an attribute called name. If that
attribute exists, it returns it with the appended string Hello. If the attribute doesn't
exist, it returns the string Hello Dude. Also, in the preceding code, please note that
the data of each function is returned, not echoed.

While this example is very simple, the preceding code is all you need for a plugin
in PyroCMS. Using this plugin in PyroCMS is centered on how to use tags in the
system. For example, the following code is the tag you would use to hook our Hello
World plugin:

{{ hello:say_hi name="Fred" }}

Plugin and Module Add-ons

[38]

The preceding tag could be placed in any text or WYSIWYG input, or any template
or layout. Where this tag exists we would see the output string Hello Fred.

You can learn more about plugins in the PyroCMS documentation found
online at http://www.pyrocms.com/documentation.

Modules
For PyroCMS, modules are usually the largest and most intensive type of add-on
you can create. They are also, however, very flexible. With a module you can have
the following features:

• MVC
• Install/Uninstall functions
• Backend interfaces
• Frontend URIs
• Libraries, helpers, configs, and routes
• A plugin file (see the preceding section on plugins)
• Widgets
• Settings

Because PyroCMS is a modular system, once you start building a module, you'll see
how it fits into the overall structure of the system.

Folder structure
PyroCMS modules consist of PHP files arranged into the following supported folders:

• config/
• controllers/
• helpers/
• libraries/
• models/
• views/
• js/
• css/
• img/

Chapter 4

[39]

If you have worked with CodeIgniter, you should feel right at home with these
folders. If not, you'll notice that these folders support the MVC programming
pattern, separating the concerns of your module into its most important parts, config
values, controllers, models, views, and so on. As a developer, you have full power
to use MVC at your disposal. Not only does this give your module the flexibility it
needs to be strong, but it keeps your code extremely well organized.

PyroCMS is built using object-oriented PHP. If you have not studied OOP
or MVC, you may have trouble building module add-ons.

How to create a module
Creating modules in PyroCMS is pretty straight-forward. Like plugins, modules are
built in one of two locations in your instance of PyroCMS, shown as follows:

addons/shared_addons/modules/[module-name] (for modules available to
all websites)

OR:

addons/[site-name]/modules/[module-name] (for modules available to only one
specific website)

Once you have your base module folder containing the supported folder structure
created, the first file that you'll want to add to your modules is named details.php.
Every module add-on in PyroCMS has a details.php file. This file tells the system
everything about the module, including a version number, what it should do when
it is installed (that is, create some database tables), and what is should do when
uninstalled (remove some database tables). Without this file, PyroCMS will not be
able to load your module.

To help you get moving with module development, we're going to step through
creating a module from scratch. This module will just be a sample, but it gets you
on the road to making something great!

Just like a plugin, we'll start out project by creating a PHP class. The class's name,
which will contain the name of the module, should be stored in a folder with the
same module name. For example, if your module is named Sample it will be stored
in a folder named sample and the class name defined in our details.php file should
be Module_Sample. The following code will open our class:

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

www.allitebooks.com

http://www.allitebooks.org

Plugin and Module Add-ons

[40]

class Module_Sample extends Module {

}

The info() method
Now let's create our first method for this class. There are five methods required to be
in our details.php class. The methods are as follows:

• info()
• install()
• uninstall()
• upgrade()
• help()

There is also one variable in our class, the version number. First, let's add the version
number variable and the info() method to our module's base class, using the
following code:

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

class Module_Sample extends Module {

 public $version = '1.0';

 public function info()
 {
 return array(
 'name' => array(
 'en' => 'Sample'
),
 'description' => array(
 'en' => 'This is a PyroCMS module sample.'
),
 'frontend' => true,
 'backend' => true,
 'menu' => 'content',
 'sections' => array(
 'items' => array(
 'name' => 'Items',
 'uri' => 'admin/sample',
 'shortcuts' => array(
 'create' => array(

Chapter 4

[41]

 'name' => 'Create an Item',
 'uri' => 'admin/sample/create',
 'class' => 'add'
)
)
)
)
);
 }
}

The info() method of our module class returns an array of information about
our module, including (as you can see from the array keys) the name, description,
whether or not it is a frontend or backend module, and where it will appear in the
control panel's menu. The values in the sections area are returned as part of the
info() method build links for the module in the sub-menu area of the control panel.
This allows you to link to different parts (sections) of your module.

The install() method
The install() method in our details.php file will handle the initial database
changes that may need to happen to help support your module. It can also add
database information to support settings your module may need. To implement the
install() method, add the following code as a method in the class we created in
our module's details.php class:

public function install()
{
 $this->dbforge->drop_table('sample');
 $this->db->delete('settings', array(
 'module' => 'sample'));

 $sample = array(
 'id' => array(
 'type' => 'INT',
 'constraint' => '11',
 'auto_increment' => true
),
 'name' => array(
 'type' => 'VARCHAR',
 'constraint' => '100'
),
 'slug' => array(

Plugin and Module Add-ons

[42]

 'type' => 'VARCHAR',
 'constraint' => '100'
),
);

 $sample_setting = array(
 'slug' => 'sample_setting',
 'title' => 'Sample Setting',
 'description' => 'A Yes or No option for
 the Sample module',
 'default' => '1',
 'value' => '1',
 'type' => 'select',
 'options' => '1=Yes|0=No',
 'is_required' => 1,
 'is_gui' => 1,
 'module' => 'sample'
);

 $this->dbforge->add_field($sample);
 $this->dbforge->add_key('id', true);

 if (!$this->dbforge->create_table('sample')
 OR !$this->db->insert('settings',
 $sample_setting))
 {
 return false;
 }

 return true;
}

Let's look at this method in detail. To prevent database errors, it starts by dropping
any database tables associated with this module, just in case you've installed it
before. Then two arrays, one named $sample and one named $sample_setting, are
built to hold all the information necessary for the database forge library to make the
database changes needed by our module, including the creation of a new database
table called sample. It also adds place-holders for our module's custom system
settings into our database's settings table (this feature is optional).

Chapter 4

[43]

The uninstall() method
The uninstall() method you add to our details.php file is not nearly as
complicated as the install() method. In fact, it usually only handles removing
the database tables created by your module in the install() method. That is, for
example, exactly what the following code is doing:

public function uninstall()
{
 $this->dbforge->drop_table('sample');

 $this->db->delete('settings', array('module' => 'sample'));

 return true;
}

Nothing too impressive here, just a simple database drop-and-delete to remove our
sample database table and the settings values added into the settings table.

The upgrade() method
Adding an upgrade() method to your module's base class allows you to provide
systematic upgrades to other developers who might use your module. Just include
any upgrade logic/programming you might need to support version upgrades. If no
update logic is required, you can just add the following method code to your class:

public function upgrade($old_version)
{
 // Your Upgrade Logic
 return true;
}

This basic method, which just returns true, will work for you until you need a way
to upgrade your module for developers.

The help() method
The last method you'll add to the class in our details.php file is called help(). This
method allows you to give some basic in-module pointers to PyroCMS users. Often
over-looked, this is an easy way to help system users understand your module. A
very basic help method looks like the following code:

public function help()
{
 return "Enter help info as HTML with paragraph
 tags, etc.";
}

Plugin and Module Add-ons

[44]

Putting it together
Now that we've walked through all the methods needed in the details.php file,
let's look at the code all put together as follows:

<?php defined('BASEPATH') or exit('No direct script
 access allowed');

class Module_Sample extends Module {

 public $version = '1.0';

 public function info()
 {
 return array(
 'name' => array(
 'en' => 'Sample'
),
 'description' => array(
 'en' => 'This is a PyroCMS module sample.'
),
 'frontend' => true,
 'backend' => true,
 'menu' => 'content',
 'sections' => array(
 'items' => array(
 'name' => 'Items,
 'uri' => 'admin/sample',
 'shortcuts' => array(
 'create' => array(
 'name' => 'Create an Item',
 'uri' => 'admin/sample/create',
 'class' => 'add'
)
)
)
)
);
 }

 public function install()
 {
 $this->dbforge->drop_table('sample');
 $this->db->delete('settings', array('module' => 'sample'));

Chapter 4

[45]

 $sample = array(
 'id' => array(
 'type' => 'INT',
 'constraint' => '11',
 'auto_increment' => true
),
 'name' => array(
 'type' => 'VARCHAR',
 'constraint' => '100'
),
 'slug' => array(
 'type' => 'VARCHAR',
 'constraint' => '100'
),
);

 $sample_setting = array(
 'slug' => 'sample_setting',
 'title' => 'Sample Setting',
 'description' => 'A Yes or No option for the
 Sample module',
 'default' => '1',
 'value' => '1',
 'type' => 'select',
 'options' => '1=Yes|0=No',
 'is_required' => 1,
 'is_gui' => 1,
 'module' => 'sample'
);

 $this->dbforge->add_field($sample);
 $this->dbforge->add_key('id', true);

 if (!$this->dbforge->create_table('sample') OR
 !$this->db->insert('settings', $sample_setting))
 {
 return false;
 }

 return true;
 }

 public function uninstall()
 {

Plugin and Module Add-ons

[46]

 $this->dbforge->drop_table('sample');

 $this->db->delete('settings', array('module' => 'sample'));

 return true;
 }

 public function upgrade($old_version)
 {
 // Your Upgrade Logic
 return true;
 }

 public function help()
 {
 return "Here you can enter HTML, etc.";
 }
}

It might feel like this is a lot of code, but it is well organized, and it accomplishes a
lot of tasks without too much effort. Building this details.php file is the first step
in getting a module working. All we need now is a controller file to kick start this
module and get it working.

Add a controller
There are two types of controllers you can add to a PyroCMS module, admin
controllers and public controllers. As you can imagine, admin controllers can only
be reached once you are logged into PyroCMS. Public controllers, though, are part
of the public side of your website (that is, no login required). Only in rare cases will
modules not have some type of admin controller. To create the base admin controller
for your module, create a file named admin.php in your module's controller folder.
Once you've created the file, we need to add the following code to get this controller
working. Once again, this code is a PHP class.

<?php if (!defined('BASEPATH')) exit('No direct script
 access allowed');

class Admin extends Admin_Controller
{
 public function index()
 {
 // Start putting your module to work!
 }
}

Chapter 4

[47]

Things you need to know about this class include seeing that it extends the
Admin_Controller class. If this were a public controller, it would extend the
Public_Controller class. Also, the index() method we've added to this class is the
method run by default, making the index() method the first place you touch while
building more advanced controller logic. From here you can begin to scale your
module into a full-powered PyroCMS module add-on. You can start by adding a
view to your controller and passing some variables to that view. The following code
is a basic example:

<?php if (!defined('BASEPATH')) exit('No direct script
 access allowed');

class Admin extends Admin_Controller
{
 public function index()
 {
 $message = "You are logged in!";

 // Loads from addons/modules/blog/views/admin/
 view_name.php
 $this->template
 ->set('message', $message)
 ->build('admin/view_name');
 }
}

Passing data to a view is a foundational piece of using MVC. In this example, we
pass the string, You are logged in!, to the view, but that data could just as easily
be an array of values queried by a model.

Plugins and widgets in modules
One thing to remember is that module add-ons in PyroCMS can contain their own
plugins and widgets. This is often how content is delivered from a module to the
frontend of the website. For example, the controllers in your module will compile data
ready to be sent to the client (browser) as HTML. This data can be used in a plugin
to generate the HTML and place it within a page. Similarly, widgets can be added to
modules to accommodate widget style content that's connected to your module.

Plugin and Module Add-ons

[48]

Summary
In this chapter we learned how to create basic plugin and module add-ons for
PyroCMS. Both of these tools are very frequently used in the system and can be the
keys to helping you make PyroCMS, beyond the core features, do what you need. In
the following chapter we'll explore what it takes to create a PyroCMS theme.

Creating a PyroCMS Theme
Frontend templates are always a central part of building a website on a content
management system, and PyroCMS is no different. In this chapter, we'll explore all
the details of making your own theme for PyroCMS, including where to place your
theme files, how to use tags (Lex Parser tags) in your theme, and how to make your
themes maintainable and efficient.

Folder structure
Before we start writing any theme code, it is important to know where how your
theme files should be organized. Your PyroCMS theme can consist of HTML,
JavaScript, CSS, and images arranged into the following folder structure:

• css
• img
• js
• views
• views | layouts
• views | partials
• views | modules

If you've ever built a theme for a CMS, then these folder names will look very
familiar. Also, remember that with PyroCMS, we are always writing code in
the MVC programming pattern, and themes are no exception. When building a
theme for PyroCMS, you are really building the views (including assets) of a MVC
patterned application. Views consist of a master layout file and multiple partial
files (that is, a header.html or footer.html) that share presentation logic between
different layouts. While that might sound confusing at first, it makes more sense as
you put together your own PyroCMS theme.

www.allitebooks.com

http://www.allitebooks.org

Creating a PyroCMS Theme

[50]

Getting started
PyroCMS themes can be built in one of two places in the system. To get started
building your first theme, create the supported folder structure in one of the
following two places that themes may exist:

addons/shared_addons/themes (for themes available to all websites)

OR:

addons/[site-name]/themes (for themes available to only one specific website)

Once you have the base theme folder containing the supported folder structure built,
you need to create a file named theme.php in your theme's folder. The following
path, for example, is a file path that, from your base PyroCMS directory, will work
for your theme.php file:

addons/shared_addons/themes/[my-theme-name]/theme.php

This theme.php file contains all the details of your theme for the system. These
details include the theme's name, version number, author, author's website, the
theme's website (often useful if the theme needs documentation), and a description.
This theme.php file will also contain the necessary system hooks to enable advanced
theme options.

Creating a theme.php file
A simple theme.php file's code looks like the following code:

<?php defined('BASEPATH') OR exit('No direct script
 access allowed');

class Theme_Happy extends Theme
{
 public $name = ' Happy ';
 public $author = 'Zac Vineyard';
 public $author_website = 'http://zacvineyard.com';
 public $website = 'http:// zacvineyard.com/themes/happy';
 public $description = 'This theme is not sad.';
 public $version = '1.0';
}

Chapter 5

[51]

Like many of the other files you'll create for PHP, the theme.php file is a PHP class
(surprise!). As shown, this class has a few specific properties that must be included
(name, author, and so on.). How this class is named and stored determines whether
or not the PyroCMS system will recognize it. The name of this theme is Happy, which
means that it needs to be stored in a folder named happy (as shown in the following
screenshot) and that the class in our theme.php file should be named Theme_Happy.
If after you create your theme you don't see it listed in the Theme section of the
control panel, check to make sure that the theme's folder name and class name
are correct.

Theme options
One powerful feature in PyroCMS is the ability for your themes to have their own
set of options (similar to the idea of module settings). These options can help your
users control many dynamic features you could create into a theme. Your theme
could, for example, give users the power to choose which color scheme should load
or whether or not to include a breadcrumb navigation element at the top of a layout.
To make use of options, we need to define the $options property in the main theme
class in our theme.php file. Adding that property to the code in our file looks like the
following code:

<?php defined('BASEPATH') OR exit('No direct script
 access allowed');

class Theme_Happy extends Theme
{
 public $name = ' Happy ';
 public $author = 'Zac Vineyard';
 public $author_website = 'http://zacvineyard.com';

Creating a PyroCMS Theme

[52]

 public $website = 'http:// zacvineyard.com/themes/happy';
 public $description = 'This theme is not sad.';
 public $version = '1.0';
 public $options = array(
 'show_breadcrumbs' => array(
 'title' => 'Show Breadcrumbs',
 'description' => 'Display breadcrumbs?',
 'default' => 'yes',
 'type' => 'radio',
 'options' => 'yes=Yes|no=No',
 'is_required' => TRUE
)
);
}

The $options property we've added is an array of values that describe the type of
options you are giving to the user. In our example, the options we're giving the user
is named Show Breadcrumbs and will display a radio button input in the theme
options window for them to make that choice. The following screenshot shows the
Options tab highlighted:

Because our $options property is an array, we can add multiple theme options for
users. To do that, just append another array item into the $options array that helps
users make a choice with some of your theme's settings.

Chapter 5

[53]

Building the theme options form
In our $options array, you'll notice an array key named options after the type key
and the is_required key. The value of that options key may look a little cryptic
to you, but I can assure you that it is an easy code to break. You can customize field
values (as seen with our radio button) by defining a list of values and their text labels
separated by a pipe character (|).

Theme layouts
All layouts files for a PyroCMS theme exist in one of the following two locations:

addons/[site-name]/themes/[my-theme-name]/views/layouts/ (for themes
available to all websites)

OR:

addons/shared_addons/themes/[my-theme-name]/views/layouts/ (for themes
available to all websites)

Every theme should have a layout file named default.html in the preceding
locations listed. Let's review the contents of a layout file. Layout files in PyroCMS are
built using HTML and a tag parser, the Lex Parser. The following code is what a very
basic PyroCMS layout file looks like:

<!DOCTYPE html>
<html>
 <head>
 <title>{{ template:title }}</title>
 {{ template:metadata }}
 </head>
 <body>
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </body>
</html>

The first thing you should notice about this code is that it frequently makes use
of tags. These tags, as seen in the header of this document, give you a number of
content and logic options for your theme's layout files. In the case of this code, the
template tag is creating paths to CSS and JavaScript files included in this template.
Let's dive further into the use of tags in PyroCMS.

Creating a PyroCMS Theme

[54]

Tags explained
Earlier in this book we took some time to look at PyroCMS Tags (Lex Parser tags).
While what we covered was important, it wasn't very thorough. Knowing that you'll
be using tags heavily in templates, it will be good to have an in-depth knowledge of
how they work. Tags allow you to use advanced logic, with a special syntax, right
inside your layouts, page layouts, and pages (that is a WYSIWYG). Tags keep you
from filling up your templates with large PHP loops or other clutter, keeping your
templates clean and useable.

Basic tag
A basic tag can do something simple, like return a variable, or echo a variable into
your HTML. The following tag a basic example:

{{ some_var }}

PyroCMS tags are expressed with the preceding syntax, two curly brackets followed
by variable declarations or attributes, and closing brackets. You must remember,
though, tags like this are usually powered by a plugin, which is, in PyroCMS, a PHP
class with a method that will return data. So, you can have a plugin return data
for you. The following tag, for example, is a tag that will return the URL a user is
currently using:

{{ url:current }}

Truly, this tag could be connected to any module in PyroCMS, but it is connected
to a plugin called url which is a class. That class has a method named current
that will return the URL of the current page. This type of functionality is part of the
reason why PyroCMS is so powerful. The thing is, though, it doesn't stop here. Tags
can take attributes and handle more advanced logic.

Tag attributes
Lex Parser tags give you the power to modify tag output based on input data. That
input data comes from tag attributes. Building on our URL plugin example, the
following tag is a tag that will return just the first path segment of a URL:

{{ url:segments segment="1" }}

Chapter 5

[55]

Just as before, this tag hooks a plugin that returns some data, but this time takes into
account the value we send using the segment attribute. If our URL were something
like http://example.com/hello/world, then this tag returns the string hello. You
can also use multiple attributes with the same tag, as seen in the following example:

{{ url:segments segment="1" item="first" }}

Adding another attribute to a tag is as simple as it is in HTML.

Using tags in tag attributes
This topic title might sound a little confusing but it makes more sense when you see
the following tag example:

{{ url:segments segment="1" default="{{ page:slug }}" }}

What you are seeing with this example is that it is possible to nest tags inside other
tags. This means that you can, for example, use the output from one tag as an attribute
(input) value for another tag. That's what's happening in the preceding string of code.
We're using the output from {{ page:slug }} as the attribute value default. This
type of tag usage, as you can imagine, is what makes tags so flexible and powerful.

Tag pairs
Speaking of HTML, there is a way beyond attributes in which PyroCMS tags are like
HTML. Tags can be parsed with or without closing pair tags. Very similarly to what's
found in HTML and XML, PyroCMS tags can also take advantage of closing pair
tags. Take a look at the following code example:

{{ blog:posts limit="2" order-by="title" order-dir="desc" }}
 <h2>{{ title }}</h2>
{{ /blog:posts }}

There are a number of things to consider when looking at this code. First, this
tag obviously hooks a plugin in a blogging module that returns some data from
a method named posts. The attributes in this tag define some parameters for the
method, and, of course, we get some data output. One new feature you see is the
closing pair tag {{ /blog:posts }}. Because of this closing pair tag, we can use
PyroCMS tags to loop over data, as seen in our example. This leads us to other ways
we can express logic using PyroCMS tags.

Creating a PyroCMS Theme

[56]

Tag conditionals
Tag conditionals allow us to write basic conditional statements using tags. This
feature is very simple to use and has a syntax that's very similar to many of the
if/else statements found in programming languages, and is shown as follows:

{{ if user:logged_in }}
<p>You are logged in.</p>
{{ endif }}

The conditional statement in this tag is, of course, looking to see if a user is logged
in to your website. Nothing too fancy here, but tags can get more complicated by
handling if/else logic shown in the following example:

{{ if user:logged_in }}
<p>You are logged in.</p>
{{ else }}
<p>You are not logged in.</p>
{{ endif }}

There are a number of other ways you can use tags in PyroCMS, but this covers the
basics. If you want to learn more about tags and other advanced tag syntax, you
can find more info in the PyroCMS documentation at http://www.pyrocms.com/
documentation.

Tags in templates
The special tags you see in our layout HTML are Lex Parser tags. Because we are
writing code in the MVC pattern, the primary benefit to using Lex Parser tags in
your layout files is that you don't have to put PHP directly in your views, which
gives you the best chance of creating PyroCMS themes that follow the don't repeat
yourself (DRY) protocol.

Let's take a look at a more complex default.html layout file, shown as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>{{ template:title }}</title>
 {{ template:metadata }}
 {{ theme:favicon file="favicon.png" }}
 {{ theme:css file="style.css" }}
 {{ theme:js file="site.js" }}
 </head>
 <body>
 <div class="header">
 <div class="logo">

Chapter 5

[57]

 {{ theme:image file="logo.jpg" alt="Your
 Happy Logo" }}
 </div>
 <div class="nav">
 {{ navigation:links group="header" }}
 </div>
 </div>
 <div class="content">
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </div>
 </body>
</html>

As I've already stated, you'll notice that this layout file uses tags, including assets
like CSS, JavaScript, and images. Using tags in HTML allows PyroCMS developers
to build layout files very quickly.

Layouts versus page types
Layouts in PyroCMS are, in a way, best described as the most traditional route
to organizing content in a theme. The way in which layouts are built and used
in PyroCMS, for example, parallels the process we find in many other content
management systems. So, in order to see a custom set of data from a database, we
usually build a layout file as part of our theme to handle the display of that data.

Taking a less traditional route, PyroCMS 2.2 included a new feature, page types.
A page type is a layout that's connected to a specific stream of data, so that when
you create a page, you also input the data needed for a database entry. Page types
connect the data's point of entry to the page, instead of having to keep it separated
in a module (or another part of the system), as in our traditional layout example.

Theme partials
Partials are partial layout files in PyroCMS, and they allow you to break layouts into
reusable sections. These sections can then be loaded by different layout files. This
keeps you from typing the same code (header, footer, and so on) into multiple layout
files. Depending on where you've placed your theme files, partials are created in one
of the following two locations:
addons/[site-ref]/themes/[my-theme-name]/views/partials/

OR:
addons/shared_addons/themes/[my-theme-name]/views/partials/

Creating a PyroCMS Theme

[58]

Partials are loaded into layouts using a tag shown as follows:

{{ theme:partial name="partialname" }}

This tag operates exactly like a PHP include statement, similar to one that you would
find in themes of other content management systems. The following code is a simple
example of a PyroCMS layout that takes advantage of partials:

{{ theme:partial name="header" }}

 <div class="content">
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </div>

{{ theme:partial name="footer" }}

The contents of the header.html partial and footer.html files are, of course, the
HTML we'll need to reuse from the template in our preceding code example. One
quick pointer: there is no limit to the number of partials that you can use in one layout.
Additionally, partial files may contain any combination of valid HTML and tags.

Multiple layouts
Templates in PyroCMS aren't limited to just one layout file. You can make use of as
many layout files as you want, as long as you create them in the right way. To create
a specific layout for your website's about page, for example, you can create another
file like your default.html, but naming it about.html. It is important to give this
file a descriptive name so that users do not become confused when choosing a layout
for their pages in the system.

When you edit or create a Page Type in your PyroCMS control panel (navigate
to Control Panel | Pages | Page Types) and select your desired file from the
dropdown, all the layouts in your theme's layout file will be available to use, as
shown in the following screenshot:

Chapter 5

[59]

Mobile layouts
PyroCMS is able to easily display separate layouts for mobile and desktops. To use
this feature, move your layout files into a folder, called web within the views folder,
so that your default layout will be located in the following location:

[your-theme]/views/web/layouts/default.html

When a user accesses your website using a desktop browser, the primary layout files
in this location will be used. If the user accesses your website using a mobile device
browser, users will be supplied with the mobile layouts that you've created in the
following location:

[your-theme]/views/mobile/layouts/default.html

This feature works with multiple layout files, but please take note of this warning
found in the PyroCMS documentation: "PyroCMS does not consider the iPad a
mobile device, so it will not load your mobile layouts if the user is accessing your
website using an iPad." If, however, on your website, you'd like to make an iPad
recognized as a mobile device, you can change the user_agent.php file within the
system's config directory to make the iPad recognized a mobile device.

The folder structure of your theme's directory should look as follows, after you adopt
mobile layouts:

• css
• img

www.allitebooks.com

http://www.allitebooks.org

Creating a PyroCMS Theme

[60]

• js
• views
• views | mobile | layouts
• views | mobile | partials
• views | mobile | modules
• views | web | layouts
• views | web | partials
• views | web | modules

Module view overloading
Don't like the default theme layout for the blog module in PyroCMS? Hate the
way the comments are output by the system? No problem. You can customize
them anyway you wish by overloading the views associated with those modules.
PyroCMS allows you to replace any module view with a view inside your theme. If,
for example, you'd like to use a custom layout for the initial page where blog posts
are displayed, simply copy the blog module's posts.php view file to the theme
location described as follows:

system/cms/modules/blog/views/posts.php

to

addons/[site-ref]/themes/[theme-name]/views/modules/blog/posts.php

Once this view file is in your theme, you can change it to fit your needs. Then your
new view will be used instead of the default view included in with the blog module.

Summary
While the information in this chapter may look tedious at first glance, once you start
diving into building PyroCMS themes, you won't look back. As our code example at
the end of this chapter shows, you can build themes for PyroCMS quickly, and the
code stays organized! When I'm faced with working in a system that isn't PyroCMS,
I'm always jealous of how easy it is to work in this theme development environment.
In the following chapter, we'll discover how to take all the hassle out of managing
database tables and interaction with streams.

Using PyroCMS Streams
In earlier versions of PyroCMS (the current version is 2.2), PyroStreams was a module
add-on only found in the professional version. Recently though, the system has
changed quite a bit. One substantial change is that the system has been depending
more on Streams, as they're now known, to power many of the advanced, database
driven features of PyroCMS. Streams are powered by a data stream module in
PyroCMS that takes all the hassle out of managing database tables. This module was
invented because websites so often require sets of data that aren't just HTML, such as
a directory of employees or a database of products and product features.

In this chapter, we are going to learn how to use streams in PyroCMS. Using this
module and its plugin will help you manage and display structured data on
your website.

How to get Streams
To have all the features of the Streams module, you'll want to download and use
the professional version of PyroCMS. The core of the Streams module is part of the
community version of PyroCMS (page types, for example, are powered by streams),
but you can't get the full benefit from streams without the professional version. If
you'd prefer to keep the community version, you can purchase the Streams module
from the PyroCMS add-on store (https://www.pyrocms.com/store) and install it
in PyroCMS.

Also, it is important not to get confused over the similarities between page types and
the traditional use of streams. In some ways, page types can replace streams (they are
powered by the same module, after all), but many developers prefer using page types
and the Streams module for different purposes. As we learn about streams, and when
you start using them for your own project, you'll gain a preference for how you'd like
to use streams, even though the ways you can use streams are all very similar.

Using PyroCMS Streams

[62]

Creating a stream
To create a stream in PyroCMS, you'll use the control panel interface for streams
just as you would for any module. This interface allows you to easily manage your
streams and their input fields. At first, it might not be completely obvious how you
use the interface, but once you put it into practice, you won't forget. The following
screenshot shows how to create a new stream:

To create a new stream after you've selected the Streams module from the main
control panel menu, click on the New Stream button near the top-right of your
window. You'll be prompted to fill out a form with the details of your stream,
including its name, description, slug, stream prefix, and menu path. For now, just
give this new stream a name, description, and slug (must be unique). Remember,
a stream is just a set of relational database tables that store data. The following
screenshot shows the data that you need to enter for the stream:

Chapter 6

[63]

Once you have a stream created, we'll need to create some data input fields so that
you or your users can add data to the stream. In our stream example, we're creating
a list of business employees. So, you can imagine that we'll need input fields for an
employee's name, title, e-mail address, and phone number. The data we'll be adding
is fake, of course, but this serves as a basic example of the type of data you'll need.
So, let's dive in to making these fields.

Creating fields
To create a new input field for your stream, click on Fields in the Streams module's
submenu, then click on the New Field button near the top-right of the window. This
button leads you to a form that asks you for a field's name, slug, and type. We'll need
to complete this form to create a new input field for every column of data (remember,
this is just a database table) needed in our stream. One thing you'll notice, though,
is there are a number of different input types. While some input types are obvious,
such as country and date/time, some input types have a purpose that is a little more
confusing. Just refer the following list for each input type and its purpose:

• Country: presents the user with a list of countries.
• Date/Time: gives the user a group of drop-downs for inserting a date

and time.

Using PyroCMS Streams

[64]

• Email: gives the user a way to enter and validate an e-mail address as part of
the entry.

• Encrypted: gives the user a way to store a string as encrypted data in the
database. Data can be decrypted for output.

• File: gives the user a way to upload a file as part of a streams entry.
• Image: presents the user with a way to upload and resize an image as part of

a stream entry.
• Integer: allows the user to store an integer value.
• Keywords: the keywords field type gives you a text field into which you can

enter keywords or tags for your entries.
• Multiple Relationship: presents the user with a list of the other streams to

create a one-to-multiple relationship between streams. For example, you
could connect more than one phone number to an employee.

• PyroCMS Language: shows a drop down of languages from which
to choose.

• Relationship: presents the user with a list of the other streams to create a
one-to-one relationship between two streams.

• Slug: presents the user with a single-line text input field that can be hitched
to another text input field for slug creation.

• Text: gives the user a simple, single-line text input field.
• Textarea: gives the user a large textarea input field, commonly used for

larger blocks of text.
• URL: gives the user a text input field specifically used for URLs.
• US State: presents the user with a list of states that are part of the United

States of America.
• User: presents the user with a list of users in the PyroCMS system.
• WYSIWYG: gives the user a textarea input field coupled with either a simple

or an advanced WYSIWYG.
• Year: presents the user with a list of years from which to pick.

Assigning fields
After you have taken time to create all the fields for your stream of data, you'll need
to assign those fields to your stream. To help keep things efficient, fields have been
engineered inside the Streams module to be reusable. This means that any field can
be reused as part of any stream. So, we need to pick the fields we want to use for our
employee stream and assign them to that stream. To do that, click on the Manage
button next to your stream on the stream module page.

Chapter 6

[65]

The following screenshot shows how to assign fields to the stream:

Click on the Stream Field Assignments link on your stream's management page.
Then click on the New Field Assignment button near the top-right of the window.
Take time to assign each of the fields you'd like to have as input to our employee
stream. When making the assignment, you can choose to make the input field
required (as part of the input form) or a unique value. You can also define help
instructions for a field and choose to make the field a title column.

Each stream should have a title column. This column is the field that most
represents the data rows within each stream, such as a name or a title. Among
a number of things, it is primarily used to represent the rows of a field when
displaying posts in a relationship drop-down.

Ordering fields
Ordering fields on your streams input form is done easily. On the input assignment
page you can simply drag-and-drop your fields to reorder them, which will
automatically reorder the fields on the input form.

Default columns (fields)
Each stream comes with some default columns that are always created. You don't
need to create these because they will automatically be available as a part of your
stream. The default columns are as follows:

• ID: incremental numerical ID
• created: date of when the entry was created
• updated: date of when the entry was last updated
• created_by: ID of the user that created the entry

Using PyroCMS Streams

[66]

These fields can be used just like any other field in your stream, which means that
they can be and displayed in templates, and so on.

The backend input form
After you've assigned your input fields to your steam, you'll be able to start inputting
data using the provided input form. To input an entry in your stream, click on the
New Entry button next to the Manage button on the Streams module page. The
following screenshot shows the New Entry option that you need to click on:

You should then be taken to a form that contains all the input fields you assigned to
your stream. All you need to do, then, is fill out the form to add data to your stream.
In my example, I've assigned a name and e-mail address field to our employees
stream so that for every employee record I add, each person will have an e-mail
address and a name. The following screenshot shows the fields for your stream:

Chapter 6

[67]

Displaying your data
Once you have data stored in a stream, the next obvious step is to display that data
back out for users, in accordance with specific queries. Using the stream of employee
data we've created as an example in this chapter, I'll show you how to use this data
on your website.

The key to displaying data on your website is a powerful plugin that comes packaged
with the Streams module.

Streams plugin
This plugin, like all other plugins, lets us use tags to embed data into any page or
theme layout we want! It also has tools for creating entry forms and other types
of content.

Common variables
Before we dive too deep into using the Streams module, it is important to know that
there are a number of commonly used variables available to use in your plugin tags.
These variables are wrapped in square brackets and are as follows:

• [segment_1]: value in the first URI segment
• [segment_2]: value in the second URI segment
• [segment_3]: value in the third URI segment
• [segment_4]: value in the fourth URI segment
• [segment_5]: value in the fifth URI segment
• [segment_6]: value in the sixth URI segment
• [segment_7]: value in the seventh URI segment
• [user_id]: currently logged in user's ID
• [username]: currently logged in user's username

You can imagine times where these variables may come in handy, so don't forget
about them.

Using PyroCMS Streams

[68]

Entry looping
The most fundamental way in which you will display stream data to a user is to
use a tag to loop over stream entries and print data to a page. There are a number
of stream plugin features that help with handling stream data, each of which is
explained, with code examples, in the following paragraphs.

The loop cycle
The most basic and common way of interacting with streams data is looping through
it using the cycle plugin function. The following code is a very simple example
where we display five entries from our employees stream:

{{ streams:cycle stream="employees" limit="5" }}

 <h2>{{ name }}</h2>

{{ /streams:cycle }}

The preceding code, as you can plainly see, will cycle (or loop) through our stream
entries and output the name we've given each employee. This is a simple example.
Tags that output stream data can get much more complex.

Filter by date
One way in which tags for stream data get more complex is by adding a date filter.
The following code is an example of a tag that uses a day, month, and year to return
specific stream records created within a date range:

{{ streams:cycle stream="employees" year="2012"
 month="01" day="15" }}

You can also restrict the entries shown by telling the cycle plugin to show
or not show entries before or after the current date. You do this by using the
show_upcoming or show_past parameters, shown as follows:

{{ streams:cycle stream="employees" show_past="no" }}

Chapter 6

[69]

Other parameters
Dates are not the only parameters you can use in stream tags. The following is a
comprehensive list of all the parameters available for stream tags. Some of these
parameters are required.

• stream: slug of the stream you want to cycle through.
• namespace: by default, streams work off the core streams namespace, but you

can change this to use the cycle function with other namespaced streams.
• limit: how many results to which your query is limited.
• offset: the result set offset number.
• order_by: the field used to order your results.
• sort: the sorted order of your results, either ascending (asc), descending

(desc), or random.
• date_by: the field through which date parameters are run. The default

is created.
• year: restricts results to a year (in the date_by field).
• month: restricts results to a month (in the date_by field).
• day: restricts results to a day (in the date_by field).
• show_upcoming: choose yes or no to show entries dated in the future.
• show_past: choose yes or no to show entries dated in the past.
• where: used to restrict results, just like it is in a SQL query.
• exclude: IDs of entries to exclude separated by a pipe character (|).
• exclude_called: set to yes to limit entries to ones not already displayed on

the same page.
• include: value to include in a where= clause. Used with include_by to filter

by a single data point.
• include_by: the field to use when using the include parameter.
• disable: allows you to disable fields and their formatting. You can specify

multiple fields by separating them with a pipe character (|).
• no_results: message that displays when no results are found, such as No

results were found.
• partial: allows separation of results into separate segments.

Using PyroCMS Streams

[70]

How to use the "where" parameter
If you have a fair bit of experience writing SQL queries, then using the where
parameter in your stream tags will feel very comfortable. Writing out this where
parameter is very much like what an actual SQL query feels like. The following
code is an example:

{{ streams:cycle stream="employees"
 where="`email`='test@test.com'" }}

Appending a where parameter into your tag parallels the where statement in a
query, giving you power over displaying small or single sets of data.

Nested variables
Until now, we've been looking at stream tag examples that are only working with
a single dimension of data. That is, each of the tag examples we've used so far
have only been using a single-dimension array. Stream tags can output data from
multidimensional arrays, just in case you have variables that return an array of
values. For example, if you have a user fiend named person, you could access the
e-mail shown as follows:

{{ streams:cycle stream="employees" limit="5" }}

 <h2>{{ person:email }}</h2>

{{ /streams:cycle }}

The preceding tag, as part of a stream loop, pulls a value from the second array
dimension. This type of data output implies, of course, that your stream data is
output as a multidimensional array.

Pagination
A feature often used by developers when displaying data is pagination. Paginating
data allows users to more easily consume and use data. The good news is stream
tags support pagination. The following parameters are used in the cycle function
for creating pagination:

• paginate: setting this to yes will enable pagination
• pag_segment: the URI segment to take the pagination offset from (use an

integer value, such as 2)

Chapter 6

[71]

By default, when you enable pagination, the system will return 25 entries. You can
override this by setting a limit parameter. The following code is a complete streams
tag example where pagination is being put to use:

{{ streams:cycle stream="employees" limit="5"
 paginate="yes" pag_segment="2" }}
 {{ entries }}
 <h2>{{ name }}</h2>
 {{ /entries }}
 {{ pagination }}
{{ /streams:cycle }}

Stream data entry form
One of the most powerful features of PyroCMS's Streams module is the ability for
data entry forms to be generated using a simple, powerful plugin. Being able to
build forms for each stream takes away a lot of the horror of working with forms,
especially on large websites. In the following small sections, I'm going to show you
how to generate and use stream input forms.

How to build the form
Because stream entry forms are powered by a plugin, you can embed them into any
page layout, page (whether public or private), or theme layout file. The tag we'd use
to generate an input form for our employees stream looks like the following code:

{{ streams:form stream="employees" mode="new" }}
 {{ form_open }}
 <table>
 {{ fields }}
 <tr class="{{ odd_even }}">
 <td width="250">{{ input_title }}{{ required }}
 <small>{{ instructions }}</small></td>
 <td>{{ error }}{{ input }}</td>
 </tr>
 {{ /fields }}
 </table>
 {{ form_submit }}
 {{ form_close }}
{{ /streams:form }}

Using PyroCMS Streams

[72]

The most important things to realize about this tag are the two parameters, stream
and mode. The stream parameter on this tag defines which stream the input will be
generated for. The mode parameter, which can either be set to new or edit, defines
whether you are creating a new entry for the stream or editing an existing entry. This
form is creating new entries for our employees stream. You can, of course, modify
the HTML in this tag to make the form more useable for your website or application.

When we look at this tag in more detail, you'll notice that it essentially loops over
the fields assigned to a stream and builds the corresponding input element for that
field. There are a number of tag parameters, however, that can change how your
form operates. The following is a list of parameters you can use when using a tag
to generate a stream input form:

• stream: required. Stream slug for the stream we are editing or creating
data for.

• mode: set either to new or edit, depending on if you are creating or
editing data.

• edit_id: required if editing an entry. ID of the entry to edit.
• where: allows you to specify a where parameter using field_slug==value.
• required: string that populates the required variable if the field is required.
• return: the location to which the user will be redirected once the form action

is complete.
• error_start: string that prepends error messages.
• error_end: string that appends error messages.
• include: fields to include in the form, separated by pipe characters (|).

If you specify fields here, all other fields (excluding default columns) will
be excluded.

• exclude: fields to exclude from the form, separated by pipe characters (|).
• use_recaptcha: activates reCAPTCHA. Set to either yes or no.
• creator_only: when using the form in edit mode, setting this to yes will only

show the form and allow editing of an entry if the creator_id matches the
logged in user's ID.

Chapter 6

[73]

Custom success and error messages
Good news! Most PyroCMS themes have built-in displays for flash data (that is, data
that is only available on the next page refresh, and usually contains a message about
the success/failure of the previous action). With regard to error messages output by
stream forms (validation errors), you can change what these flash messages say by
making use of the following two tag parameters:

• success_message: overrides flash success message content
• failure_message: overrides flash failure message content

Form assets
Many form fields have CSS or Javascript that needs to be loaded. Depending on your
theme, the assets may not be automatically added to your page. In this case, you can
add them manually with the form_assets function. Just place the following code
below your form tags:

{{ streams:form_assets }}

E-mail notifications
When an entry form is submitted and processed successfully, you can send an e-mail
to a user. The entry form e-mail notification feature hooks into the native PyroCMS
e-mail template module. To get started, you'll need to navigate to Design | Email
Templates in the control panel and create a new e-mail template. After you've built
an e-mail template, you'll need to define the following parameters on your form tag:

• notify_{ID}: the e-mail address (or addresses) that will receive the
notification. Multiple addresses can be separated by a pipe (|) character. You
can also use form input values here, so if you have a field called user_email,
you can use user_email as an e-mail value.

• notify_template_{ID}: the slug of the e-mail template to use.
• notify_from_{ID}: optional custom "from" e-mail. This can be a single e-mail

address or an e-mail address and name separated by a pipe (|) character.

When you put it all together, the form tag that sends a confirmation e-mail resembles
the following code:

{{ streams:form stream="messages" mode="new"
 notify_a="admin@example.com|user_email"
 notify_template_a="new_feedback"
 notify_from_a="noreply@example.com|Example" }}

Using PyroCMS Streams

[74]

Summary
Using streams in PyroCMS can take a lot of the hassle and development time out
of building the forms and database interactions required by your website or web
application. Without much effort, you can be building forms, database tables, and
more by using the Streams module in PyroCMS.

Building a Website
with PyroCMS

In all of the previous chapters of this book, we learned how to install and use all
the primary features of PyroCMS. We took time to explore how to get the system
running, how to create themes using both page layouts and template files, how to
create add-ons for the system, and how to use streams to power data on our website.
In this chapter, we're going to step through all of these processes one more time,
giving you a consolidated website development experience using PyroCMS. We're
going to build a website as if you were starting from scratch.

Installation
As part of this walk-through, I'm going to assume that you've downloaded PyroCMS
(either from www.pyrocms.com or GitHub) and installed it on a local development
server. For the following code examples, we're going to assume that your PyroCMS
installation is in a web directory shown as follows:

http://localhost/pyrocms/

Building a Website with PyroCMS

[76]

Starting out, after you've stepped through PyroCMS's built-in installation process, you
should be able to load PyroCMS's default theme (as seen in the following screenshot):

If you can't get your website to load, the PyroCMS forums at https://forum.
pyrocms.com often has posts that can help you troubleshoot. Once your website
is loading, you can start developing a custom theme for your website.

Creating a custom theme
To start building your theme, there are a few folders you need to create in
your default theme folder. Your default theme folder should be created at the
following location:

addons/shared_addons/themes (for themes available to all websites)

OR:

addons/[site-name]/themes (for themes available to only one specific website)

Create the following folders inside your theme directory:

• css
• img
• js

Chapter 7

[77]

• views
• views | layouts
• views | partials
• views | modules

Once you have these base directories created, you need to create a file called theme.
php inside your theme's default directory. Remember, this file will contain all the
details about your theme for the system. The following is an example of what a
theme.php file contains:

<?php defined('BASEPATH') OR exit('No direct script
 access allowed');

class Theme_Happy extends Theme
{
 public $name = ' Happy ';
 public $author = 'Zac Vineyard';
 public $author_website = 'http://zacvineyard.com';
 public $website = 'http:// zacvineyard.com/themes/happy';
 public $description = 'This theme is not sad.';
 public $version = '1.0';
}

The theme.php file is just a PHP class that defines some values for your theme,
including the name, version, and options (an optional feature). Once you've added
these properties to your theme's base class, your theme should be recognized
by the system and available for use inside the control panel, as shown in the
following screenshot:

Building a Website with PyroCMS

[78]

At this point, you'll need to create at least one layout file for your theme. Remember
that creating multiple layout files may be necessary for your website, depending on
the number of different layouts you'll need.

Creating a layout file
Depending on where you're creating your theme, all layouts files for a PyroCMS
theme exist in one of the following two locations:

addons/[site-name]/themes/[my-theme-name]/views/layouts/ (for themes
available to all websites)

OR:

addons/shared_addons/themes/[my-theme-name]/views/layouts/ (for themes
available to all websites)

The first layout file you'll need to create is named default.html. So, create this file
in one of the preceding locations. This default file, which is required for your theme
to function properly, will contain some HTML markup that is mixed with PyroCMS
tags. These tags, as we've discussed in earlier chapters, are code (usually HTML)
that's returned from plugins attached to the system. The following code is the
example I provided earlier in the book for your default.html file:

<!DOCTYPE html>
<html>
 <head>
 <title>{{ template:title }}</title>
 {{ template:metadata }}
 </head>
 <body>
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </body>
</html>

This is, of course, ultra-simplistic, and will need various amounts of expansion
based on your needs, especially when it comes to including tags. A more detailed
default theme file will look more like the following code, which you can add to your
default.html as part of this last-chapter tutorial:

<!DOCTYPE html>
<html>
 <head>
 <title>{{ template:title }}</title>

Chapter 7

[79]

 {{ template:metadata }}
 {{ theme:favicon file="favicon.png" }}
 {{ theme:css file="style.css" }}
 {{ theme:js file="site.js" }}
 </head>
 <body>
 <div class="header">
 <div class="logo">
 {{ theme:image file="logo.jpg" alt="Your Logo" }}
 </div>
 <div class="nav">
 {{ navigation:links group="header" }}
 </div>
 </div>
 <div class="content">
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </div>
 </body>
</html>

Make sure you take note, as seen in the first few lines of the preceding code example,
of how tags power your ability to include layout assets, like CSS and JavaScript. In
this code, our assets include a favicon, a CSS file, a JavaScript file, and a logo image.
For our website, this basic layout will be the framework for all page content. Once
you have your default layout file created, you can start using it in the system.

Brief review of tags
The use of tags in layout files, WYSIWYGs, and other inputs is ubiquitous in
PyroCMS. It is good to have an in-depth knowledge of how tags work. They allow
you to use advanced logic, with a special syntax, right inside your layouts and so
on. Tag features include use of attributes, attribute stacking, tag pairs (opening and
closing tags similar to XML), and tag conditionals, as seen in the following example:

{{ if user:logged_in }}
 <p>You are logged in.</p>
{{ else }}
 <p>You are not logged in.</p>
{{ endif }}

Building a Website with PyroCMS

[80]

There are, of course, a number of other ways you can use tags in PyroCMS, but
this covers the basics. If you want to learn more about tags and other advanced tag
syntax, you can find more in the PyroCMS documentation at http://www.pyrocms.
com/documentation.

Adding theme partials
To make out theme layout more efficient, we're going to make use of theme partials.
Partials are partial layout files in PyroCMS, and they allow you to break layouts
into reusable sections. These sections can then be loaded by different layout files.
This keeps you from typing the same code (header, footer and so on.) into multiple
layout files. In the most basic way, we can break our layout into 3 partial files,
header.html, default.html, and footer.html. Create each of these files in your
theme folder, adding the header.html and the footer.html files into the respective
partials directory. You can then include those partial files into your default layout file
by using a tag shown as follows:

{{ theme:partial name="partialname" }}

Now that we are making use of partials, the following is an example of what each of
our layout files should include:

• Our header.html file, found at addons/shared_addons/themes/[my-
theme-name]/views/partials/, should contain the following chunk of
code formerly found in our default layout file:
<!DOCTYPE html>
<html>
 <head>
 <title>{{ template:title }}</title>
 {{ template:metadata }}
 {{ theme:favicon file="favicon.png" }}
 {{ theme:css file="style.css" }}
 {{ theme:js file="site.js" }}
 </head>
 <body>
 <div class="header">
 <div class="logo">
 {{ theme:image file="logo.jpg" alt="Your
 Happy Logo" }}
 </div>
 <div class="nav">
 {{ navigation:links group="header" }}
 </div>
 </div>

Chapter 7

[81]

• Our default.html file, found at [your-theme]/views/layouts/default.html
should now contain the following code:
{{ theme:partial name="header" }}

 <div class="content">
 <h1>{{ template:title }}</h1>
 {{ template:body }}
 </div>

{{ theme:partial name="footer" }}

• Our footer.html file, found at addons/shared_addons/themes/[my-
theme-name]/views/partials/, should now contain the following code
formerly found in the default layout file:

</body>
</html>

See how, when using partials, all the necessary files get included into the default
layout file? This is a common way to introduce efficiencies into your template code
so that, as a developer, you save time, which is what PyroCMS is all about.

Now that we have our basic theme put together, we can add content to our website.
You can do this by using the Pages module in the system (in the control panel). Two
things we'll add our website, beyond basic page content, are a contact form and
stream data.

Adding a contact form
A contact form is a basic feature of many, many websites. This feature comes
built into PyroCMS, and can be added to any page in the system simply because
it is a plugin tag you add to your website. The tag that creates this form is more
complicated than most tags, but it makes simple work out of building and validating
a contact form. The following tag is a simple example of a tag that generates a
contact form:

{{ contact:form
 name = "text|required"
 email = "text|required|valid_email"
 subject = "dropdown|required|hello=Howdy|
 support=Support Ticket"
 message = "textarea|required"
 attachment = "file|jpg|png|zip"
}}

Building a Website with PyroCMS

[82]

 {{ name }}
 {{ email }}
 {{ subject }}
 {{ message }}
 {{ attachment }}
{{ /contact:form }}

This contact form generates five input fields for a user. These inputs are name, email,
subject, message, and attachment. Each parameter on this form tag can take a
pipe-delimited set of values. For most inputs, this pipe-delimited value follows a
specific format. This first value in the delimited string is, for example, the name of
the input field. The second delimited value determines whether or not the form
input should be required for the user. The third delimited value can either be an
extension of validation rules or another set of delimited values that determine the
options included in a dropdown. The subject field, for example, will be output as a
dropdown of values that include Howdy and Support Ticket. These forms follow
the form validation patterns used by CodeIgniter. If you are unfamiliar with how
forms get validated by CodeIgniter, you can refer CodeIgniter's User Guide for form
validation documentation at http://ellislab.com/codeigniter/user-guide/
libraries/form_validation.html.

Adding stream data to your website
We covered streams in the previous chapter of this book. Building upon our efforts
there, we are going to reuse the employees stream we built in that chapter. That
stream is a directory of people's names and phone numbers, one that can be output
to a website. To build that stream, we used the Streams module that comes built into
the professional version of PyroCMS. If you didn't follow the steps put together in
Chapter 6, Using PyroCMS Streams, then you'll want to create a new stream of data
called employees in PyroCMS using the Streams module. We're going to take that
stream, embed it into a page so that it can be seen by a user. Then, taking it a step
further, we're going to build a details page for a single stream entry. This type of
interaction, as I'm sure you know, is very common among websites.

First, let's take a look at the stream tag that's going to loop through our employee
entries and output the values from our database, shown as follows:

{{ streams:cycle stream="employees" limit="5" }}
 {{ entries }}
 <p>{{ name }}</p>
 {{ /entries }}
{{ /streams:cycle }}

Chapter 7

[83]

This code acts exactly like a for loop in PHP, looping over our data. You can add
this streams tag to any page you create using the Pages module. In the case of this
specific example, let's create a page called Employees that will list all of the employee
entries in the stream:

We'll modify our stream tag a little bit by adding a link around the name variable, so
that each record in the stream links to the single, detailed stream entry. Later, we'll
embed the code for that single entry on a nested page.

The code we'll need for our details page is very similar to the code we put on the
base employees page, but it uses a URL value and the id parameter to limit the
data returned to the user, shown as follows:

{{ streams:cycle stream="employees" limit="5" }}
 {{ entries }}
 <p>{{ name }}</p>
 {{ /entries }}
{{ /streams:cycle }}

As part of the details page, you can display the phone number we've entered for each
entry in the employees stream, as shown in the following code sample. We'll take
the following code and add it to a page that is nested underneath our base employee
page in the Pages module:

{{ streams:cycle stream="employees" id="[segment_3]"
 limit="1" }}
 {{ entries }}
 <h2>{{ name }}</h2>
 <p>{{ phone }}</p>
 {{ /entries }}
{{ /streams:cycle }}

Building a Website with PyroCMS

[84]

If however, you try to get these pages to connect without doing one more step, you'll
see that is doesn't work. You'll be given a "404 page not found" error. To get all of our
URLs to line up correctly, we're going to define a custom URL route in PyroCMS that
will make this common/details page setup work, which will then appear as shown
in the following screenshot:

Defining a custom route
Building a custom route in PyroCMS is quite easy to do. In a way, though, adding
this route to the system is modifying core code that could be wiped out with future
updates to the system, so take care of these routes. The file where you'll add your
custom route is located within your PyroCMS project files, shown as follows:

system/cms/config/routes.php

To accommodate the employee/detail page we have created, you need to add the
following route to your routes.php file:

$route['employees/detail/(:any)'] =
 'pages/view/employees/detail';

This route essentially makes the ID number that appears in your link to the details
page, the parameter with which we can make a query against the database. Once you
have this route installed, you should be able to link from an employee record in your
stream to a detailed employee record page.

Chapter 7

[85]

Summary
What I've shown you in the last few pages of this book are the essential steps to
getting a website running using PyroCMS. We covered getting the system installed,
creating a theme, and using streams to help power database driven content on
your website. What I hope you've learned is that it doesn't take much effort to
start building a smart website on PyroCMS. Because of its ability to leverage
programming patterns, an easy-to-use PHP framework, and wicked fast theme
development workflow, PyroCMS, as I hope you've seen, is an extremely
well-outfitted system that's ready to be used on any website project.

Index
A
add-ons option, control panel 22
admin controllers 46
assets, stream data entry form 73

B
backend input form 66
basic tag 54

C
CodeIgniter

about 6, 37
URL, for info 6

common variables, Streams plugin 67
contact form

about 81
adding 81, 82

content management systems 5
content option, control panel 20
controllers

adding, to modules 46, 47
control panel modules

add-ons 22
content 20
data 21
profile 23
settings 22
structure 20
users 21

control panel, PyroCMS
accessing 17, 18
dashboard 19
default language, selecting 23

layout 19
navigation 19

CSS tab, page creation form 29
cURL

about 8
URL 8

custom data
page, creating with 33, 34

custom error message, stream data entry
form 73

custom page type fields
creating 31-33

custom route
defining 84

custom success message, stream data entry
form 73

custom theme
creating 76, 77

D
dashboard 19
data

displaying 67
data option, control panel 21
data stream module 61
date filter, Streams plugin 68
default columns

for streams 65
default language

selecting 23
details.php file

code 44, 46
Drupal 5
DRY protocol 56

[88]

E
e-mail notifications, stream data entry form

73
entry looping, Streams plugin 68

F
features, modules 38
fields

assigning, to streams 64
creating, for streams 63, 64
ordering, on streams 65

folder structure, modules 38
folder structure, themes 49, 76

G
GD2 7
GitHub

PyroCMS, downloading from 9

H
help() method 43
HTTP web server 6, 7

I
index() method 47
info() method 40, 41
install() method 41, 42

L
layout file

creating 78, 79
layouts

displaying, for mobile 59
versus page types 57

Lex parser tags 31, 35, 56
loop cycle, Streams plugin 68

M
Meta Data tab, page creation form 28
mobile layouts 59
Model-View-Controller (MVC) 6

modules
about 38
controller, adding to 46, 47
creating, in PyroCMS 39
features 38
folder structure 38

module view overloading 60
multiple layouts

for tags, in templates 58
MySQL

about 7
URL, for info 7

N
namespaceing 7
nested variables, Streams plugin 70

O
Options tab, page creation form 29

P
page

about 25
creating, in PyroCMS 27
creating, with custom data 33, 34

Page Content tab, page creation form 28
page creation form

CSS tab 29
Meta Data tab 28
Options tab 29
Page Content tab 28
Page Details tab 28
Script tab 29

Page Details tab, page creation form 28
Pages module 26
page tree 26
page types

about 25, 29, 61
creating 30, 31
custom page type fields, adding 31-33
page, creating with custom data 33, 34
versus layouts 57

pagination feature, Streams plugin 70

[89]

parameters, Streams plugin
about 69
date_by 69
day 69
disable 69
exclude 69
exclude_called 69
include 69
include_by 69
limit 69
month 69
namespace 69
no_results 69
offset 69
order_by 69
partial 69
show_past 69
show_upcoming 69
sort 69
stream 69
where 69, 70
year 69

PHP 7
PHP 5.2 7
plugin.php file 36
plugins

about 35
building, for PyroCMS 36, 37
in modules 47
tags 35
URL, for documentation 38

prerequisite methods, PHP class
help() method 43
info() method 40, 41
install() method 41, 42
uninstall() method 43
upgrade() method 43

profile option, control panel 23
public controllers 46
PyroCMS

about 5
Community version, features 9
Community version versus Professional

version 10
control panel 17
downloading 8
downloading, from GitHub 9

installation 75
installation process, troubleshooting 14
modules, creating 39
page, creating 27
platform support 6, 7
plugins, building 36, 37
Professional version, features 10
software requisites 5, 6
URL, for downloading 8
URL, for forums 14, 76
URL, for installation guide 14

PyroCMS installer
about 5, 10
steps 11-14

PyroStreams 61
PyroStreams module 10

S
Script tab, page creation form 29
settings option, control panel 22
software requisites, PyroCMS

about 5
CodeIgniter 6
cURL 8
GD2 7
HTTP web server 6, 7
MySQL 7
PHP 7

stream data
adding, to website 82, 83

stream data entry form
about 71
assets 73
building 71, 72
custom error message 73
custom success message 73
e-mail notifications 73

streams
about 61
creating 62, 63
fields, assigning to 64
fields, creating for 63, 64
fields, ordering on 65

Streams module
about 61
obtaining 61

[90]

URL, for purchasing from PyroCMS add-on
store 61

Streams plugin
about 67
common variables 67
date filter, adding 68
entry looping 68
loop cycle 68
nested variables 70
pagination feature 70
parameters 69

structure option, control panel 20

T
tag attributes

about 54
tags, using 55

tag conditionals 56
tag pairs 55
tags

about 35
basic tag 54
in templates 56, 57
review 79
tag attributes 54
tag conditionals 56
tag pairs 55
using, in tag attributes 55

theme layouts 53
theme options form

building 53
theme partials

about 57, 58
adding 80, 81

theme.php file
about 50, 77
creating 50, 51

themes
about 50
folder structure 49, 76

themes options 51, 52
Typo3 5

U
uninstall() method 43
upgrade() method 43
users option, control panel 21

W
website

stream data, adding to 82, 83
where parameter

using, in stream tags 70
widgets

in modules 47
WordPress 5, 35

Thank you for buying
Website Development with PyroCMS

About Packt Publishing
Packt, pronounced 'packed', published its first book }Mastering phpMyAdmin for Effective
MySQL Management} in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Joomla! E-Commerce with
VirtueMart
ISBN: 978-1-84719-674-3 Paperback: 476 pages

Build feature-rich online stores with Joomla! 1.0/1.5
and VirtueMart 1.1.x

1. Build your own e-commerce web site from
scratch by adding features step-by-step to an
example e-commerce web site

2. Configure the shop, build product catalogues,
configure user registration settings for
VirtueMart to take orders from around the
world

3. Manage customers, orders, and a variety of
currencies to provide the best customer service

Building Websites with Joomla!
1.5
ISBN:978-1-847195-30-2 Paperback: 384 pages

The best-selling Joomla! tutorial guide updated for
the final release

1. Learn Joomla! 1.5 features

2. Install and customize Joomla! 1.5

3. Configure Joomla! administration

4. Create your own Joomla! templates

5. Extend Joomla! with new components,
modules, and plug-ins

Please check www.PacktPub.com for information on our titles

Joomla! VirtueMart 1.1 Theme and
Template Design
ISBN: 978-1-849514-54-5 Paperback: 384 pages

Give a unique look and feel to your VirtueMart
e-commerce store

1. Thorough discussion of template structure,
available fields, and customization possibilities

2. More than 50 real-world exercises that can be
directly adapted to your store

3. A comprehensive reference to all templates in
the VirtueMart default theme including usage
of each template and all available fields

4. Integrate with existing Joomla! plugins and
JavaScript frameworks

Building E-commerce Sites with
Drupal Commerce Cookbook
ISBN: 978-1-782161-22-6 Paperback: 206 pages

Over 50 recipes to help you build engaging,
responsive E-commerce sites with Drupal Commerce

1. Learn how to build attractive eCommerce sites
with Drupal Commerce

2. Customise your Drupal Commerce store for
maximum impact

3. Reviewed by the creators of Drupal Commerce:
The CommerceGuys

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing PyroCMS
	Getting started
	CodeIgniter
	HTTP web server
	MySQL
	PHP
	GD2
	cURL

	Downloading PyroCMS
	The difference between the Community and Professional versions of PyroCMS
	PyroStreams

	The installer
	Troubleshooting installation

	Summary

	Chapter 2: The Control Panel
	Control panel access
	The dashboard
	Layout and navigation
	Content
	Structure
	Data
	Users
	Settings
	Add-ons
	Profile

	Choosing a default language
	Summary

	Chapter 3: Creating Pages and Page Types
	Pages
	The Pages module
	How to create a basic page
	Page Details tab
	Page Content tab
	Meta Data tab
	CSS and Script tabs
	Options tab
	Save the page

	Page types
	Create a new page type
	Add custom page type fields
	Create a new page with custom data

	Summary

	Chapter 4: Plugin and Module Add-ons
	Plugins
	Tags
	How to create a plugin

	Modules
	Folder structure
	How to create a module
	The info() method
	The install() method
	The uninstall() method
	The upgrade() method
	The help() method
	Putting it together

	Add a controller
	Plugins and widgets in modules

	Summary

	Chapter 5: Creating a PyroCMS Theme
	Folder structure
	Getting started
	Creating a theme.php file

	Theme options
	Building the theme options form

	Theme layouts
	Tags explained
	Basic tag
	Tag attributes
	Using tags in tag attributes
	Tag pairs
	Tag conditionals

	Tags in templates
	Layouts versus page types
	Theme partials
	Multiple layouts
	Mobile layouts
	Module view overloading
	Summary

	Chapter 6: Using PyroCMS Streams
	How to get Streams
	Creating a stream
	Creating fields
	Assigning fields
	Ordering fields
	Default columns (fields)
	The backend input form
	Displaying your data
	Streams plugin
	Common variables
	Entry looping
	The loop cycle
	Filter by date
	Other parameters
	How to use the "where" parameter
	Nested variables
	Pagination

	Stream data entry form
	How to build the form
	Custom success and error messages
	Form assets
	E-mail notifications

	Summary

	Chapter 7: Building a Website with PyroCMS
	Installation
	Creating a custom theme
	Creating a layout file
	Brief review of tags
	Adding theme partials
	Adding a contact form
	Adding stream data to your website
	Defining a custom route
	Summary

	Index

